二次函数动点问题解答方法技巧(含例解答案)
二次函数动点问题解答方法技巧(含例解答案)
函数解题思路方法总结:
⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;
⑶ 根据图象的位置判断二次函数ax ²+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;
⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax ²+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:
动点问题题型方法归纳总结
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)
动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、
相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、 抛物线上动点
5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;
(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
二次函数动点问题解答方法技巧含例解答案
函数解题思路方法总结:
⑴ 求二次函数的图象与x 轴的交点坐标.需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;
⑶ 根据图象的位置判断二次函数ax ²+bx+c=0中a,b,c 的符号.或由二次函数中a,b,c 的符号判断图象的位置.要数形结合;
⑷ 二次函数的图象关于对称轴对称.可利用这一性质.求和已知一点对称的点坐标.或已知与x 轴的一个交点坐标.可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式.二次三项式ax ²+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例.揭示二次函数、二次三项式和一元二次方程之间的内在联系:
动点问题题型方法归纳总结
动态几何特点----问题背景是特殊图形.考查问题也是特殊图形.所以要把握好一般与特殊的关系;分析过程中.特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)
动点问题一直是中考热点.近几年考查探究运动中的特殊性:等腰三角形、直角三角形、
相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍.解题方法、关键给以点拨。
二、 抛物线上动点
5、(湖北十堰市)如图①. 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1.0)和点
B (-3.0).与y 轴交于点
C .
(1) 求抛物线的解析式;
(2) 设抛物线的对称轴与x轴交于点M .问在对称轴上是否存在点P.使△CMP为等腰三角形?若存在.请直接写出所有符合条件的点P的坐标;若不存在.请说明理由.
二次函数动点问题解答方法技巧(含例解答案)
函数解题思路方法总结:
⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;
⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;
⑶根据图象的位置判断二次函数ax²+bx+c=0中a,b,c的符号,或由二次函
数中a,b,c的符号判断图象的位置,要数形结合;
⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的
点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.
⑸与二次函数有关的还有二次三项式,二次三项式ax²+bx+c﹙a≠0﹚本身就是所含字母x的二次函数;下面以a>0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:
动点问题题型方法归纳总结
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)
动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角
三角形、
相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、 抛物线上动点
5、(XXXX 市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;
(2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.
二次函数动点问题解答方法技巧含例解答案
函数解题思路方法总结:
⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;
⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;
⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.
⑸ 与二次函数有关的还有二次三项式,二次三项式ax2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:
动点问题题型方法归纳总结
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、抛物线上动点
5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点
B (-3,0),与y 轴交于点
C .
(1) 求抛物线的解析式;
(2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.
二次函数动点问题解答方法技巧含例解答案
函数解题思路方法总结:
⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;
⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;
⑶根据图象的位置判断二次函数ax2+bx+c=0中a,b,c的符号,或由二次函数中a,b,c
的符号判断图象的位置,要数形结合;
⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,
或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.
⑸与二次函数有关的还有二次三项式,二次三项式ax2+bx+c﹙a≠0﹚本身就是所含
字母x的二次函数;下面以a>0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:
动点问题题型方法归纳总结
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)
动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或
其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、抛物线上动点
5、(湖北十堰市)如图①,已知抛物线3
2+
ax
y(a≠0)与x轴交于点A(1,
=bx
+
0)和点B (-3,0),与y轴交于点C.
(1) 求抛物线的解析式;
(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
二次函数动点问题解答方法技巧(含例解答案)
函数解题思路方法总结:
⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;
⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;
⑶根据图象的位置判断二次函数ax²+bx+c=0中a,b,c的符号,或由二次函
数中a,b,c的符号判断图象的位置,要数形结合;
⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的
点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.
⑸与二次函数有关的还有二次三项式,二次三项式ax²+bx+c﹙a≠0﹚本身就是所含字母x的二次函数;下面以a>0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:
动点问题题型方法归纳总结
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)
动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角
三角形、
相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、 抛物线上动点
5、(XXXX 市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;
(2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.
