中考数学专题复习函数探究题测试题

合集下载

九年级数学总复习《函数》专题检测卷含答案详解

九年级数学总复习《函数》专题检测卷含答案详解

专题检测卷《函数》试卷满分150分一、选择题(每小题3分,共10小题,共30分)1.若点(1,2)A a b +-在第二象限,则点(,1)B a b --在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.已知||(2)2m y m x =++是关于x 的二次函数,那么m 的值为( ) A .2- B .2 C .2± D .03.如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没于水中,然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y (单位:)N 与铁块被提起的高度x (单位:)cm 之间的函数关系的大致图象是( )A .B .C .D .第3题图4.如图,直线12y x b =-+与x 轴交于点A ,与双曲线4(0)y x x=-<交于点B ,若2AOB S ∆=,则b 的值是( )A .4B .3C .2D .1第4题图5.一次函数y ax b =+与反比例函数a by x-=,其中0ab <,a ,b 为常数,它们在同一坐标系中的图象可以是( )A .B .C .D .6.函数k y x=与2(0)y kx k k =-+≠在同一直角坐标系中的图象可能是( )A .B .C .D .7.如图,矩形OABC 中,(1,0)A ,(0,2)C ,双曲线(02)ky k x=<<的图象分别交AB ,CB 于点E ,F ,连接OE ,OF ,EF ,2OEF BEF S S ∆∆=,则k 值为( )A .23B .1C .43D .2第7题图 第8题图8.如图,在平面直角坐标系中,将ABO ∆沿x 轴向右滚动到△11AB C 的位置,再到△112A B C 的位置⋯⋯依次进行下去,若已知点(4,0)A ,(0,3)B ,则点100C 的坐标为( )A .12(1200,)5B .(600,0)C .12(600,)5D .(1200,0) 9.二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠的自变量x 与函数值y 的部分x ⋯2-1-12⋯ 2y ax bx c =++⋯ tm2-2-n⋯且当2x =-时,与其对应的函数值0y >.有下列结论:①0abc >;②2-和3是关于x 的方程2ax bx c t ++=的两个根;③2003m n <+<. 其中,正确结论的个数是( ) A .0 B .1 C .2 D .310.如图,在菱形ABCD 中,60B ∠=︒,2AB =,动点P 从点B 出发,以每秒1个单位长度的速度沿折线BA AC →运动到点C ,同时动点Q 从点A 出发,以相同速度沿折线AC CD →运动到点D ,当一个点停止运动时,另一个点也随之停止.设APQ ∆的面积为y ,运动时间为x 秒,则下列图象能大致反映y 与x 之间函数关系的是( )第10题图A .B .C .D .二、填空题(每小题4分,共6小题,共24分)11.在直角坐标平面中,将抛物线22(1)y x =+先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线表达式是 . 12.已知反比例函数4m y x-=在每个象限内y 随x 增大而减小,则m 的取值范围是 .13.如图,一次函数1y ax b =+和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是 .第13题图 第15题图14.某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售量单价是 元/件,才能在半月内获得最大利润. 15.已知二次函数224233y x x =--+的图象与x 轴分别交于A ,B 两点(如图所示),与y 轴交于点C ,点P 是其对称轴上一动点,当PB PC +取得最小值时,点P 的坐标为 .16.如图,点1B 在直线1:2l y x =上,点1B 的横坐标为2,过1B 作11B A l ⊥,交x 轴于点1A ,以11A B 为边,向右作正方形1121A B B C ,延长21B C 交x 轴于点2A ;以22A B 为边,向右作正方形2232A B B C ,延长32B C 交x 轴于点3A ;以33A B 为边,向右作正方形3343A B B C ,延长43B C 交x 轴于点4A ;⋯;按照这个规律进行下去,点n C 的横坐标为 (结果用含正整数n 的代数式表示)第16题图三、解答题(共9小题,共96分)17.(8分)求图象为下列抛物线的二次函数的表达式;(1)抛物线22y ax bx=++经过点(2,6)-,(2,2);(2)抛物线的顶点坐标为(3,5)-,且抛物线经过点(0,1).18.(10分)有A、B两个发电厂,每焚烧一吨垃圾,A发电厂比B发电厂多发40度电,A焚烧20吨垃圾比B焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A和B各发电多少度?(2)A、B两个发电厂共焚烧90吨的垃圾,A焚烧的垃圾不多于B焚烧的垃圾两倍,求A厂和B厂总发电量的最大值.19.(10分)如图,在平面直角坐标系中,一次函数y kx b =+的图象经过点(2,6)A -,且与x 轴相交于点B ,与正比例函数3y x =的图象相交于点C ,点C 的横坐标为1.(1)求k ,b 的值;(2)若点D 在y 轴负半轴上,且满足13COD BOC S S ∆∆=,求点D 的坐标.第19题图 20.(10分)如图,一次函数1y k x b =+的图象与x 轴,y 轴分别交于A ,B 两点,与反比例函数2k y x=的图象分别交于C ,D 两点,点(2,4)C ,点B 是线段AC 的中点.(1)求一次函数1y k x b =+与反比例函数2k y x=的解析式; (2)求COD ∆的面积;(3)直接写出当x 取什么值时,21k k x b x+<.第20题图21.(10分)如图,一次函数1y k x b =+的图象与反比例函数2k y x=的图象相交于A ,B 两点,其中点A 的坐标为(1,4)-,点B 的坐标为(4,)n .(1)根据图象,直接写出满足21kk x b x+>的x 的取值范围;(2)求这两个函数的表达式;(3)点P 在线段AB 上,且:1:2AOP BOP S S ∆∆=,求点P 的坐标.第21题图 22.(10分)教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10C ︒,加热到100C ︒停止加热,水温开始下降,此时水温(C)y ︒与开机后用时()x min 成反比例关系,直至水温降至30C ︒,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30C ︒时接通电源,水温(C)y ︒与时间()x min 的关系如图所示:(1)分别写出水温上升和下降阶段y 与x 之间的函数关系式;(2)怡萱同学想喝高于50C ︒的水,请问她最多需要等待多长时间?第22题图23.(12分)我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量y(千克)与销售单价x(元)符合一次函数关系,如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若在销售过程中每天还要支付其他费用450元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?第23题图24.(12分)如图,足球场上守门员徐杨在O处抛出一高球,球从离地面1m处的点A飞出,其飞行的最大高度是4m,最高处距离飞出点的水平距离是6m,且飞行的路线是抛物线一部分.以点O为坐标原点,竖直向上的方向为y轴的正方向,球飞行的水平方向为x轴的正方向建立坐标系,并把球看成一个点.(参考数据:437)(1)求足球的飞行高度()x m之间的函数关系式;y m与飞行水平距离()(2)在没有队员干扰的情况下,球飞行的最远水平距离是多少?(精确到个位)(3)若对方一名1.7m的队员在距落点3C m的点H处,跃起0.3m进行拦截,则这名队员能拦到球吗?第24题图25.(14分)如图抛物线2y ax bx c =++经过点(1,0)A -,点(0,3)C ,且OB OC =. (1)求抛物线的解析式及其对称轴;(2)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3:5两部分,求点P 的坐标.第25题图专题检测卷《函数》参考答案一、选择题(每小题3分,共10小题,共30分)1.D 2.B 3.D 4.D 5.C 6.B 7.A 8.B 9.C 10.B 二、填空题(每小题4分,共6小题,共24分)11.221y x =+ 12.4m > 13.2x <-或04x << 14.35 15.4(1,)3- 16.173()22n -⨯ 三、解答题(共9小题,共96分) 17.(8分)解:(1)Q 抛物线22y ax bx =++经过点(2,6)-,(2,2),∴42264222a b a b -+=⎧⎨++=⎩, 解得121a b ⎧=⎪⎨⎪=-⎩,∴此抛物线的二次函数的表达式2122y x x =-+; (2)Q 抛物线的顶点坐标为(3,5)-,∴设这个抛物线的二次函数的表达式为2(3)5y a x =--, 又Q 抛物线经过点(0,1), 2(03)51a ∴--=,23a ∴=, ∴这个抛物线的二次函数的表达式为22(3)53y x =--. 18.(10分)解:(1)设焚烧1吨垃圾,A 发电厂发电a 度,B 发电厂发电b 度,根据题意得:4030201800a b b a -=⎧⎨-=⎩,解得300260a b =⎧⎨=⎩, 答:焚烧1吨垃圾,A 发电厂发电300度,B 发电厂发电260度; (2)设A 发电厂焚烧x 吨垃圾,则B 发电厂焚烧(90)x -吨垃圾,总发电量为y 度,则300260(90)4023400y x x x =+-=+, 2(90)x x -Q …, 60x ∴…,y Q 随x 的增大而增大,∴当60x =时,y 有最大值为:40602340025800⨯+=(度). 答:A 厂和B 厂总发电量的最大是25800度. 19.(10分)解:(1)当1x =时,33y x ==, ∴点C 的坐标为(1,3).将(2,6)A -,(1,3)C 代入y kx b =+, 得:263k b k b -+=⎧⎨+=⎩,解得:14k b =-⎧⎨=⎩. (2)当0y =时,有40x -+=, 解得:4x =,∴点B 的坐标为(4,0).设点D 的坐标为(0,)(0)m m <,13COD BOC S S ∆∆=Q ,即11143232m -=⨯⨯⨯,解得:4m =-,∴点D 的坐标为(0,4)-.20.(10分)解:(1)Q 点(2,4)C 在反比例函数2k y x=的图象上, 2248k ∴=⨯=,28y x∴=;如图,作CE x ⊥轴于E ,(2,4)C Q ,点B 是线段AC 的中点, (0,2)B ∴,B Q ,C 在11y k x b =+的图象上, ∴1242k b b +=⎧⎨=⎩, 解得11k =,2b =,∴一次函数为12y x =+;(2)由28y x y x =+⎧⎪⎨=⎪⎩, 解得24x y =⎧⎨=⎩或42x y =-⎧⎨=-⎩,(4,2)D ∴--,112224622COD BOC BOD S S S ∆∆∆∴=+=⨯⨯+⨯⨯=;(3)由图可得,当02x <<或4x <-时,21k k x b x+<.21.(10分)解:(1)Q 点A 的坐标为(1,4)-,点B 的坐标为(4,)n . 由图象可得:21k k x b x+>的x 的取值范围是1x <-或04x <<;(2)Q 反比例函数2k y x =的图象过点(1,4)A -,(4,)B n 2144k ∴=-⨯=-,24k n =1n ∴=-(4,1)B ∴- Q 一次函数1y k x b =+的图象过点A ,点B∴11441k b k b -+=⎧⎨+=-⎩, 解得:11k =-,3b =∴直线解析式3y x =-+,反比例函数的解析式为4y x=-; (3)设直线AB 与y 轴的交点为C ,(0,3)C ∴,133122AOC S ∆=⨯⨯=Q , 11153134222AOB AOC BOC S S S ∆∆∆∴=+=⨯⨯+⨯⨯=, :1:2AOP BOP S S ∆∆=Q ,1515232AOP S ∆∴=⨯=, 53122COP S ∆∴=-=, ∴1312P x ⨯=g , 23P x ∴=, Q 点P 在线段AB 上,27333y ∴=-+=, 2(3P ∴,7)3.22.(10分)解:(1)观察图象,可知:当7()x min =时,水温100(C)y ︒=当07x 剟时,设y 关于x 的函数关系式为:y kx b =+, 307100b k b =⎧⎨+=⎩,得1030k b =⎧⎨=⎩, 即当07x 剟时,y 关于x 的函数关系式为1030y x =+, 当7x >时,设a y x=,1007a =,得700a =, 即当7x >时,y 关于x 的函数关系式为700y x=, 当30y =时,703x =, y ∴与x 的函数关系式为:1030(07)70070(7)3x x y x x+⎧⎪=⎨<⎪⎩剟… (2)将50y =代入1030y x =+,得2x =,将50y =代入700y x=,得14x =, 14212-=Q ,70341233-= ∴怡萱同学想喝高于50C ︒的水,她最多需要等待343min ; 23.(12分)解:(1)设一次函数关系式为(0)y kx b k =+≠ 由图象可得,当30x =时,140y =;50x =时,100y =∴1403010050k b k b =+⎧⎨=+⎩,解得2200k b =-⎧⎨=⎩y ∴与x 之间的关系式为2200(3060)y x x =-+剟. (2)设该公司日获利为W 元,由题意得2(30)(2200)4502(65)2000W x x x =--+-=--+20a =-<Q ;∴抛物线开口向下;Q 对称轴65x =;∴当65x <时,W 随着x 的增大而增大;3060x Q 剟,60x ∴=时,W 有最大值;22(6065)20001950W =-⨯-+=最大值.即,销售单价为每千克60元时,日获利最大,最大获利为1950元.24.(12分)解:(1)当4h =时,2(6)4y a x =-+,又(0,1)A21(06)4a ∴=-+,112a ∴=-, 21(6)412y x ∴=--+; (2)令0y =,则210(6)412x =--+,解得:1613x =≈,260x =-<(舍去) ∴球飞行的最远水平距离是13米;(3)当13310x =-=时,81.70.323y =>+=,∴这名队员不能拦到球.25.(14分)解:(1)OB OC =Q ,∴点(3,0)B ,则抛物线的表达式为:22(1)(3)(23)23y a x x a x x ax ax a =+-=--=--, 故33a -=,解得:1a =-,故抛物线的表达式为:223y x x =-++⋯①, 函数的对称轴为:1x =;(2)如图,设直线CP 交x 轴于点E ,直线CP 把四边形CBPA 的面积分为3:5两部分, 又11:():():22PCB PCA C P C P S S EB y y AE y y BE AE ∆∆=⨯-⨯-=Q , 则:BE AE ,3:5=或5:3, 则52AE =或32, ∴点E 的坐标为3(2,0)或1(2,0), 将点E ,C 的坐标分别代入一次函数表达式:3y kx =+, 解得:6k =-或2-,∴直线CP 的表达式为:23y x =-+或63y x =-+⋯② 联立①②,解得:1103x y ì=ïí=ïî(舍去),2245x y ì=ïí=-ïî,33845x y ì=ïí=-ïî 故点P 的坐标为(4,5)-或(8,45)-.。

中考数学复习探究性试题练习20题:函数(学生版+解析版)

中考数学复习探究性试题练习20题:函数(学生版+解析版)

