二次函数典型例题解析汇报与习题训练
二次函数详细总结及典型练习例题
二次函数复习导学案教学目标教法:引导式教学、讲练结合1、二次函数的定义:一般地,形如)b a 0(2为常数、、,c a c bx ax y ≠++=的函数,叫做二次函数。
其中x 是自变量,a 是二次项系数,b 是一次项系数,c 常数项。
2.二次函数解析式的三种形式: 一般式: y=ax 2 +bx+c(a ≠0) 顶点式: 2()y a x h k =-+224()24b ac b y a x a a-=-+ 交点式: 12()()y a x x x x =--(轴交点的横坐标)为图像与、x 21x x 3.二次函数图像:(最值问题) 二次函数的图像是一条抛物线,对称轴: 顶点坐标: 与y 轴交点坐标4.增减性:当a 0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大; 当a 0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小. 5.二次函数图像画法:勾画草图关键点:○1开口方向 ○2对称轴 ○3顶点 ○4与x 轴交点 ○5与y 轴交点 6.图像平移步骤(1)配方 2()y a x h k =-+,确定顶点( )(2)对x 轴 左加右减;对y 轴 上加下减 7.二次函数的对称性:知识与能力:1、二次函数的解析式 对称轴 顶点坐标 最大(最小)值2、懂得利用二次函数解决生活中的实际问题过程与方法:通过复习使学生掌握二次函数知识与其它知识综合形成较为复杂的综合题目的思考方法。
情感、态度和价值观:注重培养学生数形结合的思想和独立思考的能力。
重点:二次函数的图象与性质。
运用函数、方程、几何等知识解决与函数有关的综合题以及函数应用问题。
难点:二次函数知识与其它知识综合形成较为复杂的综合题目的思考方法。
教学过程一、知识点学习y xO二次函数是轴对称图形,有这样一个结论:当横坐标为x 1, x 2 其对应的纵坐标相等那么对称轴122x x x += 8. a 、b 、c 以及△=b 2-4ac 对图象的影响.(1)a 决定:开口方向、开口大小(2)c 决定与y 轴的交点为(0,c ) (3)b 与-b2a 共同决定b 的正负性(b ——对称轴与a 左同右异)9.抛物线与坐标轴的交点(1)求二次函数y =ax 2+bx +c 与x 轴交点当函数值y =0时,求得的x 的值就是抛物线与x 轴交点的 ).如:求y =x 2-2x -3与x 轴交点坐标.(2)求二次函数y =ax 2+bx +c 与y 轴交点当x =0时,则y 的值是抛物线与y 轴交点的 . 如:求抛物线y =x 2-2x -3与y 轴交点坐标. 10.二次函数与一元二次方程的关系抛物线y=ax 2 +bx+c 与x 轴交点的横坐标x 1, x 2 是一元二次方程ax 2 +bx+c=0(a ≠0)的根。
二次函数综合题经典习题(含答案及基本讲解)解析
二次函数综合题训练题型集合1、如图1,已知二次函数图象的顶点坐标为C(1,0),直线m x y +=与该二次函数的图象交于A 、B 两点,其中A 点的坐标为(3,4),B 点在轴y 上. (1)求m 的值及这个二次函数的关系式;(2)P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作x 轴的垂线与这个二次函数的图象交于点E 点,设线段PE 的长为h ,点P 的横坐标为x ,求h 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)D 为直线AB 与这个二次函数图象对称轴的交点,在线段AB 上是否存在一点P ,使得四边形DCEP 是平行四边形?若存在,请求出此时明理由.2、如图2,已知二次函数24y axx c =-+的图像经过点A 和点B . (1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点P (m ,m )与点Q 均在该函数图像上(其中m >0),且这两点关于抛物线的对称轴对称,求m 的值及点Q 到x 轴的距离图1 图23、如图3,已知抛物线cxbxay++=2经过O(0,0),A(4,0),B(3,3)三点,连结AB,过点B作BC∥x轴交该抛物线于点C.(1)求这条抛物线的函数关系式.(2)两个动点P、Q分别从O、A两点同时出发,以每秒1个单位长度的速度运动. 其中,点P沿着线段0A向A点运动,点Q沿着折线A→B→C的路线向C点运动. 设这两个动点运动的时间为t(秒) (0<t<4),△PQA的面积记为S.①求S与t的函数关系式;②当t为何值时,S有最大值,最大值是多少?并指出此时△PQA的形状;③是否存在这样的t值,使得△PQA是直角三角形?若存在,请直接写出此时P、Q两点的坐标;若不存在,请说明理由.7、(07海南中考)如图7,直线434+-=xy与x轴交于点A函数的图象经过点A、C和点()0,1-B.(1)求该二次函数的关系式;(2)设该二次函数的图象的顶点为M,求四边形AOCM的面积;(3)有两动点D、E同时从点O出发,其中点D以每秒23个单位长度的速度沿折线OAC 按O→A→C的路线运动,点E以每秒4个单位长度的速度沿折线OCA按O→C→A的路线运动,当D、E两点相遇时,它们都停止运动.设D、E同时从点O出发t秒时,ODE∆的面积为S .①请问D、E两点在运动过程中,是否存在DE∥OC,若存在,请求出此时t的值;若不存在,请说明理由;②请求出S关于t的函数关系式,并写出自变量t的取值范围;4、某公司推出了一种高效环保型除草剂,年初上市后,公司经历了从亏损到盈利的过程. 图4的二次函数图象(部分)反映了该公司年初以来累积利润S (万元)与时间t (月)之间的关系(即前t 个月的利润总和S 与t 之间的关系).根据图象提供信息,解答下列问题: (1)公司从第几个月末开始扭亏为盈;(2)累积利润S 与时间t 之间的函数关系式; (3)求截止到几月末公司累积利润可达30万元; (4)求第8个月公司所获利是多少元?5、(07年海口模拟二)如图5,已知抛物线c x b x a y ++=2的顶点坐标为E (1,0),与y 轴的交点坐标为(0,1). (1)求该抛物线的函数关系式.(2)A 、B 是x 轴上两个动点,且A 、B 间的距离为AB=4,A 在B 的左边,过A 作AD ⊥x 轴交抛物线于D ,过B 作BC ⊥x 轴交抛物线于C. 设A 点的坐标为(t ,0),四边形ABCD 的面积为S.① 求S 与t 之间的函数关系式.② 求四边形ABCD 的最小面积,此时四边形ABCD 是什么四边形?③ 当四边形ABCD 面积最小时,在对角线BD 上是否存在这样的点P ,使得△PAE 的周长最小,若存在,请求出点P 的坐标及这时△PAE 的周长;若不存在,说明理由.x y D图5 E B A C O 1 xyE O 1 备用图-3 0 -1-21 234 S(万元) 图41 2 3 4 5 6 t(月)6、(07浙江中考)如图6,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2。
二次函数经典例题及解答
二次函数经典例题及解答二次函数一、中考导航图1.二次函数的意义2.二次函数的图像3.二次函数的性质顶点对称轴开口方向增减性4.待定系数法确定二次函数解析式5.二次函数与一元二次方程的关系三、中考知识梳理1.二次函数的图像二次函数y=ax2+bx+c(a≠0)的图像可以通过配方法化简为y=a(x+(b/2a))2+(4ac-b2)/4a2的形式。
确定顶点坐标后,可以对称求点列表并画图,或者使用顶点公式来求得顶点坐标。
2.理解二次函数的性质抛物线的开口方向由a的符号来确定。
当a>0时,抛物线开口向上,对称轴左侧y随x的增大而减小,在对称轴右侧y随x的增大而增大。
当a0)或左增右减(a<0)。
此时,当x=-b/2a时,y取最值,最小值或最大值的大小为|(4ac-b2)/4a|。
3.待定系数法是确定二次函数解析式的常用方法待定系数法是通过给定的条件来确定二次函数的解析式。
可以任意给定三个点或三组x,y的值来确定解析式,组成三元一次方程组来求解。
也可以在给定条件中已知顶点坐标、对称轴或最值时,设解析式为y=a(x-h)2+k。
在给定条件中已知抛物线与x轴两交点坐标或已知抛物线与x轴一交点坐标和对称轴时,设解析式为y=a(x-x1)(x-x2)来求解。
4.二次函数与一元二次方程的关系抛物线y=ax2+bx+c与x轴的交点可以转化为一元二次方程ax2+bx+c=0的解。
当抛物线与x轴有两个交点时,方程有两个不相等实根;当抛物线与x轴有一个交点时,方程有两个相等实根;当抛物线与x轴无交点时,方程无实根。
5.抛物线y=ax2+bx+c中a、b、c符号的确定抛物线y=ax2+bx+c的开口方向由a的符号来确定。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
b的符号可以表示抛物线与y轴的交点在y轴的上方或下方。
c的符号可以表示抛物线与x轴的交点在x轴的上方或下方。
