2017年05月26日初中数学的初中数学组卷
初中数学随机试题及答案
初中数学随机试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -3B. 0C. 1.5D. 2答案:D2. 计算下列哪个表达式的结果是负数?A. \((-2) \times (-3)\)B. \((-2) \times 3\)C. \(2 \times 3\)D. \((-2) \times (-3) \times 2\)答案:B3. 以下哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 任意四边形答案:C4. 一个数的平方是9,这个数是?A. 3B. -3C. 3或-3D. 9答案:C5. 一个数的立方是-8,这个数是?A. -2B. 2C. -8D. 8答案:A6. 直线y=2x+3与x轴的交点坐标是?A. (0,3)B. (3,0)C. (-3/2,0)D. (0,-3)答案:C7. 下列哪个分数是最简分数?A. \(\frac{4}{8}\)B. \(\frac{3}{6}\)C. \(\frac{5}{10}\)D. \(\frac{7}{14}\)答案:A8. 一个圆的半径是5厘米,它的周长是多少?A. 31.4厘米B. 62.8厘米C. 314厘米D. 628厘米答案:B9. 一个长方体的长、宽、高分别是5厘米、4厘米和3厘米,它的体积是多少?A. 60立方厘米B. 120立方厘米C. 180立方厘米D. 240立方厘米答案:A10. 一个等腰三角形的底边长为6厘米,两腰长为5厘米,它的周长是多少?A. 16厘米B. 21厘米C. 26厘米D. 31厘米答案:B二、填空题(每题2分,共20分)11. 一个数的相反数是-5,这个数是______。
答案:512. 一个数的绝对值是4,这个数可能是______或______。
答案:4或-413. 一个角的补角是120°,这个角是______。
答案:60°14. 一个等边三角形的内角和是______。
2017年全国初中数学联合竞赛试题(初三组)
2017年全国初中数学联合竞赛试题参考答案及评分标准第一试(A) 一、选择题:(本题满分42分,每小题7分)1.已知实数满足213390a b c ++=,3972a b c ++=,则32b ca b++= ( )A. 2.B. 1.C. 0.D. 1-.2.已知△ABC 的三边长分别是,,a b c ,有以下三个结论: (1)以(2)以222,,a b c 为边长的三角形一定存在;(3)以||1,||1,||1a b b c c a -+-+-+为边长的三角形一定存在.其中正确结论的个数为 ( ) A .0. B .1. C .2. D .3.3.若正整数满足a b c ≤≤且2()abc a b c =++,则称为好数组.那么,好数组的个数为 ( )A. 1. B .2. C .3. D .4.,,a b c (,,)a b c 4.设O 是四边形ABCD 的对角线AC 、BD 的交点,若180BAD ACB ∠+∠=︒,且3BC =,4AD =,5AC =,6AB =,则DOOB= ( )A. 109.B. 87. C. 65. D. 43.5.设A 是以BC 为直径的圆上的一点,AD BC ⊥于点D ,点E 在线段DC 上,点F 在CB 的延长线上,满足BAF CAE ∠=∠.已知15BC =,6BF =,3BD =,则AE = ( ) A. B. C..D..6.对于正整数n ,设n a 1232001111a a a a ++++=A.1917. B. 1927. C. 1937. D. 1947.二、填空题:(本题满分28分,每小题7分) 1.=的值为_______.a 2.如图,平行四边形中,72ABC ∠=︒,AFBC ⊥于点F ,AF交于点,若2DE AB =,则AED ∠=_______.ABCD BD ,,a b c.3.设,m n 是正整数,且m n >.若9m与9n的末两位数字相同,则m n -的最小值为 .4.若实数,x y 满足3331x y xy ++=,则22x y +的最小值为 .第一试(B)一、选择题:(本题满分42分,每小题7分)1.已知二次函数2(0)y ax bx c c =++≠的图象与x 轴有唯一交点,则二次函数3233y a x b x c =++的图象与x 轴的交点个数为 ( )A .0.B .1.C .2.D .不确定.2.题目和解答与(A )卷第1题相同. 3. 题目和解答与(A )卷第3题相同. 4.已知正整数,,a b c 满足26390ab c --+=,260a b c -++=,则222a b c ++= ( )A. 424.B. 430.C. 441.D. 460. 5.设O 是四边形ABCD 的对角线AC 、BD 的交点,若180BAD ACB ∠+∠=︒,且3BC =,4AD =,5AC =,6AB =,则DOOB= ( ) A. 43. B. 65. C. 87. D. 109.6.题目和解答与(A )卷第5题相同.二、填空题:(本题满分28分,每小题7分) 1.题目和解答与(A )卷第1题相同. 2.设O 是锐角三角形ABC 的外心,,D E 分别为线段,BC OA 的中点,7ACB OED ∠=∠,5ABC OED ∠=∠,则OED ∠=_________.3. 题目和解答与(A )卷第3题相同.4. 题目和解答与(A )卷第4题相同.第二试 (A )一、(本题满分20分)已知实数,x y 满足3x y +=,221112x y x y +=++,求55x y +的值.二、(本题满分25分)如图,△ABC 中,AB AC >,45BAC ∠=︒,E 是BAC ∠的外角平分线与△ABC 的外接圆的交点,点F 在AB 上且EF AB ⊥.已1AF =,5BF =,求△ABC 的面积.三、(本题满分25分)求所有的正整数数对(,)a b ,使得34938b a=⨯+.第二试 (B )一、(本题满分20分)已知实数,,a b c 满足a b c ≤≤,16a b c ++=,22211284a b c abc +++=,求c 的值.二、(本题满分25分)求所有的正整数m ,使得21221m m --+是完全平方数.三、(本题满分25分)如图,O 为四边形ABCD 内一点,OAD OCB ∠=∠,OA OD ⊥,OB OC ⊥.求证:2222AB CD AD BC +=+.。
2017年初中数学组卷
试卷第1页,总3页 一.解答题(共7小题) 1.如图,某人为了测量小山顶上的塔ED 的高,他在山下的点A 处测得塔尖点D 的仰角为45°,再沿AC 方向前进60m 到达山脚点B ,测得塔尖点D 的仰角为60°,塔底点E 的仰角为30°,求塔ED 的高度.(结果保留根号) 2.如图,信号塔PQ 座落在坡度i=1:2的山坡上,其正前方直立着一警示牌.当太阳光线与水平线成60°角时,测得信号塔PQ 落在斜坡上的影子QN 长为2米,落在警示牌上的影子MN 长为3米,求信号塔PQ 的高.(结果不取近似值)3.如图,某数学兴趣小组要测量一栋五层居民楼CD 的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A 处测得五楼顶部点D 的仰角为60°,在B 处测得四楼顶部点E 的仰角为30°,AB=14米.求居民楼的高度(精确到0.1米,参考数据:≈1.73) 4.如图,在△ABC 中,以BC 为直径的⊙O 交AC 于点E ,过点E 作EF ⊥AB 于点F ,延长EF 交CB 的延长线于点G ,且∠ABG=2∠C . (1)求证:EF 是⊙O 的切线;(2)若sin ∠EGC=,⊙O 的半径是3,求AF 的长.(2)若sin ∠EGC=,⊙O 的半径是3,求AF 的长.试卷第2页,总3页 5.如图,AB 为⊙O 的直径,C 、D 为⊙O 上的两点,∠BAC=∠DAC ,过点C 做直线EF ⊥AD ,交AD 的延长线于点E ,连接BC .(1)求证:EF 是⊙O 的切线;(2)若DE=1,BC=2,求劣弧的长l .6.鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x 元(x 为偶数),每周销售量为y 个.(1)直接写出销售量y 个与降价x 元之间的函数关系式;(2)设商户每周获得的利润为W 元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?7.如图,已知抛物线y=﹣x 2+bx +c 与y 轴相交于点A (0,3),与x 正半轴相交于点B ,对称轴是直线x=1(1)求此抛物线的解析式以及点B 的坐标.(2)动点M 从点O 出发,以每秒2个单位长度的速度沿x 轴正方向运动,同时动点N 从点O 出发,以每秒3个单位长度的速度沿y 轴正方向运动,当N 点到达A 点时,M 、N 同时停止运动.过动点M 作x 轴的垂线交线段AB 于点Q ,交抛物线于点P ,设运动的时间为t 秒.①当t 为何值时,四边形OMPN 为矩形.②当t >0时,△BOQ 能否为等腰三角形?若能,求出t 的值;若不能,请说明理由.试卷第3页,总3页本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
【组卷】2017年06月28日初中数学的初中数学组卷
2017年06月28日初中数学的初中数学组卷一.选择题(共14小题)1.若数轴上表示﹣1和3的两点分别是点A和点B,则点A和点B之间的距离是()A.﹣4 B.﹣2 C.2 D.42.如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A.﹣6 B.6 C.0 D.无法确定3.下列说法中错误的是()A.如果整数a是整数b的倍数,那么b是a的因数B.一个合数至少有3个因数C.在正整数中,除2外所有的偶数都是合数D.在正整数中,除了素数都是合数4.下列说法正确的是()A.绝对值等于它本身的数是正数B.任何有理数都有倒数C.一个正有理数与一个负有理数,正数的绝对值较大D.有绝对值最小的有理数5.若2(a+3)的值与4互为相反数,则a的值为()A.B.﹣5 C.﹣ D.﹣16.下列说法正确的是()A.有理数的绝对值一定是正数B.如果两个数的绝对值相等,那么这两个数相等C.如果一个数是负数,那么这个数的绝对值是它的相反数D.绝对值越大,这个数就越大7.数轴上点A、B表示的数分别是5、﹣3,它们之间的距离可以表示为()A.﹣3+5 B.﹣3﹣5 C.|﹣3+5| D.|﹣3﹣5|8.已知点M、N、P、Q在数轴上的位置如图,则其中对应的数的绝对值最大的点是()A.M B.N C.P D.Q9.如图所示,a,b是有理数,则式子|a|+|b|+|a+b|+|b﹣a|化简的结果为()A.3a+b B.3a﹣b C.3b+a D.3b﹣a二.填空题(共2小题)10.最大的负整数是,绝对值最小的有理数是.11.在分数、、、中,不可以化为有限小数的分数是.三.解答题(共2小题)12.如图,数轴上的三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|a+c|+|b ﹣c|.13.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.2017年06月28日初中数学的初中数学组卷参考答案与试题解析一.选择题(共14小题)1.(2017•扬州)若数轴上表示﹣1和3的两点分别是点A和点B,则点A和点B 之间的距离是()A.﹣4 B.﹣2 C.2 D.4【解答】解:AB=|﹣1﹣3|=4.故选D.2.(2017•广州)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A.﹣6 B.6 C.0 D.无法确定【解答】解:∵数轴上两点A,B表示的数互为相反数,点A表示的数为﹣6,∴点B表示的数为6,故选B3.(2016秋•闵行区期末)下列说法中错误的是()A.如果整数a是整数b的倍数,那么b是a的因数B.一个合数至少有3个因数C.在正整数中,除2外所有的偶数都是合数D.在正整数中,除了素数都是合数【解答】解:A、根据因数和倍数的意义可知:如果整数a是整数b的倍数,那么b是a的因数,故说法正确;B、根据合数的含义“除了1和它本身外,还含有其它的约数的数”得出:一个合数至少有3个因数,故说法正确;C、因为正整数不包括0,所以除2外所有的偶数,都至少有1,2和本身3个约数,所以都是合数,说法正确;D、在正整数中,1既不是质数,也不是合数,故在正整数中,除了素数都是合数,说法错误;故选:D.4.(2016秋•荣成市校级期中)下列说法正确的是()A.绝对值等于它本身的数是正数B.任何有理数都有倒数C.一个正有理数与一个负有理数,正数的绝对值较大D.有绝对值最小的有理数【解答】解:A、绝对值等于本身的数是非负数,错误;B、任何有理数(除0外)都有倒数,错误;C、一个正有理数与一个负有理数,正数的绝对值不一定大,错误;D、有绝对值最小的有理数,正确,故选D5.(2017•市中区一模)若2(a+3)的值与4互为相反数,则a的值为()A.B.﹣5 C.﹣ D.﹣1【解答】解:∵2(a+3)的值与4互为相反数,∴2(a+3)=﹣4,解得:a=﹣5.故选:B.6.(2017•临高县校级模拟)下列说法正确的是()A.有理数的绝对值一定是正数B.如果两个数的绝对值相等,那么这两个数相等C.如果一个数是负数,那么这个数的绝对值是它的相反数D.绝对值越大,这个数就越大【解答】解:A、0的绝对值为0,所以A选项错误;B、如果两个数的绝对值相等,那么这两个数相等或互为相反数,所以B选项错C、如果一个数是负数,那么这个数的绝对值是它的相反数,所以C选项正确;D、正数的绝对值越大,这个数越大;负数的绝对值越大,这个数越小,所以D 选项错误.故选C.7.(2016•南京)数轴上点A、B表示的数分别是5、﹣3,它们之间的距离可以表示为()A.﹣3+5 B.﹣3﹣5 C.|﹣3+5| D.|﹣3﹣5|【解答】解:∵点A、B表示的数分别是5、﹣3,∴它们之间的距离=|﹣3﹣5|=8,故选:D.8.(2016•娄底)已知点M、N、P、Q在数轴上的位置如图,则其中对应的数的绝对值最大的点是()A.M B.N C.P D.Q【解答】解:∵点Q到原点的距离最远,∴点Q的绝对值最大.故选:D.9.(2016•大庆校级自主招生)如图所示,a,b是有理数,则式子|a|+|b|+|a+b|+|b ﹣a|化简的结果为()A.3a+b B.3a﹣b C.3b+a D.3b﹣a【解答】解:由数轴得,﹣1<a<0,b>1,∴a+b>0,b﹣a>0,∴|a|+|b|+|a+b|+|b﹣a|=﹣a+b+a+b+b﹣a=3b﹣a.故选D.二.填空题(共2小题)10.(2016秋•白塔区校级期中)最大的负整数是﹣1,绝对值最小的有理数是0.【解答】解:最大的负整数是﹣1;∵负数与正数的绝对值都是正数,0的绝对值是0,∴绝对值最小的有理数是0.故答案为:﹣1;0.11.(2016秋•闵行区期末)在分数、、、中,不可以化为有限小数的分数是,,.【解答】解:分母中含有2与5以外的质因数,这个分数就不能化成有限小数;==0.25,如果分母中除了2与5以外,不再含有其它的质因数,这个分数就能化成有限小数;如果分母中除了2与5以外,不再含有其它的质因数,这个分数就能化成有限小数,=如果分母中除了2与5以外,不再含有其它的质因数,这个分数就能化成有限小数,故答案为:,,.三.解答题(共2小题)12.(2016秋•庆城县期末)如图,数轴上的三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|a+c|+|b﹣c|.【解答】解:由数轴得,c>0,a<b<0,因而a﹣b<0,a+c<0,b﹣c<0.∴原式=b﹣a+a+c+c﹣b=2c.13.(2016秋•东台市期中)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c<0,a+b<0,c﹣a>0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.【解答】解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.。
2017年人教版七年级下期数学期末试卷
2017年暑假数学试卷(一)一.单项选择题(每小题3分) 1.在,,,π中,无理数有( )个.A . 1B . 2C . 3D . 4.B .C .D .D . 对某类烟花爆竹燃放安全情况的调查 6.方程组的解为( )A .B .C .D .10.某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1020元,入住1个单人间和5个双人间共需700元.设每个单人间和每个双人间的价.B..D.11.若x,y为实数,且满足|x﹣3|++(z﹣4)2=0,则z•()2017的值是()A.2B.3C.4D.5中A的坐标为(1,﹣1),B的坐标为(﹣1,﹣1),C的坐标为(﹣1,3),D的坐标为(1,3),当蚂蚁爬了2014个单位时,蚂蚁所处位置的坐标为())13.﹣8的立方根是.14.计算:4﹣3= .15.不等式5(x﹣2)≤2﹣2(x﹣1)解集中的正整数解有个.16.如图,∠1=∠2,∠3=80°,则∠4= .16题图 18题图17.若关于x、y的二元一次方程组的解满足x+y>1,则k的取值范围是.18.对面积为1的△ABC进行以下操作:分别延长AB、BC、CA至点A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1(如图所示),记其面积为S1.现再分别延长A1B1、B1C1、C1A1至点A2、B2、C2,使得A2B1=2A1B1,B 2C1=2B1C1,C2A1=2C1A1,顺次连接A2、B2、C2,得到△A2B2C2,记其面积为S2,则S2= .三、解答题19.(6分)计算:++|﹣3|﹣(2﹣)20.(6分)解不等式组:,并将解集在数轴上表示出来.21.(8分)为了解学生零花钱的使用情况,校学生会随机调查了部分学生每人一周的零花钱数额,并绘制了如图所示的两个统计图(部分未完成).请根据图中信息,回答下列问题:(1)学生会随机调查了多少学生?请你补全条形统计图; (2)表示“50元”的扇形的圆心角是多少度? (3)全校2000名学生每人自发地捐出一周 零花钱的一半,以给贫困山区的孩子买衣服 和学习用品,请估算全校学生共捐款多少元?22.(8分)如图在为1个单位的正方形网格图中,建立了直角坐标系xoy ,按要求解答下列问题:(1)写出△ABC 三个顶点的坐标.(2)画出△ABC 向右平移6个单位后的图形△A 1B 1C 1。
初中数学组卷(含答案)
A.
B.2
C.
D.
