电路分析-等效电源定理-实验报告.docx

合集下载

电路分析基础实验报告1

电路分析基础实验报告1

实验一1、实验目得学习使用workbench软件,学习组建简单直流电路并使用仿真测量仪表测量电压、电流。

2、解决方案1)基尔霍夫电流、电压定理得验证。

解决方案:自己设计一个电路,要求至少包括两个回路与两个节点,测量节点得电流代数与与回路电压代数与,验证基尔霍夫电流与电压定理并与理论计算值相比较.2)电阻串并联分压与分流关系验证。

解决方案:自己设计一个电路,要求包括三个以上得电阻,有串联电阻与并联电阻,测量电阻上得电压与电流,验证电阻串并联分压与分流关系,并与理论计算值相比较。

3、实验电路及测试数据4、理论计算根据KVL与KCL及电阻VCR列方程如下:Is=I1+I2,U1+U2=U3,U1=I1*R1,U2=I1*R2,U3=I2*R3解得,U1=10V,U2=20V,U3=30V,I1=5A,I2=5A5、实验数据与理论计算比较由上可以瞧出,实验数据与理论计算没有偏差,基尔霍夫定理正确;R1与R2串联,两者电流相同,电压与为两者得总电压,即分压不分流;R1R2与R3并联,电压相同,电流符合分流规律.6、实验心得第一次用软件,好多东西都找不着,再瞧了指导书与同学们得讨论后,终于完成了本次实验。

在实验过程中,出现得一些操作上得一些小问题都给予解决了.实验二1、实验目得通过实验加深对叠加定理得理解;学习使用受控源;进一步学习使用仿真测量仪表测量电压、电流等变量。

2、解决方案自己设计一个电路,要求包括至少两个以上得独立源(一个电压源与一个电流源)与一个受控源,分别测量每个独立源单独作用时得响应,并测量所有独立源一起作用时得响应,验证叠加定理.并与理论计算值比较。

3、实验电路及测试数据电压源单独作用:电流源单独作用:共同作用:4、理论计算电压源单独作用时:—10+3Ix1+2Ix1=0,得Ix1=2A;电流源单独作用时:,得Ix2=-0、6A; 两者共同作用时:,得Ix=1、4A、5、实验数据与理论计算比较由上得,与测得数据相符,Ix=Ix1+Ix2,叠加定理得证.6、实验心得通过本实验验证并加深了对叠加定理得理解,同时学会了受控源得使用。

电路分析实验报告

电路分析实验报告

电压源与电流源的等效变换一、实验目的1、 加深理解电压源、电流源的概念。

加深理解电压源、电流源的概念。

2、 掌握电源外特性的测试方法。

掌握电源外特性的测试方法。

二、原理及说明1、 电压源是有源元件,电压源是有源元件,可分为理想电压源与实际电压源。

可分为理想电压源与实际电压源。

可分为理想电压源与实际电压源。

理想电压源在一定的电流理想电压源在一定的电流范围内,具有很小的电阻,它的输出电压不因负载而改变。

而实际电压源的端电压随着电流变化而变化,压随着电流变化而变化,即它具有一定的内阻值。

即它具有一定的内阻值。

即它具有一定的内阻值。

理想电压源与实际电压源以及理想电压源与实际电压源以及它们的伏安特性如图4-1所示所示((参阅实验一内容参阅实验一内容))。

2、电流源也分为理想电流源和实际电流源。

理想电流源的电流是恒定的,理想电流源的电流是恒定的,不因外电路不同而改变。

不因外电路不同而改变。

不因外电路不同而改变。

实际电流源的电流与所联接实际电流源的电流与所联接的电路有关。

当其端电压增高时,通过外电路的电流要降低,端压越低通过外电路的电流越大。

实际电流源可以用一个理想电流源和一个内阻R S 并联来表示。

图4-2为两种电流源的伏安特性。

流源的伏安特性。

3、电源的等效变换一个实际电源,尤其外部特性来讲,可以看成为一个电压源,也可看成为一个电流源。

两者是等效的,其中I S =U S /R S 或或 U S =I S R S图4-3为等效变换电路,由式中可以看出它可以很方便地把一个参数为U s 和R s 的电压源变换为一个参数为I s 和R S 的等效电流源。

同时可知理想电压源与理想电流源两者之间不存在等效变换的条件。

之间不存在等效变换的条件。

三、仪器设备电工实验装置电工实验装置 : DG011 DG011、、 DG053 DG053 、、 DY04 DY04 、、 DYO31四、实验内容1、理想电流源的伏安特性1)1) 按图4-4(a)4-4(a)接线,毫安表接线使用电流插孔,接线,毫安表接线使用电流插孔,接线,毫安表接线使用电流插孔,R R L 使用1K Ω电位器。

