2014年中考数学一轮复习基础检测:《三角形》
2014年中考数学一轮复习检测:直角三角形
2014年中考数学一轮复习检测:直角三角形一、选择题:1、(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A. 11 B. 10 C. 9 D.82、(2013•资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A. 48 B. 60 C. 76 D.803、(2012•泸州)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD 的周长是()A. 24 B. 16 C. 4 D. 24、(2013•苏州)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B的坐标为(3,),点C的坐标为(,0),点P为斜边OB上的一个动点,则PA+PC 的最小值为()2A. B. C. D .5、(2013•黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为()A. 5 B.C.D. 5或6、(2013安顺)如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米二、填空题:1、(2013•滨州)在△ABC中,∠C=90°,AB=7,BC=5,则边AC的长为.2、(2013山西,1,2分)如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为______.3、(2013•荆门)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=,则DE= .4、(2013•张家界)如图,OP=1,过P作PP1⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2012= ______.5、(2013•包头)如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度.6、(2013•巴中)若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为.三、解答题:1、(2013•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.2、(2013年广州市)如图8,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.3、(2013甘肃兰州)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.4(2013•遵义)如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D 落在点E处,直线MN交BC于点M,交AD于点N.(1)求证:CM=CN;(2)若△CMN的面积与△CDN的面积比为3:1,求的值.参考答案一、选择题:1.D 2.C 3.C 4.B 5.D 6.B 二、填空题:1、22、1033、 4、 5、135 6、5三、解答题:1、解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.2、解:∵四边形ABCD是菱形,对角线AC与BD相交于O,∴AC⊥BD,DO=BO,∵AB=5,AO=4,∴BO==3,∴BD=2BO=2×3=6.3、(1)证明:∵Rt△OAB中,D为OB的中点,∴DO=DA,∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC为等边三角形,∴∠BCO=∠AEO=60°,∴BC∥AE,∵∠BAO=∠COA=90°,∴CO∥AB,∴四边形ABCE是平行四边形;(2)解:设OG=x,由折叠可得:AG=GC=8﹣x,在Rt△ABO中,∵∠OAB=90°,∠AOB=30°,BO=8,∴AO=BO•cos30°=8×=4,在Rt△OAG中,OG2+OA2=AG2,x2+(4)2=(8﹣x)2,解得:x=1,∴OG=1.4、(1)证明:由折叠的性质可得:∠ANM=∠CNM,∵四边形ABCD是矩形,∴AD∥BC,∴∠ANM=∠CMN,∴∠CMN=∠CNM,∴CM=CN;(2)解:过点N作NH⊥BC于点H,则四边形NHCD是矩形,∴HC=DN,NH=DC,∵△CMN的面积与△CDN的面积比为3:1,∴===3,∴MC=3ND=3HC,∴MH=2HC,设DN=x,则HC=x,MH=2x,∴CM=3x=CN,在Rt△CDN中,DC==2x,∴HN=2x,在Rt△MNH中,MN==2x,∴==2.。
备考2023年中考数学一轮复习-图形的性质_三角形_等腰三角形的判定-填空题专训及答案
备考2023年中考数学一轮复习-图形的性质_三角形_等腰三角形的判定-填空题专训及答案等腰三角形的判定填空题专训1、(2015通辽.中考真卷) 如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为________.2、(2012丹东.中考真卷) 如图,边长为6的正方形ABCD内部有一点P,BP=4,∠PBC=60°,点Q为正方形边上一动点,且△PBQ是等腰三角形,则符合条件的Q点有________个.3、(2019徐州.中考真卷) 直线与x轴,y轴分别交于A,B两点,点C 在坐标轴上,若△ABC为等腰三角形,则满足条件的点C最多有________. 4、(2016山西.中考模拟) 如图,在4×5的点阵图中,每两个横向和纵向相邻阵点的距离均为1,该点阵图中已有两个阵点分别标为A、B,请在此点阵图中找一个阵点C,使得以点A、B、C为顶点的三角形是等腰三角形,则符合条件的点C有________个.5、(2019铁西.中考模拟) 如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP 是腰长为5的等腰三角形时,点P的坐标为________.6、(2018吉林.中考模拟) 如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为________.7、(2019方正.中考模拟) 在直角坐标系中,O为坐标原点,已知点A(1,2),在y轴的正半轴上确定点P,使△AOP为等腰三角形,则点P的坐标为________.8、(2019.中考模拟) 如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF.给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=EC.其中正确结论的序号是________.9、(2018新乡.中考模拟) 菱形ABCD的边长是4,∠DAB=60,点M,N分别在边AD,AB上,MN⊥AC,垂足为P,把△AMN沿MN折叠得到△A'MN,若△A'DC恰为等腰三角形,则AP的长为________。
(新课标)2014届中考数学查漏补缺第一轮基础复习 第22讲 相似三角形及其应用课件 华东师大版
图 22-6
第22讲┃ 回归教材
2. [2012· 北京 ] 如图 22- 7,小明同学用自制的直角三角形 纸板 DEF测量树的高度 AB,他调整自己的位置,设法使斜边 DF 保持水平,并且边 DE与点 B在同一直线上,已知纸板的两条直 角边 DE= 40 cm, EF= 20 cm,测得边 DF离地面的高度 AC= 1.5 5.5 m, CD= 8 m,则树高 AB= ________m.
第22讲┃ 归类示例
5 1 10 1 5 10 [解析] 因为 = , = ,所以 = ,则长度为5 cm、 10 2 20 2 10 20 10 cm、10 cm、20 cm的四条线段成比例.
第22讲┃ 归类示例
(1)四条线段 a、 b、 c、d只要其中两条线段的比值等于另 外两条线段的比值,则这四条线段就是成比例线段; (2)比例 的性质要注意根据条件和所要得的结论灵活运用.
பைடு நூலகம் 第22讲┃ 考点聚焦 考点2 成比例线段
四条线段 a、 b、 c、 d,如果 a ∶b= c ∶ d, 那么这四条线段叫做成比例线段;特别 成比例线段 地,如果 a ∶ b= b ∶ c, b叫做 a、 c的 ________ . 比例中项 比例的 基本性质 防错提醒 如果 a ∶b= c ∶d,那么 ad=bc 求两条线段的比时,对这两条线段要用同 一长度单位
第22讲┃ 考点聚焦
以坐标原 点为中心 的位似变换 位似 作图
在平面直角坐标系中,如果位似是以原点为位 似中心,相似比为 k,那么位似图形对应点的 坐标的比等于 ________ k或-k (1)确定位似中心 O; (2)连结图形各顶点与位似中心 O的线段(或延长 线 ); (3)按照相似比取点; (4)顺次连结各点,所得图形就是所求的图形
中考数学一轮综合复习同步讲义(第8课三角形认识)
中考数学一轮复习第08课 三角形认识知识点:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧镶嵌问题:边形每个内角公式:正边形每个外角公式:正边形对角线条数:;外角和:边形内角和公式:多边形外角性质:;内角和:外角和:三边关系定理:,性质:角平分线:,性质:中线:,性质:高线:与三角形有关的线段定义:三角形n n n n在三角形中,两内角平分线形成的夹角公式:在三角形中,两外角平分线形成的夹角公式:在三角形中,一内角一外角形成的夹角公式:三角形沿某条直线折叠,顶点落在形内公式: (∠BDA 、∠AEC 与∠A 的数量关系) 三角形沿某条直线折叠,顶点落在形外公式: (∠BDA 、∠AEC 与∠A 的数量关系)课堂同步:1.a 、b 、c 为三角形的三边长,化简c b a c b a c b a c b a -+-+-----++,结果是( )A.0B.2a+2b+2cC.4aD.2b-2c2.已知ΔABC 中,周长为12,)(21c a b +=,则b 为( ) A.3 B.4 C.5 D.63.已知三角形的两边长分别是3 和8,且第三边长是奇数,那么第三边的长度为( )A.7 或5B.7C.9D.7 或94.如果三角形的一个外角和与它不相邻的两个内角的和为1200,那么与这个外角相邻的内角的度数为( )A.30°B.60°C.90°D.120°5.若一个多边形共有十四条对角线,则它是( )A.六边形B.七边形C.八边形D.九边形6.如图,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点, 且S △ABC =4cm 2,则S 阴影等于( )A.2cm 2B.1cm 2C.12cm 2D.14cm 2第6题图 第7题图 第8题图 7.如图,在钝角△ABC 中,点D 、E 分别是边AC 、BC 的中点,且DA=DE,那么下列结论错误的是( )A.∠1=∠2B.∠1=∠3C.∠B=∠CD.∠B=∠18.如图,∠1、∠2、∠3、∠4应满足的关系式是( )A.∠1+∠2=∠3+∠4B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3D.∠1+∠4=∠2-∠39.下列说法中正确的个数为( ).(1)一种三角形都能铺满地面;(2)能够铺满地面的正多边形只有正三角形、正方形和正六边形;(3)能够铺满地面的正多边形的组合只有正三角形,正方形和正六边形之间组合;(4)一个正五边形和两个正十边形的组合能够铺满地面.A.0B.1C.2D.310.等腰三角形中,若底边长为6,则它的腰长x 的取值范围是 ;若等腰三角的周长为18,则它的腰长a 的取值范围是____________11.已知一个三角形的三边长是2、3 和x ,且此三角形的周长是偶数,则x 的值是__________13.三角形中,若最大内角等于最小内角的2倍,最大内角又比另一个内角大20°,则此三角形的最小内角的度数是________.14.在四边形ABCD中,∠A=900,∠B:∠C:∠D=1:2:3,则∠B=______,∠C=______,∠D=_____15.若一个正多边形的内角和为23400,则边数为______,它的外角等于______16.如图,将一副三角板按图示的方法叠在一起,则图中∠α等于______度.第16题图第17题图17.如图,△ABC中,∠A=360,∠B=720,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF= 度。
中考数学一轮复习《三角形及其性质》练习题(含答案)
中考数学一轮复习《三角形及其性质》练习题(含答案)课时1一般三角形及等腰三角形(建议答题时间:40分钟)1. (2017泰州)三角形的重心是()A. 三角形三条边上中线的交点B. 三角形三条边上高线的交点C. 三角形三条边垂直平分线的交点D. 三角形三条内角平分线的交点2. (2017金华)下列各组数中,不可能成为一个三角形三边长的是()A. 2,3,4B. 5,7,7C. 5,6,12D. 6,8,103. (2017株洲)如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD的度数是()A. 145°B. 150°C. 155°D. 160°第3题图4. (2017甘肃)已知a,b,c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A. 2a+2b-2cB. 2a+2bC. 2cD. 05. (2017德阳)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是()A. 15°B. 20°C. 25°D. 30°第5题图第6题图6. (2017滨州)如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A. 40°B. 36°C. 30°D. 25°7. (2017荆州)如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC 于点D,则∠CBD的度数为()A. 30°B. 45°C. 50°D. 75°第7题图第8题图第9题图8. (2017郴州)小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A. 180°B. 210°C. 360°D. 270°9. (2017天津)如图,在△ABC中,AB=AC,AD,CE是△ABC的两条中线,P是AD上的一个动点,则下列线段的长等于BP+EP最小值的是().A. BCB. CEC. ADD. AC10. (2017泰州)将一副三角板如图叠放,则图中∠α的度数为________.第10题图第12题图第13题图11. (2017成都)在△ABC中,∠A∶∠B∶∠C=2∶3∶4,则∠A的度数为________.12. (2017江西)如图①是一把园林剪刀,把它抽象为图②,其中OA=OB,若剪刀张开的角为30°,则∠A=________度.13. (2017湘潭)如图,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,DE垂直平分AB,垂足为点E,请任意写出一组相等的线段________.14. (2017徐州)△ABC中,点D、E分别是AB、AC的中点,DE=7,则BC=________.15. (2017丽水)等腰三角形的一个内角为100°,则顶角的度数是________.16. (2017陕西)如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A =52°,则∠1+∠2的度数为________.第16题图第18题图17. (2017淄博)在边长为4的等边三角形ABC中,D为BC边上的任意一点,过点D分别作DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF=________. 18. (2017宁夏)在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=13DM,当AM⊥BM时,则BC的长为________.19. (2017达州)△ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是________.20. (2017内江)如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.