四、中考题型例析1.确定二次函数解析式例1:求满足以下条件的二次函数的解析式:1)图像经过点A(-1,3)、B(1,3)、C(2,6);2)图像经过点A(-1,0)、B(3,0),函数有最小值-8;3)图像顶点坐标是(-1,9),与x轴两交点间的距离是6.分析:此题主要考查用待定系数法来确定二次函数解析式。
二次函数最值知识点总结典型例题及习题
二次函数最值知识点总结典型例题及习题必修一二次函数在闭区间上的最值一、知识要点:对于一元二次函数在闭区间上的最值问题,关键在于讨论函数的对称轴与区间的相对位置关系。
一般分为对称轴在区间左侧、中间和右侧三种情况。
例如,对于函数f(x) = ax^2 + bx + c (a ≠ 0),求其在闭区间[x1.x2]上的最大值和最小值。
分析:将函数f(x)配方,得到其顶点为(-b/2a。
c - b^2/4a)。
因此,对称轴为x = -b/2a。
当a。
0时,函数f(x)的图像为开口向上的抛物线。
结合数形结合可得在闭区间[x1.x2]上f(x)的最值:1)当对称轴在[x1.x2]之外时,f(x)的最小值为f(-b/2a),最大值为f(x1)和f(x2)中的较大者。
2)当对称轴在[x1.x2]之间时,若x1 ≤ -b/2a ≤ x2,则f(x)的最小值为f(-b/2a),最大值为f(x1)和f(x2)中的较大者;若x1.-b/2a或x2 < -b/2a,则f(x)在闭区间[x1.x2]上单调递增或单调递减,最小值为f(x1),最大值为f(x2)。
当a < 0时,情况类似。
二、例题分析归类:一)正向型此类问题是指已知二次函数和定义域区间,求其最值。
对称轴与定义域区间的相互位置关系往往成为解决这类问题的关键。
此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。
1.轴定区间定二次函数和定义域区间都是给定的,我们称这种情况是“定二次函数在定区间上的最值”。
例如,对于函数y = -x^2 + 4x - 2在区间[0.3]上的最大值为2,最小值为-2.2.轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。
例如,对于函数f(x) = (x-1)^2 + 1,在区间[t。
t+1]上的最值为f(t)和f(t+1)中的较大者。
二次函数经典分类讲解以及练习题_
一、二次函数的定义定义: y=ax ² + bx + c ( a 、 b 、 c 是常数, a ≠ 0 ) 定义要点:①a ≠ 0 ②最高次数为2 ③代数式一定是整式练习:1、y=-x ²,y=2x ²-2/x ,y=100-5 x ²,y=3 x ²-2x ³+5,其中是二次函数的有____个。
2.当m_______时,函数y=(m+1) χ - 2χ+1 是二次函数? 二、二次函数的图像及性质1、二次函数y=kx 2+bx+c(a ≠0)的同象是一条 ,其顶点坐标为 对称轴式 2、增减性练习: 1、y=2x 2对称轴 顶点坐标2、y=x 2-1对称轴 顶点坐标3、y=-3(x+2)2对称轴 顶点坐标4、y=4(x-3)2+1对称轴 顶点坐标5、y=-2x 2+6x-1对称轴 顶点坐标 三、求抛物线解析式的三种方法1、一般式:已知抛物线上的三点,通常设解析式为________________ y=ax2+bx+c(a ≠0)2,顶点式:已知抛物线顶点坐标(h, k ),通常设抛物线解析式为_______________求出表达式后化为一般形式. y=a(x-h)2+k(a ≠0)3,交点式:已知抛物线与x 轴的两个交点(x1,0)、 (x2,0),通常设解析式为_____________求出表达式后化为一般形式.y=a(x-x1)(x-x2) (a ≠0) 练习:根据下列条件,求二次函数的解析式。
(1)、图象经过(0,0), (1,-2) , (2,3) 三点; (2)、图象的顶点(2,3), 且经过点(3,1) ;(3)、图象经过(0,0), (12,0) ,且最高点的纵坐标是3 。
例1已知二次函数y=ax2+bx+c 的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6)。
求a 、b 、c 。
四、a ,b ,c 符号的确定 练习7.已知二次函数的图像如图所示,下列结论。
二次函数最值知识点总结典型例题及习题
二次函数在闭区间上的最值一、 知识要点:一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。
一般分为:对称轴在区间的左边,中间,右边三种情况.设f x ax bx c a ()()=++≠20,求f x ()在x m n ∈[],上的最大值与最小值。
分析:将f x ()配方,得顶点为--⎛⎝ ⎫⎭⎪b aac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值:(1)当[]-∈b a m n 2,时,f x ()的最小值是f b a ac b af x -⎛⎝ ⎫⎭⎪=-2442,()的最大值是f m f n ()()、中的较大者。
(2)当[]-∉b am n 2,时 若-<b am 2,由f x ()在[]m n ,上是增函数则f x ()的最小值是f m (),最大值是f n () 若n b a<-2,由f x ()在[]m n ,上是减函数则f x ()的最大值是f m (),最小值是f n () 当a <0时,可类比得结论。
二、例题分析归类:(一)、正向型是指已知二次函数和定义域区间,求其最值。
对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。
此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。
1. 轴定区间定二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。
例1. 函数y x x =-+-242在区间[0,3]上的最大值是_________,最小值是_______。
练习. 已知232x x ≤,求函数f x x x ()=++21的最值。
2、轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。
二次函数的典型例题的解析
注意:1.用圆规 2等腰三角形:分类讨论
二.难点突破1——函数的面积问题
已知一次函数y 1 x 5 与y 2 交于点A(-1,2),B(- 4,0.5)
22
x
求AOB的面积。
解题思路:1.确定“割”或“补” 2.直线与坐标轴交点
C
S∆AOB=S∆AOC-S∆BOC
解题思路:1.关注“点” AB C MDN
MN ? MN=ND-MD MN=N的纵坐标-M的纵坐标
N(m,-m2+2m+3)
二.难点突破1——函数的面积问题 小结:
E
二.难点突破2——函数的线段最短问题
已知一次函数y 1 x 5 与y 2 交于点A(-1,2),B(- 4,0.5)
22
x
• 已知y= -0.5x2+2x+6与x轴交于点A(-2,0), B,与y轴交于点C,在抛物线的对称轴上存 在一点M,使得MA+MC的值最小,求点M的坐 标。
三.课堂小结
• 1.函数易错题 • 2.面积(最大面积)问题 • 3.线段最短问题
一落实基础,试题重现
• 3.如图,点P是菱形ABCD边上的一动点,它从 点A出发沿在A→B→C→D路径匀速运动到点D, 设△PAD的面积为y,P点的运动时间为x,则y 关于x的函数图象大致为( B )
A
B
C
D
一落实基础,试题重现
4.二次函数y -x2 2x 3如图所示,当函数值y为正数时, 自变量x的取值范围是___1___x___3____ .
注意:巧求交点
5.如图,函数y
k1x
b与y
k2 x
(x
0)交于点A(-1,2),B(-
二次函数十大解题模型汇总(模型+例题+练习题)
角线 a 的关系.
2、已知:一等腰直角三角形的面积为 S,请写出 S 与其斜边长 a 的关系表达式,并分别求出 a=1,a= 2 ,
a=2 时三角形的面积.
1 3、在物理学内容中,如果某一物体质量为 m,它运动时的能量 E 与它的运动速度 v 之间的关系是 E= 2 mv2
(m 为定值).(1)若物体质量为 1,填表表示物体在 v 取下列值时,E 的取值:
例 2、如果人民币一年定期储蓄的年利率是 x,一年到期后,银行将本金和利息自动按一年定期储蓄转存, 到期支取时,银行将扣除利息的 20%作为利息税.请你写出两年后支付时的本息和 y(元)与年利率 x 的 函数表达式.
例 3、某商场将进价为 40 元的某种服装按 50 元售出时,每天可以售出 300 套.据市场调查发现,这种服 装每提高 1 元售价,销量就减少 5 套,如果商场将售价定为 x,请你得出每天销售利润 y 与售价的函数表 达式.
二次函数十大解题模型汇总(模型+例题+练习题)
模型 1:根据二次函数的定义求字母的值
例 1:函数 y=(m+2)x m2−2 +2x-1 是二次函数,则 m=
.
