二次函数小测试
二次函数经典测试题附答案
二次函数经典测试题附答案二次函数经典测试题附答案
一、选择题
1.小明从如图所示的二次函数 $y=ax^2+bx+c$ 的图像中,观察得出了下面五条信息:①$c0$,③$a-b+c>0$,
④$b^2>4ac$,⑤$2a=-2b$,其中正确结论是().
A。①②④
B。②③④
C。③④⑤
D。①③⑤
解析】本题考查了二次函数图像与系数关系,观察图像判断图像开口方向、对称轴所在位置、与 $x$ 轴交点个数即可得
出二次函数系数满足条件。由抛物线的开口方向判断 $a$ 的符号,由抛物线与 $y$ 轴的交点判断 $c$ 的符号,然后根据对称轴及抛物线与 $x$ 轴交点情况进行推理,进而对所得结论进行判断。
详解】①由抛物线交 $y$ 轴于负半轴,则 $c0$;由对称轴在 $y$ 轴右侧,对称轴为 $x=-\frac{b}{2a}$,又 $a>0$,故$b0$,故②错误;③结合图像得出 $x=-1$ 时,对应 $y$ 的值在 $x$ 轴上方,故 $y>0$,即 $a-b+c>0$,故③正确;④由抛物线与 $x$ 轴有两个交点可以推出 $b^2-4ac>0$,故④正确;
⑤由图像可知:对称轴为 $x=-\frac{b}{2a}$,则 $2a=-2b$,故⑤正确;故正确的有:③④⑤。故选:C。
点睛】本题考查了二次函数图像与系数关系,观察图像判断图像开口方向、对称轴所在位置、与 $x$ 轴交点个数即可得出二次函数系数满足条件。
2.二次函数 $y=ax^2+bx+c$($a\neq0$)图像如图所示,下列结论:①$abc>0$;②$2a+b^2=2$;③当 $m\neq1$ 时,$a+b>am^2+bm$;④$a-b+c>0$;⑤若
二次函数经典测试题附答案
二次函数经典测试题附答案
一、选择题
1.小明从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①c >0,②abc <0,③a -b +c >0,④2b >4a c ,⑤2a =-2b ,其中正确结论是( ).
A .①②④
B .②③④
C .③④⑤
D .①③⑤
【答案】C 【解析】 【分析】
由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】
①由抛物线交y 轴于负半轴,则c<0,故①错误; ②由抛物线的开口方向向上可推出a>0; ∵对称轴在y 轴右侧,对称轴为x=2b
a
->0, 又∵a>0, ∴b<0;
由抛物线与y 轴的交点在y 轴的负半轴上, ∴c<0,
故abc>0,故②错误;
③结合图象得出x=−1时,对应y 的值在x 轴上方,故y>0,即a−b+c>0,故③正确; ④由抛物线与x 轴有两个交点可以推出b 2−4ac>0,故④正确; ⑤由图象可知:对称轴为x=2b a -=12
则2a=−2b ,故⑤正确; 故正确的有:③④⑤. 故选:C 【点睛】
本题考查了二次函数图象与系数关系,观察图象判断图象开口方向、对称轴所在位置、与x 轴交点个数即可得出二次函数系数满足条件.