第20题图21. (2017北京)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC 于点D.求证:AD=BC.第21题图22. (2017连云港)如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.第22题图课时2直角三角形及勾股定理(建议答题时间:40分钟)1. 下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A. 3,4,5B. 1,2, 3C. 6,7,8D. 2,3,42. (2016沈阳)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A. 433 B.4 C. 83 D. 4 3第2题图第3题图3. (2017大连)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB的长为()A. 2aB. 22aC. 3aD. 43 3a4. (2017黄石)如图,在△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE=32,则∠CDE+∠ACD=()A. 60°B. 75°C. 90°D. 105°第4题图第5题图5. (2017重庆巴蜀月考)如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交AC于点D,交AB于点E.若BC=4,AC=8,则BD=()A. 3B. 4C. 5D. 66. (2017陕西)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A. 3 3B. 6C. 3 2D. 21第6题图第7题图7. 关注数学文化(2017襄阳)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A. 3B. 4C. 5D. 68. (2017株洲)如图,在Rt△ABC中,∠B的度数是________度.第8题图第11题图第12题图9. (2017安顺)三角形三边长分别为3,4,5,那么最长边上的中线长等于________.10. (2017岳阳)在△ABC中,BC=2,AB=23,AC=b,且关于x的方程x2-4x +b=0有两个相等的实数根,则AC边上的中线长为________.11. (2017常德)如图,已知Rt△ABE中∠A=90°,∠B=60°,BE=10,D是线段AE上的一动点,过D作CD交BE于C,并使得∠CDE=30°,则CD长度的取值范围是________.12. (2017娄底)如图,在等腰Rt△ABC中,∠ABC=90°,AB=CB=2,点D为AC的中点,点E,F分别是线段AB,CB上的动点,且∠EDF=90°,若ED的长为m,则△BEF的周长是________.(用含m的代数式表示)13. (2017杭州)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连接AE,则△ABE的面积等于________.第13题图第14题图14. (2017武汉)如图,在△ABC中,AB=AC=23,∠BAC=120°,点D,E都在边BC上,∠DAE=60°,BD=2CE,则DE的长为________.15. (2017山西)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB =∠BCD=90°,∠A=60°,∠CBD=45°.E为AB的中点,过点E作EF⊥CD于点F.若AD=4 cm,则EF的长为________cm.第15题图第16题图16. (2017河南)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=2+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终..落在边AC上,若△MB′C为直角三角形,则BM的长为________.17. (2018原创)如图,在△ABC中,∠ABC=90°,∠A=30°,D是边AB上一点,∠BDC=45°,AD=4,求BC的长.(结果保留根号)第17题图18. (2018原创)如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)在△ABC中,求BC边上高的长.第18题图19. 在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=20,BC=15,(1)求AB的长;(2)求CD的长.第19题图20. (2017徐州)如图,已知AC⊥BC,垂足为C,AC=4,BC=33,将线段AC 绕点A按逆时针方向旋转60°,得到线段AD,连接DC、DB.(1)线段DC=________;(2)求线段DB的长度.第20题图答案课时1 一般三角形及等腰三角形1. A2. C3. B4. D【解析】由三角形中任意两边之和大于第三边,得:a+b>c,∴c-a-b =c-(a+b)<0,∴|c-a-b|=a+b-c,|a+b-c|=a+b-c,∴|a+b-c|-|c-a -b|=0.5. B【解析】∵BE是∠ABC的角平分线,∴∠ABC=2∠ABE=50°,又∵∠BAC =60°,则∠C=70°,又∵∠ADC=90°,∴∠DAC=20°.6.B【解析】设∠C=x°,∵AD=DC,∴∠DAC=∠C=x°,∴∠ADB=2x°,∵AB=BD,∴∠BAD=∠ADB=2x°,∴∠B=180°-4x°,∵AB=AC,∴∠B=∠C=x°,∴180°-4x°=x°,解得x=36,∴∠B=∠C=36°.7.B【解析】∵∠A=30°,AB=AC,∴∠ABC=∠C=75°,又∵l为AB的垂直平分线,∴DB=DA,∠DBA=∠A=30°∴∠CBD=∠CBA-∠DBA=75°-30°=45°.8. B【解析】如解图,∵∠C=∠F=90°,∴∠3+∠4=90°,∠2+∠5=90°,又∵∠2=∠4,∴∠3=∠5,∵∠1=∠3,∴∠1=∠5=180°-∠β,∵∠α=∠D+∠1=∠D+180°-∠β,∴∠α+∠β=∠D+180°=30°+180°=210°.第8题解图9. B【解析】∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴AD是BC的垂直平分线,∴点B关于AD的对应点为点C,∴CE等于BP+EP的最小值.10. 15°11. 40°12. 7513. CD=DE14. 1415. 100°【解析】由三角形内角和定理可知,若等腰三角形的一个内角为100°,则这个内角为顶角,此时两底角均为40°,即该三角形顶角的度数是100°.16. 64°【解析】∵在△ABC中,BD和CE是△ABC的两条角平分线,∴∠1=∠ABD=12∠ABC,∠2=∠ACE=12∠ACB,∴∠1+∠2=12(∠ABC+∠ACB),∵∠ABC+∠ACB+∠A=180°,∴∠ABC+∠ACB=180°-∠A=180°-52°=128°,∴∠1+∠2=12(∠ABC+∠ACB)=12×128°=64°.17. 23【解析】假设点D与点B重合,可得DE+DF为等边三角形AC边上的高,再由等边三角形的边长为4,可求AC边上的高为23,故DE+DF=2 3.18. 8【解析】∵AM⊥BM,∴∠AMB=90°,在Rt△ABM中,∵D是AB的中点,∴DM=12AB=3,∵ME=13DM,∴ME=1,DE=4,又∵DE∥BC,∴DE是△ABC的中位线,∴BC=8.19. 1<m<4【解析】如解图,延长AD到点E,使AD=ED,连接CE,∵AD 是△ABC的中线,∴BD=CD,∵在△ABD和△ECD中,BD=CD,DE=AD,∠ADB=∠EDC,∴△ABD≌△ECD(SAS),∴AB=EC,在△AEC中,∵AC+EC>AE,且EC-AC<AE,即AB+AC>2AD,AB-AC<2AD,∴2<2AD<8,∴1<AD<4即1<m<4.第11题解图20. 证明:∵AD平分∠BAC,∴∠BAD=∠DAC,∵DE∥AC,∴∠ADE=∠DAC.∴∠BAD=∠ADE,∵AD⊥BD,∴∠ADB=90°,∴∠BAD+∠B=90°.∵∠BDE+∠ADE=90°,∴∠B=∠BDE,∴BE=DE,∴△BDE是等腰三角形.21. 解:∵AB=AC∴在△ABC中,∠ABC=∠C=12(180°-∠A)=12×(180°-36°)=72°,又∵BD平分∠ABC,∴∠ABD=∠DBC=12∠ABC=12×72°=36°,∴∠ABD=∠A,∴AD=BD,又∵在△ABC中,∠BDC=∠A+∠ABD=36°+36°=72°,∴∠BDC=∠C,∴BD=BC,∴AD=BC.22. (1)解:∠ABE=∠ACD.理由如下:∵AB=AC,∠BAE=∠CAD,AE=AD,∴△ABE≌△ACD(SAS).∴∠ABE=∠ACD;(2)证明:∵AB=AC,∴∠ABC=∠ACB.由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC.又∵AB=AC,∴点A、F均在线段BC的垂直平分线上,即过点A、F的直线垂直平分线段BC.课时2直角三角形及勾股定理1. B2. D3. B【解析】∵CD⊥AB,CD=DE=a,∴CE=2a,∵在△ABC中,∠ACB =90°,点E是AB的中点,∴AB=2CE=22a.4. C【解析】∵点E为BC边的中点,CD⊥AB,DE=32,∴BE=CE=DE=32,∴∠CDE =∠DCE ,BC = 3.在△ABC 中,AC 2+BC 2=1+(3)2=4=AB 2,∴∠ACB =90°,∴∠CDE +∠ACD =∠DCE +∠ACD =90°.5. C 【解析】设BD =x ,∵边AB 的垂直平分线交AC 于点D ,∴AD =BD =x ,则CD =8-x ,在Rt △BCD 中,根据勾股定理,得x 2-(8-x )2=42,解得x =5.6. A 【解析】∵∠ACB =∠A ′C ′B ′=90°,AC =BC =3,∴△ABC 是等腰直角三角形,∴∠CAB =45°,在Rt △ABC 中,AB =AC 2+BC 2=32+32=32,又∵△ABC ≌△A ′B ′C ′, ∴A ′B ′= AB =32, ∠C ′A ′B ′=∠CAB =45°,∴∠CAB ′=∠C ′AB ′+∠CAB = 45°+45°=90°,在Rt △CAB ′中,AC =3,AB ′=32,∴B ′C =AC 2+AB′2=32+(32)2=3 3.7. C 【解析】如解图,∵S 正方形ABCD =13,∴AB =13,∵AG =a ,BG =b ,∴a 2+b 2=AB 2=13,∵(a +b )2=a 2+2ab +b 2=21,∴2ab =(a +b )2-a 2-b 2=21-13=8,∴ab =4,∴S △ABG =12ab =12×4=2,∴S 小正方形=S 大正方形-4S △ABG =13-4×2=5.第7题解图8. 25 9. 5210. 2 【解析】∵方程x 2-4x +b =0有两个相等的实数根,∴b 2-4ac =16-4b =0,解得b =4.又∵BC =2,AB =23,AC =b =4,∴AB 2+BC 2=(23)2+22=42=AC 2,∴∠B =90°,∴AC 边上的中线长为2.11. 0<CD ≤5 【解析】如解图,取BE 的中点F ,连接AF ,∵∠A =90°,则AF =12BE =EF =5,∴∠EAF =∠E =90°-∠B =30°,又∵∠CDE =30°,∴∠CDE=∠EAF ,∴CD ∥AF ,∴CD AF =EDEA .当D 与A 重合时,CD 与AF 重合,取得最大值为5,当D 接近于E 时,DE 越小,CD 越小,∵线段CD 不能为0,∴0<CD≤5.第11题解图12. 2+2m【解析】如解图,连接BD,∵D为AC的中点,∴BD⊥AC,BD 平分∠ABC,∴∠BDC=90°,∠ABD=∠C=45°,∴∠BDF+∠FDC=90°,又∵∠EDF=90°,∴∠BDF+∠BDE=90°,∴∠CDF=∠BDE,∴△BED≌△CFD(ASA),∴BE=CF,DE=DF,则BE+BF+EF=BC+EF=2+EF,而Rt △DEF中,DE=DF=m,∴EF=2m,则△BEF的周长为2+ 2 m.第12题解图13. 78【解析】如解图,过点A作AH⊥BC于点H,∵AB=15,AC=20,∠BAC=90°,∴由勾股定理得,BC=152+202=25,∵AD=5,∴DC=20-5=15,∵DE⊥BC,∠BAC=90°,∴△CDE∽△CBA,∴CECA=CDCB,∴CE=1525×20=12.第13题解图14. 33-3【解析】∵AB=AC=23,∠BAC=120°,∴BC=6,∠B=∠BCA =30°,如解图,将△ABD绕点A逆时针旋转120°得到△ACD′,∴∠D′CA=∠B =30°,AD=AD′,∴∠D′CE=60°,∵∠DAE=60°,∠DAD′=120°,∴∠EAD′=60°,∴△EAD′≌∠EAD(SAS),∴ED′=ED,∴ED′+BD+EC=6,∴EC=6-DE3,∵CD ′=BD =2CE ,∠D ′CE =60°,∴∠D ′EC =90°,∴D ′E 2+EC 2=D ′C 2,即DE 2+(6-DE 3)2=(6-DE3×2)2,解得DE =33-3(负根舍去).第14题解图15. 2+6 【解析】如解图,连接DE ,在EF 上找一点G ,使得DG =EG ,连接DG ,在Rt △ABD 中,∠A =60°, ∴AD =12AB ,又∵E 为AB 的中点,∴AE =12AB =DE ,∴AD =AE =DE ,∴△ADE 为等边三角形 ,∴DE =AD =4 cm ,∠DEA =60°,又∵EF ⊥CD ,∠C =90°,∴EF ∥CB ,∴∠AEF =∠ABC =75°,∴∠DEF =15°,在Rt △EFD 中,∠EFD =90°,∵DG =EG ,∴∠GDE =∠DEF =15°,∴∠DGF =30°,设DF =x ,则EG =DG =2x ,FG =3x ,EF =(2+3)x ,根据勾股定理得DF 2+EF 2=DE 2,即x 2+(2+3)2x 2=16,解得x =6-2,∴EF =(2+6) cm .第15题解图16. 2+12或1 【解析】(1)当∠B ′MC 为直角时,此时点M 在BC 的中点位置,点B ′与点A 重合,如解图①,则BM 长度为12BC =2+12;(2)当∠MB ′C 为直角时,如解图②,根据折叠性质得,BM =B ′M ,BN =B ′N ,B ′M ∥BA ,∴MC BC =B ′MAB ,即MC B ′M =BC AB =2,∴MC B ′M=2,即MC +BM BM =2+11,即BCBM =2+11,∵BC=2+1,∴BM=1.故BM长为2+12或1.第16题解图17. 解:∵∠BDC=45°,∠ABC=90°,∴△BDC为等腰直角三角形,∴BD=BC,∵∠A=30°,∴BC=12AC,在Rt△ABC中,根据勾股定理得AC2=AB2+BC2,即(2BC)2=(4+BD)2+BC2,解得BC=BD=2+23(负根舍去).18. 解:(1)∵DB⊥BC,BC=4,CD=5,∴BD=52-42=3;(2)如解图,延长CB,过点A作AE⊥CB交CB延长线于点E,∵DB⊥BC,AE⊥BC,∴AE∥DB,∵D为AC边的中点,∴BD=12AE,∴AE=6,即BC边上高的长为6.第18题解图19. 解:(1)在Rt△ABC中,∠ACB=90°,BC=15,AC=20,∴AB=AC2+BC2=202+152=25,即AB的长是25;(2)∵S△ABC=12AC·BC=12AB·CD,∴20×15=25·CD,∴CD=12.20. 解:(1) 4;【解法提示】在△ACD中,∵∠A=60°,AC=AD,∴△ACD是等边三角形,∴DC=AC=4.(2)如解图,过点D作DE⊥BC于点E.第20题解图在△CDE中,∠DCE=∠ACB-∠ACD=90°-60°=30°,CD=4,∴DE=2,根据勾股定理得CE=CD2-DE2=23,∴BE=BC-CE=33-23=3,∴DB=BE2+DE2=(3)2+22=7.。
2014中考数学第一轮复习资料
课时40.视图与投影……………………………………………(118)
课时41.轴对称与中心对称……………………………………(121)
课时42.平移与旋转……………………………………………(124)
第一章 实数
课时1.实数的有关概念
【课前热身】
1.(08重庆)2的倒数是.