对象:y=(m+2)x m2−2 +2x-1 角度:二次函数的稀疏,次数
(完整版)二次函数知识点及经典例题详解最终
二次函数知识点总结及经典习题一、二次函数概念:1.二次函数的概念:一般地,形如y =ax2 +bx +c (a ,b,c是常数,a ≠ 0 )的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数a ≠ 0 ,而b ,c 可以为零.二次函数的定义域是全体实数.2. 二次函数y =ax2 +bx +c 的结构特征:⑴等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a ,b ,c 是常数, a 是二次项系数, b 是一次项系数, c 是常数项.二、二次函数的基本形式1.二次函数基本形式:y =ax2 的性质:a 的绝对值越大,抛物线的开口越小。
a 的符号开口方向顶点坐标对称轴性质a > 0向上(0,0)y 轴x > 0 时,y 随x 的增大而增大;x < 0 时,y 随x 的增大而减小;x = 0 时,y 有最小值0 .a < 0向下(0,0)y 轴x > 0 时,y 随x 的增大而减小;x < 0 时,y 随x 的增大而增大;x = 0 时,y 有最大值0 .2.y =ax2 +c 的性质:上加下减。
a 的符号开口方向顶点坐标对称轴性质a > 0向上(0,c)y 轴x > 0 时,y 随x 的增大而增大;x < 0 时,y 随x 的增大而减小;x = 0 时,y 有最小值c .a < 0向下(0,c)y 轴x > 0 时,y 随x 的增大而减小;x < 0 时,y 随x 的增大而增大;x = 0 时,y 有最大值c .3.y = a (x - h )2的性质:左加右减。
a 的符号开口方向顶点坐标对称轴性质a > 0向上(h ,0)X=hx > h 时, y 随 x 的增大而增大; x < h 时, y 随x 的增大而减小; x = h 时, y 有最小值0 .a < 0向下(h ,0)X=hx > h 时, y 随 x 的增大而减小; x < h 时, y 随x 的增大而增大; x = h 时, y 有最大值0 .4.y = a (x - h )2+ k 的性质:a 的符号开口方向顶点坐标对称轴性质a > 0向上(h ,k )X=h x > h 时, y 随 x 的增大而增大;x < h 时, y 随x 的增大而减小; x = h 时, y 有最小值 k .a < 0向下(h ,k )X=hx > h 时, y 随 x 的增大而减小;x < h 时, y 随x 的增大而增大; x = h 时, y 有最大值 k .三、二次函数图象的平移1.平移步骤:⑴ 将抛物线解析式转化成顶点式 y = a (x - h )2+ k ,确定其顶点坐标(h ,k );⑵ 保持抛物线 y = ax 2 的形状不变,将其顶点平移到(h ,k )处,具体平移方法如下:2.平移规律在原有函数的基础上“ h 值正右移,负左移; k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.四、二次函数 y = a (x - h )2+ k 与 y = ax 2 + bx + c 的比较从解析式上看, y = a (x - h )2+ k 与 y = ax 2 + bx + c 是两种不同的表达形式,后者通过配方可以得到前者,即 y = a +,其中h= - ,k=(b2a )24ac - b 24ab2a 4ac - b 24a 五、二次函数 y = ax 2 + bx + c 的性质当 a > 0 时,抛物线开口向上,对称轴为,顶点坐标为.b2a (‒b 2a ,4ac ‒ b 24a)当x < - 时,y 随x 的增大而减小;b2a当x > - 时,y 随x 的增大而增大;b2a 当x =- 时,y 有最小值 .b 2a 4ac ‒ b 24a 2. 当α<0时,抛物线开口向下,对称轴为x =- , 顶点坐标为.当b2a(‒b 2a ,4ac ‒ b 24a)x < -时, y 随 x 的大而增大y;当随 x > - 时,y 随 x 的增大而减小;当x =- 时 , y 有最大值.b2ab 2a b 2a 4ac ‒ b 24a六、二次函数解析式的表示方法1.一般式: y = ax 2 + bx + c ( a , b , c 为常数, a ≠ 0 );2.顶点式: y = a (x - h )2 + k ( a , h , k 为常数, a ≠ 0 );3.两根式(交点式): y = a (x - x 1 )(x - x 2 ) ( a ≠ 0 , x 1 , x 2 是抛物线与 x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式, 只有抛物线与 x 轴有交点,即b 2 - 4ac ≥ 0 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1.二次项系数 a ⑴ 当 a > 0 时,抛物线开口向上, a 的值越大,开口越小,反之 a 的值越小,开口越大;⑵ 当 a < 0 时,抛物线开口向下, a 的值越小,开口越小,反之 a 的值越大,开口越大.2.一次项系数b 在二次项系数 a 确定的前提下, b 决定了抛物线的对称轴.(同左异右b 为 0 对称轴为 y 轴)3.常数项c⑴ 当c > 0 时,抛物线与 y 轴的交点在 x 轴上方,即抛物线与 y 轴交点的纵坐标为正;⑵ 当c = 0 时,抛物线与 y 轴的交点为坐标原点,即抛物线与 y 轴交点的纵坐标为0 ;⑶ 当c < 0 时,抛物线与 y 轴的交点在 x 轴下方,即抛物线与 y 轴交点的纵坐标为负. 总结起来, c 决定了抛物线与 y 轴交点的位置.八、二次函数与一元二次方程:1.二次函数与一元二次方程的关系(二次函数与 x 轴交点情况):一元二次方程 ax 2 + bx + c = 0 是二次函数 y = ax 2 + bx + c 当函数值 y = 0 时的特殊情况. 图象与 x 轴的交点个数:① 当 ∆ = b 2 - 4ac > 0 时,图象与 x 轴交于两点 A (x 1 ,0),B (x 2 ,0 ) (x 1 ≠ x 2 ) ,其中的 x 1 ,x 2是一元二次方程 ax 2 + bx + c = 0(a ≠ 0)的两根.②当∆= 0 时,图象与x 轴只有一个交点;③当∆< 0 时,图象与x 轴没有交点.1' 当a > 0 时,图象落在x 轴的上方,无论x 为任何实数,都有y > 0 ;2 ' 当a < 0 时,图象落在x 轴的下方,无论x 为任何实数,都有y < 0 .2.抛物线y =ax2 +bx +c 的图象与y 轴一定相交,交点坐标为(0 ,c) ;中考题型例析1.二次函数解析式的确定例 1求满足下列条件的二次函数的解析式(1)图象经过 A(-1,3)、B(1,3)、C(2,6);(2)图象经过 A(-1,0)、B(3,0),函数有最小值-8;(3)图象顶点坐标是(-1,9),与 x 轴两交点间的距离是 6.分析:此题主要考查用待定系数法来确定二次函数解析式.可根据已知条件中的不同条件分别设出函数解析式,列出方程或方程组来求解.(1)解:设解析式为 y=ax 2+bx+c,把 A(-1,3)、B(1,3)、C(2,6)各点代入上式得解得 {3=a ‒b +c 3=a +b +c 6=4a +2b +c {a =1b =0c =2∴解析式为 y=x 2+2.(2)解法1:由 A(-1,0)、B(3,0)得抛物线对称轴为 x=1,所以顶点为(1,-8). 设解析式为 y=a(x-h)2+k,即 y=a(x-1)2-8.把 x=-1,y=0 代入上式得 0=a(-2)2-8,∴a=2. 即解析式为 y=2(x-1)2-8,即 y=2x 2-4x-6.解法2:设解析式为 y=a(x+1)(x-3),确定顶点为(1,-8)同上, 把 x=1,y=-8 代入上式得-8=a(1+1)(1-3).解得 a=2,∴解析式为 y=2x 2-4x-6.解法 3:∵图象过 A(-1,0),B(3,0)两点,可设解析式为:y=a(x+1)(x-3)=ax 2-2ax-3a.∵函数有最小值-8.∴ =-8.4a (‒3a )‒(2a)24a又∵a≠0,∴a=2.⎬∴解析式为 y=2(x+1)(x-3)=2x 2-4x-6.(3)解:由顶点坐标(-1,9)可知抛物线对称轴方程是 x=-1, 又∵图象与 x 轴两交点的距离为 6,即 AB=6.由抛物线的对称性可得 A 、B 两点坐标分别为 A(-4,0),B(2,0), 设出两根式 y=a(x-x 1)·(x-x 2),将 A(-4,0),B(2,0)代入上式求得函数解析式为 y=-x 2-2x+8.点评:一般地,已知三个条件是抛物线上任意三点(或任意 3 对 x,y 的值)可设表达式为y=ax 2+bx+c,组成三元一次方程组来求解; 如果三个已知条件中有顶点坐标或对称轴或最值,可选用 y=a(x-h)2+k 来求解;若三个条件中已知抛物线与 x 轴两交点坐标,则一般设解析式为 y=a(x-x 1)(x-x 2).2.二次函数的图象例 2y=ax 2+bx+c(a≠0)的图象如图所示,则点 M(a,bc)在().A.第一象限B.第二象限C.第三象限D.第四象限分析:由图可知:抛物线开口向上⇒ a>0.抛物线与y 轴负半轴相交 ⇒ c < 0b ⇒ bc>0.对称轴x = - 2a 在y 轴右侧 ⇒ b < 0∴点 M(a,bc)在第一象限. 答案:A.点评:本题主要考查由抛物线图象会确定 a 、b 、c 的符号.例 3 已知一次函数 y=ax+c 二次函数 y=ax 2+bx+c(a≠0),它们在同一坐标o系中的大致图象是().分析:一次函数 y=ax+c,当 a>0 时,图象过一、三象限;当 a<0 时,图象过二、 四象限;c>0 时, 直线交 y 轴于正半轴; 当 c<0 时, 直线交 y 轴于负半轴; 对于二次函数y= ax 2+bx+c(a≠0)来讲:⎧开口上下决定a 的正负⎪左同右异(即对称轴在y 轴左侧,b 的符号⎪⎨与a 的符号相同;)来判别b 的符号⎪抛物线与y 轴的正半轴或负半轴相交确定⎪⎩c 的正负解:可用排除法,设当 a>0 时,二次函数 y=ax 2+bx+c 的开口向上,而一次函数 y= ax+c 应过一、三象限,故排除 C;当 a<0 时,用同样方法可排除 A;c 决定直线与 y 轴交点;也在抛物线中决定抛物线与y 轴交点,本题中c 相同则两函数图象在y 轴上有相同的交点,故排除B.答案:D.3.二次函数的性质例 4对于反比例函数 y=-与二次函数 y=-x 2+3, 请说出他们的两个相同点:2x ①, ②; 再说出它们的两个不同点:① ,②.分析:本小题是个开放性题目,可以从以下几点性质来考虑①增减性②图象的形状③ 最值④自变量取值范围⑤交点等.解:相同点:①图象都是曲线,②都经过(-1,2)或都经过(2,-1);不同点:①图象形状不同,②自变量取值范围不同,③一个有最大值,一个没有最大值. 点评:本题主要考查二次函数和反比例函数的性质,有关函2数开放性题目是近几年命题的热点.4.二次函数的应用例 5 已知抛物线 y=x 2+(2k+1)x-k 2+k,(1)求证:此抛物线与 x 轴总有两个不同的交点.(2)设 x 1、x 2 是此抛物线与 x 轴两个交点的横坐标,且满足 x 12+x 2=-2k 2+2k+1.①求抛物线的解析式.②设点 P (m 1,n 1)、Q(m 2,n 2)是抛物线上两个不同的点, 且关于此抛物线的对称轴对称. 求 m+m 的值.分析:(1)欲证抛物线与 x 轴有两个不同交点,可将问题转化为证一元二次方程有两个不相等实数根,故令 y=0,证△>0 即可.(2)①根据二次函数的图象与x 轴交点的横坐标即是一元二次方程的根.由根与系数的关系,求出 k 的值,可确定抛物线解析式;②由 P 、Q 关于此抛物线的对称轴对称得 n 1=n 2, 由 n 1=m 12+m 1,n 2=m 22+m 2得 m 12+m 1=m 22+m 2,即(m 1-m 2)(m 1+m 2+1)=0 可求得 m 1+m 2= - 1.