2.二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b
+
=0;③当m ≠1时,+a b >2am bm +;④a b c -+>0;⑤若211ax bx +=2
九年级数学二次函数测试题含答案(精选5套)
九年级数学 二次函数 单元试卷(一)
时间90分钟 满分:100分
一、选择题(本大题共10小题,每小题3分,共30分) 1.下列函数不属于二次函数的是( )
A.y=(x -1)(x+2)
B.y=
2
1(x+1)2
C. y=1-3x 2
D. y=2(x+3)2
-2x 2
2. 函数y=-x 2
-4x+3图象顶点坐标是( )
A.(2,-1)
B.(-2,1)
C.(-2,-1)
D.(2, 1)
3. 抛物线()122
1
2++=x y 的顶点坐标是( )
A .(2,1)
B .(-2,1)
C .(2,-1)
D .(-2,-1)
4. y=(x -1)2
+2的对称轴是直线( )
A .x=-1
B .x=1
C .y=-1
D .y=1 5.已知二次函数)2(2
-++=m m x mx y 的图象经过原点,则m 的值为 ( ) A . 0或2 B . 0 C . 2 D .无法确定
6. 二次函数y =x 2
的图象向右平移3个单位,得到新的图象的函数表达式是( )
A. y =x 2+3
B. y =x 2-3
C. y =(x +3)2
D. y =(x -3)2
7.函数y=2x 2
-3x+4经过的象限是( )
A.一、二、三象限
B.一、二象限
C.三、四象限
D.一、二、四象限 8.下列说法错误的是( )
A .二次函数y=3x 2
中,当x>0时,y 随x 的增大而增大
B .二次函数y=-6x 2
中,当x=0时,y 有最大值0 C .a 越大图象开口越小,a 越小图象开口越大
D .不论a 是正数还是负数,抛物线y=ax 2
(a ≠0)的顶点一定是坐标原点
二次函数的应用测试题(含答案)
二次函数的应用测试题(含答案)
一.选择题(共8小题)
1.一个小球被抛出后,如果距离地面的高度h(米)和运行时间t(秒)的函数解析式为
h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是()
A.1米 B.3米 C.5米 D.6米
2.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足:y1=﹣x2 +10x,y2=2x,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()
A.30万元 B.40万元 C.45万元 D.46万元
3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的()A.第9.5秒 B.第10秒 C.第10.5秒 D.第11秒
4.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为()
A.y= (x+3)2 B.y= (x+3)2 C.y= (x﹣3)2 D.y= (x﹣3)2
5.烟花厂为国庆观礼特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()
A.2s B.4s C.6s D.8s
6一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5t2+20t﹣14,则小球距离地面的最大高度是()
二次函数测试题及答案
二次函数
1、选择题:
1. 抛物线的对称轴是()
A. 直线
B. 直线
C. 直线
D. 直线
2. 二次函数的图象如右图,则点在()
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
3. 已知二次函数,且,,则一定有()
A. B. C. D. ≤0
4. 把抛物线向右平移3个单位,再向下平移2个单位,所得
图象的解析式是,则有()
A. ,
B. ,
C. ,
D. ,
5. 已知反比例函数的图象如右图所示,则二次函数的图象
大致为()
6. 下面所示各图是在同一直角坐标系内,二次函数与一次
函数的大致图象,有且只有一个是正确的,正确的是()
7. 抛物线的对称轴是直线()
A. B. C. D.
8. 二次函数的最小值是()
A. B. 2 C. D. 1
9. 二次函数的图象如图所示,若,,则()
A. ,,
B. ,,
C. ,,
D. ,,
二、填空题:
10. 将二次函数配方成
的形式,则y=______________________.
11. 已知抛物线与x轴有两个交点,那么一元二次方程的根
的情况是______________________.
12. 已知抛物线与x轴交点的横坐标为,则=_________.
13. 请你写出函数与具有的一个共同性质:
_______________.
14. 有一个二次函数的图象,三位同学分别说出它的一些特
点:
甲:对称轴是直线;
乙:与x轴两个交点的横坐标都是整数;
丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶
点的三角形面积为3.