2.(08白银)若向南走 记作 ,则向北走 记作 .
【课前热身】
1. x2y的系数是,次数是.
2.(08遵义)计算: .
3.(08双柏)下列计算正确的是( )
A. B. C. D.
4.(08湖州)计算 所得的结果是()
A. B. C. D.
5. a,b两数的平方和用代数式表示为( )
A. B. C. D.
6.某工厂一月份产值为 万元,二月份比一月份增长5%,则二月份产值为( )
课时5.分式……………………………………………………( 13 )
课时6.二次根式…………………………………………………( 16 )
第三章方程(组)与不等式
课时7.一元一次方程及其应用……………………………( 19 )
课时8.二元一次方程及其应用……………………………( 22 )
课时9.一元二次方程及其应用………………………………( 25 )
(1)_______________________,(2)_______________________,
(3)_______________________.
另有四个数3,-5,7,-13,可通过运算式(4)_____________________,使其结果等于24.
第二章 代数式
课时3.整式及其运算
9.(08扬州)如果□+2=0,那么“□”内应填的实数是()
中考数学一轮复习课件-第十五讲三角形
【跟踪训练】
1.(202X·哈尔滨中考)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足
为D,△ADB与△ADB′关于直线AD对称,点B的对称点是点B′,则∠CAB′的度数
为
(A)
A.10°
B.20°
C.30°
D.40°
2.(202X·杭州中考)在△ABC中,若一个内角等于另外两个内角的差,则( D ) A.必有一个内角等于30° B.必有一个内角等于45° C.必有一个内角等于60° D.必有一个内角等于90°
A.75°
B.80°
C.85°
D.90°
2.如图,AB∥DE,点F,C在AD上,AB=DE,且AF=FC=CD. (1)求证:△ABC≌△DEF. (2)延长EF与AB相交于点G,若G为AB的中点,FG=4,求EG的长.
【解析】(1)∵AB∥DE,
∴∠A=∠D,
∵AF=FC=CD,∴AC=DF,
【跟踪训练】
1.(202X·台州中考)下列长度的三条线段,能组成三角形的是( B )
A.3,4,8
B.5,6,10
C.5,5,11
D.5,6,11
2.(202X·齐齐哈尔中考)等腰三角形的两条边长分别为3和4,则这个等腰三角
形的周长是___1_0_或__1_1___.
考点二 三角形内角和定理及推论
【自我诊断】 1.以下列各组线段为边,能组成三角形的是 A.1 cm,2 cm,4 cm B.4 cm,6 cm,8 cm C.5 cm,6 cm,12 cm D.2 cm,3 cm,5 cm
(B)
பைடு நூலகம்
2.如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数 为___4_0_°______.
2014中考数学专题八三角形和四边形复习题及答案.doc
专题八三角形和四边形⊙热点一:与三角形、四边形有关的计算、证明1.(2013 年吉林长春 )如图 Z8- 3,以△ ABC 的顶点 A 为圆心,以BC 长为半径作弧,再以顶点 C 为圆心,以AB长为半径作弧,两弧交于点 D ,连接 AD,CD.若∠ B= 65°,则∠ADC 的大小为 ________ .图Z8-32. (2013 年河南 )如图 Z8-4,在矩形 ABCD 中, AB= 3, BC=4,点 E 是 BC 边上一点,连接 AE,把∠ B 沿 AE 折叠,使点 B 落在点 B′处,当△ CEB′为直角三角形时, BE 的长为________.图Z8-43. (2013 年江苏扬州 )如图 Z8- 5,在△ ABC 中,∠ ACB=90°, AC= BC,点 D 在边 AB 上,连接 CD ,将线段 CD 绕点 C 顺时针旋转 90°至 CE 的位置,连接 AE.(1)求证: AB⊥ AE;(2)若 BC2=AD ·AB ,求证:四边形ADCE 是正方形.图Z8-5⊙热点二:与三角形、四边形有关的操作探究题w W w .x K b 1.c o M1.(2013 年湖南湘潭 )在数学活动课中,小辉将边长为2和 3 的 2 个正方形放置在直线l 上,如图 Z8-6(1) ,他连接 AD , CF,经测量发现AD= CF .(1)他将正方形 ODEF 绕 O 点逆时针旋转一定的角度,如图Z8- 6(2),试判断 AD 与 CF 还相等吗?说明你的理由;求出(2)他将正方形 CF 的长.ODEF绕 O 点逆时针旋转,使点E 旋转至直线l 上,如图Z8-6(3),请你 (1)(2) (3)图 Z8-6http://www.xkb1.co m2. (2013 年湖北武汉节选 )已知在四边形 ABCD 中, E , F 分别是 AB , AD 边上的点,DE 与 CF 交于点 G.DE = AD ;(1)如图 Z8-7(1),若四边形 ABCD 是矩形,且 DE ⊥ CF .求证 CF CD(2)如图 Z8-7(2),若四边形 ABCD 是平行四边形.试探究:当∠ B 与∠ EGC 满足什么关系时,使得DE=AD成立?并证明你的结论.CF CD(1)(2)图 Z8-7三角形和四边形热点一1. 65°2.3 或 3解析: ①点 B ′落在 AD 上时,∵四边形 ABCD 是矩形,∴∠ A =∠ B = 90°,2AD ∥BC.由折叠可知∠ AB ′ E =90°, AB = AB ′ .∴四边形 ABEB ′是正方形,∴∠ B ′ EC = 90°, BE = AB = 3;②点 B ′落在 AC 上时,∵四边形 ABCD 是矩形,∴∠ B = 90°.由折叠可知∠ AB ′E = 90°,AB = AB ′= 3,BE = B ′ E ,∴∠ EB ′C = 90°﹒在 Rt △ABC 中,AB = 3,BC = 4,∴ AC = 32+ 42= 5.∴ CB ′= AC -AB ′= 5- 3= 2.在 Rt △ B ′CE 中,设 B ′ E = BE = x ,则 CE = 4- x , x 2+22= (4- x)2,解得 x =32,即 BE =32.综上所述, BE 的长为 3 或32﹒3. 证明: (1)∵∠ ACB =90°, AC = BC ,∴∠ B =∠ BAC = 45°, ∴∠ ACB -∠ ACD =∠ DCE -∠ ACD ,即∠ BCD =∠ ACE. ∵线段 CD 绕点 C 顺时针旋转 90°至 CE 位置, ∴∠ DCE = 90°, CD =CE.BC = AC ,在△ BCD 和△ ACE 中, ∠BCD =∠ ACE ,新 - 课 - 标 - 第 - 一 - 网CD = CE ,∴△ BCD ≌△ ACE ,∴∠ B =∠ CAE =45°. ∴∠ BAE =45°+ 45°= 90°,∴ AB ⊥AE .(2)∵ BC 2=AD ·AB ,BC = AC ,∴ AC 2= AD ·AB ,则 AD =AC,AC AB∵∠ DAC =∠ CAB ,∴△ DAC ∽△ CAB. ∴∠ CDA =∠ BCA = 90°.而∠ DAE = 90°,∠ DCE = 90°,∴四边形 ADCE 为矩形. 又∵ CD = CE ,∴四边形 ADCE 为正方形. 热点二1. 解: (1)AD 与 CF 还相等,理由如下: ∵四边形 ODEF 、四边形 ABCO 为正方形,∴∠ DOF =∠ COA = 90°,DO = OF , CO =OA . 又∵∠ COD +∠ DOF =∠ COD +∠ COA , ∴∠ COF =∠ AOD.∴△ COF ≌△ AOD (SAS) .∴ AD = CF . (2)如图 92,连接 DF ,交 EO 于 G ,则 DF ⊥ EO ,DG = OG =1EO =1. 2∴ GA = 4.∴ AD = DG 2+GA 2= 1+ 42 = 17. 由 (1),得 CF = AD = 17.图 92 图 932. (1) 证明: ∵四边形 ABCD 是矩形,∴∠ A =∠ ADC = 90°.∵ DE ⊥ CF ,∴∠ ADE =∠ DCF .∴△ ADE ∽△ DCF .∴ DE = AD.CF DCDE AD(2)当∠ B +∠ EGC =180 °时, CF = DC 成立. 在 AD 的延长线上取点 M ,使得 CF = CM ,如图 93,则∠ CMF =∠ CFM .∵ AB ∥CD ,∴∠ A =∠ CDM . ∵ AD ∥ BC ,∴∠ CFM =∠ FCB .∵∠ B +∠ EGC = 180°,∴∠ AED =∠ FCB , w W w .x K b 1.c o M ∴∠ CMF =∠ AED .∴△ ADE ∽△ DCM .∴ DE = AD ,即 DE =AD.CM DC CF DC新课标第一网 系列资料。
中考数学第一轮复习 三角形
类型之二 三角形的重要线段的应用 命题角度: 1.三角形的中线、角平分线、高 2.三角形的中位线
[2011·成都] 如图 19-1,在△ABC 中,D、E 分别是边 AC、 BC 的中点,若 DE=4,则 AB=___8_____.
1.三条边对应相等的两个三角形全等(简记为________)S.SS 2.两个角和它们的夹边对应相等的两个三角形全等(简记为________). ASA3.两个角和其中一个角的对边对应相等的两个三角形全等(简记为
________).
4.两条边和它们的夹角对应相等的两个三角形全等(简记为________).
命题角度: 1.等腰三角形的性质 2.等腰三角形“三线合一”的性质 3.等腰三角形两腰上的高(中线)、两底角的平分线的性质
[2011·株洲] 如图 21-1,△ABC 中,AB=AC,∠A=36°, AC 的垂直平分线交 AB 于 E,D 为垂足,连接 EC.
__5_0_°____.
图 19-2
全等三角形
考点1 全等图形及全等三角形
1.能够完全_____重__合_的两个图形称为全等形,全等图形的形状和 ______大__小都相同.
2.能够完全______重_合_的两个三角形叫全等三角形. [注意] 完全重合有两层含义:(1)图形的形状相同;(2)图形的大小相等
大于
[总结] 任意三角形中,最多有三个锐角,最少有两个锐角,最多有一个钝
角,最多有一个直角.