解:(1)证明:△=(2k+1)2-4(-k 2+k)=4k 2+4k+1+4k 2-4k=8k 2+1.∵8k 2+1>0,即△>0,∴抛物线与 x 轴总有两个不同的交点.(2) ①由题意得 x 1+x 2=-(2k+1), x 1· x 2=-k 2+k.∵x 1 2+x 2 2=-2k 2+2k+1,∴(x 1+x 2)2-2x 1x 2=- 2k 2+2k+1, 即(2k+1)2-2(-k 2+k)=-2k 2+k+1, 4k 2+4k+1+2k 2-2k= - 2k 2+2k+1.∴8k 2=0, ∴k=0,∴抛物线的解析式是 y=x 2+x.22②∵点 P 、Q 关于此抛物线的对称轴对称,∴n 1=n 2.又 n 1=m 12+m 1,n 2=m 2+m 2.∴m 12+m 1=m 2+m 2,即(m 1-m 2)(m 1+m 2+1)=0.∵P 、Q 是抛物上不同的点,∴m 1≠m 2,即 m 1-m 2≠0.∴m 1+m 2+1=0 即 m 1+m 2=-1.点评:本题考查二次函数的图象(即抛物线)与 x 轴交点的坐标与一元二次方程根与系数的关系.二次函数经常与一元二次方程相联系并联合命题是中考的热点.二次函数对应练习试题一、选择题1.二次函数 y = x 2- 4x - 7 的顶点坐标是()A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3)2.把抛物线 y = -2x 2 向上平移 1 个单位,得到的抛物线是()A. y = -2(x +1)2B. y = -2(x -1)2C. y = -2x 2+1D. y = -2x 2-13.函数 y = kx 2- k 和 y = k(k ≠ 0) 在同一直角坐标系中图象可能是图中的()x4.已知二次函数 y = ax 2+ bx + c (a ≠ 0) 的图象如图所示,则下列结论: ①a,b同号;② 当 x = 1和 x = 3时,函数值相等;③ 4a + b = 0 ④当 y = -2时, x 的值只能取0.其中正确的个数是( )A.1 个B.2 个C. 3 个D.4 个5.已知二次函数 y = ax 2+ bx + c (a ≠ 0) 的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于 x 的一元二次方程ax 2+ bx + c = 0 的两个根分别是 x 1 = 1.3和x 2 =()A.-1.3 B.-2.3 C.-0.3 D.-3.36. 已知二次函数 y = ax 2 + bx + c 的图象如图所示,则点(ac , bc ) 在( )A .第一象限B .第二象限C .第三象限D .第四象限7.方程 2x - x 2= 的正根的个数为()2xA.0 个B.1 个C.2 个.3个08.已知抛物线过点 A(2,0),B(-1,0),与 y 轴交于点 C,且 OC=2.则这条抛物线的解析式为A. y = x 2 - x - 2B. y = -x 2+ x + 2C. y = x 2- x - 2 或 y = -x 2+ x + 2 D. y = -x 2- x - 2 或 y = x 2+ x + 2二、填空题9.二次函数 y = x 2+ bx + 3 的对称轴是 x = 2 ,则b = 。
二次函数典型例题解析与习题训练
(2)∵顶面正在x轴上圆,m >0∴顶面的纵坐标大于0,即414∴m>14时,顶面正在x轴上圆.∴m>14(3)令x=0,则y=m.即扔物线y=x2-x+m与y轴接面的坐标是A(0,m).∵AB∥x轴∴B面的纵坐标为m.当x2-x+m=m时,解得x1=0,x2=1.∴A(0,m),B(1,m)正在Rt△BAO中,AB=1,OA=│m│.∵S△AOB =1OA·AB=4.2│m│·1=4,∴m=±8∴12故所供二次函数的剖析式为y=x2-x+8或者y=x2-x-8.【面评】精确明白并掌握二次函数中常数a,b,c的标记与函数本量及位子的闭系是解问本题的闭键之处.例 2 已知:m,n是圆程x2-6x+5=0的二个真数根,且m<n,扔物线y=-x2+bx+c的图像通过面A(m,0),B(0,n),如图所示.(1)供那个扔物线的剖析式;(2)设(1)中的扔物线与x轴的另一接解那个圆程,得x1=-5,x2=1.所以面C的坐标为(-5,0),由顶面坐标公式估计,得面D(-2,9).过D做x轴的垂线接x轴于M,如图所示.则S△DMC=12×9×(5-2)=272.S梯形MDBO=12×2×(9+5)=14,S△BDC =12×5×5=252.所以S△BCD =S梯形MDBO+S△DMC-S△BOC =14+272-252=15.(3)设P面的坐标为(a,0)果为线段BC过B,C二面,所以BC天圆的曲线圆程为y=x+5.那么,PH与曲线BC的接面坐标为E(a,a+5),PH与扔物线y=-x2+4x+5•的接面坐标为H(a,-a2-4a+5).由题意,得①EH=32EP,即(-a2-4a+5)-(a+5)=32(a+5).解那个圆程,得a=-32或者a=-5(舍来).②EH=23EP,得(-a2-4a+5)-(a+5)=32(a+5).解那个圆程,得a=-23或者a=-5(舍来).P面的坐标为(-32,0)或者(-23,0).例3 已知闭于x的二次函数y=x2-mx+212m 与y=x2-mx-当m=0时,y=x2-1.令y=0,得x2-1=0.解那个圆程,得x1=-1,x2=1.此时,面B的坐标是B(1,0).当m=2时,y=x2-2x-3.令y=0,得x2-2x-3=0.解那个圆程,得x1=1,x2=3.此时,面B的坐标是B(3,0).(3)当m=0时,二次函数为y=x2-1,此函数的图像启心进与,对付称轴为x=0,所以当x<0时,函数值y随x的删大而减小.当m=2时,二次函数为y=x2-2x-3=(x-1)2-4,此函数的图像启心进与,对付称轴为x=1,所以当x<1时,函数值y随x的删大而减小.【面评】本题是一讲闭于二次函数与圆程、不等式有闭知识的概括题,但是它仍旧是反映函数图像上面的坐标与函数剖析式间的闭系,抓住问题的真量,机动使用所教知识,那类概括题本来不深刻决.课堂习题一、挖空题1.左图是二次函数y1=ax2+bx+c战一次函数y2=mx+n的图像,瞅察图像写出y2≥y1时,x的与值范畴_______.2.已知扔物线y=a2+bx+c通过面A(-2,7),B(6,7),C(3,-8),则该扔物线上纵坐标为-8的另一面的坐标是_______.3.已知二次函数y=-x2+2x+c2的对付称轴战x轴相接于面(m,0),则m的值为______.4.若二次函数y=x2-4x+c的图像与x轴惟有1个接面,则c=_______5.已知扔物线y=ax2+bx+c通过面(1,2)与(-1,4),则a+c的值是______.6.甲,乙二人举止羽毛球角逐,甲收出一格外闭键的球,脱脚面为P,羽毛球飞止的火仄距离s(m)与其距大天下度h(m)之间的闭系式为h=-112s2+23s+32.如下左图所示,已知球网AB距本面5m,乙(用线段CD表示)扣球的最大下度为94m,设乙的起跳面C的横坐标为m,若乙本天起跳,果球的下度下于乙扣球的最大下度而引导接球波折,则m的与值范畴是______.7.二次函数y=x2-2x-3与x轴二接面之间的距离为______.8.杭州市“安居工程”新修成的一批楼房皆是8层下,房子的代价y(元/m2)随楼层数x(楼)的变更而变更(x=1,2,3,4,5,6,7,8),已知面(x,y)皆正在一个二次函数的图像上(如上左图),则6楼房子的代价为_____元/m2.14.已知二次函数y=x2+bx+3,当x=-1时,y博得最小值,则那个二次函数图像的顶面正在()A.第一象限 B.第二象限 C.第三象限 D.第四象限15.扔物线y=ax2+2ax+a2+2的一部分图像如图所示,那么该扔物线正在y轴左侧与x轴接面的坐标是(),0)B.(1,0)C.(2,0) A.(12D.(3,0)16.正在共背来角坐标系中,函数y=mx+m战y=-mx2+2x+2(m是常数,且m≠0)的图像大概是()三、解问题17.如图所示,已知扔物线y=ax2+4ax+t(a>0)接x轴A,B二面,接y轴于面C,扔物线的对付称轴接x轴于面E,面B的坐标为(-1,0)(1)供扔物线的对付称轴及面A的坐标;(2)过面C做x轴的仄止线接扔物线的对付称轴于面P,您能推断四边形ABCP是什么四边形?并说明您的论断;18.如图所示,m,n是圆程x2-6x+5=0的二个真数根,且m<n,•扔物线y=-x2+bx+c的图像通过面A(m,0),B (0,n).(1)供那个扔物线的剖析式;面.(1)供扔物线的剖析式;(2)供△MCB的里积.。
中考复习专题二次函数经典分类讲解复习以及练习题含答案
1、二次函数的定义定义:y=ax2 +bx +c (a 、b 、c是常数, a ≠0)定义重点:①a≠0②最高次数为 2 ③代数式必定是整式练习:1、y=-x2,y=2x2-2/x,y=100-5x2,y=3x2-2x3+5,此中是二次函数的有____个。
m2m2.当m_______时,函数y=(m+1)χ-2χ+1是二次函数?2、二次函数的图像及性质y抛物线极点坐标xy=ax2+bx+c(a>0)4acb2a,4ay0 xy=ax2+bx+c(a<0)b4acb22a,4ab直线x 直线xb对称轴地点张口方向增减性最值2a由a,b和c的符号确立a>0,张口向上在对称轴的左边,y跟着x的增大而减小.在对称轴的右边,y跟着x的增大而增大.当x b 时,y最小值为4acb22 a4a2a由a,b和c的符号确立a<0,张口向下在对称轴的左边,y跟着x的增大而增大.在对称轴的右边,y跟着x的增大而减小.当x b时,y最大值为4acb22a4a例2:已知二次函数y1232x21)求抛物线张口方向,对称轴和极点M 的坐标。
2)设抛物线与y 轴交于C 点,与x 轴交于A 、B 两点,求C ,A ,B 的坐标。
3)x 为什么值时,y 随的增大而减少,x 为什么值时,y 有最大(小)值,这个最大(小)值是多少? 4)x 为什么值时,y<0?x 为什么值时,y>0?3、求抛物线分析式的三种方法1、一般式:已知抛物线上的三点,往常设分析式为________________y=ax2+bx+c(a≠0)2,极点式:已知抛物线极点坐标(h,k ),往常设抛物线分析式为_______________求出表达式后化为一般形式.y=a(x-h)2+k(a≠0)3,交点式:已知抛物线与x轴的两个交点(x1,0)、(x2,0),往常设分析式为_____________求出表达式后化为一般形式.y=a(x-x1)(x-x2)(a≠0)练习:依据以下条件,求二次函数的分析式。
九下数学-二次函数(超经典例题讲解,习题含答案)
3.若正比例函数y=(1-2m)x的图像经过点A( , )和点B( , ),当 < 时 > ,则m的取值范围是()
(A)m<0(B)m>0(C)m< (D)m>
4.函数y= kx+ 1与函数 在同一坐标系中的大致图象是( )
(A) (B) (C) (D)
5.下列各图是在同一直角坐标系内,二次函数 与一次函数y=ax+c的大致图像,有且只有一个是正确的,正确的是()
(A) , ,
(B) , ,
(C) , ,
(D) , ,
11.张大伯出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家,下面哪个图形表示张大伯离家时间与距离之间的关系()
12.二次函数y=x2-2x+2有()
A.最大值是1 B.最大值是2 C.最小值是1 D.最小值是2
(A)(B)(C)(D)
6.抛物线 的顶点坐标是( )
A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)
7.函数y=ax+b与y=ax2+bx+c的图象如右图所示,则下列选项中正确的是( )
A.ab>0,c>0 B.ab<0,c>0
C.ab>0,c<0 D.ab<0,c<0
8.已知a,b,c均为正数,且k= ,在下列四个点中,正比例函数
三、解答题:
(1) (2)
解:(1)如图,建立直角坐标系,设二次函数解析式为y=ax2+c
∵D(-0.4,0.7),B(0.8,2.2),∴
∴ ∴绳子最低点到地面的距离为0.2米.