2.如图,等腰直角△OAB 的斜边 OA 在 x 轴上,且 OA=2,则点 B 坐标为( )
试卷第 3 页,总 9 页
… … … … ○ … … … … 内 … … … … ○ … …… … 装 … … … … ○ … … … …订 … … … … ○ … … … … 线 … … … … ○ …… …… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
… … … … ○ … … … … 外 … … … … ○ … …… … 装 … … … … ○ … … … …订 … … … … ○ … … … … 线 … … … … ○ …… ……
B.64
C.57
D.75
试卷第 4 页,总 9 页
… … … … ○ … … … … 外 … … … … ○ … …… … 装 … … … … ○ … … … …订 … … … … ○ … … … … 线 … … … … ○ …… …… 学校:___________姓名:________班级:________考号:________
A.8
B.6
C.4
6.若如图所示的两个三角形全等,则 x 的度数是(
D.2 )
A.45°
B.50°
C.55°
D.60°
7.如图,已知 AB∥CD,AD⊥DC,AE⊥BC 于点 E,∠DAC=35°,AD=AE,则
∠B 等于( )
初中数学组卷初一下册组卷
初中数学组卷初一下册组卷一.选择题(共10小题)1.(2016•宁阳县模拟)如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠BED的度数是()A.16°B.33°C.49°D.66°2.(2015•长乐市一模)下列图形中,∠1与∠2是同位角的是()A.B.C.D.3.(2016•萧山区二模)2的平方根是()A.± B.C.±1.414 D.44.(2016春•吐鲁番市校级期中)下列语句正确的是()A.如果一个数的立方根是这个数本身,那么这个数一定是0B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个不为零的数的立方根和这个数同号,0的立方根是05.(2016•阜宁县二模)在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个6.(2016春•南通期中)在平面直角坐标系中,点P(2,﹣7)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.(2016•古冶区一模)已知a,b满足方程组,则a+b=()A.2 B.3 C.4 D.58.(2016•岱岳区一模)不等式组的解集在数轴上表示为()A.B.C.D.9.(2015•苏州一模)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2015次碰到矩形的边时,点P的坐标为()A.(3,0)B.(7,4)C.(8,1)D.(1,4)10.(2016春•滕州市期中)如果不等式组的解集为<5,那么m的取值范围是()A.m>5 B.m≥5 C.m<5 D.m≤5二.填空题(共6小题)11.(2016春•丹阳市月考)如图把三角板的直角顶点放在直线b上,若∠1=40°,则当∠2=度时,a∥b.12.(2016•丹阳市模拟)如图,AB∥CD,AB与EC交于点F,如果EA=EF,∠C=110°,则∠E=度.13.(2016•富源县校级模拟)=.14.(2016春•房山区期中)以为解的一个二元一次方程是.15.(2016•南海区校级模拟)不等式组﹣1<x+2<3的解集是.16.(2016春•南安市期中)三元一次方程组的解是.三.解答题(共9小题)17.(2016春•龙泉驿区期中)已知:如图所示,∠ABC=∠ADC,BF和DE分别平分∠ABC和∠ADC,∠AED=∠EDC.求证:ED∥BF.证明:∵BF和DE分别平分∠ABC和∠ADC(已知)∴∠EDC=∠ADC,∠FBA=∠ABC(角平分线定义).又∵∠ADC=∠ABC(已知),∴∠=∠FBA(等量代换).又∵∠AED=∠EDC(已知),∴∠=∠(等量代换),∴ED∥BF.18.(2016春•枝江市期中)如图,在△ABC中,CD⊥AB于D,FG⊥AB于G,ED∥BC,求证:∠1=∠2.19.(2016春•阳谷县期中)若x、y为实数,且|x+2|+=0,则求(x+y)2016的值.20.(2016•夹江县二模)解方程组:.21.(2016•丰台区一模)解不等式组并求它的所有的非负整数解.22.(2016•市中区一模)为了抓住济南消夏文化节的商机,某商场决定购进甲、乙两种纪念品.若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元.问购进甲乙两种纪念品每件各需要多少元?23.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.24.(2015春•北京校级期中)(1)在平面直角坐标系中,描出下列4个点:A (﹣1,0),B (5,1),C (3,4);(2)顺次连接A,B,C,组成三角形ABC,求△ABC的面积.25.(2015春•泰兴市期末)已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线l∥PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积.(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.初中数学组卷初一下册组卷参考答案与试题解析一.选择题(共10小题)1.(2016•宁阳县模拟)如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠BED的度数是()A.16°B.33°C.49°D.66°【解答】解:∵AB∥CD,∠C=33°,∴∠ABC=∠C=33°,∵BC平分∠ABE,∴∠ABE=2∠ABC=66°,∵AB∥CD,∴∠BED=∠ABE=66°.故选D.2.(2015•长乐市一模)下列图形中,∠1与∠2是同位角的是()A.B.C.D.【解答】解:根据同位角的定义,可知A是同位角.故选:A.3.(2016•萧山区二模)2的平方根是()A.± B.C.±1.414 D.4【解答】解:2的平方根是±.故选:A.4.(2016春•吐鲁番市校级期中)下列语句正确的是()A.如果一个数的立方根是这个数本身,那么这个数一定是0B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个不为零的数的立方根和这个数同号,0的立方根是0【解答】解:A、如果一个数的立方根是这个数本身,那么这个数一定是0或1或﹣1,故错误;B、一个数的立方根不是正数就是负数,错误;还有0;C、负数有立方根,故错误;D、正确;故选:D.5.(2016•阜宁县二模)在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个【解答】解:,0.343343334…是无理数,故选:B.6.(2016春•南通期中)在平面直角坐标系中,点P(2,﹣7)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【解答】解:点P(2,﹣7)位于第四象限.故选D.7.(2016•古冶区一模)已知a,b满足方程组,则a+b=()A.2 B.3 C.4 D.5【解答】解:在方程组中,①+②,得:2a+2b=10,两边都除以2,得:a+b=5,故选:D.8.(2016•岱岳区一模)不等式组的解集在数轴上表示为()A.B.C.D.【解答】解:解不等式3x<2x+4得:x<4,解不等式得:x≥3,则不等式组的解集为:3≤x<4,故选:C.9.(2015•苏州一模)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2015次碰到矩形的边时,点P的坐标为()A.(3,0)B.(7,4)C.(8,1)D.(1,4)【解答】解:如图,经过6次反弹后动点回到出发点(0,3),∵2015÷6=335…5,∴当点P第2015次碰到矩形的边时为第336个循环组的第5次反弹,点P的坐标为(1,4).故选:D.10.(2016春•滕州市期中)如果不等式组的解集为<5,那么m的取值范围是()A.m>5 B.m≥5 C.m<5 D.m≤5【解答】解:∵不等式组的解集为<5,∴m≥5.故选B.二.填空题(共6小题)11.(2016春•丹阳市月考)如图把三角板的直角顶点放在直线b上,若∠1=40°,则当∠2=50度时,a∥b.【解答】解:当∠2=50°时,a∥b;理由如下:如图所示:∵∠1=40°,∴∠3=180°﹣90°﹣40°=50°,当∠2=50°时,∠2=∠3,∴a∥b;故答案为:50.12.(2016•丹阳市模拟)如图,AB∥CD,AB与EC交于点F,如果EA=EF,∠C=110°,则∠E=40度.【解答】解:∵AB∥CD,∠C=110°,∴∠BFC=180°﹣110°=70°.∵∠BFC与∠AFE是对顶角,∴∠AFE=70°.∵EA=EF,∴∠A=∠AFE=70°,∴∠E=180°﹣∠A﹣∠AFE=180°﹣70°﹣70°=40°.故答案为:40.13.(2016•富源县校级模拟)=4.【解答】解:原式==4,故答案为:4.14.(2016春•房山区期中)以为解的一个二元一次方程是x+y=12.【解答】解:例如1×5+1×7=12;将数字换为未知数,得x+y=12.答案不唯一.15.(2016•南海区校级模拟)不等式组﹣1<x+2<3的解集是﹣3<x<1.【解答】解:原不等式组化为,解不等式①得x>﹣3,解不等式②得x<1,∴不等式组的解集为﹣3<x<1.故答案为:﹣3<x<1.16.(2016春•南安市期中)三元一次方程组的解是.【解答】解:①﹣②,得x﹣z=﹣1④③+④,得x=2,将x=2代入①,得y=1,将x=2代入③,得z=3,故元方程组的解是,,故答案为:.三.解答题(共9小题)17.(2016春•龙泉驿区期中)已知:如图所示,∠ABC=∠ADC,BF和DE分别平分∠ABC和∠ADC,∠AED=∠EDC.求证:ED∥BF.证明:∵BF和DE分别平分∠ABC和∠ADC(已知)∴∠EDC=∠ADC,∠FBA=∠ABC(角平分线定义).又∵∠ADC=∠ABC(已知),∴∠EDC=∠FBA(等量代换).又∵∠AED=∠EDC(已知),∴∠FBA=∠AED(等量代换),∴ED∥BF同位角相等,两直线平行.【解答】证明:∵BF和DE分别平分∠ABC和∠ADC(已知)∴∠EDC=∠ADC,∠FBA=∠ABC(角平分线定义).又∵∠ADC=∠ABC(已知),∴∠EDC=∠FBA(等量代换).又∵∠AED=∠EDC(已知),∴∠FBA=∠AED(等量代换),∴ED∥BF(同位角相等,两直线平行).故答案是:;;EDC;FBA;AED;同位角相等,两直线平行.18.(2016春•枝江市期中)如图,在△ABC中,CD⊥AB于D,FG⊥AB于G,ED∥BC,求证:∠1=∠2.【解答】证明:∵CD⊥AB,FG⊥AB,∴∠CDB=∠FGB=90°,∴CD∥FG,∴∠2=∠3,∵DE∥BC,∴∠1=∠3,∴∠1=∠2.19.(2016春•阳谷县期中)若x、y为实数,且|x+2|+=0,则求(x+y)2016的值.【解答】解:由题意得,x+2=0,y﹣3=0,解得,x=﹣2,y=3,则(x+y)2016=1.20.(2016•夹江县二模)解方程组:.【解答】解:原方程组可化为,①﹣②得,x=,把x=代入①得,9﹣y=5,解得y=4,故方程组的解为.21.(2016•丰台区一模)解不等式组并求它的所有的非负整数解.【解答】解:,由①得x>﹣2,…(1分)由②得x≤,…(3分)所以,原不等式组的解集是﹣2<x≤,…(4分)所以,它的非负整数解为0,1,2.…(5分)22.(2016•市中区一模)为了抓住济南消夏文化节的商机,某商场决定购进甲、乙两种纪念品.若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元.问购进甲乙两种纪念品每件各需要多少元?【解答】解:设甲商品x元/件,乙商品y元/件,根据题意,得:,解得:,答:购进甲种纪念品每件各需要80元,购进乙种纪念品每件各需要40元.23.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【解答】解:(1)设每本文学名著x元,动漫书y元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.24.(2015春•北京校级期中)(1)在平面直角坐标系中,描出下列4个点:A (﹣1,0),B (5,1),C (3,4);(2)顺次连接A,B,C,组成三角形ABC,求△ABC的面积.【解答】解:(1)如图;(2)如图,S△ABC=S梯形ACDE﹣S△ABE﹣S△BCD=×(2+6)×4﹣×6×1﹣×3×2=16﹣3﹣3=10.25.(2015春•泰兴市期末)已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线l∥PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积.(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.【解答】解:(1)S△BCD=CD•OC=×3×2=3.(2)如图②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°,∵直线MN⊥直线PQ,∴∠BOC=∠OBE+∠OEB=90°,∵BF是∠CBA的平分线,∴∠CBF=∠OBE,∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE.(3)如图③,∵直线l∥PQ,∴∠ADC=∠PAD,∵∠ADC=∠DAC∴∠CAP=2∠DAC,∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC,∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA ∵CH是,∠ACB的平分线,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=.。
初中数学组卷初中数学组卷易
一.选择题(共18小题)1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.﹣的相反数是()A.3 B.﹣3 C.D.﹣3.的绝对值是()A.B.C.2 D.﹣24.﹣4的绝对值是()A.4 B.﹣4 C.D.5.下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2C.ab2D.3ab6.计算:5x﹣3x=()A.2x B.2x2C.﹣2x D.﹣27.下列方程中,()是一元一次方程.A.﹣x﹣5=3x B.﹣x﹣5y=3 C.﹣x2﹣5=3 D.﹣﹣5=3x8.下列方程中是一元一次方程的是()A.4x﹣5=0 B.3x﹣2y=3 C.3x2﹣14=2 D.9.下列各式中,是一元一次方程的是()A.x2+2=x2﹣1 B.=x+1 C.xy+2x=2y﹣2 D.=x﹣210.下列方程中,其解为﹣2的是()A.B.3(x+1)﹣3=0 C.3x﹣4=2 D.2x=﹣111.在下列方程中,解是2的方程是()A.3x=x+3 B.﹣x+3=0 C.2x=6 D.5x﹣2=812.方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8 B.0 C.2 D.813.已知x=1是方程x+2a=﹣1的解,那么a的值是()A.﹣1 B.0 C.1 D.214.下列关于单项式﹣的说法中,正确的是()A.系数是﹣,次数是2 B.系数是,次数是2C.系数是﹣3,次数是3 D.系数是﹣,次数是315.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个16.在式子,2x+5y,0.9,﹣2a,﹣3x2y,中,单项式的个数是()A.5个B.4个C.3个D.2个17.多项式2x4﹣x3y2+7是()A.四次三项式B.五次三项式C.三次四项式D.三次五项式18.多项式3x3﹣2x2﹣15的次数为()A.2 B.3 C.4 D.5二.填空题(共6小题)19.﹣5+9=.20.﹣的相反数是.21.中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为.22.截止到2016年6月,我国森林覆盖面积约为208000000公顷,将208000000用科学记数法表示为.23.已知∠A=55°,则∠A的余角等于度.24.如果∠A=35°,那么∠A的余角等于;∠A的补角为.三.解答题(共6小题)25.解方程:4x=2(x﹣4)26.解方程:2﹣2(x﹣1)=3x+4.27.解方程:x﹣1=.28.(2x2y﹣4xy2)﹣(﹣3xy2+x2y),其中x=﹣1,y=2.29.先化简,再求值:3(x﹣y)﹣2(x+y)+2,其中x=﹣1,y=2.30.化简求值:3x2﹣[7x﹣3(3﹣4x)﹣2x2],其中x=﹣1.初中数学组卷初中数学组卷易参考答案与试题解析一.选择题(共18小题)1.(2016•湖北襄阳)﹣3的相反数是()A.3 B.﹣3 C.D.﹣【解答】解:﹣3的相反数是3,故选:A.2.(2016•威海)﹣的相反数是()A.3 B.﹣3 C.D.﹣【解答】解:﹣的相反数是,故选C3.(2016•莆田)的绝对值是()A.B.C.2 D.﹣2【解答】解:﹣的绝对值是.故选:A.4.(2016•绵阳)﹣4的绝对值是()A.4 B.﹣4 C.D.【解答】解:∵|﹣4|=4,∴﹣4的绝对值是4.故选:A.5.(2016•上海)下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2C.ab2D.3ab【解答】解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;C、ab2与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误;D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.故选A.6.(2016•连云港)计算:5x﹣3x=()A.2x B.2x2C.﹣2x D.﹣2【解答】解:原式=(5﹣3)x=2x,故选A7.(2016春•玉州区期末)下列方程中,()是一元一次方程.A.﹣x﹣5=3x B.﹣x﹣5y=3 C.﹣x2﹣5=3 D.﹣﹣5=3x【解答】解:﹣x﹣5=3x是一元一次方程,故选A8.(2016春•内江期末)下列方程中是一元一次方程的是()A.4x﹣5=0 B.3x﹣2y=3 C.3x2﹣14=2 D.【解答】解:A、4x﹣5=0,是一元一次方程,故此选项正确;B、3x﹣2y=3,是二元一次方程,故此选项错误;C、3x2﹣14=2,是一元二次方程,故此选项错误;D、﹣2=3是分式方程,故此选项错误.故选:A.9.(2016春•长春校级期末)下列各式中,是一元一次方程的是()A.x2+2=x2﹣1 B.=x+1 C.xy+2x=2y﹣2 D.=x﹣2【解答】解:=x+1是一元一次方程,故选B10.(2016春•上海校级月考)下列方程中,其解为﹣2的是()A.B.3(x+1)﹣3=0 C.3x﹣4=2 D.2x=﹣1【解答】解:A、﹣1=0,解得:x=﹣2,故此选项正确;B、3(x+1)﹣3=0,解得:x=0,故此选项错误;C、3x﹣4=2,解得:x=2,故此选项错误;D、2x=﹣1,解得:x=﹣,故此选项错误;故选:A.11.(2015秋•钦南区期末)在下列方程中,解是2的方程是()A.3x=x+3 B.﹣x+3=0 C.2x=6 D.5x﹣2=8【解答】解:把x=2代入各个方程得到:A、B、C选项的方程都不满足左边等于右边,只有D选项满足10﹣2=8.故选:D.12.(2015秋•岱岳区期末)方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8 B.0 C.2 D.8【解答】解:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选D.13.(2015秋•睢宁县期末)已知x=1是方程x+2a=﹣1的解,那么a的值是()A.﹣1 B.0 C.1 D.2【解答】解:把x=1代入方程,得:1+2a=﹣1,解得:a=﹣1.故选A.14.