电路分析第2章 直流电路等效化简分析法-精选文档

电路分析第2章 直流电路等效化简分析法-精选文档

种处理方法就是:
等电位的点可以连接起来。 电流为零的支路可以断开。 应用了这两个等效处理方法,对电路的其他部分没有影响。
16
2.2 电阻网络的等效分析
2.2.3 电阻的混联分析
17
2.2 电阻网络的等效分析
2.2.3 电阻的混联分析
18
2.2 电阻网络的等效分析
2.2.3 电阻的混联分析
19
2.2 电阻网络的等效分析
Gj
(2.2-7)
G
k =1
n
i
k
(2.2-8)
R2 i = 1 R +R i 1 2 i = R1 i 2 R 1 + R 2
(2.2-9)
i1 R 2 = i2 R 1
(2.2-10)
12
2.2 电阻网络的等效分析
2.2.2 电阻的并联分析
电阻并联有两个主要作用:
(1)减小电阻的阻值。
(2.2-3)
u1 R1 = u2 R2
(2.2-4)
9
2.2 电阻网络的等效分析
2.2.1 电阻的串联分析
电阻串联有两个主要作用: (1)提高电阻阻值。在实际应用中,当一个电阻因阻值小而不能满足 要求时,可采用多个电阻串联达到目的。 (2)将高电压变为低电压。在实际应用中,经常会遇到需要将较高的 电压信号变为较低的电压信号的情况,此时,利用串联电阻的分压特
(VCR)的网络在求解网络之外的电路参数时可以相互替换。
N1 R1 R2
E
aI
N2 R4
a I
(NS )
R3 R5 N1
二端网络
U ab
b
(a)原始电路
U ab
b

电路原理实验报告

电路原理实验报告

实验一电位、电压的测定及电路电位图的绘制一.实验目的1.学会测量电路中各点电位和电压方法。

理解电位的相对性和电压的绝对性;2.学会电路电位图的测量、绘制方法;3.掌握使用直流稳压电源、直流电压表的使用方法。

二.原理说明在一个确定的闭合电路中,各点电位的大小视所选的电位参考点的不同而异,但任意两点之间的电压(即两点之间的电位差)则是不变的,这一性质称为电位的相对性和电压的绝对性。

据此性质,我们可用一只电压表来测量出电路中各点的电位及任意两点间的电压。

若以电路中的电位值作纵坐标,电路中各点位置(电阻或电源)作横坐标,将测量到的各点电位在该平面中标出,并把标出点按顺序用直线条相连接,就可得到电路的电位图,每一段直线段即表示该两点电位的变化情况。

而且,任意两点的电位变化,即为该两点之间的电压。

在电路中,电位参考点可任意选定,对于不同的参考点,所绘出的电位图形是不同,但其各点电位变化的规律却是一样的。

三.实验设备1.直流数字电压表、直流数字毫安表2.恒压源(eel-i、ii、iii、iv均含在主控制屏上,可能有两种配置(1)+6v(+5v),+12 v,0~30v可调或(2)双路0~30v可调。

)3.eel-30组件(含实验电路)或eel-53组件四.实验内容实验电路如图1-1所示,图中的电源us1用恒压源中的+6v(+5v)输出端,us2用0~+30v可调电源输出端,并将输出电压调到+12v。

1.测量电路中各点电位以图1-1中的a点作为电位参考点,分别测量b、c、d、e、f各点的电位。

用电压表的黑笔端插入a点,红笔端分别插入b、c、d、e、f各点进行测量,数据记入表1-1中。

以d点作为电位参考点,重复上述步骤,测得数据记入表1-1中。

图 1-12.电路中相邻两点之间的电压值在图1-1中,测量电压uab:将电压表的红笔端插入a点,黑笔端插入b点,读电压表读数,记入表1-1中。

按同样方法测量ubc、ucd、ude、uef、及ufa,测量数据记入表1-1中。

等效电源定理实验报告

等效电源定理实验报告

等效电源定理实验报告实验目的:本次实验的目的是通过等效电源定理实验,掌握等效电源的概念及其计算方法,并能熟练运用等效电源定理进行电路分析和计算。

实验原理:等效电源定理指的是,将一个电路中的复杂元件和电源转换为简单的等效电路,从而计算电路的各种参数,如电流、电压等。

等效电源分为两类,分别是理想电压源和理想电流源。

根据等效电源定理,我们可以将初始电路中的电源、电流、阻抗等抽象为一个等效电源,可以采用不同的电路模型进行计算。

在进行计算等效电源时,需要根据电路内部的电流、电压等数据按照公式进行计算,以获取等效电源参数。

实验装置:1. 电源(6V)2. 三个不同的电阻(100Ω,220Ω,330Ω)3. 万用表4. 连接电线实验步骤:1. 将电源连接到电路中,同时连接好不同电阻。

