人教版七年级数学下册第八章第一节二元一次方程组习题(含答案) (17)
人教版七年级下册数学第八章《二元一次方程组》单元练习题(含答案)
人教版七年级下册数学第八章《二元一次方程组》单元练习题(含答案)一、单选题1.若21x y =-⎧⎨=⎩是关于,x y 的方程组17ax y x by -=⎧⎨+=⎩的解,则+a b 的值为( ) A .6 B .10 C .8 D .42.如图,在大长方形ABCD 中,放入六个相同的小长方形,则阴影部分的面积为( )A .140 cm2B .96cm2C .44 cm2D .16 cm23.若21x y =-⎧⎨=⎩是方程组17ax by bx by +=⎧⎨+=⎩的解,则(a+b )·(a -b )的值为( ) A .-353 B .353C .-33D .16 4.二元一次方程组{3,24x y x +==的解是 ( ) A .{2,y 1x ==-B .{2,y 5x ==C .{2,y 5x ==-D .{2,y 1x == 5.下列方程中:①221x y +=;②234x y +=;③230x y +=;④743x y +=,二元一次方程有( )A .1个B .2个C .3个D .4个6.为了丰富学生课外小组活动,培养学生动手操作能力,张老师让学生把7m 长的彩绳截成2m 或1m ,用来作手工编织.在不浪费的前提下,不同的截法有( )A .1种B .2种C .3种D .4种7.把方程23x y -=改写成用含x 的式子表示y 的形式( )A .23y x =-B .23y x =+C .1322x y =+D .132x y =+8.使方程组21230x my x y +=⎧⎨-=⎩有自然数解的整数m ( ) A .只有6个 B .只能是偶数 C .是小于12的自然数 D .是小于10的自然数9.下列方程中①4z ﹣7=0;②3x +y =z ;③x ﹣7=x 2;④4xy =3;⑤,属于二元一次方程的个数为( )A .0个B .1个C .2个D .3个10.我国古代问题:以绳测井,若将绳三折测之(注:绳儿折即把绳平均分成几等分),绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?( )A .36,8B .28,6C .28,8D .13,311.以下各组中,是方程组34x y x y =⎧⎨-=⎩的解的是( ) A .62x y =⎧⎨=⎩ B .26x y =⎧⎨=⎩C .31x y =⎧⎨=⎩D .13x y =⎧⎨=⎩ 12.方程组2824x y x y ⎧+=⎪⎨+=⎪⎩的解的个数为( ) A .1B .2C .3D .4二、填空题 13.三元一次方程组102317328x y z x y z x y z ++=⎧⎪++=⎨⎪+-=⎩的解是________.14.明代数学家程大位在其所著《直指算法统宗》一书中有如下问题:假如井不知深,先将绳三折入井,绳长四尺;后将绳四折入井,亦长一尺.问井深及绳长各若干?意思是:“用绳子测量井深,把绳子折成三折来量,井外余绳4尺;把绳子折成四折来量,井外余绳1尺.井深和绳长各是多少?”那么井深为_____尺,绳长为_____尺.15.已知()222260x y x y --++-=,则x y -=________.16.我市新建成的龙湖公园,休息长廊附近的地面都是用一种长方形的地砖铺设的,如图,测得8块相同的长方形地砖恰好可以拼成面积为2400cm 2的长方形ABCD ,则矩形ABCD 的周长为__.17.若(m ﹣3)x+2y|m ﹣2|+8=0是关于x ,y 的二元一次方程,m= _________ .18.已知213x y -=,用含x 的代数式表示y 为:y =________. 19.已知23x k y k =⎧⎨=⎩是二元一次方程214x y +=的解,则k 的值是_____________. 20.某道路安装的护栏平面示意图如图所示,每根立柱宽为0.2米,立柱间距为3米,设有x 根立柱,护栏总长度为y 米,则y 与x 之间的关系式为_______.三、解答题21.(1)计算:(﹣2)2sin60°﹣(﹣)•﹣(﹣)0; (2)已知x ,y 满足方程组,求2x ﹣2y 的值.22.甲、乙二人同时解方程组321ax y x by +=⎧⎨-=⎩,甲看错了a ,解得11x y =⎧⎨=-⎩;乙看错了b ,解得13xy=-⎧⎨=⎩.求原方程组的正确解.23.某村在推进美丽乡村活动中,决定建设幸福广场,计划铺设相同大小规格的红色和蓝色地砖.经过调查.获取信息如下:如果购买红色地砖4000块,蓝色地砖6000块,需付款86000元;如果购买红色地砖10000块,蓝色地砖3500块,需付款99000元.(1)红色地砖与蓝色地砖的单价各多少元?(2)经过测算,需要购置地砖12000块,其中蓝色地砖的数量不少于红色地砖的一半,并且不超过6000块,如何购买付款最少?请说明理由.24.某商场按定价销售某种商品时,每件商品可以获利140元,已知按定价的八折销售该商品3件与将定价降低20元销售该商品2件所获得的利润相等,请求出该商品的进价和定价分别是多少?25.已知关于x、y的方程组253{524x y kx y k+=+=-,的解满足不等式x-y>1,求满足条件的k的取值范围.26.在等式y=kx-b 中,当x=2时,y=-3;当x=-2 时,y=-5.求k 和b 的值.27.列方程(组),解应用题:一副带45°和30°的直角三角板按如图所示的方式摆放,且∠1比∠2大40°,求∠1与∠2的度数.28.若⊙O 1和⊙O 2的圆心距为4,两圆半径分别为r 1、r 2,且r 1、r 2是方程组1212r 2r 6{3r 5r 7+=-=的解,求r 1、r 2的值,并判断两圆的位置关系.29.福德制衣厂现有24名服装工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子的数量相等,则应安排制作衬衫和裤子各多少人?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元.若该厂要求每天获得的利润不少于2100元,则至少需要安排多少名工人制作衬衫?参考答案1.C2.C3.C4.D5.B6.D7.A8.A9.B10.A11.A12.A13.325x y z =⎧⎪=⎨⎪=⎩14.8 3615.016.200cm17.1.18.162x - 19.220.y =3.2x ﹣3.21.(1)3﹣1;(2)-422.13x y =-⎧⎨=⎩23.(1)红色地砖每块8元,蓝色地砖每块10元;(2)购买蓝色地砖5000块,红色地砖7000块,费用最少,最少费用为89800元.24.商品的进价为160元,定价为300元25.14k < 26.124k b ⎧=⎪⎨⎪=⎩27.∠1的度数为65°,∠2的度数为25°.28.12r 4{r 1==两圆的位置关系为相交 29.(1)制作衬衫和裤子的人分别为15人,9人;(2)需要安排18名工人制作衬衫.。
人教版七年级下册数学第八章《二元一次方程组》单元练习题(含答案)
人教版七年级下册数学第八章《二元一次方程组》单元练习题(含答案)一、单选题 1.方程组的解是( )A .B .C .D .2.甲,乙,丙三人共解出100道题,每人都解对其中的60道题,将其中只有1人解出的题叫做难题,2人解出叫做中等题,3人都解出的题叫做容易题,试问:难题和容易题谁多,多几题( ) A .容易题比难题多20题 B .难题比容易题多20题 C .一样多D .无法确定3.已知(2x -3y +1)2与|4x -3y -1|互为相反数,则x ,y 的值分别是( ) A .-1,1B .1,-1C .-1,-1D .1,14.若21a b +-与()224a b ++互为相反数,则+a b 的值为( ) A .1-B .0C .1D .25.下列方程组中不是二元一次方程组的是( ) .A .215x y y +=⎧⎨=⎩B .23x y =⎧⎨=⎩C .21214x y y ⎧-=⎪⎨⎪+=⎩D .220x y y x -=⎧⎨-=⎩6.某果园现有桃树和杏树共500棵,计划一年后桃树增加3%,杏树增加4%,这样果园里这两种果树将增加3.6%,如果设该果园现有桃树和杏树分别为x 棵,y 棵,可列方程组为( )A .500(13%)(14%)500 3.6%x y x y +=⎧⎨+++=⨯⎩B .5003%4%500 3.6%x y x y +=⎧⎨+=⨯⎩C .500(13%)(14%)500 3.6%x y x y +=⎧⎨-+-=⨯⎩D .5003%4%500(1 3.6%)x y x y +=⎧⎨+=+⎩7.一套数学题集共有100道题,甲、乙和丙三人分别作答,每道题至少有一人解对,且每人都解对了其中的60道.如果将其中只有1人解对的题称作难题,2人解对的题称作中档题,3人都解对的题称作容易题,那么下列判断一定正确的是()A.容易题和中档题共60道B.难题比容易题多20道C.难题比中档题多10道D.中档题比容易题多15道8.若方程组23133530.9a ba b-=⎧⎨+=⎩的解是8.31.2ab=⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x yx y+--=⎧⎨++-=⎩的解是()A.6.32.2xy=⎧⎨=⎩B.8.31.2xy=⎧⎨=⎩C.10.32.2xy=⎧⎨=⎩D.10.30.2xy=⎧⎨=⎩9.下列是二元一次方程的是()A.3x-6=x B.3x=2y C.5x+ 2y=3z D.2x-3y=xy 10.已知方程组中的,互为相反数,则的值为()A.B.C.D.11.我国古代问题:以绳测井,若将绳三折测之(注:绳儿折即把绳平均分成几等分),绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?( )A.36,8 B.28,6 C.28,8 D.13,312.《九章算术》中有一道“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是()A.8374y xy x-=⎧⎨-=⎩B.8374y xy x-=⎧⎨-=-⎩C.8374y xy x-=-⎧⎨-=-⎩D.8374y xy x-=⎧⎨-=⎩二、填空题13.若x a y b=⎧⎨=⎩是方程20x y -=的解,则362a b -+=_______________________.14.已知235m n -=,则用n 的代数式表示m 为________________15.关于x,y 的方程组03x my x y +=⎧⎨+=⎩的解是1x y =⎧⎨=⊗⎩,其中y 的值被盖住了.不过仍能求出m ,则m 的值是___.16.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶___km .17.已知方程8mx ny +=的两个解是32x y =⎧⎨=⎩,12x y =⎧⎨=-⎩,则m =___________,n =___________18.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1 240本,则男生志愿者有___人 ,女生志愿者有___人.19.在平面直角坐标系xOy 中,对于点() A x y ,,若点B 的坐标为() ax y x ay ++,,则称点B 是点A 的“a a -演化点”.例如,点()26A -,的“1122-演化点”为()11262622B ⎛⎫⨯-+-+⨯ ⎪⎝⎭,,即()51B ,.(1)已知点(15)P -,的“33-演化点”是1P ,则1P 的坐标为________; (2)已知点()60T ,,且点Q 的“22-演化点”是()148Q ,,则1QTQ ∆的面积1QTQ S ∆为__________;(3)己知()00O ,,() 0 8A , ,() 50C ,,() 38D ,,且点()1K k -,的“k k -演化点”为1K ,当11K AD K OC S S ∆∆=时,k =___________.20.某旅馆的客房有三人间和二人间两种,三人间每人每天80元,二人间每人每天110元,一个40人的旅游团到该旅馆住宿,租住了若干房间,且每个客房正好住满,一天共花去住宿费3680元.求两种客房各租住了多少间?若设租住了三人间x 间,二人间y 间,则根据题意可列方程组为____.三、解答题21.解二元一次方程组34 3.4 64 5.2 x yx y+=-⎧⎨-=⎩22.已知二元一次方程组3521ax yx by+=⎧⎨-=⎩的解为121xy⎧=⎪⎨⎪=-⎩,求a与b的值.23.由于近期出现新冠肺炎疫情,口罩出现热卖.某药店用8000元购进甲、乙两种口罩,销售完后宫获利2800元.进价和售价如下表:求该药店购进甲、乙两种口罩各多少盒?24.用消元法解方程组35432x yx y-=⎧⎨-=⎩①②时,两位同学的解法如下:解法一:由①-②,得33x =解法二:由②,得()332x x y +-=③ 把①代入③,得352x +=()1反思:上述两个解题过程中有无计算错误?若有误,哪种方法有错误? ()2请选择一种你喜欢的方法,完成解答.25.某种水果的价格如表:购买的质量(千克) 不超过10千克 超过10千克 每千克价格6元5元张欣两次共购买了25千克这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?26.某一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:当天他卖完这些黄瓜和茄子共赚了90元,这天他批发黄瓜和茄子分别多少千克?27.在等式y=kx+b中,当x=2时,y=-3;当x=4时,y=-7,求k,b的值.28.已知方程|2a+3b+1|+(3a-b-1)2=0,求a2+2ab+b2的值.29.本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展觉馆,每一名学只能参加其中一项活动,共支付票款2000元,票价信息如下:请问参观历史博物馆和民俗展难馆的人数各是多少人?参考答案1.A2.B3.D4.A5.C6.A7.B8.A9.B10.D11.A12.B13.214.532n m+ =15.1 2 -16.375017.4 -2 18.12 1619.(2,14) 2020.3240 38021103680 x yx y+⎧⎨⨯+⨯⎩==.21.0.21 xy=⎧⎨=-⎩22.该药店购进甲种口罩200盒,乙种口罩160盒.23.a=16,b=0.24.(1)解法一有误;(2)12 xy=-⎧⎨=-⎩25.张欣第一次、第二次购买这种水果的质量分别为7千克、18千克.26.这天他批发黄瓜15 kg,茄子25 kg.27.21 kb=-⎧⎨=⎩28.由已知得解得∴29.参观历史博物馆的有100人,参观民俗博物馆的有50人.。