(2016•南海区校级模拟)下列关于单项式﹣的说法中,正确的是()A.系数是﹣,次数是2 B.系数是,次数是2C.系数是﹣3,次数是3 D.系数是﹣,次数是3【解答】解:单项式﹣的系数是:﹣,次数是3.故选D.15.(2016秋•卢龙县期中)下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【解答】解:a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.16.(2016秋•宜兴市期中)在式子,2x+5y,0.9,﹣2a,﹣3x2y,中,单项式的个数是()A.5个B.4个C.3个D.2个【解答】解:0.9是单独的一个数,故是单项式;﹣2a,﹣3x2y是数与字母的积,故是单项式.故选C.17.(2016秋•安岳县校级期中)多项式2x4﹣x3y2+7是()A.四次三项式B.五次三项式C.三次四项式D.三次五项式【解答】解:多项式2x4﹣x3y2+7的项数是三,次数是五.故选B.18.(2016秋•赣县期中)多项式3x3﹣2x2﹣15的次数为()A.2 B.3 C.4 D.5【解答】解:多项式3x3﹣2x2﹣15的次数是3.故选:B.二.填空题(共6小题)19.(2016•江汉区一模)﹣5+9=4.【解答】解:原式=4.故答案为:420.(2016•黄冈模拟)﹣的相反数是.【解答】解:﹣的相反数是.故答案为:.21.(2016•泉州)中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为9.6×106.【解答】解:将9600000用科学记数法表示为9.6×106.故答案为9.6×106.22.(2016•本溪)截止到2016年6月,我国森林覆盖面积约为208000000公顷,将208000000用科学记数法表示为2.08×108.【解答】解:208000000=2.08×108.故答案为:2.08×108.23.(2016•如皋市一模)已知∠A=55°,则∠A的余角等于35度.【解答】解:由余角定义得:90°﹣55°=35°.故答案为:35.24.(2016•徐州校级二模)如果∠A=35°,那么∠A的余角等于55°;∠A的补角为145°.【解答】解:∠A的余角等于90°﹣35°=55°;∠A的补角等于180°﹣35°=145°.故答案为:55°;145°.三.解答题(共6小题)25.(2016•江汉区二模)解方程:4x=2(x﹣4)【解答】解:去括号得:4x=2x﹣8,移项合并得:2x=﹣8,解得:x=﹣4.26.(2016•武汉模拟)解方程:2﹣2(x﹣1)=3x+4.【解答】解:去括号得:2﹣2x+2=3x+4,移项合并得:﹣5x=0,解得:x=0.27.(2016•青山区模拟)解方程:x﹣1=.【解答】解:去分母,得2x﹣6=3(x﹣3),去括号,得2x﹣6=3x﹣9,移项,得2x﹣3x=﹣9+6,合并同类项,得﹣x=﹣3,系数化为1,得x=3.28.(2016秋•回民区校级期中)(2x2y﹣4xy2)﹣(﹣3xy2+x2y),其中x=﹣1,y=2.【解答】解:(2x2y﹣4xy2)﹣(﹣3xy2+x2y),=2x2﹣4xy2+3xy2﹣x2=x2﹣xy2,当x=﹣1,y=2时,原式=(﹣1)2﹣(﹣1)×22=1+4=5.29.(2016秋•盐城期中)先化简,再求值:3(x﹣y)﹣2(x+y)+2,其中x=﹣1,y=2.【解答】解:3(x﹣y)﹣2(x+y)+2=3x﹣3y﹣2x﹣2y+2=x﹣5y+2,∵x=﹣1,y=2,∴原式=(﹣1)﹣5×2+2=﹣9.30.(2016秋•西城区校级期中)化简求值:3x2﹣[7x﹣3(3﹣4x)﹣2x2],其中x=﹣1.【解答】解:3x2﹣[7x﹣3(3﹣4x)﹣2x2],=3x2﹣(7x﹣9+12x﹣2x2),=3x2﹣7x+9﹣12x+2x2,=5x2﹣19x+9,当x=﹣1时,原式=5×(﹣1)2﹣19×(﹣1)+9=5+19+9=33.。
初中数学组卷
初中数学组卷一.解答题(共30小题)1.某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系式y=a(x﹣h)2+k,二次函数y=a(x﹣h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A、B、C的横坐标分别为4、10、12,点A、B的纵坐标分别为﹣16、20.(1)试确定函数关系式y=a(x﹣h)2+k;(2)分别求出前9个月公司累计获得的利润以及10月份一个月内所获得的利润;(3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?2.某商店进了一批服装,每件成本50元,如果按每件60元出售,可销售800件,如果每件提价5元出售,其销量将减少100件.(1)求售价为70元时的销售量及销售利润;(2)求销售利润y(元)与售价x(元)之间的函数关系,并求售价为多少元时获得最大利润;(3)如果商店销售这批服装想获利12000元,那么这批服装的定价是多少元?3.如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).(1)求抛物线的函数解析式;(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D 的坐标;(3)在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.4.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点左侧,B 点的坐标为(4,0),与y轴交于C(0,﹣4)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.5.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G.(1)点C、D的坐标;(2)求顶点在直线y=上且经过点C、D的抛物线的解析式;(3)将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E.平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请明理由.6.如图,抛物线C1:y=x2+bx+c经过原点,与x轴的另一个交点为(2,0),将抛物线C1向右平移m(m >0)个单位得到抛物线C2,C2交x轴于A,B两点(点A在点B的左边),交y轴于点C.(1)求抛物线C1的解析式及顶点坐标;(2)以AC为斜边向上作等腰直角三角形ACD,当点D落在抛物线C2的对称轴上时,求抛物线C2的解析式;(3)若抛物线C2的对称轴存在点P,使△PAC为等边三角形,求m的值.7.如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和四边形ABCD的面积.8.已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.(1)求m、n的值;(2)如图,一次函数y=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,PA:PB=1:5,求一次函数的表达式.9.已知抛物线y=(x﹣m)2﹣(x﹣m),其中m是常数.(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=.①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.10.已知二次函数y=﹣x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.11.已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x2﹣x1|)12.如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0).请解答下列问题:(1)求抛物线的解析式;(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE中点,连接FH,求线段FH 的长.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.13.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?14.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?15.如图,点A为y轴正半轴上一点,A,B两点关于x轴对称,过点A任作直线交抛物线于P,Q两点.(1)求证:∠ABP=∠ABQ;(2)若点A的坐标为(0,1),且∠PBQ=60°,试求所有满足条件的直线PQ的函数解析式.16.已知:关于x的方程:mx2﹣(3m﹣1)x+2m﹣2=0.(1)求证:无论m取何值时,方程恒有实数根;(2)若关于x的二次函数y=mx2﹣(3m﹣1)x+2m﹣2的图象与x轴两交点间的距离为2时,求抛物线的解析式.17.已知抛物线与x轴有两个不同的交点.(1)求c的取值范围;(2)抛物线与x轴两交点的距离为2,求c的值.18.如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.19.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由.20.如图,在直角坐标系中,A点在x轴上,AB∥y轴,C点在y轴上,CB∥x轴,点B的坐标为(8,10),点D在BC上,将△ABD沿直线AD翻折,使得点B刚好落在y轴的点E处.(1)求△CDE的面积;(2)求经过A、D、O三点的抛物线的解析式;(3)点M是(2)中抛物线上的动点,点N是其对称轴上的动点,问是否存在这样的点M和点N,使得以AEMN为顶点的四边形是平行四边形?若存在,请直接写出M点和N点的坐标;若不存在,请说明理由.21.已知二次函数y=x2+bx+c的图象过点A(﹣3,0)和点B(1,0),且与y轴交于点C,D点在抛物线上且横坐标是﹣2.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值.22.如图,在平面直角坐标系中,四边形ABCO是梯形,其中A(6,0),B(3,),C(1,),动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→C→O的线路运动,运动速度为每秒1个单位,当点P到达A点时,点Q也随之停止,设点P、Q运动的时间为t(秒).(1)经过A、B、C三点的抛物线的解析式的对称轴为.(2)设经过A、B、C三点的抛物线的对称轴与直线OB的交点为M,线段PQ是否能经过点M?若能请求出t的值(或t的取值范围),若不能,请说明理由.(3)当Q在BC上运动时,以线段PQ为直径的圆能否与直线AB相切?若能请求出t的值,若不能,请说明理由.23.如图,抛物线y=x2+3与x轴交于A,B两点,与直线y=﹣x+b相交于B,C两点,连结A,C两点.(1)写出直线BC的解析式;(2)求△ABC的面积.24.如图,在平面直角坐标系中,矩形ABCO的OA边在x 轴上,OC边在y轴上,且B点坐标为(4,3).动点M、N分别从点O、B同时出发,以1单位/秒的速度运动(点M沿OA向终点A运动,点N沿BC向终点C运动),过点N作NP∥AB交AC于点P,连接MP.(1)直接写出OA、AB的长度;(2)试说明△CPN∽△CAB;(3)在两点的运动过程中,请求出△MPA的面积S与运动时间t的函数关系式;(4)在运动过程中,△MPA的面积S是否存在最大值?若存在,请求出当t为何值时有最大值,并求出最大值;若不存在,请说明理由.25.如图,矩形ABCD中,AB=6cm,BC=12cm,点P从A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,如果P,Q分别是从A,B同时出发,求:(1)经过多少时间,△PBQ的面积等于8cm2?(2)经过多少时间,五边形APQCD的面积最小,最小值是多少?26.如图,抛物线y=x2+4x+3交x轴于A,B两点(A在B左侧),交y轴于点C.已知一次函数y=kx+b 的图象过点A,C.(1)求抛物线的对称轴和一次函数的解析式;(2)根据图象,写出满足kx+b>x2+4x+3的x的取值范围;(3)在平面直角坐标系xOy中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P 的坐标;若不存在,请说明理由.27.如图,在△ABC中,BC=7cm,AC=24cm,AB=25cm,P点在BC上,从B点到C点运动(不包括C 点),点P运动的速度为2cm/s;Q点在AC上从C点运动到A点(不包括A点),速度为5cm/s.若点P、Q分别从B、C同时运动,请解答下面的问题,并写出探索的主要过程:(1)经过多少时间后,P、Q两点的距离为5cm2?(2)经过多少时间后,S△PCQ的面积为15cm2?(3)请用配方法说明,何时△PCQ的面积最大,最大面积是多少?28.如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y 轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNF的面积之比.29.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x (时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.30.某旅游景点的门票价格是20元/人,日接待游客500人,进入旅游旺季时,景点想提高门票价格增加盈利.经过市场调查发现,门票价格每提高5元,日接待游客人数就会减少50人.设提价后的门票价格为x (元/人)(x>20),日接待游客的人数为y(人).(1)求y与x(x>20)的函数关系式;(2)已知景点每日的接待成本为z(元),z与y满足函数关系式:z=100+10y.求z与x的函数关系式;(3)在(2)的条件下,当门票价格为多少时,景点每日获取的利润最大?最大利润是多少?(利润=门票收入﹣接待成本)2016年05月05日钱功的初中数学组卷参考答案与试题解析一.解答题(共30小题)1.(2016•繁昌县一模)某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系式y=a (x﹣h)2+k,二次函数y=a(x﹣h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A、B、C的横坐标分别为4、10、12,点A、B的纵坐标分别为﹣16、20.(1)试确定函数关系式y=a(x﹣h)2+k;(2)分别求出前9个月公司累计获得的利润以及10月份一个月内所获得的利润;(3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?【解答】解:(1)根据题意可设:y=a(x﹣4)2﹣16,当x=10时,y=20,所以a(10﹣4)2﹣16=20,解得a=1,所求函数关系式为:y=(x﹣4)2﹣16.﹣﹣﹣﹣﹣﹣﹣(4分)(2)当x=9时,y=(9﹣4)2﹣16=9,所以前9个月公司累计获得的利润为9万元,又由题意可知,当x=10时,y=20,而20﹣9=11,所以10月份一个月内所获得的利润11万元.﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(3)设在前12个月中,第n个月该公司一个月内所获得的利润为s(万元)则有:s=(n﹣4)2﹣16﹣[(n﹣1﹣4)2﹣16]=2n﹣9,因为s是关于n的一次函数,且2>0,s随着n的增大而增大,而n的最大值为12,所以当n=12时,s=15,所以第12月份该公司一个月内所获得的利润最多,最多利润是15万元.﹣﹣(4分)2.(2016•丹阳市校级模拟)某商店进了一批服装,每件成本50元,如果按每件60元出售,可销售800件,如果每件提价5元出售,其销量将减少100件.(1)求售价为70元时的销售量及销售利润;(2)求销售利润y(元)与售价x(元)之间的函数关系,并求售价为多少元时获得最大利润;(3)如果商店销售这批服装想获利12000元,那么这批服装的定价是多少元?【解答】解:(1)销售量为800﹣20×(70﹣60)=600(件),600×(70﹣50)=600×20=12000(元)(2)y=(x﹣50)[800﹣20(x﹣60)]=﹣20x2+3000x﹣100000,=﹣20(x﹣75)2+12500,所以当销售价为75元时获得最大利润为12500元.(3)当y=12000时,﹣20(x﹣75)2+12500=12000,解得x1=70,x2=80,即定价为70元或80元时这批服装可获利12000元.3.(2016•岳池县模拟)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).(1)求抛物线的函数解析式;(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D 的坐标;(3)在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.【解答】解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(0,﹣3),∴,解得,故抛物线的函数解析式为y=x2﹣2x﹣3;(2)令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则点C的坐标为(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴点E坐标为(1,﹣4),设点D的坐标为(0,m),作EF⊥y轴于点F,∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,∵DC=DE,∴m2+9=m2+8m+16+1,解得m=﹣1,∴点D的坐标为(0,﹣1);(3)∵点C(3,0),D(0,﹣1),E(1,﹣4),∴CO=DF=3,DO=EF=1,根据勾股定理,CD===,在△COD和△DFE中,∵,∴△COD≌△DFE(SAS),∴∠EDF=∠DCO,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD⊥DE,①分OC与CD是对应边时,∵△DOC∽△PDC,∴=,即=,解得DP=,过点P作PG⊥y轴于点G,则==,即==,解得DG=1,PG=,当点P在点D的左边时,OG=DG﹣DO=1﹣1=0,所以点P(﹣,0),当点P在点D的右边时,OG=DO+DG=1+1=2,所以,点P(,﹣2);②OC与DP是对应边时,∵△DOC∽△CDP,∴=,即=,解得DP=3,过点P作PG⊥y轴于点G,则==,即==,解得DG=9,PG=3,当点P在点D的左边时,OG=DG﹣OD=9﹣1=8,所以,点P的坐标是(﹣3,8),当点P在点D的右边时,OG=OD+DG=1+9=10,所以,点P的坐标是(3,﹣10),综上所述,满足条件的点P共有4个,其坐标分别为(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).4.(2016•汶上县二模)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点左侧,B点的坐标为(4,0),与y轴交于C(0,﹣4)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.【解答】解:(1)将B、C两点的坐标代入得:,解得:;所以二次函数的表达式为:y=x2﹣3x﹣4;(2)存在点P,使四边形POP′C为菱形;设P点坐标为(x,x2﹣3x﹣4),PP′交CO于E若四边形POP′C是菱形,则有PC=PO;如图1,连接PP′,则PE⊥CO于E,∵C(0,﹣4),∴CO=4,又∵OE=EC,∴OE=EC=2∴y=﹣2;∴x2﹣3x﹣4=﹣2解得:x1=,x2=(不合题意,舍去),∴P点的坐标为(,﹣2);(3)如图2,过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,x2﹣3x﹣4),设直线BC 的解析式为:y=kx+d,则,解得:,∴直线BC的解析式为:y=x﹣4,则Q点的坐标为(x,x﹣4);当0=x2﹣3x﹣4,解得:x1=﹣1,x2=4,∴AO=1,AB=5,S四边形ABPC=S△ABC+S△BPQ+S△CPQ=AB•OC+QP•BF+QP•OF=×5×4+(4﹣x)[x﹣4﹣(x2﹣3x﹣4)]+x[x﹣4﹣(x2﹣3x﹣4)]=﹣2x2+8x+10=﹣2(x﹣2)2+18当x=2时,四边形ABPC的面积最大,此时P点的坐标为:(2,﹣6),四边形ABPC的面积的最大值为18.5.