2. 打开万用表,选择电流档,将两个电极分别连接到电阻两端。

3. 此时电路中的电流数值即为所求的I值。

4. 根据等效电源理论,我们可以将电路内部元件和电源转换为等效电源,电流的数值保持不变。

5. 假设此时等效电源为理想电压源U,计算电压数值,即U = IR。

6. 假设此时等效电源为理想电流源I,计算电流数值,即I = I。

实验结果:1. 在100Ω电阻的情况下,电路中的电流为0.06A。

2. 根据 U=IR,可计算出等效电源中的理想电压源U为0.06*100 = 6V。

3. 根据 I=I,可计算出等效电源中的理想电流源I为0.06A。

实验分析:通过等效电源定理实验,我们成功地计算出了电路内部的理想电压源和理想电流源的数值。

在实际应用中,等效电源定理常被用于电路分析和设计,无论是计算电路的电流、电压、功率等参数,还是设计电路内部的电子元件,都可以基于等效电源定理来推导和计算。

总结:等效电源定理是电路分析和设计中的重要工具之一,可以用来简化复杂的电路结构和电子元件,从而更加轻松地理解和计算电路中的各种参数。

通过本次实验,我们已经掌握了等效电源定理的计算方法和应用技巧,可进一步扩展这项理论的应用范围。

电路分析基础电路等效及电路定理

电路分析基础电路等效及电路定理

2
《电路分析基础》 问题提出: 扩音器系统
第3章 电路等效及电路定理
RO
a
uS
b
+ -
a b
a
a
Ri
Ri
b
b
等效问题?
功率匹配问题?
3
《电路分析基础》
第3章 电路等效及电路定理
3.1 齐次定理与叠加定理
引例:求图示线性电路中的电流I2。
解: 设I4=1A
I2
I1 I3
I4
uBD=22V
I3=1.1A
《电路分析基础》
第3章 电路等效及电路定理
3.2 电路等效的一般概念 3.3 无源单口网络的等效电路
课程小结:
• 深刻理解无源单口网络、含源单口网络、电路等效概念。
• 熟练掌握等效变换法,重点掌握含受控源单口网络的等效
(输入电阻的求解);
• 能够正确绘制运用等效法分析电路过程中的各种变换电路。 课堂练习: P98页 P3-8 课后习题: P99页 P3-9(分别用外施电源法和伏安法)
23
《电路分析基础》
第3章 电路等效及电路定理
(二)含受控源单口网络的等效电路
例1: 含受控电压源的单口网络如图所示,该受控源的电压受端口电
压的控制。试求单口网络的输入电阻,并画出该电路的等效电路。
解:
i1
单口的输入电阻是指该无源单口的端口电压与端口电流之比。
外施电压源法,即外施端口电压u,设 法求出端口电流i:
第3章 电路等效及电路定理
u12 u31 R12 R31
R31 R12 R23
R1 R3
u31 i 3 R 3 i 1R1
R2
i1 i2 i3 0

2章 电路分析基础1

2章 电路分析基础1

I3
则: P
R3
3
= I3 R3 = (I3' + I3" ) R3
2 2
≠ (I3' ) R3 + (I3" ) R3
2 2
5. 运用迭加定理时也可以把电源分组求解,每个分 运用迭加定理时也可以把电源分组求解, 电路的电源个数可能不止一个. 电路的电源个数可能不止一个.
=
+

US IS 线性无
源网络
adca : I4R4 + I5R5 + E3 = E4 + I3R3
电压,电流方程联立求得: 电压,电流方程联立求得:
I1 ~ I6
支路中含有恒流源的情况 例2
I1 I2 R1 E + _ b I5 R5 d N=4 B=6 I4 I6 a R2 I3 Ux R4 c R6 I3s 支路电流未知数少一个: 支路电流未知数少一个:
abda:
I3s
I1R1 + I 2 R2 + I5 R5 = E1
abca : I 2 R2 + I 4 R4 = U X
bcdb : I 4 R4 + I 6 R6 I 5 R5 = 0
结果: 个电流未知数 结果:5个电流未知数 + 一个电压未知数 = 6个未知数 个未知数 个方程求解. 由6个方程求解. 个方程求解
2.1.2 支路电流法
未知数:各支路电流. 未知数:各支路电流. 解题思路:根据克氏定律, 解题思路:根据克氏定律,列节点电流和回路电 压方程,然后联立求解. 压方程,然后联立求解.
例1
I2 I1 I6 R6 I3 I4 E3 I5
解题步骤: 解题步骤:

电路分析实验指导

电路分析实验指导

实验一 基本电工仪表的使用与典型电信号的观察一、实验目的1、熟悉实验台上各类电源、测量仪表的布局及使用方法2、掌握电压表、电流表内电阻的测量方法3、熟悉常用电工仪表及设备的使用方法,包括万用表、电源、信号发生器、示波器、电压与电流表等等。

二、实验说明1、为了准确地测量电路中实际的电压和电流,必须保证仪表接入电路后不会改变被测电路的实际工作状态,这就要求电压表的内阻为无穷大;电流表的内阻为零。

而实际使用的电工仪表都不能满足上述要求。

因此,当测量仪表一旦接入电路,就会改变电路原有的工作状态,这就导致仪表的读数值与电路原有的实际值之间出现误差,这种测量误差值的大小与仪表本身内阻值的的大小密切相关。

2、本实验测量电流的内阻采用“分流法”,如图1-1所示。

R AI图1-1 可调电流源A 为被测内阻R A 的直流电流表,测量时先断开开关S ,调节电流源的输出电流I 使A 表指针满偏转,然后合上开关S ,并保持I 值不变,调节电阻箱RB 的阻值,使电流表指在1/2满偏转位置,此时有I I I S A 21==所以 R A =R B //R 1R 1为固定电阻之值,R B 由电阻箱的刻度盘上读得。