人教版七年级下第八章二元一次方程组综合练习题(含答案)
人教版七年级下第八章二元一次方程组综合练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列方程是二元一次方程的是()A.2x+y=3z B.2x﹣1 y=2C.3x﹣5y=2D.2xy﹣3y=02.在下列方程组5231xy x=⎧⎨-=⎩、35x yx y+=⎧⎨-=⎩、3123xyx y=⎧⎨+=⎩、1111x yx y⎧+=⎪⎨⎪+=⎩、11xy=⎧⎨=⎩中,是二元一次方程组的有()个A.2个B.3个C.4个D.5个3.如图,AB⊥BC,⊥ABD的度数比⊥DBC的度数的两倍少15°,设⊥ABD和⊥DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.9015x yx y+=⎧⎨=-⎩B.90215x yx y+=⎧⎨=-⎩C.90152x yx y+=⎧⎨=-⎩D.290215xx y=⎧⎨=-⎩4.方程组1{25x yx y+=-=,的解是().A.1{2.xy=-=,B.2{3.xy,=-=C.2{1.xy==,D.2{1.xy==-,5.用代入法解方程组233210y xx y=-⎧⎨-=⎩①②将方程⊥代入⊥中,所得的正确方程是()A.3x-4x-3=10B.3x-4x+3=10C.3x-4x+6=10D.3x-4x-6=106.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()A .2400cmB .2500cmC .2600cmD .2700cm7.若31,21x t y t =+=-,用含y 的式子表示x 的结果是( ) A .253x y -=B .352y x +=C .253x y +=D .352y x -=8.若324432a b a b x y ++--=是关于x ,y 的二元一次方程,则23a b +的值为( ) A .0B .3-C .3D .69.关于x ,y 的方程组3212331x y k x y k +=-⎧⎨+=+⎩的解为x ay b =⎧⎨=⎩,若点P (a ,b )总在直线y =x上方,那么k 的取值范围是( ) A .k >1B .k >﹣1C .k <1D .k <﹣110.若方程组435,(1)8x y kx k y +=⎧⎨--=⎩的解中的x 的值比y 的值的相反数大1,则k 为( )A .3B .-3C .2D .-211.代数式2x ax b ++,当1x =,2时,其值均为0,则当1x =-时,其值为( ) A .0B .6C .6-D .212.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x ,y 分钟,列出的方程是( ) A .1{4250802900x y x y +=+=B .15{802502900x y x y +=+=C .1{4802502900x y x y +=+=D .15{250802900x y x y +=+=二、填空题13.请写出一个以21x y =⎧⎨=-⎩为解的二元一次方程:______ .14.(1)若35m =,37=n ,则3m n +=________;(2)若x 、y 是正整数,且5222⋅=x y ,则x 、y 的值分别为________.15.在(1)32xy=⎧⎨=-⎩,(2)453xy=⎧⎪⎨=-⎪⎩,(3)1472xy⎧=⎪⎪⎨⎪=⎪⎩这三组数值中,_______是方程x-3y=9的解,______是方程2x+y=4的解,_________是方程组3924x yx y-=⎧⎨+=⎩的解.16.若二元一次方程组1523210aax yx y-⎧-=⎪⎨⎪-=⎩的解也是方程29x y+=的解,则a=_____.17.二元一次方程组321221x yx y+=⎧⎨-=⎩的解为________.18.已知|2x﹣4|+|x+2y﹣8|=0,则(x﹣y)2022=____.19.已知1,{2xy==是方程ax-3y=5的一个解,则a=________.20.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为________.三、解答题21(2x+3y+1)2互为相反数,求x﹣y的平方根.22.我市某著名景点门票价格规定如下表:小明妈妈的公司有一项短途旅行业务,就是去该景点一日游.学完一元一次方程以后,他妈妈让他给规划一个去该景点游玩的购票方案,给他的提示是:有甲、乙两个团队共32人,其中甲团队3人以上,不足10人.经估算,如果两个团队分别购票,则应付门票费2100元.(1)两个团队各有多少人?(2)如果两个团队联合起来,作为一个团体购票,可省钱元.(3)如果乙团队临时有事不能去了,只有甲团队单独去游玩,通过计算说明如何购票最省钱?23.有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需315元,若购甲4件,乙10件,丙1件,共需420元.现在购甲、乙、丙各一件共需多少元?24.(1)解二元一次方程组5316,350;x y x y -=⎧⎨-=⎩(2)现在你可以用哪些方法得到方程组()()()()5316,350x y x y x y x y ⎧+--=⎪⎨+--=⎪⎩的解?请你对这些方法进行比较.25.先阅读下列解法,再解答后面的问题. 已知2343212x A Bx x x x -=+-+--,求A 、B 的值.解法一:将等号右边通分,再去分母,得:()()3421x A x B x -=-+-,即:()()342x A B x A B -=+-+,⊥()324A B A B +=⎧⎨-+=-⎩解得12A B =⎧⎨=⎩.解法二:在已知等式中取0x =时,有22BA -+=--,整理得24AB +=; 取3x =,有522A B +=,整理得25A B +=. 解2425A B A B +=⎧⎨+=⎩,得:12A B =⎧⎨=⎩.(1)已知21131424643x A B x x x x=+--++-,用上面的解法一或解法二求A 、B 的值.(2)计算:()111111(1)(1)(1)(3)(3)(5)(9)(11)x x x x x x x x x ⎡⎤+++⋅⋅⋅++⎢⎥-+++++++⎣⎦,并求x 取何整数时,这个式子的值为正整数.参考答案:1.C【详解】A 、2x+y=3z 不是二元一次方程,因为有3个未知数; B 、2x -1y=2不是二元一次方程,因为不是整式方程; C 、3x -5y=2是二元一次方程;D 、2xy -3y=0不是二元一次方程,因为最高项的次数为2. 故选C . 2.B【分析】根据二元一次方程组的定义逐个判断即可.【详解】解:方程组5231x y x =⎧⎨-=⎩,035x y x y +=⎧⎨-=⎩,11x y =⎧⎨=⎩符合二元一次方程组的定义,是二元一次方程组.方程组3121xy x y =⎧⎨+=⎩属于二元二次方程组,不是二元一次方程组.方程组1111x y x y ⎧+=⎪⎨⎪+=⎩中的第一个方程不是整式方程,不是二元一次方程组.故选:B .【点睛】本题考查了二元一次方程组的定义,解题关键是明确二元一次方程组的定义,准确进行判断. 3.B【详解】⊥AB⊥BC , ⊥⊥ABD+⊥DBC=90°,又⊥⊥ABD 的度数比⊥DBC 的度数的两倍少15度, ⊥当设⊥ABD 和⊥DBC 度数分别为x y 、时,由题意可得:90215x y x y +=⎧⎨=-⎩ . 故选:B. 4.D【详解】方程组1{25x y x y +=-=①②,由⊥+⊥得3x =6,x =2,把x =2代入⊥中得y =-1, 所以方程组1{25x y x y +=-=的解是2{1x y ==-. 故选D. 5.C 【解析】略 6.A【分析】设小长方形的宽为x cm ,长为y cm ,根据题意列方程组求解即可.【详解】设小长方形的宽为x cm ,长为y cm ,根据题意得504x y y x +=⎧⎨=⎩,解得1040x y =⎧⎨=⎩,∴一个小长方形的面积为21040400cm ⨯=,故选:A .【点睛】本题考查了二元一次方程组的实际应用,能够根据题意列出方程组并准确求解是解题的关键. 7.B【分析】根据21y t =-得,t =12y +,然后将其代入31x t =+即可求解. 【详解】解:由21y t =-,得t =12y +, ⊥31x t =+=3×12y ++1=352y +, 即x =352y +. ⊥用含y 的式子表示x 的结果是x =352y + 故选:B .【点睛】本题主要考查了二元一次方程的解法,解本题关键是把方程21y t =-中含有x 的项移到等号的右边,得到t =12y +. 8.A【分析】根据二元一次方程的定义,得=1a b +,324=1+-a b ,即可得到关于a 、b 的方程组,从而解出a ,b .【详解】解:⊥324432a b a b x y ++--=是一个关于x ,y 的二元一次方程,⊥=1324=1a b a b +⎧⎨+-⎩, 解得:=3=2a b ⎧⎨-⎩,⊥23=660+-=a b , 故选:A .【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程. 9.B【分析】将k 看作常数,解方程组得到x ,y 的值,根据P 在直线上方可得到b >a ,列出不等式求解即可.【详解】解:解方程组3212331x y k x y k +=-⎧⎨+=+⎩可得,315715x k y k ⎧=--⎪⎪⎨⎪=+⎪⎩, ⊥点P (a ,b )总在直线y =x 上方, ⊥b >a ,⊥731155k k +>--, 解得k >-1, 故选:B .【点睛】本题考查了解二元一次方程组,一次函数上点的坐标特征,解本题的关键是将k 看作常数,根据点在一次函数上方列出不等式求解. 10.A【分析】所谓方程组的解,指的是该数值满足方程组中的每一方程.解出方程组的解,再列出关于两解的等式,求出k . 【详解】解:由题意,解得x =51974k k +-,y =53274k k --,⊥x 的值比y 的值的相反数大1, ⊥x +y =1,即51974k k +-+53274k k --=1, 解得k =3, 故选:A .【点睛】本题主要考查解二元一次方程组和它的解,熟练掌握解二元一次方程组的方法是关键. 11.B【分析】把x 与y 的两对值代入代数式列出方程组,求出方程组的解即可得到a 与b 的值,再将1x =-代入即可求解.【详解】解:由题意,得10420a b a b ++=⎧⎨++=⎩①② , ⊥-⊥得:30a += , 3a =- ,把3a =-代入⊥得:()130b +-+= ,2b = ,解得:32a b =-⎧⎨=⎩ , 把32a b =-⎧⎨=⎩代入代数式2x ax b ++得:232x x -+, 当1x =-时,2326x x -+=. 故选B .【点睛】此题考查了解二元一次方程组,利用了消元的思想,求出a 与b 的值是解题关键. 12.D【分析】根据关键语句“到学校共用时15分钟”可得方程:x +y =15,根据“骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米”可得方程:250x +80y =2900,两个方程组合可得方程组.【详解】解:他骑车和步行的时间分别为x 分钟,y 分钟,由题意得:152********x y x y +=⎧⎨+=⎩ 故选D .【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组. 13.1x y +=(答案不唯一)【分析】根据二元一次方程定义:ax by c +=,令,,a b c 为常数,把21x y =⎧⎨=-⎩代入,解出c 即可.【详解】⊥本题答案不唯一,只要写出的二元一次方程的解为21x y =⎧⎨=-⎩即可⊥令1a =,1b =,得x y c += ⊥把21x y =⎧⎨=-⎩代入方程x y c +=解出1c = ⊥1x y +=故答案是:1x y +=.【点睛】本题考查解二元一次方程的逆过程、不定方程的定义,灵活掌握二元一次方程定义是解题的关键.14. 35 14x y =⎧⎨=⎩,23x y =⎧⎨=⎩,32x y =⎧⎨=⎩,41x y =⎧⎨=⎩.【分析】(1)根据333m n m n +=⋅求解即可;(2)求根据5222⋅=x y 得到522x y +=即5x y +=,再由x 、y 是正整数求解即可. 【详解】解:(1)⊥35m =,37=n , ⊥3335735m n m n +=⋅=⨯=; (2)⊥5222⋅=x y ⊥522x y +=, ⊥5x y +=, ⊥x 、y 是正整数,⊥14xy=⎧⎨=⎩或23xy=⎧⎨=⎩或32xy=⎧⎨=⎩或41xy=⎧⎨=⎩.故答案为:35;14xy=⎧⎨=⎩,23xy=⎧⎨=⎩,32xy=⎧⎨=⎩,41xy=⎧⎨=⎩.【点睛】本题主要考查了同底数幂的乘法的逆用,二元一次方程,解题的关键在于能够熟练掌握相关知识进行求解.15.(1),(2)(1),(3)(1)【分析】根据二元一次方程解的定义:使二元一次方程左右两边相等的一组未知数的值,分别将三组数值代入两个方程中求出各自的解,即可得到方程组的解.【详解】解:当32xy=⎧⎨=-⎩时,方程39x y-=的左边为:()33329x y-=-⨯-=,方程左右两边相等,⊥32xy=⎧⎨=-⎩是方程39x y-=的解;当453xy=⎧⎪⎨=-⎪⎩时,方程39x y-=的左边为:534393x y⎛⎫-=-⨯-=⎪⎝⎭,方程左右两边相等,⊥453xy=⎧⎪⎨=-⎪⎩是方程39x y-=的解;当1472xy⎧=⎪⎪⎨⎪=⎪⎩时,方程39x y-=的左边为:174133424x y⎛⎫-=-⨯=-⎪⎝⎭,方程左右两边不相等,⊥1472xy⎧=⎪⎪⎨⎪=⎪⎩不是方程39x y-=的解;当32xy=⎧⎨=-⎩时,方程24x y+=的左边为:()22324x y+=⨯+-=,方程左右两边相等,⊥32xy=⎧⎨=-⎩是方程24x y+=的解;当453xy=⎧⎪⎨=-⎪⎩时,方程24x y+=的左边为:51322333x y⎛⎫+=⨯+-=⎪⎝⎭,方程左右两边不相等,⊥453xy=⎧⎪⎨=-⎪⎩不是方程24x y+=的解;当1472xy⎧=⎪⎪⎨⎪=⎪⎩时,方程24x y+=的左边为:1722442x y+=⨯+=,方程左右两边相等,⊥1472xy⎧=⎪⎪⎨⎪=⎪⎩不是方程24x y+=的解;⊥方程组3924x yx y-=⎧⎨+=⎩的解为32xy=⎧⎨=-⎩;故答案为:⊥(1),(2);⊥(1),(3);⊥(1).