请你写出满足上述全部特点的一个二次函数解析式:
15. 已知二次函数的图象开口向上,且与y轴的正半轴相
九年级数学二次函数测试题含答案(精选5套)
九年级数学 二次函数 单元试卷(一)
时间90分钟 满分:100分
一、选择题(本大题共10小题,每小题3分,共30分) 1.下列函数不属于二次函数的是( )
A.y=(x -1)(x+2)
B.y=
2
1(x+1)2
C. y=1-3x 2
D. y=2(x+3)2
-2x 2
2. 函数y=-x 2
-4x+3图象顶点坐标是( )
A.(2,-1)
B.(-2,1)
C.(-2,-1)
D.(2, 1)
3. 抛物线()122
1
2++=x y 的顶点坐标是( )
A .(2,1)
B .(-2,1)
C .(2,-1)
D .(-2,-1)
4. y=(x -1)2
+2的对称轴是直线( )
A .x=-1
B .x=1
C .y=-1
D .y=1 5.已知二次函数)2(2
-++=m m x mx y 的图象经过原点,则m 的值为 ( ) A . 0或2 B . 0 C . 2 D .无法确定
6. 二次函数y =x 2
的图象向右平移3个单位,得到新的图象的函数表达式是( )
A. y =x 2+3
B. y =x 2-3
C. y =(x +3)2
D. y =(x -3)2
7.函数y=2x 2
-3x+4经过的象限是( )
A.一、二、三象限
B.一、二象限
C.三、四象限
D.一、二、四象限 8.下列说法错误的是( )
A .二次函数y=3x 2
中,当x>0时,y 随x 的增大而增大
B .二次函数y=-6x 2
中,当x=0时,y 有最大值0 C .a 越大图象开口越小,a 越小图象开口越大
D .不论a 是正数还是负数,抛物线y=ax 2
二次函数测试题 - 含答案
二次函数测试题
姓名:_______________班级:_______________
一、选择题(每个3分)
1、下列函数中,不是二次函数的是( )
A.y=1-x2 B.y=2(x-1)2+4 C.y=(x-1)(x+4) D.y=(x-2)2-x2
2、将二次函数化为的形式,结果为()
A. B.
C. D.
3、下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是 ( )
A.y=(x-2)2+1 B.y=(x+2)2+1
C.y=(x-2)2-3 D.y=(x+2)2-3
4、已知二次函数y=ax2+bx-1(a≠0)的图象经过点(1,1),则代数式1-a-b的值为()
A.-3 B.-1 C.2 D.5
5、将二次函数的图象向下平移1个单位,则平移后的二次函数的解析式为()
A.B.C.D.
6、对抛物线y=-x2+2x-3 而言,下列结论正确的是( )
A.与x轴有两个交点 B.开口向上
C.与y轴的交点坐标是(0,3) D.顶点坐标是(1,-2)
7、二次函数y=﹣x2+(3+k)x+2k﹣1的图象与y轴的交点位于(0,5)上方,则k的范围是()
A. k=3 B. k<3 C. k>3 D.以上都不对
8、已知二次函数,当取,(≠)时,函数值相等,则当取
时,函数值为()
A. B. C.一c D.c
9、二次函数y=a的图象如图所示,则一次函数y=bx+与反比例函数
y=在同一坐标系内的图象大致为()
10、如图为二次函数+bx+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;
九年级数学上册第一章《二次函数》单元测试题-浙教版(含答案)
九年级数学上册第一章《二次函数》单元测试题-浙教版(含答案)
一.选择题:(本题共10小题,每小题3分,共30分)
温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!