3、测量电压表的内阻采用分压法,如图1-2所示。

S图 1-2 可调稳压源V 为被测内阻R V 的电压表,测量时先将开关S 闭合,调节直流稳压源的输出电压,使电压表V 的指针为满偏转。

然后断开开关S ,调节R B 使电压表V 的指示值减半。

此时有R V =R B + R 1电阻箱刻度盘读出值R B 加上固定电阻R 1,即为被测电压表的内阻值。

电压表的灵敏度为S = R V /U (Ω/v)4、仪表内阻引入的测量误差(通常称之为方法误差,而仪表本身构造上引起的误差称为仪表基本误差)的计算。

以图1-3所示电路为例VR BU图 1-3R 1上的电压为U R1=211R R R +U ,若R 1=R 2,则U R1=1/2U现用一内阻为R V 的电压表来测量U R1的值,当R V 与R 1并联后,R AB =11R R R R V V +,以此来代替上式中的R 1,则得U ‘R1=U R R R R R R R R R V V V V 21111+++绝对误差为 △U=U ‘R1—U R1=U (21221111R R R R R R R R R R R R V V V V +-+++) 化简后得 △U=)()2(2121222121221R R R R R R R R R UR R V ++++- ,若R 1=R 2=R V ,则得△U=6U -相对误差△U%=3.33%1002/6/%100111'-=⨯-=-U U U U U R R R三、实验设备四、实验内容1、根据“分流法”原理测定万用表直流毫安表的内阻,线路如图1-1所示。

实验二线性有源二端网络等效电路的研究

实验二线性有源二端网络等效电路的研究

实验⼆线性有源⼆端⽹络等效电路的研究实验⼆线性有源⼆端⽹络等效电路的研究班级通信192 姓名余*耀学号27⼀、实验⽬的1. 学习测量线性有源⼆端⽹络等效电源参数和电路的外特性的⽅法。

?2. 加深对等效电源定理的理解, 验证最⼤功率传输条件。

3。

巩固万⽤电表的使⽤⽅法,加深对万⽤电表内阻的理解。

⼆、实验器材、设备及软件互联⽹+电⼦在线实验平台电阻、电压源、万⽤表、导线三、实验原理1.任何⼀个线性⽹络,如果只研究其中⼀条⽀路的电压或电流,则可将电路的其余部分看作是⼀个有源⼆端⽹络,或称为含源⼀端⼝⽹络,如图1(a)所⽰。

图1 线性有源⼆端⽹络的等效电路2. 等效电源定理包括电压源等效和电流源等效两个定理,也称为戴维南定理和诺顿定理:戴维南定理:任意⼀个线性有源⼆端⽹络,就其对外电路的作⽤⽽⾔,总可以等效为⼀个电压源和电阻组成的串联电路,如图1(b)所⽰.该电压源的电压 UOC等于⼆端⽹络在端⼝处的开路电压;电阻 r0 等于⼆端⽹络内所有独⽴源置于零的条件下,从端⼝处看进去的等效电阻。

诺顿定理:任意⼀个线性有源⼆端⽹络,就其对外电路的作⽤⽽⾔,总可以等效为⼀个电流源和电导组成的并联电路,如图1(c)所⽰.该电流源的电流ISC等于⼆端⽹络在端⼝处的短路电流;电导 g0 等于该⼆端⽹络内所有独⽴源置于零的条件下,从端⼝处看进去的等效电导, g0= 1/ r0。

通常我们称开路电压UOC、短路电流ISC以及等效内阻r0为有源⼆端⽹络的等效电源参数.3。

线性有源⼆端⽹络与等效电路的外特性应该是⼀致的,在平⾯坐标中绘制的伏安关系曲线应该重合。

4.最⼤功率传输定理⼀个线性有源⼆端⽹络,不管其内部具体电路如何,都可以等效为⼀个理想电压源和电阻组成的串联电路,如图 5-1(b)所⽰。

当负载为 R L时,获得功率:对上式求导并令其为零,得到负载 R L上获得最⼤功率时的条件RL =r0,此时最⼤功率为:四、实验内容与步骤进⼊电路分析实验平台,进⼊实验“线性有源⼆端⽹络等效电路”,点击界⾯左侧的“实验操作”选项卡,进⼊线性电路的实验模块界⾯.1. 线性有源⼆端⽹络等效电源参数的测量如图2所⽰实验电路, 测量A、B端⼝的等效电源参数U、I,测量数据填⼊表1中,r0任选三种⽅法进⾏测量,测量数据填⼊表2中.图2 测定AB 端等效电源参数电路(1)测量开路电压U OC按图 5—3 所⽰, 在实验板上搭建实验电路。

电路基本定理及定律的验证实验报告

电路基本定理及定律的验证实验报告

一、实验名称:电路基本定律及定理的验证 二、实验目的:1、 通过实验验证并加深对基尔霍夫定律、叠加原理及其适用范围的理解;2、 用实验验证并加深对戴维南定理与诺顿定理的理解;3、 掌握电压源与电流源相互转换的条件和方法;4、 灵活运用等效电源定理来简化复杂线性电路的分析。

三、实验原理基尔霍夫定律:(1)基尔霍夫电流定律: 在任一时刻,流入到电路任一节点的电流的代数和为零。

5个电流的参考方向如图中所示,根据基尔霍夫定律就可写出I 1+I 2+I 3+I 4+I 5=0(2)基尔霍夫电压定律: 在任一时刻,沿闭合回路电压降的代数和总等于零。

把这一定律写成一般形式即为∑U=0。

叠加原理: 几个电压源在某线性网络中共同作用时,也可以是几个电流源共同作用于线性网络,或电压源和电流源混合共同作用。

它们在电路中任一支路产生的电流或在任意两点间所产生的电压降,等于这些电压源或电流源分别单独作用时,在该部分所产生的电流或电压降的代数和。

戴维南定理:对外电路来说,一个线性有源二端网络可以用一个电压源和一个电阻串联的电路来等效代替。

该电压源的电压等于此有源二端网络的开路电压U oc ,串联电阻等于此有源二端网络除去独立电源后(电压源短接,电流源断开)在其端口处的等效电阻R o ,这个电压源和电阻串联的电路称为戴维南等效电路。