【点睛】本题主要考查了二元一次方程和二元一次方程组的解,数值二元一次方程解得定义是解题的关键.16.9 7【分析】根据方程组1523210aax yx y-⎧-=⎪⎨⎪-=⎩的解也是方程29x y+=的解得2+93210x yx y=⎧⎨-=⎩求出x,y得值,再代入方程152aax y--=,即可解答.【详解】1523210aax yx y-⎧-=⎪⎨⎪-=⎩的解也是方程29x y+=的解∴得2+9 3210x yx y=⎧⎨-=⎩解得:41 xy=⎧⎨=⎩把41xy=⎧⎨=⎩代入方程152aax y--=得:1452aa--=解得:a=9 7【点睛】此题考查了二元一次方程组的解,解决本题的关键是明确方程组的解即为能使方程组中两方程成立的未知数的值.17.23 xy=⎧⎨=⎩【分析】方程组利用加减消元法求出解即可.【详解】解:321221x yx y+=⎧⎨-=⎩①②.⊥+⊥×2得:7x=14,解得:x=2,把x=2代入⊥得:2×2-y=1解得:y=3,所以,方程组的解为23xy=⎧⎨=⎩,故答案为:23xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.1【分析】由非负数的意义求出x,y的值,再代入计算即可.【详解】解:⊥|2x﹣4|≥0,|x+2y﹣8|≥0,|2x﹣4|++|x+2y﹣8|=0,⊥2x﹣4=0,x+2y﹣8=0.⊥x=2,y=3.⊥(x﹣y)2022=(2﹣3)2022=1.故答案为:1.【点睛】本题考查非负数的意义,掌握绝对值,偶次幂的运算性质是解决问题的前提.19.11【详解】本题考查的是二元一次方程的解的定义由题意把1,{2xy==代入方程ax-3y=5即可得到结果.由题意得,20.2753x yx y+=⎧⎨=⎩【分析】根据图示可得:大长方形的长可以表示为x +2y ,长又是75厘米,故x +2y =75,长方形的宽可以表示为2x ,或x +3y ,故2x =3y +x ,整理得x =3y ,联立两个方程即可.【详解】解:根据图示可得大长方形的长可以表示为x +2y ,长又是75厘米,故x +2y =75,长方形的宽可以表示为2x ,或x +3y ,故2x =3y +x ,整理得x =3y ,联立两个方程得到: 2753x y x y+=⎧⎨=⎩, 故答案为:2753x y x y +=⎧⎨=⎩【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.21.x ﹣y 的平方根为(2x +3y +1)2()22310x y ++=,再结合二次根式非负性及平方的非负性得到4302310x y x y +-=⎧⎨++=⎩,求解代值即可得到结论.【详解】解:()2231x y ++互为相反数,()22310x y ++=, ()240,2310x y x y +++≥, ⊥4302310x y x y +-=⎧⎨++=⎩,解得11x y =⎧⎨=-⎩, ⊥x ﹣y =2,⊥x﹣y 的平方根为【点睛】本题考查求代数式的平方根,涉及到相反数的性质、二次根式非负性及平方的非负性、解二元一次方程组等知识点,熟练掌握相反数的性质和常见非负式的运用是解决问题的关键.22.(1)甲团队有9人,乙团队有23人;(2)500;(3)11张【分析】(1)设甲团队有x 人,由题意可知,乙团队人数大于20人小于30人,再根据门票的收费标准列出方程求解即可;(2)算出合在一起买的花销,然后用分开买的花销减去合买的花销即可;(3)分别算出单买和合买11张的花销,然后比较即可得到答案.【详解】解:(1)设甲团队有x 人,由题意可知,乙团队人数大于20人小于30人,列方程得8060(32)2100x x +-=解方程,得9x =这时,3223x -=答:甲团队有9人,乙团队有23人.(2)由题意得人数一共有32人,则合买的花销=3250=1600⨯ 元,⊥可省钱2100-1600=500元故答案为:500;(3)直接购买:809720⨯=(元);按团体票购买:6011660⨯=(元)⊥720>660,⊥购买11张票最省钱.答:购买11张票最省钱.【点睛】本题主要考查了一元一次方程的实际应用,解题的关键在于能够准确找到等量关系列出方程求解.23.105元【分析】先设甲、乙、丙各一件分别需要x ,y ,z 元,根据购甲3件,乙7件,丙1件,共需315元,购甲4件,乙10件,丙1件,共需420元,列出方程组求出x y z ++的值即可.【详解】解:设购甲、乙、丙各一件分别需要x ,y ,z 元,根据题意得:37315410420x y z x y z ++=⎧⎨++=⎩①② ⊥×3-⊥×2得105x y z ++=.则现在购甲、乙、丙各一件共需105元【点睛】此题考查了三元一次方程组的应用,关键是根据题意设出未知数,列出方程组,注意要把x ,y ,z 以整体形式出现.24.(1)5,3;x y =⎧⎨=⎩;(2)见解析 【分析】(1)利用加减消元法解方程组;(2)方法一:将两个方程分别化简再求解;方法二:根据(1)可得方程的解为53x y x y +=⎧⎨-=⎩,再利用加减法求解.【详解】解:(1)5316350x y x y -=⎧⎨-=⎩①②, 由35⨯-⨯①②得16y =48,⊥y =3,将y =3代入⊥得x =5,⊥这个方程组的解是53x y =⎧⎨=⎩; (2)方法一:去括号得到方程组2816,280,x y x y +=⎧⎨-+=⎩再解得结果41;x y =⎧⎨=⎩; 方法二:由(1)5316,350;x y x y -=⎧⎨-=⎩解为53x y =⎧⎨=⎩,可得()()()()5316,350x y x y x y x y ⎧+--=⎪⎨+--=⎪⎩的解为53x y x y +=⎧⎨-=⎩,解得41x y =⎧⎨=⎩. 【点睛】此题考查解二元一次方程组,掌握二元一次方程组的解法:代入法和加减法,(2)可灵活运用解题方法求解,渗透一定的整体换元思想和化归思想.25.(1)3,2A B =-=;(2)61x -,当x 取2,3,4,7时,这个式子的值为正整数. 【分析】(1)解法一:先等式两边同乘以(6)(43)x x +-去分母,去括号化简可得一个关于A 、B 的二元一次方程组,解方程组即可得;解法二:分别取0x =和1x =可得一个关于A 、B 的二元一次方程组,解方程组即可得;(2)先将括号内的每一项拆分成两项的差的形式,再计算分式的加减法与乘法运算即可得,然后根据整数性质求出符合条件的整数x 的值即可.【详解】(1)解法一:21131424643x A B x x x x =+--++-, 等式两边同乘以(6)(43)x x +-去分母,得11(43)(6)x A x B x =-++,即11(3)46x A B x A B =-+++,则311460A B A B -+=⎧⎨+=⎩,解得32A B =-⎧⎨=⎩; 解法二:21131424643x A B x x x x =+--++-, 取0x =,得064A B +=,即230A B +=, 取1x =,得1177B A =+,即117A B +=, 联立230711A B A B +=⎧⎨+=⎩,解得32A B =-⎧⎨=⎩; (2)()111111(1)(1)(1)(3)(3)(5)(9)(11)x x x x x x x x x ⎡⎤+++⋅⋅⋅+⎢⎥-+++++++⎣⎦, ()111111111112111335911x x x x x x x x x ⎛⎫-+-+-+⋅⋅⋅+-+ ⎪-++++⎝⎭=+++, ()111112111x x x ⎛⎫-+ ⎪⎝⎭=-+, ()11112(1)(11)(11()1)11x x x x x x x ⎡⎤--+⎢⎥-+-+⎣⎦+=, ()1112(1)(11)12x x x ⋅⋅++=-, 61x =-, 要使61x -为正整数,则整数1x -的所有可能取值为1,2,3,6, 即整数x 的所有可能取值为2,3,4,7,经检验,当x 取2,3,4,7时,分式的分母均不为零,故当x 取2,3,4,7时,这个式子的值为正整数.【点睛】本题考查了分式的加减法与乘法运算、二元一次方程组的应用,读懂阅读材料中的两种解法是解题关键.。
(必考题)初中七年级数学下册第八单元《二元一次方程组》经典习题(含答案解析)
一、选择题1.下列是二元一次方程组的是()A.21342y xx z=+⎧⎨-=⎩B.56321x xyx y-=⎧⎨+=⎩C.73232x yy x⎧-=⎪⎪⎨⎪=⎪⎩D.32x yxy+=⎧⎨=⎩2.若12xy=⎧⎨=-⎩是方程3x+by=1的解,则b的值为()A.1 B.﹣1 C.﹣2 D.23.已知2x2y3a与﹣4x2a y1+b是同类项,则a b的值为()A.1 B.﹣1 C.2 D.﹣24.若x,y均为正整数,且2x+1·4y=128,则x+y的值为()A.3 B.5 C.4或5 D.3或4或5 5.已知代数式x a﹣b y2与xy2a+b是同类项,则a与b的值分别是()A.a=0,b=1 B.a=2,b=1 C.a=1,b=0 D.a=0,b=2 6.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y 尺,根据题意列方程组正确的是()A.4.512x yyxB .4.512x yyxC .4.512x yxyD .4.512x yyx7.由方程组71x my m+⎧⎨-⎩==可得出x与y的关系式是()A.x+y=8 B.x+y=1 C.x+y=-1 D.x+y=-88.若x m﹣n﹣2y m+n﹣2=2007,是关于x,y的二元一次方程,则m,n的值分别是()A.m=1,n=0 B.m=0,n=1 C.m=2,n=1 D.m=2,n=39.对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4,若x⊗(﹣y)=2018,且2y⊗x=﹣2019,则x+y的值是()A.﹣1 B.1 C.13D.﹣1310.某校体育器材室有篮球和足球共66个,其中篮球比足球的2倍多3个,设篮球有x 个,足球有y个,根据题意可得方程组()A.x y66x2y3+=⎧⎨=-⎩B.x y66x2y3+=⎧⎨=+⎩C.x y66y2x3+=⎧⎨=-⎩D.x y66y2x3+=⎧⎨=+⎩11.若方程6kx ﹣2y=8有一组解32x y =-⎧⎨=⎩,则k 的值等于(( )A .23-B .23C .16-D .1612.小明去商店购买A B 、两种玩具,共用了10元钱,A 种玩具每件1元,B 种玩具每件2元.若每种玩具至少买一件,且A 种玩具的数量多于B 种玩具的数量.则小明的购买方案有( ) A .5种B .4种C .3种D .2种13.下列方程中,属于二元一次方程的是( ) A .235x x -=+ B .1xy y +=C .315x y -=-D .325x y+= 14.若方程组21322x y kx y +=-⎧⎨+=⎩的解满足0x y +=,则k 的值为( )A .1-B .1C .0D .不能确定15.已知21x y =-⎧⎨=⎩是方程25mx y +=的解,则m 的值是( ) A .32-B .32C .2-D .2二、填空题16.已知343435x y m x y m +=⎧⎨+=⎩的解满足1627+=x y ,则m=_________.17.为落实习总书记“绿水青山就是金山银山”的发展理念,我区府部门决定由甲、乙、丙三个工程队负责完成一条总工作量为a 的公园改造的施工任务.经过一段时间,甲、乙、丙三个工程队完成的工程量之比是3:4:5为更合理的分任务,经测算,将剩余工程量的916交给了丙队,其余工程量由甲、乙两个工程队共同完成,乙工程队再工作一段时间后因另有任务先离开.工程结束时发现,丙队完成的工程量占总工程量的1940,甲、乙两队完成其余工程的工程量之比为4:3.则乙队完成的工程量与总工程量之比是:______. 18.甲、乙两码头相距180km ,某轮船从甲码头顺流航行到乙码头需要5h ,返回时需要6h ,那么这条河的水流速度是________.19.设()554325432031x a x a x a x a x a -=++++,则035a a a ++的值为______________20.若方程组1122a x y c a x y c +=⎧⎨+=⎩的解是23x y =⎧⎨=⎩,则方程组111222a x y a c a x y a c +=-⎧⎨+=-⎩的解是x =_____,y =_____.21.已知方程组5257x y mx y -=⎧⎨+=⎩中,x ,y 的值相等,则m=________.22.若方程组ax y c x by d -=⎧⎨-=⎩的解为12x y =⎧⎨=-⎩,则方程组y ax cby x d -=⎧⎨-=⎩的解为______.23.甲、乙二人分别从A 、B 两地同时出发,匀速沿同一平直公路相向而行.甲骑的共享电车,乙步行,两人在出发2.5h 时相遇,相遇后0.5h 甲到达B 地,若相遇后乙又走了20千米才到达A 、B 两地的中点,那么乙的速度为______千米/时.24.已知,方程12230a b x y -+-+=是关于,x y 的二元一次方程,则a b +=________. 25.若方程2(3)31a a xy --+=是关于x ,y 的二元一次方程,则a 的值为_____.26.若2|327|(521)0a b a b +++-+=,则a b +=______.三、解答题27.数字“6”由于谐音“六六大顺”深受人们喜爱.若一个正整数各数位上的数字之和为6的倍数,则称这个正整数为“六六大顺”数.例如:正整数24,因为246+=且661÷=,所以24是“六六大顺”数;正整数125,因为1258++=且86÷商1余2,所以125不是“六六大顺”数.(1)判断96和615是否是“六六大顺”数?请说明理由; (2)求出所有大于600且小于700的“六六大顺”数的个数. 28.解下列方程组(1)362x y y x +=⎧⎨=-⎩ (2)3510236x y x y -=⎧⎨+=-⎩(3)45321x y x y +=⎧⎨-=⎩ (4)()31511212x y x y ⎧-=+⎪⎨+=-⎪⎩29.解方程:(1)代入法:23328y x x y =-⎧⎨+=⎩(2)加减法:25324x y x y -=⎧⎨+=⎩30.甲、乙两人同时解方程组1542ax by x by +=⎧⎨=-⎩①②时,甲看错了方程①中的a ,解得31x y =-⎧⎨=-⎩,乙看错了②中的b ,解得54x y =⎧⎨=⎩.求原方程组的正确解.。
人教版七年级 下册第八章二元一次方程组单元测试题(含答案解析)
商品的定价分别为()
A.50元、150元B.50元、100元C.100元、50元D.150元、50元
6.把方程x=1变形为x=2,其依据是()
A.分数的基本性质
C.等式的性Biblioteka 27.用“加减法”将方程组
B.等式的性质1
D.解方程中的移项
A.B.C.D.