中考数学复习探究性试题练习函数一.解答题(共20小题)1.(2019春•沙坪坝区校级月考)有这样一个问题探究函数(b、c为常数)的图象和性质.元元根据学习函数的经验,对该函数的图象和性质进行了以下探究:下面是元元的探究过程,请你补充完整x……﹣10123456……y……0 2.54m4 2.501……(1)根据上表信息,其中b=,c=,m=.(2)如图,在下面平面直角坐标系中,描出以补全后的表中各对应值为坐标的点,并画出该函数的另一部分图象;(3)观察函数图象,请写出该函数的一条性质:.(4)解决问题:若直线y=3n+2(n为常数)与该函数图象有3个交点时,求n的范围.2.(2021春•中原区期中)问题探究:小江同学根据学习函数的经验,对函数y=﹣2|x|+5的图象和性质进行了探究.下面是小刚的探究过程,请你解决相关问题:(Ⅰ)在函数y=﹣2|x|+5中,自变量x可以是任意实数;(Ⅱ)如表y与x的几组对应值:x…﹣4﹣3﹣2﹣101234…y…﹣3﹣113531﹣1﹣3…(Ⅲ)如图,在平面直角坐标系中,描出以表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象;(1)若A(m,n),B(6,n)为该函数图象上不同的两点,则m=;(2)观察函数y=﹣2|x|+5的图象,写出该图象的两条性质.(3)直接写出,当0<﹣2|x|+5≤3时,自变量x的取值范围是.3.(2018秋•碑林区校级期中)(1)问题提出:将一块等腰直角三角板ABC放置在平面直角坐标系中,∠ACB=90°,AC=BC,点A在y轴的正半轴上,点C在x轴的负半轴上,点B在第二象限,点A坐标为(0,2),C的坐标为(﹣1,0),则B点坐标为.(2)问题探究:如图2,平面直角坐标系中,已知A(4,2)、B(﹣1,1),若∠A=90°,点C在第一象限,且AB=AC,试求出C点坐标.(3)问题解决:如图3,直线AB:y=x+4分别于x轴y轴交于A点、B点,D(﹣4,0),△DEF的顶点E、F分别在线段AB、OB上,且∠DEF=90°,DE=EF,试求出△DEF的面积.4.(2019•永康市一模)定义:若抛物线的顶点和与x轴的两个交点所组成的三角形为等边三角形时.则称此抛物线为正抛物线.概念理解:(1)如图,在△ABC中,∠BAC=90°,点D是BC的中点.试证明:以点A为顶点,且与x轴交于D、C两点的抛物线是正抛物线;问题探究:(2)已知一条抛物线经过x轴的两点E、F(E在F的左边),E(1,0)且EF=2若此条抛物线为正抛物线,求这条抛物线的解析式;应用拓展:(3)将抛物线y1=﹣x2+2x+9向下平移9个单位后得新的抛物线y2.抛物线y2的顶点为P,与x轴的两个交点分别为M、N(M在N左侧),把△PMN沿x轴正半轴无滑动翻滚,当边PN与x轴重合时记为第1次翻滚,当边PM与x轴重合时记为第2次翻滚,依此类推…,请求出当第2019次翻滚后抛物线y2的顶点P的对应点坐标.5.(2019秋•碑林区校级月考)问题探究(1)如图①,在△ABC中,∠B=30°,E是AB边上的点,过点E作EF⊥BC于F,则的值为.(2)如图②,在四边形ABCD中,AB=BC=6,∠ABC=60°,对角线BD平分∠ABC,点E是对角线BD上一点,求AE+BE的最小值.问题解决(3)如图③,在平面直角坐标系中,直线y=﹣x+4分别与x轴,y轴交于点A、B,点P为直线AB上的动点,以OP为边在其下方作等腰Rt△OPQ且∠POQ=90°.已知点C(0,﹣4),点D(3,0)连接CQ、DQ,那么DQ+CQ是否存在最小值,若存在求出其最小值及此时点P的坐标,若不存在请说明理由.6.(2015秋•武汉期末)问题探究:在直线y=x+3上取点A(2,4)、B,使∠AOB=90°,求点B的坐标.小明同学是这样思考的,请你和他一起完成如下解答:将线段OA绕点O逆时针旋转90°得到OC,则点C的坐标为:所以,直线OC的解析式为:点B为直线AB与直线OC的交点,所以,点B的坐标为:问题应用:已知抛物线y=﹣的顶点P在一条定直线l上运动.(1)求直线l的解析式;(2)抛物线与直线l的另一个交点为Q,当∠POQ=90°时,求m的值.7.(2018•湘潭)如图,点P为抛物线y=x2上一动点.(1)若抛物线y=x2是由抛物线y=(x+2)2﹣1通过图象平移得到的,请写出平移的过程;(2)若直线l经过y轴上一点N,且平行于x轴,点N的坐标为(0,﹣1),过点P作PM⊥l于M.①问题探究:如图一,在对称轴上是否存在一定点F,使得PM=PF恒成立?若存在,求出点F的坐标:若不存在,请说明理由.②问题解决:如图二,若点Q的坐标为(1,5),求QP+PF的最小值.8.(2021秋•碑林区校级期中)【问题发现】(1)如图①,将Rt△AOB置于平面直角坐标系中,直角顶点O与原点重合,点A落在x轴上,点B落在y轴上,已知A(4,0),B(0,3),C是x轴上一点,将Rt△AOB沿BC折叠,使点O落在AB边上的点D处,则点C的坐标为.【问题探究】(2)如图②,将长方形OABC置于平面直角坐标系中,点A在y轴上,点C在x轴上,已知B(12,5),E是OA上一点,将长方形OABC沿CE折叠,点O恰好落在对角线AC上的点F处,求OF所在直线的函数表达式.(3)如图③,将长方形OABC置于平面直角坐标系中,点A在y轴上,点C在x轴上,已知B(8,6),D在对角线AC上,且CD=OC,P是OD的中点,Q是OC上一点,将△OPQ沿PQ折叠,使点O落在AC边上的点E处,求点D的坐标及四边形OPEQ的面积.9.(2021•西安一模)问题提出(1)如图①,在Rt△ABC中,∠A=90°,AB=3,AC=4,在BC上找一点D,使得AD将△ABC分成面积相等的两部分,作出线段AD,并求出AD的长度;问题探究(2)如图②,点A、B在直线a上,点M、N在直线b上,且a∥b,连接AN、BM交于点O,连接AM、BN,试判断△AOM与△BON的面积关系,并说明你的理由;解决问题(3)如图③,刘老伯有一个形状为筝形OACB的养鸡场,在平面直角坐标系中,O(0,0)、A(4,0)、B(0,4)、C(6,6),是否在边AC上存在一点P,使得过B、P两点修一道笔直的墙(墙的宽度不计),将这个养鸡场分成面积相等的两部分?若存在,请求出直线BP的表达式;若不存在,请说明理由.10.(2021秋•碑林区校级期末)同学们在第一次微课中听取了刘老师与杨老师关于面积等分线练习的讲评,小浩同学对此产生兴趣,上网又查到了长方形的一些性质:长方形的对角线相等且互相平分,对角线所在的直线是其一条面积等分线.请你利用以上性质,帮小浩解决下面问题:问题发现:(1)如图①,已知长方形ABCD,请画出它的一条面积等分线l(不经过对角线);问题探究:(2)四边形OABC位于如图②所示的平面直角坐标系中,顶点O位于原点,其余顶点坐标为A(4,6),B(8,7),C(10,0),CE是四边形OABC的一条面积等分线,点E 在y轴上,请求出点E的坐标.问题解决:(3)全民抗疫,西安加油!如图③,在平面直角坐标系中(长度单位为米),长方形OABC 是西安某小区在疫情期间为居民核酸检测围成的一个工作区域,顶点A,C在坐标轴上,O为坐标原点,记顶点B(20,12),原有的一个出入口D在边OC上,且CD=4米.为使工作高效有序,现计划在边AB,OA,BC上依次再设出入口E,G,H,沿DE,GH 拉两道警戒线将工作区域分成面积相等的四部分.请问,是否存在满足上述条件的点E,H,G,如存在,请求出点E的坐标及GH的函数表达式,如不存在,请说明理由.11.(2019秋•雁塔区校级期中)(1)问题提出:如图1,将一块等腰直角三角板ABC放置在平面直角坐标系中,∠ACB=90°,AC=BC,点A在y轴的正半轴上,点C在x轴的负半轴上,点B在第二象限,点A坐标为(0,4),C的坐标为(﹣2,0),则B点坐标为.(2)问题探究:如图2,平面直角坐标系中,已知A(8,4)、B(﹣2,2),若∠A=90°,点C在第一象限,且AB=AC,试求出C点坐标.(3)问题解决:如图3,直线AB:y=x+8分别于x轴y轴交于A点、B点,D(﹣8,0),△DEF的顶点E、F分别在线段AB、OB上,且∠DEF=90°,DE=EF,试求出△DEF的面积.12.(2019秋•雁塔区校级期中)如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的面积等分线.问题探究(1)如图1,△ABC中,点M是AB边的中点,请你过点M作△ABC的一条面积等分线;(2)如图2,在四边形ABCD中,AD∥BC,CD⊥AD,AD=2,CD=4,BC=6,点P 是AB的中点,点Q在CD上,试探究当CQ的长为多少时,直线PQ是四边形ABCD的一条面积等分线;问题解决(3)如图3,在平面直角坐标系中,矩形ABCD是某公司将要筹建的花园示意图,A与原点重合,D、B分别在x轴、y轴上,其中AB=3,BC=5,出入口E在边AD上,且AE=l,拟在边BC、AB、CD、上依次再找一个出入口F、G、H,沿EF、GH修两条笔直的道路(路的宽度不计)将花园分成四块,在每一块内各种植一种花草,并要求四种花草的种植面积相等.请你求出此时直线EF和GH的函数表达式.13.(2017秋•武汉期末)如图,抛物线y=kx2﹣2kx﹣3经过点P(4,5),过点P的直线AM:y=mx+t1(m<0)与抛物线交于点M,与x轴交于点A,过点P的另一直线BN:y =nx+t2(n>0)与抛物线交于点N,与x轴交于点B,已知P A=PB.(1)直接写出抛物线的解析式为问题探究:若点M的横坐标为﹣3,则点N的横坐标为,若点M的横坐标为﹣4,则点N的横坐标为;(2)结论猜想:若点M的横坐标为a,点N的横坐标为b,请根据(1)猜想a,b之间的数量关系为,并给予证明.(3)综合应用:已知直线y=﹣x+n与抛物线y=﹣x2+4交于A,B两点,在抛物线上是否存在点P,连接P A,PB分别交y轴,x轴于点D,C,使∠DPB=2∠PCO,若存在,求点P的坐标;若不存在,请说明理由.14.问题探究:直线y=x与直线y=﹣2x+6交于点A,则A点坐标为.P为平面直角坐标系中的一点,以A、B(3,1)、P、O为顶点的四边形是平行四边形,则P点坐标为.问题应用:如图,已知抛物线y=x2﹣2x+m(m<0)顶点为P,与y轴相交于点B,直线y=x﹣m 分别与x轴、y轴相交于A、C两点,并且与直线PB相交于点N.(1)求PN的解析式;(2)在抛物线y=x2﹣2x+m(m<0)上是否存在点K,使得以K、B、N、C为顶点的四边形是平行四边形?若存在,求出K点的坐标;若不存在,请说明理由.15.(2016秋•碑林区校级期末)(1)问题发现:如图(1),小明在同一个平面直角坐标系中作出了两个一次函数y=x+1和y=x﹣1的图象,经测量发现:∠1∠2(填数量关系)则l1l2(填位置关系),从而二元一次方程组无解.(2)问题探究:小明发现对于一次函数y=k1x+b1与y=k2x+b2(b1≠b2),设它们的图象分别是l1和l2(如备用图1)①如果k1k2(填数量关系),那么l1l2(填位置关系);②反过来,将①中命题的结论作为条件,条件作为结论,所得命题可表述为,请判断此命题的真假或举出反例;(3)问题解决:若关于x,y的二元一次方程组(各项系数均不为0)无解,那么各项系数a1、b1、c1、a2、b2、c2应满足什么样的数量关系?请写出你的结论.16.(2018•陕西模拟)(1)问题提出如图①,等边△ABC的边长为8,求等边△ABC的高.(2)问题探究如图②,在△ABC中,AB=AC≠BC,点P为射线BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.补全图形,判断线段PD,PE,CF的数量关系,并说明理由.(3)问题解决如图③,在平面直角坐标系中有两条直线l1:y=x+3,l2:y=﹣3x+3,若l2上的一点M到l1的距离是1,请运用(2)中的结论求出点M的坐标.17.(2021秋•雁塔区校级期末)预备知识:(1)在一节数学课上,老师提出了这样一个问题:随着变量t的变化,动点P(3t,2﹣t)在平面直角坐标系中的运动轨迹是什么?一番深思熟虑后,聪明的小明说:“是一条直线”,老师问:“你能求出这条直线的函数表达式吗?”小明的思路如下:设这条直线的函数表达式为y=kx+b(k≠0),将点P(3t,2﹣t)代入得:2﹣t=k•3t+b,整理得(3k+1)t+b﹣2=0.∵t为任意实数,等式恒成立;∴3k+1=0,b﹣2=0.∴k=﹣,b=2.∴这条直线的函数表达式为y=﹣x+2.请仿照小明的做法,完成问题:随着变量t的变化,动点P(2t,3﹣t)在平面直角坐标系中的运动轨迹是直线l,求直线l的函数表达式.问题探究:(2)如图1,在平面直角坐标系中,已知A(2,0),B(5,9),且∠BAC=90°,AB=AC,则点C的坐标为.结论应用:(3)如图2,在平面直角坐标系中,已知点P(1,0),Q是直线y=﹣x+2上的一个动点,连接PQ,过点P作PQ′⊥PQ,且PQ′=PQ,连接OQ′,求线段OQ′的最小值.18.(2022春•亭湖区校级月考)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.【概念理解】(1)如图1,在7×7的方格纸中,线段AB的端点都在格点上,请在所给的方格图中画出△ABC,使ABC为“等高底”三角形,且点C在格点上(画出一个即可):(2)如图2,在△ABC中,AC=8,BC=4,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.【问题探究】如图3,△ABC是“等高底”三角形,BC是“等底”,作△ABC关于BC所在直线的对称图形得到△EBC,连接AE交直线BC于点D.若点B是△AEC的重心,求的值.【应用拓展】如图4,△OAB中,点B的坐标为(0,2),点A在射线y=x(x≥0)上,若△OAB 是“等高底”三角形,求点A的坐标.19.(2020•玉田县一模)问题探究.如图,在平面直角坐标系中,A(0,8),C(6,0),以O,A,C为顶点作矩形OABC,动点P从点A出发,沿AO以4个单位每秒的速度向O运动;同时动点Q从点O出发沿OC以3个单位每秒的速度向C运动.设运动时间为t,当动点P,Q中的任何一个点到达终点后,两点同时停止运动.连接PQ.【情景导入】当t=1时,求出直线PQ的解析式.【深入探究】①连接AC,若△POQ与△AOC相似,求出t的值.②如图,取PQ的中点M,以QM为半径向右侧作半圆M,直接写出半圆M的面积的最小值,并直接写出此时t的值.【拓展延伸】如图,过点A作半圆M的切线,交直线BC于点H,于半圆M切于点N.①在P,Q的整个运动过程中,点H的运动路径为.②若固定点H(6,2)不动,则在整个运动过程中,半圆M能否与梯形AOCH相切?若能,求出此时t的值;若不能,请证明.20.(2020•陕西一模)问题探究(1)如图①,在Rt△ABC中,∠B=90°,请你过点A作一条直线AD,其中点D为BC 上一点,使直线AD平分△ABC的面积;(2)如图②,点P为▱ABCD外一点,AB=6,BC=12,∠B=45°,请过点P作一条直线l,使其平分▱ABCD的面积,并求出▱ABCD的面积;问题解决(3)如图③,在平面直角坐标系中,四边形OABC是李爷爷家一块土地的示意图,其中OA∥BC,点P处有一个休息站点(占地面积忽略不计),李爷爷打算过点P修一条笔直的小路l(路的宽度不计),使直线l将四边形OABC分成面积相等的两部分,分别用来种植不同的农作物.已知点A(8,8)、B(6,12)、P(3,6).你认为直线l是否存在?若存在,求出直线l的表达式;若不存在,请说明理由.2022年中考数学复习探究性试题汇编之函数参考答案与试题解析一.解答题(共20小题)1.(2019春•沙坪坝区校级月考)有这样一个问题探究函数(b、c为常数)的图象和性质.元元根据学习函数的经验,对该函数的图象和性质进行了以下探究:下面是元元的探究过程,请你补充完整x……﹣10123456……y……0 2.54m4 2.501……(1)根据上表信息,其中b=2,c= 2.5,m= 4.5.(2)如图,在下面平面直角坐标系中,描出以补全后的表中各对应值为坐标的点,并画出该函数的另一部分图象;(3)观察函数图象,请写出该函数的一条性质:当x<2时,y随x的增大而增大.(4)解决问题:若直线y=3n+2(n为常数)与该函数图象有3个交点时,求n的范围.【考点】一次函数图象上点的坐标特征;一次函数的性质.【专题】一次函数及其应用;二次函数图象及其性质.【分析】(1)利用待定系数法以及二次函数图象上点的坐标特征可得答案;(3)根据描点法画函数图象,可得答案;(4)根据图象的变化趋势,可得答案;(5)根据图象,可得答案.【解答】解:(1)由表格数据得:当x=﹣1时,y=0;当x=5时,y=0;当x=0时,y =2.5;∴﹣b==2,c=2.5∴y=∴当x=2时,y=4.5,即m=4.5故答案为:2,2.5,4.5;(2)图象如下:(3)观察图象可知:当x<2时,y随x的增大而增大故答案为:当x<2时,y随x的增大而增大(4)∵当x=2时,y=4.5;∴由图象可知直线y=4.5与该函数图象有2个交点,直线y=0与该函数图象有2个交点,∴直线y=3n+2(n为常数)与该函数图象有3个交点时,0<3n+2<4.5∴﹣<n<.【点评】本题考查了一次函数和二次函数的图象与性质,利用描点法画函数图象,利用图象得出函数的性质是解题关键.2.(2021春•中原区期中)问题探究:小江同学根据学习函数的经验,对函数y=﹣2|x|+5的图象和性质进行了探究.下面是小刚的探究过程,请你解决相关问题:(Ⅰ)在函数y=﹣2|x|+5中,自变量x可以是任意实数;(Ⅱ)如表y与x的几组对应值:x…﹣4﹣3﹣2﹣101234…y…﹣3﹣113531﹣1﹣3…(Ⅲ)如图,在平面直角坐标系中,描出以表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象;(1)若A(m,n),B(6,n)为该函数图象上不同的两点,则m=﹣6;(2)观察函数y=﹣2|x|+5的图象,写出该图象的两条性质图象关于y轴对称;函数最大值为5;.(3)直接写出,当0<﹣2|x|+5≤3时,自变量x的取值范围是﹣<x≤﹣1或1≤x <.【考点】一次函数的应用;一次函数与一元一次不等式.【专题】一次函数及其应用;应用意识.【分析】(Ⅲ)根据题意画出函数图象;(1)当x=6时,根据函数解析式可求得n,将y=﹣7代入函数解析式可求得m;(2)根据图象特征即可写出图象的两条性质;(3)根据题意列不等式组即可求得.【解答】解:(Ⅲ)在平面直角坐标系中,描点、连线,画出函数图象如图所示:(1)将x=6代入函数解析式得n=﹣2×|6|+5=﹣7,将y=﹣7代入函数解析式的:﹣7=﹣2|x|+5,解得:x=±6,∴m=﹣6,故答案为:﹣6;(2)由图知,函数y=﹣2|x|+5的图象关于y轴对称,且函数最大值为5.故答案为:图象关于y轴对称;函数最大值为5;(3)原不等式变形为解得,故自变量x的取值范围是﹣<x≤﹣1或1≤x<.【点评】本题考查了一次函数的图象和性质,一次函数与一元一次不等式,数形结合是解题的关键.3.(2018秋•碑林区校级期中)(1)问题提出:将一块等腰直角三角板ABC放置在平面直角坐标系中,∠ACB=90°,AC=BC,点A在y轴的正半轴上,点C在x轴的负半轴上,点B在第二象限,点A坐标为(0,2),C的坐标为(﹣1,0),则B点坐标为(﹣3,1).(2)问题探究:如图2,平面直角坐标系中,已知A(4,2)、B(﹣1,1),若∠A=90°,点C在第一象限,且AB=AC,试求出C点坐标.(3)问题解决:如图3,直线AB:y=x+4分别于x轴y轴交于A点、B点,D(﹣4,0),△DEF的顶点E、F分别在线段AB、OB上,且∠DEF=90°,DE=EF,试求出△DEF的面积.【考点】一次函数综合题.【专题】代数几何综合题;开放型;数形结合.【分析】(1)过点B作x轴的垂线,交x轴于点E,易证△BEC≌△COA(AAS),EO=EC+CO=2+1=3,BE=1,即可求解;(2)同理△ABE≌△CAD(AAS),则:BE=AD,AE=CD=1,即可求解;(3)同理△EGD≌△EHF(AAS),则EG=EH,设点E的坐标为(x,y),即:x=﹣y,则:y=x+4=﹣x,即可求解.【解答】解:(1)过点B作x轴的垂线,交x轴于点E,∵∠BCE+∠ACO=90°,∠ACO+∠CAO=90°,∴∠BCE=∠CAO,又∠BEC=∠COA=90°,BC=AC,∴△BEC≌△COA(AAS),∴EC=AO=2,CO=BE=1,∴EO=EC+CO=2+1=3,BE=1,故:答案为(﹣3,1);(2)过点B、点C分别作x轴的平行线、分别交过点A与x轴的垂线于点E、D,同理△ABE≌△CAD(AAS),∴BE=AD,AE=CD=1,BE=4+1=5=AD,∴点C的横坐标为:5﹣1﹣1=3,C点的纵坐标为:1+ED=1+5+1=7,故点C的坐标为(3,7);(3)过点E分别作x轴、y轴的垂线,交于点G、F,GE、DF交于点K,同理△EGD≌△EHF(AAS),∴DG=HF,EG=EH,设点E的坐标为(x,y),即:x=﹣y,则:y=x+4=﹣x,解得:x=﹣=﹣y,则点E(﹣,),DG=OD﹣OG=4﹣==HF,OF=OH﹣HF=,S△DEF=S梯形EHOD﹣S△EFH﹣S△ODF=×(+4)×﹣×﹣×4×=.【点评】本题综合考查了一次函数与几何知识的应用,题中运用三角形与直线的关系以及直角三角形等知识,求出线段的长是解题的关键.4.(2019•永康市一模)定义:若抛物线的顶点和与x轴的两个交点所组成的三角形为等边三角形时.则称此抛物线为正抛物线.概念理解:(1)如图,在△ABC中,∠BAC=90°,点D是BC的中点.试证明:以点A为顶点,且与x轴交于D、C两点的抛物线是正抛物线;问题探究:(2)已知一条抛物线经过x轴的两点E、F(E在F的左边),E(1,0)且EF=2若此条抛物线为正抛物线,求这条抛物线的解析式;应用拓展:(3)将抛物线y1=﹣x2+2x+9向下平移9个单位后得新的抛物线y2.抛物线y2的顶点为P,与x轴的两个交点分别为M、N(M在N左侧),把△PMN沿x轴正半轴无滑动翻滚,当边PN与x轴重合时记为第1次翻滚,当边PM与x轴重合时记为第2次翻滚,依此类推…,请求出当第2019次翻滚后抛物线y2的顶点P的对应点坐标.【考点】二次函数综合题.【专题】代数几何综合题;新定义;规律型;数形结合;分类讨论;二次函数图象及其性质;等腰三角形与直角三角形.【分析】(1)由Rt△ABC中AD是斜边BC的中线可得AD=CD,由抛物线对称性可得AD=AC,即证得△ACD是等边三角形.(2)设抛物线顶点为G,根据正抛物线定义得△EFG是等边三角形,又易求E、F坐标,即能求G点坐标.由于不确定点G纵坐标的正负号,故需分类讨论,再利用顶点式求抛物线解析式.(3)根据题意求出抛物线y2的解析式,并按题意求出P、M、N的坐标,得到等边△PMN,所以当△PMN翻滚时,每3次为一个周期,点P回到x轴上方,且横坐标每多一个周期即加6,其规律为当翻滚次数n能被3整除时,横坐标为:+n×2=(2n+1).2019能被3整除,代入即能求此时点P坐标.【解答】解:(1)证明:∠BAC=90°,点D是BC的中点∴AD=BD=CD=BC∵抛物线以A为顶点与x轴交于D、C两点∴AD=AC∴AD=AC=CD∴△ACD是等边三角形∴以A为顶点与x轴交于D、C两点的抛物线是正抛物线.(2)∵E(1,0)且EF=2,点F在x轴上且E在F的左边∴F(3,0)∵一条经过x轴的两点E、F的抛物线为正抛物线,设顶点为G∴△EFG是等边三角形∴x G=,|y G|=①当G(2,)时,设抛物线解析式为y=a(x﹣2)2+把点E(1,0)代入得:a+=0∴a=﹣∴y=﹣(x﹣2)2+②当G(2,﹣)时,设抛物线解析式为y=a(x﹣2)2﹣把点E(1,0)代入得:a﹣=0∴a=∴y=(x﹣2)2﹣综上所述,这条抛物线的解析式为y=﹣(x﹣2)2+或y=(x﹣2)2﹣(3)∵抛物线y1=﹣x2+2x+9=﹣(x﹣)2+12∴y1向下平移9个单位后得抛物线y2=﹣(x﹣)2+3∴P(,3),M(0,0),N(2,0)∴PM=MN=PN=2∴△PMN是等边三角形∴第一次翻滚顶点P的坐标变为P1(4,0),第二次翻滚得P2与P1相同,第三次翻滚得P3(7,3)即每翻滚3次为一个周期,当翻滚次数n能被3整除时,点P纵坐标为3,横坐标为:+n ×2=(2n+1)∵2019÷3=673∴(2×2019+1)×=4039∴当第2019次翻滚后抛物线y2的顶点P的对应点坐标为(4039,3).【点评】本题考查了新定义的理解、性质运用,二次函数的图象与性质,直角三角形和等边三角形的性质.第(3)题的解题关键是发现等边△PMN每3次翻滚看作一个周期,点P对应点坐标的特征,是规律探索的典型题.5.(2019秋•碑林区校级月考)问题探究(1)如图①,在△ABC中,∠B=30°,E是AB边上的点,过点E作EF⊥BC于F,则的值为.(2)如图②,在四边形ABCD中,AB=BC=6,∠ABC=60°,对角线BD平分∠ABC,点E是对角线BD上一点,求AE+BE的最小值.问题解决(3)如图③,在平面直角坐标系中,直线y=﹣x+4分别与x轴,y轴交于点A、B,点P为直线AB上的动点,以OP为边在其下方作等腰Rt△OPQ且∠POQ=90°.已知点C(0,﹣4),点D(3,0)连接CQ、DQ,那么DQ+CQ是否存在最小值,若存在求出其最小值及此时点P的坐标,若不存在请说明理由.【考点】一次函数综合题.【专题】一次函数及其应用;运算能力;应用意识.【分析】(1)由已知可得BE=2EF;(2)过点A作AF⊥BC,交BD于点E,则EF=BE,当A、E、F三点共线时,AE+BE 的值最小,在Rt△ABF中,求出AF=3即可;(3)由P点的运动,可以确定Q点在直线AC上,求出直线AC的解析式为y=x﹣4,作D点关于直线AC的对称点D',过点D'作D'H⊥y轴,交直线AC于点Q,则HD'即为所求;可得HQ=CQ,由对称性可得:DQ=D'Q,所以DQ+CQ=D'Q+HQ=HD'即为最小;求得D'(4,﹣1),则HD'=4,所以DQ+CQ的最小值为4;此时Q(3,﹣1),设P(x,4﹣x),则有x2+(x﹣4)2=10,求出P点.【解答】解:(1)∵∠B=30°,EF⊥BC,∴BE=2EF,∴=,故答案为;(2)过点A作AF⊥BC,交BD于点E,∵∠ABC=60°,BD平分∠ABC,∴EF=BE,∴AE+BE=AE+EF,当A、E、F三点共线时,AE+BE的值最小,在Rt△ABF中,AB=6,∴AF=3,∴AE+BE的最小值3;(3)∵等腰Rt△OPQ且∠POQ=90°,P点在直线y=﹣x+4上,∴Q点在直线AC上,∵A(4,0),C(0,﹣4),∴直线AC的解析式为y=x﹣4,作D点关于直线AC的对称点D',过点D'作D'H⊥y轴,交直线AC于点Q,则HD'即为所求;∵∠BCA=45°,∴HQ=CQ,由对称性可得:DQ=D'Q,∴DQ+CQ=D'Q+HQ=HD'即为最小;∵D(3,0),∴D'(4,﹣1),∴HD'=4,∴DQ+CQ的最小值为4;此时Q(3,﹣1),设P(x,4﹣x),则有x2+(x﹣4)2=10,∴x=1或x=3,∴P(1,3)或P(3,1)(舍);综上所述:DQ+CQ的最小值为4,此时P(1,3).【点评】本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质,利用轴对称转化线段,进行构造是求最短距离的关键.6.(2015秋•武汉期末)问题探究:在直线y=x+3上取点A(2,4)、B,使∠AOB=90°,求点B的坐标.小明同学是这样思考的,请你和他一起完成如下解答:将线段OA绕点O逆时针旋转90°得到OC,则点C的坐标为:(﹣4,2)所以,直线OC的解析式为:y=﹣x点B为直线AB与直线OC的交点,所以,点B的坐标为:(﹣3,)问题应用:已知抛物线y=﹣的顶点P在一条定直线l上运动.(1)求直线l的解析式;(2)抛物线与直线l的另一个交点为Q,当∠POQ=90°时,求m的值.【考点】二次函数综合题.【分析】根据旋转的性质,可得OA与OC的关系,根据全等三角形的判定与性质,可得C点坐标,根据待定系数法,可得OC的解析式,根据联立AB与OC,可得方程组,根据解方程组,可得B点坐标;(1)根据配方法,可得P点坐标,根据P点横坐标与纵坐标的关系,可得直线l的解析式;(2)根据联立抛物线与直线l,可得方程组,根据解方程组,可得P,Q点的坐标,根据旋转的性质,可得K点坐标,根据待定系数法,可得OK的解析式,根据联立OK与直线l,可得方程组,根据解方程组,可得m的值.【解答】解:如图1,将线段OA绕点O逆时针旋转90°得到OC,在△OAD和△OCD中,,△OAD≌△OCD(AAS),CE=AD=2,OE=OD=4,点C的坐标为:(﹣4,2 );直线OC的解析式为:y=﹣x;联立OC与AB,得,解得,点B的坐标为:(﹣3,);故答案为:(﹣4,2),(﹣3,).(1)∵抛物线y=﹣x2+mx﹣m2+m+=﹣(x2﹣2mx+m2)+m+=﹣(x﹣m)2+m+.所以,顶点P的坐标为(m,m+),∴点P在直线y=x+上运动.即直线l的解析式为:y=x+①.(2)因为,点P,Q为直线l与抛物线的交点,所以,加减消元,得x+=﹣(x﹣m)2+m+.解之,得,x1=m,x2=m﹣3.所以,P的坐标为(m,m+),Q的坐标为(m﹣3,).将线段OP绕点O逆时针旋转90°得到OK,得点K的坐标为:(﹣m﹣,m);所以,直线OK的解析式为:y=﹣x②;因为当∠POQ=90°时,点Q在直线OK上.联立①②,得(m+2)=﹣(m﹣3).解得m=1.抛物线与直线l的另一个交点为Q,当∠POQ=90°时,m的值是1.【点评】本题考查了二次函数综合题,利用线段旋转的性质得出OC=OA是解题关键,又利用全等三角形的性质得出C点坐标,再利用解方程得出B点坐标;利用配方法得出顶点坐标所在直线是解题关键.7.(2018•湘潭)如图,点P为抛物线y=x2上一动点.(1)若抛物线y=x2是由抛物线y=(x+2)2﹣1通过图象平移得到的,请写出平移的过程;(2)若直线l经过y轴上一点N,且平行于x轴,点N的坐标为(0,﹣1),过点P作PM⊥l于M.。