互余
类型之一 三角形三边的关系
命题角度: 1.利用三角形三边的关系判断三条线段能否组成三角形 2.利用三角形三边的关系求字母的取值范围 3.三角形的稳定性
中考数学一轮复习第14讲解直角三角形试题
卜人入州八九几市潮王学校第十四讲:解直角三角形知识梳理知识点1.直角三角形中边与角的关系 重点:纯熟掌握直角三角形中边与角的关系 难点:运用直角三角形中边与角的关系中,∠C=90°〔1〕边的关系: 〔2〕角的关系:〔3〕边与角的关系:sinA =cosB =a c ,cosA =sinB =bc ,tanA ==a b ,tanB =b a。
例1如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,那么以下结论正确的选项是〔〕A .3sin 2A =B .1tan 2A =C .3cos 2B =.tan 3B =解题思路:运用直角三角形的边角关系,选D例2.在AABC 中,∠C=90°,sinB=53,那么cosA 的值是() A .43B .34C .53D .54 解题思路:运用直角三角形的边角关系,例1选D ,例2选C练习1在Rt △ABC 中,∠C=90°,a=1,c=4,那么sinA 的值是()BCAαCBAA 、1515B 、41C 、31D 、415ΔABC 中,∠C=900,那么以下等式中不正确的选项是() 〔A 〕a=csinA ;〔B 〕a=bcotB ;〔C 〕b=csinB ;〔D 〕c=cos b B.重点:熟记特殊角的三角函数值 难点:纯熟计算三角函数值特殊角30°,45°,60°的三角函数值列表如下:例:计算:006045解题思路:0sin 60=0cos 45= 原式练习 1.计算2(2)tan 452cos 60-+-。
;2.计算:()2cos 602009π--+°知识点3.直角三角形的解法重点:利用直角三角形的边角关系解直角三角形 难点:理解题意,灵敏运用直角三角形中各元素间的关系是解直角三角形的根据,因此,解直角三角形的关键是正确选择直角三角形的边角关系式,使两个元素〔其中至少有一个元素是边〕和一个未知元素一共处于这个关系式中,其四种类型的解法如下表:一边一角条件解法斜边和一个锐角A①②③一条直角边和一个锐角A①②③两边斜边和一条直角边①②利用求A③两条直角边①②利用,求A③例1如图,AC=1,求BD。
2014中考数学复习课件14三角形及性质-第一轮复习第四单元三角形
A `
E B
30° D
F
C
第 15 题 3
考点 直角三角形的性质和判定 如图,∠BAM=30° ,其中 AB=2 3 ,点 P 是 AM 上的动点, 连接 BP, 当 AP= 时, 3或 4 △ABP 是直角三角形。
30°
30°
考点 直角三角形的性质和判定
( 2013 哈尔滨 19)在△ ABC 中, AB= 2 2 , BC=1, ∠ ABC=45° ,以 AB 为一边作等腰直角三角形 ABD,使 ∠ABD=90° ,连接 CD,则线段 CD 的长为 5或 13 .
3.(2013· 湘西州)如图,一副分别含有 30° 和 45° 角 的两个直角三角板,拼在一起,其中∠C=90° ,∠B= 45° , ∠E=30° ,则∠BFD 的度数是( A A.15° C.30° B.25° D.10° )
解 析: ∵∠ E= 30° , ∴∠C DF = 60° .∵∠C DF 是 △ BDF 的外角,∴∠BFD= ∠C DF-∠B= 60° - 45° = 15° .故选 A.
2014中考复习第一轮
第14讲
三角形及性质
第14讲
三角形及性质
│考点随堂练│
考点一 三角形定义及其分类 1.定义:三条线段首尾顺次连接所成的图形叫三角形
2.按边分为:
三角形 底边和腰不相等的等腰三角形 等腰三角形 等边三角形
不等边三角形 三边互不相等
3.按角分为:
三角形 锐角三角形 斜三角形 钝角三角形
直角三角形
考点二
一般三角形的性质
1.三角形的两边之和大于第三边,两边之差小于第三边. 2.三角形的内角和是180° 3.三角形的外角等于与它不相邻的两个内角的和,三角形的 外角大于任何一个和它不相邻的内角. 4.如果三角形的三条边固定,那么三角形的形状和大小就 完全确定了,三角形的这个特征,叫做三角形的稳定性.
2024年中考第一轮复习直角三角形 课件
[解析] 设AB=x,则AC=x-2.由勾股定理,
.
得x2-(x-2)2=82.解得x=17.
■ 知识梳理
勾股定理
直角三角形两条直角边的平方和等于⑥ 斜边的平方
勾股定理
如果三角形中两边的平方和等于第三边的⑦ 平方 ,那么这个三角形
的逆定理 是直角三角形
勾股数
能够成为直角三角形三条边长的三个正整数,称为勾股数
∴AD=BC,∠A=∠B=∠CFE=90°,AB∥CD,∴∠AED=∠CDF,∠A=∠CFD=90°,
AD=CF,∴△ADE≌△FCD,∴ED=CD=x,∴FD=x-1,
在Rt△CFD中,FD2+CF2=CD2,∴(x-1)2+32=x2,解得x=5,∴CD=5.故选B.
考向三
勾股定理与拼图
例 3 [2020·孝感]如图 19-11①,四个全等的直角三角形围成一个大正方形,中间是个
图19-6
∴∠BEC=90°,∠BFC=90°,
1
2
∵G 是 BC 的中点,∴EG=FG= BC=5,
∵D 是
1
EF 的中点,∴ED= EF=3,GD⊥EF,
2
∴∠EDG=90°.在 Rt△ EDG 中,
由勾股定理得,DG= 2 - 2 =4,故答案为 4.
考向二
利用勾股定理进行计算
例2 [2020·宜宾]如图19-7,在Rt△ABC中,∠ACB=90°,D是AB的中点,BE平分
∠ABC交AC于点E,连结CD交BE于点O.若AC=8,BC=6,则OE的长是
.
图19-7
【方法点析】勾股定理是求线段长的重要工具,主要应用:(1)已知直角三角形的
两边长求第三边长;(2)已知直角三角形的一边长求另两边的关系;(3)用于证明平
中考数学一轮复习第四章几何初步与三角形第三节全等三角形同步测试题及答案.doc
学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第三节全等三角形姓名:________ 班级:________ 用时:______分钟1.下列说法正确的是( )A.两个等边三角形一定全等B.腰对应相等的两个等腰三角形全等C.形状相同的两个三角形全等D.全等三角形的面积一定相等2.如图,在▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,那么添加的条件不能为( )A.BE=DF B.BF=DEC.AE=CF D.∠1=∠23.如图,在方格纸中,以AB为一边作△AB P,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个B.2个C.3个D.4个4.(2017·四川眉山中考)如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F.若▱ABCD的周长为18,OE=1.5,则四边形EFCD的周长为( )A.14 B.13 C.12 D.105.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为______.6.如图,在△ABC和△ED B中,∠C=∠EBD=90°,点E在AB上.若△ABC≌△EDB,AC=4,BC=3,则AE=______.7.(2019·易错题)如图,在平面直角坐标系中,A,B两点分别在x轴、y轴上,OA=3,OB=4,连结AB.点P在平面内,若以点P,A,B为顶点的三角形与△AOB全等(点P与点O不重合),则点P的坐标为_______________________.8.(2018·广西桂林中考)如图,点A,D,C,F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.相交于点G,H,若AB=CD,求证:AG=DH.10.如图,△ABC≌△ADE且BC,DE交于点O,连结BD,CE,则下列四个结论:①BC=DE,②∠ABC=∠ADE,③∠BAD=∠CAE,④BD=CE.其中一定成立的有( )A.1个B.2个C.3个D.4个11.在平面直角坐标系内,点O为坐标原点,A(-4,0),B(0,3).若在该坐标平面内有以点P(不与点A,B,O重合)为一个顶点的直角三角形与Rt△ABO全等,且这个以点P为顶点的直角三角形与Rt△ABO有一条公共边,则所有符合条件的三角形个数为( )A.9 B.7C.5 D.312.如图,△ABC为等边三角形,D,E分别是AC,BC上的点,且AD=CE,AE与BD相交于点P,BF⊥AE 于点F.若BP=4,则PF的长为( )A.2 B.3C.1 D.813.在矩形ABCD中,AD=2AB=4,E是AD的中点,一块足够大的三角板的直角顶点与点E重合,将三角板绕点E旋转,三角板的两直角边分别交AB,BC(或它们的延长线)于点M,N,设∠AEM=α(0°<α<90°),给出下列结论:①AM=CN;②∠AME=∠BNE;③BN-AM=2;④S△EMN=2cos2α.上述结论中正确的个数是( )A.1 B.2 C.3 D.414.如图,以△ABC的三边为边分别作等边△ACD,△ABE,△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=120°时,四边形AEFD是正方形.其中正确的结论是________(请写出正确结论的序号).15.(2017·陕西中考)四边形ABCD中,AD=AB,∠BAD=∠BCD=90°,连结AC.若AC=6,则四边形ABCD 的面积为________.16.(2017·四川广安中考)如图,四边形ABCD是正方形,E,F分别是AB,AD上的一点,且BF⊥CE,垂足为点G.求证:AF=BE.17.(2017·江苏常州中考)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.18.(2017·湖北恩施州中考)如图,△ABC,△CDE均为等边三角形,连结BD,AE交于点O,BC与AE交于点P.求证:∠AOB=60°.19.(2017·重庆中考)在△ABM中,∠ABM=45°,A M⊥BM,垂足为M.点C是BM延长线上一点,连结AC.(1)如图1,若AB=32,BC=5,求AC的长.(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连结ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.参考答案【基础训练】 1.D 2.C 3.C 4.C5.4 6.1 7.(3,4)或(-2125,2825)或(9625,7225)8.(1)证明:∵AC=AD +DC ,DF =DC +CF ,且AD =CF , ∴AC=DF.在△ABC 和△DEF 中,∵⎩⎪⎨⎪⎧AB =DE ,BC =EF ,AC =DF ,∴△ABC≌△DEF(SSS).(2)解:由(1)可知,∠F=∠ACB, ∵∠A=55°,∠B=88°,∴∠ACB=180°-(∠A+∠B)=180°-(55°+88°)=37°, ∴∠F=∠ACB=37°. 9.证明:∵AB∥C D ,EC∥BF,∴四边形BFCE 是平行四边形,∠A=∠D, ∴∠BEC=∠BFC,BE =CF , ∴∠AEG=∠DFH. ∵AB=CD ,∴AE=DF. 在△AEG 和△DFH 中, ∵⎩⎪⎨⎪⎧∠A=∠D,AE =DF ,∠AEG=∠DFH, ∴△AEG≌△DFH(ASA), ∴AG=DH. 【拔高训练】10.C 11.A 12.A 13.C 14.①② 15.18∴AB=BC ,∠A=∠ABC=90°, ∴∠AFB+∠ABF =90°.∵BF⊥CE,∴∠BEC+∠ABF=90°, ∴∠AFB=∠BEC(等角的余角相等). 在△AFB 和△BEC 中, ∵⎩⎪⎨⎪⎧∠A=∠EBC,∠AFB=∠BEC,AB =BC , ∴△AFB≌△BEC(AAS), ∴AF=BE.17.(1)证明:∵∠BCE=∠A CD =90°, ∴∠BCA=∠ECD. 在△BCA 和△ECD 中, ∵⎩⎪⎨⎪⎧∠BCA=∠ECD,∠BAC=∠D,BC =EC , ∴△BCA≌△ECD,∴AC=CD. (2)解:∵AC=AE ,∴∠AEC=∠ACE. 又∵∠ACD=90°,AC =CD , ∴△ACD 是等腰直角三角形, ∴∠DAC=45°,∴∠AEC=12(180°-∠DAC)=12(180°-45°)=67.5°,∴∠DEC=180°-∠AEC=180°-67.5°=112.5°. 18.证明:在△ACE 和△BCD 中, ∵⎩⎪⎨⎪⎧AC =BC ,∠ACE=∠BCD,CE =CD , ∴△ACE≌△BCD, ∴∠CAE=∠CBD,∴∠AOB=180°-∠BAO-∠ABO =180°-∠BAO-∠ABC-∠CBD=180°-∠ABC-∠BAO-∠CAE=180°-60°-60°=60°.【培优训练】19.解:(1)∵AM⊥BM,∴∠AMB=∠AMC=90°.∵∠ABM=45°,∴∠ABM=∠BAM=45°,∴AM=BM.∵AB=32,∴AM=BM=3.∵BC=5,∴MC=2,∴AC=AM2+CM2=13.(2)证明:如图,延长EF到点G,使得FG=EF,连结BG.∵DM=MC,∠BMD=∠A MC=90°,BM=AM,∴△BMD≌△AMC,故AC=BD.又CE=AC,因此BD=CE.∵点F是线段BC的中点,∴BF=FC,由BF=FC,∠BFG=∠EFC,FG=FE,∴△BFG≌△CFE,故BG=CE,∠G=∠CEF,∴BD=CE=BG,∴∠BDG=∠G,∴∠BDF=∠CEF.中考数学知识点代数式一、重要概念分类:1.代数式与有理式的一个数或字母也是代数式。