四、实验步骤及任务(1):KCL 及KVL 的验证 实验线路图:NI 1I 2 I 3 I 4I 5KCL 定律示意图A B CDE FI 1 I 3I 2510Ω330Ω 510Ω510Ω 1k ΩU 1=10V_+KCL 及KVL 实验数据记录项目支路电流端点电压节点电流回路电压I 1(mA)I 2(mA) I 3(mA) U AC (V) U CD (V) U DA (V) I 1+ I 2- I 3 U AC +U CD + U DA计算值 7.201 -1.996 5.205 -1.996 -0.659 2.655 0 0 测量值7.201-1.9965.205-1.996-0.65872.655-0.0003(2):叠加原理的验证根据实验预习和实验过程预先用叠加原理计算出表中电压、电流计算值,最后通过电路测量验证。

等效电源定理实验报告

等效电源定理实验报告

等效电源定理实验报告等效电源定理实验报告引言:等效电源定理是电路分析中重要的基本原理之一,它能够简化复杂的电路分析问题,使得分析更加便捷。

本实验旨在通过实际操作,验证等效电源定理的有效性,并进一步探究其在电路分析中的应用。

一、实验目的:1. 验证等效电源定理的有效性;2. 探究等效电源在电路分析中的应用。

二、实验原理:等效电源定理是基于电路中的线性元件的特性而得出的。

根据等效电源定理,任何线性电路都可以用一个等效电源替代,该等效电源具有相同的电流-电压特性。

三、实验步骤:1. 搭建一个简单的电路,包括电源、电阻和电流表,如图1所示。

2. 测量电路中的电流和电压值,并记录下来。

3. 将电流表移动到电路中的不同位置,重新测量电流和电压值,并记录下来。

4. 分析实验数据,验证等效电源定理的有效性。

四、实验结果:根据实验数据,我们可以得出以下结论:1. 在电路中的任意位置,电流和电压的比值保持不变。

2. 不同位置的电流和电压值可能有所不同,但是它们之间的比值始终保持一致。

五、实验分析:根据实验结果,我们可以得出以下分析:1. 根据等效电源定理,我们可以用一个等效电源来替代整个电路,而不影响电路中的电流和电压特性。

2. 等效电源的电流和电压值可以根据实际测量得到,从而简化了电路的分析过程。

六、实验应用:等效电源定理在电路分析中有着广泛的应用。

通过将复杂的电路替代为一个等效电源,我们可以更加方便地进行电路分析和计算。

在实际工程中,等效电源定理可以用于设计和优化电路,提高电路性能。

七、实验总结:通过本次实验,我们验证了等效电源定理的有效性,并进一步了解了它在电路分析中的应用。

等效电源定理为电路分析提供了一种简化的方法,使得我们能够更加高效地解决复杂的电路问题。

通过实践应用,我们进一步加深了对等效电源定理的理解和掌握。

八、参考文献:[1] 《电路分析基础》. 陈红等著. 清华大学出版社, 2010.九、致谢:感谢实验中给予我们指导和帮助的老师和同学们。

电路实验报告

电路实验报告

实验一 元件特性的示波测量法一、实验目的1、学习用示波器测量正弦信号的相位差。

2、学习用示波器测量电压、电流、磁链、电荷等电路的基本变量3、掌握元件特性的示波测量法,加深对元件特性的理解。

二、实验任务1、 用直接测量法和李萨如图形法测量RC 移相器的相移ϕ∆即uC u sϕϕ-实验原理图如图5-6示。

2、 图5-3接线,测量下列电阻元件的电流、电压波形及相应的伏安特性曲线(电源频率在100Hz~1000Hz 内): (1)线性电阻元件(阻值自选)(2)给定非线性电阻元件(测量电压范围由指导教师给定)电路如图5-7 3、按图5-4接线,测量电容元件的库伏特性曲线。

4、测量线性电感线圈的韦安特性曲线,电路如图5-55、测量非线性电感线圈的韦安特性曲线,电源通过电源变压器供给,电路如图5-8所示。

图 5-7 图 5-8这里,电源变压器的副边没有保护接地,示波器的公共点可以选图示接地点,以减少误差。

三、思考题1、元件的特性曲线在示波器荧光屏上是如何形成的,试以线性电阻为例加以说明。

答:利用示波器的X-Y方式,此时锯齿波信号被切断,X轴输入电阻的电流信号,经放大后加至水平偏转板。

Y轴输入电阻两端的电压信号经放大后加至垂直偏转板,荧屏上呈现的是u x,u Y的合成的图形。

即电流电压的伏安特性曲线。

3、为什么用示波器测量电路中电流要加取样电阻r,说明对r的阻值有何要求?答:因为示波器不识别电流信号,只识别电压信号。

所以要把电流信号转化为电压信号,而电阻上的电流、电压信号是同相的,只相差r倍。

r的阻值尽可能小,减少对电路的影响。

一般取1-9Ω。

四、实验结果1.电阻元件输入输出波形及伏安特性2.二极管元件输入输出波形及伏安特性实验二 基尔霍夫定律、叠加定理的验证 和线性有源一端口网络等效参数的测定一、实验目的1、加深对基尔霍夫定律、叠加定理和戴维南定理的内容和使用范围的理解。

