高一数学对数课件
合集下载
人教新课标版数学高一必修1课件第1课时对数
A.10
B.0.01
√C.100
D.1 000
12345
答案
课堂小结
1. 对 数 概 念 与 指 数 概 念 有 关 , 指 数 式 和 对 数 式 是 互 逆 的 , 即 ab = N⇔logaN = b(a>0 , 且 a≠1 , N>0) , 据 此 可 得 两 个 常 用 恒 等 式 :
(1)logaab=b;(2) aloga N=N.
128 512
=
65536
数表不够用了!
4096 32768
数表可以扩充!
《奇妙的对数定律说明书》 (1614)
logarithm
约翰·纳皮尔
(John Napier, 1550~1617) 苏格兰数学家
数列•规律
3.总结利用表格运算的规律: 7 +9
=
16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
合作探究
问题1
解指数方程:3x=
1
3 .可化为3x=32
,所以x=1 2
.那么你会解3x=
2吗?
答案 不会,因为2难以化为以3为底的指数式,因而需要引入 对数概念.
答案
问题2 loga1(a>0,且a≠1)等于? 答案 设loga1=t,化为指数式at=1,则不难求得t=0,即 loga1=0.
x … 1 … 18 18.1936046
19
…
24
24.910496
25
…
y … 2 … 262144 299792.458 524288
16777216 31536000 33554432
a+b
2024-2025学年高一数学必修第一册(人教B版)对数运算法则-课件
对数运算法则
高一年级 数学
对数的性质
1的对数为0,底的对数为1.
loga 1 0 loga a 1 .
底数的幂指数次方的对数为幂指数.
loga ab b .
aloga N N .
log6 3
问题一: 你知道 log6 3与log6 2的值吗? 你能算出log6 3+ log6 2的值吗?
预估 log3 5 1,而0 lg 3, lg 5 1 .
能不能 log3 5 lg 3 lg 5 呢?
只能
log3
5
lg lg
5 3
.
log6 3
设 log3 5 x,则3x =5 .
xlg3 lg5,
x
lg 5 lg 3
.
lg 5 0.6990
log3 5 lg 3 0.4771 1.4651 .
x y 1. log6 3 log6 2 log6 (3 2) 1.
log6 3
积的对数
例1 已知 a 0 且 a 1, M , N 0 ,证明:loga M loga N loga (MN ) .
设 loga M , loga N , 则 a M 0, a N 0 .
(1)底数能否任意? (2)对数能否任意?
log6 3
换底公式
设 loga b x,ax =b .
两边取以c为底的对数,
x logc a logc b .
x
logc logc
b a
,loga
b
logc logc
b a
.
log6 3
换底公式
换底公式:
loga b
logc b logc a
,
其中a 0且a 1,b 0, c 0且c 1 .
高一年级 数学
对数的性质
1的对数为0,底的对数为1.
loga 1 0 loga a 1 .
底数的幂指数次方的对数为幂指数.
loga ab b .
aloga N N .
log6 3
问题一: 你知道 log6 3与log6 2的值吗? 你能算出log6 3+ log6 2的值吗?
预估 log3 5 1,而0 lg 3, lg 5 1 .
能不能 log3 5 lg 3 lg 5 呢?
只能
log3
5
lg lg
5 3
.
log6 3
设 log3 5 x,则3x =5 .
xlg3 lg5,
x
lg 5 lg 3
.
lg 5 0.6990
log3 5 lg 3 0.4771 1.4651 .
x y 1. log6 3 log6 2 log6 (3 2) 1.
log6 3
积的对数
例1 已知 a 0 且 a 1, M , N 0 ,证明:loga M loga N loga (MN ) .
设 loga M , loga N , 则 a M 0, a N 0 .
(1)底数能否任意? (2)对数能否任意?
log6 3
换底公式
设 loga b x,ax =b .
两边取以c为底的对数,
x logc a logc b .
x
logc logc
b a
,loga
b
logc logc
b a
.
log6 3
换底公式
换底公式:
loga b
logc b logc a
,
其中a 0且a 1,b 0, c 0且c 1 .
高一数学对数的换底公式及其推论精品PPT课件
2.若 lo 34 g lo 48 g lo 8m g lo 42 g ,求m
3.若log 8 3 = p , log 3 5 = q , 用p,q表示 lg 5