中考数学一轮复习全全等三角形截长补短知识点-+典型题及答案
中考数学一轮复习全全等三角形截长补短知识点-+典型题及答案一、全等三角形截长补短1.阅读与理解:折纸,常常能为证明一个命题提供思路和方法.例如,在ABC 中,AB AC >(如图),怎样证明C B ∠>∠呢?分析:把AC 沿A ∠的角平分线AD 翻折,因为AB AC >,所以,点C 落在AB 上的点C '处,即AC AC '=,据以上操作,易证明ACD AC D '△△≌,所以AC D C '∠=∠,又因为AC D B '∠>∠,所以C B ∠>∠.感悟与应用:(1)如图(a ),在ABC 中,90ACB ∠=︒,30B ∠=︒,CD 平分ACB ∠,试判断AC 和AD 、BC 之间的数量关系,并说明理由;(2)如图(b ),在四边形ABCD 中,AC 平分BAD ∠,16AC =,8AD =,12DC BC ==,①求证:180B D ∠+∠=︒;②求AB 的长.2.(1)问题背景:如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°.E ,F 分别是BC ,CD 上的点,且∠EAF =60°,请探究图中线段BE ,EF ,FD 之间的数量关系是什么?小明探究此问题的方法是:延长FD 到点G ,使DG =BE ,连结AG .先证明△ABE ≌△ADG ,得AE =AG ;再由条件可得∠EAF =∠GAF ,证明△AEF ≌△AGF ,进而可得线段BE ,EF ,FD 之间的数量关系是 .(2)拓展应用: 如图2,在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =12∠BAD .问(1)中的线段BE ,EF ,FD 之间的数量关系是否还成立?若成立,请给出证明;若不成立,请说明理由.3.如图,已知 B (-1, 0) , C (1, 0) , A 为 y 轴正半轴上一点, AB = AC ,点 D 为第二象限一动点,E 在 BD 的延长线上, CD 交 AB 于 F ,且∠BDC = ∠BAC .(1)求证: ∠ABD = ∠ACD ;(2)求证: AD 平分∠CDE ;(3)若在 D 点运动的过程中,始终有 DC = DA + DB ,在此过程中,∠BAC 的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC 的度数?4.已知,90POQ ∠=,分别在边OP ,OQ 上取点A ,B ,使OA OB =,过点A 平行于OQ 的直线与过点B 平行于OP 的直线相交于点C .点E ,F 分别是射线OP ,OQ 上动点,连接CE ,CF ,EF .(1)求证:OA OB AC BC ===;(2)如图1,当点E ,F 分别在线段AO ,BO 上,且45ECF ∠=时,请求出线段EF ,AE ,BF 之间的等量关系式;(3)如图2,当点E ,F 分别在AO ,BO 的延长线上,且135ECF ∠=时,延长AC 交EF 于点M ,延长BC 交EF 于点N .请猜想线段EN ,NM ,FM 之间的等量关系,并证明你的结论.5.如图,ABC 中,点D 在AC 边上,且1902BDC ABD ∠=+∠.(1)求证:DB AB =;(2)点E 在BC 边上,连接AE 交BD 于点F ,且AFD ABC ∠=∠,BE CD =,求ACB ∠的度数.(3)在(2)的条件下,若16BC =,ABF 的周长等于30,求AF 的长.6.阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD 中,∠BAD=∠BCD=90°,AB=AD ,若AC=2cm ,求四边形ABCD 的面积. 解:延长线段CB 到E ,使得BE=CD ,连接AE ,我们可以证明△BAE ≌△DAC ,根据全等三角形的性质得AE=AC=2, ∠EAB=∠CAD ,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S 四边形ABCD =S △ABC +S △ADC =S △ABC +S △ABE =S △AEC ,这样,四边形ABCD 的面积就转化为等腰直角三角形EAC 面积.(1)根据上面的思路,我们可以求得四边形ABCD 的面积为 cm 2.(2)请你用上面学到的方法完成下面的习题.如图2,已知FG=FN=HM=GH+MN=2cm ,∠G=∠N=90°,求五边形FGHMN 的面积. 7.把两个全等的直角三角板的斜边重合,组成一个四边形ACBD ,以D 为顶点作MDN ∠,交边AC ,BC 于点M ,N .(1)如图(1),若30ACD ∠=︒,60MDN ∠=︒,当MDN ∠绕点D 旋转时,AM ,MN ,BN 三条线段之间有何种数量关系?证明你的结论;(2)如图(2),当90ACD MDN ∠+∠=︒时,AM ,MN ,BN 三条线段之间有何数量关系?证明你的结论;(3)如图(3),在(2)的条件下,若将M ,N 分别改在CA ,BC 的延长线上,完成图(3),其余条件不变,则AM ,MN ,BN 之间有何数量关系(直接写出结论,不必证明).8.如图,在菱形ABCD 中,∠A =60°,E 为菱形ABCD 内对角线BD 左侧一点,连接BE 、CE 、DE .(1)若AB =6,求菱形ABCD 的面积;(2)若∠BED =2∠A ,求证:CE =BE+DE .9.(1)如图①,Rt ABC 中,AB AC =,90BAC ∠=︒,D 为BC 边上的一点,将ABD △绕点A 逆时针旋转90°至ACF ,作AE 平分DAF ∠交BC 于点E ,易证明:222BD CE DE +=.若2DE BD =,则以BD 、DE 、EC 为边的三角形的形状是______;(2)如图②,四边形ABCD 中,90BAD BCD ∠=∠=︒,AB AD =,若四边形ABCD 的面积是32,2CD =,求BC 的长度;(3)ABC 是以BC 为底的等腰直角三角形,点D 是ABC 所在平面内一点,且满足4=AD ,6BD =,2CD =,请画草图并求ADC ∠的度数.10.如图,//AD BC ,点E 在线段AB 上,DE 、CE 分别是ADC ∠、BCD ∠的角平分线,若3AD =,2BC =,求CD 的长.【参考答案】***试卷处理标记,请不要删除一、全等三角形截长补短1.(1)BC−AC=AD;理由详见解析;(2)①详见解析;②AB=14【分析】(1)在CB上截取CE=CA,连接DE,证△ACD≌△ECD得DE=DA,∠A=∠CED=60°,据此∠CED=2∠CBA,结合∠CED=∠CBA+∠BDE得出∠CBA=∠BDE,即可得DE=BE,进而得出答案;(2)①在AB上截取AM=AD,连接CM,先证△ADC≌△AMC,得到∠D=∠AMC,CD=CM,结合CD=BC知CM=CB,据此得∠B=∠CMB,根据∠CMB+∠CMA=180°可得;②设BN=a,过点C作CN⊥AB于点N,由CB=CM知BN=MN=a,CN2=BC2−BN2=AC2−AN2,可得关于a的方程,解之可得答案.【详解】解:(1)BC−AC=AD.理由如下:如图(a),在CB上截取CE=CA,连接DE,∵CD平分∠ACB,∴∠ACD=∠ECD,又CD=CD,∴△ACD≌△ECD(SAS),∴DE=DA,∠A=∠CED=60°,∴∠CED=2∠CBA,∵∠CED=∠CBA+∠BDE,∴∠CBA=∠BDE,∴DE=BE,∴AD=BE,∵BE=BC−CE=BC−AC,∴BC−AC=AD.(2)①如图(b ),在AB 上截取AM =AD ,连接CM ,∵AC 平分∠DAB ,∴∠DAC =∠MAC ,∵AC =AC ,∴△ADC ≌△AMC (SAS ),∴∠D =∠AMC ,CD =CM =12,∵CD =BC =12,∴CM =CB ,∴∠B =∠CMB ,∵∠CMB +∠CMA =180°,∴∠B +∠D =180°;②设BN =a ,过点C 作CN ⊥AB 于点N ,∵CB =CM =12,∴BN =MN =a ,在Rt △BCN 中,2222212CN BC BN a --==,在Rt △ACN 中,2222216(8)CN AC AN a --+==, 则22221216(8)a a --+=, 解得:a =3,即BN =MN =3,则AB =8+3+3=14,∴AB=14.【点睛】本题考查了四边形的综合题,以及全等三角形的判定与性质、勾股定理、等腰三角形的判定与性质;本题有一定难度,需要通过作辅助线证明三角形全等才能得出结果. 2.(1)EF =BE +DF ;(2)结论EF =BE +DF 仍然成立;证明见解析.【分析】(1)延长FD 到点G .使DG=BE .连结AG ,即可证明△ABE ≌△ADG ,可得AE=AG ,再证明△AEF ≌△AGF ,可得EF=FG ,即可解题;(2)延长FD 到点G .使DG=BE .连结AG ,即可证明△ABE ≌△ADG ,可得AE=AG ,再证明△AEF ≌△AGF ,可得EF=FG ,即可解题.【详解】(1)EF =BE +DF ,理由如下:在△ABE 和△ADG 中,90DG BE B ADG AB AD ︒=⎧⎪∠=∠=⎨⎪=⎩,∴△ABE ≌△ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF=12∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF ,∴∠EAF =∠GAF ,在△AEF 和△GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF ;故答案为:EF =BE +DF .(2)结论EF =BE +DF 仍然成立;理由:延长FD 到点G .使DG =BE .连结AG ,如图2,∵∠B +∠ADC =180°,∠ADC +∠ADG =180°,∴∠B =∠ADG ,在△ABE 和△ADG 中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF =12∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF ,∴∠EAF =∠GAF ,在△AEF 和△GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF .【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,直角三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.3.(1)见解析;(2)见解析;(3)∠BAC 的度数不变化.∠BAC=60°.【解析】【分析】(1)根据三角形内角和定理等量代换可得结论;(2)作AM ⊥CD 于点M ,作AN ⊥BE 于点N ,证明△ACM ≌△ABN 即可;(3)用截长补短法在CD 上截取CP=BD ,连接AP ,证明△ABD ≌△ACP ,由全等性质可知△ADP 是等边三角形,易知∠BAC 的度数.【详解】(1)∵∠BDC=∠BAC ,∠DFB=∠AFC ,又∵∠ABD+∠BDC+∠DFB=∠BAC+∠ACD+∠AFC=180°,∴∠ABD=∠ACD ;(2)过点A 作AM ⊥CD 于点M ,作AN ⊥BE 于点N .则∠AMC=∠ANB=90°.∵OB=OC ,OA ⊥BC ,∴AB=AC ,∵∠ABD=∠ACD ,∴△ACM ≌△ABN (AAS )∴AM=AN .∴AD 平分∠CDE .(到角的两边距离相等的点在角的平分线上);(3)∠BAC 的度数不变化.在CD 上截取CP=BD ,连接AP .∵CD=AD+BD ,AD=PD .∵AB=AC ,∠ABD=∠ACD ,BD=CP ,∴△ABD ≌△ACP .∴AD=AP ;∠BAD=∠CAP .∴AD=AP=PD ,即△ADP 是等边三角形,∴∠DAP=60°.