2、学习线性有源一端口网络等效电路参数的测量方法3、学习自拟实验方案,合理设计电路和正确选用元件、设备、提高分析问题和解决问题的能力 二、实验原理 1、基尔霍夫定律:基尔霍夫定律是电路普遍适用的基本定律。

电工电子实验报告模板

电工电子实验报告模板

电工电子实验报告模板
一、实验目的
本实验旨在探究电工电子领域相关知识,并通过实际操作验证理论的正确性和可行性。

二、实验原理
1. 实验原理一:介绍第一个实验原理。

2. 实验原理二:介绍第二个实验原理。

3. 实验原理三:介绍第三个实验原理。

三、实验器材
1. 实验器材一:列举使用的器材一及其详细参数。

2. 实验器材二:列举使用的器材二及其详细参数。

四、实验步骤
1. 实验步骤一:详细说明第一个实验步骤。

2. 实验步骤二:详细说明第二个实验步骤。

3. 实验步骤三:详细说明第三个实验步骤。

五、实验数据与结果
1. 实验数据:将实验测得的数据按照表格形式呈现,并确保数据准确无误。

2. 实验结果分析:对实验数据进行分析解读,结合实验原理进行合理的推断和解释。

六、实验讨论
1. 实验讨论一:对实验中遇到的问题以及解决方法进行讨论。

2. 实验讨论二:对实验结果的合理性和可靠性进行探讨。

七、结论
根据实验数据和讨论结果,得出实验结论,并确保结论准确无误。

八、实验总结
撰写对本次实验的总结,包括实验中的收获、经验以及对实验结果的思考等内容。

九、参考文献
列举对本实验有参考意义的文献,准确注明文献的来源及作者。

十、附录
1. 附录一:列举实验中使用的公式、图表等补充材料。

2. 附录二:列举实验过程中拍摄的照片或相关资料。

本模板可根据具体实验的要求进行适当修改,确保报告内容全面准确,并符合实验报告撰写的规范要求。

以上仅为参考,具体内容请根据实际需要进行修改。

电路分析基础实验报告-电压源、电流源及其电源等效变换

电路分析基础实验报告-电压源、电流源及其电源等效变换

XXX 实验室学生实验报告课程名称电路分析基础实验学院XXX专业XXX班级XXX学号XXX姓名XXX辅导教师XXX实验时间:X 年X 月X 日预 习 实 验 报 告1、 实验名称电压源、电流源及其电源等效变换2、实验目的1.掌握建立电源模型的方法。

2.掌握电源外特性的测试方法。

3.加深对电压源和电流源特性的理解。

4.研究电源模型等效变换的条件。

3、实验内容1.电压源和电流源电压源具有端电压保持恒定不变,而输出电流的大小由负载决定的特性。

其外特性,即端电压U 与输出电流I 的关系U = f (I ) 是一条平行于I轴的直线。

实验中使用的恒压源在规定的电流范围内,具有很小的内阻,可以将它视为一个电压源。

电流源具有输出电流保持恒定不变,而端电压的大小由负载决定的特性。

其外特性,即输出电流I 与端电压U 的关系I = f (U ) 是一条平行于U 轴的直线。

实验中使用的恒流源在规定的电流范围内,具有极大的内阻,可以将它视为一个电流源。

2.实际电压源和实际电流源实际上任何电源内部都存在电阻,通常称为内阻。

因而,实际电压源可以用一个内阻R S 和电压源U S 串联表示,其端电压U 随输出电流I 增大而降低。

在实验中,可以用一个小阻值的电阻与恒压源相串联来模拟一个实际电压源。

实际电流源是用一个内阻R S 和电流源I S 并联表示,其输出电流I 随端电压U 增大而减小。

在实验中,可以用一个大阻值的电阻与恒流源相并联来模拟一个实际电流源。

3.实际电压源和实际电流源的等效互换一个实际的电源,就其外部特性而言,既可以看成是一个电压源,又可以看成是一个电流源。

若视为电压源,则可用一个电压源U s 与一个电阻R S 相串联表示;若视为电流源,则可用一个电流源I S 与一个电阻R S 相并联来表示。

若它们向同样大小的负载供出同样大小的电流和端电压,则称这两个电源是等效的,即具有相同的外特性。

实际电压源与实际电流源等效变换的条件为: (1)取实际电压源与实际电流源的内阻均为R S ;(2)已知实际电压源的参数为U s 和R S ,则实际电流源的参数为SS S R UI =和R S ,若已知实际电流源的参数为I s 和R S ,则实际电压源的参数为S S S R I U =和R S 。