(2)分别作EG⊥AB于G,FH⊥AB于H,
二次函数典型例题解析汇报与习题训练
二次函数一、知识点梳理1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.二次函数)0,,(2≠++=a c b a c bx ax y 是常数, a>0a<0y0 xy0 x(1)抛物线开口向上,并向上无限延伸; (2)对称轴是x=a b 2-,顶点坐标是(a b 2-,ab ac 442-); (3)在对称轴的左侧,即当x<a b 2-时,y 随x 的增大而减小;在对称轴的右侧,即当x>a b 2-时,y 随x 的增大而增大 (4)抛物线有最低点,当x=a b 2-时,y 有最小值,ab ac y 442-=最小值(1)抛物线开口向下,并向下无限延伸; (2)对称轴是x=a b 2-,顶点坐标是(ab2-,ab ac 442-); (3)在对称轴的左侧,即当x<ab 2-时,y 随x 的增大而增大;在对称轴的右侧,即当x>ab2-时,y 随x 的增大而减小 (4)抛物线有最高点,当x=ab2-时,y 有最大值,ab ac y 442-=最大值3.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴以及最值,通常选择顶点式.求抛物线的顶点、对称轴的方法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=, ∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故ac x x a b x x =⋅-=+2121,()()a a acb ac a b x x x x x x x x AB ∆=-=-⎪⎭⎫⎝⎛-=--=-=-=4442221221221214.抛物线c bx ax y ++=2中,c b a ,,的作用 (1)a 决定开口方向及开口大小:a >0,开口向上;a <0,开口向下;α越大,开口越小 (2)b 和a 决定抛物线对称轴(左同右异)①0=b 时,对称轴为y 轴;②0>a b(即a 、b 同号)时,对称轴在y 轴左侧; ③0<ab(即a 、b 异号)时,对称轴在y 轴右侧. (3)c 决定抛物线与y 轴交点的位置.①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴; ③0<c ,与y 轴交于负半轴.(4)ac b 42-=∆决定抛物线与x 轴的交点个数 ①0 ∆,有2个交点 ②,0=∆ 有1个交点;③0 ∆,无交点二、例题解析例1 已知:二次函数为y=x 2-x+m(1)写出它的图像的开口方向,对称轴及顶点坐标; (2)m 为何值时,顶点在x 轴上方(3)若抛物线与y 轴交于A ,过A 作AB ∥x 轴交抛物线于另一点B ,当S △AOB =4时,求此二次函数的解析式.【分析】(1)用配方法可以达到目的;(2)顶点在x 轴的上方,即顶点的纵坐标为正; (3)AB ∥x 轴,A ,B 两点的纵坐标是相等的,从而可求出m 的值. 【解答】(1)∵由已知y=x 2-x+m 中,二次项系数a=1>0,∴开口向上,又∵y=x 2-x+m=[x 2-x+(12)2]- 14+m=(x -12)2+414m -∴对称轴是直线x=12,顶点坐标为(12,414m -).(2)∵顶点在x 轴上方, ∴顶点的纵坐标大于0,即414m ->0 ∴m>14 ∴m>14时,顶点在x 轴上方.(3)令x=0,则y=m .即抛物线y=x 2-x+m 与y 轴交点的坐标是A (0,m ). ∵AB ∥x 轴∴B 点的纵坐标为m .当x 2-x+m=m 时,解得x 1=0,x 2=1. ∴A (0,m ),B (1,m ) 在Rt △BAO 中,AB=1,OA=│m │. ∵S △AOB =12OA ·AB=4. ∴12│m │·1=4,∴m=±8 故所求二次函数的解析式为y=x 2-x+8或y=x 2-x -8.【点评】正确理解并掌握二次函数中常数a ,b ,c 的符号与函数性质及位置的关系是解答本题的关键之处.例2 已知:m ,n 是方程x 2-6x+5=0的两个实数根,且m<n ,抛物线y=-x 2+bx+c 的图像经过点A (m ,0),B (0,n ),如图所示. (1)求这个抛物线的解析式;(2)设(1)中的抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C ,D 的坐标和△BCD 的面积;(3)P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标.【分析】(1)解方程求出m ,n 的值.用待定系数法求出b ,c 的值.(2)过D 作x 轴的垂线交x 轴于点M ,可求出△DMC ,梯形BDBO ,△BOC 的面积,用割补法可求出△BCD 的面积.(3)PH 与BC 的交点设为E 点,则点E 有两种可能:①EH=32EP , ②EH=23EP . 【解答】(1)解方程x 2-6x+5=0, 得x 1=5,x 2=1. 由m<n ,有m=1,n=5.所以点A ,B 的坐标分别为A (1,0),B (0,5).将A (1,0),B (0,5)的坐标分别代入y=-x 2+bx+c , 得10,5b c c -++=⎧⎨=⎩ 解这个方程组,得4,5b c =-⎧⎨=⎩所以抛物线的解析式为y=-x 2-4x+5.(2)由y=-x 2-4x+5,令y=0,得-x 2-4x+5=0. 解这个方程,得x 1=-5,x 2=1.所以点C 的坐标为(-5,0),由顶点坐标公式计算,得点D (-2,9).过D 作x 轴的垂线交x 轴于M ,如图所示.则S △DMC =12×9×(5-2)=272.S 梯形MDBO =12×2×(9+5)=14,S △BDC =12×5×5=252.所以S△BCD =S梯形MDBO+S△DMC-S△BOC =14+272-252=15.(3)设P点的坐标为(a,0)因为线段BC过B,C两点,所以BC所在的直线方程为y=x+5.那么,PH与直线BC的交点坐标为E(a,a+5),PH与抛物线y=-x2+4x+5•的交点坐标为H(a,-a2-4a+5).由题意,得①EH=32EP,即(-a2-4a+5)-(a+5)=32(a+5).解这个方程,得a=-32或a=-5(舍去).②EH=23EP,得(-a2-4a+5)-(a+5)=32(a+5).解这个方程,得a=-23或a=-5(舍去).P点的坐标为(-32,0)或(-23,0).例3 已知关于x的二次函数y=x2-mx+212m+与y=x2-mx-222m+,这两个二次函数的图像中的一条与x轴交于A,B两个不同的点.(1)试判断哪个二次函数的图像经过A,B两点;(2)若A点坐标为(-1,0),试求B点坐标;(3)在(2)的条件下,对于经过A,B两点的二次函数,当x取何值时,y的值随x值的增大而减小?【解答】(1)对于关于x的二次函数y=x2-mx+212m+.由于b2-4ac=(-m)-4×1×212m+=-m2-2<0,所以此函数的图像与x轴没有交点.对于关于x的二次函数y=x2-mx-222m+.由于b2-4ac=(-m)2-4×1×222m+=3m2+4>0,所以此函数的图像与x轴有两个不同的交点.故图像经过A,B两点的二次函数为y=x2-mx-222m+.(2)将A(-1,0)代入y=x2-mx-222m+.得1+m-222m+=0.整理,得m2-2m=0.解得m=0或m=2.当m=0时,y=x2-1.令y=0,得x2-1=0.解这个方程,得x1=-1,x2=1.此时,点B的坐标是B(1,0).当m=2时,y=x2-2x-3.令y=0,得x2-2x-3=0.解这个方程,得x1=1,x2=3.此时,点B的坐标是B(3,0).(3)当m=0时,二次函数为y=x2-1,此函数的图像开口向上,对称轴为x=0,所以当x<0时,函数值y随x的增大而减小.当m=2时,二次函数为y=x2-2x-3=(x-1)2-4,此函数的图像开口向上,对称轴为x=1,所以当x<1时,函数值y随x的增大而减小.【点评】本题是一道关于二次函数与方程、不等式有关知识的综合题,但它仍然是反映函数图像上点的坐标与函数解析式间的关系,抓住问题的实质,灵活运用所学知识,这类综合题并不难解决.课堂习题一、填空题1.右图是二次函数y1=ax2+bx+c和一次函数y2=mx+n的图像,观察图像写出y2≥y1时,x的取值范围_______.2.已知抛物线y=a2+bx+c经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是_______.3.已知二次函数y=-x2+2x+c2的对称轴和x轴相交于点(m,0),则m的值为______.4.若二次函数y=x2-4x+c的图像与x轴只有1个交点,则c=_______5.已知抛物线y=ax2+bx+c经过点(1,2)与(-1,4),则a+c的值是______.6.甲,乙两人进行羽毛球比赛,甲发出一十分关键的球,出手点为P,羽毛球飞行的水平距离s(m)与其距地面高度h(m)之间的关系式为h=-112s2+23s+32.如下左图所示,已知球网AB距原点5m,乙(用线段CD表示)扣球的最大高度为94m,设乙的起跳点C的横坐标为m,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则m 的取值范围是______.7.二次函数y=x2-2x-3与x轴两交点之间的距离为______.8.杭州市“安居工程”新建成的一批楼房都是8层高,房子的价格y(元/m2)随楼层数x (楼)的变化而变化(x=1,2,3,4,5,6,7,8),已知点(x,y)都在一个二次函数的图像上(如上右图),则6楼房子的价格为_____元/m2.二、选择题9.二次函数y=ax2+bx+c的图像如图所示,•则下列关系式不正确的是()A.a<0 B.abc>0 C.a+b+c<0 D.b2-4ac>0(第9题) (第12题) (第15题)10.已知二次函数y=ax2+bx+c的图像过点A(1,2),B(3,2),C(5,7).若点M(-2,y1),N(-1,y2),K(8,y3)也在二次函数y=ax2+bx+c的图像上,则下列结论中正确的是()A.y1<y2<y3 B.y2<y1<y3 C.y3<y1<y2 D.y1<y3<y211.