∴∠BAC=∠BAP+∠CAP=∠BAP+∠BAD=60°.【点睛】本题考查了三角形的综合,主要考查了三角形内角和定理、全等三角形的证明和性质,等腰等边三角形的性质和判定,采用合适的方法添加辅助线构造全等三角形是解题的关键. 4.(1)见解析;(2)EFAE BF =+;(3)222MN EN FM =+,见解析 【分析】(1)连接AB ,通过90POQ ∠=,OA OB =得到AOB 为等腰直角三角形,进而得到45OAB OBA ∠=∠=,根据过点A 平行于OQ 的直线与过点B 平行于OP 的直线相交于点C ,可推出45CBA ∠=,45BAC ∠=,最后通过证明AOB ≌ACB △,可以得出结论;(2)在射线AP 上取点D ,使AD BF =,连接CD ,通过证明CAD ≌CBF ,得到CD CF =,ACD BCF ∠=∠,再结合45ECF ∠=,90ACB ∠=推导证明ECD ≌ECF △,得到ED EF =,最后等量代换线段即可求解;(3)延长AO 到点D ,使得AD BF =,连接CD ,通过证明CAD ≌CBF ,得到CD CF =,ACD BCF ∠=∠,再结合135ECF ∠=,推导证明ECD ≌ECF △,得到D CFM ∠=∠,根据D CFB ∠=∠,等量代换可知CFM CFB ∠=∠,又因为//AC OQ ,推出MCF CFB ∠=∠,进而得到MC MF =,同理可证CN EN =,最后根据勾股定理即可求解.【详解】解:(1)证明:连接AB .90POQ ∠=,OA OB =,∴AOB 为等腰直角三角形,∴45OAB OBA ∠=∠=,又//BC OP ,且90POQ ∠=,∴BC OQ ⊥,∴90CBF ∠=,∴45CBA ∠=,同理,45BAC ∠=,在AOB 与ACB △中OAB CAB AB ABOBA CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴AOB ≌ACB △()ASA ,∴90AOB ACB ∠=∠=,OA OB AC BC ===;(2)如图1,在射线AP 上取点D ,使AD BF =,连接CD .在CAD 与CBF 中CA CB CAD CBF AD BF =⎧⎪∠=∠⎨⎪=⎩,∴CAD ≌CBF ()SAS ,∴CD CF =,ACD BCF ∠=∠,45ECF ∠=,90ACB ∠=,∴45ACE BCF ∠+∠=,∴45ACE ACD ECD ∠+∠=∠=,∴ECD ECF ∠=∠,在ECD 与ECF △中CD CF ECD ECF CE CE =⎧⎪∠=∠⎨⎪=⎩∴ECD ≌ECF △()SAS ,∴ED EF =, 又ED AD AE BF AE =+=+,∴EF AE BF =+. (3)222MN EN FM =+.证明如下:如图2,延长AO 到点D ,使得AD BF =,连接CD .∴90CAD CBF ∠=∠=,在CAD 与CBF 中CA CB CAD CBF AD BF =⎧⎪∠=∠⎨⎪=⎩,∴CAD ≌CBF ()SAS ,∴CD CF =,ACD BCF ∠=∠,90ACD DCB ∠+∠=,∴90BCF DCB DCF ∠+∠==∠,∴90FCD BCA ∠=∠=,135ECF ∠=,∴36090135135ECD ∠=--=,∴ECF ECD ∠=∠,在ECD 与ECF △中EC EC ECD ECF CD CF =⎧⎪∠=∠⎨⎪=⎩,∴ECD≌ECF△()SAS,∴D CFM∠=∠,CAD≌CBF,∴D CFB∠=∠,∴CFM CFB∠=∠,//AC OQ,∴MCF CFB∠=∠,∴CFM MCF∠=∠,∴MC MF=,同理可证:CN EN=,∴在Rt MCN△中,由勾股定理得:22222MN CN CM EN FM=+=+.【点睛】本题综合考查了全等三角形的性质和判定,勾股定理以及正方形的有关知识,通过添加辅助线构造全等三角形,通过证明全等三角形得到线段之间的关系是解题的关键.5.(1)见解析;(2)ACB∠=60°;(3)AF=11【分析】(1)根据三角形内角与外角之间的关系建立等式,运用等量代换得出A BDA∠=∠,证得DB AB=;(2)作CH=BE,连接DH,根据角的数量关系证得EAC C∠=∠,再由三角形全等判定得△BDH≌△ABE,最后推出△DCH为等边三角形,即可得出ACB∠=60°;(3)借助辅助线AO⊥CE,构造直角三角形,并结合平行线构造△BFE∽△BDH,建立相应的等量关系式,完成等式变形和求值,即可得出AF的值.【详解】(1)证明:∵∠BDC=90°+12∠ABD,∠BDC=∠ABD+∠A,∴∠A=90°-12∠ABD.∵∠BDC+∠BDA=180°,∴∠BDA=180°-∠BDC=90°-12∠ABD.∴∠A=∠BDA=90°-12∠ABD.∴DB=AB.解:(2)如图1,作CH=BE,连接DH,∵∠AFD=∠ABC,∠AFD=∠ABD+∠BAE,∠ABC=∠ABD+∠DBC,∴∠BAE=∠DBC.∵由(1)知,∠BAD=∠BDA,又∵∠EAC=∠BAD-∠BAE,∠C=∠ADB-∠DBC,∴∠CAE=∠C.∴AE=CE.∵BE=CH,∴BE+EH=CH+EH.即BH=CE=AE.∵AB=BD,∴△BDH≌△ABE.∴BE=DH.∵BE=CD,∴CH=DH=CD.∴△DCH为等边三角形.∴∠ACB =60°.(3)如图2,过点A作AO⊥CE,垂足为O.∵DH∥AE,∴∠CAE=∠CDH=60°,∠AEC=∠DHC=60°.∴△ACE是等边三角形.设AC=CE=AE=x,则BE=16-x,∵DH∥AE,∴△BFE∽△BDH.∴16BF BE EF x BD BH DH x-===. ∴1616x x BF BD AB x x--==, ()21616x x EF DH x x--==. ∵△ABF 的周长等于30,即AB +BF +AF =AB +16x AB x -+x -()216x x-=30, 解得AB =16-8x .在Rt △ACO 中,AC =2x ,AO , ∴BO =16-2x . 在Rt △ABO 中,AO 2+BO 2=AB 2, 即2221616428x x x x ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭. 解得10x =(舍去)225621x =. ∴AC =25621. ∴AF =11.【点睛】 本题考查了三角形角的性质、等边三角形的性质与判定以及全等三角形的判定与性质的综合应用,解题的关键是能熟练掌握三角形的性质与全等判定并借助辅助线构造特殊三角形的能力,.6.(1)2;(2)4【分析】(1)根据题意可直接求等腰直角三角形EAC 的面积即可;(2)延长MN 到K ,使NK=GH ,连接FK 、FH 、FM ,由(1)易证FGH FNK ≌,则有FK=FH ,因为HM=GH+MN 易证FMK FMH ≌,故可求解. 【详解】(1)由题意知21=22ABC ADC ABC ABE AEC ABCD AC S SS S S S =+=+==四边形, 故答案为2;(2)延长MN 到K ,使NK=GH ,连接FK 、FH 、FM ,如图所示:FG=FN=HM=GH+MN=2cm ,∠G=∠N=90°,∴∠FNK=∠FGH=90°,∴FGH FNK ≌,∴FH=FK , 又FM=FM ,HM=KM=MN+GH=MN+NK ,∴FMK FMH ≌,∴MK=FN=2cm , ∴12=242FGH HFM MFN FMK FGHMN S SS S S MK FN =++=⨯⋅=五边形. 【点睛】本题主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用. 7.(1)AM BN MN +=;证明见解析;(2)AM BN MN +=;证明见解析;(3)补图见解析;BN AM MN -=;证明见解析.【分析】(1)延长CB 到E ,使BE=AM ,证△DAM ≌△DBE ,推出∠BDE=∠MDA ,DM=DE ,证△MDN ≌△EDN ,推出MN=NE 即可;(2)延长CB 到E ,使BE=AM ,证△DAM ≌△DBE ,推出∠BDE=∠MDA ,DM=DE ,证△MDN ≌△EDN ,推出MN=NE 即可;(3)在CB 截取BE=AM ,连接DE ,证△DAM ≌△DBE ,推出∠BDE=∠MDA ,DM=DE ,证△MDN ≌△EDN ,推出MN=NE 即可.【详解】(1)AM BN MN +=.证明如下:如图,延长CB 到E ,使BE AM =,连接DE .90A CBD ∠=∠=︒,90A EBD ∴∠=∠=︒.ADC BDC ≌,AD BD ∴=.在DAM △和DBE 中,AM BE A DBE AD BD =⎧⎪∠=∠⎨⎪=⎩,()DAM DBE SAS ∴≌,BDE MDA ∴∠=∠,DM DE =.MDN ADC BDC ∠=∠=∠,ADM NDC BDE ∴∠=∠=∠,MDC NDB ∠=∠,MDN NDE ∴∠=∠.在MDN △和EDN △中,DM DE MDN EDN DN DN =⎧⎪∠=∠⎨⎪=⎩,()MDN EDN SAS ∴△≌△,MN NE ∴=.NE BE BN AM BN =+=+,AM BN MN ∴+=;(2)AM BN MN +=.证明如下:如图,延长CB 到E ,使BE AM =,连接DE .90A CBD ∠=∠=︒,90A DBE ∴∠=∠=︒.ADC BDC ≌,AD BD ∴=,ADC CDB ∠=∠.在DAM △和DBE 中,AM BE A DBE AD BD =⎧⎪∠=∠⎨⎪=⎩,()DAM DBE SAS ∴≌,BDE MDA ∴∠=∠,DM DE =.90MDN ACD ∠+∠=︒,90ACD ADC ∠+∠=︒,ADC CDB ∠=∠,NDM ADC CDB ∴∠=∠=∠,ADM CDN BDE ∴∠=∠=∠,CDM NDB ∠=∠,MDN NDE ∴∠=∠.在MDN △和EDN △中,MDN EDN DN DN ⎪∠=∠⎨⎪=⎩,()MDN EDN SAS ∴△≌△,MN NE ∴=.NE BE BN AM BN =+=+,AM BN MN ∴+=;(3)补充完成题图,如图所示.BN AM MN -=.证明如下:如上图,在CB 上截取BE=AM ,连接DE .90CDA ACD ∠+∠=︒,90MDN ACD ∠+∠=︒,MDN CDA ∴∠=∠,MDA CDN ∴∠=∠.90B CAD ∠=∠=︒,90B DAM ∴∠=∠=︒.在DAM △和DBE 中,AM BE DAM DBE AD BD =⎧⎪∠=∠⎨⎪=⎩,()DAM DBE SAS ∴≌,BDE ADM CDN ∴∠=∠=∠,DM DE =.ADC BDC MDN ∠=∠=∠,ADN CDE ∴∠=∠,MDN EDN ∴∠=∠.在MDN △和EDN △中,MDN EDN DN DN ⎪∠=∠⎨⎪=⎩,()MDN EDN SAS ∴△≌△,MN NE ∴=.NE BN BE BN AM =-=-,BN AM MN ∴-=.【点睛】本题考查了全等三角形的性质和判定的应用,作出辅助线构造全等三角形是解题的关键. 8.(1)183;(2)见解析【分析】(1)过点B 作BH ⊥AD 于H ,由直角三角形的性质可求BH 的长,由菱形的面积公式可求解;(2)延长DE 至M ,使ME =BE ,连接MB ,由题意可证△ABD 是等边三角形,△BCD 是等边三角形,△BEM 是等边三角形,可得∠CBD =∠ABD =60°=∠MBE ,AB =BD =BC ,BM =BE ,由“SAS”可证∴△MBD ≌△EBC ,可得MD =EC ,即可得结论.【详解】解:(1)如图,过点B 作BH ⊥AD 于H ,∵四边形ABCD 是菱形,∴AB =AD =6,∵∠A =60°,BH ⊥AD ,∴∠ABH =30°,∴AH =12AB =3,BH =3AH =33, ∴菱形ABCD 的面积=AD×BH =6×33=183;(2)如图,延长DE 至M ,ME =BE ,连接MB ,∵四边形ABCD 是菱形,∴AB =AD =CD =BC ,∠A =60°=∠BCD ,∴△ABD 是等边三角形,△BCD 是等边三角形,∴∠CBD =∠ABD =60°,AB =BD =BC ,∵∠BED =2∠A =120°,∴∠BEM =60°,又∵BE =ME ,∴△BEM 是等边三角形,∴BM =BE ,∠MBE =∠DBC =60°,∴∠MBD =∠EBC ,∴△MBD ≌△EBC (SAS ),∴MD =EC ,∴CE =BE+DE .【点睛】本题主要考查了菱形的性质应用,结合等边三角形的性质是解题的关键.9.