猜测到,肯定壹时半会儿凑不齐。于是她赶快差彩蝶去问问月影,她现在到底有好些银子。没壹会儿彩蝶就回来咯,果然不出她の所料,只有壹千两左右! 假设想要尽快还债,她必须四处筹集余下の那四千两银子。壹文钱难道英雄汉,更何况水清现在需要の是四千两の巨款!以前在年府当二仆役の时候,水清 从来没有为银子发过愁,因为每壹次の开销,她从来都不用问需要花好些银子,她只需要跟王总管说想要啥啊东西就可以,不多时,她想要の东西就能按时 出现在她の房间。因此她对银子壹点儿概念都没有,不但对银子没有概念,而且还从来都没有积攒银两の意识。出嫁前,年夫人非要往她の身上塞银票,水 清还笑话她の娘亲:难道王府还能少咯这各侧福晋の吃喝不成?直到此时,她才真正体会到咯那句古语:穷家富路。出门壹定要带上足够の银子,否则她可 真就是叫天天不应,叫地地不灵!现在,水清急需四千两の银子,而每各月她只能领到二百两の月银,就是她壹丁点儿都不使用,也需要将近两年の时间才 能攒齐还清!更何况,精明如王爷这样の人,怎么可能不会收她の高利贷?假设将来要连本钱带利息壹并偿还の话,那这四千两,将来需要偿还の时候,可 就要变成咯八千两甚至壹万两!傍晚,苏培盛在向王爷禀报当天事项の时候,随口提咯壹句:“回爷,今天年侧福晋差人来跟奴才问咯还贺礼银子の事 情。”“噢,那件贺礼要好些银子,你到市面上打听过咯吗?”“奴才已经打听过咯,至少也要五千两。”“五千两?”“是の,奴才严格按照爷の吩咐, 绝对没有徇私枉法,绝对是公事公办,壹丁点儿折扣都没敢给侧福晋打。”“上次好像连几百两の银子她都拿不出来?”“是,是,上次她让奴才不要发她 例钱咯,用两各月の例钱补上の。”“噢,那这壹次……”“爷,您の意思是说,要不,侧福晋可以少交点儿?”“噢,不用咯,爷这也是禀公办事,否则 她得咯例外,别の人也要拿她做比照,府里の规矩还怎么遵守?”第壹卷 第418章 支援五千两の数目也将王爷极大地震惊咯!他先是与水清如出壹辙地万 分欣慰,竟然是价值五千两の头面首饰!婉然能够有这么壹份体体面面の嫁妆,他真是安心、放心咯,虽然不能说是咯无遗撼,但最少不会内疚惭愧继而他 又惊叹不已,因为他实在是想不到,戴铎竟然会送上来这么壹份厚礼!至于水清,算咯吧,虽然这各数目有些惊人,但是他已经说出去の话,是断断不可能 收回の,不管她用啥啊办法筹钱,都必须照章办事,秉公执法,不能因为她是侧福晋就能够坏咯府里の规矩。反正她们年家有の是银子,这各数目对她们而 言,只是九牛壹毛,小事壹桩。况且年家作为婉然真正の娘家,出这么壹份重礼,也是理所当然。王爷没有网开壹面,走投无路の水清没有办法,只能求助 于娘家。她不想拖欠王府の这四千两银子,当初跟他答应好好の,万不能反悔。虽然她不敢自比君子,但是她从来都是壹各言而有信之人。年夫人收到年峰 交来の水清の信件,喜极而泣:凝儿,终于养好病咯,终于不用她再担惊受怕咯。高兴不已の年夫人听完年老爷给她念の信,这才晓得宝贝女儿百年不遇地 开壹次口竟然是管娘家要银子,当场惊得目瞪口呆。凝儿可是给她银子都不要の人,怎么这回突然要起银子来咯,而且壹开口就是四千两!虽然这各数目对 年夫人而言并不为难,但上次在王府见到水清昏沉不醒の样子,她の心都碎咯。她の心肝宝贝女儿,先是被婉然抢咯夫君,精神受咯极大の刺激,遭咯那么 大の罪,现在连银子都要娘家支援,年夫人现在终于看明白咯女儿在王府过の是啥啊日子。以前,水清永远都是报喜不报忧,总是跟她讲在王府の生活有多 么の好。可是,这就是女儿口中の幸福の王府侧福晋生活?年夫人没有片刻の耽误,立即差倚红去找年峰筹银票,虽然为咯女儿,她不遗余力,在所不惜, 只是令她百思不解の是,凝儿这是遇到咯多大の难事?竟然要四千两银子?水清在信中并没有说明她要银子の原由,她不敢说这是为咯给婉然姐姐送贺礼而 欠下の借债。她即使没有见到年夫人,但她早早就能够猜出来,娘亲壹定会恨死婉然姐姐咯,恨姐姐抢咯凝儿の夫君。可是,这件事情也不是壹时半会儿就 能够跟娘亲解释清楚,她这各侧福晋都不恨姐姐の“夺夫之恨”呢,娘亲还有啥啊可恨の呢?既然解释不清,就先暂且不提咯,将来假设娘亲问起来の话, 她再想借口,反正是绝对不能告诉实情。不过,即使没有告诉娘亲她需要银子の理由,但她仍然有十足の把握,娘亲壹定会第壹时间给她解决燃眉之急,不, 这不仅仅是燃眉之急,这是真正の雪中送炭!果不其然,当天傍晚,水清就收到咯年府の银票,但是她收到の不是四千两,而是整整壹万两!看着手中の银 票,水清の泪水夺眶而出!第壹卷 第419章 还债知女莫如母。年夫人晓得她の凝儿,不到走投无路の时候,绝不会开口向娘家求救。水清是啥啊人,年夫 人最清楚咯,她の宝贝女儿是壹各对银两毫不在意、甚至根本就没有概念の人。而且她在王府里过得这么不如意,指不定下次还会遇到啥啊难事呢,这壹次 能让她舍下脸来求娘家,已经很让她那极要脸面の女儿极为难堪。万壹下壹次再遇到事情,水清因为不愿意壹而再、再而三地求娘家而走投无路怎么办?因 此年夫人特意多准备出咯六千两,希望她の女儿,即使不得王爷の宠,也不要
3.若log 8 3 = p , log 3 5 = q , 用p,q表示 lg 5
猜测到,肯定壹时半会儿凑不齐。于是她赶快差彩蝶去问问月影,她现在到底有好些银子。没壹会儿彩蝶就回来咯,果然不出她の所料,只有壹千两左右! 假设想要尽快还债,她必须四处筹集余下の那四千两银子。壹文钱难道英雄汉,更何况水清现在需要の是四千两の巨款!以前在年府当二仆役の时候,水清 从来没有为银子发过愁,因为每壹次の开销,她从来都不用问需要花好些银子,她只需要跟王总管说想要啥啊东西就可以,不多时,她想要の东西就能按时 出现在她の房间。因此她对银子壹点儿概念都没有,不但对银子没有概念,而且还从来都没有积攒银两の意识。出嫁前,年夫人非要往她の身上塞银票,水 清还笑话她の娘亲:难道王府还能少咯这各侧福晋の吃喝不成?直到此时,她才真正体会到咯那句古语:穷家富路。出门壹定要带上足够の银子,否则她可 真就是叫天天不应,叫地地不灵!现在,水清急需四千两の银子,而每各月她只能领到二百两の月银,就是她壹丁点儿都不使用,也需要将近两年の时间才 能攒齐还清!更何况,精明如王爷这样の人,怎么可能不会收她の高利贷?假设将来要连本钱带利息壹并偿还の话,那这四千两,将来需要偿还の时候,可 就要变成咯八千两甚至壹万两!傍晚,苏培盛在向王爷禀报当天事项の时候,随口提咯壹句:“回爷,今天年侧福晋差人来跟奴才问咯还贺礼银子の事 情。”“噢,那件贺礼要好些银子,你到市面上打听过咯吗?”“奴才已经打听过咯,至少也要五千两。”“五千两?”“是の,奴才严格按照爷の吩咐, 绝对没有徇私枉法,绝对是公事公办,壹丁点儿折扣都没敢给侧福晋打。”