二次函数动点问题解答方法技巧(含例解答案)
二次函数动点问题解答方法技巧(含例解答案)函数解题思路方法总结:
⑴ 求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数
的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;
⑶ 根据图象的位置判断二次函数ax2+bx+c=0中a,b,c的符号,或由二次函数中
a,b,c的符号判断图象的位置,要数形结合;
⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的
还有二次三项式,二次三项式ax2+bx+c�va≠0�w本身就是所含字母x的二次函数;下
面以a>0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:
动点问题题型方法归纳总结
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般
与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的
特殊位置。)
动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、
相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、抛物线上动点
5、(湖北十堰市)如图①,已知抛物线y?ax2?bx?3(a≠0)与x轴交于点A(1,0)
和点B (-3,0),与y轴交于点C. (1) 求抛物线的解析式;
(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等
腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
二次函数动点问题解答方法技巧(含例解答案)
二次函数动点问题解答方法技巧(含例解答案)
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
函数解题思路方法总结:
⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;
⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;
⑶ 根据图象的位置判断二次函数ax2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;
⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.
⑸ 与二次函数有关的还有二次三项式,二次三项式ax2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:
动点问题题型方法归纳总结
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、 抛物线上动点
5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;
二次函数动点问题解答方法技巧(含例解答案)
函数解题思路方法总结:
⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;
⑶ 根据图象的位置判断二次函数ax ²+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;
⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax ²+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:
动点问题题型方法归纳总结
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)
动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、
相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、 抛物线上动点
5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C .
(1) 求抛物线的解析式;
(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
二次函数动点问题解答方法技巧(含例解答案)
函数解题思路方法总结:
⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;
⑶ 根据图象的位置判断二次函数ax ²+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;
⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax ²+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:
动点问题题型方法归纳总结
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)
动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、
相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、 抛物线上动点
5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;
(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
二次函数动点问题解答方法技巧(含例解答案)
函数解题思路方法总结:
⑴ 求二次函数的图象与x 轴的交点坐标.需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;
⑶ 根据图象的位置判断二次函数ax2+bx+c=0中a,b,c 的符号.或由二次函数中a,b,c 的符号判断图象的位置.要数形结合;
⑷ 二次函数的图象关于对称轴对称.可利用这一性质.求和已知一点对称的点坐标.或已知与x 轴的一个交点坐标.可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式.二次三项式ax2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例.揭示二次函数、二次三项式和一元二次方程之间的内在联系:
动点问题题型方法归纳总结
动态几何特点----问题背景是特殊图形.考查问题也是特殊图形.所以要把握好一般与特殊的关系;分析过程中.特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)
动点问题一直是中考热点.近几年考查探究运动中的特殊性:等腰三角形、直角三角形、
相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍.解题方法、关键给以点拨。
二、 抛物线上动点
5、(湖北十堰市)如图①. 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1.0)和点
B (-3.0).与y 轴交于点
C .
(1) 求抛物线的解析式;
(2) 设抛物线的对称轴与x轴交于点M .问在对称轴上是否存在点P.使△CMP为等腰三角形?若存在.请直接写出所有符合条件的点P的坐标;若不存在.请说明理由.
二次函数动点问题解答方法技巧 含例解答案
(4) .
[点评]本题主要考查函数性质的简单运用和几何知识,是近年来较为流行的试题,解题的关键在于结合题目的要求动中取静,相信解决这种问题不会非常难。
.
5.如图①, 中, , .它的顶点 的坐标为 ,顶点 的坐标为 , ,点 从点 出发,沿 的方向匀速运动,同时点 从点 出发,沿 轴正方向以相同速度运动,当点 到达点 时,两点同时停止运动,设运动的时间为 秒.
设点D的坐标为
∴ ,
∴
∴
=
③
7.关于 的二次函数 以 轴为对称轴,且与 轴的交点在 轴上方.
(1)求此抛物线的解析式,并在下面的直角坐标系中画出函数的草图;
(3)求(2)中面积 (平方单位)与时间 (秒)的函数关系式及面积 取最大值时点 的坐标.
(4)若点 保持(2)中的速度不变,则点 沿着 边运动时, 的大小随着时间 的增大而增大;沿着 边运动时, 的大小随着时间 的增大而减小.当点 沿着这两边运动时,使 的点 有个.
(抛物线 的顶点坐标是 .
[解](1)作 轴于 .
另解:过P做PC∥y轴,PC交AB于C,当PC最大时△PBA在AB边上的高h最大(h与PC夹角固定),则S△PBA最大→问题转化为求PC最大值,设P(x, ),C(x, ),从而可以表示PC长度,进行极值求取。
最后,以PC为底边,分别计算S△PBC和S△PAC即可。
二次函数动点问题解答方法技巧(含例解答案)
函数解题思路方法总结:
⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;
⑶ 根据图象的位置判断二次函数ax ²+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;
⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax ²+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:
动点问题题型方法归纳总结
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)
动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、
相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、 抛物线上动点
5、(湖北十堰市)如图①, 已知抛物线(a ≠0)与轴交于点A (1,0)和
点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;
32
++=bx ax y x
(2) 设抛物线的对称轴与轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.