(2016•桐城市模拟)如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G.(1)点C、D的坐标;(2)求顶点在直线y=上且经过点C、D的抛物线的解析式;(3)将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E.平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请明理由.【解答】解:(1)令y=2,2=x﹣2,解得x=4,则OA=4﹣3=1,∴C(4,2),D(1,2);(2)由二次函数对称性得,顶点横坐标为=,令x=,则y=×﹣2=,∴顶点坐标为(,),∴设抛物线解析式为y=a(x﹣)2+,把点D(1,2)代入得,a=,∴解析式为y=(x﹣)2+;(3)设顶点E在直线上运动的横坐标为m,则E(m,m﹣2)(m>0)∴可设解析式为y=(x﹣m)2+m﹣2,①当FG=EG时,FG=EG=2m,则F(0,2m﹣2),代入解析式得:m2+m﹣2=2m﹣2,得m=0(舍去),m=﹣,此时所求的解析式为:y=(x﹣+)2+3﹣;②当GE=EF时,FG=2m,则F(0,2m﹣2),代入解析式得:m2+m﹣2=2m﹣2,解得m=0(舍去),m=,此时所求的解析式为:y=(x﹣)2﹣;③当FG=FE时,不存在.6.(2016•上城区一模)如图,抛物线C1:y=x2+bx+c经过原点,与x轴的另一个交点为(2,0),将抛物线C1向右平移m(m>0)个单位得到抛物线C2,C2交x轴于A,B两点(点A在点B的左边),交y轴于点C.(1)求抛物线C1的解析式及顶点坐标;(2)以AC为斜边向上作等腰直角三角形ACD,当点D落在抛物线C2的对称轴上时,求抛物线C2的解析式;(3)若抛物线C2的对称轴存在点P,使△PAC为等边三角形,求m的值.【解答】解:(1)∵抛物线C1经过原点,与X轴的另一个交点为(2,0),∴,解得,∴抛物线C1的解析式为y=x2﹣2x,∴抛物线C1的顶点坐标(1,﹣1),(2)如图1,∵抛物线C1向右平移m(m>0)个单位得到抛物线C2,∴C2的解析式为y=(x﹣m﹣1)2﹣1,∴A(m,0),B(m+2,0),C(0,m2+2m),过点C作CH⊥对称轴DE,垂足为H,∵△ACD为等腰直角三角形,∴AD=CD,∠ADC=90°,∴∠CDH+∠ADE=90°∴∠HCD=∠ADE,∵∠DEA=90°,∴△CHD≌△DEA,∴AE=HD=1,CH=DE=m+1,∴EH=HD+DE=1+m+1=m+2,由OC=EH得m2+2m=m+2,解得m1=1,m2=﹣2(舍去),∴抛物线C2的解析式为:y=(x﹣2)2﹣1.(3)如图2,连接BC,BP,由抛物线对称性可知AP=BP,∵△PAC为等边三角形,∴AP=BP=CP,∠APC=60°,∴C,A,B三点在以点P为圆心,PA为半径的圆上,∴∠CBO=∠CPA=30°,∴BC=2OC,∴由勾股定理得OB==OC,∴(m2+2m)=m+2,解得m1=,m2=﹣2(舍去),∴m=.7.(2015•齐齐哈尔)如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y 轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和四边形ABCD的面积.【解答】解:(1)由已知得:C(0,4),B(4,4),把B与C坐标代入y=﹣x2+bx+c得:,解得:b=2,c=4,则解析式为y=﹣x2+2x+4;(2)∵y=﹣x2+2x+4=﹣(x﹣2)2+6,∴抛物线顶点坐标为(2,6),则S四边形ABDC=S△ABC+S△BCD=×4×4+×4×2=8+4=12.8.(2015•泰州)已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y 轴的直线.(1)求m、n的值;(2)如图,一次函数y=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,PA:PB=1:5,求一次函数的表达式.【解答】解:∵对称轴是经过(﹣1,0)且平行于y轴的直线,∴﹣=﹣1,∴m=2,∵二次函数y=x2+mx+n的图象经过点P(﹣3,1),∴9﹣3m+n=1,得出n=3m﹣8.∴n=3m﹣8=﹣2;(2)∵m=2,n=﹣2,∴二次函数为y=x2+2x﹣2,作PC⊥x轴于C,BD⊥x轴于D,则PC∥BD,∴=,∵P(﹣3,1),∴PC=1,∵PA:PB=1:5,∴=,∴BD=6,∴B的纵坐标为6,代入二次函数为y=x2+2x﹣2得,6=x2+2x﹣2,解得x1=2,x2=﹣4(舍去),∴B(2,6),∴,解得,∴一次函数的表达式为y=x+4.9.(2015•宁波)已知抛物线y=(x﹣m)2﹣(x﹣m),其中m是常数.(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=.①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.【解答】(1)证明:y=(x﹣m)2﹣(x﹣m)=x2﹣(2m+1)x+m2+m,∵△=(2m+1)2﹣4(m2+m)=1>0,∴不论m为何值,该抛物线与x轴一定有两个公共点;(2)解:①∵x=﹣=,∴m=2,∴抛物线解析式为y=x2﹣5x+6;②设抛物线沿y轴向上平移k个单位长度后,得到的抛物线与x轴只有一个公共点,则平移后抛物线解析式为y=x2﹣5x+6+k,∵抛物线y=x2﹣5x+6+k与x轴只有一个公共点,∴△=52﹣4(6+k)=0,∴k=,即把该抛物线沿y轴向上平移个单位长度后,得到的抛物线与x轴只有一个公共点.10.(2015•福建)已知二次函数y=﹣x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.【解答】解:(1)∵二次函数的图象与x轴有两个交点,∴△=22+4m>0∴m>﹣1;(2)∵二次函数的图象过点A(3,0),∴0=﹣9+6+m∴m=3,∴二次函数的解析式为:y=﹣x2+2x+3,令x=0,则y=3,∴B(0,3),设直线AB的解析式为:y=kx+b,∴,解得:,∴直线AB的解析式为:y=﹣x+3,∵抛物线y=﹣x2+2x+3,的对称轴为:x=1,∴把x=1代入y=﹣x+3得y=2,∴P(1,2).11.(2015•孝感)已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x2﹣x1|)【解答】解:(1)△=[﹣(m﹣3)]2﹣4(﹣m)=m2﹣2m+9=(m﹣1)2+8,∵(m﹣1)2≥0,∴△=(m﹣1)2+8>0,∴原方程有两个不等实数根;(2)存在,由题意知x1,x2是原方程的两根,∴x1+x2=m﹣3,x1•x2=﹣m.∵AB=|x1﹣x2|,∴AB2=(x1﹣x2)2=(x1+x2)2﹣4x1x2=(m﹣3)2﹣4(﹣m)=(m﹣1)2+8,∴当m=1时,AB2有最小值8,∴AB有最小值,即AB==212.(2015•牡丹江)如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0).请解答下列问题:(1)求抛物线的解析式;(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE中点,连接FH,求线段FH 的长.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.【解答】解:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0),∴解得:,∴抛物线的解析式为:y=x2﹣2x﹣3;(2)∵点E(2,m)在抛物线上,∴m=4﹣4﹣3=﹣3,∴E(2,﹣3),∴BE==,∵点F是AE中点,抛物线的对称轴与x轴交于点H,即H为AB的中点,∴FH是三角形ABE的中位线,∴FH=BE=×=.13.(2015•湖北)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?【解答】解:(1)由题意得,y=700﹣20(x﹣45)=﹣20x+1600;(2)P=(x﹣40)(﹣20x+1600)=﹣20x2+2400x﹣64000=﹣20(x﹣60)2+8000,∵x≥45,a=﹣20<0,∴当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得﹣20(x﹣60)2+8000=6000,解得x1=50,x2=70.∵抛物线P=﹣20(x﹣60)2+8000的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润.又∵x≤58,∴50≤x≤58.∵在y=﹣20x+1600中,k=﹣20<0,∴y随x的增大而减小,∴当x=58时,y最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒.14.(2015•青岛)如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【解答】解:(1)根据题意得B(0,4),C(3,),把B(0,4),C(3,)代入y=﹣x2+bx+c得,解得.所以抛物线解析式为y=﹣x2+2x+4,则y=﹣(x﹣6)2+10,所以D(6,10),所以拱顶D到地面OA的距离为10m;(2)由题意得货运汽车最外侧与地面OA的交点为(2,0)或(10,0),当x=2或x=10时,y=>6,所以这辆货车能安全通过;(3)令y=8,则﹣(x﹣6)2+10=8,解得x1=6+2,x2=6﹣2,则x1﹣x2=4,所以两排灯的水平距离最小是4m.15.(2015•黄冈中学自主招生)如图,点A为y轴正半轴上一点,A,B两点关于x轴对称,过点A任作直线交抛物线于P,Q两点.(1)求证:∠ABP=∠ABQ;(2)若点A的坐标为(0,1),且∠PBQ=60°,试求所有满足条件的直线PQ的函数解析式.【解答】(1)证明:如图,分别过点P,Q作y轴的垂线,垂足分别为C,D.设点A的坐标为(0,t),则点B的坐标为(0,﹣t).设直线PQ的函数解析式为y=kx+t,并设P,Q的坐标分别为(x P,y P),(x Q,y Q).由,得,于是,即.于是=.,又因为,所以.因为∠BCP=∠BDQ=90°,所以△BCP∽△BDQ,故∠ABP=∠ABQ;(2)解:设PC=a,DQ=b,不妨设a≥b>0,由(1)可知∠ABP=∠ABQ=30°,BC=,BD=,所以AC=,AD=.因为PC∥DQ,所以△ACP∽△ADQ.于是,即,所以.由(1)中,即,所以,于是可求得.将代入,得到点Q的坐标(,).再将点Q的坐标代入y=kx+1,求得.所以直线PQ的函数解析式为.根据对称性知,所求直线PQ的函数解析式为或.16.(2015•通州区二模)已知:关于x的方程:mx2﹣(3m﹣1)x+2m﹣2=0.(1)求证:无论m取何值时,方程恒有实数根;(2)若关于x的二次函数y=mx2﹣(3m﹣1)x+2m﹣2的图象与x轴两交点间的距离为2时,求抛物线的解析式.【解答】解:(1)①当m=0时,原方程可化为x﹣2=0,解得x=2;②当m≠0时,方程为一元二次方程,△=[﹣(3m﹣1)]2﹣4m(2m﹣2)=m2+2m+1=(m+1)2≥0,故方程有两个实数根;故无论m为何值,方程恒有实数根.(2)∵二次函数y=mx2﹣(3m﹣1)x+2m﹣2的图象与x轴两交点间的距离为2,∴=2,整理得,3m2﹣2m﹣1=0,解得m1=1,m2=﹣.则函数解析式为y=x2﹣2x或y=﹣x2+2x﹣.17.(2015•泗洪县校级模拟)已知抛物线与x轴有两个不同的交点.(1)求c的取值范围;(2)抛物线与x轴两交点的距离为2,求c的值.【解答】解:(1)∵抛物线与x轴有两个不同的交点,得出b2﹣4ac>0,∴1﹣4×c>0,解得:c<,(2)设抛物线与x轴的两交点的横坐标为x1,x2,∵两交点间的距离为2,∴x1﹣x2=2,由题意,得x1+x2=﹣2,解得x1=0,x2=﹣2,∴=x1•x2=0,即c的值为0.18.(2015•巴彦淖尔模拟)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.【解答】解:(1)把A(﹣1,0),C(0,2)代入y=﹣x2+mx+n得,解得,∴抛物线解析式为y=﹣x2+x+2;(2)存在.抛物线的对称轴为直线x=﹣=,则D(,0),∴CD===,。
中考数学组卷
中考数学组卷
中考数学组卷指的是根据中考数学考试大纲和考试要求,将多个数学知识点融合在一起,组成一份完整的数学试卷。
这份试卷需要包括多种题型,如选择题、判断题、填空题、计算题等,以便全面考查学生的数学能力和水平。
以下是一个示例的中考数学组卷:
一、选择题(每题4分,共16分)
1.已知 |x| = 5,则 x = ()
A. ±5
B. 5
C. -5
D. 以上都不对
2.下列各组数中,互为相反数的是()
A. 2 和 -3
B. -2 和 3
C. -2 和 -3
D. 2 和 3
二、判断题(每题3分,共9分)
1.一个正数的平方根有两个,一个为正数,一个为负数。
()
2.若 |x| = 2,则 x = ±2。
()
3.一个角的余角等于它的补角的一半。
()
三、计算题(每题10分,共30分)
1.计算 (2 + √3) × (2 - √3)。
2.解方程:x^2 - 4x + 3 = 0。
3.已知 |x| = 5,y = 3,求 x + y 的值。
总结:中考数学组卷是指根据中考数学考试大纲和要求,将多个数学知识点融合在一起,组成一份完整的数学试卷。
这份试卷需要包括多种题型,以便
全面考查学生的数学能力和水平。
通过练习这种试卷,学生可以更好地掌握数学知识点,提高解题能力和数学思维能力。
初中数学组卷可直接打印
初中数学组卷一.选择题(共15小题)1.下列各数,3.14159265,,﹣8,,,中,无理数有()A.2个B.3个C.4个D.5个2.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A.B.C.D.3.已知正比例函数y=kx的图象经过第一、三象限,则一次函数y=kx﹣k的图象可能是如图中的()A.B.C.D.4.已知点A(m+1,﹣2)和点B(3,m﹣1),若直线AB∥x轴,则m的值为()A.2B.﹣4C.﹣1D.35.若满足方程组的x与y互为相反数,则m的值为()A.1B.﹣1C.11D.﹣116.如图,Rt△ABC中,∠ACB=90°,AC=3,AB=5,D为AB边上一动点,连接CD,△ACD与△A′CD关于直线CD轴对称,连接BA′,则BA′的最小值为()A.B.1C.D.7.已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()A.21B.15C.6D.21或98.下列图形中,表示一次函数y=ax+b与正比例函数y=(a,b为常数,且ab≠0)的图象的是()A.B.C.D.9.如图,数轴上点A表示的数为a,化简:a+的值是()A.2a﹣2B.2C.2﹣2a D.2a10.若点P(x,y)在第四象限,且|x|=2,|y|=3,则x+y=()A.﹣1B.1C.5D.﹣511.小明同学解方程组时的解为,由于不小心滴上了两滴墨水,刚好遮住了“•”和“*”处的两个数,则“●”,“*”分别代表的数是()A.﹣2,1B.﹣2,﹣1C.2,1D.2,﹣112.在如图所示的象棋盘上,建立适当的平面直角坐标系,使“炮”位于点(﹣3,2)上,“相”位于点(2,﹣1)上,则“帅“位于点()A.(0,0)B.(﹣1,1)C.(1,﹣1)D.(﹣2,2)13.已知△ABC的三边分别为a、b、c,则下列条件中不能判定△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.a:b:c=1::2C.∠C=∠A﹣∠B D.b2=a2﹣c214.已知正比例函数的图象经过点(﹣2,6),则该函数图象还经过的点是()A.(2,﹣6)B.(2,6)C.(6,﹣2)D.(﹣6,2)15.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=﹣2x+24(0<x<12)B.y=﹣x+12(0<x<24)C.y=2x﹣24(0<x<12)D.y=x﹣12(0<x<24)二.填空题(共13小题)16.的平方根为.17.一直角三角形的两边长分别为5和12,则第三边的长是.18.如图,已知直线y=2x+4与x轴交于点A,与y轴交于点B,以点A为圆心,AB为半径画弧,交x轴正半轴于点C,则点C坐标为.19.已知△ABC的三边长为a、b、c,满足a+b=10,ab=18,c=8,则此三角形为三角形.20.如图,一次函数y=﹣x+8的图象与x轴、y轴分别交于A、B两点.P是x轴上一个动点,若沿BP将△OBP翻折,点O恰好落在直线AB上的点C处,则点P的坐标是.21.正数a的两个平方根是方程3x+2y=2的一组解,则a=.22.如图,在平面直角坐标系中,点A(6,0),点B(0,2),点P是直线y=﹣x﹣1上一点,且∠ABP=45°,则点P的坐标为.23.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组的解为.24.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推……则正方形OB2017B2018C2018的顶点B2018的坐标是.25.27的立方根为.26.若以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣上,则常数b=.27.设x,y为实数,且,则点(x,y)在第象限.28.已知直线y=﹣3x+1上的点P到两坐标轴的距离相等,则点P的坐标是.三.解答题(共9小题)29.计算.(1)(2)30.如图所示,把矩形纸片OABC放入直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,连接AC,且AC=4,(1)求AC所在直线的解析式;(2)将纸片OABC折叠,使点A与点C重合(折痕为EF),求折叠后纸片重叠部分的面积.(3)求EF所在的直线的函数解析式.31.有一项工作,由甲、乙合作完成,合作一段时间后,乙改进了技术,提高了工作效率.图①表示甲、乙合作完成的工作量y(件)与工作时间t(时)的函数图象.图②分别表示甲完成的工作量y甲(件)、乙完成的工作量y乙(件)与工作时间t(时)的函数图象.(1)求甲5时完成的工作量;(2)求y甲、y乙与t的函数关系式(写出自变量t的取值范围);(3)求乙提高工作效率后,再工作几个小时与甲完成的工作量相等?32.在平面直角坐标系xOy中,已知直线l的解析式为:y=kx+x﹣k+1,若将直线l绕A点旋转.如图所示,当直线l旋转到l1位置时,k=2且l1与y轴交于点B,与x轴交于点C;当直线l旋转到l2位置时,k=﹣且l2与y轴交于点D(1)求点A的坐标;(2)直接写出B、C、D三点的坐标,连接CD计算△ADC的面积;(3)已知坐标平面内一点E,其坐标满足条件E(a,a),当点E与点A距离最小时,直接写出a的值.33.已知,如图在△ABC中,BC=6,AC=8,DE⊥AB,DE=7,△ABE的面积为35,求△ACB的面积.34.如图所示,边长为1的正方形网格中,△ABC的三个顶点A、B、C都在格点上.(1)作关于△ABC关于x轴的对称图形△DEF,(其中A、B、C的对称点分别是D、E、F),并写出点D坐标;(2)P为x轴上一点,请在图中画出使△P AB的周长最小时的点P,并直接写出此时点P的坐标.35.甲、乙两车同时从A地出发驶向B地.甲车到达B地后立即返回,设甲车离A地的距离为y1(千米),乙车离A地的距离为y2(千米),行驶时间为x(小时),y1,y2与x的函数关系如图所示.(1)填空:A、B两地相距千米,甲车从B地返回A地的行驶速度是千米/时;(2)当两车行驶7小时后在途中相遇,求点E的坐标;(3)甲车从B地返回A地途中,与乙车相距100千米时,求甲车行驶的时间.36.有一笔直的公路连接M,N两地,甲车从M地驶往N地,速度为60km/h,乙车从M地驶往N地,速度为40km/h,丙车从N地驶往M地,速度为80km/h,三辆车同时出发,先到目的地的车停止不动.途中甲车发生故障,于是停车修理了 2.5h,修好后立即按原速驶往N地.设甲车行驶的时间为t(h),甲、丙两车之间的距离为S1(km).甲、乙两车离M地的距离为S2(km),S1与t之间的关系如图1所示,S2与t之间的关系如图2所示.根据题中的信息回答下列问题:(1)①图1中点C的实际意义是;②点B的横坐标是;点E的横坐标是;点Q的坐标是;(2)请求出图2中线段QR所表示的S2与t之间的关系式;(3)当甲、乙两车距70km时,请直接写出t的值.37.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的图象如图所示:(1)客车的速度是千米/小时,出租车的速度是千米小时;(2)根据图象,分别直接写出y1、y2关于x的关系式:;(3)求两车相遇的时间.(4)x为何值时,两车相距100千米.。