1.函数2
21m m y mx --=是关于x 的二次函数,则m 的值是( )
A .3
B .1-
C .3-
D .1-或3 2.在半径为4cm 的圆中,挖去了一个半径为xcm 的圆面,剩下一个圆环的面积为ycm 2,则y 与x 的函数关系式为( )
A .216y x ππ=-+
B .24y x π=-
C .2(2)y x π=-
D .2(4)y x =-+ 3.已知二次函数y =ax 2+4x +c ,当x 等于﹣2时,函数值是﹣1;当x =1时,函数值是5.则此二次
函数的表达式为( )
A .y =2x 2+4x ﹣1
B .y =x 2+4x ﹣2
C .y =-2x 2+4x +1
D .y =2x 2
+4x +1
4.将二次函数()2452--=x y 的图象沿x 轴向左平移2个单位长度,再沿y 轴向上平移3个单位长度,得到的函数表达式是( )
A .()2772--=x y
B .()2172--=x y
C .()2732--=x y
D .()2132
--=x y 5.函数y =﹣x 2
﹣2x+m 的图象上有两点A (1,y 1),B (2,y 2),则( )
A .y 1<y 2
B .y 1>y 2
C .y 1=y 2
D .y 1、y 2的大小不确定
6.已知点 A (a ,2)、B (b ,2)、C (c ,7)都在抛物线()212--=x y 上,点A 在点B 左侧,下列选项正确的是( )
二次函数单元测试题(卷)(含答案)
二次函数单元测试题(卷)(含答案) 二次函数单元测试卷
一、选择题(每小题3分,共30分)
1.当-2≤x≦1,二次函数y=-(x-m)^2+ m+1有最大值4,则实数m值为()
A.-7/4
B.3或-3
C.2或-3
D.2或3或-7/4
2.函数y=mx+x-2m(m是常数)的图像与x轴的交点个数为()
A.0个
B.1个
C.2个
D.1个或2个
3.关于二次函数y=ax^2+bx+c的图像有下列命题:①当
c=0时,函数的图像经过原点;②当c>0,并且函数的图像开口向下时,方程ax^2+bx+c=0必有两个不相等的实根;③函数图像最高点的纵坐标是4ac-b^2/4a;④当b=0时,函数的图像关于y轴对称。其中正确命题的个数是()
A.1个
B.2个
C.3个
D.4个
4.关于二次函数y=2mx+(8m+1)x+8m的图像与x轴有交点,则m的范围是()
A.m-1/16且m≠0 D。m≥-1/16
5.下列二次函数中有一个函数的图像与x轴有两个不同的
交点,这个函数是()
A.y=x^2
B.y=x+4
C.y=3x^2-2x+5
D.y=3x+5x-1
6.若二次函数y=ax+c,当x取x1、x2(x1≠x2)时,函数
值相等,则当x取x1+x2时,函数值为()
A.a+c
B.a-c
C.-c
D.c
7.下列二次函数中有一个函数的图像与坐标轴有一个交点,这个函数是()
A.y=x^2-2
B.y=x+4
C.y=x^2-2x+1
D.y=3x+5x-1
8.抛物线y=-3x^2+2x-1的图象与坐标轴交点的个数是()
A.没有交点
B.只有一个交点
二次函数单元测试题及答案
二次函数单元测试题及答案
一、选择题
1. 二次函数y = ax^2 + bx + c中,当a的值变为原来的2倍时,函数图像如何变化?
A. 向上平移
B. 向下平移
C. 向左平移
D. 向右平移
答案:B
2. 下列哪个选项是二次函数的标准形式?
A. y = x^2 + 2x + 1
B. y = 2x^2 - 3x + 4
C. y = 3x + 4
D. y = x - 2
答案:B
3. 若二次函数y = -2x^2 + 3x + 1的顶点坐标为(1, 2),则下列哪个选项是正确的?
A. a = -2, b = 3, c = 1
B. a = 2, b = -3, c = -1
C. a = -2, b = -3, c = -1
D. a = 2, b = 3, c = 1
答案:A
4. 二次函数y = 3x^2 - 6x + 9的最小值是多少?
A. 0
B. 3
C. 9
D. 无法确定
答案:C
5. 如果二次函数y = x^2 + 4x + 4的图像与x轴相交于两点A和B,那么线段AB的长度是多少?