最新实验八实验报告电工学

最新实验八实验报告电工学

最新实验八实验报告电工学实验目的:1. 理解并掌握基本电工学原理和实验方法。

2. 学习使用常用电工仪表,如万用表、示波器等。

3. 通过实验验证电路定律和定理,加深对电路分析的理解。

实验内容:1. 测量电阻:使用万用表测量不同阻值的电阻,记录测量结果,并分析误差原因。

2. 欧姆定律验证:搭建简单电路,通过改变电压和电流,验证欧姆定律(V=IR)的正确性。

3. 串联与并联电路分析:构建串联和并联电路,测量并记录各部分的电压、电流,分析电路的工作状态。

4. 功率计算:测量电路的功率,验证功率公式(P=IV)。

5. 交流电路特性研究:使用示波器观察交流电路中的电压和电流波形,分析其相位关系。

实验设备:1. 万用表2. 示波器3. 电源4. 电阻、电容、电感等电路元件5. 导线和接线板实验步骤:1. 准备实验器材,确保设备完好无损。

2. 按照实验要求搭建电路,注意安全操作。

3. 逐一进行实验项目,记录数据。

4. 使用示波器观察交流电路波形,调整参数以获得清晰的波形图。

5. 完成实验后,整理实验数据,撰写实验报告。

实验数据与分析:(此处应插入实验过程中收集的数据表格和波形图,并对数据进行分析,解释实验现象和结果。

)实验结论:(在这部分,应总结实验结果,验证的电路定律和定理是否得到实验数据的支持,以及实验中发现的任何特殊情况或问题。

)注意事项:1. 在进行实验时,应严格遵守实验室安全规则。

2. 正确使用电工仪表,避免误操作导致设备损坏或人身安全事故。

3. 实验数据应准确记录,不得随意篡改。

4. 实验报告应认真撰写,确保内容真实可靠。

等效电源定理

等效电源定理

注意:并非任何含源线性电阻单口网络都能找到戴维 宁—诺顿等效电路。
例4 求图示单口的戴维宁-诺顿等效电路。
例4 求图示单口的戴维宁-诺顿等效电路。
如图(a)所示单口网络,其端口电压和电流均为零,即 u=i=0,其特性曲线是u-i平面上的坐标原点,如图(b)所示。 该单口不存在戴维宁等效电路和诺顿等效电路。
应用(主要用于电路中某一支路响应的计算):
具体步骤:
1.移去待求支路,使电路成为一个含源的单口网络; 2.求所得到的含源单口网络的开路电压uoc; 3.求所得到的含源单口网络的除源等效输入电阻Ro。 4.画出相应的等效电源电路,接入所移去待求的支路,求支
路响应。
求所得到的含源单口网络的等效输入电阻Ro。
电路分析方法小结
电路分析方法共讲了以下几种: 基尔霍夫定律(KVL,KCL)求解
两种电源等效互换 网孔分析法 节点电位法
总结 每种方法各有 什么特点?适 用于什么情况?
叠加原理 等效电源定理
戴维南定理 诺顿定理
1.关于直流电路分析方法
直流电路的分析方法有多种,如:应用基尔 霍夫定律求解、电源等效变换法、节点电位法、 网孔分析法、应用戴维南及诺顿定理、应用叠 加定理等。
❖ 9-6=6I1-3I2 ④ ❖ 6=3I2+5I ⑤ ❖由①④⑤解得:I1≈0.67A I2≈0.33A
I=1A
2022/1/18
方法二:等效电源法
❖如图
2022/1/18
方法二:等效电源法
❖由分流公式
2022/1/18
方法三: 节点分析法
❖如图1,设B点电位为0,则
2022/1/18
E
UA
分析方法?
如图5,求通过 R4的电流及两端 电压,应该选择 戴维南定理或叠

电路的分析方法及电路定理

电路的分析方法及电路定理

注意:US的正极性端为IS箭头指向的一端
10
对于复杂电路(如下图)仅通过串、并联无法求解, 必须经过一定的解题方法,才能算出结果。
如: I1
I2 I6
I3 I4
R6 I5
+E3
R3
11
2.2 支路电流法
未知数:各支路电流 解题思路:根据基尔霍夫定律,列节点电流
和回路电压方程,然后联立求解。
12
例1
K2 0.1
37
UO 1V
2.5等效电源定理
一、名词解释:
二端网络:若一个电路只通过两个输出端与外电路 相联,则该电路称为“二端网络”。 (Two-terminals = One port)
无源二端网络: 二端网络中没有电源
A
有源二端网络: 二端网络中含有电源
2.1.1 电阻串联
1. 定义: 若干个电阻元件一个接一个顺序相连, 并且流过同一个电流。
2. 等效电阻: R=R1+R2+…+Rn= Rn
+
+
R1 U_1
U
+
_
R2 U_2
4
+
U
R
_
+
+
+
R1 U_1
U
_
+ R2 U_2
U
_
R
U U1 U2 I( R1 R2 ) IR R R1
即电流分配与电阻成反比. 功率P1:P2=R2:R1 4.应用: 负载大多为并联运行。
7
2.1.3.两种电源的等效互换
Ia
RO
+
+
Uab