3.下列各方程的变形,正确的是()
A.由3+x=5,得x=5+3
C.由y=0,得y=2
B.由7x=,得x=49
D.由3=x-2,得x=2+3
4.如果x=y,那么下列等式不一定成立的是()
A.x+a=y+aB.x-a=y-aC.ax=ayD.=
5.已知甲、乙两种商品的进价和为100元,为了促销而打折销售,若甲商品打八折,乙商
人教版七年级下册第八章二元一次方程组单元测试题(含答案解析)
一、选择题(本大题共9小题,共27分)
1.方程2x-=0,x+y=0,x+xy=1,x+y-2x=0,2-x+1=0中,二元一次方程的个数是()
A.5个
B.4个C.3个D.2个
2.如果3xm+n+5ym-n-2=0是一个关于x、y的二元一次方程,那么()
中的x消去后得到的方程是()
A.3y=2
B.7y=8
C.-7y=2
D.-7y=8
人教版七年级下册数学第八章《二元一次方程组》单元练习题含答案
七年级下册数学第八章《二元一次方程组》单元练习题一、单选题 1.已知,那么x+y 的值是( )A .0B .5C .﹣1D .12.已知单项式 23x m y -- 与 2323n m nx y - 是同类项,那么m ,n 的值分别是A .31m n =⎧⎨=-⎩B .31m n =⎧⎨=⎩C .31m n =-⎧⎨=⎩D .31m n =-⎧⎨=-⎩3.某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少? 设甲的速度是x 米/秒,乙的速度是y 米/秒.则列出的方程组是( )A .30()40080()400x y y x +=⎧⎨-=⎩B .30()40080()400y x x y -=⎧⎨+=⎩C .30()40080()400x y x y +=⎧⎨-=⎩D .30()40080()400x y x y -=⎧⎨+=⎩4.《孙子算经》是中国古代重要的数学著作,其中第三卷中记载一题:今有兽,六首四足;禽,二首二足,上有七十六首,下有四十六足,问:禽、兽各几何?译文:今有一只怪兽,有6个头4只脚,一只怪鸟,有2个头2只脚,现在上面有76个头,下面有46只脚,问怪兽、怪鸟各有多少?设怪兽为x 只,怪鸟为y 只,可列方程组为( ).A .62464276x y x y +=⎧⎨+=⎩B .64762246x y x y +=⎧⎨+=⎩C .62764246x y x y +=⎧⎨+=⎩D .22766246x y x y +=⎧⎨+=⎩5.甲、乙二人同时同地出发,都以不变的速度在300米环形跑道上奔跑.若反向而行,每隔20s 相遇一次,若同向而行,则每隔300s 相遇一次,已知甲比乙跑得快,设甲每秒跑x 米,乙每秒跑y 米,则可列方程为( )A .30020x y x y +=⎧⎨-=⎩B .20300x y x y +=⎧⎨-=⎩C .2020300300300300x y x y +=⎧⎨-=⎩D .2030030030020300x y x y +=⎧⎨-=⎩6.已知|2x+y+3|+(x-y+3)2=0,则(x+y )2019等于( ) A .2019B .-1C .1D .-20197.把方程7215x y =-写成用含x 的代数式表示y 的形式,得( ) A .2517x y -=B .1527yx +=C .7152x y -=D .1572xy -=8.在一个古代文献里记录了一个“鸡免同笼”问题,翻译内容如下:在一个笼子里混装有鸡和兔子若干只,已知共有头45个,脚160个,设鸡x 只,兔子y 只,根据题意可列出方程组( )A .4524160x y x y +=⎧⎨+=⎩B .4522160x y x y +=⎧⎨+=⎩C .452160x y x y -=⎧⎨+=⎩D .4524160x y x y +=⎧⎨-=⎩9.如果│x+y -1│和2(2x+y -3)2互为相反数,那么x ,y 的值为( )A .12x y =⎧⎨=⎩B .12x y =-⎧⎨=-⎩C .21x y =⎧⎨=-⎩D .21x y =-⎧⎨=-⎩10.如果方程x ﹣y =3与下面的方程组成的方程组的解为47x y =-⎧⎨=-⎩,那么这一个方程可以是( )A .2(x ﹣y )=6yB .3x ﹣4y =16C .1x 2y 54+=D .1x 3y 82+=二、填空题11.二元一次方程3x +2y =15共有_______组正整数解.... 12.已知24280x x y -++-=,则()2019x y -=_____________.13.已知关于x ,y 的二元一次方程组3522x y k x y k +=⎧⎨+=-⎩的解互为相反数,则k 的值是_______14.方程组26{0x y x y -=+=的解是 . 15.某商店新进一批衬衣和数对暖瓶(一对为2件),暖瓶的对数正好是衬衣件数的一半,每件衬衣的进价是40元,每对暖瓶的进价是60元(暖瓶成对出售),商店将这批物品以高出进价10%的价格售出,最后留下了17件物品未卖出,这时,商店发现卖出物品的总售价等于所有货物总进价的90%,则最初购进这批暖瓶_____对.16.已知关于 x ,y 的二元一次方程组2122x y k x y k -=+⎧⎨-=-+⎩,则 x ﹣y 的值是_____17.《九章算术》是我国东汉年间编订的一部数学经典著作,其中有一个问题是:“今有三人公车,二车空;二人公车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,若每3人坐一辆车,则有2辆空车;若每2人坐一辆车,则有9人需要步行,问人与车各多少?设共有x 人,y 辆车,则可列方程组为_________.18.若7353x y x y +=⎧⎨-=-⎩,则5x ﹣3y 的值是_____.三、解答题19.(1)阅读下列材料并填空:对于二元一次方程组4354{336x y x y +=+=,我们可以将x ,y 的系数和相应的常数项排成一个数表4354()1336,求得的一次方程组的解{x ay b== ,用数表可表示为10)01ab(.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:从而得到该方程组的解为x= ,y= .(2)仿照(1)中数表的书写格式写出解方程组236{2x y x y +=+=的过程.20.如果264(1)(2)12x x A B Cx x x x x x +-=++-+-+,求A,B,C 的值.21.甲、乙两车将一批抗疫物资从A 地运往B 地,两车各自的速度都保持匀速行驶.甲出发0.5h 后乙开始出发,结果比甲早0.5h 到达B 地.甲、乙两车离A 地的路程1s ()km 、2s ()km 与甲车行驶时间行驶的时间()t h 之间的函数关系如图所示.(1)求2s ()km 与t ()h 之间的函数关系式; (2)图中a =_______;b =______;(3)若甲、乙两车之间的路程不小于20km ,则t 的取值范围是________.(直接写出答案)22.对于两个不相等的实数a 、b ,我们规定符号max{a ,b}表示a 、b 中的较大值,min{a ,b}表示a 、b 中的较小值.如:max{2,4}=4,min{2,4}=2.按照这个规定:解方程组:{}{}1max ,3min 39,3114x x y x x y ⎧-=⎪⎨⎪++=⎩23.已知关于x ,y 的方程组3+5223x y m x y m =+⎧⎨+=⎩的解满足x +y =-10,求式子m 2-2m +1的值.24.学完二元一次方程组的应用之后,老师写出了一个方程组如下:254340x y x y -=⎧⎨+=⎩,要求把这个方程组赋予实际情境. 小军说出了一个情境:学校有两个课外小组,书法组和美术组,其中书法组的人数的二倍比美术组多5人,书法组平均每人完成了4幅书法作品,美术组平均每人完成了3幅美术作品,两个小组共完成了40幅作品,问书法组和美术组各有多少人?小明通过验证后发现小军赋予的情境有问题,请找出问题在哪?25.对于实数a ,b ,定义关于“⊕”的一种运算:a ⊕b=2a+b ,例如3⊕4=2×3+4=10.若x ⊕(-y )=2,(2y)⊕x=1,求x+y 的平方根.26.开学初,小芳和小亮去学校商店购买学习用品,小芳用17元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.求每支钢笔和每本笔记本的价格.27.某班将举行“庆祝建党90周年知识竞赛”活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:请根据上面的信息,试计算两种笔记本各买了多少本?答案1.B2.B3.A4.C5.C6.B7.C8.A9.C10.B 11.2 12.1- 13.4 14.2{2x y ==- 15.22. 16.117.()3229y x y x ⎧-=⎨+=⎩18.1119.(1) 6,10;(2)02x y =⎧⎨=⎩。
最新人教版初中数学七年级下册第8章《二元一次方程组》测试卷(含答案)
人教版七年级数学下册第八章二元一次方程组单元测试题(有答案)一、选择题(共10 小题,每题 3 分,共30 分)1.以下不是二元一次方程组的是()A .B . 3x = 4y = 1C .D.2.以下各组数值是二元一次方程x- 3y= 4 的解的是 ()A .B .C .D.3.利用代入消元法解方程组以下做法正确的选项是()A .由①,得 x=B.由①,得 y=C.由②,得 y=D.由②,得 y=4.由方程组的解知足 x+ y= 5,则 m 值为 ()A. 12B.-12 C . 2 D.-25.已知则用含 x 的式子表示 y,应是 ()A . x=- y + 4B . y = 4xC . y =- x + 4 D. y= x-46.在等式 y= kx+ b 中,当 x= 2时, y=- 4;当 x=- 2时, y=8,则这个等式是 ()A . y= 3x + 2B . y=- 3x+ 2C. y= 3x- 2 D. y=- 3x- 27.春节前夜,某旅行景区的成人票和学生票均对折,李凯同学一家(2 个成人和 1个学生 )去了该景区,门票共花销200 元,王玲同学一家 (3 个成人和 2 个学生 )去了该景区,门票共花费 320 元,则赵芸同学和妈妈去该景区游乐时,门票需要花销()A. 120元B. 130元C. 140 元D. 150 元8.解方程组以下解法不正确的选项是()A .由①,②消去 z,再由①,③消去 z B.由①,③消去 z,再由②,③消去 zC.由①,③消去 y,再由①,②消去 y D.由① ,②消去 z,再由①,③消去 y9.甲库房乙库房共存粮450 吨,现从甲库房运出存粮的60%,从乙库房运出存粮的40%. 结果乙库房所余的粮食比甲库房所余的粮食多30 吨.若设甲库房本来存粮x 吨,乙库房本来存粮 y 吨,则有 ()A .B .C. D .10.为办理甲、乙两种积压服饰,商场决定打折销售,已知甲、乙两种服饰的原单价共为880元,现将甲服饰打八折,乙服饰打七五折,结果两种服饰的单价共为684 元,则甲、乙两种服饰的原单价分别是()A .400元, 480元B. 480元, 400元C. 560 元,320 元D.320元, 560元二、填空题 (共 8 小题,每题 3 分 ,共 24 分 )11.某工厂此刻年产值是150 万元,假如每增添 1 000 元的投资,一年可增添2 500 元的产值,设新增添的投资额为x 万元,总产值为 y 万元,那么 x, y 的知足的方程为__________ .12.若方程组是对于 x, y 的二元一次方程组,则代数式a+ b+ c 的值是________.13.二元一次方程3x+ 2y= 10 的非负整数解是 ______________.14.方程组的解为 ________________ .15.方程 3x- y= 4 中,有一组解 x 与 y 互为相反数,则 3x+ y= ________.16.已知方程组则 x- y= ______, x+ y=______.17.某人步行 5 小时,先沿平展道路走,而后上山,再沿来的路线返回,若在平展道路上每小时走 4 千米,上山每小时走 3 千米,下山每小时走 6 千米,那么这 5 小时共走了行程____________千米.18.一张方桌由一个桌面和四条桌腿构成,假如 1 立方米木材可制作桌面50 个,或制作桌腿300 条,现有 5 立方米木材,请你设计一下,用________立方米木材做桌面,恰巧使桌面与桌腿配套,两者均没有节余.三、解答题 (共 7 小题,共66 分 )19.( 8 分) (1)解二元一次方程组:(2) 若对于 x、 y 的方程组与(1)中的方程组有同样的解,求a+ b 的值.20. ( 8 分)若方程组的解x、y的和为-5,求k的值,并解此方程组.21.( 8 分)能否存在 m 值,使方程 (|m|- 2)x2+ (m+ 2)x+ (m+ 1)y= m+ 5 是对于 x, y 的二元一次方程?若存在,求出 m 的值;若不存在,请说明原因.22. ( 8 分)电子商务的迅速发展逐渐改变了人们的生活方式,网购已悄悄进入千家万户.李阿姨在淘宝网上花220 元买了 1 个茶壶和10 个茶杯,已知茶壶的单价比茶杯的单价的 4 倍还多 10 元.请问茶壶和茶杯的单价分别是多少元?23.( 10 分)王大伯承包了 25 亩土地,今年春天改种茄子和西红柿两种大棚蔬菜,用去了44 000 元.此中种茄子每亩用了 1 700 元,种西红柿每亩用了 1 800 元.问种茄子和西红柿两种大棚蔬菜各多少亩?24. (12 分)绵阳中学为了进一步改良办学条件,决定计划拆掉一部分旧校舍,建筑新校舍.拆除旧校舍每平方米需80 元,建筑新校舍每平方米需要800 元,计划在年内拆掉旧校舍与建造新校舍共9 000平方米,在实行中为扩大绿化面积,新建校舍只达成了计划的90%而拆掉旧校舍则超出了计划的10%,结果恰巧达成了原计划的拆、建总面积.(1)求原计划拆、建面积各是多少平方米?(2)若绿化 1 平方米需要 200 元,那么把在实质的拆、建工程中节余的资本所有用来绿化,可绿化多少平方米?25. ( 12 分)为庆贺“六一”小孩节,某市中小学一致组织文艺汇演,甲、乙两所学校共92人( 此中甲校人数多于乙校人数,且甲校人数不足90 人) ,准备在同一家服饰厂购置演出服装,下边是该服饰厂给出的服饰的价钱:假如两所学校分别独自购置服饰,一共对付5000 元.(1)假如甲、乙两校结合购置服饰共能够节俭多少钱?(2)甲、乙两所学校各有多少学生准备参加演出?(3)假如甲校有 10 名同学因故不可以演出,请你为两所学校设计一种最省钱的购置服饰方案答案分析1.【答案】 C【分析】 A. 切合二元一次方程组的定义,属于二元一次方程组,故本选项错误;B.切合二元一次方程组的定义,属于二元一次方程组,故本选项错误;C. 1是分式,不属于二元一次方程组,故本选项正确;xD.切合二元一次方程组的定义,属于二元一次方程组,故本选项错误;应选 C.2.【答案】A【分析】 A. 将 x= 1, y=- 1 代入方程左侧,得x- 3y=1+ 3= 4,右侧为 4,本选项正确;B.将 x= 2, y= 1 代入方程左侧,得x- 3y= 2- 3=- 1,右侧为4,本选项错误;C.将x=- 1, y=- 2 代入方程左侧,得x- 3y=- 1+ 6=5,右侧为4,本选项错误;D.将x= 4, y=- 1 代入方程左侧,得x- 3y=4+ 3= 7,右侧为4,本选项错误.应选 A.3.【答案】 B【分析】由①,得 2x= 6- 3y, x=;3y=6-2x,由② ,得 5x= 2+ 3y,x=,3y=5x-2,y=y=.应选 B.;4.【答案】C【分析】由① ,得 x= 4- 2m,由②,得 y= m+ 3,代入 x+ y= 5,得 4- 2m+m+ 3= 5,解得 m=2,应选 C.5.【答案】 C【分析】①+②,得 x+ y= 4,则 y=- x+ 4,应选 C.6.【答案】 B【分析】分别把当x= 2 时,y=- 4,当 x=- 2 时,y= 8 代入等式 y= kx+ b,得①-②,得 4k=- 12,解得 k=- 3,把 k=- 3 代入①,得- 4=- 3×2+ b,解得 b=2,分别把 k=- 3, b= 2 的值代入等式y= kx+ b,得 y=- 3x+ 2,应选 B.7.