中考数学总复习《函数基础知识》专题测试卷-含答案

中考数学总复习《函数基础知识》专题测试卷-含答案

中考数学总复习《函数基础知识》专题测试卷-含答案班级:___________姓名:___________考号:___________一、单选题(共12题;共24分)1.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程S(m)与时间t(min)的大致图象是()A.B.C.D.2.下列曲线中,不表示y是x的函数图象的是()A.B.C.D.3.如图1,在等边△ABC中,D是BC的中点,P为AB边上的一个动点,设AP=x,图1中线段DP 的长为y,若表示y与x的函数关系的图象如图2所示,则△ABC的面积为()A.4B.2√3C.12D.4√34.如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是()A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C.从第3分到第6分,汽车行驶了150千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时5.一根弹簧原长12cm,它所挂的重量不超过10kg,并且挂重1kg就伸长1.5cm,写出挂重后弹簧长度y(cm)与挂重x(kg)之间的函数关系式是()A.y=1.5(x+12)(0≤x≤10)B.y=1.5x+12(0≤x≤10)C.y=1.5x+12(x≥0)D.y=1.5(x﹣12)(0≤x≤10)6.某辆汽车每次加油都会把油箱加满..,下表记录了该车相邻两次加油时的情况.(注:“累计里程”指汽车从出厂开始累计行驶的路程)加油时间加油量(升)加油时的累计里程(千米)2020年3月10日15560002020年3月25日5056500这段时间内,该车每100千米平均耗油量为()A.7升B.8升C.10升D.1007升7.如图①,在△ABC中△C=90°,△A=30°点D是AB边的中点,点P从点A出发,沿着AC﹣CB运动,到达点B停止.设点P的运动路径长为x,连DP,记△APD的面积为y,若表示y与x有函数关系的图象如图②所示,则△ABC的周长为()A.6+2√3B.4+2√3C.12+4√3D.6+4√38.若y与x的关系式为y=30x﹣6,当x=13时,y的值为()A.5B.10C.4D.-49.为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同).一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是()A.①③B.②③C.③D.①②③10.小翊早9点从家骑自行车出发,沿一条直路去邮局办事,小翊出发的同时,他的爸爸从邮局沿同一条道路匀速步行回家;小翊在邮局停留了一会后沿原路以原速返回,小翊比爸爸早3分钟到家.设两人离家的距离s(m)与小翊离开家的时间t(min)之间的函数关系如图所示.下列说法:①邮局与家的距离为2400米;②爸爸的速度为96m/min;③小翊到家的时间为9:22分;④小翊在返回途中离家480米处与爸爸相遇.其中,正确的说法有()A.1个B.2个C.3个D.4个11.如图1,△ABC是一块等边三角形场地,点D,E分别是AC,BC边上靠近C点的三等分点.现有一个机器人(点P)从A点出发沿AB边运动,观察员选择了一个固定的位置记录机器人的运动情况.设AP=x,观察员与机器人之间的距离为y,若表示y与x的函数关系的图象大致如图2所示,则观察员所处的位置可能是图1的()A.点B B.点C C.点D D.点E12.如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h随注水时间t变化规律的是()A.B.C.D.二、填空题(共6题;共7分)13.函数y= √x+1x2−4的自变量x的取值范围是.14.小明骑车回家过程中,骑行的路程s与时间t的关系如图所示.则经15分钟后小明离家的路程为.15.如图①,在△ABC中AB=AC,∠BAC=120°点E是边AB的中点,点P是边BC上一动点设PC=x,PA+PE=y图②是y关于x的函数图象,其中H是图象上的最低点.那么a+b的值为.16.如图,在长方形ABCD中AB=8cm,AD=6cm点M,N从A点出发,点M沿线段AB运动,点N沿线段AD运动(其中一点停止运动,另一点也随之停止运动).若设AM=AN=xcm,阴影部分的面积为ycm2,则y与x之间的关系式为.17.下面是王刚和李明两位同学的行程图,如果两人同时在同一地点出发,沿着200米的环形跑道同向行走,那么分钟后两人首次相遇.18.函数y= √x−3中自变量x的取值范围是;若分式2x−3x+1的值为0,则x=三、综合题(共6题;共79分)19.已知抛物线y=−x2+4x−3与x轴相交于A,B两点(点A在点B的左侧),顶点为P.(1)求A,B ,P三点的坐标;(2)在平面直角坐标系内画出此抛物线的简图,并根据简图写出当x取何值时,函数值大于0.20.模具长计划生产面积为9,周长为m的矩形模具,对于m的取值范围,小陈已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下:(1)建立函数模型设矩形相邻两边的长分别为x,y.由矩形的面积为9,得xy=9.即y=9x;由周长为m,得2(x+y)=m,即y=−x+m2,满足要求的(x,y).应是两个函数图象在第象限内交点的坐标.(2)画出函数图象函数y=9x的图象如图所示,而函数y=−x+m2的图象可由直线y=−x平移得到.请在同一直角坐标系中直接画出直线y=−x.(3)平移直线y=−x,观察函数图象①当直线平移到与函数y=9x的图象有唯一交点(3,3),周长m的值为;②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围;(4)得出结论若能生产出面积为9的矩形模具,则周长m的取值范围为21.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y与所挂物体的质量x的几组对应值:所挂物体质量x/kg012345弹簧长度y/cm182022242628(1)上述表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)写出弹簧长度y(cm)与所挂物体质量x(kg)的关系式;(3)若弹簧的长度为30cm时,此进所挂重物的质量是多少?(在弹簧的允许范围内)22.某淘宝店专销某种品牌的运动服,每套进价70元,售价120元/套.为了促销,淘宝店决定凡是一次购买数量不超过10套的,按原价每套120元购买;10套以上的,每多买1套,每套降价1元,每多买2套,每套降价2元……(例如,某人一次性购买15套运动服,多出5套,按每套降价5元购买,共需(15×115)元;但是最低价90元/套.(1)求顾客一次至少买多少套,才能以最低价购买?(2)写出当一次购买x(x>10)件时,利润w(元)与购买量x(件)之间的函数关系式;(3)有一天,一位顾客买了35套运动服,另一位顾客买了40套运动服,淘宝店发现卖了40套反而比卖35套赚的钱少!为了使每次卖的数量多赚的钱也多,在其它促销条件不变的情况下,最低价为90元/套至少要提高到多少?为什么?23.杆称是我国传统的计重工具,如图1,可以用秤砣到秤纽的水平距离x(厘米),来得出秤钩上所挂物体的重量y(斤).如表中为若干次称重时所记录的一些数据.x(厘米)124711y(斤)0.75 1.00 1.50 2.25 3.25(1)请在图2平面直角坐标系中描出表中五组数据对应的点;(2)秤钩上所挂物体的重量y是否为秤纽的水平距离的函数?如果是,请求出符合表中数据的函数解析式;(3)当秤钩所挂物重是4.5斤时,秤杆上秤砣到秤纽的水平距离为多少厘米?24.数学活动课上,小明同学根据学习函数的经验,对函数的图象、性质进行了探究,下面是小明同学探究过程,请补充完整:如图1,已知在Rt△ABC,∠ACB=90°,∠A=30°,BC=2cm ,点P为AB边上的一个动点,连接PC.设BP=xcm,CP=ycm .(1)(初步感知)当CP⊥AB时,则①x=,②y=;(2)(深入思考)试求y与x之间的函数关系式并写出自变量x的取值范围;(3)通过取点测量,得到了x与y的几组值,如下表:x cm⁄00.51 1.5 2. 2.53 3.54y cm⁄2 1.8 1.7_2 2.3 2.6 3.0_①计算并补全表格(说明:补全表格时相关数值保留一位小数)②建立平面直角坐标系,如图2,描出已补全后的表中各对应值为坐标的点,画出该函数的图象;③结合画出的函数图象,写出该函数的两条性质.参考答案1.【答案】C2.【答案】A3.【答案】D4.【答案】C5.【答案】B6.【答案】C7.【答案】A8.【答案】C9.【答案】C10.【答案】D11.【答案】C12.【答案】B13.【答案】x≥﹣1且x≠214.【答案】1.5千米15.【答案】716.【答案】y=- 12x2+4817.【答案】1018.【答案】x≥3;3219.【答案】(1)解:令y=0,得到﹣x2+4x﹣3=0即﹣(x﹣1)(x﹣3)=0解得:x=1或3则A(1,0),B(3,0)根据顶点坐标公式得﹣b2a=﹣4−2=2,4ac−b24a=4×(−1)×(−3)−164×(−1)=1即P(2,1);(2)解:作出图象,如图所示根据图象得:当1<x<3时,y>0.20.【答案】(1)一(2)解:(3)解:①12②由①知:0个交点时,0<m<12;2个交点时,m>12;1个交点时,m=12;(4)m≥1221.【答案】(1)解:上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;(2)解:∵物体每增加1千克,弹簧长度增加2cm∴y=18+2x(3)解:把y=30代入y=18+2x,得18+2x=30∴所挂重物的质量是6kg22.【答案】(1)解:由题意得:(120﹣90)÷1+10=40(套)(2)解:当10<x≤40时,w=x (60﹣x )=﹣x 2+60x ;当x >40时,w=(90﹣70)x=20x(3)解:当x >40时,w=20xw 随x 的增大而增大,符合题意;当10<x≤40时w=﹣x 2+60x=﹣(x ﹣30)2+900∵a=﹣1<0∴抛物线开口向下.对称轴是直线x=30∴10<x≤30,w 随着x 的增大而增大而当x=30时,w 最大值=900;∵要求卖的数量越多赚的钱越多,即w 随x 的增大而增大∴由以上可知,当x=30,最低售价为120﹣(30﹣10)=100元23.【答案】(1)解:如图所示:(2)解:由(1)图形可知,秤钩上所挂物体的重量y 是秤纽的水平距离的函数 设y =kx +b ,把x =1,y =0.75,x =2,y =1代入可得:{k +b =0.752k +b =1解得: {k =14b =12∴y = 14 x + 12; (3)解:当y =4.5时,即4.5= 14 x + 12∴当秤钩所挂物重是4.5斤时,秤杆上秤砣到秤纽的水平距离为16厘米. 24.【答案】(1)1;√3(2)解:过 C 作 CD ⊥AB 于 D由(1)可知BD =1①当 0≤x ≤1 时,如图1-1: PD =1−x∴y =√x 2−2x +4 ;②当 1<x ≤4 时,如图1-2: PD =x −1综合①②可得 y =√x 2−2x +4 (0≤x ≤4) ;(3)解:①当x =1.5时y =√x 2−2x +4=√3.25≈1.8当x =4时 x cm ⁄0.5 1 1.5 2. 2.5 3 3.5 4y cm⁄2 1.8 1.7 1.82 2.3 2.6 3.0 3.5②函数图象如图所示:③由函数图象得:性质一:y的最小值为√3(或1.7);性质二:当0≤x≤1时,y随x增大而减小.。