初中数学组卷 (1)
2017年08月15日初中数学组卷一.选择题(共6小题)1.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180°B.210°C.360° D.270°2.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A.5 B.4 C.3 D.23.将一副三角板按如图的方式放置,则∠1的度数是()A.15°B.20°C.25°D.30°4.一副三角板如图叠放在一起,则图中∠α的度数为()A.35°B.30°C.25°D.15°5.如图△ABC中,∠A=96°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1∠A1BC与∠A1CD的平分线相交于点A2,依此类推,∠A4BC与∠A4CD的平分线相交于点A5,则∠A5的度数为()A.19.2°B.8°C.6°D.3°6.如图,AE,AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,则∠DAE 的度数为()A.40°B.20°C.18°D.38°二.填空题(共1小题)7.如图,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的角平分线,CA2是∠A1CD的角平分线,BA3是∠A2BD的角平分线,CA3是∠A2CD 的角平分线,若∠A1=α,则∠A2013为.三.解答题(共33小题)8.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.9.已知:如图,点A、B分别是∠MON的边OM、ON上两点,OC平分∠MON,在∠CON的内部取一点P(点A、P、B三点不在同一直线上),连接PA、PB.(1)探索∠APB与∠MON、∠PAO、∠PBO之间的数量关系,并证明你的结论;(2)设∠OAP=x°,∠OBP=y°,若∠APB的平分线PQ交OC于点Q,求∠OQP的度数(用含有x、y的代数式表示).10.已知∠AOB=α(90°<α<180°),∠COD在∠AOB的内部,OM平分∠AOC,ON平分∠BOD.(1)若∠COD=180°﹣α时,探索下面两个问题:①如图1,当OC在OD左侧,求∠MON的度数;②当OC在OD右侧,请在图2内补全图形,并求出∠MON的度数(用含α的代数式表示);(2)如图3,当∠COD=kα,且OC在OD左侧时,直接写出∠MON的度数(用含α、k的代数式表示).11.已知∠AOB=100°,射线OC在∠AOB的内部,射线OE,OF分别是∠AOC和∠COB的角平分线.(1)如图1,若∠AOC=30°,求∠EOF的度数;(2)请从下面A,B两题中任选一题作答,我选择题.A.如图2,若射线OC在∠AOB的内部绕点O旋转,则∠EOF的度数为.B.若射线OC在∠AOB的外部绕点O旋转(旋转中∠AOC、∠BOC均是指小于180°的角),其余条件不变,请借助图3探究∠EOF的大小,直接写出∠EOF的度数.12.如图(1),∠AOB=120°,在∠AOB内作两条射线OC和OD,且OM平分∠AOD,ON平分∠BOC.①若∠AOC:∠COD:∠DOB=5:3:4,求∠MON的度数.②若将图(1)中的∠COD绕点O顺时针转一个小于70°的角α如图(2),其它条件不变,请直接写出∠MON的度数.13.如图,射线OC以∠AOB的边OB为始边进行逆时针旋转,作OD平分∠AOC,OE平分∠BOC,在射线OC旋转过程中,试探究∠DOE与∠BOC的大小关系.(1)当∠AOB=90°,∠BOC=60°时,则∠DOE=度.(2)设∠AOB=90°,∠BOC=n.①当0<n<90°时,在射线OC旋转过程中,∠DOE的大小是否发生变化?若发生变化,请说明理由;若不发生变化,请求出∠DOE的度数;②当90°<n<360°时,在射线OC旋转过程中,∠DOE的大小是否发生变化?若发生变化,请说明理由;若不发生变化,请求出∠DOE的度数;(3)设∠AOB=a,∠BOC=n,其中0<a<180°,在射线OC旋转过程中,请直接写出∠DOE的度数(可用含有a,n的代数式表示)14.已知线段AB=12,CD=6,线段CD在直线AB上运动(A在B的左侧,C在D 的左侧).(1)当D点与B点重合时,AC=;(2)点P是线段AB延长线上任意一点,在(1)的条件下,求PA+PB﹣2PC的值;(3)M、N分别是AC、BD的中点,当BC=4时,求MN的长.15.如图,已知线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD的中点,求EF.16.如图,线段AB=24,动点P从A出发,以2个单位/秒的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动,N为BP的中点,下列两个结论:①MN长度不变;②MN+PN的值不变.选出一个正确的结论,并求其值.17.如图,已知点C为AB上一点,AC=15cm,CB=AC,D,E分别为AC,AB 的中点,求DE的长.18.如图,在四边形ABCD中,对角线AC与BD相交于P,请添加一个条件,使=AC•BD,并说明理由.四边形ABCD的面积为:S四边形ABCD解:添加的条件:理由:19.(1)如图1,已知△ABC,点D,E,F分别是BC,AB,AC的中点,若△ABC 的面积为16,则△ABD的面积是,△EBD的面积是.(2)如图2,点D,E,F分别是BC,AD,EC的中点,若△ABC的面积为16,求△BEF的面积是多少?20.如图,△ABC的三条中线AD、BE、CF交于点O,请找出图中所有面积相等的三角形.21.如图,AE、OB、OC分别平分∠BAC、∠ABC、∠ACB,OD⊥BC,求证:∠1=∠2.22.如图,直线m与直线n互相垂直,垂足为O,A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点P,在点A、B的运动过程中,∠APB 的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(2)若∠ABO的两个外角的平分线AQ、BQ相交于点Q,AP的延长线交QB的延长线于点C,在点A、B的运动过程中,∠Q和∠C的大小是否会发生变化?若不发生变化,请求出∠Q和∠C的度数;若发生变化,请说明理由.23.已知:如图,AB∥CD,一副三角板按如图所示放置,∠AEG=30°.求∠HFD 的度数.24.△ABC中,三个内角的平分线交于点O,过点O作OD⊥OB,交边BC于点D.(1)如图1,猜想∠AOC与∠ODC的关系,并说明你的理由;(2)如图2,作∠ABC外角∠ABE的平分线交CO的延长线于点F.①求证:BF∥OD;②若∠F=35°,求∠BAC的度数.25.问题再现:如图1:△ABC 中,AF 为BC 边上的中线,则S △ABF =S △ACP =S △ABC由这个结论解答下列问题:问题解决:问题1:如图2,△ABC 中,CD 为AB 边上的中线,BE 为AC 边上的中线,则S △BOC =S 四边形ADOE .分析:△ABC 中,CD 为AB 边上的中线,则S △BCD =S △ABC ,BE 为AC 边上的中线,则S △ABE =S △ABC∴S △BCD =S △ABE∴S △BCD ﹣S △BOD =S △ABE ﹣S △BOD又∵S △BOC =S △BCD ﹣S △BOD ,S 四边形ADOE =S △ABE ﹣S △BOD即S △BOC =S 四边形ADOE问题2:如图3,△ABC 中,CD 为AB 边上的中线,BE 为AC 边上的中线,AF 为BC 边上的中线.(1)S △BOD =S △COE 吗?请说明理由.(2)请直接写出△BOD 的面积与△ABC 的面积之间的数量关系:S △BOD = S △ABC .问题拓广:(1)如图4,E 、F 分别为四边形ABCD 的边AD 、BC 的中点,请直接写出阴影部分的面积与四边形ABCD 的面积之间的数量关系:S 阴= S 四边形ABCD .(2)如图5,E 、F 、G 、H 分别为四边形ABCD 的边AD 、BC 、AB 、CD 的中点,请直接写出阴影部分的面积与四边形ABCD 的面积之间的数量关系:S 阴= S四边形ABCD .(3)如图6,E 、F 、G 、H 分别为四边形ABCD 的边AD 、BC 、AB 、CD 的中点,若S=1、S△BNG=1.5、S△CQF=2、S△BFH△DFH=2.5,则S阴=.△AME26.探索:在图1至图3中,已知△ABC的面积为a,(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA.若△ACD的面积为S1,则S1=(用含a的代数式表示)(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE.若△DEC的面积为S2,则S2=(用含a的代数式表示)(3)在图2的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图3).若阴影部分的面积为S3,则S3=(用含a的代数式表示).发现:像上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图3),此时,我们称△ABC向外扩展了一次.可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的倍.应用:要在一块足够大的空地上栽种花卉,工程人员进行了如下的图案设计:首先在△ABC的空地上种红花,然后将△ABC向外扩展三次(图4已给出了前两次扩展的图案).在第一次扩展区域内种黄花,第二次扩展区域内种紫花,第三次扩展区域内种蓝花.如果种红花的区域(即△ABC)的面积是10平方米,请你运用上述结论求出:(1)种紫花的区域的面积;(2)种蓝花的区域的面积.27.如图,张大爷家有一块四边形的菜地,在A处有一口井,张大爷欲想从A 处引一条笔直的水渠,且这条笔直的水渠将四边形菜地分成面积相等的两部分.请你为张大爷设计一种引水渠的方案,画出图形并说明理由.28.在数学学习过程中,我们常常会有“似曾相识”的感觉,如果我们把这些类似进行比较、加以联想的话,可能出现许多意想不到的结果和方法,这种把类似进行比较、联想,从而解决问题的方法就是类比法.类比法是一种寻求解题思路,猜测问题答案或结论的发现方法.如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.【尝试探索】①经过三角形顶点的面积等分线有条;②平行四边形有条面积等分线.【类比探究】如图1所示,在矩形中剪去一个小正方形,请画出这个图形的一条面积等分线;【类比拓展】如图2,四边形ABCD中,AB与CD不平行,AB≠CD,且S△ABC <S△ACD,过点A画出四边形ABCD的面积等分线,并描述方法.【灵活运用】请您尝试画出一种图形,并画出它的一条面积等分线.29.问题引入:如图,在△ABC中,D是BC上一点,AE=AD,求:尝试探究:过点A作BC的垂线,垂足为F,过点E作BC的垂线,垂足为G,如图所示,有=,=,.类比延伸:若E为AD上的任一点,如图所示,试猜S四边形ABEC 与S△ABC的比是图中哪条线段的比,并加以证明.拓展应用:如图,E为△ABC内一点,射线AE于BC于点D,射线BE交AC于点F,射线CE交AB于点G,求的值.30.在数学学习过程中,我们常常会有“似曾相识“的感觉,如果我们把这些类似进行比较、加以联想的话,可能出现许多意想不到的结果和方法,这种把类似进行比较、联想,从而解决问题的方法就是类比法,类比法是一种寻求解题思路,猜测问题答案或结论的发现方法.如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.【尝试探索】经过三角形顶点的面积等分线有条;平行四边形有条面积等分线.【推理反思】(1)按如图1方式将大小不同的两个正方形放在一起,若大正方形的面积是80cm2,则图中阴影三角形的面积是cm2.(2)如图2,C是线段AB上任意一点,分别以AC、BC为边在线段AB同侧构造等边三角形△ACD和等边三角形△CBE,若△CBE的面积是1cm2,则图中阴影三角形的面积是cm2.(3)结语:上述两道小题的求解方法有很多值得借鉴的相似之处.【类比拓展】如果,四边形ABCD中,AB与CD不平行,AB≠CD,且S△ABC <S△ACD,过点A画出四边形ABCD的面积等分线,并描述方法.31.已知:如图,四边形ABCD中,AD∥BC,连接AC,BD交于点O,设△AOD,△AOB,△BOC,△COD的面积分别为S1,S2,S3,S4.(1)求证:S2=S4;(2)设AD=m,BC=n,,=,根据上述条件,判断S1+S3与S2+S4的大小关系,并说明理由.32.(1)如图①,AD是△ABC的中线,△ABD与△ACD的面积有怎样的数量关系?为什么?(2)若三角形的面积记为S,例如:△ABC的面积记为S△ABC ,如图②,已知S△ABC=1,△ABC的中线AD、CE相交于点O,求四边形BDOE的面积.小华利用(1)的结论,解决了上述问题,解法如下:连接BO,设S△BEO=x,S△BDO=y,由(1)结论可得:S,S△BCO=2S△BDO=2y,S△BAO=2S△BEO=2x.则有,即.所以.请仿照上面的方法,解决下列问题:①如图③,已知S=1,D、E是BC边上的三等分点,F、G是AB边上的三等△ABC分点,AD、CF交于点O,求四边形BDOF的面积.=1,D、E、F是BC边上的四等分点,G、H、I是AB边上的②如图④,已知S△ABC四等分点,AD、CG交于点O,则四边形BDOG的面积为.33.阅读下列材料:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示,这样不需求△ABC的高,而借用网格就能计算出它的面积,这种方法叫做构图法.(1)△ABC的面积为:;(2)若△DEF三边的长分别为、2、,请在图1的正方形网格中画出相应的△DEF,并利用构图法求出它的面积;(3)如图2,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13、10、17,且△PQR、△BCR、△DEQ、△AFP的面积相等,求六边形花坛ABCDEF的面积.34.【几何模型】如图(1),△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP +S△ACP=S△ABC.即:AB•r1+AC•r2=AB•h,∴r1+r2=h(定值).【模型应用(1)】:如图(2),在边长为3的正方形ABCD中,点E为对角线BD上的一点,且BE=BC,F为CE上一点,FM⊥BC于M,FN⊥BD于N,试利用上述结论求出FM+FN的长.【模型应用(2)】:如图(3),如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h(定值).【模型应用(3)】:若正n边形A1、A2…A n内部任意一点P到各边的距离为r1,r2,…,r n,请问是r1+r2+…+r n是否为定值?如果是,请直接写出这个定值.如果不是,请说明理由.35.如图,已知矩形ABCD,AD=2,DC=4,BN=2AM=2MN,P在CD上移动,AP 与DM交于点E,PN交CM于点F,设四边形MEPF的面积为S,求S的最大值.36.如图,E是四边形ABCD的DC边上一点,CE=,AB=2,BC=,∠D=90°,∠B=60°,S=四边形ABCE(1)求AC的长;(2)∠ACD的度数.37.如图,在四边形ABCD中,△ABD,△BCD,△ABC的面积比是3:4:1,点M,N分别在AC,CD上,满足AM:AC=CN:CD,并且B,M,N共线.求证:M与N分别是AC和CD的中点.38.定义:如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.如图1,AD是△ABC的中点,则有S=S△ABD,所以直线AD就是△ABC的一条面积等分线.△ADC探究:(1)如图2,梯形ABCD中,AB∥DC,连接AC,过点B作BE∥AC交DC的延长线于点E,连接AE,那么有S△AED=S梯形ABCD,请你给出这个结论成立的理由.(2)在图2中,过点A用尺规作出梯形ABCD的面积等分线(不写作法,保留作图痕迹).类比:(3)如图3,四边形ABCD中,AB与CD不平行,S△ADC >S△ABC,过点A能否画出四边形ABCD的面积等分线?若能,请画出面积等分线,并给出证明;若不能,说明理由.39.某课题研究小组就图形面积问题进行专题研究,他们发现如下结论:(1)有一条边对应相等的两个三角形的面积之比等于这条边上的对应高之比;(2)有一个角对应相等的两个三角形的面积之比等于夹这个角的两边乘积之比;…现请你继续下面问题的探究,探究过程可直接应用上述结论.(S表示面积)问题1:如图1,现有一块三角形纸板ABC,P1,P2三等分边AB,R1,R2三等分边AC.经探究知S=S △ABC,请证明.问题2:若有另一块三角形纸板,可将其与问题1中的△ABC拼合成四边形ABCD,如图2,Q 1,Q2三等分边DC.试探究S与S四边形ABCD之间的数量关系.40.如图,等腰梯形ABCD中,CD∥AB,对角线ACBD相交于O,∠ACD=6O°,点S,P,Q分别是OD,OA,BC的中点,(1)求证:△PQS是等边三角形;(2)若AB=5,CD=3,求△PQS的面积;(3)若△PQS的面积与△AOD的面积的比是7:8,求梯形上、下两底的比CD:AB.2017年08月15日初中数学组卷参考答案一.选择题(共6小题)1.B;2.B;3.A;4.D;5.D;6.B;二.填空题(共1小题)7.;三.解答题(共33小题)8.;9.;10.;11.A;50°;12.;13.45;14.6;15.;16.;17.;18.AC⊥BD;19.8;4;20.;21.;22.;23.;24.;25.;;;7;26.a;2a;6a;7;27.;28.3;无数;29.;;;30.3;无数;40;1;31.;32.;33.;34.;35.;36.;37.;38.;39.;40.;。
【组卷】2017年07月09日初中数学的初中数学组卷
2017年07月09日初中数学的初中数学组卷一.选择题(共6小题)1.单项式4xy2z3的次数是()A.3 B.4 C.5 D.62.下列各整式中,次数为3次的单项式是()A.xy2B.xy3C.x+y2 D.x+y33.单项式的系数是()A.B.πC.2 D.4.对于下列四个式子:①0.1;②;③;④.其中不是整式的是()A.①B.②C.③D.④5.下列关于单项式﹣的说法中,正确的是()A.系数是﹣,次数是2 B.系数是,次数是2C.系数是﹣3,次数是3 D.系数是﹣,次数是36.如果单项式2a n b2c是六次单项式,那么n的值取()A.6 B.5 C.4 D.3二.填空题(共3小题)7.代数式ab﹣πxy﹣x3的次数是,其中﹣πxy项的系数是.8.单项式﹣的系数是,多项式xy+x3﹣1是次多项式.9.一天,小明读一本数学课外书,他从m页读到n页,他共读了页.2017年07月09日初中数学的初中数学组卷参考答案与试题解析一.选择题(共6小题)1.(2017•黄浦区二模)单项式4xy2z3的次数是()A.3 B.4 C.5 D.6【解答】解:该单项式的次数为:1+2+3=6,故选(D)2.(2017•南平模拟)下列各整式中,次数为3次的单项式是()A.xy2B.xy3C.x+y2 D.x+y3【解答】解:A、xy2的次数是1+2=3,故本选项正确;B、xy3的次数是4,故本选项错误;C、x+y2是多项式,故本选项错误;D、x+y3是多项式,故本选项错误.故选A.3.(2016•铜仁市)单项式的系数是()A.B.πC.2 D.【解答】解:单项式的系数是:.故选:D.4.(2016•无棣县模拟)对于下列四个式子:①0.1;②;③;④.其中不是整式的是()A.①B.②C.③D.④【解答】解:①0.1;②;④是整式,故选C5.(2016•南海区校级模拟)下列关于单项式﹣的说法中,正确的是()A.系数是﹣,次数是2 B.系数是,次数是2C.系数是﹣3,次数是3 D.系数是﹣,次数是3【解答】解:单项式﹣的系数是:﹣,次数是3.故选D.6.(2016•闵行区二模)如果单项式2a n b2c是六次单项式,那么n的值取()A.6 B.5 C.4 D.3【解答】解:∵单项式2a n b2c是六次单项式,∴n+2+1=6,解得:n=3,故n的值取3.故选:D.二.填空题(共3小题)7.(2017春•遂宁期中)代数式ab﹣πxy﹣x3的次数是3,其中﹣πxy 项的系数是π.【解答】解:代数式ab﹣πxy﹣x3的次数是3,﹣πxy项的系数是π,故答案为:3,﹣π.8.(2017春•萧山区月考)单项式﹣的系数是﹣,多项式xy+x3﹣1是3次多项式.【解答】解:单项式﹣的系数是﹣,多项式xy+x3﹣1是3次多项式.故答案为:﹣,3.9.(2017•微山县一模)一天,小明读一本数学课外书,他从m页读到n页,他共读了(n﹣m+1)页.【解答】解:∵小明读一本数学课外书,他从m页读到n页,∴他共读了:(n﹣m+1)页,故答案为:(n﹣m+1).。