抛物线y=ax2+bx+c(a≠0)的对称轴是x=2,且经过点P(3,0),则a+b+c的值为() A.-1 B.0 C.1 D.212.如图所示,抛物线的函数表达式是()A.y=x2-x+2 B.y=-x2-x+2 C.y=x2+x+2 D.y=-x2+x+213.抛物线y=-2x2-4x-5经过平移得到y=-2x2,平移方法是()A.向左平移1个单位,再向下平移3个单位B.向左平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位D.向右平移1个单位,再向上平移3个单位14.已知二次函数y=x2+bx+3,当x=-1时,y取得最小值,则这个二次函数图像的顶点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限15.抛物线y=ax2+2ax+a2+2的一部分图像如图所示,那么该抛物线在y轴右侧与x轴交点的坐标是()A.(12,0) B.(1,0) C.(2,0) D.(3,0)16.在同一直角坐标系中,函数y=mx+m和y=-mx2+2x+2(m是常数,且m≠0)的图像可能是()三、解答题17.如图所示,已知抛物线y=ax2+4ax+t(a>0)交x轴A,B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0)(1)求抛物线的对称轴及点A的坐标;(2)过点C作x轴的平行线交抛物线的对称轴于点P,你能判断四边形ABCP是什么四边形?并证明你的结论;18.如图所示,m,n是方程x2-6x+5=0的两个实数根,且m<n,•抛物线y=-x2+bx+c的图像经过点A(m,0),B(0,n).(1)求这个抛物线的解析式;(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C,D的坐标和△BCD的面积;(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于点H,若直线BC把△PCH分成面积之比为2:3的两部分,请求出点P的坐标.19.某地计划开凿一条单向行驶(从正中通过)的隧道,•其截面是抛物线拱形ACB,而且能通过最宽3m,最高3.5m的厢式货车.按规定,•机动车通过隧道时车身距隧道壁的水平距离和铅直距离最小都是0.5m.为设计这条能使上述厢式货车恰好完全通过的隧道,在图纸上以直线AB为x轴,线段AB的垂直平分线为y轴,建立如图所示的直角坐标系,求抛物线拱形的表达式,隧道的跨度AB和拱高OC.20.已知一个二次函数的图像过如图所示三点.(1)求抛物线的对称轴;(2)平行于x轴的直线L的解析式为y=254,抛物线与(3)x轴交于A,B两点.在抛物线的对称轴上找点P,(4)使BP的长等于直线L与x轴间的距离.求点P的坐标.21.如图所示,二次函数y=ax2+bx+c(a≠0)的图像与x•轴交于A,B两点,其中A点坐标为(-1,0),点C(0,5),D(1,8)在抛物线上,M为抛物线的顶点.(1)求抛物线的解析式;(2)求△MCB的面积.文档。
二次函数练习题及解析精练
一、(共30小题)1、(2003•天津)已知抛物线y=x2﹣2x﹣8.(1)试说明该抛物线与x轴一定有两个交点.(2)若该抛物线与x轴的两个交点分别为A、B(A在B的左边),且它的顶点为P,求△ABP的面积.2、(2002•黄石)已知抛物线y=﹣x2+mx+(7﹣2m)(m为常数).(1)证明:不论m为何值,抛物线与x轴恒有两个不同的交点;(2)若抛物线与x轴的交点A(x1,0)、B(x2,0)的距离为AB=4(A在B的左边),且抛物线交了轴的正半轴于C,求抛物线的解析式.3、已知抛物线y=﹣x2+bx+c与x轴的两个交点分别为A(x1,0),B(x2,0)(A在B的左边),且x1+x2=4.(1)求b的值及c的取值范围;(2)如果AB=2,求抛物线的解析式;(3)设此抛物线与y轴的交点为C,顶点为D,对称轴与x轴的交点为E,问是否存在这样的抛物线,使△AOC和△BED全等,如果存在,求出抛物线的解析式;如果不存在,请说明理由.4、已知抛物线y=x2﹣4x+c的顶点P在直线y=﹣4x﹣1上.(1)求c的值;(2)求抛物线与x轴两交点M、N的坐标(点M在点N的左边),并求△PMN的面积.5、已知抛物线y=2x2﹣4x与x轴的交点坐标是.6、已知抛物线的顶点坐标是(4,2),与y轴的交点是(0,﹣6)(1)求抛物线的解析式;(2)求出抛物线与x轴的交点坐标;(3)在左边的坐标系中画出这个函数的图象.7、(2006•广州)已知抛物线Y=x2+mx﹣2m2(m≠0).(1)求证:该抛物线与X轴有两个不同的交点;(2)过点P(0,n)作Y轴的垂线交该抛物线于点A和点B(点A在点P的左边),是否存在实数m、n,使得AP=2PB?若存在,则求出m、n满足的条件;若不存在,请说明理由.8、已知抛物线y=x2﹣3x﹣4,则它与x轴的交点坐标是(﹣1,0),(4,0).9、已知抛物线y=2x2﹣5x+3与y轴的交点坐标是(0,3).10、已知抛物线y=x2+px+q与x轴只有一个交点,交点坐标为(﹣1,0),则p=2,q=1.11、已知抛物线C1的解析式为y1=x2+2x﹣1,并与x轴交于A、B两点(A点位于B点左边).抛物线C2的解析式为y2=x2+bx+c,其图象与抛物线C1关于y轴对称,并与x轴交于C、D两点(C点位于D点左边).抛物线C2与抛物线C1相交于点E.(1)求抛物线C2的解析式;(2)求△ADE的面积.12、已知抛物线y=x2﹣kx﹣3k与x轴的一个交点为(﹣2,0)(1)求k的值;(2)求抛物线与x轴的另一个交点坐标.13、已知抛物线y=x2﹣x﹣2.(1)求抛物线顶点M的坐标;(2)若抛物线与x轴的交点分别为点A、B(点A在点B的左边),与y轴交于点C,点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B,点M重合),设NQ的长为t,四边形NQAC的面积为S,求S与t之间的函数关系式及自变量t的取值范围;(3)在对称轴右侧的抛物线上是否存在点P,使△P AC为直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由.14、(2000•湖州)已知:抛物线y=x2+bx+c的顶点坐标为(1,﹣4),(1)求抛物线的解析式;(2)求该抛物线与坐标轴的交点坐标.15、已知抛物线y=x2+bx+c与x轴只有一个交点,且交点为A(2,0).(1)求抛物线的解析式;(2)若抛物线与y轴的交点为B,坐标原点为O,求△AOB内切圆的半径.16、已知抛物线y=2x2+4x+k﹣1与x轴有两个交点,求k的取值范围.17、已知过点(1,0)的直线与抛物线y=2x2仅有一个交点,写出满足该条件的直线解析式y=8x﹣8.18、已知直线y=x+b经过抛物线y=6x2+5x﹣7与y轴的交点,则b=﹣7.19、已知抛物线y=x2+bx+c的部分图象如图所示,则它与x轴的另一个交点是()A、(2,0)B、(3,0)C、(4,0)D、(5,0)20、已知二次函数y=﹣x2+2x+m的部分图象如图所示,则抛物线与x轴的另一个交点坐标为(﹣1,0).21、(2001•温州)已知抛物线y=x2+2(k+1)x﹣k与x轴有两个交点,且这两个交点分别在直线x=1的两侧,则k的取值范围是k<﹣3.22、(2007•韶关)已知抛物线y=x2﹣2x﹣3与x轴的右交点为A,与y轴的交点为B,求经过A、B两点的直线的解析式.23、已知二次函数y=x2﹣mx+m﹣2.(1)求证:无论m为任何实数,该二次函数的图象与x轴都有两个交点;(2)当该二次函数的图象经过点(3,6)时,求二次函数的解析式;(3)将直线y=x向下平移2个单位长度后与(2)中的抛物线交于A、B两点(点A在点B的左边),一个动点P自A点出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后运动到点B.求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长.24、已知抛物线y=x2﹣3mx+m+n,要达到对所有的实数m,抛物线都与x轴有交点,n必须()A、n≤﹣19B、n≥181C、n≤﹣181D、n≤﹣125、已知抛物线y=x2+x+p(p≠0)与x轴有且只有一个交点,则p=14,该抛物线的对称轴方程是x=﹣12,顶点的坐标是(﹣12,0).26、已知抛物线y=﹣x2+(m+2)x+3m﹣20经过点(1,﹣3),求抛物线与x轴交点的坐标及顶点的坐标.27、已知二次函数y=x2﹣2x+c的图象如图所示.(1)求c的值和抛物线的顶点坐标;(2)求抛物线与x轴的交点坐标.28、已知抛物线y=x2+(k+1)x+1与x轴两个交点A、B不在原点的左侧,抛物线顶点为C,要使△ABC恰为等边三角形,那么k的值为﹣5.29、(2005•余姚市)已知抛物线y=x2+bx﹣a2.(1)请你选定a、b适当的值,然后写出这条抛物线与坐标轴的三个交点,并画出过三个交点的圆;(2)试讨论此抛物线与坐标轴交点分别是1个,2个,3个时,a、b的取值范围,并且求出交点坐标.30、(2004•天津)已知抛物线y=x2+bx+c与x轴只有一个交点,且交点为A(2,0).(Ⅰ)求b、c的值;(Ⅱ)若抛物线与y轴的交点为B,坐标原点为O,求△OAB的周长.(答案可带根号)答案与评分标准一、(共30小题)1、(2003•天津)已知抛物线y=x2﹣2x﹣8.(1)试说明该抛物线与x轴一定有两个交点.(2)若该抛物线与x轴的两个交点分别为A、B(A在B的左边),且它的顶点为P,求△ABP的面积.考点:抛物线与x轴的交点。
二次函数专项训练解析附答案
若二次函数的图形为第二个,对称轴为 y 轴,则 b=0,y=ax2+a2,a2=3,而当 y=0 时,
x2=−a,所以−a=4,a=−4,所以二次函数的图形不能为第二个;
若二次函数的图形为第三个,令 x=−1,y=0,则 a−b+a2+b=0,所以 a=−1;
若二次函数的图形为第四个,令 x=0,y=0,则 a2+b=0①;令 x=−2,y=0,则
a 1 . 12
A.1 个
B.2 个
C.3 个
D.4 个
【答案】B
【解析】
【分析】
根据二次函数的图象与性质(对称性、增减性)逐个判断即可.