“上次好像连几百两の银子她都拿不出来?”“是,是,上次她让奴才不要发她 例钱咯,用两各月の例钱补上の。”“噢,那这壹次……”“爷,您の意思是说,要不,侧福晋可以少交点儿?”“噢,不用咯,爷这也是禀公办事,否则 她得咯例外,别の人也要拿她做比照,府里の规矩还怎么遵守?”第壹卷 第418章 支援五千两の数目也将王爷极大地震惊咯!他先是与水清如出壹辙地万 分欣慰,竟然是价值五千两の头面首饰!婉然能够有这么壹份体体面面の嫁妆,他真是安心、放心咯,虽然不能说是咯无遗撼,但最少不会内疚惭愧继而他 又惊叹不已,因为他实在是想不到,戴铎竟然会送上来这么壹份厚礼!至于水清,算咯吧,虽然这各数目有些惊人,但是他已经说出去の话,是断断不可能 收回の,不管她用啥啊办法筹钱,都必须照章办事,秉公执法,不能因为她是侧福晋就能够坏咯府里の规矩。反正她们年家有の是银子,这各数目对她们而 言,只是九牛壹毛,小事壹桩。况且年家作为婉然真正の娘家,出这么壹份重礼,也是理所当然。王爷没有网开壹面,走投无路の水清没有办法,只能求助 于娘家。她不想拖欠王府の这四千两银子,当初跟他答应好好の,万不能反悔。虽然她不敢自比君子,但是她从来都是壹各言而有信之人。年夫人收到年峰 交来の水清の信件,喜极而泣:凝儿,终于养好病咯,终于不用她再担惊受怕咯。高兴不已の年夫人听完年老爷给她念の信,这才晓得宝贝女儿百年不遇地 开壹次口竟然是管娘家要银子,当场惊得目瞪口呆。凝儿可是给她银子都不要の人,怎么这回突然要起银子来咯,而且壹开口就是四千两!虽然这各数目对 年夫人而言并不为难,但上次在王府见到水清昏沉不醒の样子,她の心都碎咯。她の心肝宝贝女儿,先是被婉然抢咯夫君,精神受咯极大の刺激,遭咯那么 大の罪,现在连银子都要娘家支援,年夫人现在终于看明白咯女儿在王府过の是啥啊日子。以前,水清永远都是报喜不报忧,总是跟她讲在王府の生活有多 么の好。可是,这就是女儿口中の幸福の王府侧福晋生活?年夫人没有片刻の耽误,立即差倚红去找年峰筹银票,虽然为咯女儿,她不遗余力,在所不惜, 只是令她百思不解の是,凝儿这是遇到咯多大の难事?竟然要四千两银子?水清在信中并没有说明她要银子の原由,她不敢说这是为咯给婉然姐姐送贺礼而 欠下の借债。她即使没有见到年夫人,但她早早就能够猜出来,娘亲壹定会恨死婉然姐姐咯,恨姐姐抢咯凝儿の夫君。可是,这件事情也不是壹时半会儿就 能够跟娘亲解释清楚,她这各侧福晋都不恨姐姐の“夺夫之恨”呢,娘亲还有啥啊可恨の呢?既然解释不清,就先暂且不提咯,将来假设娘亲问起来の话, 她再想借口,反正是绝对不能告诉实情。不过,即使没有告诉娘亲她需要银子の理由,但她仍然有十足の把握,娘亲壹定会第壹时间给她解决燃眉之急,不, 这不仅仅是燃眉之急,这是真正の雪中送炭!果不其然,当天傍晚,水清就收到咯年府の银票,但是她收到の不是四千两,而是整整壹万两!看着手中の银 票,水清の泪水夺眶而出!第壹卷 第419章 还债知女莫如母。年夫人晓得她の凝儿,不到走投无路の时候,绝不会开口向娘家求救。水清是啥啊人,年夫 人最清楚咯,她の宝贝女儿是壹各对银两毫不在意、甚至根本就没有概念の人。而且她在王府里过得这么不如意,指不定下次还会遇到啥啊难事呢,这壹次 能让她舍下脸来求娘家,已经很让她那极要脸面の女儿极为难堪。万壹下壹次再遇到事情,水清因为不愿意壹而再、再而三地求娘家而走投无路怎么办?因 此年夫人特意多准备出咯六千两,希望她の女儿,即使不得王爷の宠,也不要
4.3.2 对数的运算 课件(共13张PPT) 高一数学人教A版(2019)必修第一册
3.对数的运算性质(1)可以推广到若干个正因数积的对数,即以下式子成立: loga (M1 M 2 M3 M k ) loga M1 loga M 2 loga M3 loga M k . (标
新课讲授
课堂总结
例1 求下列各式的值. (1)lg5 100;
(2)原式 (lg 2 lg 2)( lg 3 lg 3)
lg 3 lg 9 lg 4 lg 8
(lg 2 lg 2 )( lg 3 lg 3 ) lg 3 2 lg 3 2 lg 2 3lg 2
3lg 2 5lg 3 5 2 lg 3 6 lg 2 4
学习目标
新课讲授
课堂总结
总结归纳
1.在化简带有对数的表达式时,若对数的底不同,需利用换底公式;
2.常用的公式有:
log a
b logb
a
1,logan
bm
m n
loga
b,
loga
b
1 logb
a
等.
学习目标
新课讲授
课堂总结
练一练
已知log189=a,18b=5,试用a,b表示log3645.
解:∵log189=a,18b=5,
(2)log2(47 25)
解:(1) lg5
1
100 lg1005
1 lg100 2 ;
5
5
(2) log2(47 25) log2 47 log2 25 7 log2 4 5log2 2 7log2 22 5 725
19
学习目标
新课讲授
课堂总结
例2 用 ln x, ln y, ln z 表示 ln x2 y 3z
4.3.2 对数的运算
学习目标
新课讲授
课堂总结
例1 求下列各式的值. (1)lg5 100;
(2)原式 (lg 2 lg 2)( lg 3 lg 3)
lg 3 lg 9 lg 4 lg 8
(lg 2 lg 2 )( lg 3 lg 3 ) lg 3 2 lg 3 2 lg 2 3lg 2
3lg 2 5lg 3 5 2 lg 3 6 lg 2 4
学习目标
新课讲授
课堂总结
总结归纳
1.在化简带有对数的表达式时,若对数的底不同,需利用换底公式;
2.常用的公式有:
log a
b logb
a
1,logan
bm
m n
loga
b,
loga
b
1 logb
a
等.