初中数学组卷一元二次方程的化简求值题
一元二次方程的化简求值题姓名:成绩:1.(2013•江都市一模)先化简再求值:(1+)÷,其中x是方程x2﹣3x=0的根.2.(2014•宝应县二模)先化简再求值:(1+)÷,其中x是方程x2﹣2x=0的根.3.(x+)÷,先化简再求值:其中x是方程x2﹣2x=0的根.4.(2014•南京联合体二模)先化简再求值:,其中x是方程x2﹣x=0的根.5.(1)先化简再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=﹣1、b=﹣2.(2)已知y=1是方程2﹣13(m﹣y)=2y的解,求关于x的方程m(x﹣3)﹣2=m(2x﹣5)的解.6.先化简,再求值:(﹣)÷,其中a 是方程﹣=1的解.7.先化简,再求值:,其中a是方程2x2﹣x﹣3=0的解.8.先化简,再求值:,其中a 是方程的解.9.先化简,再求值:,其中a是方程2x2﹣2x﹣9=0的解.10.先化简,再求值:÷(a﹣1﹣),其中a是方程x2﹣x=2014的解.11.先化简,再求值:÷(a﹣1﹣),其中a是方程x2+x﹣3=0的解.12.先化简,再求值:÷(a﹣1﹣),其中a是方程2x2+2x﹣3=0的解.13.(1)计算:.(2)已知不等式5(x﹣2)+8<6(x﹣1)+7的最小整数解是方程2x﹣ax=4的解,求a的值.(3)先化简,再求值:,其中x=2.14.(2013•乐山市中区模拟)先化简,再求值:,其中x是方程x2+x=0的解.15.(1)解方程:﹣=1.(2)已知a为一元二次方程x2+x﹣6=0的解,先化简(2a+1)2﹣3a(a+1),再求值.16.(2013•东城区一模)先化简,再求值:2(m﹣1)2+3(2m+1),其中m是方程x2+x﹣1=0的根.17.先化简,再求值:计算,其中x是方程x2﹣x﹣2=0的正数根.18.(1)先化简,再求值:(2a2b+2ab2)﹣[2(a2b﹣1)+3ab2+2],其中a=2,b=﹣2;(2)已知:x=3是方程4x﹣a(2﹣x)=2(x﹣a)的解,求3a2﹣2a﹣1的值.19.先化简,再求值:,其中x是方程x2﹣3x﹣10=0的解.20.先化简,再求值:,其中m是方程2m2+4m﹣1=0的解.21.(2014•重庆模拟)先化简,再求值:,其中x是方程x2+2x+1=0的解.22.(2012•乐山市中区模拟)先化简,再求值:,其中负数x的值是方程x2﹣2=0的解.23.(2012•海曙区模拟)先化简,再求值:,其中x是方程x2+3x﹣5=0的解.24.先化简,再求值:(﹣)÷,其中x是方程(x+2)2﹣10(x+2)+25=0的解.25.先化简,再求值:,其中m是方程2x2﹣7x﹣7=0的解.26.先化简,再求值:﹣÷(x+1﹣),其中x 是分式方程=的解.27.先化简,再求值:已知:a2+b2+2a﹣4b+5=0,求:3a2+4b﹣3的值.28.先化简,再求值.已知a+b=1,ab=,求代数式a3b﹣2a2b2+ab3的值.2015年01月06日372991254的初中数学组卷-----一元二次方程的化简求值题参考答案与试题解析一.解答题(共28小题)1.(2013•江都市一模)先化简再求值:(1+)÷,其中x是方程x2﹣3x=0的根.考点:分式的化简求值;解一元二次方程-因式分解法.专题:计算题.分析:原式被除数括号中两项通分并利用同分母分式的加法法则计算,除数分母利用平方差公式分解因式,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,求出已知方程的解得到x的值,代入计算即可求出值.解答:解:原式=÷=•=x+1,由x2﹣3x=0,解得:x1=3,x2=0(舍去),当x=3时,原式=3+1=4.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键约分,约分的关键是找公因式.2.(2014•宝应县二模)先化简再求值:(1+)÷,其中x是方程x2﹣2x=0的根.考点:分式的化简求值;解一元二次方程-因式分解法.分析:首先正确将分式的分子与分母进行因式分解,进而进行分式的通分、约分,并准确代值计算.解答:解:原式=(+)÷,=x+1;方程x2﹣2x=0的根是:x1=0、x1=2,∵x不能取0,∴当x1=2时,原式=2+1=3.点评:本题考查了分式的化简求值,解题的关键是正确化简所给分式.3.(x+)÷,先化简再求值:其中x是方程x2﹣2x=0的根.考点:分式的化简求值;解一元二次方程-因式分解法.分析:先根据分式混合运算的法则把原式进行化简,再根据x是方程x2﹣2x=0的根求出x的值,把x 的值代入进行计算即可.解答:解:原式=•=x+1,∵x是方程x2﹣2x=0的根,∴x1=0,x2=2,∵x不能取0,∴当x=2时,原式=2+3.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.4.(2014•南京联合体二模)先化简再求值:,其中x是方程x2﹣x=0的根.考点:分式的化简求值;解一元二次方程-因式分解法.分析:先根据分式混合运算的法则把原式进行化简,再求出x的值,代入原式进行计算即可.解答:解:原式=÷=×=﹣,∵x是方程x2﹣x=0的根,∴x1=1,x2=0,当x1=1时分式无意义;把x2=0代入原式=.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.5.(1)先化简再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=﹣1、b=﹣2.(2)已知y=1是方程2﹣13(m﹣y)=2y的解,求关于x的方程m(x﹣3)﹣2=m(2x﹣5)的解.分析:(1)原式去括号合并得到最简结果,将a与b的值代入计算即可求出值;(2)将y=1代入已知方程计算求出m的值,把m的值代入所求方程,即可求出解.解答:解:(1)原式=﹣a2b+3ab2﹣a2b﹣4ab2+2a2b=﹣ab2,当a=﹣1,b=﹣2时,原式=4;(2)将y=1代入方程得:2﹣13(m﹣1)=2,解得:m=1,所求方程为x﹣3﹣2=2x﹣5,解得:x=0.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.6.先化简,再求值:(﹣)÷,其中a 是方程﹣=1的解.考点:分式的化简求值;分式方程的解.分析:首先把括号里分式进行通分,然后把除法运算转化成乘法运算,进行约分化简,再解分式方程﹣=1求出a的值,最后代值计算.解答:解:原式=,=﹣,解分式方程﹣=1得:x=2,经检验可知x=2是分式方程的解,∴a=2,当a=2时,原式=﹣=﹣1.点评:主要考查了分式的化简求值问题.分式的四则运算是整式四则运算的进一步发展,是有理式恒等变形的重要内容之一.在计算时,首先要弄清楚运算顺序,先去括号,再进行分式的乘除运算.7.先化简,再求值:,其中a是方程2x2﹣x﹣3=0的解.考点:解一元二次方程-因式分解法;分式的化简求值.分析:根据分式混合运算时的法则,先对所给分式进行化简,然后解方程,求出的a的值,再代入化简的结果,注意分式有意义的条件是分式的分母不能为0.解答:解:原式====,由方程2x2﹣x﹣3=0解得,,x2=﹣1,但当x2=﹣1时,分式无意义,∴a=,∴当a=时,原式=.点评:分式的化简求值,关键是对所给代数式进行化简,与分数的混合运算一样,分式的加、减、乘、除、乘方的混合运算,也是先算乘方,再算乘除,最后算加减,遇有括号,先算括号内的.8.先化简,再求值:,其中a 是方程的解.考点:一元二次方程的解;分式的化简求值.专题:计算题;压轴题.分析:根据题意先解方程求出a的值,然后把代数式化简,再把a的值代入即可.解答:解:∵a 是方程的解,∴a2﹣a ﹣=0,解方程得:a=,={}÷﹣a2=÷﹣a2=×﹣a2当a=时,原式=(1﹣)=×=﹣;当a=时,原式=(1﹣)=×=﹣,∴代数式的值为﹣.点评:此题主要考查了方程解的定义和分式的运算,此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.9.先化简,再求值:,其中a是方程2x2﹣2x﹣9=0的解.考点:分式的化简求值;一元二次方程的解.专题:计算题.分析:将原式被除式括号中两项通分并利用同分母分式的减法法则计算,分子整理后分解因式,除式分子利用完全平方公式分解因式,分母利用平方差公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后得到最简结果,由a是方程2x2﹣2x﹣9=0的解,将x=a代入方程,得到关于a的等式,整理后代入化简后的式子中即可求出原式的值.解答:解:原式=[﹣]÷﹣a2=•﹣a2=a﹣a2,∵a是方程2x2﹣2x﹣9=0的解,∴将x=a代入方程得:2a2﹣2a﹣9=0,∴a2﹣a=,即a﹣a2=﹣,则原式=﹣.点评:此题考查了分式的化简求值,以及一元二次方程的解,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.10.先化简,再求值:÷(a﹣1﹣),其中a是方程x2﹣x=2014的解.考点:分式的化简求值;一元二次方程的解.分析:将括号内的部分通分,再将除法转化为乘法,因式分解后约分即可.解答:解:原式=÷[﹣]=÷=•==,∵a是方程x2﹣x=2014的解,∴a2﹣a=2014,∴原式=.点评:本题考查了分式的化简求值和一元二次方程的解,熟悉约分、通分和因式分解是解题的关键.11.先化简,再求值:÷(a﹣1﹣),其中a是方程x2+x﹣3=0的解.考点:分式的化简求值;一元二次方程的解.分析:先根据分式混合运算的法则把原式进行化简,再根据a是方程x2+x﹣3=0的解得出a2+a=3,再代入原式进行计算即可.解答:解:原式=÷=•==∵a是方程x2+x﹣3=0的解,∴a2+a﹣3=0,即a2+a=3,∴原式=.点评:本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.考点:分式的化简求值;一元二次方程的解.分析:先根据分式混合运算的法则把原式进行化简,再求出a的值代入进行计算即可.解答:解:原式=÷=•=,∵a是方程2x2+2x﹣3=0的解,∴2a2+2a﹣3=0,解得(a﹣1)(2a+3)=0,解得a=1或a=﹣,当a=1时,原式无意义;当a=﹣时,原式==4.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.13.(1)计算:.(2)已知不等式5(x﹣2)+8<6(x﹣1)+7的最小整数解是方程2x﹣ax=4的解,求a的值.(3)先化简,再求值:,其中x=2.考点:分式的化简求值;绝对值;零指数幂;一元一次不等式组的整数解.分析:(1)根据绝对值、零指数幂的计算法则进行计算;(2)根据解得不等式的解集,再求a;(3)首先找到最简公分母,然后进行通分化简.解答:解:(1)原式=2﹣+3×1+1=6﹣;(2)由5(x﹣2)+8<6(x﹣1)+7得:x>3;所以不等式5(x﹣2)+8<6(x﹣1)+7的最小整数解为4;由2x﹣ax=4得:x==4;解得a=1;(3)原式=﹣=x﹣(1﹣x)=2x﹣1;∵x=2;识点熟练掌握.14.(2013•乐山市中区模拟)先化简,再求值:,其中x是方程x2+x=0的解.考点:解一元二次方程-因式分解法;分式的化简求值.分析:x是方程x2+x=0的解,可得x=0或﹣1;而当x=0时,原式无意义,故x=﹣1.把分式化简后,再代入求值.解答:解:原式=[]===﹣x2﹣2x;x是方程x2+x=0的解,可得x=0或﹣1;而当x=0时,原式无意义,故x=﹣1.当x=﹣1时,原式=1.点评:分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算;求值时需注意舍去不合题意的值.15.(1)解方程:﹣=1.(2)已知a为一元二次方程x2+x﹣6=0的解,先化简(2a+1)2﹣3a(a+1),再求值.考点:整式的混合运算—化简求值;解一元一次方程;解一元二次方程-因式分解法.分析:(1)按照解方程的步骤求得方程的解即可;(2)先解出方程,再进一步化简整式,最后代入求得数值即可.解答:(1)﹣=1解:2x﹣3x=6﹣x=6x=﹣6;(2)x2+x﹣6=0解:(x+3)(x﹣2)=0x+3=0,x﹣2=0解得x1=﹣3,x2=2(2a+1)2﹣3a(a+1)当a=﹣3时,原式=(﹣3)2+(﹣3)+1=7;当a=2时,原式=22+2+1=7.点评:此题考查解一元一次方程和一元二次方程的方法,以及整式的化简求值,注意先化简,再求值.16.(2013•东城区一模)先化简,再求值:2(m﹣1)2+3(2m+1),其中m是方程x2+x﹣1=0的根.考点:整式的混合运算—化简求值;一元二次方程的解.专题:计算题.分析:原式第一项利用完全平方公式展开,第二项去括号,合并得到最简结果,将m代入方程列出关系式,代入计算即可求出值.解答:解:原式=2(m2﹣2m+1)+6m+3=2m2﹣4m+2+6m+3=2m2+2m+5,∵m是方程x2+x﹣1=0的根,∴m2+m﹣1=0,即m2+m=1,∴原式=2(m2+m)+5=7.点评:此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.17.先化简,再求值:计算,其中x是方程x2﹣x﹣2=0的正数根.考点:分式的化简求值;解一元二次方程-因式分解法.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,求出方程的解得到x的值,代入计算即可求出值.解答:解:原式=•=•=,方程x2﹣x﹣2=0,分解因式得:(x﹣2)(x+1)=0,∴x=2或x=﹣1(舍去),则原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.化简与求值:(1)先化简,再求值:(2a2b+2ab2)﹣[2(a2b﹣1)+3ab2+2],其中a=2,b=﹣2;(2)已知:x=3是方程4x﹣a(2﹣x)=2(x﹣a)的解,求3a2﹣2a﹣1的值.考点:一元一次方程的解;整式的加减—化简求值.专题:计算题.分析:(1)本题应去括号,合并同类项,将整式化为最简式,然后把a、b的值代入即可;当a=2,b=﹣2时,原式=﹣2×(﹣2)2=﹣8;(2)∵4x﹣a(2﹣x)=2(x﹣a),且x=3,∴4×3﹣a(2﹣3)=2(3﹣a),解得a=﹣2,∴3a2﹣2a﹣1=12+4﹣1=15.点评:本题考查了整式的化简和一元一次方程的解法.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.19.先化简,再求值:,其中x是方程x2﹣3x﹣10=0的解.考点:分式的化简求值;解一元二次方程-因式分解法.专题:计算题.分析:先根据分式混合运算的法则把原式进行化简,再根据x是方程x2﹣3x﹣10=0的解求出x的值,代入原式进行计算即可.解答:解:原式=[﹣]×=×=×=,∵x是方程x2﹣3x﹣10=0的解,∴x1=﹣2(舍去),x2=5,∴当x=5时,原式==.点评:本题考查的是分式的化简求值及实数的混合运算,再求出x的值时要保证分式有意义.20.先化简,再求值:,其中m是方程2m2+4m﹣1=0的解.考点:分式的化简求值;一元二次方程的解.分析:首先计算括号内的分式,把除法转化成乘法运算,然后进行分式的乘法运算即可化简,然后把已解答:解:原式=÷•=÷•=••==,∵2m2+4m﹣1=0,∴m2+2m=,∴原式==2.点评:考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.21.(2014•重庆模拟)先化简,再求值:,其中x是方程x2+2x+1=0的解.考点:分式的化简求值;一元二次方程的解.分析:首先利用分式的混合运算法则化简分式进而解一元二次方程x2+2x+1=0,得出x的值,求出分式的值即可.解答:解:,=(﹣)×,=×,=x﹣2,∵x是方程x2+2x+1=0的解,∴(x+1)2=0,x﹣2=﹣1﹣2=﹣3.点评:此题主要考查了分式的化简与解一元二次方程,根据分式的性质正确化简分式是解题关键.22.(2012•乐山市中区模拟)先化简,再求值:,其中负数x的值是方程x2﹣2=0的解.考点:分式的化简求值.分析:先将除法转化成乘法,再运用分配律进行计算化成最简.然后解方程,求出x的值,然后将x=﹣代入计算即可.解答:解:原式=[+]•=+=+=,解方程x2﹣2=0,得x=±,∵x<0,∴x=﹣.∴当x=﹣时,原式==.点评:本题考查了分式的化简求值,分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算;求值时需注意舍去不合题意的值.23.(2012•海曙区模拟)先化简,再求值:,其中x是方程x2+3x﹣5=0的解.考点:分式的化简求值;一元二次方程的解.专题:计算题.分析:先算括号内的减法,同时把除法变成乘法,再算乘法,最后把x2+3x代入求出即可.解答:解:=•=•=﹣2x(x+3)=﹣2x2﹣6x=﹣2(x2+3x)∵x是方程x2+3x﹣5=0的解,∴x2+3x=5,∴原式=﹣2×5=﹣10.点评:本题考查了分式的混合运算的应用,主要考查学生的化简能力和计算能力,用了整体代入思想.24.先化简,再求值:(﹣)÷,其中x是方程(x+2)2﹣10(x+2)+25=0的解.考点:分式的化简求值;解一元二次方程-配方法.分析:先根据分式混合运算的法则把原式进行化简,再根据x是方程(x+2)2﹣10(x+2)+25=0的解求出x的值,代入原式进行计算即可.解答:解:原式=(﹣)×=﹣=﹣==,∵x是方程(x+2)2﹣10(x+2)+25=0的解,∴x=3,∴当x=3时,原式==.点评:本题考查了分式的化简求值和配方法解一元二次方程,解答此题的关键是把分式化到最简,然后代值计算.25.先化简,再求值:,其中m是方程2x2﹣7x﹣7=0的解.考点:分式的化简求值.专题:计算题.解答:解:原式=÷=•=,∵m为方程2x2﹣7x﹣7=0的解,∴2m2﹣7m﹣7=0,即m2=,代入原式得:=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.26.先化简,再求值:﹣÷(x+1﹣),其中x 是分式方程=的解.考点:分式的化简求值;分式方程的解.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,求出分式方程的解得到x的值,代入计算即可求出值.解答:解:原式=﹣÷=﹣•=﹣==,分式方程去分母得:x+3=2x,解得:x=3,经检验x=3是分式方程的解,则原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.27.先化简,再求值:已知:a2+b2+2a﹣4b+5=0,求:3a2+4b﹣3的值.考点:代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.分析:先用配方法化简原式:(a+1)2+(b﹣2)2=0,再根据非负数的性质求出a,b的值,代入即可.点评:本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.28.先化简,再求值.已知a+b=1,ab=,求代数式a3b﹣2a2b2+ab3的值.考点:因式分解的应用.分析:把所求的代数式分解因式后整理成条件中所给出的代数式的形式,然后整体代入即可.解答:解:a3b﹣2a2b2+ab3=ab(a2﹣2ab2+b2)=ab(a﹣b)2=ab[(a+b)2﹣4ab]把a+b=1,ab=代入,得原式=×[12﹣4×]=.点评:本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.先锋中学计算练习题四1、解不等式组:并把解集在数轴上表示出来.⎩⎨⎧-≤->+12)1(303x x x2、解方程组:50425=-+=--y x y x2322)1(3)1(4=+--=--y x y y x3、解方程:2230x x --=0)3(2)3(2=-+-x x x0342=+-x x4、()()1215218223-⎛⎫--+--⨯ ⎪⎝⎭1221+(2)先化简下列式子,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算.(6)先化简再求值()121112222+--++÷-+a a a a a a 其中a=3+120.先化简,再求值:,其中m 是方程2m 2+4m ﹣1=0的解.21.(2014•重庆模拟)先化简,再求值:,其中x是方程x2+2x+1=0的解.22.(2012•乐山市中区模拟)先化简,再求值:,其中负数x的值是方程x2﹣2=0的解.23.(2012•海曙区模拟)先化简,再求值:,其中x是方程x2+3x﹣5=0的解.24.先化简,再求值:(﹣)÷,其中x是方程(x+2)2﹣10(x+2)+25=0的解.25.先化简,再求值:,其中m是方程2x2﹣7x﹣7=0的解.26.先化简,再求值:﹣÷(x+1﹣),其中x 是分式方程=的解.27.先化简,再求值:已知:a2+b2+2a﹣4b+5=0,求:3a2+4b﹣3的值.28.先化简,再求值.已知a+b=1,ab=,求代数式a3b﹣2a2b2+ab3的值.先化简,再求值:22211()x yx y x y x y+÷-+-,其中31,31x y=+=-.先化简22()5525x x xx x x-÷---,然后从不等组23212xx--⎧⎨⎩≤的解集中,选取一个你认为符合题意....的x的值代入求值.已知)1(645)25(3+-<++xxx,化简:xx3113--+(10分)(2014•重庆)先化简,再求值:(x﹣1﹣)÷,其中x是方程﹣=0的解。