(1)等腰直角三角形;(2)3)图见解析,135°或45°【分析】(1)要判断以BD 、DE 、EC 为边的三角形形状,根据题干中所给条件,只需证明BD EC =即可;(2)先构造出ABE ADC △≌△,进而判断出CAE 是等腰直角三角形,四边形的面积等于ACE △的面积,由此求出AC ,CE 即可;(3)分情况讨论:①当点D 在ABC 内时,作AE AD ⊥,使AE AD =,连接CE ,DE ,利用全等三角形的性质以及勾股定理的逆定理解决问题;②当点D 在ABC 外时,作AE AD ⊥,使AE AD =,连接CE ,DE ,利用全等三角形的性质以及勾股定理的逆定理解决问题.【详解】解:(1)222BD CE DE +=,∴以BD 、DE 、EC 为边的三角形是直角三角形,2DE =,设BD a =,则DE =,2222a EC a ∴+=,EC a ∴=,BD EC ∴=,∴以BD 、DE 、EC 为边的三角形的形状是等腰直角三角形.故答案:等腰直角三角形.(2)如图①,延长CB 至E ,使BE CD =,连接AE ,在四边形ABCD 中,90BAD BCD ∠=∠=︒,180ABC ADC ∴∠+∠=︒,180ABC ABE ∠+∠=︒,ABE ADC ∴∠=∠,在ABE △和ADC 中,,,,AB AD ABE ADC BE CD =⎧⎪∠=∠⎨⎪=⎩()ABE ADC SAS ∴△≌△,AE AC ∴=,BAE DAC ∠=∠,90CAE BAE BAC DAC BAC ∴∠=∠+∠=∠+∠=︒,212ACE S AC ∴=△, 四边形ABCD 的面积为32,ACE ABCD S S =△四边形, 21322AC ∴=, 8AC ∴=(负值已舍),282EC AC ∴==,82272BC EC BE ∴=-=-=.图①(3)①画图如图②,③.当点D 在ABC 内时,如图②,过点A 作AE AD ⊥,使AE AD =,连接CE ,DE , 90BAC DAE ∠=∠=︒,BAD CAE ∴∠=∠, 在BAD 和CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()BAD CAE SAS ∴≌,6BD CE ∴==,242DE ==2CD =,222EC ED CD ∴=+,90EDC ∴∠=︒,45ADE ∠=︒,4590135ADC ∴∠=︒+︒=︒;②当点D 在ABC 外时,如图③,过点A 作AE AD ⊥,使AE AD =,连接CE ,DE ,90BAC DAE ∠=∠=︒,BAD CAE ∴∠=∠,在BAD 和CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()BAD CAE SAS ∴≌,6BD CE ∴==, 242DE ==,2CD =,222EC ED CD ∴=+,90EDC ∴∠=︒,45ADE ∠=︒,45ADC ∴∠=︒.综上所述,ADC ∠的度数为135°或45°.图② 图③【点睛】本题考查了等腰三角形的判定和性质,全等三角形的判定和性质,勾股定理以及逆定理等知识,解题的关键是利用旋转法添加辅助线,构造全等三角形解决问题,用分类讨论的思想思考问题,属于中考压轴题.10.5【分析】如图,在DC 上截取DF DA =,连接EF ,先证明ADE FDE △≌△,得到AE EF =,5A ∠=∠,然后证明CEF CEB △≌△,得到CF BC =,即可求出答案.【详解】解:如图,在DC 上截取DF DA =,连接EF ,DE 是ADC ∠的角平分线,12∠∠∴=,在△ADE 和△FDE 中,,12,,AD DF DE DE =⎧⎪∠=∠⎨⎪=⎩()ADE FDE SAS ∴△≌△,AE EF ∴=,5A ∠=∠,//AD BC ,180A B ∴∠+∠=︒,56180∠+∠=︒,6B ∴∠=∠, CE 是BCD ∠的角平分线,34∴∠=∠,在CEF △和CEB △中,6,34,,B CE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()CEF CEB AAS ∴△≌△,CF BC ∴=,325CD DF CF AD BC ∴=+=+=+=.【点睛】本题考查了角平分线的性质,平行线的性质,全等三角形的判定和性质,证明ADE FDE △≌△是解题关键.。
(新课标)2014届中考数学查漏补缺第一轮基础复习 第20讲 等腰三角形课件 华东师大版
第20讲┃ 考点聚焦
(1)等腰三角形两腰上的高相等 (2)等腰三角形两腰上的中线相等 (3)等腰三角形两底角的平分线相等 (4)等腰三角形一腰上的高与底边的夹角等于顶角的一半 拓 (5)等腰三角形顶角的外角平分线与底边平行 展 (6)等腰三角形底边上任意一点到两腰的距离之和等于一 腰上的高 (7)等腰三角形底边延长线上任意一点到两腰距离之差等 于一腰上的高
第20讲┃ 考点聚焦 考点2 等腰三角形的判定
如果一个三角形有两个角相等,那么 这两个角所对的边也相等(简写成: 等角对等边 ____________) (1)一边上的高与这边上的中线重合的 三角形是等腰三角形 (2)一边上的高与这边所对的角的平分 线重合的三角形是等腰三角形 (3)一边上的中线与这边所对的角的平 分线重合的三角形是等腰三角形
第20讲┃ 归类示例
要证明一个三角形是等腰三角形,必须得到两边相等, 而得到两边相等的方法主要有: (1)通过等角对等边得两边相 等;(2)通过三角形全等得两边相等; (3)利用垂直平分线的性 质得两边相等.
第20讲┃ 归类示例 ► 类型之三 等腰三角形的多解问题
命题角度: 1. 遇到等腰三角形的问题时,注意边有腰与底之分, 角有底角和顶角之分; 2. 遇到高线的问题要考虑高在形内和形外两种情况.
定理
拓展
第20讲┃ 考点聚焦 考点3 等边三角形
定义
三边相等的三角形是等边三角形
相等 ,并且每一个 等边三角形的各角都 ______ 角都等于 ______ 60° 等边三角形是轴对称图形,有 ______ 3 条对 称轴 (1)三个角都相等的三角形是等边三角形 (2)有一个角等于 60°的等腰三角形是等 边三角形
图 20- 1
第20讲┃ 归类示例
数学中考总复习(一轮复习)第17讲全等三角形
第17讲全等三角形【考点总汇】一、全等三角形的性质及判定定理 1•性质(1) _________________________ 全等三角形的对应边,对应角 。
(2) ________________________________ 全等三角形的对应边的中线 _______________________ ,对应角平分线 _____________________________________ ,对应边上的高 __________ ,全等三角 形的周长 _________ ,面积 _________ 。
2•判定定理(1)三边分别 _________ 的两个三角形全等(简写“边边边”或“ _______ ”)。
微拨炉:已知两边和一角判定三角形全等时,没有“ SSA ”定理,即不能错用成“两边及一边对角相等的两个三角形全等”。
二、角的平分线1•性质:角的平分线上的点到角的两边的距离 ___________ 。
2•判定:角的内部到角的两边的距离相等的点在 ____________ 。
3•三角形的三条角平分线相交于一点,并且这一点到三条边的距离 微拨炉: 1•三角形的角平分线是一条线段,不是射线。
2•角的平分线的性质定理和判定定理互为逆定理。
注意分清题设和结论。
高频考点1、全等三角形的判定与性质 【范例】如图,在△ ABC 中,AB=CB ,■ ABC =90,D 为AB 延长线上一点,点 E 在BC 边上, 且 BE 二 BD ,连接 AE 、DE 、DC 。
(2)两边和它们的夹角分别________ 的两个三角形全等(简写“边角边”或 ”) (3)两角和它们的夹边分别________ 的两个三角形全等(简写“角边角”或”)(4)斜边和一条直角边分别 的两个直角三角形全等(简写“斜边、直角边”或 ”)(1)求证:△ ABE ◎△ CBD(2)若• CAE =30 [求• BDC 的度数D得分要领:判定全等三角形的基本思路1•已知两边:(1)找夹角(SAS) ; (2)找直角(HL或SAS) ; (3)找第三边(SSS)。
2014年中考复习三角形典型题试题精选(附答案)
新世纪教育网优选资料版权全部@新世纪教育网2014 年中考复习三角形典型题试题优选(含答案)一.选择题(共13 小题)1.( 2013?重庆)如图,AB∥ CD,AD均分∠ BAC,若∠ BAD=70°,那么∠ ACD的度数为()A. 40 °B. 35 °C. 50 °D. 45 °(1)(2)(5)2.( 2013?昭通)如图,AB ∥ CD ,DB ⊥ BC,∠ 2=50°,则∠ 1 的度数是()A. 40 °B. 50 °C. 60 °D. 140 °3.( 2013?南通)有 3cm,6cm,8cm,9cm 的四条线段,任选此中的三条线段构成一个三角形,则最多能构成三角形的个数为()A.1B.2C.3D.44.( 2013?海南)一个三角形的三条边长分别为1、 2、 x,则 x 的取值范围是()A . 1≤x≤3 B. 1< x≤3 C. 1≤x< 3 D. 1< x<35.( 2011?昭通)将一副直角三角板以下图搁置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠ 1 的度数为()A. 45 °B. 60 °C. 75 °D. 85 °6.( 2012?自贡)如图,矩形ABCD 中, E 为 CD 的中点,连结AE 并延伸交BC 的延伸线于点 F,连结 BD 、 DF,则图中全等的直角三角形共有()A.3对B.4对C.5对D.6对(6)(7)(8)7.( 2013?贺州)如图,在△ ABC 中,∠ ABC=45 °,AC=8cm ,F 是高 AD 和 BE 的交点,则BF 的长是()A . 4cmB . 6cmC . 8cmD . 9cm8.( 2013?东营)如图, E、 F 分别是正方形ABCD 的边 CD 、AD 上的点,且 CE=DF , AE 、BF 订交于点 O,以下结论:(1) AE=BF ;( 2)AE ⊥ BF;( 3) AO=OE ;( 4) S△AOB =S 四边形DEOF中正确的有()A.4个B.3个C.2个D.1个9.(2013?河北)如图,一艘海轮位于灯塔P 的南偏东 70°方向的 M 处,它以每小时40 海里的速度向正北方向航行, 2 小时后抵达位于灯塔P 的北偏东 40°的 N 处,则 N 处与灯塔 P 的距离为()A. 40 海里B. 60 海里 C. 70 海里D. 80 海里新世纪教育网-- 中国最大型、最专业的中小学教育资源门户网站。
2014年中考数学一轮复习基础检测:《四边形》
2014年中考一轮复习基础检测:《四边形》一、选择题:(每小题3分,共30分)1.内角和与外角和相等的多边形是()(A)三角形(B)四边形(C)五边形(D)六边形答案:B.2.顺次连结等腰梯形各边中点所得的四边形一定是()(A)菱形(B)矩形(C)梯形(D)两条对角线相等的四边形答案:A.3.观察下列四个平面图形,其中中心对称图形有()(A)2个(B)1个(C)4个(D)3个提示:第一个图形不是中心对称图形.答案:D.4.已知下列四个命题:(1)对角线互相垂直平分的四边形是正方形;(2)对角线垂直相等的四边形是菱形;(3)对角线相等且互相平分的四边形是矩形;(4)四边都相等的四边形是正方形.其中真命题的个数是()(A)1 (B)2 (C)3 (D)0提示:(3)正确.答案:A.5.菱形的一条对角线与它的边相等,则它的锐角等于()(A)30°(B)45°(C)60°(D)75°答案:C.6.下列命题中的真命题是()(A)一组对边平行,另一组对边相等的四边形是平行四边形(B)有一组对边和一组对角分别相等的四边形是平行四边形(C)两组对角分别相等的四边形是平行四边形(D)两条对角线互相垂直且相等的四边形是正方形答案:C .7.如图,DE 是△ABC 的中位线,若AD =4,AE =5,BC =12,则△ADE 的周长是( ) (A )7.5 (B )30 (C )15 (D )24答案:C .8.矩形的边长为10 cm 和15 cm ,其中一内角平分线分长边为两部分,这两部分的长为( )(A )6 cm 和9 cm (B )5 cm 和10 cm (C )4 cm 和11 cm (D )7 cm 和8 cm提示:长边被分成的两部分之中,有一部分与矩形短边相等. 答案:B .9.如图,在等腰梯形ABCD 中,AD ∥BC ,AC 、BD 相交于点O ,则图中全等三角形共有( ) (A )1对 (B )3对 (C )2对 (D )4对提示:以AB 和CD 为对应边的两个三角形. 答案:B .10.菱形周长为20 cm ,它的一条对角线长6 cm ,则菱形的面积为 ) (A )6 (B )12 (C )18 (D )24 提示:若菱形两对角线为a 和b ,则S 菱形=2ab. 答案:D .二、填空题:(每小题3分,共24分)11.