【详解】
对于
y
ax2
1 2
2a
x
a
0
当 x 2 时, y 4a 2(1 2a) 1,则二次函数的图象都经过点 2,1
2
当 x 0 时, y 0,则二次函数的图象都经过点 0, 0
故选 B. 【点睛】 本题考查了抛物线与 x 轴的交点、二次函数图象上点的坐标特征以及二次函数图象与系数 的关系,根据二次函数的相关知识逐一分析四条结论的正误是解题的关键.
8.若二次函数 y=x2﹣2x+2 在自变量 x 满足 m≤x≤m+1 时的最小值为 6,则 m 的值为 ()
A. 5, 5,1 5,1 2
点,
∵当 x=−1 时,y=4;当 x=3 时,y=-12,
∴函数 y=-x2−2x+3 在﹣2<x<3 的范围内-12<y≤4,
∴-12<t≤4,
故选:C.
【点睛】
本题考查二次函数的图象及性质,能够将方程的实数根问题转化为二次函数与直线的交点
问题是解题关键.
二次函数练习题及答案解析
二次函数练习题及答案解析二次函数练习题及答案解析(初三数学)学好数学要多做练习、上课认真听讲、不会的题要问老师、做作业要当做考试来看待、不要在心理上抵触数学、平时多抽出一些时间来练习数学,下面是我为大家整理的二次函数练习题及答案解析,希望对您有所帮助!二次函数练习题及答案解析一、选择题:1 下列关系式中,属于二次函数的是(x为自变量)( )2 函数y=x2-2x+3的图象的顶点坐标是( )A (1,-4) B(-1,2) C (1,2) D(0,3)23 抛物线y=2(x-3)的顶点在( )A 第一象限B 第二象限C x轴上D y轴上4 抛物线的对称轴是( )A x=-2 Bx=2 C x=-4 D x=45 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是( )A ab0,c0B ab0,c0C ab0,c0D ab0,c06 二次函数y=ax2+bx+c的图象如图所示,则点在第___象限( )A 一B 二C 三D 四7 如图所示,已知二次函数y=ax2+bx+c(a≠0) 的图象的顶点P 的横坐标是4,图象交 x 轴于点A(m,0) 和点B ,且m4,那么AB 的长是( )A 4+mB mC 2m-8D 8-2m8 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是( )9 已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P 1(x1,y 1) ,P 2(x2,y 2) 是抛物线上的点,P 3(x3,y 3) 是直线上的点,且-1A y110 把抛物线物线的函数关系式是( ) AC 的图象向左平移2个单位,再向上平移3个单位,所得的抛 B D二、填空题:11 二次函数y=x2-2x+1的对称轴方程是______________12 若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________13 若抛物线y=x2-2x-3与x 轴分别交于A 、B 两点,则AB 的长为_________14 抛物线y=x2+bx+c,经过A(-1,0) ,B(3,0) 两点,则这条抛物线的解析式为_____________15 已知二次函数y=ax2+bx+c的图象交x 轴于A 、B 两点,交y 轴于C 点,且△ABC 是直角三角形,请写出一个符合要求的二次函数解析式________________16 在距离地面2m 高的某处把一物体以初速度v 0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g 是常数,通常取10m/s2) 若v 0=10m/s,则该物体在运动过程中最高点距地面_________m17 试写出一个开口方向向上,对称轴为直线x=2,且与y 轴的交点坐标为(0,3) 的抛物线的解析式为______________18 已知抛物线y=x2+x+b2经过点,则y 1的值是_________三、解答题:19 若二次函数的图象的对称轴方程是,并且图象过A(0,-4) 和B(4,0) ,(1)求此二次函数图象上点A 关于对称轴对称的点A ′的坐标; (2)求此二次函数的解析式;20 在直角坐标平面内,点O 为坐标原点,二次函数y=x2+(k-5)x-(k+4) 的图象交 x 轴于点A(x1,0) 、B(x2,0) ,且(x1+1)(x2+1)=-8 (1)求二次函数解析式;(2)将上述二次函数图象沿x 轴向右平移2个单位,设平移后的图象与y 轴的交点为C ,顶点为P ,求△POC 的面积21 已知:如图,二次函数y=ax2+bx+c的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0) ,点C(0,5) ,另抛物线经过点(1,8) ,M 为它的顶点(1)求抛物线的解析式; (2)求△MCB 的面积S △MCB22 某商店销售一种商品,每件的进价为250元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是1350元时,销售量为500件,而单价每降低1元,就可以多售出200件请你分析,销售单价多少时,可以获利最大答案与解析:一、选择题1 考点:二次函数概念选A2 考点:求二次函数的顶点坐标解析:法一,直接用二次函数顶点坐标公式求法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k) ,y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2) ,答案选C3 考点:二次函数的图象特点,顶点坐标解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0) ,所以顶点在x 轴上,答案选C4 考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为解析:抛物线,直接利用公式,其对称轴所在直线为答案选B5 考点:二次函数的`图象特征解析:由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,抛物线与y 轴交点坐标为(0,c) 点,由图知,该点在x 轴上方,答案选C 6 考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征解析:由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,抛物线与y 轴交点坐标为(0,c) 点,由图知,该点在x 轴上方,在第四象限,答案选D7 考点:二次函数的图象特征解析:因为二次函数y=ax2+bx+c(a≠0) 的图象的顶点P 的横坐标是4,所以抛物线对称轴所在直线为x=4,交x 轴于点D ,所以A 、B 两点关于对称轴对称,因为点A(m,0) ,且m4,所以AB=2AD=2(m-4)=2m-8,答案选C8 考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状解析:因为一次函数y=ax+b的图象经过第二、三、四象限,所以二次函数y=ax2+bx 的图象开口方向向下,对称轴在y 轴左侧,交坐标轴于(0,0) 点答案选C9 考点:一次函数、二次函数概念图象及性质解析:因为抛物线的对称轴为直线x=-1,且-1-1时,由图象知,y 随x 的增大而减小,所以y 210 考点:二次函数图象的变化抛物线平移2个单位得到,再向上平移3个单位得到的图象向左答案选C二、填空题11 考点:二次函数性质解析:二次函数y=x2-2x+1,所以对称轴所在直线方程答案x=112 考点:利用配方法变形二次函数解析式解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2答案y=(x-1)2+213 考点:二次函数与一元二次方程关系解析:二次函数y=x2-2x-3与x 轴交点A 、B 的横坐标为一元二次方程x 2-2x-3=0的两个根,求得x 1=-1,x 2=3,则AB=|x2-x 1|=4答案为414 考点:求二次函数解析式解析:因为抛物线经过A(-1,0) ,B(3,0) 两点,解得b=-2,c=-3,答案为y=x2-2x-315 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一解析:需满足抛物线与x 轴交于两点,与y 轴有交点,及△ABC 是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-116 考点:二次函数的性质,求最大值解析:直接代入公式,答案:717 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一解析:如:y=x2-4x+318 考点:二次函数的概念性质,求值三、解答题19 考点:二次函数的概念、性质、图象,求解析式解析:(1)A′(3,-4)(2)由题设知:∴y=x2-3x-4为所求(3)20 考点:二次函数的概念、性质、图象,求解析式解析:(1)由已知x 1,x 2是x 2+(k-5)x-(k+4)=0的两根又∵(x1+1)(x2+1)=-8 ∴x 1x 2+(x1+x2)+9=0 ∴-(k+4)-(k-5)+9=0 ∴k=5 ∴y=x2-9为所求 (2)由已知平移后的函数解析式为: y=(x-2)2-9 且x=0时y=-5 ∴C(0,-5) ,P(2,-9)21 解: (1)依题意:(2)令y=0,得(x-5)(x+1)=0,x 1=5,x 2=-1 ∴B(5,0)由,得M(2,9)作ME ⊥y 轴于点E ,则可得S △MCB =1522 思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式:总利润=单个商品的利润×销售量要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x 元,商品的售价就是(135-x)元了单个的商品的利润是(135-x-25)这时商品的销售量是(500+200x)总利润可设为y 元利用上面的等量关式,可得到y 与x 的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润解:设销售单价为降价x 元顶点坐标为(425,91125)即当每件商品降价425元,即售价为135-425=925时,可取得最大利润91125元九年级数学二次函数练习题一、填空题:(每空2分,共40分)1、一般地,如果,那么y叫做x的二次函数,它的图象是一条。
二次函数典型中考试题解析及训练试题
二次函数典型中考试题解析及训练[解读中考要点] 1、二次函数一般地,形如2y ax bx c =++〔,,a b c 是常数,0a ≠〕的函数叫做x 的二次函数。
解读:在函数中注意二次项系数0a ≠,,b c 是任意的实数即可。
2、二次函数2y ax =〔0a ≠〕的性质解读:〔1〕二次函数2y ax =的图象是抛物线,它的顶点是原点,对称轴是y 轴。
〔2〕当0a >时,抛物线2y ax =的开口向上,并且向上无限延伸,顶点是它的最低点;当0a <时,抛物线2y ax =的开口向下,并且向下无限延伸,顶点是它的最高点。
3、二次函数2y ax k =+〔0a ≠〕的图象与性质解读:〔1〕二次函数2y ax k =+的图象与2y ax =的图象的形状完全一样,可以通过平移二次函数2y ax =的图象得到2y ax k =+的图象。
当0k >时,向上平移k个单位长度;当0k<时,向下平移k个单位长度。
〔2〕当0a >时,抛物线的开口向上;当0a <时,抛物线的开口向下。
〔3〕抛物线的顶点是()0,k ,对称轴是y 轴。
4、二次函数()2y a x h k =-+〔0a ≠〕的图象与性质解读:〔1〕它的图象与2y ax =的图象的形状完全一样,可以通过二次函数2y ax =的图象得到()2y a x h k =-+的图象。
〔2〕当0a>时,抛物线的开口向上;当0a <时,抛物线的开口向下。
〔3〕抛物线的顶点是(),h k ,对称轴是y 轴。
5、关于二次函数2y ax bx c =++〔0a ≠〕的图象解读:〔1〕二次函数2y ax bx c =++〔0a ≠〕的图象是与2y ax =的图象的形状完全一样的一条抛物线。
〔2〕抛物线2y ax bx c =++〔0a ≠〕的对称轴是直线2bx a =-,顶点是24,24b ac b aa ⎛⎫-- ⎪⎝⎭。
〔3〕当0a >时,抛物线的开口向上,顶点是它的最低点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又∵y=x 2-x+m=[x 2-x+(12)2]- 14+m=(x -12
)2+414m -
∴对称轴是直线x=12,顶点坐标为(12
,41
4m -).