初中数学 中考数学试卷(含答案)
2017年中考数学试题第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.3的相反数是( )A .-3B .13-C .13D .3 【答案】A【解析】只有符号不同的两个数互为相反数,因此3的相反数是-3;故选A. 2.如图,由四个正方体组成的几何体的左视图是( )A .B .C .D .【答案】B【解析】从左边看可以看到两个小正方形摞在一起,故选B. 3.用科学计数法表示136 000,其结果是( )A .60.13610⨯B .51.3610⨯C .313610⨯D .613610⨯ 【答案】B【解析】13600=1.36×105,故选B. 4.化简2(2)x 的结果是( )A .4xB .22xC . 24xD .4x 【答案】C【解析】(2x )2=4x 2;故选C.5.下列关于图形对称性的命题,正确的是( )A .圆既是轴对称性图形,又是中心对称图形B .正三角形既是轴对称图形,又是中心对称图形C .线段是轴对称图形,但不是中心对称图形D .菱形是中心对称图形,但不是轴对称图形 【答案】A点睛:本题主要考查中心对称图形与轴对称图形的知识,能正确地区分是解题的关键.6. 不等式组:⎩⎨⎧>+≤-0302x x 的解集是( )A .32x -<≤B .32x -≤<C . 2x ≥D .3x <- 【答案】A【解析】由①得x≤2,由②得x>-3,所以解集为:-3<x≤2,故选A.7.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )A .10,15B .13,15C .13,20D .15,15 【答案】D【解析】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.8.如图,AB 是O 的直径,,C D 是O 上位于AB 异侧的两点.下列四个角中,一定与ACD ∠互余的角是( )A .ADC ∠B .ABD ∠C . BAC ∠D .BAD ∠ 【答案】D【解析】∵AB 是直径,∴∠ADB=90°,∴∠BAD+∠B=90°,∵∠ACD=∠B ,∴∠BAD+∠ACD=90°,故选D.9.若直线1y kx k =++经过点(,3)m n +和(1,21)m n +-,且02k <<,则n 的值可以是( )A .3B .4C .5D .6 【答案】C10.如图,网格纸上正方形小格的边长为1.图中线段AB 和点P 绕着同一个点做相同的旋转,分别得到线段A B ''和点P ',则点P '所在的单位正方形区域是( )A .1区B .2区C .3区D .4区 【答案】D【解析】如图,根据题意可得旋转中心O ,旋转角是90°,旋转方向为逆时针,因此可知点P 的对应点落在了4区,故选D.O点睛:本题主要考查图形的旋转,能根据题意正确地确定旋转中心、旋转方向、旋转角是解题的关键.第Ⅱ卷(共90分)二、填空题:本题共6小题,每小题4分,共24分. 11.计算023--= . 【答案】1【解析】原式=2-1=1.12. 如图,ABC ∆中,,D E 分别是,AB AC 的中点,连线DE ,若3DE =,则线段BC 的长等于 .【答案】6【解析】∵E 、F 分别是AB 、AC 的中点,∴BC=2EF=6.13.一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是13,那么添加的球是 .【答案】红球(或红色的)14.已知,,A B C 是数轴上的三个点,且C 在B 的右侧.点,A B 表示的数分别是1,3,如图所示.若2BC AB =,则点C 表示的数是 .【答案】7【解析】∵AB=2,BC=2AB ,∴BC=4, 3+4=7,故点C 表示的数是7.15.两个完全相同的正五边形都有一边在直线上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.DC16. 已知矩形ABCD 的四个顶点均在反比例函数1y x=的图象上,且点A 的横坐标是2,则矩形ABCD 的面积为 . 【答案】7.5yxDBCAO点睛:本题主要考查双曲线、矩形的对称性,双曲线关于原点对称,关于直线y=±x 对称,矩形既是轴对称图形又是中心对称图形,能根据本题的题意确定矩形的对称中心是原点,并能应用图形的对称性解决问题是关键.三、解答题 :本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17. 先化简,再求值:1)11(2-⋅-a aa ,其中12-=a . 【答案】1a+1,22 .【解析】试题分析:先通分计算括号内的,然后再利用分式的乘除法进行计算,最后代入求值即可. 试题解析:原式=()()11111a a a a a a -=+-+ ,当a=2 -1时,原式=1211-+ =22.18. 如图,点,,,B E C F 在一条直线上,,,AB DE AC DF BE CF ===.求证:A D ∠=∠.【答案】证明见解析. 【解析】19.如图,ABC ∆中,90,BAC AD BC ∠=⊥,垂足为D .求作ABC ∠的平分线,分别交,AD AD 于P ,Q 两点;并证明AP AQ =.(要求:尺规作图,保留作图痕迹,不写作法)【答案】作图见解析;证明见解析. 【解析】试题分析:按作图方法作出角平分线BQ ,然后通过利用互为余角以及等角的余角相等得到∠APQ=∠ AQP,从而证得AP=AQ.试题解析:作图如下,BQ 就是所求作的∠ABC 的平分线,P 、Q 就是所求作的点. 证明如下:∵AD ⊥BC ,∴∠ADB=90°,∴∠BPD+∠PBD=90°,∵∠BAC=90°,∴∠AQP+∠ABQ=90°,∵∠ABQ=∠PBD ,∴∠BPD=∠AQP ,∵∠BPD=∠APQ ,∴∠APQ=∠ AQP,∴AP=AQ.20.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.【答案】鸡有23只,兔有12只.【解析】21.如图,四边形ABCD内接于O,AB是O的直径,点P在CA的延长线上,45CAD∠=.(Ⅰ)若4AB=,求弧CD的长;(Ⅱ)若弧BC=弧AD,AD AP=,求证:PD是O的切线.【答案】(Ⅰ)CD的长=π;(Ⅱ)证明见解析.【解析】试题分析:(Ⅰ)连接OC,OD,由圆周角定理可得∠COD=90°,然后利用弧长公式即可得;(Ⅱ)由BC=AD,可得∠BOC=∠AOD,从而可得∠AOD=45°,再由三角形内角和从而可得∠ODA=67.5°,由AD=AP可得∠ADP=∠APD,由∠CAD=∠ADP+∠APD,∠CAD=45°可得∠ADP=22.5°,继而可得∠ODP=90°,从而得PD是⊙O的切线.试题解析:(Ⅰ)连接OC,OD,∵∠COD=2∠CAD,∠CAD=45°,∴∠COD=90°,∵AB=4,∴OC=12AB=2,∴CD的长=902180π⨯⨯=π;22.小明在某次作业中得到如下结果:2222sin 7sin 830.120.990.9945+≈+=, 2222sin 22sin 680.370.93 1.0018+≈+=, 2222sin 29sin 610.480.870.9873+≈+=, 2222sin 37sin 530.600.80 1.0000+≈+=,222222sin 45sin 45()(122+≈+=. 据此,小明猜想:对于任意锐角α,均有22sin sin (90)1αα+-=.(Ⅰ)当30α=时,验证22sinsin (90)1αα+-=是否成立;(Ⅱ)小明的猜想是否成立?若成立,若成立,请给予证明;若不成立,请举出一个反例. 【答案】(Ⅰ)成立,证明见解析;(Ⅱ)成立,证明见解析. 【解析】试题分析:(Ⅰ)成立,当30α=时,将30°与60°的正弦值代入计算即可得证; (Ⅱ)成立,如图,△ABC 中,∠C=90°,设∠A=α,则∠B=90°-α,正确地表示这两个角的正弦并利用勾股定理即可得证.试题解析:(Ⅰ)当30α=时, 22sin sin (90)αα+-=sin 230°+sin 260°=221322⎛⎫+ ⎪⎝⎭=1344+=1,所以22sin sin(90)1αα+-=成立;(Ⅱ)小明的猜想成立.证明如下:如图,△ABC中,∠C=90°,设∠A=α,则∠B=90°-α,sin2α+sin 2(90°-α)=2222222BC AC BC AC ABAB AB AB AB+⎛⎫⎛⎫+==⎪ ⎪⎝⎭⎝⎭=123.自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:使用次数0 1 2 3 4 5(含5次以上)累计车费0 0.5 0.9 a b 1.5同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:使用次数0 1 2 3 4 5人数 5 15 10 30 25 15(Ⅰ)写出,a b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利? 说明理由.【答案】(Ⅰ)a=1.2,b=1.4;(Ⅱ)不能获利,理由见解析;【解析】试题分析:(Ⅰ)根据调整后的收费歀:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费通过计算即可得a=1.2,b=1.4;(Ⅱ)根据用车意愿调查结果,抽取的100名师生每人每天使用A 品牌共享单车的平均车费 为:1100×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.1×15)=1.1(元), 所以估计该校5000名师生一天使用A 品牌共享单车的总车费为:5000×1.1=5500(元), 因为5500<5800,故收费调整后,此运营商在该校投放A 品牌共享单车不能获利.24.如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长;(Ⅱ)若2AP =,求CF 的长.【答案】(Ⅰ)AP 的长为4或5或145;(Ⅱ)324【解析】试题分析:(Ⅰ)分情况CP=CD 、PD=PC 、DP=DC 讨论即可得;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,通过证明△ADP ∽△CDF ,从而得34CF CD AP AD == ,由2 ,从而可得324. 试题解析:(Ⅰ)在矩形ABCD 中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6, 22AD DC + =10;要使△PCD 是等腰三角形,有如下三种情况:(1)当CP=CD 时,CP=6,∴AP=AC-CP=4 ;(2)当PD=PC 时,∠PDC=∠PCD ,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA ,∴PD=PA ,∴PA=PC ,∴AP=2AC ,即AP=5;(3)当DP=DC 时,过D 作DQ ⊥AC 于Q ,则PQ=CQ ,∵S △ADC =12 AD·DC=12 AC·DQ ,∴DQ=245AD DC AC = ,∴CQ=22185DC DQ -= ,∴PC=2CQ =365 ,∴AP=AC-PC=145 . 综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,点睛:本题主要考查矩形的性质、等腰三角形的判定与性质,相似三角形的判定与性质等,能正确地分情况进行讨论是判定△PCD 要等腰三角形的关键.25.已知直线m x y +=2与抛物线2y ax ax b =++有一个公共点(1,0)M ,且a b <. (Ⅰ)求抛物线顶点Q 的坐标(用含a 的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N . (ⅰ)若211-≤≤-a ,求线段MN 长度的取值范围; (ⅱ)求QMN ∆面积的最小值.【答案】(Ⅰ)抛物线顶点Q 的坐标为(-12,-94a );(Ⅱ)理由见解析; (Ⅲ)(i )55≤MN≤75.(ii )△QMN 面积的最小值为279242+. 【解析】 试题分析:(Ⅰ)由抛物线过点M (1,0),可得b=-2a ,将解析式y=ax 2+ax+b=ax 2+ax-2a 配方得y=a(x+ 12)2- 94a ,从而可得抛物线顶点Q 的坐标为(- 12,- 94a ). (Ⅱ)由直线y=2x+m 经过点M (1,0),可得m=-2.由y=2x-2、y=ax 2+ax-2a ,可得ax 2+(a-2)x-2a+2=0,(*),由根的判别式可得方程(*)有两个不相等的实数根,从而可得直线与抛物线有两个交点.(ii )作直线x=-12 交直线y=2x-2于点E ,得 E (-12,-3), 从而可得△QMN 的面积S=S △QEN +S △QEM =2732748a a -- ,即27a 2+(8S-54)a+24=0,(*) 因为关于a 的方程(*)有实数根, 从而可和S≥279242+,继而得到面积的最小值. 试题解析:(Ⅰ)因为抛物线过点M (1,0),所以a+a+b=0,即b=-2a ,所以y=ax 2+ax+b=ax 2+ax-2a=a(x+12)2-94a ,所以抛物线顶点Q 的坐标为(-12,-94a ). (Ⅱ)因为直线y=2x+m 经过点M (1,0),所以0=2×1+m ,解得m=-2.把y=2x-2代入y=ax 2+ax-2a ,得ax 2+(a-2)x-2a+2=0,(*),所以△=(a-2)2-4a(-2a+2)=9a 2-12a+4由(Ⅰ)知b=-2a ,又a<b ,所以a<0,b>0,所以△>0,所以方程(*)有两个不相等的实数根,故直线与抛物线有两个交点.(ii )作直线x=-12 交直线y=2x-2于点E ,把x=-12代入y=2x-2得,y=-3,即E (-12,-3), 又因为M (1,0),N (2a -2,4a -6),且由(Ⅱ)知a<0, 所以△QMN 的面积S=S △QEN +S △QEM =()12921324a a ⎛⎫----- ⎪⎝⎭=2732748a a -- , 即27a 2+(8S-54)a+24=0,(*)因为关于a 的方程(*)有实数根,所以△=(8S-54)2-4×27×24≥0,即(8S-54)2≥(2 )2, 又因为a<0,所以S=2732748a a -- >274,所以8S-54>0,所以8S-54>0, 所以8S-2,即S≥279242+, 当S=279242+*)可得223满足题意. 故当223,423时,△QMN 面积的最小值为279242+点睛:本题考查的二次函数的综合问题,能正确地应用待定系数法、一元二次方程根的判别式、二次函数的性质等是解决本题的关键.。
初中数学组卷好题常考题
初中数学组卷好题常考题一.选择题(共6小题)1.下列各数0,3.14159,π,﹣中,有理数有()A.1个B.2个C.3个D.4个2.如图,数轴上表示数2的相反数的点是()A.点N B.点M C.点Q D.点P3.单项式﹣2πxy3的系数和次数分别是()A.﹣2π,4 B.4,﹣2πC.﹣2,3 D.3,﹣24.代数式3x2y﹣4x3y2﹣5xy3﹣1按x的升幂排列,正确的是()A.﹣4x3y2+3x2y﹣5xy3﹣1 B.﹣5xy3+3x2y﹣4x3y2﹣1C.﹣1+3x2y﹣4x3y2﹣5xy3 D.﹣1﹣5xy3+3x2y﹣4x3y25.下列方程中是一元一次方程的是()A.4x﹣5=0 B.3x﹣2y=3 C.3x2﹣14=2 D.6.若|a﹣2|+(b+3)2=0,则式子(a+5b)﹣(3b﹣2a)﹣1的值为()A.﹣11 B.﹣1 C.11 D.1二.填空题(共6小题)7.(﹣0.125)2006×82005=.8.下列代数式中:单项式:;多项式:;整式:.9.若a>3,则|6﹣2a|=(用含a的代数式表示).10.数轴上点A表示的数是﹣1,点B到点A的距离为2个单位,则B点表示的数是.11.月球的半径约为1738000米,1738000这个数用科学记数法表示为.12.4.24970≈(精确到百分位);近似数6.34万精确到位.三.解答题(共4小题)13.计算:|﹣3|2+(﹣23)×(﹣)÷(﹣).14.解方程﹣2=.15.已知:A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+1(1)当a=﹣1,b=2时,求4A﹣(3A﹣2B)的值;(2)若(1)中的代数式的值与a的取值无关,求b的值.16.探索规律:将连续的偶数2,4,6,8,…,排成如表:(1)若将十字框上下左右移动,可框住五位数,设中间的数为x,用代数式表示十字框中的五个数的和;(2)若将十字框上下左右移动,可框住五位数的和能等于2000吗?如能,写出这五位数,如不能,说明理由.初中数学组卷好题常考题参考答案与试题解析一.选择题(共6小题)1.(2016秋•高港区校级期中)下列各数0,3.14159,π,﹣中,有理数有()A.1个B.2个C.3个D.4个【解答】解:0是整数,3.14159、﹣是分数,由于整数、分数统称有理数,所以它们都是有理数.π是个无限不循环小数,是无理数.故选C.2.(2016•古冶区一模)如图,数轴上表示数2的相反数的点是()A.点N B.点M C.点Q D.点P【解答】解:∵2的相反数是﹣2,点N表示﹣2,∴数轴上表示数2的相反数的点是点N.故选A.3.(2016秋•郴州期中)单项式﹣2πxy3的系数和次数分别是()A.﹣2π,4 B.4,﹣2πC.﹣2,3 D.3,﹣2【解答】解:单项式﹣2πxy3的系数和次数分别是﹣2π,4,故选A.4.(2016秋•安岳县校级期中)代数式3x2y﹣4x3y2﹣5xy3﹣1按x的升幂排列,正确的是()A.﹣4x3y2+3x2y﹣5xy3﹣1 B.﹣5xy3+3x2y﹣4x3y2﹣1C.﹣1+3x2y﹣4x3y2﹣5xy3 D.﹣1﹣5xy3+3x2y﹣4x3y2【解答】解:3x2y﹣4x3y2﹣5xy3﹣1的项是3x2y、﹣4x3y2、﹣5xy3、﹣1,按x的升幂排列为﹣1﹣5xy3+3x2y﹣4x3y2,故D正确;故选:D.5.(2016春•内江期末)下列方程中是一元一次方程的是()A.4x﹣5=0 B.3x﹣2y=3 C.3x2﹣14=2 D.【解答】解:A、4x﹣5=0,是一元一次方程,故此选项正确;B、3x﹣2y=3,是二元一次方程,故此选项错误;C、3x2﹣14=2,是一元二次方程,故此选项错误;D、﹣2=3是分式方程,故此选项错误.故选:A.6.(2016秋•天门校级期中)若|a﹣2|+(b+3)2=0,则式子(a+5b)﹣(3b﹣2a)﹣1的值为()A.﹣11 B.