学习目标
新课讲授
课堂总结
练一练
已知log189=a,18b=5,试用a,b表示log3645.
解:∵log189=a,18b=5,
(2)log2(47 25)
解:(1) lg5
1
100 lg1005
1 lg100 2 ;
5
5
(2) log2(47 25) log2 47 log2 25 7 log2 4 5log2 2 7log2 22 5 725
19
学习目标
新课讲授
课堂总结
例2 用 ln x, ln y, ln z 表示 ln x2 y 3z
4.3.2 对数的运算
学习目标
高一数学对数函数课件
高一数学对数函数课件
目录
• 对数函数的定义与性质 • 对数函数的运算 • 对数函数的应用 • 对数函数与其他函数的关系 • 对数函数的综合题解析
01
对数函数的定义与性质
定义与表示
总结词
对数函数是指数函数的反函数,其定义是指数函数的自变量和因变量互换位置 后得到的函数。
详细描述
对数函数的一般形式为 (y = log_{a}x)(其中 (a > 0) 且 (a neq 1)),其中 (x) 是自变量,(y) 是因变量。对数函数表示的是以 (a) 为底数,(x) 的对数。
计算机科学
在计算机科学中,对数函数常被用 于数据结构和算法设计,如二叉查 找树、哈希表等。
04
对数函数与其他函数的关 系
与指数函数的关系
指数函数和对数函数互为反函数,它 们的图像关于直线y=x对称。
对数函数和指数函数在解决实际问题 中经常一起出现,例如在计算复利、 解决声音强度问题等。
对数函数的定义是基于指数函数的, 即如果a的x次方等于N(a>0,a不等 于1),那么x叫做以a为底N的对数, 记作x=logₐN。
与三角函数的关系
对数函数和三角函数在形式上没有直接的关系,但在一些特定情况下可以相互转化 。例如,对于正弦函数和余弦函数的值可以通过对数函数进行计算。
三角函数和对数函数在解决实际问题中经常一起出现,例如在信号处理、振动分析 等领域。
对数函数和三角函数在一些数学问题中可以相互转化,例如在求解一些复杂的积分 问题时,可以将积分转化为对数函数的求解问题。
综合题类型与解题思路
01
类型三:对数方程求解
02
对数方程是常见的题型,需要掌握解对数方程的方法和步骤。
目录
• 对数函数的定义与性质 • 对数函数的运算 • 对数函数的应用 • 对数函数与其他函数的关系 • 对数函数的综合题解析
01
对数函数的定义与性质
定义与表示
总结词
对数函数是指数函数的反函数,其定义是指数函数的自变量和因变量互换位置 后得到的函数。
详细描述
对数函数的一般形式为 (y = log_{a}x)(其中 (a > 0) 且 (a neq 1)),其中 (x) 是自变量,(y) 是因变量。对数函数表示的是以 (a) 为底数,(x) 的对数。
计算机科学
在计算机科学中,对数函数常被用 于数据结构和算法设计,如二叉查 找树、哈希表等。
04
对数函数与其他函数的关 系
与指数函数的关系
指数函数和对数函数互为反函数,它 们的图像关于直线y=x对称。
对数函数和指数函数在解决实际问题 中经常一起出现,例如在计算复利、 解决声音强度问题等。
对数函数的定义是基于指数函数的, 即如果a的x次方等于N(a>0,a不等 于1),那么x叫做以a为底N的对数, 记作x=logₐN。
与三角函数的关系
对数函数和三角函数在形式上没有直接的关系,但在一些特定情况下可以相互转化 。例如,对于正弦函数和余弦函数的值可以通过对数函数进行计算。
三角函数和对数函数在解决实际问题中经常一起出现,例如在信号处理、振动分析 等领域。
对数函数和三角函数在一些数学问题中可以相互转化,例如在求解一些复杂的积分 问题时,可以将积分转化为对数函数的求解问题。
综合题类型与解题思路
01
类型三:对数方程求解
02
对数方程是常见的题型,需要掌握解对数方程的方法和步骤。
高一上学期数学必修课件第章对数函数的概念对数函数y=logx的图像和性质
在金融领域中的应用
复利计算
在金融领域,对数函数被广泛应用于复利计算。通过对数函 数,可以方便地计算出本金在固定利率下经过一段时间后的 累积金额。
风险评估
在金融风险评估中,对数函数可用于描述极端事件(如市场 崩盘)发生的概率分布,帮助投资者更好地管理风险。
在科学研究中的应用
数据分析
在统计学和数据分析中,对数函数常 用于数据转换和处理,以便更好地揭 示数据间的关系和趋势。
单调性的应用
利用对数函数的单调性,可以比较两 个同底数的对数的大小,也可以解决 一些与对数函数相关的不等式问题。
奇偶性判断
对数函数的奇偶性
对于底数为正数且不等于1的对数函数y=logax,其既不是奇函数也不是偶函数 ,即它不具有奇偶性。
奇偶性的应用
虽然对数函数本身不具有奇偶性,但是在解决一些与对数函数相关的问题时,可 以考虑利用其他函数的奇偶性来简化问题。
指数式与对数式的互化
$a^x=N Leftrightarrow x=log_a N$
指数函数与对数函数的关系
指数函数$y=a^x$与对数函数$y=log_a x$互为反函数。这意味着它们的图像 关于直线$y=x$对称。
02
对数函数y=logx图像分些x和对应的y值,然 后在坐标系中描点,最后用平滑 曲线连接各点即可得到对数函数 的图像。
对数函数的底数$b$必须大于0且不等于1,否则函数无意义。同时,对于不同的底数,对 数函数的图像和性质也会有所不同。
对数运算规则
对数运算有特定的运算法则,如$log_b(mn) = log_b(m) + log_b(n)$、$log_b(m/n) = log_b(m) - log_b(n)$等。在解题过程中,需要正确运用这些法则进行化简和计算。
高中数学 第四章 对数运算和对数函数 1 对数的概念课件 必修第一册高一第一册数学课件
1
2
D.4 =x
(2)D
2021/12/12
第七页,共二十二页。
激趣诱思
知识(zhī shi)点
拨
二、对数的基本性质
1.负数和零没有(méi yǒu)对数.
2.对于任意的a>0,且a≠1,都有
1
loga1=0,logaa=1,loga =-1.
a
3.对数恒等式aa =
N
.