如图,在□ABCD 中,则对角线AC 、BD 相交于O ,图中全等的三角形共有____对.提示:考察以AB 、CD 为对应边的三角形,有3对全等三角形;抹去AB 、CD 两边,又有1对全等三角形.答案:4.12.如果一个多边形的每个内角都等于108°,那么这个多边形是_____边形. 提示:360°÷每个外角的度数. 答案:5.13.梯形的上底边长为5,下底边长为9,中位线把梯形分成上、下两部分,则这两部分的面积的比为_______.提示:先算出中位线的长,然后用梯形面积公式计算. 答案:43. 14.如图,等腰梯形ABCD 中,AD ∥BC ,∠B =45°,AE ⊥BC 于点E ,AE =AD =2 cm ,则这个梯形的中位线长为_____cm .提示:BC =6 cm . 答案:4.15.请画出把下列矩形的面积二等分的直线,并填空(一个矩形只画一条直线,不写画 法).在一个矩形中,把此矩形面积二等分的直线最多有_____条,这些直线都必须经过此矩形的_____点.答案:无数;对称中心(或两条对角线的交点).16.如图,在梯形ABCD中,AD∥BC,中位线EF分别与BD、AC交于点G、H.若AD=6,BC=10,则GH的长是______.答案:2.17.如图,矩形ABCD中,O是两对角线的交点AE⊥BD,垂足为E.若OD=2 OE,AE=3,则DE的长为______.提示:OA=OD=2 OE,用勾股定理求出OE和OA的长.答案:3.18.如图,在□ABCD中,AE⊥BC于E,AF⊥CD于F,若AE=4,AF=6,□ABCD的周长为40,则S□ABCD为______.提示:在□ABCD中,AE·BC=AF·CD=S□ABCD,BC+CD=20,求BC或CD.答案:48.三、证明题:(每小题5分,共20分)19.已知:如图,在梯形ABCD中,AD∥BC,AB=DC,P是AD中点.求证:BP=PC.提示:证明△ABP ≌△DCP .答案:在梯形ABCD 中,AD ∥BC ,∵ AB =DC ,∴ ∠A =∠D .∵ P 是AD 中点,∴ AP =DP .在△ABP 和△DCP 中,⎪⎩⎪⎨⎧=∠=∠=.,,DP AP D A DC AB ∴ △ABP ≌△DCP .∴ PB =PC .20.已知:如图,AD ∥BC ,ED ∥BF ,且AF =CE .求证:四边形ABCD 是平行四边形.提示:证明△ADE ≌△CBF ,得到AD =BC 即可.答案:在△ADE 和△CBF 中,∵ AD ∥BC ,∴ ∠DAE =∠BCF .∵ ED ∥BF ,∴ ∠DEF =∠BFE .∴ ∠DEA =∠BFC .∵ AF =CE ,∴ AE =CF .∴ △ADE ≌△CBF .∴ AD =BC .又AD ∥BC ,∴ 四边形ABCD 是平行四边形.21.已知:如图,矩形ABCD 中,E 、F 是AB 上的两点,且AF =BE .求证:∠ADE =∠BCF .提示:证明Rt △ADE ≌Rt △BCF .答案:在矩形ABCD 中,∠A =∠B =90°,AD =BC .又 AF =BE ,∴ AF -EF =BE -EF ,即 AE =BF .∴ Rt △ADE ≌Rt △BCF .∴ ∠ADE =∠BCF .22.证明等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形.(要求:画出图形,写出已知、求证、证明.)提示:作辅助线,构造等腰三角形.答案:已知:在梯形ABCD 中,AD ∥BC ,∠B =∠C (图(1)).求证:AB =DC . 证法一:如图(1),过点D 作DE ∥AB ,交BC 于E .图(1)∴ ∠B =∠1.又 ∠B =∠C ,∴ ∠C =1.∴ DE =DC .又 AB ∥DE ,AD ∥BE ,∴ 四边形ABED 为平行四边形,∴ AB =DE .∴ AB =DC .证法二:如图(2),分别延长BA 、CD ,交于点E .图(2)∵ ∠B =∠C ,∴ BE =CE .∵ AD ∥BC ,∴ ∠B =∠1,∠C =∠2.∴ ∠1=∠2.∴ AE =DE .∴ BE -AE =CE -DE ,即AB =DC .四、计算题:(每小题6分,共12分)23.已知:如图,在□ABCD 中,BE 、CE 分别平分∠ABC 、∠BCD ,E 在AD 上,BE =12 cm ,CE =5 cm .求□ABCD 的周长和面积.提示:证明BE ⊥EC 和E 为AD 中点.答案:在□ABCD 中,∵ AB ∥CD ,∴ ∠ABC +∠BCD =180°.∵ ∠ABE =∠EBC ,∠BCE =∠ECD ,∴ ∠EBC +∠BCE =21(∠ABC +∠BCD )=90°.∴ ∠BEC =90°.∴ BC 2=BE 2+CE 2=122+52=132.∴ BC =13.∵ AD ∥BC ,∴ ∠AEB =∠EBC .∴ ∠AEB =∠ABE .∴ AB =AE .同理 CD =ED .∵ AB =CD ,∴ AB =AE =CD =ED =21BC =6.5.∴ □ABCD 的周长=2(AB +BC )=2(6.5+13)=39.S □ABCD =2 S △BCE =2·21BE ·EC =12×5=60.24.如图,在梯形ABCD 中,AD ∥BC ,AB =DC ,BD ⊥DC 于D ,且∠C =60°,若AD =5 cm ,求梯形的腰长.提示:求出∠CBD ,∠ABD 和∠ADC 的度数,证明AB =AD ,或者过D 点作DE ⊥BC 于E ,CE 为下底与上底的差的一半,又是CD 的一半,CD 又是BC 的一半.从中找出CD 与AD 的关系.解法一:∵ BD ⊥CD ,∠C =60°,∴ ∠CBD =30°.在等腰梯形ABCD 中,∠ABC =∠C =60°,∴ ∠ABD =∠CBD =30°.∵ AD ∥BC ,∴ ∠ADB =∠CBD .∴ ∠ABD =∠ADB .∴ AB =AD =5(cm ).解法二:过D 点作DE ⊥BC ,垂足为E 点.∵ 在Rt △CDE 中,∠CDE =30°,∴ CE=21CD .又 CE =21(BC -AD ),∴ CD =BC -AD .即 BC =CD +AD .又 在Rt △BCD 中,∠CBD =30°∴ CD =21BC .∴ CD =2 CD -AD .即 CD =AD =5(cm ).五、解答题:(每小题7分,共14分)25.如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上移动,但A 到EF 的距离AH 始终保持与AB 长相等,问在E 、F 移动过程中:(1)∠EAF 的大小是否有变化?请说明理由.(2)△ECF 的周长是否有变化?请说明理由. 提示:证明△EAH ≌△EAB ,△FAH ≌△FAD . 答案:(1)∠EAF 始终等于45°.证明如下:在△EAH 和△EAB 中,∵ AH ⊥EF ,∴ ∠AHE =90°=∠B .又 AH =AB ,AE =AE ,∴ Rt △EAH ≌Rt △EAB .∴ ∠EAH =∠EAB .同理 ∠HAF =∠DAF .∴ ∠EAF =∠EAH +∠FAH =∠EAB +∠FAD =21∠BAD =45°.因此,当EF 在移动过程中,∠EAF 始终为45°角. (2)△ECF 的周长不变.证明如下:∵ △EAH ≌△EAB ,∴ EH =EB .同理 FH =FD .∴ △ECF 周长=EC +CF +EH +HF =EC +CF +BE +DF =BC +CD =定长.26.已知:如图,在四边形ABCD 中,E 为AB 上一点,△ADE 和△BCE 都是等边三 角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,试判断四边形PQMN 为怎样的四边形,并证明你的结论.提示:连结AC 和CD ,首先利用中位线定理和平行四边形判定定理,证明四边形PQMN 为平行四边形,然后证明△AEC ≌△DEB ,得到AC =BD ,再证明□PQMN 为菱形.答案:四边形PQMN 为菱形.证明如下:如图,连结AC 、BD .∵ PQ 为△ABC 的中位线,∴ PQ21AC 同理 MN 21AC ∴ MN PQ ,∴ 四边形PQMN 为平行四边形.在△AEC 和△DEB 中,AE =DE ,EC =EB ,∠AED =60°=∠CEB ,即 ∠AEC =∠DEB .∴ △AEC ≌△DEB .∴AC =BD .∴ PQ =21AC =21BD =PN .∴ □PQMN 为菱形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年中考数学一轮复习基础检测:《三角形》
一、填空题:(每小题3分,共18分)
1.在△ABC 中,∠A -∠C = 25°,∠B -∠A = 10°,则∠B = ;
2.如果三角形有两边的长分别为5a ,3a ,则第三边x 必须满足的条件是 ;
3.等腰三角形一边等于5,另一边等于8,则周长是 ;
4.在△ABC 中,已知AB =AC ,AD 是中线,∠B =70°,BC =15cm , 则∠BAC = ,∠DAC = ,BD = cm ;
5.在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,AB =3,AC =4,则AD = ;
6.在等腰△ABC 中,AB =AC ,BC =5cm ,作AB 的垂直平分线交另一腰AC 于D ,连结BD ,如果△BCD 的周长是17cm ,则△ABC 的腰长为 .
答案:1. 75°;2. 2a <x <8a ;3. 18或21;4. 40°,20°,7.5;5.
512;6. 12cm.
二、判断题:(每小题3分,共18分)
1.已知线段a ,b ,c ,且a +b >c ,则以a 、b 、c 三边可以组成三角形( )
2.面积相等的两个三角形一定全等( )
3.有两边对应相等的两个直角三角形全等( )
4.有两边和其中一边上的高对应相等的两上三角形全等( )
5.当等腰三角形的一个底角等于60°时,这个等腰三角形是等边三角形 ( )
6.一腰和底边对应相等的两个等腰三角形全等( )
答案:1.×;2.×;3.√;4.√;5.√;6.√.
三、选择题:(每小题4分,共16分)
1.已知△ABC 中,∠A =n °,角平分线BE 、CF 相交于O ,则∠BOC 的度数应为( )
(A )90°-n 21° (B )90°+ n 21° (C )180°-n ° (B )180°-n 2
1° 2.下列两个三角形中,一定全等的是( )
(A )有一个角是40°,腰相等的两个等腰三角形
(B )两个等边三角形
(C )有一个角是100°,底相等的两个等腰三角形
(D )有一条边相等,有一个内角相等的两个等腰三角形
3.一个等腰三角形底边的长为5cm ,一腰上的中线把其周长分成的两部分的差为3 cm ,
则腰长为( )
(A )2 cm (B ) 8 cm (C )2 cm 或8 cm (D )10 cm 4.已知:如图,在△ABC 中,AB =AC ,BC =BD ,AD =DE =EB ,则∠A 的度数是( )
(A )30° (B )36° (C )45° (D )54°
答案:1.B; 2.C; 3.C; 4.C.
四、计算题 (本题8分)
已知:如图,AD 是△ABD 和△ACD 的公共边.
求证:∠BDC =∠BAC +∠B +∠C .
提示:延长AD 到E ,把∠BDC 归结为△ABD 和△ACD 的外角,利用“三角形外角等于不相临的两个内角的和”可以证明.
五、计算题(本题10分)
已知D 是Rt △ABC 斜边AC 的中点,DE ⊥AC 交BC 于E ,且∠EAB ∶∠BAC =2∶5,求∠ACB 的度数.
提示:利用列方程的方法求解.设∠EAB =2x °,∠BAC =5x °,则∠ACB =3x °,于是
得方程5x °+3x °=90°,解得x °=8
90 ,∴ ∠ACB =33.75°.
六、计算题(本题10分)
已知:如图,AB =AC ,CE ⊥AB 于E ,BD ⊥AC 于D ,求证:BD =CE .
提示:由AB=AC得∠B=∠C,又有BC=BC,可证△ABD≌△ACE,从而有BD=CE.
七、(本题10分)
已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.求证:BD=DE.
提示:可知∠DBC=30°,只需证出∠DEB= 30°.由∠ACE= 120°,得∠CDE+∠E =60°,所以∠CDE=∠E=30°,则有BD=DE.
八、拓展题(本题10分)
已知:如图,在等边三角形ABC中,D、E分别为BC、AC上的点,且AE=CD,连结AD、BE交于点P,作BQ⊥AD,垂足为Q.求证:BP=2PQ.
提示:只需证∠PBQ=30°.由于△BAE≌△ACD,所以∠CAD=∠ABE,则有∠BPQ=∠PBA+∠BAP=∠PAE+∠BAD= 60°,可得∠PBQ=30°.。