【答案】 A【分析】设成人票是x 元 /张,学生票是y 元/ 张,依题意,得解得则x+y=120.即赵芸同学和妈妈去该景区游乐时,门票需要花销120 元.应选 A.8.【答案】 D【分析】解方程组以下解法不正确的选项是由① ,② 消去z,再由① ,③ 消去 y.应选 D.9.【答案】 C【分析】要求甲,乙库房本来存粮分别为多少,就要先设出未知数,找出题中的等量关系列方程求解.题中的等量关系为:从甲库房运出存粮的60%,从乙库房运出存粮的40%.结果乙库房所余的粮食比甲库房所余的粮食多30 吨,甲库房、乙库房共存粮450 吨.设甲库房本来存粮x 吨,乙库房本来存粮y 吨.依据题意,得应选 C.10.【答案】 B【分析】设甲、乙两种服饰的原单价分别是x 元、 y 元,知足等量关系:① 甲、乙两种服饰的原单价共为 880元;② 打折后两种服饰的单价共为684 元,由此列出方程组求解.设甲、乙两种服饰的原单价分别是x 元、 y 元.依据题意,得解得答:甲、乙两种服饰的原单价分别是480元、 400元.应选 B.11.【答案】 y=×0.25+ 150【分析】此题的等量关系:总产值等于增添的产值+此刻年产值.设新增添的投资额为x 万元,总产值为y 万元,由题意,得y=×0.25+150.12.【答案】- 2 或- 3【分析】若方程组是对于 x, y 的二元一次方程组,则 c+ 3=0, a- 2=1, b+ 3=1,解得 c=- 3, a= 3, b=- 2.因此代数式a+ b+ c 的值是- 2.或 c+ 3= 0, a- 2= 0, b+ 3= 1,解得 c=- 3, a= 2, b=- 2.因此代数式a+ b+ c 的值是- 3.故答案为- 2 或- 3.13.【答案】【分析】当x= 0 时, 2y= 10,解得 y= 5;当 x= 1 时, 2y= 7,解得 y= 3.5(不合题意舍去 );当 x= 2 时, 2y= 4,解得 y= 2;当 x= 3 时, y=1(不合题意舍去 );2当 x≥4时, y< 0(不合题意 ).故答案为或14.【答案】【分析】将①代入②,得2y+ 10- y= 5,解得y=- 5,将 y=- 5 代入①,得x= 0,则方程组的解为应选答案为15.【答案】 2【分析】依题意,得x=- y.∴3x- y= 3x+ x= 4x= 4,∴ x= 1,则 y=- 1.∴ 3x+ y= 2.故答案为 2.16.【答案】- 1 5【分析】①-②,得 x- y=- 1,①+②,得 3x+3y= 15,因此 x+ y= 5.故答案为- 1; 5.17.【答案】 20【分析】设平路有x 千米,上坡路有 y 千米,依据平路用时+上坡用时+下坡用时+平路用时= 5,即可得解.注意求得x+ y 的值即为总行程.依据题意,得xy y x 5 ,即xy 5 ,则x+y=10(千米),436422这 5 小时共走的行程= 2×10=20(千米 ).故答案填 20. 18.【答案】 3【分析】依据题意可得等量关系:① x立方米木材做桌面+y 立方米木材做桌腿= 5 立方米;②桌面的总数×4=桌腿的总数,依据等量关系列出方程组即可.设用 x 立方米木材做桌面,y 立方米木材做桌腿,依据题意,得解得答:用 3 立方米木材做桌面,恰巧使桌面与桌腿配套,两者均没有节余.故答案为 3.19.【答案】解(1)①-②,得 5y=- 5,即 y=- 1,把 y=- 1 代入①,得 x= 6,则方程组的解为(2) 把代入方程组,得解得则a+b=2.【分析】 (1)方程组利用加减消元法求出解即可;(2) 把 x 与 y 的值代入方程组求出 a 与 b 的值,即可求出a+ b 的值.20.【答案】解②×2-①,得 7x+6y= 6③,又由题意,得x+ y=- 5④,联立③④ ,得方程组解得代入①,得k= 13.【分析】解对于x、 y 的方程组,x, y 即可用k 表示出来,再依据x、 y 的和为-5,即可得到对于k 的方程,从而求得k 的值.21.【答案】解∵ 方程(|m|-2)x2+(m+2)x+(m+1)y=m+5是对于x,y的二元一次方程,∴|| 202≠01≠02m -=, m+, m+,解得 m=,故当 m=2时,方程(||2)2(m+2)(m+1)y=m+5是对于 x, y 的二元一次方程.m -x +x+【分析】利用二元一次方程的定义得出其系数的关系从而求出即可.22.【答案】解设茶壶的单价为x 元,茶杯的单价为y 元,由题意,得解得答:茶壶的单价为70 元,茶杯的单价为15 元.【分析】设茶壶的单价为x 元,茶杯的单价为y 元,依据题意可得, 1 个茶壶和10 个茶杯共花去 220 元,茶壶的单价比茶杯的单价的 4 倍还多 10 元,据此列方程组求解.23.【答案】解设种茄子的大棚有x 亩,种西红柿的大棚蔬菜有y 亩,由题意,得解得答:种茄子的大棚有 10 亩,种西红柿的大棚蔬菜有15亩.【分析】设种茄子的大棚有 x 亩,种西红柿的大棚蔬菜有y 亩,依据 25 亩蔬菜用去了 44 000元,列方程组求解.24.【答案】解(1)由题意可设拆旧舍x 平方米,建新舍y 平方米,则解得答:原计划拆建各 4 500 平方米.(2)计划资本1=4 500 ×80+ 4 500 ×800= 3 960 000元,y适用资本y2= 1.1 ×4 500 ×80+ 0.9 ×4500×800= 4 950 ×80+4 050 ×800= 396 000 +3 240 000=3 636 000,∴节余资本: 3 960 000- 3 636 000= 324 000,∴可建绿化面积== 1 620 平方米,答:可绿化面积 1 620 平方米.【分析】(1) 等量关系为:计划在年内拆掉旧校舍面积+计划建筑新校舍面积=9 000 平方米,计划建筑新校舍面积×90%+计划拆掉旧校舍面积×(1+10%)=9000 平方米.依等量关系列方程,再求解.(2)先算出计划的资本总量和实质所用的资本总量,而后算出节余的钱,那么可求可绿化的面积.25.【答案】解(1)由题意,得 5 000- 40×92=5 000- 3 680= 1 320(元 ) ,答:甲、乙两校结合购置服饰共能够节俭 1 320元;(2)设甲、乙两所学校各有 x、 y 人准备参加演出,则依据题意,得解得答:甲校有52 人,乙校有40 人;(3)由题意,得两校结合购置82 套需要的花费为50×82= 4 100,两校结合购置91 套需要的花费为40×91= 3 640,∵3 640<4 100.∴购置 91 套比买 82 套更省钱.【分析】 (1)依据服饰厂的销售价钱和求出结合购置需要的花费,由独自购置一共人教版七年级数学下册第八章二元一次方程组单元测试题(有答案)一.选择题1.以下方程中,是二元一次方程的是()A . 3x- 2y= 4zB . 6xy+ 9= 0C.1+ 4y = 6D.4x =y-2 x42.以下方程组中,是二元一次方程组的是()x+ y= 42a- 3b= 11A. B.2x+ 3y= 75b- 4c= 6x2= 9x+ y= 8C. D.y=2x x2- y= 43. 方程组的解为()A.B.C.D.4. 夏天到临,某商场试销 A、B 两种型号的电扇,两周内共销售30 台,销售收入5300 元, A 型电扇每台 200 元, B 型电扇每台150 元,问 A、B 两种型号的电扇分别销售了多少台?若设 A 型电扇销售了x 台, B 型电扇销售了y 台,则依据题意列出方程组为()A.B.C.D.5. 小岩打算购置气球装束学校“毕业典礼”活动会场,气球的种类有笑容和爱心两种,两种气球的价钱不一样,但同一种气球的价钱同样.因为会场部署需要,购置时以一束(4个气球)为单位,已知第一、二束气球的价钱以下图,则第三束气球的价钱为()A. 19B. 18C. 16D. 156. 某文具店一本练习本和一支水笔的单价共计为支水笔,共花了 36 元.假如设练习本每本为3 元,小妮在该店买了20 本练习本和x 元,水笔每支为y 元,那么依据题意,以下10方程组中,正确的选项是()A.B.C.D.7.《九章算术》中记录:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其粗心是:今有人合伙买羊,若每人出 5 钱,还差 45 钱;若每人出 7 钱,还差 3 钱,问合伙人数、羊价各是多少?设合伙人数为x 人,羊价为 y 线,依据题意,可列方程组为()A.B.C.D.8. 某次知识比赛共有 20 道题,规定:每答对一道题得 +5分,每答错一道题得﹣ 2 分,不答的题得 0 分,已知圆圆此次比赛得了60 分,设圆圆答对了x 道题,答错了 y 道题,则()A. x﹣ y=20 B. x+y=20C. 5x﹣ 2y=60D. 5x+2y=609. 阅读理解: a,b,c,d 是实数,我们把符号称为 2×2 阶队列式,而且规定:=a × d ﹣ b × c ,比如:=3 ×(﹣ 2 )﹣ 2 ×(﹣ 1 ) =﹣ 6+2=﹣ 4 .二元一次方程组的解能够利用2× 2 阶队列式表示为:;此中D=,D x=,D y =.问题:对于用上边的方法解二元一次方程组时,下边说法错误的选项是()A. D==﹣ 7B. D x =﹣ 14C. D y=27D.方程组的解为10. 若二元一次联立方程式的解为 x=a, y=b,则 a+b 之值为什么?()A.24 B. 0C.﹣ 4 D.﹣ 811. 为奖赏消防操练活动中表现优秀的同学,某校决定用1200 元购置篮球和排球,此中篮球每个 120 元,排球每个 90元,在购置资本恰巧用尽的状况下,购置方案有()A.4 种B.3种C.2 种D.1 种12.某酒店一共 70 个房间,大房间每间住 8 个人,小房间每间住 6 个人,一共 480 个学生刚好住满,设大房间有 x 个,小房间有 y 个.以下方程正确的选项是()A. B .C.D.二.填空题1.若对于 x、 y 的二元一次方程 3x﹣ ay=1 有一个解是,则 a=.2.六一小孩节,某少儿园用100 元钱给小朋友买了甲、乙两种不一样的玩具共30 个,单价分别为 2 元和 4 元,则该少儿园购置了甲、乙两种玩具分别为、个.3.对于实数 a, b,定义运算“◆”: a◆b=,比如 4◆3,因为 4> 3.所以 4◆3==5.若 x, y 知足方程组,则 x◆y=.4.已知 x,y 知足方程组,则 x2﹣ 4y2的值为.5.我国古代数学著作《九章算术》中有一道论述“盈不足术”的问题,译文为:“现有几个人共同购置一个物件,每人出8 元,则多 3 元;每人出7 元,则差 4 元.问这个物件的价钱是多少元?”该物件的价钱是元.6.我国明朝数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.假如 1 托为 5 尺,那么索长为尺,竿子长为尺.7. 若二元一次方程组的解为,则a﹣b=.8. 已知是对于x,y的二元一次方程组的一组解,则a+b=.9.小强同学诞辰的月数减去日数为2,月数的两倍和日数相加为 31,则小强同学诞辰的月数和日数的和为.三.解答题1. 解方程组:.2.用消元法解方程组3.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不单最早提到了分数问题,也第一记录了“盈不足”等问题.若有一道论述“盈不足”的问题,原文以下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,假如每人出 9 文钱,就会多 11 文钱;假如每人出 6 文钱,又会缺 16 文钱.问买鸡的人数、鸡的价钱各是多少?请解答上述问题.4.某水果店 5 月份购进甲、乙两种水果共花销 1700 元,此中甲种水果 8 元 / 千克,乙种水果18 元 / 千克.6 月份,这两种水果的进价上浮为:(1)若该店 6 月份购进这两种水果的数目与甲种水果 10 元千克,乙种水果 20 元 / 千克. 5 月份都同样,将多支付货款 300 元,求该店5 月份购进甲、乙两种水果分别是多少千克?(2)若 6 月份将这两种水果进货总量减少到120 千克,且甲种水果不超出乙种水果的 3 倍,则 6 月份该店需要支付这两种水果的货款最少应是多少元?5.在端午节到临之际,某商铺订购了A 型和 B 型两种粽子, A 型粽子 28 元/ 千克, B 型粽子24 元 / 千克,若 B 型粽子的数目比 A 型粽子的 2 倍少 20 千克,购进两种粽子共用了2560 元,求两种型号粽子各多少千克.6.为提升市民的环保意识,倡议“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A, B 两种不一样款型,此中A型车单价400 元, B 型车单价320 元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B 两种款型的单车共100 辆,总价值36800元.试问本次试点投放的 A 型车与 B 型车各多少辆?( 2)试点投放活动获得了广大市民的认同,该市决定将此项公益活动在整个城区全面铺开.依据试点投放中A, B 两车型的数目比进行投放,且投资总价值不低于184 万元.请问城区10 万人口均匀每100 人起码享有 A 型车与 B 型车各多少辆?7.为拓宽学生视线,指引学生主动适应社会,促使书籍知识和生活经验的深度交融,我市某中学决定组织部分班级去赤壁展开研学旅行活动,在参加此次活动的师生中,若每位老师带17 个学生,还剩 12 个学生没人带;若每位老师带18 个学生,就有一位老师少带 4 个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)3042租金/(元/辆)300400学校计划此次研学旅行活动的租车总花费不超出3100 元,为了安全,每辆客车上起码要有2 名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上起码要有 2 名老师,可知租用客车总数为8辆;(3)你能得出哪几种不一样的租车方案?此中哪一种租车方案最省钱?请说明原因.参照答案:一、选择题。
(必考题)初中七年级数学下册第八单元《二元一次方程组》经典练习题(含答案解析)