A. 2
B. 4
C. 6
D. 8
答案:C
二、填空题
6. 已知二次函数y = 2x^2 - 5x + 3,其顶点坐标为__________。
答案:(1, -1)
7. 函数y = -x^2 + 4x - 3的最大值是__________。
答案:1
8. 若二次函数y = 3x^2 - 2x - 5的图像关于y轴对称,则新的函数表达式为y = __________。
答案:y = 3x^2 + 2x - 5
三、解答题
9. 已知二次函数y = -2x^2 + 6x + 3,求该函数在x = -1时的函数值。
二次函数测试卷(含答案)
二次函数单元测试卷之阿布丰王创作
一、选择题(每小题
3分,共30分)
1. 当-2≤ x ≦1,二次函数y=-(x-m )2
+ m 2
+1有最大值4,则实数m 值为( )
A.-4
7B. 3或-3C.2或-3D. 2或3或-4
7 2. 函数
2
2y mx x m =+-(m 是常数)的图像与x 轴的交点个数为() A. 0个 B .1个 C .2个 D .1个或2个
3. 关于二次函数
2
y ax bx c =++的图像有下列命题:①当0c =时,函数的图像经过原点;②当0c >,且函数的图像开口向下时,方程2
0ax bx c ++=必有两个不
相等的实根;③函数图像最高点的纵坐标是2
44ac b a
-;④当0b =时,函数的图像
关于y 轴对称.其中正确命题的个数是() A. 1个 B .2个 C .3个 D .4个
4. 关于x 的二次函数
2
2(81)8y mx m x m =+++的图像与x 轴有交点,则m 的范围是() A .
116m <-
B .116m -≥且0m ≠
C .116m =-
D .116m >-
且0m ≠
5. 下列二次函数中有一个函数的图像与x 轴有两个分歧的交点,这个函数是( )
A .2y x =
B .24y x =+
C .2325y x x =-+
D .2351y x x =+-
6. 若二次函数2y ax c =+,当x 取1x 、2x (12x x ≠)时,函数值相等,则当x 取
12x x +时,函数值为(
)
A .a c +
B .a c -
C .c -
D .c
初三二次函数练习题
二次函数测试题
一.选择题
1、二次函数y=x 2+x-2的图象与x 轴交点的横坐标是( )
A .2和-1
B .2-和1
C .2和1
D .2-和-1
2.抛物线y=-3(x+6)2-1的对称轴是直线( ).
A .x=-6
B .x=-1
C .x=l
D .x=6
3.关于x 的一元二次方程向(a-1)x 2+x+a 2-1=0的一个根是0,则a 的值为( )
A .0.5
B .1
C .-1
D .1或-1
4.将抛物线y=5x 2先向右平移3个单位,再向上平移2个单位后,所得的抛物线的解析式为( )
A .y=5(x+3)2+2
B .y=5(x+3)2-2
C .y=5(x-3)2+2
D .y=5(x-3)2-2
5.下列四个函数中,y 随x 增大而减小的是( )
A .y=2x B.y=-2x+5 C .3y x
=- D .y=-x 2+2x-1 6.抛物线y=8x 2+2mx+m-2的顶点在x 轴上,则顶点坐标是( )
A .(4,0)
B .(12,0) C.1(,0)2- D .(0,12
) 7、与抛物线152--=x y 顶点相同,形状也相同,而开口方向相反的抛物线所对应的函数是( )
(A )152--=x y ;(B )152-=x y ;(C )152+-=x y ;(D )152+=x y 。
8、在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( )
9、已知二次函数y=ax 2+bx+c 的图象如图,则a 、b 、c 满足 ( )
(A )a <0,b <0,c >0;(B )a <0,b <0,c <0;
二次函数专题测试题及详细答案(超经典)
复习二次函数
一、选择题:
1. 抛物线3)2(2+-=x y 的对称轴是( )
A . 直线3-=x
B. 直线3=x
C. 直线
D. 直线2
2. 二次函数c bx ax y ++=2的图象如右图,则点)
,(a
c
b M 在( ) A. 第一象限 ﻩB . 第二象限 C. 第三象限 ﻩ ﻩﻩD . 第四象限
3. 已知二次函数c bx ax y ++=2,且0+-c b a ,
则一定有( )
A. 042>-ac b ﻩ