(2)∵顶点在x 轴上方, ∴顶点的纵坐标大于0,即41
4
m ->0 ∴m>
14 ∴m>1
4
时,顶点在x 轴上方.
(3)令x=0,则y=m .
即抛物线y=x 2-x+m 与y 轴交点的坐标是A (0,m ). ∵AB ∥x 轴
∴B 点的纵坐标为m .
当x 2-x+m=m 时,解得x 1=0,x 2=1. ∴A (0,m ),B (1,m )
在Rt △BAO 中,AB=1,OA=│m │. ∵S △AOB =1
2
OA ·AB=4. ∴
1
2
│m │·1=4,∴m=±8 故所求二次函数的解析式为y=x 2-x+8或y=x 2-x -8.
【点评】正确理解并掌握二次函数中常数a ,b ,c 的符号与函数性质及位置的关系是解答本题的关键之处.
例2 已知:m ,n 是方程x 2-6x+5=0的两个实数根,且m<n ,抛物线y=-x 2+bx+c 的图像经过点A (m ,0),B (0,n ),如图所示. (1)求这个抛物线的解析式;
(2)设(1)中的抛物线与x 轴的另一交点为C ,抛物线的顶点
为D,试求出点C,D的坐标和△BCD的面积;
(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH 分成面积之比为2:3的两部分,请求出P点的坐标.
【分析】(1)解方程求出m,n的值.用待定系数法求出b,c的值.
(2)过D作x轴的垂线交x轴于点M,可求出△DMC,梯形BDBO,△BOC的面积,用割补法可求出△BCD的面积.
(3)PH与BC的交点设为E点,则点E有两种可能:①EH=3
2EP,②EH=2
3
EP.
【解答】(1)解方程x2-6x+5=0,
得x1=5,x2=1.
由m<n,有m=1,n=5.
所以点A,B的坐标分别为A(1,0),B(0,5).将A(1,0),B(0,5)的坐标分别代入y=-x2+bx+c,
得
10,
5
b c
c
-++=
⎧
⎨
=
⎩
解这个方程组,得
4,
5
b
c
=-
⎧
⎨
=
⎩
所以抛物线的解析式为y=-x2-4x+5.
(2)由y=-x2-4x+5,令y=0,得-x2-4x+5=0.
解这个方程,得x1=-5,x2=1.
所以点C的坐标为(-5,0),由顶点坐标公式计算,得点D(-2,9).过D作x轴的垂线交x轴于M,如图所示.
则S△DMC=1
2×9×(5-2)=27
2
.
S梯形MDBO=1
2
×2×(9+5)=14,
S△BDC =1
2×5×5=25
2
.
并不难解决.
课堂习题
一、填空题
1.右图是二次函数y1=ax2+bx+c和一次函数y2=mx+n的图
像,观察图像写出y2≥y1时,x的取值围_______.
2.已知抛物线y=a2+bx+c经过点A(-2,7),B(6,7),
C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是_______.
3.已知二次函数y=-x2+2x+c2的对称轴和x轴相交于点(m,0),则m的值为______.4.若二次函数y=x2-4x+c的图像与x轴只有1个交点,则c=_______
5.已知抛物线y=ax2+bx+c经过点(1,2)与(-1,4),则a+c的值是______.6.甲,乙两人进行羽毛球比赛,甲发出一十分关键的球,出手点为P,羽毛球飞行的水平
距离s(m)与其距地面高度h(m)之间的关系式为h=-1
12s2+2
3
s+3
2
.如下左图
所示,已知球网AB距原点5m,乙(用线段CD表示)扣球的最大高度为9
4
m,设乙的起跳点C的横坐标为m,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则m的取值围是______.
7.二次函数y=x2-2x-3与x轴两交点之间的距离为______.
8.市“安居工程”新建成的一批楼房都是8层高,房子的价格y(元/m2)随楼层数x(楼)的变化而变化(x=1,2,3,4,5,6,7,8),已知点(x,y)都在一个二次函数的
图像上(如上右图),则6楼房子的价格为_____元/m2.
二、选择题
9.二次函数y=ax2+bx+c的图像如图所示,•则下列关系式不正确的是()A.a<0 B.abc>0 C.a+b+c<0 D.b2-4ac>0
(第9题) (第12题) (第15题)
10.已知二次函数y=ax2+bx+c的图像过点A(1,2),B(3,2),C(5,7).若点M(-2,y1),N(-1,y2),K(8,y3)也在二次函数y=ax2+bx+c的图像上,则下列结论中正确的是()
A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2
11.抛物线y=ax2+bx+c(a≠0)的对称轴是x=2,且经过点P(3,0),则a+b+c的值为()
A.-1 B.0 C.1 D.2
12.如图所示,抛物线的函数表达式是()
A.y=x2-x+2 B.y=-x2-x+2 C.y=x2+x+2 D.y=-x2+x+2 13.抛物线y=-2x2-4x-5经过平移得到y=-2x2,平移方法是()A.向左平移1个单位,再向下平移3个单位
B.向左平移1个单位,再向上平移3个单位
C.向右平移1个单位,再向下平移3个单位
D.向右平移1个单位,再向上平移3个单位
14.已知二次函数y=x2+bx+3,当x=-1时,y取得最小值,则这个二次函数图像的顶点在()
A.第一象限B.第二象限C.第三象限D.第四象限
15.抛物线y=ax2+2ax+a2+2的一部分图像如图所示,那么该抛物线在y轴右侧与x轴交点的坐标是()
,0)B.(1,0)C.(2,0)D.(3,0)A.(1
2
16.在同一直角坐标系中,函数y=mx+m和y=-mx2+2x+2(m是常数,且m≠0)的图像可能是()
三、解答题
17.如图所示,已知抛物线y=ax2+4ax+t(a>0)交x轴A,B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0)
(1)求抛物线的对称轴及点A的坐标;
(2)过点C作x轴的平行线交抛物线的对称轴于点P,你能
判断四边形ABCP是什么四边形?并证明你的结论;
18.如图所示,m,n是方程x2-6x+5=0的两个实数根,且m<n,•抛物线y=-x2+bx+c 的图像经过点A(m,0),B(0,n).
(1)求这个抛物线的解析式;
(2)设(1)中抛物线与x轴的另一交点为C,抛物线
的顶点为D,试求出点C,D的坐标和△BCD的面积;
(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于点H,若直线BC把△PCH分成面积之比为2:3的两部分,请求出点P的坐标.
19.某地计划开凿一条单向行驶(从正过)的隧道,•其截面是抛物线拱形ACB,而且能通过最宽3m,最高3.5m的厢式货车.按规定,•机动车通过隧道时车身距隧道壁的水平距离和铅直距离最小都是0.5m.为设计这条能使上述厢式货车恰好完全通过的隧道,在图纸上以直线AB为x轴,线段AB的垂直平分线为y轴,建立如图所示的直角坐标系,求抛物线拱形的表达式,隧道的跨度AB和拱高OC.
20.已知一个二次函数的图像过如图所示三点.
(1)求抛物线的对称轴;
,抛物线与(2)平行于x轴的直线L的解析式为y=25
4
(3)x轴交于A,B两点.在抛物线的对称轴上找点P,(4)使BP的长等于直线L与x轴间的距离.求点P的坐标.
21.如图所示,二次函数y=ax2+bx+c(a≠0)的图像与x•轴交于A,B两点,其中A点坐标为(-1,0),点C(0,5),D(1,8)在抛物线上,M为抛物线的顶点.(1)求抛物线的解析式;(2)求△MCB的面积.。