一、选择题1.甲、乙两人分别从相距40km 的两地同时出发,若同向而行,则5h 后,快者追上慢者;若相向而行,则2h 后,两人相遇,那么快者速度和慢者速度(单位:km/h)分别是( )A .14和6B .24和16C .28和12D .30和1A 解析:A【分析】设快者的速度是/xkm h ,慢者的速度是/ykm h ,根据追及问题和相遇问题的求解方法列二元一次方程组求解.【详解】解:设快者的速度是/xkm h ,慢者的速度是/ykm h ,列式()()540240x y x y ⎧-=⎪⎨+=⎪⎩,解得146x y =⎧⎨=⎩. 故选:A .【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意列出二元一次方程组.2.若关于x 、y 的方程组228x y ax y +=⎧⎨+=⎩的解为整数,则满足条件的所有a 的值的和为( )A .6B .9C .12D .16C 解析:C【分析】先把a 看作已知数求出42x a =-,然后结合方程组的解为整数即可求出a 的值,进而可得答案.【详解】解:对方程组2{28x y ax y +=+=①②,②-①×2,得()24a x -=,∴42x a =-, ∵关于x 、y 的方程组228x y ax y +=⎧⎨+=⎩的解为整数, ∴21,2,4a -=±±±,即a =﹣2、0、1、3、4、6,∴满足条件的所有a 的值的和为﹣2+0+1+3+4+6=12.故选:C .【点睛】本题考查了二元一次方程组的解法,正确理解题意、熟练掌握解二元一次方程组的方法是解题关键.3.如图,在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①、图②,已知大长方形的长为2a ,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是( )(用a 的代数式表示)A .﹣aB .aC .12aD .﹣12a A 解析:A【分析】 设图③小长方形的长为m ,宽为n ,则由已知可以求得m 、n 关于a 的表达式,从而可以用a 表示出图①阴影部分周长与图②阴影部分周长,然后即可算得二者之差.【详解】解:设图③小长方形的长为m ,宽为n ,则由图①得m=2n ,m+2n=2a , ∴2a m a n ==,, ∴图①阴影部分周长=22245a n a a a ⨯+=+=,图②阴影部分周长=()2322126n n n n a ++==,∴图①阴影部分周长与图②阴影部分周长的差是:5a-6a=-a ,故选A .【点睛】本题考查二元一次方程组的几何应用,设图③小长方形的长为m ,宽为n ,并用a 表示出m 和n 是解题关键.4.下列方程中是二元一次方程的是( )A .(2)(3)0x y +-=B .-1x y =C .132x y=+ D .5xy = B 解析:B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.【详解】解:(2)(3)0x y +-=化简得3260xy x y -+-=,最高次是2次,故A 选项错误; -1x y =是二元一次方程,故B 选项正确;132x y=+不是整式方程,故C 选项错误;5xy =最高次是2次,故D 选项错误.故选:B【点睛】本题主要考查的是二元一次方程的概念,正确的掌握二元一次方程的概念是解题的关键. 5.如图,长方形ABCD 被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD 的周长为l ,若图中3个正方形和2个长方形的周长之和为94l ,则标号为①正方形的边长为( )A .112l B .116l C .516l D .118l B 解析:B 【分析】 设两个大正方形边长为x ,小正方形的边长为y ,由图可知周长和列方程和方程组,解答即可.【详解】解:长方形ABCD 被分成3个正方形和2个长方形后仍是中心对称图形,∴两个大正方形相同、2个长方形相同.设小正方形边长为x ,大正方形的边长为y ,∴小长方形的边长分别为()y x -、()x y +,大长方形边长为()2y z -、()2y x +.长方形周长l =,即:()()222y x y x l -++⎤⎣⎦=⎡, 8y l ∴=,18y l ∴=. 3个正方形和2个长方形的周长和为94l , ()()9244224y x x y y x l ∴⨯++⨯⨯+⎤⎣⎦=⎡+-,91644y x l ∴+=, 116x l ∴=. ∴标号为①的正方形的边长116l .故选:B.【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,要明确中心对称的性质,找出题目中的等量关系,列出方程组.注意各个正方形的边长之间的数量关系.6.方程组2824x yx y⎧+=⎪⎨+=⎪⎩的解的个数为()A.1 B.2 C.3 D.4A解析:A【分析】分类讨论x与y的正负,利用绝对值的代数意义化简,求出方程组的解,即可做出判断.【详解】解:根据x、y的正负分4种情况讨论:①当x>0,y>0时,方程组变形得:2824x yx y+=⎧⎨+=⎩,无解;②当x>0,y<0时,方程组变形得:28 24 x yx y+=⎧⎨-=⎩,解得x=3,y=2>0,则方程组无解;③当x<0,y>0时,方程组变形得:28 24x yx y-+=⎧⎨+=⎩,此时方程组的解为16xy=-⎧⎨=⎩;④当x<0,y<0时,方程组变形得:2824x yx y-+=⎧⎨-=⎩,无解,综上所述,方程组的解个数是1.故选:A.【点睛】本题考查了解二元一次方程组,利用了分类讨论的思想,熟练掌握运算法则是解本题的关键.7.已知:关于x、y的方程组2423x y ax y a+=-+⎧⎨+=-⎩,则x-y的值为( )A.-1 B.a-1 C.0 D.1D 解析:D【解析】分析:由x、y系数的特点和所求式子的关系,可确定让①-②即可求解.详解:2423x y ax y a+=-+⎧⎨+=-⎩①②,①−②,得x−y=−a+4−3+a=1.故选:D.点睛:此题考查了解二元一次方程组,一般解法是用含有a 的代数式表示x 、y ,再计算,但也要注意能简便的则简便.此题中注意整体思想的渗透.8.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是32=19423x y x y +⎧⎨+=⎩,在图2所示的算筹图所表示的方程组是( )A .2114327x y x y +=⎧⎨+=⎩B .21437x y x y +=⎧⎨+=⎩C .2274311x y x y +=⎧⎨+=⎩D .2114327y x y x +=⎧⎨+=⎩A 解析:A【分析】图2中,第一个方程x 的系数为2,y 的系数为1,相加为11;第二个方程x 的系数为4,y 的系数为3,相加为27,据此解答即可.【详解】解:图2所示的算筹图所表示的方程组是2114327x y x y +=⎧⎨+=⎩. 故选:A .【点睛】本题考查了二元一次方程组的应用,读懂题意、明确图1表示方程组的方法是解题关键. 9.已知关于x ,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩的解适合方程x-y=4,则m 的值为( )A .1B .2C .3D .4C 解析:C【分析】通过观察方程组可知第一个方程减去第二个方程可得22x y m -=-,再结合4x y -=即可求得答案.【详解】解:∵323223x y m x y m +=-⎧⎨+=⎩①② ①-②得,22x y m -=-∵4x y -=∴224m -=∴3m =.故选:C【点睛】本题考查了根据二元一次方程组的解满足一定的条件求参数问题,能根据题目特点灵活运用加减消元法、代入消元法是解题的关键.10.方程组320x y x y +=⎧⎨-=⎩的解是( ) A .11x y =⎧⎨=⎩ B .12x y =⎧⎨=⎩ C .21x y =⎧⎨=⎩ D .30x y =⎧⎨=⎩B 解析:B【分析】二元一次方程组的求解方法有两种:(1)加减消元法;(2)代入消元法,此题用加减消元法求解更为简便;【详解】∵320x y x y +=⎧⎨-=⎩①② ,①+②得:3x=3,即x=1,把x=1代入①得:y=2,则方程组的解为12x y =⎧⎨=⎩ , 故选:B .【点睛】本题考查了二元一次方程组的解法,正确利用加减消元法求解是解题的关键. 二、填空题11.若方程x |m|-2+(m+3)y 2m-n =6是关于x 、y 的二元一次方程,则m+n=_____8【分析】根据二元一次方程满足的条件:含有2个未知数未知数的项的次数是1的整式方程可得|m|-2=12m-n=1解出mn 的值可得答案【详解】解:由题意知|m|-2=12m-n=1且m+3≠0解得m=解析:8【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得|m|-2=1,2m-n=1,解出m 、n 的值可得答案.【详解】解:由题意,知|m|-2=1,2m-n=1且m+3≠0.解得m=3,n=5.所以m+n=3+5=8.故答案是:8.【点睛】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.12.甲、乙两筐苹果各有若干千克,从甲筐拿出20%到乙筐后,又从乙筐拿出25%到甲筐,这时甲、乙两筐苹果的质量相等,则原来乙筐的苹果质量是甲筐的__________ % .140【分析】设甲乙两筐苹果各有先求出从甲筐拿出20到乙筐后甲乙两筐分别为再求出从乙筐拿出25到甲筐后甲乙两筐分别为:列方程求出x 与y 的关系即可【详解】设甲乙两筐苹果各有从甲筐拿出20到乙筐后甲乙两 解析:140【分析】设甲、乙两筐苹果各有x 、kg y ,先求出从甲筐拿出20%到乙筐后,甲、乙两筐分别为80%x ,20%y x +,再求出从乙筐拿出25%到甲筐后,甲、乙两筐分别为:171204x y +,33420y x +,列方程17133204420x y y x +=+,求出x 与y 的关系即可. 【详解】设甲、乙两筐苹果各有x 、kg y ,从甲筐拿出20%到乙筐后,甲、乙两筐分别为80%x ,20%y x +,从乙筐拿出25%到甲筐后,甲、乙两筐分别为:()17180%25%20%204x y x x y +⨯+=+, ()3375%20%420y x y x ⨯+=+, 由题可得:17133204420x y y x +=+, 解得75y x =, 75y x =, 则原来乙筐苹果质量为甲筐的:7100%100%140%5y x ⨯=⨯=. 故答案为:140.【点睛】本题考查循环倒液类型问题,掌握循环倒液类型问题的解法,抓住经过两次循环两者质量相等构造等式(或方程)解决问题是关键.13.如图,5个大小形状完全相同的长方形纸片,在直角坐标系中摆成如图图案,已知()8,5B -,则点A 的坐标为__________.(-36)【分析】设长方形纸片的长为a 宽为b 由B 点坐标可以得到关于ab 的二元一次方程组解方程组可以得到a 和b 再根据纸片的摆放可以得到A 点坐标【详解】解:设长方形纸片的长为a 宽为b 由B 点坐标可以得到:解析:(-3,6)【分析】设长方形纸片的长为a ,宽为b ,由B 点坐标可以得到关于a 、b 的二元一次方程组,解方程组可以得到a 和b ,再根据纸片的摆放可以得到A 点坐标.【详解】解:设长方形纸片的长为a ,宽为b ,由B 点坐标可以得到:285a a b -=-⎧⎨+=⎩,解之可得: 41a b =⎧⎨=⎩, ∴根据A 点位置可得其坐标为:()326x a b y a b ⎧=--=-⎨=+=⎩, 故答案为(-3,6).【点睛】本题考查点的坐标表示与长方形的综合运用,根据点的坐标及长方形的摆放位置求出长方形的长和宽后再根据长方形的摆放位置求出新的点坐标 .14.鼠年新春佳节将至,小瑞准备去超市买些棒棒糖,送一份“甜蜜礼物”给他的好朋友.有甲、乙、丙三种类型的棒棒糖,若甲种买2包,乙种买1包,丙种买3包共23元;若甲种买1包,乙种买4包,丙种买5包共36元.则甲种买1包,乙种买2包,丙种买3包,共______元.22【分析】首先设买1包甲乙丙三种糖各abc元根据买甲种糖2包和乙种1包丙种3包共23元列出方程2a+3c+b=23;根据买甲种1包乙4包丙种5包共36元列出方程a+4b+5c=36通过加减消元法求解析:22【分析】首先设买1包甲,乙,丙三种糖各a,b,c元.根据买甲种糖2包和乙种1包,丙种3包共23元,列出方程2a+3c+b=23;根据买甲种1包,乙4包,丙种5包,共36元,列出方程a+4b+5c=36.通过加减消元法求得b+c,a+c的值.题目所求买甲种1包,乙种2包,丙种3包,共需a+2b+3c=(a+c)+2(b+c),因而将b+c、a+c的值直接代入即求得本题的解.【详解】解:设买1包甲,乙,丙三种糖各a,b,c元.由题意得23234536 a b ca b c++=⎧⎨++=⎩①②由②×2−①得:b+c=7③,由③代入①得:a+c=8④,由④+2×③得:a+2b+3c=(a+c)+2(b+c)=8+14=22.故答案为:22.【点睛】根据系数特点,通过加减消元法,得到b+c、a+c的值,再将其做为一个整体,代入求解.15.某商场在“迎新年”搞促销活动,刘海的家长准备用2000元在活动中购买价格分别为160元和240元的两种商品,在钱都用尽的情况下,可供刘海的家长选择的购买方案有_______种.4【分析】设购买160元的商品数量为x购买240元的商品数量为y 根据总费用是2000元列出方程求得正整数xy的值即可【详解】解:设购买80元的商品数量为x购买120元的商品数量为y依题意得:160x解析:4【分析】设购买160元的商品数量为x,购买240元的商品数量为y,根据总费用是2000元列出方程,求得正整数x、y的值即可.【详解】解:设购买80元的商品数量为x,购买120元的商品数量为y,依题意得:160x+240y=2000,整理,得y=2523x-.因为x是正整数,所以当x=2时,y=7.当x=5时,y=5.当x=8时,y=3.当x=11时,y=1.即有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用.对于此类问题,挖掘题目中的关系,找出等量关系,列出二元一次方程.然后根据未知数的实际意义求其整数解.16.设 a 、b 是有理数,且满足等式2321a b ++=-则a+b=___________.1或﹣11【分析】根据实数相等的条件可求出ab 的值然后代入所求式子计算即可【详解】解:∵ab 是有理数且满足等式∴解得:当a=6b=﹣5时a+b=6-5=1;当a=﹣6b=﹣5时a+b=﹣6-5=﹣1解析:1或﹣11【分析】根据实数相等的条件可求出a 、b 的值,然后代入所求式子计算即可.【详解】解:∵a 、b 是有理数,且满足等式2321a b ++=-∴2321,5a b b +==-,解得:5,6b a =-=±,当a =6,b =﹣5时,a +b =6-5=1;当a =﹣6,b =﹣5时,a +b =﹣6-5=﹣11;故答案为:1或﹣11.【点睛】本题考查了实数的相关知识,正确理解题意、得到关于a 、b 的方程组是解题的关键. 17.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg ,500kg ,400kg ,总平均亩产量为450kg ,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了40%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_______.45【分析】设甲乙丙三种水稻各种植了a 亩b 亩c 亩乙种水稻平均亩产量的增长率为x 根据题意列出方程组进行解答便可【详解】解:设甲乙丙三种水稻各种植了a 亩b 亩c 亩乙种水稻平均亩产量的增长率为x 根据题意得化 解析:45%【分析】设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意列出方程组进行解答便可.【详解】解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意得,300500400450()4003004300(130%)500(1)400(130%)450()(140%)a b c a b c c a a b x c a b c ++=++⎧⎪=⨯⎨⎪+++++=+++⎩化简整理得:30350241311a b c c a bx a b c -+=⎧⎪=⎨⎪=++⎩, 解得:0.4545%x ==;故答案为:45%.【点睛】本题主要考查了方程组解应用题,关键是读懂题意正确列出方程组.18.为减轻“新冠”带来的影响,西城天街商场决定在国庆期间开展促销活动,方案如下:在负二楼兑奖区旁放置一个不透明的箱子,箱子里有大小、形状、质地等完全相同的黑、白、红球各一个,顾客购买的商品达到一定金额可获得一次摸球机会,摸中黑、白、红三种颜色的球可分别返还现金100元、60元、20元.商场分上午、下午和晚上三个时间段统计摸球次数和返现金额,汇总统计结果如下:下午摸到黑球次数为上午的3倍,摸到白球次数为上午的2倍,摸到红球次数为上午的4倍;晚上摸到黑球次数与上午相同,摸到白球次数为上午的4倍,摸到红球次数为上午的2倍,三个时间段返现总金额共为5020元,晚上返现金额比上午多840元,则下午返现金额为_______元.【分析】根据题意表示出上午下午晚上摸到黑白红的次数列数返现的金额式子确定出abc 的值代入计算即可;【详解】设上午黑白红摸到的次数分别是abc 则下午摸到黑白红的次数是3a2b4c 晚上摸到黑白红的次数是解析:2460【分析】根据题意表示出上午、下午、晚上摸到黑、白、红的次数,列数返现的金额式子,确定出a ,b ,c 的值代入计算即可;【详解】设上午黑、白、红摸到的次数分别是a ,b ,c ,则下午摸到黑、白、红的次数是3a ,2b ,4c ,晚上摸到黑、白、红的次数是a ,4b ,2c ,晚上返现金额比上午多840,∴36020840b c ⨯+⨯=,∴18020840b c +=,总返现为:5004201405020a b c ++=,根据题意:a ,b ,c 是大于零的正整数,当4b =时满足条件a ,b ,c 为正整数,∴4b =,6c =,5a =,即下午返现的金额为1510086024202460⨯+⨯+⨯=元;故答案是2460.【点睛】本题主要考查了概率公式的应用,准确分析计算是解题的关键.19.