中考数学复习《函数综合问题》专项测试卷(带答案)

中考数学复习《函数综合问题》专项测试卷(带答案)

中考数学复习《函数综合问题》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、选择题(本大题共12道小题)1. (2023秋•岑溪市)下列函数中,是一次函数的是( )A.y =xB.yC.y =x 2-1D.y 2. (2023•陕西)在平面直角坐标系中,将抛物线y =x 2﹣(m ﹣1)x+m(m >1)沿y 轴向下平移3个单位.则平移后得到的抛物线的顶点一定在( )A.第一象限B.第二象限C.第三象限D.第四象限3. (2023九上·津南期中)如图是二次函数y=ax 2+bx+c 的部分图象,由图象可知不等式ax 2+bx+c<0的解集是( )A.-1<x <5B.x >5C.x <-1且x >5D.x <-1或x >54. (2023秋•南山区校级期末)在同一平面直角坐标系中,函数y =k(x ﹣1)与y 的大致图象( ) A. B. C. D.5. (2023秋•南开区期末)已知k 1<0<k 2,则函数y =k 1x 和y的图象在同一平面直角坐标系中大致位置是( ) A. B. C. D.6. (2023·历城)函数y=xk (k ≠0)与函数y=kx-k 在同一坐标系中的图像可能是( ) A. B. C. D.7. (2023·温州)如图,A 为反比例函数y=xk (k >0)图象上一点,AB ⊥x 轴于点B,若S △AOB =3,则k 的值为( )A.1.5B.3C.3D.6 8. (2023·山东聊城市)已知二次函数的图象如图所示,则一次函数的图象和反比例函数的图象在同一坐标系中大致为( )9. (2023秋•盐池县期末)如图,抛物线y 1=﹣x 2+4x 和直线y 2=2x,当y 1<y 2时,x 的取值范围是( )A.0<x <2B.x <0或x >2C.x <0或x >4D.0<x <410. (2023九上·青田期中)如图,二次函数y 1=x 2+bx+c 与一次函数y 2=kx+2的图象交于点A(-1,3)和点B(4,m),要使y 1<y 2,则x 的取值范围是( )A.-1<x <4B.x >-1C.x <4D.x <-1或x >411. (2023•娄底)如图,直线y =x+b 和y =kx+4与x 轴分别相交于点A(-4,0),点B(2,0),则⎩⎨⎧>+>+04kx 0b x ( ) A.-4<x <2 B.x <-4C.x >2D.x <-4或x >212. (2023宁夏)如图,函数y 1=x +1与函数y 2=x2的图象相交于点M(1,m),N(-2,n).若y 1>y 2,则x 的取值范围是( )A.x <-2或0<x <1B.x <-2或x >1C.-2<x <0或0<x <1D.-2<x <0或x >1二、填空题(本大题共8道小题)13. (2023•灌南县一模)二次函数y =﹣x 2﹣2x+3的图象的顶点坐标为 . 14. (2023•德阳)已知函数y =⎪⎩⎪⎨⎧≤≤+-<≤)8x 3(8)5x (3x 1122)(的图象如图所示,若直线y =kx-3与该图象有公共点 .15. (2023•无锡)二次函数y =ax 2﹣3ax+3的图象过点A(6,0),且与y 轴交于点B,点M 在该抛物线的对称轴上,若△ABM 是以AB 为直角边的直角三角形,则点M 的坐标为 .16. (2023安徽合肥)如图,在平面直角坐标系中,点A 的坐标为(4,0),点B 在第一象限,且△OAB 为等边三角形,若反比例函数y=k x在第一象限的图象经过边AB 的中点,则k 的值为___________17. (2023·浙江温州)如图,在平面直角坐标系中,点A 是反比例函数k y x=图像在第一象限的一点,连结OA 并延长使AB=OA,过点B 作BC ⊥x 轴,交反比例函数图像交于点D,连结AD,且S △ABD =3,则k 的值为_____.18. (2023·长兴)如图,四边形OABC 为矩形,点A 在第三象限,点A 关于OB 的对称点为点D,点B,D 都在函数y=-)0x (x23 的图象上,BE ⊥y 轴于点E.若DC 的延长线交y 轴于点F,当矩形OABC 的面积为6时,OE OF 的值为 .19. (2023秋•龙湖区校级月考)如图,在平面直角坐标系xOy 中,矩形OCBE 的两边在坐标轴上,反比例函数y (x >0)的图象与OB,BC 相交于点A,D,连接AC,AD.(1)若点A 为矩形OCBE 的对称中心,则BD:DC = ;(2)若点A 坐标为(3,2).①求该反比例函数的解析式;②若S △ACD ,设点C 的坐标为(a,0),求线段BD 的长.20. (2023·吉林长春·中考模拟)如图,抛物线y=-12x2+mx+n 与x 轴交于A 、B 两点,与y 轴交于点C,抛物线的对称轴交x 轴于点D,已知A(-1,0),C(0,2),点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F,当四边形CDBF 的面积最大时,E 点的坐标为_____.三、解答题(本大题共6道小题)21. (2023•河南)如图,抛物线y =﹣x 2+2x+c 与x 轴正半轴,y 轴正半轴分别交于点A,B,且OA =OB,点G 为抛物线的顶点.(1)求抛物线的解析式及点G 的坐标;(2)点M,N 为抛物线上两点(点M 在点N 的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q 为抛物线上点M,N 之间(含点M,N)的一个动点,求点Q 的纵坐标y Q 的取值范围.22. (2023秋•沈阳期末)如图,一次函数y=kx+1的图象与反比例函数的图象交于点A(2,a),点B为x轴正半轴上一点,过B作x轴的垂线交反比例函数的图象于点C,交一次函数的图象于点D.(1)求a的值及一次函数y=kx+1的表达式;(2)若BD=10,求△ACD的面积.23. (2023•湖州)如图,已知在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C.过点C的直线CA与抛物线交于另一点A(点A在对称轴左侧),点B在AC的延长线上,连结OA,OB,DA和DB.(1)如图1,当AC∥x轴时①已知点A的坐标是(﹣2,1),求抛物线的解析式;②若四边形AOBD是平行四边形,求证:b2=4c.(2)如图2,若b=﹣2,,是否存在这样的点A,使四边形AOBD是平行四边形?若存在,求出点A的坐标;若不存在,请说明理由.24. (2023·湖南九年级其他模拟)若抛物线L:y=ax2+bx+c(a,b,c是常数,a≠0)与直线l:y=ax+b满足a2+b2=2a(2c﹣b),则称此直线l与该抛物线L具有“支干”关系.此时,直线l叫做抛物线L的“支线”,抛物线L叫做直线l的“干线”.(1)若直线y=x﹣2与抛物线y=ax2+bx+c具有“支干”关系,求“干线”的最小值;(2)若抛物线y=x2+bx+c的“支线”与y=﹣4cx的图象只有一个交点,求反比例函数的解析式;(3)已知“干线”y=ax2+bx+c与它的“支线”交于点P,与它的“支线”的平行线l′:y=ax+4a+b交于点A,B,记△ABP得面积为S,试问:s|a|的值是否为定值?若是,请求出这个定值;若不是,请说明理由.25. (2023•重庆)探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y的图象并探究该函数的性质.(1)列表,写出表中a,b的值:a=,b=;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数y的图象关于y轴对称;②当x=0时,函数y有最小值,最小值为﹣6;③在自变量的取值范围内函数y的值随自变量x的增大而减小.(3)已知函数y x的图象如图,结合你所画的函数图象,直接写出不等式x的解集.26. (2023秋•舞钢市期末)如图,反比例函数y(k>0)的图象与正比例函数y x的图象交于A、B两点(点A在第一象限).(1)当点A的横坐标为2时,求k的值;(2)若k=12,点C为y轴正半轴上一点,∠ACB=90°①求△ACB的面积;②以A、B、C、D为顶点作平行四边形,直接写出第四个顶点D的坐标.。

九年级数学中考总复习《函数》专题检测卷含答案详解

九年级数学中考总复习《函数》专题检测卷含答案详解

中考《函数》专题测试试卷满分150分,考试时间120分钟一、选择题(本大题共10个小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一个选项是正确的.)1. 已知函数y =⎩⎪⎨⎪⎧2x +1(x≥0),4x (x <0),当x =2时,函数值y 为( )A .5B .6C .7D .82. 如图,直线l 是一次函数y=kx+b 的图象,若点A (3,m )在直线l 上,则m 的值是( )A .﹣5B .C .D .7(第2题) (第5题)3. 在同一平面直角坐标系中,函数y=mx+m (m≠0)与(m≠0)的图象可能是( )A .B .C .D .4. 若一次函数的图象过第一、三、四象限,则二次函数( ) A.有最大值 B .有最大值- C .有最小值 D .有最小值-5. 一次函数y=kx+b (k ,b 是常数,k ≠0)的图象如图所示,则不等式kx+b >0的解集是( ) A .x <2 B .x <0 C .x >0 D .x >26.张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示。

以下说法错误的是( )A. 加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是y=−8t+25B. 途中加油21升C. 汽车加油后还可行驶4小时D. 汽车到达乙地时油箱中还余油6升2325x my =()a x a y ++=1ax ax y -=24a 4a 4a4a(第6题) (第7题) 7. 如图,已知二次函数1y=23-43x 的图象与正比例函数的图象交于点A(3,2),与x 轴交于点B(2,0).若0<<,则x 的取值范围是( )A .0<x <2B .0<x <3C .2<x <3 D .x <0或x >38. 如图,点P 在直线AB 上方,且ο90=∠APB ,AB PC ⊥于C ,若线段6=AB ,x AC =,y S PAB =∆,则y 与x 的函数关系图象大致是( )A .B .C .D .9. 如图,点A (a ,3),B (b ,1)都在双曲线上,点C ,D ,分别是x 轴,y 轴上的动点,则四边形ABCD 周长的最小值为( )A .B .C . D.10.如图,抛物线y=a +bx +c (a≠0)的对称轴为直线x =﹣2,与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a ﹣b=0;②c <0;③﹣3a+c >0;④4a ﹣2b >a +bt (t 为实数);⑤点(﹣,),(﹣,),(﹣,)是该抛物线上的点,则<<,正确的个数有( ) A .4个B .3个C .2个D .1个(第8题) (第9题) (第10题)2x xy 322=1y 2y xy 3=252622102+282x 2t 1y 2y 3y 1y 2y 3y二、填空题(本大题共6个题,每小题4分,满分24分)11. 如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线将图形分成面积相等的两部分,则将直线向右平移3个单位后所得到直线'l 的函数关系式为 . 12. 如图所示是一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB 垂直于x 轴,顶点A 在函数(x >0)的图象上,顶点B 在函数(x >0)的图象上,∠ABO=30°,则= .(第11题) (第12题) (第13题)13.同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y (米)与甲出发的时间x (秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是 米. 14. 如图示直线与x 轴、y 轴分别交于点A 、B ,当直线绕着点A 按顺时针方向旋转到与x 轴首次重合时,点B 运动的路径的长度为 .(第14题) (第15题) 15. 如图,抛物线y=a +bx+c 过点(﹣1,0),且对称轴为直线x=1,有下列结论: ①abc <0;②10a+3b+c >0;③抛物线经过点(4,)与点(﹣3,),则>;④无论a ,b ,c 取何值,抛物线都经过同一个点(,0);⑤a +bm+a≥0,其中所有正确的结论是 .x k y 11=xky 22=21kk 33+=xy 2x 1y 2y 1y 2y a c-2m16. 在平面直角坐标系中,直线l :y=x ﹣1与x 轴交于点A 1, 如图所示依次作正方形O 、正方形,…,正方 形,使得,,,…在直线l 上,点,,,…在y 轴正半轴上,则点的坐标是 . (第16题)三、解答题(本大题共9小题,满分96分)17.(本小题满分8分) 为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6分钟忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前行走,小亮取到借书证后骑单车原路原速前往图书馆,小亮追上姐姐后用单车带着姐姐一起前往图书馆.已知单车的速度是步行速度的3倍,如图是小亮和姐姐距家的路程y (米)与出发的时间x (分钟)的函数图象,根据图象解答下列问题: (1)小亮在家停留了 分钟.(2)求小亮骑单车从家出发去图书馆时距家的路程y (米)与出发时间x (分钟)之间的函数关系式.(3)若小亮和姐姐到图书馆的实际时间为m 分钟,原计划步行到达图书馆的时间为n 分钟,则n ﹣m= 分钟.(第17题) 18.(本小题满分10分)如图,一次函数y=kx+b 的图象与坐标轴分别交于A 、B 两点,与反比例函数的图象在第一象限的交点为C ,CD ⊥x 轴,垂足为D ,若OB=3,OD=6,△AOB 的面积为3. (1)求一次函数与反比例函数的解析式; (2)直接写出当x >0时,的解集.(第18题)111C B A 1222C C B A 1-n n n n C C B A 1A 2A 3A 1C 2C 3C n B xny =0<-+xnb kx19. (本小题满分10分)顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A型车B型车进货价格(元/辆)1100 1400销售价格(元/辆)今年的销售价格240020. (本小题满分10分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地相距多远?(2)求快车和慢车的速度分别是多少?(3)何时两车相距300千米.21. (本小题满分10分)如图,在平面直角坐标系中,矩形OABC 的顶点A ,C 分别在x 轴,y 轴上,函数的图象过点P (4,3)和矩形的顶点B (m ,n )(0<m <4). (1)求k 的值;(2)连接PA ,PB,若△ABP 的面积为6,求直线BP 的解析式.22. (本小题满分10分)如图,已知抛物线y=﹣+bx+c 与x 轴交于点A (﹣1,0)和点B (3,0),与y 轴交于点C ,连接BC 交抛物线的对称轴于点E ,D 是抛物线的顶点. (1)求此抛物线的解析式;(2)直接写出点C 和点D 的坐标;(3)若点P 在第一象限内的抛物线上,且,求P 点坐标.x ky=2x COE ABP S S ∆∆=4某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y (千克),增种果树x (棵),它们之间的函数关系如图所示. (1)求y 与x 之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克? (3)当增种果树多少棵时,果园的总产量w (千克)最大?最大产量是多少?24.(本小题满分12分)如图,直线y=kx+b (k 、b 为常数)分别与x 轴、y 轴交于点A (﹣4,0)、B (0,3),抛物线y=﹣+2x+1与y 轴交于点C . (1)求直线y=kx+b 的函数解析式;(2)若点P (x ,y )是抛物线y=﹣+2x+1上的任意一点,设点P 到直线AB 的距离为d ,求d 关于x 的函数解析式,并求d 取最小值时点P 的坐标;(3)若点E 在抛物线y=﹣+2x+1的对称轴上移动,点F 在直线AB 上移动,求CE+EF 的最小值.2x 2x 2x如图,过抛物线上一点A 作x 轴的平行线,交抛物线于另一点B ,交y 轴于点C ,已知点A 的横坐标为﹣2.(1)求抛物线的对称轴和点B 的坐标;(2)在AB 上任取一点P ,连结OP ,作点C 关于直线OP 的对称点D ; ①连结BD ,求BD 的最小值;②当点D 落在抛物线的对称轴上,且在x 轴上方时,求直线PD 的函数表达式.x x y 2412-=函数专题测试答案一、选择题(本题共10个小题,每小题3分,共30分)1.A2.C3.D4.B5.A6.C7.C8.D9.B 10.B 二、填空题(本题共6个小题,每小题4分,共24分)11.9271010y x =- 12. ﹣ 13. 17514. π 15. ②④⑤ 16. (,)三、解答题(本大题共9小题,满分96分) 17. 解:(1)步行速度:300÷6=50m/min,单车速度:3×50=150m/min, 单车时间:3000÷150=20min,30﹣20=10,∴C (10,0),∴A 到B 是时间==2min ,∴B (8,0), ∴BC=2,∴小亮在家停留了2分钟. 故答案为2.(2) 设y=kx+b ,过C 、D (30,3000), ∴{0=10k +b 3000=30k +b ,解得{k =150b =−1500, ∴y=150x ﹣1500(10≤x≤30)(3) 原计划步行到达图书馆的时间为n 分钟,n==60n ﹣m=60﹣30=30分钟, 故答案为30. 18. 解:12-n 12-n150300503000(1)∵=3,OB=3, ∴OA=2,∴B (3,0),A (0,﹣2), 代入y=kx+b 得:,解得:k=,b=﹣2,∴一次函数y=x ﹣2, ∵OD=6,∴D (6,0),CD ⊥x 轴, 当x=6时,y=×6﹣2=2 ∴C (6,2), ∴n=6×2=12,∴反比例函数的解析式是y=; (2)当x >0时,kx+b ﹣<0的解集是0<x <6. 19.解:(1)设去年A 型车每辆x 元,那么今年每辆(x+400)元, 根据题意得,解之得x=1600,经检验,x=1600是方程的解. ∴x+400=2000.答:今年A 型车每辆2000元.(2)设购进A 型车m 辆,获得的总利润为w 元,则购进B 型车(50−m)辆, 根据题意得:w=(2000−1100)m+(2400−1400)(50−m)=−100m+50000. 又∵50−m ⩽m , ∴m ⩾1623.AOB S∵k=−100<0,∴当m=17时,w取最大值。