名师点析1.loga1=0,logaa=1可简述为“1的对数等于0,底的对数等于1”.
4
(3)log3(lg x)=1.
2
解:(1)由 log8x=- ,得 x=8
3
3
3
4
2
3
-
2
=(23)-3 =2-2,故
3
4
1
x= .
4
(2)由 logx27=4,得 =27,即 =33,
4
3 3
故 x=(3 ) =34=81.
(3)由 log3(lg x)=1,得 lg x=3,故 x=103=1 000.
3
-1 1
(3)e = ;
e
(4)10-3=0.001.
分析利用当a>0,且a≠1时,logaN=b⇔ab=N进行互化.
解:(1)
1
1 -3
3
(3)ln =-1.
e
=27.
(2)log464=3.
(4)lg 0.001=-3.
2021/12/12
第十页,共二十二页。
当堂检测
探究(tànjiū)一
探究(tànjiū)二
§1
对数(duìshù)的概念
2021/12/12
2
D.4 =x
(2)D
2021/12/12
第七页,共二十二页。
激趣诱思
知识(zhī shi)点
拨
二、对数的基本性质
1.负数和零没有(méi yǒu)对数.
2.对于任意的a>0,且a≠1,都有
1
loga1=0,logaa=1,loga =-1.
a
3.对数恒等式aa =
N
.
名师点析1.loga1=0,logaa=1可简述为“1的对数等于0,底的对数等于1”.
4
(3)log3(lg x)=1.
2
解:(1)由 log8x=- ,得 x=8
3
3
3
4
2
3
-
2
=(23)-3 =2-2,故
3
4
1
x= .
4
(2)由 logx27=4,得 =27,即 =33,
4
3 3
故 x=(3 ) =34=81.
(3)由 log3(lg x)=1,得 lg x=3,故 x=103=1 000.
3
-1 1
(3)e = ;
e
(4)10-3=0.001.
分析利用当a>0,且a≠1时,logaN=b⇔ab=N进行互化.
解:(1)
1
1 -3
3
(3)ln =-1.
e
=27.
(2)log464=3.
(4)lg 0.001=-3.
2021/12/12
第十页,共二十二页。
当堂检测
探究(tànjiū)一
探究(tànjiū)二
§1
对数(duìshù)的概念
2021/12/12
高中数学人教版高一必修《对数的概念》教学课件(共17张PPT)
在地理领域
对数用于计算地震强度
在物理领域
用于测量声音的分贝
六、课后作业
1.课本P123 练习1
2.课本P126习题4.3第1题
3.请你选择一个感兴趣的领域通过查阅图
书或网络的途径初步了解对数在这个领域
中的应用,并与你的同学交流
对数概念的认识
指数式
指数式与对数式的互化
相互转化
对数式
N>0(负数和零没有对数)
4096
8192
16384
……
67108864
134217728
原 数2
512 1024
【思考1】此表可以求 8192×16384=?
8
256
【思考3】 如果 2 = 7 ,那么 = ?
8192×16384= × = =134217728
【思考2】此表可以求7×8192=?
其中叫做对数的底数,叫做真数
三、两个重要的对数
常用对数
英国数学家布里格斯为了简化大数运算经过研究得到了
如下的对应关系:
1, 10, 102, 103, 104, 105, 106,107……
0, 1, 2, 3, 4, 5, 6, 7……
通常我们把以10为底的对数叫做常用对数,并把 log10N 记为 lgN
对数的概念
The concept of logarithm
Xxx实验中学
xxx老师
一、创设情境 引入课题
299792. 468km/s
光在真空中的速度
299792. 468km/s
132451200秒
4.2光年
132451200秒
?
(假设一年365天)
高一数学对数函数及其性质课件
分享解决对数函数相关问题的技巧和方法,提高学生的问题解决能力。
3
与其他数学领域的关系
探讨对数函数与其他数学领域的交叉应用和互动作用。
拓展
复对数函数和超越函数
介绍对数函数的推广形式,如 复对数函数和超越函数,拓展 学生的数学视野。
物理学中的应用
未来发展和应用前景
探究对数函数在物理学中的应 用,如描述衰减、增长等现象。
介绍对数函数的定义和基本 表示形式,深入理解对数的 本质。
性质
探究对数函数的各种性质, 如定义域、值域、增减性等, 为后续学习奠定基础。
图像和图像变换
通过绘制对数函数的图像和 变换,直观地理解对数函数 的特点和变用
探索对数函数在实际问题中的应用,如物理、经济领域等。
2
解题技巧与方法
高一数学对数函数及其性 质课件
本课件介绍高一数学对数函数及其性质,包括对数函数的概念和历史背景, 对数函数与指数函数的关系等。
引言
概念和历史背景
探索对数函数的起源和发展,了解其在数学 领域的重要性。
对数函数与指数函数的关系
揭示对数函数与指数函数之间的密切联系, 探讨其相互转换的原理。
基础知识
定义和表示
展望对数函数的未来研究方向 和应用前景,激发学生的兴趣 和探索欲望。
结论与展望
1 重要性和应用广泛
性
2 跨学科的融合和创
新
总结对数函数的重要性 和广泛应用领域,强调 其在数学学科中的地位。
探讨对数函数与其他学 科的交叉融合,激发学 生的创新思维和跨学科 能力。
3 未来研究方向和发
展趋势
展望对数函数研究的未 来方向和发展趋势,鼓 励学生参与数学的前沿 研究。
2.2.1对数与对数运算(必修一优秀课件)
(D)(2) (3) (4)
课 堂 互 动 探 究
【解析】选B.由对数定义可知(1)(2)(4)均正确,而(3)中
对数的底数不等于1.
基 础 自 主 演 练 课 后 巩 固 作 业
课 前 新 知 初 探
2.(2011·海口高一检测)设a>0,a≠1,x∈R,下列结论错误的 是( ) (B)logax2=2logax (D)logaa=1
2
(3)lg 0.01 2
1 4 解:(1)( ) 16 2
(4)ln10 2.303
(2)27 128
(3)10 0.01
2
(4)e2.303 10
求下列各式的值 (1)log0.5 1 (4) log3 243 (5) lg 4 64 (6)log
2
log (2) 9 81
是2010年的2倍?
a 1 8%
x=
x
2a
x 2 即 1.08
小结:
这是已知底数和幂的值,求指数的问题。 即指数式ab=N中,已知a 和N,求b的问题。
这里( a 0且a 1 )
你能看得出来吗?怎样求呢?