已知方程组32223x y m x y m +=+⎧⎨+=⎩的解适合8x y +=,则m =_______.19【分析】将m 看做已知数表示出x 与y 代入x+y=8中计算即可求出m 的值【详解】解:得5x=m+6即得:-5y=4-m 即代入x+y=8中得:去分母得:2m+2=40解得:m=19故答案为:19【点睛解析:19【分析】将m 看做已知数表示出x 与y ,代入x+y=8中计算即可求出m 的值.【详解】解:32223x y m x y m ++⎧⎨+⎩=①=② 32⨯-⨯①②得5x=m+6,即65m x += 23⨯-⨯①②得:-5y=4-m ,即45m y -=代入x+y=8中,得:64855m m +-+= 去分母得:2m+2=40,解得:m=19.故答案为:19【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.20.明代的程大位创作了《算法统宗》,它是一本通俗实用的数学书,将枯燥的数学问题化成了美妙的诗歌,读来朗朗上口,是将数字入诗的代表作.例如,其中有一首饮酒数学诗:“肆中饮客乱纷纷,薄酒名釂厚酒醇.醇酒一瓶醉三客,薄酒三瓶醉一人,共同饮了一十九,三十三客醉颜生.试问高明能算士,几多酶酒几多醇?”这首诗是说:“好酒一瓶,可以醉倒3位客人;薄酒三瓶,可以醉倒1位客人,如今33位客人醉倒了,他们总共饮下19瓶酒.试问其中好酒、薄酒分别是多少瓶?”请你根据题意,求出好酒是有_____瓶.10【分析】根据好酒数量+薄酒数量=19和喝好酒醉倒人数+喝薄酒醉倒人数=33可列方程组解之即可【详解】解:设有好酒x 瓶薄酒y 瓶根据题意可列方程组为解得:∴好酒是有10瓶故答案为:10【点睛】本题主解析:10根据“好酒数量+薄酒数量=19和喝好酒醉倒人数+喝薄酒醉倒人数=33”可列方程组,解之即可.【详解】解:设有好酒x 瓶,薄酒y 瓶.根据题意,可列方程组为193333x y y x +=⎧⎪⎨+=⎪⎩,解得:109x y =⎧⎨=⎩, ∴好酒是有10瓶,故答案为:10.【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是掌握理解题意,找到题目蕴含的相等关系.三、解答题21.今年11月份,某商场用22200元购进长虹取暖器和格力取暖器共400台,已知长虹取暖器每台进价为50元,售价为70元,格力取暖器每台进价为60元,售价为90元. (1)求11月份两种取暖器各购进多少台?(2)在将11月份购买的两种取暖器从厂家运往商场的过程中,长虹取暖器出现13的损坏(损坏后的产品只能为废品,不能再进行销售),而格力取暖器完好无损,商场决定对这两种取暖器的售价进行调整,使这次购进的取暖器全部售完后,商场可获利35%,已知格力取暖器在原售价基础上提高5%,问长虹取暖器调整后的每台售价比原售价多多少元? (3)今年重庆的天气比往年寒冷了许多,进入12月份,格力取暖器的需求量增大,商场在筹备“双十二”促销活动时,决定去甲、乙两个生产厂家都只购进格力取暖器,甲、乙生产厂家给出了不同的优惠措施:甲生产厂家:格力取暖器出厂价为每台60元,折扣数如下表所示:金.支付9700元,若将在两个生产厂家购买格力取暖器的总量改由在乙生产厂家一次性购买,则商场可节约多少元?解析:(1)长虹取暖器购进180台,格力取暖器购进220台;(2)6.5元;(3)1064元【分析】(1)长虹取暖器和格力取暖器的总量是400,两种日光灯的总价是22200,可得方程组,即可得解;(2)设长虹取暖器调整后的每台售价比原售价多m 元根据题意可得:长虹取暖器销售额×(1-13)+格力取暖器销售额=总销售额,根据等量关系列出等式即可; (3)通过已知条件计算出乙生产厂家一次性购买的总支出,然后,在甲乙两家购买总支出-乙生产厂家一次性购买的总支出=节约金额,注意分类讨论,在乙厂家支付的9700元的原价是否小于10000元.【详解】解:(1)设长虹取暖器购进x 台,则格力取暖器购进y 台.由题意得:506022200400x y x y +=⎧⎨+=⎩解得:180y 220x =⎧⎨=⎩ 答:长虹取暖器购进180台,格力取暖器购进220台.(2)设长虹取暖器调整后的每台售价比原售价多m 元, 由题意得:()()()11801m 702209015%22200135%3⎛⎫⨯-++⨯⨯+=⨯+ ⎪⎝⎭解得:m 65=.答:长虹取暖器调整后的每台售价比原售价多6.5元.(3)当购买甲厂家150台,共支付150600.981008610⨯⨯=<.设在甲厂家购买了z 台,则()8100150600.858610z +-⨯⨯=.解得:160z =.若在乙厂家支付的9700元的原价小于10000元,则可节约()()861097001605097002000.982961064+-⨯++⨯-=⎡⎤⎣⎦元.若在乙厂家支付的9700元的原价大于10000元,则可节约()970029686109700160500.982967700.98⎡+⎤⎛⎫+-⨯+⨯-= ⎪⎢⎥⎝⎭⎣⎦元. 答:商场可节约1064元或770元.【点睛】本题主要是考查二元一次方程组的应用,在应用中结合实际情况考虑物品的损耗和最终利润问题,切记:单价×数量=总价,(售价-进价)•数量=利润,利用公式解决问题. 22.对于平面直角坐标系xoy 中的点(),P a b ,若点P'的坐标为(),a kb ka b ++(其中k 为常数,0k ≠)则称点P'为点P 的“k 属派生点”,例如:()1,4P 的“2属派生点”为()'124,214P +⨯⨯+,即()'9,6P .(1)点()2,3P -的“3属派生点”的坐标为________;(2)若点P 的“5属派生点”的坐标为()3,9-,求点P 的坐标.解析:(1)(7,-3);(2)点P 的坐标为(-2,1)【分析】(1)根据公式直接代入计算即可;(2)设点P 的坐标为(a ,b ),根据题意列得5359a b a b +=⎧⎨+=-⎩,求解即可. 【详解】(1)由题意得点()2,3P -的“3属派生点”的横坐标为233-+⨯=7,点()2,3P -的“3属派生点”的纵坐标为3(2)3⨯-+=-3,点()2,3P -的“3属派生点”的坐标为(7,-3),故答案为:(7,-3);(2)设点P 的坐标为(a ,b ),由题意得5359a b a b +=⎧⎨+=-⎩,解得21a b =-⎧⎨=⎩, ∴点P 的坐标为(-2,1).【点睛】此题考查新定义,列方程组解决实际问题,有理数的混合运算,正确理解题中的计算公式是解题的关键.23.如图,线段AB 上有一点C ,D 为线段BC 的中点,E 为线段AC 上一点,EC =4AE , AB =25(1)若AD =20,求AE 的长;(2)若DE =14,求BC 的长解析:(1)AE=3;(2)BC=20【分析】(1)设AE =a ,CD =b ,根据线段的和差倍数关系即可求解;(2)设AE =a ,CD =b ,根据线段的和差倍数关系即可求解;【详解】解:(1)设AE =a ,CD =b ,∵EC =4AE ,D 为线段BC 的中点,∴CE =4a ,AC =AE +CE =5a ,BC =2b ,∵AD =20,AB =25∴AC +CD =5a +b =20AC +BC =5a +2b =25解得:a =3,b =5即AE =a =3;(2)设AE =a ,CD =b ,∵EC =4AE ,D 为线段BC 的中点,∴CE =4a ,BC =2b ,∵DE =CE +CD =4a +b =14AB =AE +CE +BC =5a +2b =25解得:a =1,b =10即BC =2b =20.【点睛】本题考查两点间的距离和二元一次方程组,解题的关键是熟练掌握线段中点的性质及线段的和差倍数.24.一个电器超市购进A 、B 两种型号的电风扇进行销售,已知购进2台A 型号和3台B 型号共用910元,购进3台A 型号比购进2台B 型号多用260元.(1)求A 、B 两种型号的电风扇每台进价分别是多少元?(2)超市根据市场需求,决定购进这两种型号的电风扇共30台进行销售,A 种型号电风扇每台售价260元,B 种型号电风扇每件售价190元,若超市购进的两种电风扇全部售出后,总获利是1400元,求该超市本次购进A 、B 两种型号的电风扇各多少台?解析:(1)A 、B 两种型号的电风扇每台进价分别是200元和170元;(2)该超市本次购进A 、B 两种型号的电风扇各是20台和10台【分析】(1)设A 、B 两种型号的电风扇每台进价分别是x 元、y 元,进而利用购进2台A 型号和3台B 型号共用910元,购进3台A 型号比购进2台B 型号多用260元,列出二元一次方程组求出答案;(2)首先设购进A 种型号的电风扇a 台,则设购进B 种型号的电风扇(30-a )台,直接利用本次购进的两种电风扇全部售出后,总获利为1400元,列方程求出答案.【详解】解:(1)设A 、B 两种型号的电风扇每台进价分别是x 元、y 元,依题意,得2391032260x y x y +=⎧⎨-=⎩,解得200170x y =⎧⎨=⎩, 答:A 、B 两种型号的电风扇每台进价分别是200元和170元.(2)设购进A 种型号的电风扇a 台,则设购进B 种型号的电风扇(30)a -台, 依题意,得:(260200)(190170)(30)1400a a -+--=,解得:20a =,则3010a -=.答:该超市本次购进A 、B 两种型号的电风扇各是20台和10台.【点睛】此题主要考查了二元一次方程的应用,正确根据题目间等量关系列方程组进行计算求解是解题关键.25.阅读感悟:有些关于方程组的问题,需要求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x ,y 满足35x y -=①,237x y +=②,求4x y -和75x y +的值.本题常规思路是将①②两式联立组成方程组,解得x ,y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得42x y -=-,由①+②×2可得7519x y +=.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组23173213x y x y +=⎧⎨+=⎩,则x y -= ,x y += ; (2)“战疫情,我们在一起”,某公益组织计划为老年公寓捐赠一批防疫物资.已知购买20瓶消毒液、3支测温枪、2套防护服共需1180元;购买30瓶消毒液、2支测温枪、8套防护服共需2170元,若该公益组织实际捐赠了100瓶消毒液、10支测温枪、20套防护服,则购买这批防疫物资共需多少元?(3)对于实数x ,y ,定义新运算:x y ax by c *=-+,其中a ,b ,c 是常数,等式右边是通常的加法和乘法运算.已知3515*=,4728*=,求11*的值.解析:(1)﹣4;6;(2)购买这批防疫物资共需6700元;(3)11=11*-.【分析】(1)直接把两个方程相加或相减,即可求出答案;(2)根据题意,列出方程组,然后利用整体思想代入计算,即可得到答案;(3)根据题意,利用新定义进行计算,然后利用整体的思想即可求出11*的值.【详解】解:(1)23173213x y x y +=⎧⎨+=⎩①② 由①+②,得5530x y +=,∴6x y +=;由②-①,得4x y -=-;故答案为:﹣4;6.(2)设的消毒液单价为m 元,测温枪的单价为n 元,防护服的单价为p 元, 依题意,得: 2032118030282170m n p m n p ++=⎧⎨++=⎩①②, 由①+②可得505103350m n p ++=,∴1001020335026700m n p ++=⨯=.答:购买这批防疫物资共需6700元.(3)依题意,得: 35154728a b c a b c -+=⎧⎨-+=⎩①②, 由3×①﹣2×②可得:11a b c -+=-,∴1111a b c *=-+=-.【点睛】本题考查了二元一次方程组的应用,解二元一次方程的方法,以及利用整体的思想进行解题,解题的关键是熟练掌握利用整体思想进行解题.26.萱萱家为方便她上学,在黄冈小河中学旁边购买了一套经济适用房.她家准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m ),解答下列问题: (1)写出用含x 、y 的整式表示地面总面积;(2)已知客厅面积是厨房面积的4倍,且地面总面积是卫生间面积的15倍,铺1m 2地砖的平均费用为80元,求铺地砖的总费用为多少元?解析:(1)6218x y ++;(2)3600元【分析】(1)根据长方形的面积=长×宽,表示各部分的面积,于是可表示出总面积.(2)根据已知客厅面积是厨房面积的4倍,且地面总面积是卫生间面积的15倍,列出方程组求解,可求出总面积,再根据单价可求出铺地砖的总费用.【详解】解:(1)卧室的长=2+2=4,厨房的长=6-3=3,∴地面的总面积为:3×4+2y+2×3+6x=6x+2y+18.(2)由题意得64236218152x x y y =⨯⨯⎧⎨++=⨯⎩解得:41.5x y =⎧⎨=⎩∴地面总面积为:S=6x+2y+18=45(m 2),∴铺地砖的总费用为:45×80=3600(元).答:那么铺地砖的总费用为3600元.【点睛】本题考查二元一次方程组的应用,关键是能根据等量关系列出方程组.27.在新冠疫情期间,为支援武汉,现将我市大米运往武汉.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.那么3辆大货车与5辆小货车一次可以运货多少吨.。
(真题汇编)人教版七年级下册数学第八章 二元一次方程组含答案
人教版七年级下册数学第八章二元一次方程组含答案一、单选题(共15题,共计45分)1、下列是二元一次方程组的是()A. B. C. D.2、关于的方程组的解是,则等于()A.9B.3C.4D.13、三元一次方程组的解的个数为()A.无数多个B.1C.2D.04、二元一次方程组的解x,y的值相等,则k的值为()A. B.1 C.2 D.5、若是方程的一个解,则m的值为()A.1B.C.D.6、已知方程组中x,y的互为相反数,则m的值为()A.2B.﹣2C.0D.47、如果方程组的解x、y的值相同,则m的值是()A.1B.﹣1C.2D.﹣28、若5x2y a和4x a+b﹣4y2b﹣2是同类项,则的值为()A.﹣B.C.﹣D.9、方程组的解是()A. B. C. D.10、把方程改写成用含x的式子表示y的形式,正确的是()A. B. C. D.11、三元一次方程组的解为()A. B. C. D.12、如果二元一次方程组的解是二元一次方程3x﹣5y﹣7=0的一个解,那么a值是()A.3B.5C.7D.913、已知实数x,y,z满足,则代数式4x﹣4z+1的值是()A.-3B.3C.-7D.714、下列方程组中是二元一次方程组的是()A. B. C. D.15、若A(m-1,2n+3)与B(n-1,2m+1)关于y轴对称,则m与n的值分别为()A. ,B. ,C.-1,-1D.-1, 1二、填空题(共10题,共计30分)16、若方程组的解x、y的和为0,则k的值为________.17、若二元一次方程组的解为,则m+n=________18、若关于x、y的二元一次方程组的解满足x+y=1,则a的值为________.19、若把面值为1元的纸币换成面值为1角或5角的硬币,则共有________种换法.(提示:二元一次方程非负整数解问题)20、若x、y满足方程组,则代数式2x3+5x2+2018的值为________.21、《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺,将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果木条长x尺,绳子长y尺,可列方程组为________.22、已知,是二元一次方程组的解,则m+3n的平方根为________.23、已知方程的两个解是,,则________,________24、整数x,y满足方程2xy+x+y=83,则x+y=________或________。
人教版七年级数学下册第八章《二元一次方程组》专项练习(含答案)