初三函数测试题目及答案

初三函数测试题目及答案

初三函数测试题目及答案一、选择题(每题3分,共30分)1. 下列哪个选项是一次函数的图象?A. 一条直线B. 一个圆C. 一个椭圆D. 一个抛物线答案:A2. 函数y=2x+3的斜率是多少?A. 2B. 3C. -2D. -3答案:A3. 如果一个函数的图象经过点(2,5),那么这个点一定在函数的:A. 定义域内B. 值域内C. 函数图象上D. 函数图象外答案:C4. 函数y=x^2的反函数是:A. y=√xB. y=x^2C. y=1/xD. y=-x^2答案:A5. 函数y=1/x的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:D6. 函数y=3x-2的零点是多少?A. 0.5B. 1C. 2D. 3答案:B7. 函数y=2x+1的图象与y轴的交点坐标是:A. (0, 1)B. (0, 2)C. (1, 0)D. (1, 2)答案:A8. 函数y=x^2-4x+3的最大值是多少?A. -1B. 0C. 1D. 3答案:B9. 函数y=|x|的图象是:A. 一条直线B. 一个V形C. 一个W形D. 一个倒V形答案:B10. 如果函数y=f(x)是奇函数,那么f(-x)等于:A. f(x)B. -f(x)C. xD. -x答案:B二、填空题(每题4分,共20分)11. 函数y=3x+5的图象与x轴的交点坐标是________。

答案:(-5/3, 0)12. 函数y=x^2-6x+9的最小值是________。

答案:013. 函数y=1/x的图象在x=2处的斜率是________。

答案:1/414. 函数y=x^3-3x^2+3x-1的零点是________。

答案:115. 函数y=2x^2-4x+1的顶点坐标是________。

答案:(1, -1)三、解答题(每题10分,共50分)16. 已知函数y=2x^2-4x+3,求该函数的顶点坐标。

答案:顶点坐标为(1, 1)。

中考数学总复习《函数基础知识》练习题附带答案

中考数学总复习《函数基础知识》练习题附带答案

中考数学总复习《函数基础知识》练习题附带答案一、单选题(共12题;共24分)1.如图,小明使用图形计算器探究函数y=ax(x−b)2的图象,他输入了一组a,b的值,得到了下面的函数图象,由学习函数的经验,可以推断出小明输入的a,b的值满足()A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0 2.已知某二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,下列结论中正确的有()①abc<0;②a﹣b+c<0;③a=−1b;④8a+c>0.A.1个B.2个C.3个D.4个3.函数y=1x−2中,自变量x的取值范围是()A.x>2B.x<2C.x≠2D.x≠﹣2 4.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度5.已知函数y=3x﹣1,当x=3时y的值是()A.5B.7C.8D.96.如图1,点P为矩形ABCD边上的一个动点,点P从A出发沿着矩形的四条边运动,最后回到A.设点P 运动的路程长为x,△ABP的面积为y,图2是y随x变化的函数图象,则矩形ABCD的对角线BD的长是()A.√34B.√41C.8D.107.为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:①若每户居民每月用电量不超过100度,则按0.60元/度计算;②若每户居民每月用电量超过100度,则超过部分按0.8元度计算(未超过部分仍按0.60元/度计算).现假设某户居民某月用电量是x(单位:度),电费为以(单位:元),则y与x的函数关系用图象表示正确的是()A.B.C.D.8.如图1,矩形ABCD中,动点E从点C出发,速度为2cm/s,沿C→D→A→B方向运动至点B处停止.设点E运动的时间为xs,△BCE的面积为y,如果y关于x的函数图象如图2所示,则四边形ABCD的面积为()A.48cm2B.24cm2C.21cm2D.12cm29.函数y=ax(x−b)2的图象如下图所示:其中a、b为常数.由学习函数的经验,可以推断常数a、b的值满足()A.a>0,b>0B.a<0,b>0C.a>0,b<0D.a<010.如图,△ABC是等腰直角三角形,AC=BC,AB=4,D为AB上的动点,DP△AB交折线A﹣C﹣B于点P,设AD=x,△ADP的面积为y,则y与x的函数图象正确的是()A.B.C.D.11.甲、乙两位同学进行长跑训练,甲和乙所跑的路程S(单位:米)与所用时间t(单位:秒)之间的函数图象分别为线段OA和折线OBCD.则下列说法正确的是()A.两人从起跑线同时出发,同时到达终点B.跑步过程中,两人相遇一次C.起跑后160秒时甲、乙两人相距最远D.乙在跑前300米时速度最慢12.已知函数y={(x−1)2−1(x≤3)(x−5)2−1(x>3),则使y=k成立的x值恰好有三个,则k的值为()A.0B.1C.2D.3二、填空题(共6题;共8分)13.放学后,小刚和同学边聊边往家走,突然想起今天是妈妈的生日,赶紧加快速度,跑步回家.小刚离家的距离s(m)和放学后的时间t(min)之间的关系如图所示.给出下列结论:①小刚边走边聊阶段的行走速度是125m/min;②小刚家离学校的距离是1000m;③小刚回到家时已放学10min;④小刚从学校回到家的平均速度是100m/min.其中正确的是.(把你认为正确答案的序号都填上)14.在圆的面积公式S=πR2中,常量是.15.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y(△)与向上攀登的高度x(km)的几组对应值如表所示:向上攀登的高度x/km0.5 1.0 1.5 2.0气温y/△ 2.0-1.0-4.0-7.02.3 km时登山队所在位置的气温约为°C.16.有一个面积为30的梯形,其下底长是上底长的3倍.若设上底长为x,高为y,则y关于x的函数解析式是.17.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图,则慢车比快车早出发小时快车追上慢车行驶了千米,快车比慢车早小时到达B地.中,自变量的取值范围是18.在函数√x−2x−3三、综合题(共6题;共79分)19.心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课时间的变化而变化.学生的注意力指数y随时间x(分)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)分别求出线段AB和双曲线CD的函数关系式.(2)上课后的第5分钟与第30分钟相比较,分钟时学生的注意力更集中.(3)一道数学题,需要讲18分钟,为了学生听课效果较好,要求学生的注意力指数不低于40,那么经过适当的时间安排,教师能否在学生注意力达到所需状态下讲完这道题?20.小波同学根据学习函数的经验,对函数y=2x−3+1的图象与性质进行了探究,下面是小波同学的探究过程,请根据题意补充完整:(1)下表是y与x的几组对应值:x…-2-1012n5678…y (3)512m0-132533275…=,=;(2)在平面直角坐标系xOy中,补全此函数图象;(3)小渡同学发现y=2x−3+1的图象关于平面直角坐标系中某一点或中心对称,这一点的坐标是;(4)根据函数图象,直接写出不等式2x−3+1>2x−5的解集.21.经过实验获得两个变量x(x>0),y(>0)的一组对应值如表:x123456y6 2.92 1.5 1.21(1)在如图的直角坐标系中,画出相应函数的图象.(2)求y关于x的函数表达式.(3)当x>1.5时求y的取值范围.22.由于精准扶贫的措施科学得当,贫困户小颖家今年种植的草莓喜获丰收,采摘上市16天全部销售完.小颖对销售情况进行统计后发现,在该草莓上市第x天(x取整数)时日销售量y(单位:千克)与x之间的函数关系式为y={12x(0≤x≤10),−20x+320(10<x≤16),草莓价格m(单位:元/千克)与x之间的函数关系如图所示.(1)求第14天小颖家草莓的日销售量;(2)求当4≤x≤12时草莓价格m与x之间的函数关系式;(3)试比较第8天与第10天的销售金额哪天多?23.中国最大的水果公司“佳沃鑫荣懋”旗下子公司“欢乐果园”购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为P={14t+30(1≤t≤24,t为整数)−12t+48(25≤t≤48,t为整数),且其日销售量y(kg)与时间t(天)的关系如表:时间t(天)136102040…日销售量y(kg)1181141081008040…(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售前24天中,子公司决定每销售1kg水果就捐赠n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.24.已知图形ABCDEF的相邻两边垂直,AB=8cm.当动点M以2cm/s的速度沿图①的边框按B→C→D→E→F→A的路径运动时△ABM的面积S随时间t的变化如图②所示.回答下列问题:(1)求a的值和EF的长度;(2)当点M运动到DE上时求S与t的关系式.参考答案1.【答案】A 2.【答案】A 3.【答案】C 4.【答案】C 5.【答案】C 6.【答案】B 7.【答案】C 8.【答案】A 9.【答案】B 10.【答案】B 11.【答案】C 12.【答案】D 13.【答案】②③④ 14.【答案】π 15.【答案】-8.8 16.【答案】y =15x17.【答案】2;276;4 18.【答案】x≥2且x≠319.【答案】(1)解: 设线段AB 所在的直线的解析式为y 1=k 1x +30把B (10,50)代入得,k 1=2∴AB 解析式为:y 1=2x +30(0≤x≤10).设C 、D 所在双曲线的解析式为y 2=k 2x把C (20,50)代入得,k 2=1000∴曲线CD 的解析式为:y 2=1000x (x≥20);(2)5(3)解:当y =40时2x +30=40,x =5.1000x =40,x =25. ∴25−5=20>18.∴教师能在学生注意力达到所需要求状态下讲完这道题.20.【答案】(1)13;4(2)在平面直角坐标系xOy中,补全此函数图象如图(3)(3,1)(4)观察函数图象,不等式2x−3+1>2x−5的解集是x<2或3<x<4.21.【答案】(1)解:如图(2)解:由(1)得y是x的反比例函数∵图象经过(1,6)∴k=xy=6∴y关于x的函数表达式为y=6 x .(3)解:当x=1.5时y=61.5=4∵在第一象限内,y 随x 的增大而减小 ∴0<y <4.22.【答案】(1)解:∵当10<x ≤16时y =−20x +320∴当x =14时y =−20×14+320=40(千克). ∴第14天小颖家草莓的日销售量是40千克.(2)解:当4≤x ≤12时设草莓价格m 与x 之间的函数关系式为m =kx +b ∵点(4,24),(12,16)在m =kx +b 的图像上 ∴{4k +b =24,12k +b =16.解得{k =−1,b =28.∴函数关系式为m =−x +28. (3)解:∵当0≤x ≤10时y =12x ∴当x =8时y =12×8=96 当x =10时y =12×10=120. ∵当4≤x ≤12时m =−x +28∴当x =8时m =−8+28=20,当x =10时m =−10+28=18. ∴第8天的销售金额为:96×20=1920(元) 第10天的销售金额为:120×18=2160(元). ∵2160>1920∴第10天的销售金额多.23.【答案】(1)解:依题意,设y=kt+b ,将(10,100),(20,80)代入y=kt+b{100=10k +b 80=20k +b ,解得 {k =−2b =120∴日销售量y (kg )与时间t (天)的关系 y=120﹣2t 当t=30时y=120﹣60=60.答:在第30天的日销售量为60千克;(2)解:设日销售利润为W 元,则W=(p ﹣20)y . 当1≤t≤24时W=(t+30﹣20)(120﹣t ) =﹣t 2+10t+1200=﹣(t ﹣10)2+1250 当t=10时W 最大=1250当25≤t≤48时W=(﹣t+48﹣20)(120﹣2t ) =t 2﹣116t+3360=(t ﹣58)2﹣4 由二次函数的图象及性质知:第 11 页 共 11 当t=25时W 最大=1085∵1250>1085∴在第10天的销售利润最大,最大利润为1250元;(3)解:依题意,得W=﹣t 2+(2n+10)t+1200﹣120n (1≤t≤24) 其对称轴为t=2n+10,要使W 随t 的增大而增大 由二次函数的图象及性质知:2n+10≥24解得n≥7又∵n <9∴7≤n <9.24.【答案】(1)解:由S 随时间t 的变化的函数图象得:a= 12 ×8×2×6=48EF=2×(14-12.5)=3cm ;(2)解:∵AB=8cm ,EF=3cm∴CD=8-3=5cm∴点M 在CD 上运动的时间为:5÷2=2.5s∴b=6+2.5=8.5由函数图象可知:当t=12.5时S= 12×8×[2×6-(12.5-8.5)×2]=16 设当点M 运动到DE 上时S 与t 的关系式为:S=kt+n则 {16=12.5k +n 48=8.5k +n ,解得: {k =−8n =116∴S=-8t+116.。

中考数学总复习《函数基础知识》专项测试卷(附答案)

中考数学总复习《函数基础知识》专项测试卷(附答案)