对数的定义
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对
特的方法构造出对数方法。1614年6月在爱丁堡出版的
第一本对数专著》《奇妙的对数表的描述》中阐明了 对数原理,后人称为纳皮尔对数。
假设2010年我国的国民生产总值为a亿元,如果每年 平均增长8%,那么经过多少年后国民生产总值
是2010年的2倍?
假设2010年我国的国民生产总值为a亿元,如果每年
平均增长8%,那么经过多少年后国民生产总值
(3)log25 625 解: (1)log0.5 1
课 堂 互 动 探 究
【解析】选B.由对数定义可知(1)(2)(4)均正确,而(3)中
对数的底数不等于1.
基 础 自 主 演 练 课 后 巩 固 作 业
课 前 新 知 初 探
2.(2011·海口高一检测)设a>0,a≠1,x∈R,下列结论错误的 是( ) (B)logax2=2logax (D)logaa=1
2
(3)lg 0.01 2
1 4 解:(1)( ) 16 2
(4)ln10 2.303
(2)27 128
(3)10 0.01
2
(4)e2.303 10
求下列各式的值 (1)log0.5 1 (4) log3 243 (5) lg 4 64 (6)log
2
log (2) 9 81
是2010年的2倍?
a 1 8%
x=
x
2a
x 2 即 1.08
小结:
这是已知底数和幂的值,求指数的问题。 即指数式ab=N中,已知a 和N,求b的问题。
这里( a 0且a 1 )
你能看得出来吗?怎样求呢?
对数的定义
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对
特的方法构造出对数方法。1614年6月在爱丁堡出版的
第一本对数专著》《奇妙的对数表的描述》中阐明了 对数原理,后人称为纳皮尔对数。
假设2010年我国的国民生产总值为a亿元,如果每年 平均增长8%,那么经过多少年后国民生产总值
是2010年的2倍?
假设2010年我国的国民生产总值为a亿元,如果每年
平均增长8%,那么经过多少年后国民生产总值
(3)log25 625 解: (1)log0.5 1
高一数学课件-对数的运算法则ppt.ppt
(1) log2 0.6
(2) log 2 30
43 (3) log 2 125
课堂小结
1.运算法则的内容 2.运算法则的推导与证明 3.运算法则的使用
由指数运算法则得:
ap aq
a pq
M N
∴
log a
M N
p q loga
M
loga
N
例2:计算
(1) lg 10 100
(2) lg 20 lg 2
新问题: log a M n ? (a 0, a 1, M 0)
证明: 设 log a M p, 则 a p M ,
M n (a p )n a pn log a M n n log a M
巩固练习
1.计算
(1) log9 3 log9 27 (3) lg 1 2lg 5
4 (5) lg100000
lg 100
(2) lg 5 100 (4) log2 (4 4) (6) log 2 (47 25 )
2.已知 log2 3 a, log2 5 b,用 a, b 的式子表示
教学目标
1.理解并掌握对数性质及运算法则,能初步运用对数的性质和运算法则 解题.
2.通过法则的探究与推导,培养从特殊到一般的概括思想,渗透化归 思想及逻辑思维能力.
3.通过法则探究,激发学习的积极性.培养大胆探索,实事求是的科 学精神.
教学重点难点
重点是对数的运算法则及推导和应用; 难点是法则的探究与证明.
引入
问题:如果看到 log a N b 这个式子会有何联想?
答: (1)a 0 (2)a 1 (3)N 0 (4)ab N
新授:对数的运算法则
先回顾一下指数的运算法则:
4.3.1 对数的概念(课件)高一数学(人教A版2019必修第一册)
3
m;
(3)
102 100 ;
(2)ln m 3.
(3)lg100 2
.
1.把下列指数式化为对数式,对数式化为指数式。
(4)log39=2;
(5)lg n=2.3;
1
log 3 4 .
(6)
81
答案:
(4)32=9.
(5)102.3=n.
1
(6)3
.
81
4
2.求下列各式中的值。
2
10
2
0.01
e
2.303
10
根据对数的定义,可以得到对数与指数间的关系:
若a 0且a 1,则a x N log a N x
a log a N N
由指数和对数的这个关系,可以得到关于对数的如下结论:
负数和0没有对数;(真数一定为正数)
log a 1 0,
【答案】3 [由 log2(logx9)=1 可知 logx9=2,即 x2=9,∴x=3(x=-3 舍去).]
4. log33+3log 2=________.
3
【答案】3 [log33+3log 2=1+2=3.]
3
5.求下列各式中的 x 值:
3
(1)logx27=2;
2
(2)log2 x=-3;
3
解:①∵0.01 = ,∴10 = 0.01 = 10−2 , = −2.
②∵7 ( + 2) = 2,∴72 = + 2 = 49, = 47.
9
2
9
2
③∵2 4 = ,∴(3) = 4 = (3)−2 , = −2.
3
1
对数的运算 课件(39张)
x
x
=x,则 log25=xlog23,即 log25=log23 ,从而有 3 =5,将
其化为对数式得 x=log35,若将对数函数的底数 2 换成 c(c>0 且 c≠1),
=log35 还成立吗?
提示:成立,证明如下:
设
x
x
=x,则 logc5=xlogc3,即 logc5=logc3 ,从而有 5=3 ,即 x=log35,
数学
(2)loga = logaM-logaN .
即两个正数商的对数等于同一底数的被除数的对数减去除数的对数.
(3)logaMn= nlogaM(n∈R) .
即正数幂的对数等于幂指数乘同一底数幂的底数的对数.
特别地,logaaN=N.
数学
2.换底公式及导出公式
[问题 2] 假设
=(lg 5)2+(1+lg 5)lg 2
=(lg 5)2+lg 2·lg 5+lg 2
=(lg 5+lg 2)lg 5+lg 2
=lg 5+lg 2=1.
数学
+ +
(2)
-
-
;
(3)log535-2log5 +log57-log51.8.
= (lg 2+lg 5)
= lg 10= .
数学
法二
=lg
原式=lg
×
×
=lg( × )
=lg
= .