B. 042=-ac b ﻩ C. 042<-ac b
D. ac b 42-≤0
4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式是
532+-=x x y ,则有( )
A. 3=b ,7=c ﻩﻩﻩB. 9-=b ,15-=c C . 3=b ,3=c ﻩﻩﻩD . 9-=b ,21=c
5. 下面所示各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数
c ax y +=的大致图象,有且只有一个是正确的,正确的是( )
D
6. 抛物线322+-=x x y 的对称轴是直线( ) A. 2-=x ﻩﻩ B. 2=x
ﻩ
ﻩC. 1-=x
D. 1=x
7. 二次函数2)1(2+-=x y 的最小值是( ) A . 2-ﻩﻩﻩ B. 2
C . 1-ﻩﻩﻩﻩD. 1
8. 二次函数c bx ax y ++=2的图象如图所示,若
c b a M ++=24c b a N +-=,b a P -=4,则( ) A. 0>M ,0>N ,0>P B. 0N ,0>P C . 0>M ,0P D . 0N ,0
二次函数全章测试题含答案
二次函数测试题 班别_________姓名__________学号_____ 一.填空题:(每题6分,共30分)
1.将抛物线y =2x 2 向上平移3个单位,再向左平移2个单位,得到的抛物线的解析式是 __________________________
2. 抛物线23(1)2y x =-+的顶点坐标是______________
3. 抛物线y=-3x 2的对称轴是 ,顶点是 ,开口 , 顶点是最 点,与x 轴的交点为 。
(2,1)P -在抛物线2y ax =图像上,则a=__________;
5. 抛物线y =4x 2-1与x 轴的交点坐标为_____________________.
二.选择题:(每题6分,共30分)
6.二次函数2
365y x x =--+的图像的顶点坐标是 ( ) A .(-1,8) B .(1,8) C .(-1,2) D .(1,-4) 7. 二次函数223y x x =--的图象如上图所示.当y <0时,自变量x 的取值范围是( ).
A .-1<x <3
B .x <-1
C . x >3
D .x <-1或x >3
8.下列函数中是二次函数的是 ( ) A .y =x +12 B . y =3 (x -1)2 C .2y ax bx c =++ D .y =1x
2 -x 9.二次函数322
--=x x y 的图象与x 轴的交点个数为 ( ) A.0 B.1 C.2 D. 3 10. 已知抛物线c bx ax y ++=2的开口向下,顶点坐标为(2,-3) ,那么该抛物线有( )
二次函数单元测试题及答案
二次函数单元测试题及答
案
The document was prepared on January 2, 2021
二函数单元测试一含答案
一、选择题:
1.下列函数中,是二次函数的是 A. 28x
y =
B.18+=x y
C.x y 8=
D. 182+=x y
2. 二次函数12)12(2+--=x k x y ,当1>x 时,y 随着x 的增大而增大,当1<x 时,y 随着x 的增大而减小,则k 的值应取
A .12
B .11
C .10
D .9
3.
2
A. B. C. D.
4.在函数,自变量x 的取值范围是 A. x ≥-2且x ≠±3 B. x ≥-2且x ≠3 C. x >-2且x ≠-3 D. x >-2且x ≠3
5.无论m 为何实数,二次函数m x m x y +--=)2(2的图象总是过定点
A.-1,3
B.1,0
C.1,3
D.-1,0
6.在直角坐标系中,坐标轴上到点P-3,-4的距离等于5的点共有 个 个 个 个
7. 下列四个函数中,y 的值随着x 值的增大而减小的是
A .x y 2=
B .()01>=
x x y C .1+=x y D .()02>=x x y 8.抛物线c bx ax y ++=2的图象如图,OA=OC,则 A .b ac =+1 B .c ab =+1 C .a bc =+1 D .以上都
不是
9.在同一坐标系中,一次函数
和二次函数c ax y +=2的图象大致为
10.若0>b ,则二次函数12-+=bx x y 2的图象的顶点在
二次函数测试题及答案
13.请你写出函数 与 具有的一个共同性质:_______________.