人教版七年级数学下册第八章《二元一次方程组》专项练习(含答案)练习一 二元一次方程(组)一、精心选一选1.下列四组x ,y 的值中,哪一组是二元一次方程2460x y +-=的解( ). A.242x y =⎧⎨=⎩,;B.1320x y =⎧⎨=-⎩,;C.1320x y =-⎧⎨=⎩,; D.242x y =⎧⎨=-⎩, 2.如图1,点O 在直线AB 上,OC 为射线,∠1比∠2的3倍少10°,设∠1,∠2的度数分别是x ,y ,那么下列可以求出这两个角的度数的方程组是( ).A.18010x y x y +=⎧⎨=-⎩,; B.180310x y x y +=⎧⎨=-⎩,; C.180310x y x y +=⎧⎨=+⎩,;D.3180310y x y =⎧⎨=-⎩,3.刘刚同学买了两种不同的贺卡共8张,单价分别是1元和2元,共用10元.设刘刚买的1元贺卡有x 张,2元贺卡有y 张,则下面的方程组正确的是( ). A.1028y x x y ⎧+=⎪⎨⎪+=⎩,;B.128210x y x y ⎧+=⎪⎨⎪+=⎩,; C.1028x y x y +=⎧⎨+=⎩,;D.8210x y x y +=⎧⎨+=⎩,二、细心填一填 1.在方程38x ay -=中,如果31x y =⎧⎨=⎩,是它的一个解,那么a 的值为_____.2.填下表,使上下每对x ,y 的值满足方程34x y +=. x2- 1- 0.4- 0 y 2- 1- 0 113.写出解是34x y =-⎧⎨=⎩,的一个二元一次方程组是_____.4.如图2是小明用火柴搭的1条,2条,3条“金鱼”…,按照此规律,搭n 条金鱼所需的火柴总数为S ,那么以S ,n 为未知数的二元一次方程是_____. 三、耐心做一做 1.求210x y +=的非负整数解.2.图3中的天平处于平衡状态,设每个苹果的质量为x 克,每个梨的质量为y 克,你能根据图示列出关于x ,y 的方程组吗?3.现有布料25米,要裁成大人和小孩的两种服装,已知大人每套用布2.4米,小孩每套用布1米,问各裁多少套恰好能把布用完?练习二 解二元一次方程组一、精心选一选1.把方程513y x y +=+写成用含x 的式子表示y 的形式,以下各式中正确的是( ). A.352y x =- B.3102y x =- C.31522y x =-- D.31522y x =-+ 2.二元一次方程组22532x y x y -=⎧⎪⎨+=-⎪⎩,的解是( ). A.11x y =⎧⎨=⎩,; B.232x y =⎧⎪⎨=-⎪⎩,; C.121x y ⎧=⎪⎨⎪=-⎩,; D.14x y =-⎧⎨=⎩, 3.若x ,y 满足方程235497x y x y -=-⎧⎨+=-⎩,,,则x y +的值为( ). A.2- B.2 C.13- D.13 4.如果23x y -+和2(2310)x y +-互为相反数,那么x ,y 的值是( ).A.117167x y ⎧=⎪⎪⎨⎪=⎪⎩,; B.167117x y ⎧=⎪⎪⎨⎪=⎪⎩,;C.167117x y ⎧=-⎪⎪⎨⎪=-⎪⎩,;D.117167x y ⎧=-⎪⎪⎨⎪=-⎪⎩, 5.关于x ,y 的方程组239x y m x y m +=⎧⎨-=⎩,的解是方程3234x y +=的一组解,那么m 的值是( ).A.2 B.1-C.1 D.2-二、耐心做一做 1.已知等式(32)(29)69A B x A B x -+-=+对一切有理数x 都成立,求A ,B 的值.2.已知23521x y x y -=+=,求x ,y 的值.3.解方程组1243231y x x y ++⎧=⎪⎨⎪-=⎩,.4.解方程组7224()5()2x y x y x y x y +-⎧+=⎪⎨⎪+--=⎩,.5.小明和小亮解同一个方程组51542ax y x by +=⎧⎨-=-⎩,.①②急性子的小明把方程①中的a 看错了,得到方程组的解为31x y =-⎧⎨=-⎩,,而马虎的小亮把方程②中的b 看错了,得到方程组的解为54x y =⎧⎨=⎩,一旁的学习委员小丽说,我可以根据小明和小亮的计算结果正确地算出这个方程组的解,你能说说小丽是怎样求出这个方程组的解吗?方程组的解是多少.练习三 实际问题与二元一次方程组1.如图4,周长为68的长方形ABCD 被分成7个大小完全一样的长方形,则长方形ABCD 的面积是多少?2.小宏与小英是同班同学,小英家的住宅小区有1号楼至22号楼共22栋楼房,小宏问了小英下面两句话,就猜出了小英住几号楼几号房间.小宏问:“你家的楼号加房间号是多少?”小英答:“220.”小宏问:“楼号的10倍加房间号是多少?”小英答:“364.”你知道为什么吗?3.小明和小亮做加法游戏,小明在一个加数后面多写了一个0,得到的和是242;而小亮在另一个加数后面多写了一个0,得到的和是341,那么原来两个加数分别是多少?4.用一些长短相同的小木棍按图5所示,连续摆正方形和六边形.要求每两个相邻的图形只有一条公共边.已知摆放的正方形比正六边形多4个,并且一共用了110根小木棍,问连续摆放的正方形和正六边形各有多少个?5.图景信息题:6.为了丰富同学们的课外活动,某校组织了部分学生到郊外进行钓鱼比赛,下表记录了钓到n条鱼的选手数.鱼的条数n(条)0 1 2 3 13 14 15 钓到n条鱼的选手数(人)9 5 7 23 5 2 1 在赛事新闻中报道了下列消息:(1)冠军钓了15条鱼;(2)钓到3条或更多条鱼的选手平均每人钓到6条;(3)钓到12条或更少的选手平均每人钓到5条鱼.问:整个比赛中共钓到多少条鱼?7.炎热的夏天,游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.如果每个男孩看到蓝色与红色的游泳帽一样多,而每个女孩看到蓝色的游泳帽比红色的多1倍,你知道男孩与女孩各有多少人吗?8.长18米的铁丝,要截成10段,且每段的长只能取“1米或2米”两种型号之一,小明估计2米的有3段,你认为他估计的是否正确?为什么?2米和1米的各应有多少段?9.已知一个三角形的周长为24cm,其中两条边的长度之和等于第三条边长的3倍,而这两边长度的差等于第三条边长的12,求这个三角形的三边长各是多少?10.某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成.按这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样,不仅比规定的期限少用1天,而且比订货量多生产25套.那么客户订做的工作服是多少套,要求完成的期限是多少天?练习一一、1.A 2.B 3.D二、1.1 2.10,7,5.2,4,2,43,43,73- 3.答案不惟一 4.62S n =+ 三、1.010x y =⎧⎨=⎩,;18x y =⎧⎨=⎩,;26x y =⎧⎨=⎩,;34x y =⎧⎨=⎩,;42x y =⎧⎨=⎩,;50x y =⎧⎨=⎩,. 2.10200y x x y =+⎧⎨+=⎩,.3.大人5套,小13小套;或大人10套,小孩1套.(提示:设大人的x 套,小孩的y 套.根据题意,得2.425x y +=,求其整数解即可)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学下册第八章第一节二元一次方程组复习题(含答案)解方程组324,5(3)4 1.x y x y +=⎧⎨--=-⎩【答案】21x y =⎧⎨=-⎩【解析】【分析】先把方程组化简,再运用加减消元法解二次一次方程组即可.【详解】原方程组化简整理得:3245414x y x y +=⎧⎨-=⎩①② ①×2+②,得1122x =.∴2x =.把2x =代入①,得1y =-.∴原方程组的解为21x y =⎧⎨=-⎩【点睛】此题考查了解二次一次方程组,利用了消元的思想,消元的方法有:代入消元法和加减消元法.62.(1)解分式方程:3433x x x -=--; (2)解二元一次方程组234311x y x y +=⎧⎨-=⎩【答案】(1)原方程无解;(2)21x y =⎧⎨=-⎩【解析】【分析】(1)根据去分母、去括号、移项、合并同类项、系数化为1求出方程的解,最后进行检验;(2)运用加减消元法解二元一次方程组即可.【详解】(1)去分母,得:()433x x --=,整理得:39x -=-;3x =检验:当3x =时,3x -=03x =是增根,舍去;原方程无解;(2)23x y +=,32y x =-;代入4311x y -=,得:()433211x x --=整理,得:1020x =解得:2x =代入23x y +=,得:223y ⨯+=解得:1y =-∴21x y =⎧⎨=-⎩【点睛】此题主要考查了二元一次方程组的解法,要熟练掌握,注意加减消元法的应用.同时此题还考查了解分式方程.63.(1)2(2)解方程:4311 213 x yx y-=⎧⎨+=⎩.【答案】(1)-2;(2)53 xy=⎧⎨=⎩.【解析】【分析】(1)先求立方根和算术平方根,再加减;(2)运用加减法解方程组. 【详解】(1)原式30.5222=-++2=-(2)4311 213x yx y-=⎧⎨+=⎩①②解:由②×2-①得515y=,3y=把3y=代入②得5x=所以原方程组的解为53 xy=⎧⎨=⎩【点睛】考核知识点:实数运算,解方程组.掌握运算法则是关键.64.解方程组:325 28 x yx y-⎧⎨+⎩==【答案】32 xy⎧⎨⎩==【解析】【分析】方程组利用加减消元法求出解即可.【详解】32528x y x y -⎧⎨+⎩=①=②, ①+②×2得:7x=21,解得:x=3,把x=3代入②得:y=2,则方程组的解为32x y ⎧⎨⎩==. 【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.65.已知关于 x , y 的二元一次方程组325x y a x y a -=-⎧⎨+=⎩(a 为实数). (1)若方程组的解始终满足1y a =+,求a 的值.(2)已知方程组的解也是方程31bx y +=(b 为实数,0b ≠ 且6b ≠-)的解.①探究实数a ,b 满足的关系式.②若a ,b 都是整数,求b 的最大值和最小值.【答案】(1)2a =;(2)①624ab a b ++=;②b 有最大值10,b 有最小值22-.【解析】【分析】(1)用加减消元法进行求解,即可得到答案;(2)①将21y a =-代入方程①,得到方程组的解为221x a y a =+⎧⎨=-⎩,由题意方程组的解也是方程31bx y +=的解,计算即可得到答案.②由624ab a b ++=可得462a b a -=+,因为a ,b 都是整数,进行计算即可得到答案.【详解】(1)将方程组②-①,得363y a =-∴21y a =- 1y a =+∴211a a -=+∴2a =(2)①将21y a =-代入方程①,可得2x a =+∴方程组的解为221x a y a =+⎧⎨=-⎩方程组的解也是方程31bx y +=的解∴()()23211b a a ++-=∴624ab a b ++=②由624ab a b ++=可得462a b a -=+ ∴()()46221662166222a ab a a a -+--+===-+++ a ,b 都是整数∴21a +=±,2±,4±,8±,16±∴当21a +=时,b 有最大值10当21a +=-时,b 有最小值22-.【点睛】本题考查二元一次方程组和分式,解题的关键是掌握加减消元法求解.66.解方程组:328(1)9(2)7 x yx y-=-⎧⎨+--+=⎩.【答案】1,1. xy=⎧⎨=⎩【解析】【分析】整理成一般式,再利用代入消元法求解可得【详解】去括号,得32 8917 x yx y-=-⎧⎨+=⎩①②由①,得32x y=-③,把③代入②,得8(32)917y y-+=,解这个方程,得1y=,把1y=代入③,得1x=,所以这个方程组的解是1,1. xy=⎧⎨=⎩【点睛】本题考查的是解二元一次方程组,熟知解二元一次方程组的基本步骤是解答此题的关键.67.小明用8块相同的长方形地砖拼成一个矩形,求这个长方形地砖的面积.【答案】675cm2【解析】【分析】设一个小长方形的长为xcm,宽为ycm,根据图形可找到等量关系列出二元一次方程组进行求解.【详解】设一个小长方形的长为xcm,宽为ycm,由图可得60460x yy+=⎧⎨=⎩,解得4515xy=⎧⎨=⎩则这个长方形地砖的面积为45×15=675cm2【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据图形找到等量关系进行求解.68.解下列方程组:(1)37528x yx y-=⎧⎨+=⎩(用代入法)(2)1043534m nm n⎧+=⎪⎪⎨⎪-=⎪⎩(用加减法)【答案】(1)21xy=⎧⎨=-⎩(2)2412mn=⎧⎨=⎩【解析】【分析】(1)根据代入消元法即可求解;(2)先把方程组化简,再利用加减消元法即可求解.【详解】(1)37 528 x yx y-=⎧⎨+=⎩①②由①得y=3x-7①把①代入①得5x+2(3x-7)=8,解得x=2 把x=2代入①得y=-1,①原方程组的解为21 xy=⎧⎨=-⎩(2)10 435 34m nm n⎧+=⎪⎪⎨⎪-=⎪⎩把原方程组化为34120 4360m nm n+=⎧⎨-=⎩①②由①×3+①×4得25m=600,解得m=24,把m=24代入①得n=12①原方程组的解为2412 mn=⎧⎨=⎩【点睛】此题主要考查二元一次方程组的求解,解题的关键是熟知代入消元法与加减消元法的应用.69.求下列方程组的解:(1)7613m nm n+=⎧⎨-=⎩;(2):2:328x yx y=⎧⎨+=⎩.【答案】(1)方程组的解为174mn=⎧⎨=⎩;(2)方程组的解为23xy=⎧⎨=⎩【解析】【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用代入消元法求出解即可. 【详解】(1)原方程组可化为6713m nm n-=-⎧⎨-=⎩①②,②-①,得5n=20,解得n=4,把n=4代入②,得m-4=13, 解得m=17,故方程组的解为174mn=⎧⎨=⎩①;(2)原方程组可化为32028x yx y-=⎧⎨+=⎩①②,①+②,得4x=8,解得x=2,把x=2代入②,得2+2y=8, 解得y=3,故方程组的解为23 xy=⎧⎨=⎩【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.70.阅读探索解方程组(1)2(2)62(1)(2)6a b a b -++=⎧⎨-++=⎩解:设a -1=x ,b +2=y ,原方程组可变为2626x y x y +=⎧⎨+=⎩解方程组得22x y =⎧⎨=⎩,即1222a b -=⎧⎨+=⎩,所以30a b =⎧⎨=⎩.此种解方程组的方法叫换元法.(1)拓展提高 运用上述方法解下列方程组:(1)2(2)4352(1)(2)535a b a b ⎧-++=⎪⎪⎨⎪-++=⎪⎩ (2)能力运用已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为53x y =⎧⎨=⎩,直接写出关于m 、n 的方程组1112225(3)3(2)5(3)3(2)a m b n c a m b n c ++-=⎧⎨++-=⎩的解为_______. 【答案】(1)95a b =⎧⎨=-⎩;(2)23m n =-⎧⎨=⎩. 【解析】【分析】(1)设13a -=x ,25b +=y ,可得出关于x 、y 的方程组,即可求出x 、y 的值,进而可求出a 、b 的值;(2)设5(m+3)=x ,3(n-2)=y ,根据已知方程组的解确定出m 、n 的值即可.【详解】(1)设13a -=x ,25b +=y ,原方程组可变形为2425x y x y +=⎧⎨+=⎩, 解得:21x y =⎧⎨=⎩,即123215a b ⎧-=⎪⎪⎨⎪+=⎪⎩, 解得:95a b =⎧⎨=-⎩. (2)设5(m+3)=x ,3(n-2)=y ,原方程组可变形为:111222a x b y c a x b y c +=⎧⎨+=⎩, ∵关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为53x y =⎧⎨=⎩, ∴5(3)53(2)3m n +=⎧⎨-=⎩, 解得:23m n =-⎧⎨=⎩. 故答案为:23m n =-⎧⎨=⎩【点睛】本题考查解二元一次方程组,正确理解并熟练掌握换元法是解题关键.。