中考数学总复习《函数基础知识》专项测试卷(附答案)一、单选题(共12题;共24分)1.在函数y=1√x−2中自变量x的取值范围是()A.x≥2B.x>2C.x≤2D.x<22.如图,M是⊙O上一个定点,将直角三角板的30°角顶点与点M重合,两边与⊙O相交,设交点为A,B,绕点M顺时针旋转三角板,直至其中一个交点与点M重合时停止旋转,设AB= y,旋转角为α,如图所示能反映y与α关系的为()A.B.C.D.3.小华和小明是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校,如图是他们从家到学校已走的路程S(米)和所用时间t(分钟)的关系图,则下列说法中不正确的是()A.小明家和学校距离1200米B.小华乘公共汽车的速度是240米/分C.小华乘坐公共汽车后7:50与小明相遇D.小明从家到学校的平均速度为80米/分4.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m (am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.①②③④D.①③④⑤5.现代物流的高速发展,为乡村振兴提供了良好条件,某物流公司的汽车行驶30km后进入高速路,在高速路上匀速行驶一段时间后,再在乡村道路上行驶1ℎ到达目的地.汽车行驶的时间x(单位:h)与行驶的路程y(单位:km)之间的关系如图所示,请结合图象,判断以下说法正确的是()A.汽车在高速路上行驶了2.5ℎB.汽车在高速路上行驶的路程是180kmC.汽车在高速路上行驶的平均速度是72km/ℎD.汽车在乡村道路上行驶的平均速度是40km/ℎ6.已知某四边形的两条对角线相交于点O.动点P从点A出发,沿四边形的边按A→B→C的路径匀速运动到点C.设点P运动的时间为x,线段OP的长为y,表示y与x的函数关系的图象大致如图所示,则该四边形可能是()A.B.C.D.7.某人骑自行车从甲地到乙地,到达乙地他马上返回甲地.如图反映的是他离甲地的距离s(km)及他骑车的时间t(h)之间的关系,则下列说法正确的是()A.甲、乙两地之间的距离为60kmB.他从甲地到乙地的平均速度为30km/hC.当他离甲地15km时,他骑车的时间为1hD.若他从乙地返回甲地的平均速度为10km/h,则点A表示的数字为58.下列四个函数图象中当x<0时,y随x的增大而减小的是()A.B.C.D.9.如图,在△ABC中∠C=90°,AC=5和BC=10.动点M,N分别从A,C两点同时出发,点M从点A开始沿边AC向点C以每秒1个单位长度的速度移动,点N从点C开始沿CB向点B以每秒2个单位长度的速度移动.设运动时间为t,点M,C之间的距离为y,△MCN的面积为S,则y与t,S与t满足的函数关系分别是()A.正比例函数关系,一次函数关系B.正比例函数关系,二次函数关系C.一次函数关系,正比例函数关系D.一次函数关系,二次函数关系10.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q(升)与流出时间t(分钟)的函数关系是()A.Q=0.2t B.Q=20﹣0.2t C.t=0.2Q D.t=20﹣0.2Q11.某人骑车上路,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上路时间,于是就加快了车速.如图s表示此人离家的距离,t表示时间,在下面给出的四个表示s与t的关系的图象中符合以上情况的是()A.B.C.D.12.某市为了鼓励节约用水,按以下规定收水费:(1)每户每月用水量不超过20m3,则每立方米水费为1.2元,(2)每户用水量超过20m3,则超过的部分每立方米水费2元,设某户一个月所交水费为y(元),用水量为x(m3),则y与x的函数关系用图象表示为()A.B.C.D.二、填空题(共6题;共6分)13.甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系如图所示,则甲的速度为每秒米.14.等腰三角形的周长为16cm,底边长为x cm,腰长为y cm,则x与y之间的关系式为.15.如图所示:图象中所反映的过程是:小冬从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x轴表示时间,y轴表示小冬离家的距离.根据图象提供的信息,下列说法正确的有.①体育场离小冬家2.5千米②小冬在体育场锻炼了15分钟③体育场离早餐店4千米④小冬从早餐店回家的平均速度是3千米/小时16.一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y单位:L)与时间x(单位min)之间的关系如图所示:则8min时容器内的水量为.17.已知等腰三角形的周长为18,设底边长为x,腰长为y,则y与x之间的函数关系式为:(要求写出自变量x的取值范围).18.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需分钟到达终点B.三、综合题(共6题;共64分)19.已知y是x的一次函数,表中给出了部分对应值.x-124ny5-1m-7(1)求该一次函数的表达式;(2)求m,n的值.20.甲、乙两人沿同一路线从A地到B地进行骑车训练,甲先出发,匀速骑行到B地. 乙后出发,并在甲骑行25分钟后提速到原来速度的1.4倍继续骑行(提速过程的时间忽略不计),结果乙比甲早12分钟到B地. 两人距离A地的路程y(单位:千米) 与甲骑行的时间x(单位:分钟)之间的关系如图所示.(1)求甲的速度和乙提速前的速度.(2)求AB两地之间的路程.21.已知等腰三角形的周长为12,设腰长为x,底边长为y.(1)试写出y关于x的函数表达式,并直接写出自变量x的取值范围.(2)当x=5时,求出函数值.22.快、慢两车分别从相距360千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,快车到达乙地后,停留1小时,然后按原路原速返回,快车比慢车晚1小时到达甲地,快、慢两车距各自出发地的路程y(千米)与出发后所用的时间x(小时)的关系如图.请结合图象信息解答下列问题:(1)慢车的速度是千米/小时,快车的速度是千米/小时;(2)求m的值,并指出点C的实际意义是什么?(3)在快车按原路原速返回的过程中快、慢两车相距的路程为150千米时,慢车行驶了多少小时?23.A,B两地相距560km,甲车从A地驶往B地,1h后,乙车以相同的速度沿同一条路线从B地驶往A地,乙车行驶1小时后,乙车的速度提高到120km/h,并保持此速度直到A地.在整个行驶过程中甲车到A地的距离y1(km),乙车到A地的距离y2(km)与甲车行驶的时间x(h)之间的关系如图所示,根据图象回答下列问题:(1)图中点P的坐标是,点M的坐标是.(2)甲、乙两车之间的距离不超过240km的时长是多少?24.甲、乙两车从A地驶向B地,甲车比乙车早行驶2h,并且在途中休息了0.5h,休息前后速度相同,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数表达式,并写出相应的x的取值范围;(3)当甲车行驶多长时间时,两车恰好相距40km.参考答案1.【答案】B 2.【答案】A 3.【答案】D 4.【答案】A 5.【答案】D 6.【答案】D 7.【答案】D 8.【答案】C 9.【答案】D 10.【答案】B 11.【答案】C 12.【答案】C 13.【答案】614.【答案】y=8﹣ 12 x (0<x <8)15.【答案】①②④ 16.【答案】2517.【答案】y=﹣ 12 x+9(0<x <9)18.【答案】7819.【答案】(1)解:设一次函数的表达式为y =kx +b由题意可得 {−k +b =52k +b =−1. 解得 {k =−2b =3.∴一次函数的表达式为y =-2x +3 (2)解:当x =4时,代入可得 m =-2×4+3=-5. 当y =-7时,代入可得 -7=-2n +3 解得n =5.∴m =-5,n =5.20.【答案】(1)解:甲的速度为每分钟15÷50=0.3km设乙提速前的速度为vkm/分钟,根据题意得 (25-5)v+85v (50-25)=15解之:v=0.25.(2)解:∵乙提速前的速度为0.25 km/分钟∴乙提速后的速度为85×0.25=0.4 km/分钟∴乙提速前行驶的路程为0,25×20=5km 设AB 的路程为m 千米,根据题意得m 0,3−(m −50.4+25)=12 解之:m=29.421.【答案】(1)解:由题意得12=2x +y∴y =12-2x . ∵x ,y 是三角形的边长 ∴y <2x ,2x >12-2x ∴3<x <6.(2)解:由(1)知y =12-2x ∴当x =5时,y =2.22.【答案】(1)60;120(2)解:由题意得,60m=360×2﹣120(m ﹣1) 解得m= 14360× 143=280km所以,C 点表示 143 小时时,慢车在距离乙地280千米处,快车在距离甲地280千米处;(3)解:设慢车行驶了x 小时由题意得,60x ﹣120(x ﹣ 360120 ﹣1)=150解得x=5.5小时答:慢车行驶了5.5小时.第 11 页 共 11页 23.【答案】(1)(2,480);(6,0)(2)解:∵甲车的速度是5607=80 ∴ON 的解析式为y 1=80x ;当2≤x ≤6时,设PM 函数解析式为y 2=kx +b ,过点P (2,480),M (6,0)∴{2k +b =4806k +b =0,解得{k =−120b =720∴PM 的函数解析式为y 2=−120x +720当−120x +720−80x =240时,得x=2.4;当80x +120x −720=240时,得x=4.8∴甲、乙两车之间的距离不超过240km 的时长是4.8-2.4=2.4(h ).24.【答案】(1)解:由题意120÷(3.5﹣0.5)=40,a=1×40=40(2)解:①当0≤x≤1时,设y 与x 之间的函数关系式为y=k 1x ,把(1,40)代入,得k 1=40 ∴y=40x ;②当1<x≤ 32时,y=40; ③当 32 <x≤7时,设y 与x 之间的函数关系式为y=k 2x+b ,由题意,得: {32k 2+b =4072k 2+b =120,解得: {k 2=40b =−20,∴y=40x ﹣20; 综上所述: y ={40x(0≤x ≤1)40(1<x ≤32)40x −20(32<x ≤7) (3)解:设乙车行驶的路程y 与时间x 之间的解析式为y=mx+n ,由题意,得: {2m +n =072m +n =120 解得: {m =80n =−160,∴y=80x ﹣160,当40x ﹣20﹣(80x ﹣160)=40时,解得:x=2.5. 当80x ﹣160﹣(40x ﹣20)=40时,解得:x=4.5.答:甲车行驶1小时(或1﹣1.5小时)或2.5小时或4.5小时,两车恰好相距40km。

中考数学专题复习函数过程探究性问题

中考数学专题复习函数过程探究性问题

中考数学专题复习函数过程探究性问题学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、解答题1.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质及其应用的过程.以下是我们研究函数2241x y x -=+的性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在给出的图中补全该函数的大致图象; x… -5-4-3-2 -1 0 1 2 3 4 5 …2241x y x -=+… -2126 -1217 -12 0 324 0 …(2)请根据这个函数的图象,写出该函数的一条性质;(3)已知函数332y x =-+的图象如图所示.根据函数图象,直接写出不等式2234321x x x --+>+的解集.(近似值保留一位小数,误差不超过0.2)2.探究函数性质时,我们经历了列表、描点、连线函数图象,观察分析图象特征,概括函数性质的过程.以下是我们研究函数|26|y x x m =+-++性质及其应用的部分过程,请按要求完成下列各小题. x…2-1-0 1 2 3 4 5 …y (6)54a 2 1b 7 …(1)写出函数关系式中m 及表格中a ,b 的值:m =________,=a _________,b =__________;(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象,并根据图象写出该函数的一条性质:__________; (3)已知函数16y x=的图象如图所示,结合你所画的函数图象,直接写出不等式16|26|x x m x+-++>的解集.3.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数261xy x =+性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充..完整,并在图中补全..该函数图象; x… -5 -4-3 -2 -1 0 1 2 3 4 5 …261xy x =+…1513-2417-125--3 0 3 12524171513…(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在相应的括号内打“√”,错误的在相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y 轴;( )①该函数在自变量的取值范围内,有最大值和最小值,当1x =时,函数取得最大值3;当1x =-时,函数取得最小值-3;( )①当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大;( ) (3)已知函数21y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式26211xx x >-+的解集(保留1位小数,误差不超过0.2).4.探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数2122=-+yx的图象并探究该函数的性质.x①-4-3-2-101234①y①23-a-2-4b-4-21211-23-①(1)列表,写出表中a,b的值:a=____ ,b=.描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数2122=-+yx的图象关于y轴对称;①当x=0时,函数2122=-+yx有最小值,最小值为-6;①在自变量的取值范围内函数y的值随自变量x的增大而减小.(3)已知函数21033y x=--的图象如图所示,结合你所画的函数图象,直接写出不等式212210233xx-<--+的解集.5.在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质一一运用函数解决问题"的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义(0)(0)a aaaa≥⎧=⎨-⎩<.结合上面经历的学习过程,现在来解决下面的问题在函数3y kx b=-+中,当2x=时,4y=-;当0x=时,y 1.=-(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象井并写出这个函数的一条性质;(3)已知函1y32x=-的图象如图所示,结合你所画的函数图象,直接写出不等式1323kx b x-+≤-的解集.6.函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数2||y x =-的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数2||2y x =-+和2| 2|y x =-+的图象如图所示. x … ﹣3 ﹣2 ﹣1 0 1 2 3 …y …﹣6﹣4﹣2﹣2﹣4﹣6…(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A ,B 的坐标和函数-2|2|y x =+的对称轴.(2)探索思考:平移函数2||y x =-的图象可以得到函数2||2y x =-+和2|2|y x =-+的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数2|3|1y x =--+的图象.若点()11,x y 和(22,)x y 在该函数图象上,且213x x >>,比较1y ,2y 的大小.参考答案:1.(1)从左到右,依次为:311221,,,221726--,图见解析;(2)该函数图象是轴对称图象,对称轴是y 轴;(3)0.3,12x x <-<< 【解析】 【分析】(1)直接代入求解即可;(2)根据函数图象,写出函数的性质即可; (3)根据图象交点写出解集即可. 【详解】解:(1)表格中的数据,从左到右,依次为:311221,,,221726--.函数图象如图所示.;(2)①该函数图象是轴对称图象,对称轴是y 轴;①该函数在自变量的取值范围内,有最大值,当0x =,函数取得最大值4;①当0x <是,y 随x 的增大而增大;当0x >是,y 随x 的增大而减小;(以上三条性质写出一条即可)(3)当0.2x =-时,33 3.32x -+=,224 3.81x x -≈+;当0.4=-x 时,33 3.62x -+=,224 3.311x x -≈+;所以0.3x =-是2234321x x x --+=+的一个解;由图象可知1x =和2x =是2234321x x x --+=+的另外两个解;①2234321x x x --+>+的解集为0.3,12x x <-<<.【点睛】本题考查函数图象和性质,能够从表格中获取信息,利用描点法画出函数图象,并结合函数图象解题是关键.2.(1)2-;3;4;(2)作图见解析;当3x <时,y 随x 的增大而减小,当3x >时,y 随x 的增大而增大;(3)0x <或4x > 【解析】 【分析】(1)将表格中的已知数据任意选择一组代入到解析式中,即可求出m ,然后得到完整解析式,再根据表格代入求解其余参数即可;(2)根据作函数图象的基本步骤,在网格中准确作图,然后根据图象写出一条性质即可;(3)结合函数图象与不等式之间的联系,用函数的思想求解即可. 【详解】(1)由表格可知,点()3,1在该函数图象上,①将点()3,1代入函数解析式可得:13236m =+-⨯++, 解得:2m =-,①原函数的解析式为:|26|2y x x =+-+-; 当1x =时,3y =; 当4x =时,4y =; 故答案为:2-;3;4;(2)通过列表-描点-连线的方法作图,如图所示;根据图像可知:当3x <时,y 随x 的增大而减小,当3x >时,y 随x 的增大而增大;故答案为:当3x <时,y 随x 的增大而减小,当3x >时,y 随x 的增大而增大; (3)要求不等式16|26|x x m x+-++>的解集, 实际上求出函数|26|y x x m =+-++的图象位于函数16y x=图象上方的自变量的范围, ①由图象可知,当0x <或4x >时,满图条件, 故答案为:0x <或4x >.【点睛】本题考查新函数图象探究问题,掌握研究函数的基本方法与思路,熟悉函数与不等式或者方程之间的联系是解题关键.3.(1)95-,95;(2)①× ①√ ①√;(3)x <−1或−0.3<x <1.8.【解析】 【分析】(1)代入x=3和x=-3即可求出对应的y 值,再补全函数图象即可; (2)结合函数图象可从增减性及对称性进行判断; (3)根据图象求解即可. 【详解】解:(1)当x=-3时,2618911x y x -==++95=-,当x=3时,2618911x y x ===++95, 函数图象如下:(2)①由函数图象可得它是中心对称图形,不是轴对称图形; 故答案为:× ,①结合函数图象可得:该函数在自变量的取值范围内,有最大值和最小值,当1x =时,函数取得最大值3;当1x =-时,函数取得最小值-3; 故答案为:√ ,①观察函数图象可得:当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大; 故答案为:√.(3)1x <-,0.28 1.78(0.280.2 1.780.2)x x -<<-±<<±26211xx x =-+时,()2(1)2310x x x +--=得11x =-,2 1.8x ,30.3x ≈-, 故该不等式的解集为: x <−1或−0.3<x <1.8. 【点睛】本题主要考查一次函数的图象和性质,一次函数与一元一次不等式,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键. 4.(1)1211-,6-,作图见解析;(2)①√;①√;①×;(3)x <-4或-2<x <1. 【解析】 【分析】(1)把对应的x 的值代入即可求出a 和b 的值,通过描点,用平滑的曲线连接,即可作出图象;(2)观察图象即可判断;(3)找出函数2122=-+y x 的图象比函数21033y x =--的图象低时对应的x 的范围即可. 【详解】(1)当3x =-时,212121132a =-=-+;当0x =时,1262b =-=-; ①1211a =-,6b =-, 故答案为:1211-,6-. 所画图象,如图所示.(2)①观察图象可知函数2122=-+y x 的图象关于y 轴对称,故该说法正确; ①观察图象可知,当x =0时,函数2122=-+y x 有最小值,最小值为6-,故该说法正确; ①观察图象可知,当0x <时,y 随x 的增大而减小,当0x >时,y 随x 的增大而增大,故该项题干说法错误.(3)不等式212210233x x -<--+表现在图象上面即函数2122=-+y x 的图象比函数21033y x =--的图象低,因此观察图象,即可得到212210233x x -<--+的解集为:x <-4或-2<x <1.【点睛】本题主要考查一次函数的图象和性质,一次函数与一元一次不等式,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.5.(1)3342y x =--;(2)见解析,当2x ≥时,y 随x 的增大而增大;当2x <时,y 随x 的增大而减小;(3)14x ≤≤.【解析】【分析】(1)根据在函数y=|kx -3|+b 中,当x=2时,y=-4;当x=0时,y=-1,可以求得该函数的表达式;(2)根据(1)中的表达式可以画出该函数的图象并写出它的一条性质;(3)根据图象可以直接写出所求不等式的解集.【详解】解:(1)由题意,可得23431k b b ⎧-+=-⎪⎨-+=-⎪⎩ 324k b ⎧=⎪∴⎨⎪=-⎩ ∴函数的解析式为:3342y x =-- (2)当2x ≥时,y 随x 的增大而增大;当2x <时,y 随x 的增大而减小;(3)14x ≤≤;【点睛】本题考查一次函数的应用、一元一次不等式与一次函数的关系,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.6.(1)见解析;(2)见解析;(3)见解析.【解析】【分析】(1)根据图形即可得到结论;(2)根据函数图形平移的规律即可得到结论;(3)根据函数关系式可知将函数2||y x =-的图象向上平移1个单位,再向右平移3个单位得到函数2|-3|1y x =-+的图象.根据函数的性质即可得到结论.【详解】解:(1)(0,2)A ,(2,0)B -,函数2| 2|y x =-+的对称轴为2x =-;(2)将函数2||y x =-的图象向上平移2个单位得到函数2||2y x =-+的图象; 将函数2||y x =-的图象向左平移2个单位得到函数2|2|y x =-+的图象;(3)将函数2||y x =-的图象向上平移1个单位,再向右平移3个单位得到函数2|3|1y x =--+的图象.所画图象如图所示,当213x x >>时,12y y >.【点睛】本题考查了一次函数与几何变换,一次函数的图象,一次函数的性质,平移的性质,正确的作出图形是解题的关键.。

中考数学探究性试题精选之反比例函数综合题(含15大题)

中考数学探究性试题精选之反比例函数综合题(含15大题)