等效电源概念

等效电源概念

等效电源概念
等效电源概念是指在电路分析中,将一个复杂电路划分为两个部分,其中一部分包含电源,另一部分不包含电源。

这两个部分通过两个引出端相连接。

对于所研究的支路,电路的其余部分被视为一个有源二端网络。

为了计算所研究支路的电压、电流和功率,可以将有源二端网络等效为一个电源,即等效电源。

等效电源分为等效电压源和等效电流源。

用电压源来等效代替有源二端网络的分析方法称为戴维南(代文宁)定理;用电流源来等效代替有源二端网络的分析方法称为诺顿定理。

等效电源定理的应用主要包括:
1. 动态直流电路的分析和计算。

合理建立等效电源能使问题的处理大大简化。

2. 求解可变电阻获得的最大功率及对应条件。

等效电源法用于求解可变电阻获得最大功率及其对应的条件时,可使计算化繁为简,但对定值电阻则不行。

3. 分析干电池电动势和内电阻测定的实验系统误差。

4. 求电池组的电动势和内电阻。

5. 处理一些简单的复杂电路问题。

利用等效电源原理处理一些目前中学阶段常规难以解决的问题,化繁为简。

等效电源法作为一种电路分析方法,在实际应用中具有
较高的价值,能够简化电路问题,提高计算效率。

《电路与信号分析》2章-电路与信号分析2.0

《电路与信号分析》2章-电路与信号分析2.0
根据配电系统接地方式的的不同,把低压配电 系统分为IT、TT、TN三种形式。
电路与信号分析
2.4.2 防触电技术
类别
保护接零 (TN系统)
原理
适用范围
线路结构 保护方式 接线部位 接地装置
借零线使漏电形成 单相短路电流,进 而使保护装置动作
适用于中性点接地 低压配电系统
系统有相线、工作 零线、保护零线、 接地线和接地体
解: 利用电阻并联分流公式,解得
当电压源变为10V时,解得
电路与信号分析
2.1.2 叠加定理
内容:对于具有唯一解的线性电路,多个激励
源共同作用时引起的响应(电压与电流)等于各个激励 源单独作用时(其它激励源置为零)所引起的单独响应 之和。
激励源单独作用:是指一个或一组独立源作用
时,其它独立源均为零值(电压源用短路代替,电流源 用开路代替) 。
叠加定理应用:多个激励化为单一激励单独作
用后叠加;推导其他定理。
电路与信号分析
例题
例 求电路图所示电路中的I。
解: 将原图分解为下图
+

uS 5Ω

iS

I
+

uS 5Ω

I1
4Ω +


iS
I2
I
I1 I2
uS 5 / /(1 4)
1
4 14
2 +iS 1 4 = 5 uS 5 iS
N
+ uO–C
N
b
a
R0
uOC iSC
iSC
开路、短路时均保 留网络内电源!
b
电路与信号分析
例题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电路分析等效电源定理实验报告
一、实验名称
等效电源定理
二、实验目的
1. 验证戴维宁定理和诺顿定理的正确性,加深对该定理的理解。

2. 掌握测量有源二端网络等效参数的一般方法。

三、原理说明
1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。

戴维宁定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us等于这个有源二端网络的开路电压Uoc,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。

诺顿定理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流Is等于这个有源二端网络的短路电流I SC,其等效内阻R0定义同戴维宁定理。

Uoc(Us)和R0或者I SC(I S)和R0称为有源二端网络的等效参数。

2. 有源二端网络等效参数的测量方法
(1) 开路电压的测量
在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc。

(2)短路电流的测量
在有源二端网络输出端短路,用电流表测其短路电流Isc。

(3)等效内阻R0的测量
Uoc
R0=──
Isc
如果二端网络的内阻很小,若将其输出端口短路,则易损坏其内部元件,因此不宜用此法。

五、实验内容
被测有源二端网络如图5-1(a)所示,即HE-12挂箱中“戴维宁定理/诺顿定理”线路。

(a) (b)
图5-1
1. 用开路电压、短路电流法测定戴维宁等效电路的Uoc、R0。

按图5-1(a)接入稳压电源Us=12V和恒流源Is=10mA,不接入R L。

测出U O c和Isc,并计算出R0(测U OC时,不接入mA表。

),并记录于表1。

表1 实验数据表一
2. 负载实验
按图5-1(a)接入可调电阻箱R L。

按表2所示阻值改变R L阻值,测量有源二端网络的外特性曲线,并记录于表2。

表2 实验数据表二
3. 验证戴维宁定理
把恒压源移去,代之用导线连接原接恒压源处;把恒流源移去,这时,A、B两点间的电阻即为R0,然后令其与直流稳压电源(调到步骤“1”时所测得的开路电压Uoc之值)相串联,如图5-1(b)所示,仿照步骤“2”测其外特性,对戴氏定理进行验证,数据记录于表3。

表3 实验数据表三
4. 验证诺顿定理
在图5-1(a)中把理想电流源及理想电压源移开,并在电路接理想电压源处用导线短接(即相当于使两电源置零了),这时,A、B两点的等效电阻值即为诺顿定理中R0,然后令
其与直流恒流源(调到步骤“1”时所测得的短路电流Isc 之值)相并联,如图5-2所示,仿照步骤“2”测其外特性,对诺顿定理进行验证,数据记入表4。

图5-2
表4 实验数据表之四
六、实验结果分析
图2—
1
图2—2
1.步骤2和3,分别绘出曲线如图2—1.2—2
由这两个图可以明显看出图1中a等效于b,也即戴维南定理得证。

2.思考题
(1)在求戴维宁等效电路时,作短路试验,测I sc的条件是不接入负载。

本实验中可直接作负载短路实验。

因为电路本身带有电阻。

(2)图5-1(a)中所测的开路电压不是负载RL两端的电压,因为负载两端的电压是会随着RL大小而改变的,而开路电压Uoc是一个固定值。

(3)一个二端网络在内部含有负载的情况下可以做短路实验。

精品文档。

相关文档
最新文档