二次函数动点问题解答方法技巧含例解答案
二次函数动点问题解答方法技巧含例解答案标准化管理部编码-[99968T-6889628-J68568-1689N]
函数解题思路方法总结:
⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;
⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;
⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.
⑸ 与二次函数有关的还有二次三项式,二次三项式ax2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:
动点问题题型方法归纳总结
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)
动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、
相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、抛物线上动点
5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;
二次函数动点问题解答方法技巧(含例解标准答案)
根据中心对称的性质 ,所以四边形 是平行四边形.
所以 .
所以,四边形 的面积 .
因为运动至点 与点 重合为止,据题意可知 .
所以,所求关系式是 , 的取值范围是 .
(3) ,( ).
所以 时, 有最大值 .
提示:也可用顶点坐标公式来求.
(4)在运动过程中四边形 能形成矩形.
其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、抛物线上动点
5、(湖北十堰市)如图①,已知抛物线 (a≠0)与 轴交于点A(1,0)和点B(-3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)设抛物线的对称轴与 轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
二次函数动点问题解答方法技巧(含例解答案)
———————————————————————————————— 作者:
———————————————————————————————— 日期:
函数解题思路方法总结:
⑴ 求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;
⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;
(3)当 为何值时,四边形 的面积 有最大值,并求出此最大值;
二次函数动点问题解答方法技巧(含例解答案)
函数解题思路方法总结:
⑴ 求二次函数的图象与x 轴的交点坐标.需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;
⑶ 根据图象的位置判断二次函数ax ²+bx+c=0中a,b,c 的符号.或由二次函数中a,b,c 的符号判断图象的位置.要数形结合;
⑷ 二次函数的图象关于对称轴对称.可利用这一性质.求和已知一点对称的点坐标.或已知与x 轴的一个交点坐标.可由对称性求出另一个交点坐标.
⑸ 与二次函数有关的还有二次三项式.二次三项式ax ²+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例.揭示二次函数、二次三项式和一元二次方程之间的内在联系:
动点问题题型方法归纳总结
动态几何特点----问题背景是特殊图形.考查问题也是特殊图形.所以要把握好一般与特殊的关系;分析过程中.特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)
动点问题一直是中考热点.近几年考查探究运动中的特殊性:等腰三角形、直角三角形、
相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍.解题方法、关键给以点拨。
二、 抛物线上动点
5、(湖北十堰市)如图①. 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A 和点B (-.与y 轴交于点C .
(1) 求抛物线的解析式;
(2) 设抛物线的对称轴与x轴交于点M .问在对称轴上是否存在点P.使△CMP为等腰三角形若存在.请直接写出所有符合条件的点P的坐标;若不存在.请说明理由.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数解题思路方法总结:
⑴求二次函数的图象与x轴的交点坐标.需转化为一元二次方程;
⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;
⑶根据图象的位置判断二次函数ax²+bx+c=0中a,b,c的符号.或由二次函数
中a,b,c的符号判断图象的位置.要数形结合;
⑷二次函数的图象关于对称轴对称.可利用这一性质.求和已知一点对称的点
坐标.或已知与x轴的一个交点坐标.可由对称性求出另一个交点坐标.
⑸与二次函数有关的还有二次三项式.二次三项式ax²+bx+c﹙a≠0﹚本身就是所含字母x的二次函数;下面以a>0时为例.揭示二次函数、二次三项式和一元二次方程之间的内在联系:
动点问题题型方法归纳总结
动态几何特点----问题背景是特殊图形.考查问题也是特殊图形.所以要把握好一般与特殊的关系;分析过程中.特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)
动点问题一直是中考热点.近几年考查探究运动中的特殊性:等腰三角形、直角三角形、
相似三角形、平行四边形、梯形、特殊角或
其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍.解题方法、关键给以点拨。
二、 抛物线上动点
5、(湖北十堰市)如图①. 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A 和点B (-.与y 轴交于点C . (1) 求抛物线的解析式;
(2) 设抛物线的对称轴与x 轴交于点M .问在对称轴上是否存在点P .使△CMP 为等腰三角形若存在.请直接写出所有符合条件的点P 的坐标;若不存在.请说明理由.