中考数学探究性试题精选之反比例函数综合题(含15大题)1.如图1,在平面直角坐标系中,将锐角∠MON 的顶点与原点O 重合,角的一边OM 与x 轴正半轴重合,角的另一边ON 交函数y =kx (k >0,x >0)的图象(记为曲线l )于点A ,在射线ON 的右侧构造矩形ABCD ,对角线AC 和BD 交于点E ,满足AB ∥x 轴,AC =2AO ,作射线OB .(1)若点D (1,√2−1),点E (2+√2,√2),求k 的值; (2)求证:点D 在直线OB 上;(3)如图2,当∠MON =45°时,射线OB 交曲线l 于点F ,以点O 为圆心,12OB 为半径画弧交x 轴于点H ,求证:FH ⊥x 轴.2.如图1,一次函数y =k 1x +b 与反比例函数y =k2x 在第一象限交于M (1,4)、N (4,m )两点,点P 是x 轴负半轴上一动点,连接PM ,PN . (1)求反比例函数及一次函数的表达式; (2)若△PMN 的面积为9,求点P 的坐标;(3)如图2,在(2)的条件下,若点E 为直线PM 上一点,点F 为y 轴上一点,是否存在这样的点E 和点F ,使得以点E 、F 、M 、N 为顶点的四边形是平行四边形?若存在,直接写出点E 的坐标;若不存在,请说明理由.3.如图,直线y=mx+n交x轴于点A,交反比例函数y=kx的图象于C(2,4),D(4,a)两点.(1)求反比例函数的解析式和a的值;(2)根据图象直接写出不等式mx+n>kx的解集;(3)点M为y轴上任意一点,点N为平面内任意一点,若以C,D,M,N为顶点的四边形是菱形,直接写出点N的坐标.4.如图,在平面直角坐标系中,点A在第一象限内,点B(4,0)在x轴上,连接OA、AB,OA=AB,cos∠AOB=√55,反比例函数y=kx(k≠0)的图象经过A点.(1)求k的值;(2)如图,以OA为直角边作等腰直角△AOC,过点C作CD⊥x轴交反比例函数的图象于点E,求E点坐标.5.小明喜欢用几何画板学习研究数学问题.某周末他用几何画板绘制了两个反比例函数y=k1x和y=k2x在第一象限内的图象,分别记为l1和l2,设点E在l1上,EC⊥x轴于点C,交l2于点A,ED⊥y轴于点D,交l2于点B,延长OB交l1于点F,FG⊥y轴于点G.(1)小明利用几何画板的面积测量命令分别测量了四边形EAOB和四边形DBFG的面积,分别记为S1,S2.请推测S1和S2的数量关系并证明;(2)小明连接AB,CD后发现好像是平行关系.请判断AB和CD是否平行并说明理由;(3)若S1=2,DB:BE=1:2,直接写出这两个反比例函数的表达式.6.【定义】在平面内,把一个图形上任意一点与另一个图形上任意一点之间的距离的最小值,称为这两个图形之间的距离,即A,B分别是图形M和图形N上任意一点,当AB的长最小时,称这个最小值为图形M与图形N之间的距离.例如,如图1,AB⊥l1,线段AB的长度称为点A与直线l1之间的距离,当l2∥l1时,线段AB的长度也是l1与l2之间的距离.【应用】(1)如图2,在等腰Rt△BAC中,∠A=90°,AB=AC,点D为AB边上一点,过点D 作DE∥BC交AC于点E.若AB=6,AD=4,则DE与BC之间的距离是;(2)如图3,已知直线l3:y=﹣x+4与双曲线C1:y=kx(x>0)交于A(1,m)与B两点,点A与点B之间的距离是,点O与双曲线C1之间的距离是;【拓展】(3)按规定,住宅小区的外延到高速路的距离不超过80m时,需要在高速路旁修建与高速路相同走向的隔音屏障(如图4).有一条“东南﹣西北”走向的笔直高速路,路旁某住宅小区建筑外延呈双曲线的形状,它们之间的距离小于80m.现以高速路上某一合适位置为坐标原点,建立如图5所示的直角坐标系,此时高速路所在直线l4的函数表达式为y=﹣x,小区外延所在双曲线C2的函数表达式为y=2400x(x>0),那么需要在高速路旁修建隔音屏障的长度是多少?7.一次函数y=12x+2与x轴交于C点,与y轴交于B点,点A(2,a)在直线BC上,过点A做反比例函数y=k x.(1)求出a,k的值;(2)M为线段BC上的点,将点M向右平移4个单位,再向上平移2个单位得到点N,点N恰巧在反比例函数y=kx上,求出点M坐标;(3)在x轴上是否存在点D,使得∠BOA=∠OAD,若存在请直接写出点D坐标,若不存在请说明理由.8.如图,在平面直角坐标系xOy中,四边形ABOC为矩形,点A坐标为(6,3),反比例函数y=3x的图象分别与AB,AC交于点D,E,点F为线段DA上的动点,反比例函数y=kx(k≠0)的图象经过点F,交AC于点G,连接FG.(1)求直线DE的函数表达式;(2)将△AFG沿FG所在直线翻折得到△HFG,当点H恰好落在直线DE上时,求k的值;(3)当点F为线段AD中点时,将△AFG绕点F旋转得到△MFN,其中A,G的对应点分别为M,N,当MN∥DE时,求点N的坐标.9.如图1,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点B在反比例函数y=kx(k>0)的第一象限内的图象上,OA=4,OC=3,动点P在y轴的右侧,且满足S△PCO=3 8S矩形OABC.(1)若点P在这个反比例函数的图象上,求点P的坐标;(2)连接PO、PC,求PO+PC的最小值;(3)若点Q是平面内一点,使得以B、C、P、Q为顶点的四边形是菱形,请你直接写出满足条件的所有点Q的坐标.10.如图,直线AB:y=﹣x+n与坐标轴交于A,B两点,点C为点O关于AB的对称点,连接AC,BC,双曲线y=mx(x>0)的图象经过AC的中点D,S△OAD=2.(1)求双曲线的解析式及n 的值;(2)P (x ,y )为双曲线上任意一点,过P 作y 轴的垂线交直线AB 于点E ,连接PC .求证:PE =PC ;(3)在(2)的条件下,若PC 的延长线交双曲线于另一点Q ,分别过P ,Q 两点作直线AB 的垂线,垂足分别为M ,N ,试判断PQ PM+QN是否为定值,若是,请求出该定值,若不是请说明理由.11.已知一次函数y =−12x +b 的图象与反比例函数y =6x(x >0)的图象交于A 、B 两点,与x 轴、y 轴分别交于C 、D 两点. (1)若A 点的横坐标为32,求b 的值;(2)如图,若AB =2AC ,求A 、B 两点的坐标;(3)在(2)的条件下,将一直角三角板的直角顶点P 放在反比例函数图象的AB 段上滑动,直角边始终与坐标轴平行,且与线段AB 分别交于Q 、R 两点,设点P 的横坐标为x 0,QR 的长为L .问:是否存在点P ,使L 的长为√52,存在请求出符合条件的P 的坐标,不存在请说明理由.12.如图,反比例函数y=kx的图象与正比例函数y=mx的图象交于A,C两点,其中点A的坐标为(2,2√3).(1)求反比例函数及正比例函数的解析式;(2)点E是反比例函数第三象限图象上一点,且EC⊥AC,过点C的直线l1与线段AE 相交,点A,点E到直线l1的距离分别为d1,d2,试求d1+d2的最大值;(3)点B(2,0),在x轴上取一点P(t,0)(t>2),过点P作直线OA的垂线l2,以直线l2为对称轴,线段OB经轴对称变换后得到O′B′,当O′B′与双曲线有交点时,求t的取值范围.13.如图,直线y=32x与双曲线y=k x(k≠0)交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点G是y轴上的动点,连接GB,GC,求GB+GC的最小值;(3)P是坐标轴上的点,Q是平面内一点,是否存在点P,Q,使得四边形ABPQ是矩形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.14.如图,在平面直角坐标系xOy中,一次函数y=﹣x+7的图象与反比例函数y=kx(x>0)的图象相交于A(1,6),B两点,P(0,﹣1)是y轴上的一个定点.(1)求反比例函数的表达式及点B的坐标;(2)H是线段AB上的一点,当△P AB的面积被线段PH分成面积比为2:3的两部分时,求点H的坐标;(3)在(2)的条件下,请在x轴上找点M,平面内找点N,使得四边形PHMN为矩形,求M,N两点的坐标.(直接写出答案)15.如图1,木匠陈师傅现有一块五边形ABFED木板,它是矩形ABCD木板用去△CEF后的余料,AD=4,AB=5,DE=1,F是BC边上一点.陈师傅打算利用该余料截取一块矩形材料,其中一条边在AD上.[初步探究](1)当BF=2时.①若截取的矩形有一边是DE,则截取的矩形面积的最大值是;②若截取的矩形有一边是BF,则截取的矩形面积的最大值是;[问题解决](2)如图2,陈师傅还有另一块余料,∠BAF=∠AFE=90°,AB=EF=1,CD=3,AF=8,CD∥AF,且CD和AF之间的距离为4,若以AF所在直线为x轴,AF中点为原点构建直角坐标系,则曲线DE是反比例函数y=kx图象的一部分,陈师傅想利用该余料截取一块矩形MNGH材料,其中一条边在AF上,所截矩形MNGH材料面积是736.求GN的长.。

中考数学新定义及探究题专题-《二次函数及新定义》-(含解析)

中考数学新定义及探究题专题-《二次函数及新定义》-(含解析)