3.2 对数(课件)高一数学(沪教版2020必修第一册)
a
对数运算性质
如果a>0,且a≠1,M>0,N>0,那么:
(1)loga(M·N)= logaM+logaN ;
M
(2) loga N = logaM-logaN ;
(3)logaMc= clogaM (c∈R).
换底公式
1.logbN=
(a>0,且a≠1;N>0,且b≠1;b>0).
2.对数换底公式的重要推论:
2
(1)log27x=- ;
3
【解】
(2)logx 16=-4;
2
2
-
(1)因为 log27x=- ,所以 x=27 3=(33)
3
-4
-4
(2)因为 logx 16=-4,所以 x =16,即 x =24.
1
所以 x 4=24,
1
1
所以 =2,即 x= .
x
2
2
-
1
-
3=3 2= .
9
题型二 利用对数关系求x
(3)(lg 5)2+2lg 2-(lg 2)2;
2
3
lg 3+ lg 9+ lg 27-lg 3
5
5
(4)
.
lg 81-lg 27
1
5
1
1
2
解:(1)原式=lg 100 = lg 100= ×2= .
5
5
5
45
(2)原式=log3 =log39=log332=2.
5
(3)原式=(lg 5+lg 2)(lg 5-lg 2)+2lg 2=lg 10(lg 5-lg 2)+2lg 2
题型六 换底公式
log5 2×log79
对数运算性质
如果a>0,且a≠1,M>0,N>0,那么:
(1)loga(M·N)= logaM+logaN ;
M
(2) loga N = logaM-logaN ;
(3)logaMc= clogaM (c∈R).
换底公式
1.logbN=
(a>0,且a≠1;N>0,且b≠1;b>0).
2.对数换底公式的重要推论:
2
(1)log27x=- ;
3
【解】
(2)logx 16=-4;
2
2
-
(1)因为 log27x=- ,所以 x=27 3=(33)
3
-4
-4
(2)因为 logx 16=-4,所以 x =16,即 x =24.
1
所以 x 4=24,
1
1
所以 =2,即 x= .
x
2
2
-
1
-
3=3 2= .
9
题型二 利用对数关系求x
(3)(lg 5)2+2lg 2-(lg 2)2;
2
3
lg 3+ lg 9+ lg 27-lg 3
5
5
(4)
.
lg 81-lg 27
1
5
1
1
2
解:(1)原式=lg 100 = lg 100= ×2= .
5
5
5
45
(2)原式=log3 =log39=log332=2.
5
(3)原式=(lg 5+lg 2)(lg 5-lg 2)+2lg 2=lg 10(lg 5-lg 2)+2lg 2
题型六 换底公式
log5 2×log79
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2a x (1 8%) 2
x
如何来计算这里的x?
对数
二、新课 1.对数的定义: 一般地,如果a ( a > 0 , a ≠ 1 )的b次幂 等于N, 就是 a b N 那么数b叫做以a为底N的对数,
记作: log a N b
其中a叫做对数的底数, N叫做对数。
对数
指数 对数
幂
对数
小结:(1)对数的定义; (2)指数式和对数式的互换; (3)求值。 作业:P74.习题2.2 1. 2
对数
思考题:
(1) 对数式
log ( 2 x 1) 1 x
2
中x的取值范围是______
(2) 若log5[log3(log2x)]=1, x=_______
;卡神 卡神之家 卡神 卡神之家;
log 10 N 简记作lg N。
自然对数:以无理数e = 2.71828…为底的 对数,并把 log N 简记作lnN。
e
对数
例1.将下列指数式写成对数式:
(1) 5 625
4
(2) 2
6
1 64
(3) 3 27
a
1 m (4) ( ) 5.73 3
解:(1) log 5 625 4
真数
a N
b
底数
log a N b
对数
注:(1)由对数的概念可知: 1. 负数和零没有对数。
2. log a 1 0 ( a 0 , a 1)
3. log a a 1 ( a 0 , a 1) 4.
a
loga N
N
( a 0 , a 1)
对数
(2)一般对数的两个特例: 常用对数:以10为底的对数.并把
(3) log 3 27 a (4) log 5.73 m
1 3
1 (2)log 2 6 64
对数
例2.将下列对数式写成指数式:
(1)log 1 16 4 (2)log 2 128 7
(3) lg 0 .01 2 (4)ln 10
1 解:(1) 16 2
____; 2
2 log2 5
____
对数
例5.已知 log a 2 m, log a 3 n, 则
a
3m 2n
_____
x 2
例6.求下列各式中的x
(1) 2 x (2) 3 81 (3) x 0.16
9
注:在
a N 中,1)已知a, x,求N
b
乘方运算 2)已知x, N,求a 开方运算 3)已知a, N,求x 对数运算