(3) 如图②.若点E 为第二象限抛物线上一动点.连接BE 、CE .求四边形BOCE 面积的最大值.并求此时E 点的坐标.
注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P 坐标----①C 为顶点时.以C 为圆心CM 为半径画弧.与对称轴交点即为所求点P.②M 为顶点时.以M 为圆心MC 为半径画弧.与对称轴交点即为所求点P.③P 为顶点时.线段MC 的垂直平分线与对称轴交点即为所求点P 。
第(3)问方法一.先写出面积函数关系式.再求最大值(涉及二次函数最值); 方法二.先求与BC 平行且与抛物线相切点的坐标(涉及简单二元二次方程组).再求面积。
共同点:
⑤探究存在性问题时.先画出图形.再根据图形性质探究答案。
二次函数的动态问题(动点)
1.如图.已知抛物线1C 与坐标轴的交点依次是
(40)A -,.(20)B -,.(08)E ,.
(1)求抛物线1C 关于原点对称的抛物线2C 的解析式; (2)设抛物线1C 的顶点为M .抛物线2C 与x 轴分别交于
C D ,两点(点C 在点D 的左侧).顶点为N .四边形
MDNA 的面积为S .若点A .点D 同时以每秒1个单位
的速度沿水平方向分别向右、向左运动;与此同时.点M .
⑤利用a 、t 范围.运用不等式求出a 、t 的值。
⑤探究等腰三角形时.先画图.再探究(按边相等分类讨论)
①特殊四边形为背景; ②点动带线动得出动三角形;
③探究动三角形问题(相似、等腰三角形、面积函数关系式); ④求直线、抛物线解析式;
点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动.直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式.并写出自变量t 的取值范围; (3)当t 为何值时.四边形MDNA 的面积S 有最大值.并求出此最大值;
(4)在运动过程中.四边形MDNA 能否形成矩形若能.求出此时t 的值;若不能.请说明理由.
[解] (1)点(40)A -,.点(20)B -,.点(08)E ,关于原点的对称点分别为
(40)D ,.(20)C ,.(08)F -,.
设抛物线2C 的解析式是
2(0)y ax bx c a =++≠.
则16404208a b c a b c c ++=⎧⎪
++=⎨⎪=-⎩
,,. 解得168a b c =-⎧⎪
=⎨⎪=-⎩
,,.
所以所求抛物线的解析式是2
68y x x =-+-. (2)由(1)可计算得点(31)(31)M N --,,,. 过点N 作NH AD ⊥.垂足为H .
当运动到时刻t 时.282AD OD t ==-.12NH t =+.
根据中心对称的性质OA OD
OM ON ==,.所以四边形MDNA 是平行四边形. 所以2ADN S S =△.
所以.四边形MDNA 的面积2
(82)(12)4148S t t t t =-+=-++. 因为运动至点A 与点D 重合为止.据题意可知04t <≤.
所以.所求关系式是2
4148S t t =-++.t 的取值范围是04t <≤.
(3)781
444
S t ⎛⎫=--+ ⎪⎝⎭.(04t <≤)
. 所以74t =
时.S 有最大值814
. 提示:也可用顶点坐标公式来求.
(4)在运动过程中四边形MDNA 能形成矩形.
由(2)知四边形MDNA 是平行四边形.对角线是AD MN ,.所以当AD MN =时四边形
MDNA 是矩形.
所以OD ON =.所以2222OD ON OH NH ==+.
所以22420t t +-=
.解之得1222t t ==,(舍). 所以在运动过程中四边形MDNA 可以形成矩形.
此时2t =
.
[点评]本题以二次函数为背景.结合动态问题、存在性问题、最值问题.是一道较传统的压轴题.能力要求较高。
2. (06福建龙岩卷)如图.已知抛物线2
34y x bx c =-
++与坐标轴交于A B C ,,三点.点A 的横坐标为1-.过点(03)C ,的直线3
34y x t
=-+与x 轴交于点Q .点P 是线段BC 上
的一个动点.PH OB ⊥于点H .若5PB t =.且01t <<. (1)确定b c ,的值:__________b c ==,;
(2)写出点B Q P ,,的坐标(其中Q P ,用含t 的式子表示):
(______)(______)(______)B Q P ,,,,,;
(3)依点P 的变化.是否存在t 的值.使PQB △为等腰三角形若存在.求出所有t 的值;若
不存在.说明理由.
[解] (1)9
4
b =
3c =
(2)(40)B , (40)Q t ,