14.有一个二次函数的图象,三位同学分别说出它的一些特点:
甲:对称轴是直线 ;
乙:与x轴两个交点的横坐标都是整数;
丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.
(1)求出图(2)上以这一部分抛物线为图象的函数解析式,写出函数定义域;
(2)如果DE与AB的距离OM=0.45cm,求卢浦大桥拱内实际桥长(备用数据: ≈1.4,计算结果精确到1米).
5.已知二次函数 的图象交x轴于 、 两点, ,交y轴的负半轴与C点,且AB=3,tan∠BAC= tan∠ABC=1.
(1)由已知图象上的三点坐标,求累积利润s(万元)与销售时间t(月)之间的函数关系式;
(2)求截止到几月累积利润可达到30万元;
(3)求第8个月公司所获利润是多少万元?
4.卢浦大桥拱形可以近似地看作抛物线的一部分. 在大桥截面1:11000的比例图上去,跨度AB=5cm,拱高OC=0.9cm,线段DE表示大桥拱内桥长,DE∥AB,如图(1). 在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图(2).
三、解答题:
1.已知函数 的图象经过点(3,2).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数测试
一、填空题
1、当____m =时,函数()2221m m y m m x --=+是关于x 的二次函数
2、说出下列二次函数的二次项系数a ,一次项系数b 和常数项c .
(1)y=x 2中a= ,b= ,c= ;
(2)y=5x 2+2x 中a= ,b= ,c= ;
3、.函数y=-(x+5)2+7的对称轴是 ,顶点坐标是 ,图象开口向 ,当x 时, y 随x 的增大而减小,当 时,函数y 有最 值,是 .
二、选择题
1. 二次函数y=(x-1)2-2的顶点坐标是( )
A.(-1,-2)
B.(-1,2)
C.(1,-2)
D.(1,2)
2. 把二次函数215322
y x x =++的图象向右平移2个单位,再向上平移3个单位,所得到图象的函数解析式是 ( )
A .21(5)12y x =-+ B.21(1)52
y x =+- C.21322y x x =++ D. 21722
y x x =+- 3、下列各图中有可能是函数y=ax 2+c, (0,0)a y a c x
=≠>的图象是( )
4、已知二次函数2y ax bx c =++,如图所示,若0a <,0c >,那么它的图象大致是 ( )
y y y y
x x x x
A B C D
5、已知二次函数
2y ax bx c =++的图象如图所示,则点(,)ac bc 在 ( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
6、已知二次函数2y ax bx c =++的图象如下,
则下列结论正确的是 ( )
A 0ab <
B 0bc <
C 0a b c ++>
D 0a b c -+<
7、二次函数y=ax 2+bx+c (a ≠0
)的图象如图所示,则下列结论:
①a>0;②c>0;•③b 2-4ac>0,其中正确的个数是( )
A .0个
B .1个
C .2个
D .3个
8、二次函数y=ax 2+bx+c 的图像如图1,则点M (b ,c
a )在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
9、二次函数2y ax bx c =++的图象如图所示,则( )
A 、0a >,240b ac -<
B 、0a >,240b ac ->
C 、0a <,240b ac -<
D 、0a <,240b ac ->
10、二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论:①c<0,②b>•0,•③
4a+2b+c>0,④(a+c )2
A .1个
B .2个
C .3个
D .4个
y x 0
三、应用题
1、已知关于x的二次函数的图象的顶点坐标为(一l , 2 ) 且图象过点(l ,一3 ) .
(1)求这个二次函数的关系式;
(2)写出它的开口方向、对称轴;
2、已知抛物线与x轴交点的横坐标分别为3, l;与y轴交点的纵坐标为6,求二次函数的关系式。
3、已知抛物线经过点(2,0)(-1,-1)并以直线X=1为对称轴。求此抛物线的解析式。
4、请写出抛物线y=x2-5x+4的图像向右平移三个单位,再向下平移三个单位的解析式