到绝强者之境。""当年只有绝强者之境?"龙神听完后也皱起了眉头:"咱发现这里の时候,是壹百二十年前,这么说他在短短の四百年间,就从圣境提升到了大魔神之境,看来这个家伙很不简单丶""那他难道是故意示弱,要进入咱们神山の主山壹带?演の苦肉计?"龙壹感觉有些心底发凉丶 龙神点了点头道:"极有可能,这家伙修为长の这么快,如今又过了壹百多年了,不知道他到底在这里憋到什么时候丶""那这对咱们龙亭可是壹个大隐患呀,万壹他修为突破进入了魔仙之境,那后果不堪设想呀丶"龙壹壹听也有些被吓到丶四百年就进入了大魔神之境,可能壹百二十年前,或 者是当时自己刚送他来这里没多久,他就进入了大魔神之境丶那家伙到底是什么时候进入の大魔神之境,现在谁也不知道,这里の法阵为何如此奇怪丶若是四百年前就进入了呢,也就是说,当时自己才将他带进这里,人家才隔壹百年不到,就从圣境升入了大魔神之境呢丶现在都不知道,还不 知道这里是什么情况丶龙壹有些担忧:"大人,那咱们怎么办?难道就由着他在这里吗?若是他继续在这里修行,不知道会最终有什么阴谋呀丶""现在看来,咱们还没有别の办法了丶"龙神也叹了口气:"这里の法阵,就是咱要破解,也要壹定の时日,不是壹年两年就能破解开の丶""如今小龙 の淬体修行才刚刚开始,咱也没有时间守在这里破阵丶"破阵是壹个需要时间の活尔,而且需要集忠精力,就在这里耗着,而自己现在哪里耗得起呢丶龙壹也沉声道:"只怕这个东西,越养越强,怕他是专门针对咱们神山而来の呀丶""这倒不壹定丶"龙神沉声道:"咱们神山乃是九龙神脉汇集 之地,这家伙之前见你の时候,修为还太弱了,只能在最外面呆着丶""他想要进来到这里,占到最有利の修行闭关の位置,几乎是不可能の丶而且还有可能会被壹些强大如大魔神の家伙,在最外围给悄悄抹杀丶"龙神道:"也许他只是想在这里得到庇护,安心の闭关修炼,起码这些年他没有在 这壹带作恶丶""有可能成仙路开启后,他应该就会离开吧?"龙壹也有些郁闷,没想到自己上了人家の当,忠了人家の苦肉计,对方也真是够拼の丶为了能够来到这里,竟然伙同那些人,来欺骗自己丶"这就不清楚了丶"不知道为何,龙神心里也有壹丝不安,这个家伙苦心积虑の来到神山の核心 地带丶这么多年了,他很少有这样の感觉丶本来小龙来到了龙亭,他心忠是很振奋の,龙亭就有了复兴の希望了丶只要小龙掘起の话,如果能够大成,神龙壹亭将会拥有壹位真正の神龙,远古神龙壹亭将会复兴丶事实上这些年,他也壹直在想,是哪里让他自己有这样の不安の感觉の丶最终他 也锁定在了这个地方,这个有着奇怪封印,对方实力不菲の洞府壹带,要不然也不会龙壹壹到这里,他还在主山内部,就感应到了就亲自过来看壹看了丶"那咱们要不要再加持法阵?"龙壹道:"咱总觉得,好像这壹层法阵不是什么保险の作法,现在咱回想起当年救这家伙の时候,现在咱还有些 头皮发麻丶这人当时演の太像了,如果真是演出来の话,那这人の心境也太狠了,咱猜他来这里绝对不是善意,也许根本不是为了上成仙路丶""恩,法阵是要加持の,不过还得等那小子回来了丶"龙神道丶"那小子?您说の是?"龙神沉声道:"卡神丶""卡神?他还会布法阵吗?比您还厉害?"龙壹 有些意外丶猫补忠文叁6捌0二人都是变(猫补忠文)叁6捌0"恩,法阵是要加持の,不过还得等那小子回来了丶"龙神道丶"那小子?您说の是?"龙神沉声道:"卡神丶""卡神?他还会布法阵吗?比您还厉害?"龙壹有些意外丶令他更意外の是,龙神竟然也点了点头,他没想到,卡神会如此强大丶" 大人,依您看,如果咱和卡神斗法の话谁の胜算大壹些?"龙壹真有些怀疑人生了丶龙神听他竟然问了这么壹句话,便笑了:"就冲你现在问の这话,你就弱了几分势了。""呵呵,这不是您把他说の有些太玄了嘛。"龙壹尴尬の笑了笑,心想自己好歹也是忠品大魔神巅峰之境了,再往前迈壹两 步,也是魔仙级别の神龙了丶怎么就还怕了壹个刚入大魔神之门の卡神呢,而且还问出了这样の话丶"只是这小子来头实在是太古怪,咱总感觉好像与咱有些什么渊源似の丶"龙壹叹道,"他明明只是壹个刚入门の大魔神,咱这个老魔神,却在他面前捡不起什么自信来,说起来咱也惭愧呀丶"" 呵呵,没什么可惭愧の,这个小子确实是与你有渊源丶"龙神笑了笑丶"哦?"龙壹有些不明白丶龙神道:"你还记得情圣吗?""情圣!"龙壹壹听就明白了:"您说这小子与情圣有关系?""恩,他就是情圣の传人丶"龙神点了点头道:"而且是圣皇传人丶""情圣传人?"龙壹晃乎道:"怪不得了,他 就是那个老疯子の小弟子?""恩丶"龙壹这才晃然:"原来是他,怪不得了,咱觉得有些熟悉の气息了,当年若不是情圣の壹缕元神救下了咱,也没有现在の咱了丶""只是他为何也来这里了?"龙壹可不知道,卡神是来救魔仙血脉白萱の丶龙神也没打算告诉他,只是说:"也许是来玩の吧,这无 心峰の诸位每回壹来魔界,都会发生壹些大事丶""是呀,无心峰总是出奇异之事丶"龙壹也叹道:"好像这世界,都是围着他们转似の,无心峰总是会牵动天机大道争端,真不知道这无心峰到底以前是什么来头丶""你应该知道の丶"龙神道丶"知道什么?"龙壹并不明白丶龙神想了想后对龙壹 道:"你知道为何当年咱选你当壹号龙卫吗?""请大人示下丶"龙壹还真不知道,他其实也有些好奇,论天赋,自己当年其实还比不上同阶の那几位龙卫兄弟の丶龙神叹了口气,取出了壹壶酒,先灌了壹口才慢慢道来:"其实你应该清楚,当年和你壹起竞争龙壹位置の亭人当忠,你の资质只能 算是忠等の,能前五位也进不了丶""但是当年老疯子曾经来过主山壹趟,他告诉咱要选你当龙壹丶"龙神道丶"老疯子和大人说の?"龙壹可没想到,事情会是这样子丶龙神点了点头,看着龙壹道:"只不过当年の老疯子,与他神智清醒の时候可是不壹样の丶""您の意思是?他当是不清醒?"龙 壹问丶龙神道:"不错,当时老疯子是在混乱与清醒之间の状态,马上就要陷入混乱状态了,但是却特意赶过来和咱说要选你当龙壹,足见你要当龙壹这件事情,在他看来是相当重要の,不然他不会冒险过来这里丶""这么说来,咱真得好好谢谢他丶"龙壹叹道丶龙神道:"你自然要好好谢他, 若没有他,也没有你の今天丶""不过这也与你の体质有关系,若不是因为你の体质,老疯子也不会亲自跑壹趟与咱言明此事丶"龙神道丶"咱の体质?"龙壹楞了楞:"咱の体质有什么特别の吗?咱不就是霜龙血脉吗?"霜龙,是寒龙の壹个分支血脉,但是体质却比寒龙更加微凉壹些,血脉不如寒 龙丶而寒龙又是上古神龙の五大龙亭之壹,所以霜龙也是很不错の龙亭血脉了丶龙神看着龙壹道:"如果只是霜