﹣1 C.11 D.1【解答】解:原式=a+5b﹣3b+2a﹣1=3a+2b﹣1,∵|a﹣2|+(b+3)2=0,∴a=2,b=﹣3,则原式=6﹣6﹣1=﹣1,故选B二.填空题(共6小题)7.(2016春•钦州期末)(﹣0.125)2006×82005=0.125.【解答】解:82006×(﹣0.125)2005=82005×(﹣0.125)2005×8=(﹣8×0.125)2005×0.125=﹣0.125,故答案为:﹣0.125.8.(2006秋•金山区校级期中)下列代数式中:单项式:0,﹣a,﹣,a2b2;多项式:3+a,,3x2﹣2x+1,a2﹣b2;整式:0,﹣a,﹣,a2b2,3+a,,3x2﹣2x+1,a2﹣b2.【解答】解:单项式:0,﹣a,﹣,a2b2;多项式:3+a,,3x2﹣2x+1,a2﹣b2;整式:0,﹣a,﹣,a2b2,3+a,,3x2﹣2x+1,a2﹣b2;故答案为:0,﹣a,﹣,a2b2;3+a,,3x2﹣2x+1,a2﹣b2;0,﹣a,﹣,a2b2,3+a,,3x2﹣2x+1,a2﹣b2.9.(2016•承德校级模拟)若a>3,则|6﹣2a|=2a﹣6(用含a的代数式表示).【解答】解:∵a>3,∴6﹣2a<0,∴|6﹣2a|=2a﹣6,故答案为:2a﹣6.10.(2016秋•南京期中)数轴上点A表示的数是﹣1,点B到点A的距离为2个单位,则B点表示的数是﹣3或1.【解答】解:在表示﹣1左边的,比﹣1小2的数时,这个数是﹣1﹣2=﹣3;在表示﹣1右边的,比﹣1大2的数时,这个数是﹣1+2=1.故答案为:﹣3或1.11.(2016•攀枝花)月球的半径约为1738000米,1738000这个数用科学记数法表示为 1.738×106.【解答】解:将1738000用科学记数法表示为1.738×106.故答案为:1.738×106.12.(2016秋•婺城区校级期中)4.24970≈ 4.25(精确到百分位);近似数6.34万精确到百位.【解答】解:4.24970≈4.25(精确到百分位);近似数6.34万精确到百位.故答案为4.25;百.三.解答题(共4小题)13.(2016秋•潮南区期中)计算:|﹣3|2+(﹣23)×(﹣)÷(﹣).【解答】解:原式=9﹣8×(﹣)×(﹣2)=9﹣4=5.14.(2016春•新乡期末)解方程﹣2=.【解答】解:去分母得:2(2x﹣1)﹣12=3(3x+2),去括号得:4x﹣2﹣12=9x+6,移项合并得:5x=﹣20,解得:x=﹣4.15.(2016秋•江阴市期中)已知:A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+1(1)当a=﹣1,b=2时,求4A﹣(3A﹣2B)的值;(2)若(1)中的代数式的值与a的取值无关,求b的值.【解答】解:(1)∵A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+1,∴原式=4A﹣3A+2B=A+2B=5ab﹣2a+1,当a=﹣1,b=2时,原式=﹣7;(2)原式=5ab﹣2a+1=(5b﹣2)a+1,由结果与a的取值无关,得到b=.16.(2016秋•章贡区校级期中)探索规律:将连续的偶数2,4,6,8,…,排成如表:(1)若将十字框上下左右移动,可框住五位数,设中间的数为x,用代数式表示十字框中的五个数的和;(2)若将十字框上下左右移动,可框住五位数的和能等于2000吗?如能,写出这五位数,如不能,说明理由.【解答】解:(1)设中间的一个数为x,则其余的四个数分别为:x﹣14,x+14,x﹣2,x+2,则十字框中的五个数之和为:x+x﹣14+x+14+x﹣2+x+2=5x,(2)不可能依题意有5x=2000,解得x=400,400÷2=200200÷7=28 (4)∵400在第4列,∴400能成为十字框中的5个数的中间的数,∴可框住五位数的和能等于2000.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年05月26日初中数学的初中数学组卷一.选择题(共10小题)1.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m22.在一次自行车越野赛中,出发mh后,小明骑行了25km,小刚骑行了18km,此后两人分别以akm/h,bkm/h匀速骑行,他们骑行的时间t(单位:h)与骑行的路程s(单位:km)之间的函数关系如图,观察图象,下列说法:①出发mh内小明的速度比小刚快;②a=26;③小刚追上小明时离起点43km;④此次越野赛的全程为90km,其中正确的说法有()A.1个 B.2个 C.3个 D.4个3.甲、乙两车从A城出发前往B城,在整个行驶过程中,汽车离开A城的距离y(km)与行驶时间t(h)的函数图象如图所示,下列说法正确的有()①甲车的速度为50km/h ②乙车用了3h到达B城③甲车出发4h时,乙车追上甲车④乙车出发后经过1h或3h两车相距50km.A.1个 B.2个 C.3个 D.4个4.若k≠0,b<0,则y=kx+b的图象可能是()A.B.C.D.5.一次函数y=kx﹣k(k<0)的图象大致是()A.B. C. D.6.如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2交于点A,则方程组的解是()A.B.C.D.7.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2 B.y=2 C.x=﹣1 D.y=﹣18.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<19.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣3)﹣b>0的解集为()A.x<2 B.x>2 C.x<5 D.x>510.同一直角坐标系中,一次函数y1=k1x+b与正比例函数y2=k2x的图象如图所示,则满足y1≥y2的x取值范围是()A.x≤﹣2 B.x≥﹣2 C.x<﹣2 D.x>﹣2二.解答题(共7小题)11.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?12.快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.13.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?14.已知一次函数y=2x+4(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出:当y<0时,x的取值范围.15.在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.16.计算:(+)×.17.计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.2017年05月26日初中数学的初中数学组卷参考答案与试题解析一.选择题(共10小题)1.(2016•哈尔滨)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m2【分析】根据待定系数法可求直线AB的解析式,再根据函数上点的坐标特征得出当x=2时,y的值,再根据工作效率=工作总量÷工作时间,列出算式求出该绿化组提高工作效率前每小时完成的绿化面积.【解答】解:如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.故选:B.【点评】考查了一次函数的应用和函数的图象,关键是根据待定系数法求出该绿化组提高工作效率后的函数解析式,同时考查了工作效率=工作总量÷工作时间的知识点.2.(2016•天门)在一次自行车越野赛中,出发mh后,小明骑行了25km,小刚骑行了18km,此后两人分别以akm/h,bkm/h匀速骑行,他们骑行的时间t(单位:h)与骑行的路程s(单位:km)之间的函数关系如图,观察图象,下列说法:①出发mh内小明的速度比小刚快;②a=26;③小刚追上小明时离起点43km;④此次越野赛的全程为90km,其中正确的说法有()A.1个 B.2个 C.3个 D.4个【分析】①根据函数图象可以判断出发mh内小明的速度比小刚快是否正确;②根据图象可以得到关于a、b、m的三元一次方程组,从而可以求得a、b、m 的值,从而可以解答本题;③根据②中的b、m的值可以求得小刚追上小明时离起点的路程,本题得以解决;④根据②中的数据可以求得此次越野赛的全程.【解答】解:由图象可知,出发mh内小明的速度比小刚快,故①正确;由图象可得,,解得,,故②正确;小刚追上小明走过的路程是:36×(0.5+0.7)=36×1.2=43.2km>43km,故③错误;此次越野赛的全程是:36×(0.5+2)=36×2.5=90km,故④正确;故选C.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.3.(2016•葫芦岛)甲、乙两车从A城出发前往B城,在整个行驶过程中,汽车离开A城的距离y(km)与行驶时间t(h)的函数图象如图所示,下列说法正确的有()①甲车的速度为50km/h ②乙车用了3h到达B城③甲车出发4h时,乙车追上甲车④乙车出发后经过1h或3h两车相距50km.A.1个 B.2个 C.3个 D.4个【分析】根据路程、时间和速度之间的关系判断出①正确;根据函数图象上的数据得出乙车到达B城用的时间,判断出②正确;根据甲的速度和走的时间得出甲车出发4h时走的总路程,再根据乙的总路程和所走的总时间求出乙的速度,再乘以2小时,求出甲车出发4h时,乙走的总路程,从而判断出③正确;再根据速度×时间=总路程,即可判断出乙车出发后经过1h或3h,两车相距的距离,从而判断出④正确.【解答】解:①甲车的速度为=50km/h,故本选项正确;②乙车到达B城用的时间为:5﹣2=3h,故本选项正确;③甲车出发4h,所走路程是:50×4=200(km),甲车出发4h时,乙走的路程是:×2=200(km),则乙车追上甲车,故本选项正确;④当乙车出发1h时,两车相距:50×3﹣100=50(km),当乙车出发3h时,两车相距:100×3﹣50×5=50(km),故本选项正确;故选D.【点评】本题主要考查了一次函数的应用,掌握一次函数图象的意义,正确的从函数图象中得到必要的信息是解题的关键.4.(2016•河北)若k≠0,b<0,则y=kx+b的图象可能是()A.B.C.D.【分析】当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.【解答】解:因为b<0时,直线与y轴交于负半轴,故选B【点评】本题考查一次函数的图象,关键是根据一次函数的图象是一条直线解答.5.(2014•娄底)一次函数y=kx﹣k(k<0)的图象大致是()A.B. C. D.【分析】首先根据k的取值范围,进而确定﹣k>0,然后再确定图象所在象限即可.【解答】解:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限,故选:A.【点评】此题主要考查了一次函数图象,直线y=kx+b,可以看做由直线y=kx平移|b|个单位而得到.当b>0时,向上平移;b<0时,向下平移.6.(2013•阜新)如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2交于点A,则方程组的解是()A.B.C.D.【分析】根据两个一次函数的交点坐标是由两个函数解析式所组成的方程组的解进行解答.【解答】解:方程组的解为.故选A.【点评】本题考查了一次函数与二元一次方程组:两个一次函数的交点坐标是由两个函数解析式所组成的方程组的解.7.(2012•济南)一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2 B.y=2 C.x=﹣1 D.y=﹣1【分析】直接根据函数图象与x轴的交点进行解答即可.【解答】解:∵一次函数y=kx+b的图象与x轴的交点为(﹣1,0),∴当kx+b=0时,x=﹣1.故选C.【点评】本题考查的是一次函数与一元一次方程,能根据数形结合求出x的值是解答此题的关键.8.(2015•济南)如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<1【分析】观察函数图象得到当x>1时,函数y=x+b的图象都在y=kx+4的图象上方,所以关于x的不等式x+b>kx+4的解集为x>1.【解答】解:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选:C.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.9.(2015•徐州)若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣3)﹣b>0的解集为()A.x<2 B.x>2 C.x<5 D.x>5【分析】根据函数图象知:一次函数过点(2,0);将此点坐标代入一次函数的解析式中,可求出k、b的关系式;然后将k、b的关系式代入k(x﹣3)﹣b>0中进行求解即可.【解答】解:∵一次函数y=kx﹣b经过点(2,0),∴2k﹣b=0,b=2k.函数值y随x的增大而减小,则k<0;解关于k(x﹣3)﹣b>0,移项得:kx>3k+b,即kx>5k;两边同时除以k,因为k<0,因而解集是x<5.故选:C.【点评】本题考查了一次函数与一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.10.(2015•西宁)同一直角坐标系中,一次函数y1=k1x+b与正比例函数y2=k2x 的图象如图所示,则满足y1≥y2的x取值范围是()A.x≤﹣2 B.x≥﹣2 C.x<﹣2 D.x>﹣2【分析】观察函数图象得到当x≤﹣2时,直线l1:y1=k1x+b1都在直线l2:y2=k2x的上方,即y1≥y2.【解答】解:当x≤﹣2时,直线l1:y1=k1x+b1都在直线l2:y2=k2x的上方,即y1≥y2.故选A.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了观察函数图象的能力.二.解答题(共7小题)11.(2016•攀枝花)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?【分析】(1)设每吨水的政府补贴优惠价为m元,市场调节价为n元,根据题意列出方程组,求解此方程组即可;(2)根据用水量分别求出在两个不同的范围内y与x之间的函数关系,注意自变量的取值范围;(3)根据小明家5月份用水26吨,判断其在哪个范围内,代入相应的函数关系式求值即可.【解答】解:(1)设每吨水的政府补贴优惠价为m元,市场调节价为n元.,解得:,答:每吨水的政府补贴优惠价2元,市场调节价为3.5元.(2)当0≤x≤14时,y=2x;当x>14时,y=14×2+(x﹣14)×3.5=3.5x﹣21,故所求函数关系式为:y=;(3)∵26>14,∴小明家5月份水费为3.5×26﹣21=70元,答:小明家5月份水费70元.【点评】本题考查了一次函数的应用、二元一次方程组的解法,特别是在求一次函数的解析式时,此函数是一个分段函数,同时应注意自变量的取值范围.12.(2016•牡丹江)快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x (小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.【分析】(1)根据路程与相应的时间,求得慢车的速度,再根据慢车速度是快车速度的一半,求得快车速度;(2)先求得点C的坐标,再根据点D的坐标,运用待定系数法求得CD的解析式;(3)分三种情况:在两车相遇之前;在两车相遇之后;在快车返回之后,分别求得时间即可.【解答】解:(1)慢车的速度=180÷(﹣)=60千米/时,快车的速度=60×2=120千米/时;(2)快车停留的时间:﹣×2=(小时),+=2(小时),即C(2,180),设CD的解析式为:y=kx+b,则将C(2,180),D(,0)代入,得,解得,∴快车返回过程中y(千米)与x(小时)的函数关系式为y=﹣120x+420(2≤x ≤);(3)相遇之前:120x+60x+90=180,解得x=;相遇之后:120x+60x﹣90=180,解得x=;快车从甲地到乙地需要180÷120=小时,快车返回之后:60x=90+120(x﹣﹣)解得x=综上所述,两车出发后经过或或小时相距90千米的路程.【点评】本题主要考查了一次函数的应用,解决问题的关键是掌握待定系数法求一次函数解析式.求一次函数y=kx+b,需要两组x,y的值或图象上两个点的坐标.在解题时注意分类思想的运用.13.(2016•临沂)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?【分析】(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;(2)分0<x≤1和x>1两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或不等式即可得出结论.【解答】解:(1)由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3.(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<;令y甲=y乙,即22x=16x+3,解得:x=;令y甲>y乙,即22x>16x+3,解得:<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:1<x<4.综上可知:当<x<4时,选乙快递公司省钱;当x=4或x=时,选甲、乙两家快递公司快递费一样多;当0<x<或x>4时,选甲快递公司省钱.【点评】本题考查了一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)根据数量关系得出函数关系式;(2)根据费用的关系找出一元一次不等式或者一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系找出函数关系式是关键.14.(2016•怀化)已知一次函数y=2x+4(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出:当y<0时,x的取值范围.【分析】(1)利用两点法就可以画出函数图象;(2)利用函数解析式分别代入x=0与y=0的情况就可以求出交点坐标;(3)通过交点坐标就能求出面积;(4)观察函数图象与x轴的交点就可以得出结论.【解答】解:(1)当x=0时y=4,当y=0时,x=﹣2,则图象如图所示(2)由上题可知A(﹣2,0)B(0,4),=×2×4=4,(3)S△AOB(4)x<﹣2.【点评】本题考查了一次函数的图象和一次函数图象上点的坐标特征.正确求出一次函数与x轴与y轴的交点是解题的关键.15.(2015•淄博)在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B (3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.【分析】(1)利用待定系数法解答解析式即可;(2)得出直线与y轴相交于点D的坐标,再利用三角形面积公式解答即可.【解答】解:(1)设直线的解析式为y=kx+b,把A(﹣1,5),B(3,﹣3)代入,可得:,解得:,所以直线解析式为:y=﹣2x+3,把P(﹣2,a)代入y=﹣2x+3中,得:a=7;(2)由(1)得点P的坐标为(﹣2,7),令x=0,则y=3,所以直线与y轴的交点坐标为(0,3),所以△OPD的面积=.【点评】此题考查一次函数问题,关键是根据待定系数法解解析式.16.(2015•淄博)计算:(+)×.【分析】首先应用乘法分配律,可得(+)×=×+×;然后根据二次根式的混合运算顺序,先计算乘法,再计算加法,求出算式(+)×的值是多少即可.【解答】解:(+)×=×+×=1+9=10【点评】此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.17.(2014•张家界)计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.【分析】根据零指数幂、负整数指数幂和平方差公式得到原式=5﹣1﹣9+﹣1﹣1+2,然后合并即可.【解答】解:原式=5﹣1﹣9+﹣1﹣1+2=﹣7+3.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.。