中考数学新定义及探究题专题《二次函数及新定义》(学生版)【类型1 二次函数问题中的新定义问题】1.(2023春·山东济南·九年级统考期末)新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数(c为常数)在的图象上存在两个二倍点,则c的取值范围是()A.B.C.D.2.(2023春·湖北咸宁·九年级统考期中)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.若互异二次函数的对称轴为直线x=1且图象经过点(﹣1,0),则这个互异二次函数的二次项系数是()A.B.C.1D.﹣13.(2023春·广西南宁·九年级统考期中)新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n-4;m<0时,n′=-n,则称点P′(m,n′)是点P (m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(-2,3)的限变点是P2′(-2,-3).若点P(m,n)在二次函数y=-x2+4x+2的图象上,则当-1≤m≤3时,其限变点P′的纵坐标n'的取值范围是()A.B.C.D.4.(2023春·湖南长沙·九年级长沙市开福区青竹湖湘一外国语学校校考期末)定义:我们不妨把纵坐标是横坐标2倍的点称为“青竹点”.例如:点、……都是“青竹点”.显然,函数的图象上有两个“青竹点”:和.(1)下列函数中,函数图象上存在“青竹点”的,请在横线上打“√”,不存在“青竹点”的,请打“×”.①________;②________;③________.(2)若抛物线(m为常数)上存在两个不同的“青竹点”,求m的取值范围;(3)若函数的图象上存在唯一的一个“青竹点”,且当时,a的最小值为c,求c的值.5.(2023春·江苏泰州·九年级统考期中)定义:两个二次项系数之和为,对称轴相同,且图像与轴交点也相同的二次函数互为友好同轴二次函数.例如:的友好同轴二次函数为.(1)函数的友好同轴二次函数为.(2)当时,函数的友好同轴二次函数有最大值为,求的值.(3)已知点分别在二次函数及其友好同轴二次函数的图像上,比较的大小,并说明理由.6.(2023春·浙江金华·九年级校考期中)定义:若抛物线y=ax2+bx+c与x轴两交点间的距离为4,称此抛物线为定弦抛物线.(1)判断抛物线y=x2+2x﹣3是否是定弦抛物线,请说明理由;(2)当一定弦抛物线的对称轴为直线x=1,且它的图像与坐标轴的交点间的连线所围成的图形是直角三角形,求该抛物线的表达式;(3)若定弦抛物线y=x2+bx+c(b<0)与x轴交于A、B两点(A在B左边),当2≤x≤4时,该抛物线的最大值与最小值之差等于OB之间的距离,求b的值.7.(2023春·浙江·九年级期末)定义:若抛物线与抛物线.同时满足且,则称这两条抛物线是一对“共轭抛物线”.(1)已知抛物线与是一对共轭抛物线,求的解析式;(2)如图1,将一副边长为的正方形七巧板拼成图2的形式,若以BC中点为原点,直线BC 为x轴建立平面直角坐标系,设经过点A,E,D的抛物线为,经过A、B、C的抛物线为,请立接写出、的解析式并判断它们是否为一对共轭抛物线.8.(2023春·湖南长沙·九年级校联考期末)定义:如果抛物线与轴交于点,,那么我们把线段叫做雅礼弦,两点之间的距离称为抛物线的雅礼弦长.(1)求抛物线的雅礼弦长;(2)求抛物线的雅礼弦长的取值范围;(3)设,为正整数,且,抛物线的雅礼弦长为,抛物线的雅礼弦长为,,试求出与之间的函数关系式,若不论为何值,恒成立,求,的值.9.(2023春·河南濮阳·九年级统考期中)小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0)与y=a2x2+b2x+c2(a2≠0)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.求函数y=x2-3x-2的“旋转函数”.小明是这样思考的:由函数y=x2-3x-2可知,a1=1,b1=-3,c1=-2,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面问题:(1)直接写出函数y=x2-3x-2的“旋转函数” ;(2)若函数与y=x2-2nx+n互为“旋转函数”,求(m+n)2020的值;(3)已知函数的图象与x轴交于点A、B两点(A在B的左边),与y轴交于点C,点A、B、C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数互为“旋转函数”10.(2023春·山西大同·九年级统考期中)请阅读下列材料,并完成相应的任务:定义:我们把自变量为的二次函数与(,)称为一对“亲密函数”,如的“亲密函数”是.任务:(1)写出二次函数的“亲密函数”:______;(2)二次函数的图像与轴交点的横坐标为1和,它的“亲密函数”的图像与轴交点的横坐标为______,猜想二次函数()的图像与轴交点的横坐标与其“亲密函数”的图像与轴交点的横坐标之间的关系是______;(3)二次函数的图像与轴交点的横坐标为1和,请利用(2)中的结论直接写出二次函数的图像与轴交点的横坐标.【类型2 二次函数与一次函数综合问题中的新定义问题】1.(2023春·九年级课时练习)定义:由a,b构造的二次函数叫做一次函数y=ax+b的“滋生函数”,一次函数y=ax+b叫做二次函数的“本源函数”(a,b为常数,且).若一次函数y=ax+b的“滋生函数”是,那么二次函数的“本源函数”是.2.(2023春·浙江湖州·九年级统考期中)定义:如果函数图象上存在横、纵坐标相等的点,则称该点为函数的不动点.例如,点是函数的不动点.已知二次函数(是实数).(1)若点是该二次函数的一个不动点,求的值;(2)若该二次函数始终存在不动点,求的取值范围.3.(2023·安徽·模拟预测)已知函数与函数,定义“和函数”.(1)若,则“和函数”;(2)若“和函数”为,则,;(3)若该“和函数”的顶点在直线上,求.4.(2023·北京·模拟预测)城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系,对两点和,用以下方式定义两点间距离:.(1)①已知点,则______.②函数的图象如图①所示,是图象上一点,,求点的坐标.(2)函数的图象如图②所示,是图象上一点,求的最小值及对应的点的坐标.5.(2023春·上海·九年级上海市民办新复兴初级中学校考期中)我们定义【,,】为函数的“特征数”,如:函数的“特征数”是【2,,5】,函数的“特征数”是【0,1,2】(1)若一个函数的“特征数”是【1,,1】,将此函数图像先向左平移2个单位,再向上平移1个单位,得到一个图像对应的函数“特征数”是______;(2)将“特征数”是【0,,】的图像向上平移2个单位,得到一个新函数,这个函数的解析式是______;(3)在(2)中,平移前后的两个函数图像分别与轴交于A、两点,与直线分别交于、两点,在给出的平面直角坐标系中画出图形,并求出以A、、、四点为顶点的四边形的面积;(4)若(3)中的四边形与“特征数”是【1,,】的函数图像有交点,求满足条件的实数的取值范围.6.(2023春·福建龙岩·九年级校考期末)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等.我们称这样的两个函数互为相关函数.例如:一次函数,它的相关函数为(1)已知点A(-2,1)在一次函数的相关函数的图象上时,求a的值.(2)已知二次函数.当点B(m,)在这个函数的相关函数的图象上时,求m的值.7.(2023春·江苏南通·九年级统考期末)定义:若图形与图形有且只有两个公共点,则称图形与图形互为“双联图形”,即图形是图形的“双联图形”,图形是图形的“双联图形”.(1)若直线与抛物线互为“双联图形”,且直线不是双曲线的“双联图形”,求实数的取值范围;(2)如图2,已知,,三点.若二次函数的图象与互为“双联图形”,直接写出的取值范围.8.(2023春·北京·九年级北京市第三中学校考期中)定义:在平面直角坐标系中,图形G 上点P(x,y)的纵坐标y与其横坐标x的差y﹣x称为P点的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.(1)①点A(1,3)的“坐标差”为 ;②抛物线y=﹣x2+3x+3的“特征值”为 ;(2)某二次函数y=﹣x2+bx+c(c≠0)的“特征值”为1,点B(m,0)与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等.①直接写出m= ;(用含c的式子表示)②求b的值.9.(2023春·北京·九年级人大附中校考期中)对某一个函数给出如下定义:若存在实数,对于任意的函数值,都满足,则称这个函数是有界函数,在所有满足条件的中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是.(1)直接写出有界函数的边界值;(2)已知函数是有界函数,且边界值为3,直接写出的最大值;(3)将函数的图象向下平移个单位,得到的函数的边界值是,直接写出的取值范围,使得.10.(2023春·湖南长沙·九年级校考期中)若定义:若一个函数图像上存在纵坐标是横坐标2倍的点,则把该函数称为“明德函数”,该点称为“明德点”,例如:“明德函数”,其“明德点”为(1,2).(1)①判断:函数__________ “明德函数”(填“是”或“不是”);②函数的图像上的明德点是___________;(2)若抛物线上有两个“明德点”,求m的取值范围;(3)若函数的图像上存在唯一的一个“明德点”,且当时,的最小值为,求的值.【类型3 二次函数与几何图形综合问题中的新定义问题】1.(2023春·四川绵阳·九年级统考期末)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形中,点,点,则互异二次函数与正方形有交点时的最大值和最小值分别是()A.4,-1B.,-1C.4,0D.,-1 2.(2023春·山东济南·九年级统考期末)定义:关于x轴对称且对称轴相同的两条抛物线叫作“同轴对称抛物线”.例如:y1=(x﹣1)2﹣2的“同轴对称抛物线”为y2=﹣(x﹣1)2+2.(1)请写出抛物线y1=(x﹣1)2﹣2的顶点坐标;及其“同轴对称抛物线”y2=﹣(x﹣1)2+2的顶点坐标;(2)求抛物线y=﹣2x2+4x+3的“同轴对称抛物线”的解析式.(3)如图,在平面直角坐标系中,点B是抛物线L:y=ax2﹣4ax+1上一点,点B的横坐标为1,过点B作x轴的垂线,交抛物线L的“同轴对称抛物线”于点C,分别作点B、C关于抛物线对称轴对称的点、,连接BC、、、.①当四边形为正方形时,求a的值.②当抛物线L与其“同轴对称抛物线”围成的封闭区域内(不包括边界)共有11个横、纵坐标均为整数的点时,直接写出a的取值范围.3.(2023春·北京门头沟·九年级大峪中学校考期中)定义:对于平面直角坐标系上的点和抛物线,我们称是抛物线的相伴点,抛物线是点的相伴抛物线.如图,已知点,,.(1)点的相伴抛物线的解析式为______;过,两点的抛物线的相伴点坐标为______;(2)设点在直线上运动:①点的相伴抛物线的顶点都在同一条抛物线上,求抛物线的解析式.②当点的相伴抛物线的顶点落在内部时,请直接写出的取值范围.4.(2023春·浙江绍兴·九年级校联考期中)定义:如图1,抛物线与x轴交于A,B两点,点P在该抛物线上(P点与A.B两点不重合),如果△ABP中PA 与PB两条边的三边满足其中一边是另一边倍,则称点P为抛物线的“好”点.(1)命题:P(0,3)是抛物线的“好”点.该命题是_____(真或假)命题.(2)如图2,已知抛物线C:与轴交于A,B两点,点P(1,2)是抛物线C的“好”点,求抛物线C的函数表达式.(3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△AB P的Q点(异于点P)的坐标.5.(2023·安徽安庆·九年级统考期末)在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.已知抛物线y=-与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为______,点A的坐标为______,点B的坐标为______.(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点M的坐标.6.(2023春·湖南长沙·九年级统考期中)定义:在线段MN上存在点P、Q将线段MN分为相等的三部分,则称P、Q为线段MN的三等分点.已知一次函数y=﹣x+3的图象与x、y轴分别交于点M、N,且A、C为线段MN的三等分点(点A在点C的左边).(1)直接写出点A、C的坐标;(2)①二次函数的图象恰好经过点O、A、C,试求此二次函数的解析式;②过点A、C分别作AB、CD垂直x轴于B、D两点,在此抛物线O、C之间取一点P(点P不与O、C重合)作PF⊥x轴于点F,PF交OC于点E,是否存在点P使得AP=BE?若存在,求出点P的坐标?若不存在,试说明理由;(3)在(2)的条件下,将△OAB沿AC方向移动到△O'A'B'(点A'在线段AC上,且不与C重合),△O'A'B'与△OCD重叠部分的面积为S,试求当S=时点A'的坐标.7.(2023春·安徽合肥·九年级统考期中)定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差y﹣x称为点P的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.(1)求点A(2,1)的“坐标差”和抛物线y=﹣x2+3x+4的“特征值”.(2)某二次函数=﹣x2+bx+c(c≠0)的“特征值”为﹣1,点B与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等,求此二次函数的解析式.(3)如图所示,二次函数y=﹣x2+px+q的图象顶点在“坐标差”为2的一次函数的图象上,四边形DEFO是矩形,点E的坐标为(7,3),点O为坐标原点,点D在x轴上,当二次函数y=﹣x2+px+q的图象与矩形的边有四个交点时,求p的取值范围.8.(2023·浙江杭州·九年级统考期中)新定义:我们把两个面积相等但不全等的三角形叫做偏等积三角形.(1)初步尝试如图1,已知等腰直角△ABC,∠ACB=90°,请将它分成两个三角形,使它们成为偏等积三角形.(2)理解运用如图2,已知△ACD为直角三角形,∠ADC=90°,以AC,AD为边向外作正方向ACFB和正方形ADGE,连接BE,求证:△ACD与△ABE为偏等积三角形.(3)综合探究如图3,二次函数y=x2–x–5的图象与x轴交于A,B两点,与y轴交于点C,在二次函数的图象上是否存在一点D,使△ABC与△ABD是偏等积三角形?若存在,请求出点D的坐标;若不存在,请说明理由.9.(2023春·江西赣州·九年级统考期末)我们给出如下定义:在平面直角坐标系xOy中,如果一条抛物线平移后得到的抛物线经过原抛物线的顶点,那么这条抛物线叫做原抛物线的过顶抛物线.如下图,抛物线F2都是抛物线F1的过顶抛物线,设F1的顶点为A,F2的对称轴分别交F1、F2于点D、B,点C是点A关于直线BD的对称点.(1)如图1,如果抛物线y=x2的过顶抛物线为y=ax2+bx,C(2,0),那么①a= ,b= .②如果顺次连接A、B、C、D四点,那么四边形ABCD为()A.平行四边形B.矩形C.菱形D.正方形(2)如图2,抛物线y=ax2+c的过顶抛物线为F2,B(2,c-1).求四边形ABCD的面积.(3)如果抛物线的过顶抛物线是F2,四边形ABCD的面积为,请直接写出点B的坐标.10.(2023春·江西赣州·九年级校考期末)定义:在平面直角坐标系中,抛物线y=a+bx+c (a≠0)与直线y=m交于点A、C(点C在点A右边)将抛物线y=a+bx+c沿直线y=m 翻折,翻折前后两抛物线的顶点分别为点B、D.我们将两抛物线之间形成的封闭图形称为惊喜线,四边形ABCD称为惊喜四边形,对角线BD与AC之比称为惊喜度(Degreeofsurprise),记作|D|=.(1)图①是抛物线y=﹣2x﹣3沿直线y=0翻折后得到惊喜线.则点A坐标 ,点B 坐标 ,惊喜四边形ABCD属于所学过的哪种特殊平行四边形 ,|D|为 .(2)如果抛物线y=m﹣6m(m>0)沿直线y=m翻折后所得惊喜线的惊喜度为1,求m的值.(3)如果抛物线y=﹣6m沿直线y=m翻折后所得的惊喜线在m﹣1≤x≤m+3时,其最高点的纵坐标为16,求m的值并直接写出惊喜度|D|中考数学新定义及探究题专题《二次函数及新定义》(解析版)【类型1 二次函数问题中的新定义问题】1.(2023春·山东济南·九年级统考期末)新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数(c为常数)在的图象上存在两个二倍点,则c的取值范围是()A.B.C.D.【答案】D【分析】由点的纵坐标是横坐标的2倍可得二倍点在直线上,由可得二倍点所在线段的端点坐标,结合图象,通过求抛物线与线段的交点求解.【详解】解:由题意可得二倍点所在直线为,将代入得,将代入得,设,,如图,联立与,得方程,即抛物线与直线有两个交点,,解得,当直线和直线与抛物线交点在点A,上方时,抛物线与线段有两个交点,把代入,得,把代入得,,解得,.故选D.【点睛】本题考查二次函数图象与正比例函数图象的交点问题,解题关键掌握函数与方程及不等式的关系,将代数问题转化为图形问题求解.2.(2023春·湖北咸宁·九年级统考期中)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.若互异二次函数的对称轴为直线x=1且图象经过点(﹣1,0),则这个互异二次函数的二次项系数是()A.B.C.1D.﹣1【答案】B【分析】根据函数的对称轴和互异二次函数的特点计算即可;【详解】由题可知:此函数的横坐标与纵坐标互为相反数,且对称轴为直线x=1且图象经过点(﹣1,0),设此函数为,∴,解得:,∴此函数的二次项系数为;故选B.【点睛】本题主要考查了二次函数的性质,准确计算是解题的关键.3.(2023春·广西南宁·九年级统考期中)新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n-4;m<0时,n′=-n,则称点P′(m,n′)是点P (m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(-2,3)的限变点是P2′(-2,-3).若点P(m,n)在二次函数y=-x2+4x+2的图象上,则当-1≤m≤3时,其限变点P′的纵坐标n'的取值范围是()A.B.C.D.【答案】D【分析】根据新定义得到当m≥0时,n′=-m2+4m+2-4=-(m-2)2+2,在0≤m≤3时,得到-2≤n′≤2;当m<0时,n′=m2-4m-2=(m-2)2-6,在-1≤m<0时,得到-2≤n′≤3,即可得到限变点P′的纵坐标n'的取值范围是-2≤n′≤3.【详解】解:由题意可知,当m≥0时,n′=-m2+4m+2-4=-(m-2)2+2,∴当0≤m≤3时,-2≤n′≤2,当m<0时,n′=m2-4m-2=(m-2)2-6,∴当-1≤m<0时,-2<n′≤3,综上,当-1≤m≤3时,其限变点P′的纵坐标n'的取值范围是-2≤n′≤3,故选:D.【点睛】本题主要考查了二次函数图象上点的坐标特征,解题的关键是根据限变点的定义得到n′关于m的函数.4.(2023春·湖南长沙·九年级长沙市开福区青竹湖湘一外国语学校校考期末)定义:我们不妨把纵坐标是横坐标2倍的点称为“青竹点”.例如:点、……都是“青竹点”.显然,函数的图象上有两个“青竹点”:和.(1)下列函数中,函数图象上存在“青竹点”的,请在横线上打“√”,不存在“青竹点”的,请打“×”.①________;②________;③________.(2)若抛物线(m为常数)上存在两个不同的“青竹点”,求m的取值范围;(3)若函数的图象上存在唯一的一个“青竹点”,且当时,a的最小值为c,求c的值.【答案】(1)×;√;×(2)(3)【分析】(1)根据“青一函数”的定义直接判断即可;(2)根据题意得出关于的一元二次方程,再根据根的判别式得出关于m的不等式,即可求解;(3)根据题意得出关于的一元二次方程,再根据根的判别式得出关于a的二次函数,利用二次函数最值求解即可.【详解】(1)解:①令,方程无解,∴函数图像上不存在“青竹点”,故答案为:×;②令,解得:,,∴函数图像上存在“青竹点”和,故答案为:√;③令,方程无解,∴函数图像上不存在“青竹点”,故答案为:×;(2)解:由题意得,整理,得,∵抛物线(m为常数)上存在两个不同的“青竹点”,∴,解得;(3)解:由题意得整理,得∵函数的图像上存在唯一的一个“青竹点”,∴整理,得∴当时,a的最小值为,∵当时,a的最小值为c,∴∴,【点睛】本题属于函数背景下新定义问题,主要考查二次函数的性质,二次函数与一元二次方程的关系,解题关键是掌握二次函数图象与系数的关系,掌握二次函数与方程的关系,一元二次方程根的判别式.5.(2023春·江苏泰州·九年级统考期中)定义:两个二次项系数之和为,对称轴相同,且图像与轴交点也相同的二次函数互为友好同轴二次函数.例如:的友好同轴二次函数为.(1)函数的友好同轴二次函数为.(2)当时,函数的友好同轴二次函数有最大值为,求的值.(3)已知点分别在二次函数及其友好同轴二次函数的图像上,比较的大小,并说明理由.【答案】(1);(2);(3)当时,;当时,;当时,【分析】(1)根据友好同轴二次函数的定义,找出的友好同轴二次函数即可;(2)根据友好同轴二次函数的定义,找出的友好同轴二次函数,判断函数图像开口方向,利用函数的对称轴和自变量范围进行最大值讨论;(3)先根据友好同轴二次函数的定义,找出的友好同轴二次函数,再把两点代入,作差后比较大小,为含参数的二次不等式,求解的范围即可.【详解】(1)设友好同轴二次函数为,由函数可知,对称轴为直线,与轴交点为,,,对称轴为直线,,友好同轴二次函数为;(2)由函数可求得,该函数的友好同轴二次函数为;①当时,时,,解得:;②当时,时,,解得:;综上所述,;(3)由函数可求得,该函数的友好同轴二次函数为,把分别代入可得,,,则,,,①当时,,即,,解得:;②当时,,即,,解得:;③当时,,即,,解得:;综上所述,当时,;当时,;当时,.【点睛】本题考查二次函数的性质以及新定义问题,掌握二次函数的基本性质以及研究手段,准确根据题意求出符合要求的友好同轴二次函数是解题关键.6.(2023春·浙江金华·九年级校考期中)定义:若抛物线y=ax2+bx+c与x轴两交点间的距离为4,称此抛物线为定弦抛物线.(1)判断抛物线y=x2+2x﹣3是否是定弦抛物线,请说明理由;(2)当一定弦抛物线的对称轴为直线x=1,且它的图像与坐标轴的交点间的连线所围成的图形是直角三角形,求该抛物线的表达式;(3)若定弦抛物线y=x2+bx+c(b<0)与x轴交于A、B两点(A在B左边),当2≤x≤4时,该抛物线的最大值与最小值之差等于OB之间的距离,求b的值.【答案】(1)是定弦抛物线,理由见解析(2)或(3)b=﹣4或【分析】(1)令y=0,求出与x轴的交点坐标,可判断;(2)分开口向上向下讨论,利用定弦抛物线的定义和对称轴可求出与x轴交点坐标,用相似求出与y轴交点坐标,代入可得答案;(3)根据对称轴和所给范围分情况讨论即可.【详解】(1)解:当y=0时,x2+2x﹣3=0,解得:x1=1,x2=﹣3,则|x1 -x2|=4,即该抛物线是定弦抛物线;(2):当该抛物线开口向下时,如图所示.∵该定弦抛物线的对称轴为直线x=1,设则解得:∴C(﹣1,0),D(3,0),∵△CED为直角三角形∴由题意可得∠CED=90°,∵EO⊥CD,∴△CEO∽△EDO,∴OE2=OC·OD=3,∴E(0,)设该定弦抛物线表达式为,把E(0,)代入求得∴该定弦抛物线表达式为,当该抛物线开口向上时,同理可得该定弦抛物线表达式为,∴综上所述,该定弦抛物线表达式为或;(3)解:若≤ 2,则在2≤x ≤4中,当x=4时该定弦抛物线取最大值,当x=2时该定弦抛物线取最小值.∴l6+4b+c-(4+2b+c)=+2,解得:b=﹣4,∵≤ 2,∴b≥﹣4,即b=﹣4,若≤ 3,则在2≤x≤4中,当x=4时该定弦抛物线取最大值,当x=时该定弦抛物线取最小值.∴16+4b+c﹣=+2,解得:b1=﹣4,b2=﹣14,∵2≤≤3,∴﹣6≤b≤﹣4,∴b1=﹣4,b2=﹣14(舍去),若≤ 4,则在2≤x ≤4中,当x=2时该定弦抛物线取最大值,当x=时该定弦抛物线取最小值.∴4+2b+c﹣=+2,解得:b=﹣5,∵≤4,∴﹣8≤b<﹣6,∴b=﹣5不合题意,舍去,若>4,则在2≤x≤ 4中,当x=2时该定弦抛物线取最大值,当x=4时该定弦抛物线取最小值.∴4+2b+c-(16+4b+c)=+2,解得:b=-,∵>4,∴b<﹣8,∴b=﹣,∴综上所述b=﹣4或.【点睛】本题考查了二次函数的综合性质,包括与x轴交点问题,最值问题,以及和相似的结合,准确地理解定弦抛物线的定义以及分类讨论是解决本题的关键.7.(2023春·浙江·九年级期末)定义:若抛物线与抛物线.同时满足且,则称这两条抛物线是一对“共轭抛物线”.(1)已知抛物线与是一对共轭抛物线,求的解析式;(2)如图1,将一副边长为的正方形七巧板拼成图2的形式,若以BC中点为原点,直线BC 为x轴建立平面直角坐标系,设经过点A,E,D的抛物线为,经过A、B、C的抛物线为,请立接写出、的解析式并判断它们是否为一对共轭抛物线.【答案】(1)(2),,、是一对共轭抛物线【分析】(1)将化作顶点式,可求出,和的值,根据“共轭抛物线”的定义可求出,和的值,进而求出的解析式;(2)根据七巧板各个图形之间的关系可求出各个图形的边长,进而可表示点,,,,的坐标,分别求出和的解析式,再根据“共轭抛物线”的定义可求解.【详解】(1)解:,∴,,,∵抛物线与是一对共轭抛物线,∴,且,.(2)解:如图,由题意得,,则,,,,,∵点为的中点,∴,∴,,,,,∴可设抛物线,与抛物线,∴,,解得:,,∴抛物线,抛物线,∴,,,,,,∵,,∴满足且,∴、是一对共轭抛物线.【点睛】本题属于二次函数的新定义类问题,主要考查利用待定系数法求函数表达式,二次函数的顶点式,一般式及交点式三种方式的变换,熟知相关运算是解题关键.8.(2023春·湖南长沙·九年级校联考期末)定义:如果抛物线与轴。

中考数学考点精练:二次函数探究与应用(压轴题带答案)

中考数学考点精练:二次函数探究与应用(压轴题带答案)

二次函数探究与应用(压轴题)一、实践探究题1.(1)【问题初探】综合与实践数学活动课上,张老师给出了一个问题:已知二次函数y=x2+2x-3,当-2≤x≤2时,y的取值范围为;①小伟同学经过分析后,将原二次函数配方成y=a(x-h)2+k形式,确定抛物线对称轴为直线x=h,通过-2、h和2的大小关系,分别确定了最大值和最小值,进而求出y的取值范围;②小军同学画出如图的函数图象,通过观察图象确定了y的取值范围;请你根据上述两名同学的分析写出y的取值范围是;(2)【类比分析】张老师发现两名同学分别从“数”和“形”的角度分析、解决问题,为了让同学们更好感悟“数形结合”思想,张老师将前面问题变式为下面问题,请你解答:已知二次函数y=-x2+2x-3,当-2≤x≤2时,求y的取值范围;(3)【学以致用】已知二次函数y=-x2+6x-5,当a≤x≤a+3时,二次函数的最大值为y1,最小值为y2,若y1-y2=3,求a的值.2.综合与实践中国旅游研究院2024年1月5日发布的“2024年冰雪旅游十佳城市”中,哈尔滨位列榜首,火爆出圈,其中帽儿山的滑雪运动深受欢迎.滑雪爱好者小李为了得出滑行距离(单位:m)与滑行时间(单位:s)之间的关系,以便更好地享受此项运动所带来的乐趣,他在滑道A上设置了若干个观测点,收集一些数据,如下表所示:点位1点位2点位3点位4点位5点位6点位7滑行时间滑行距离(1)请你在平面直角坐标系中描出表中数据所对应的7个点,并用平滑的曲线连接它们;(2)观察由(1)所得的图象,请你依图象选用一个函数近似地表示与之间的函数关系,并求出这个近似函数的关系式(不要求写出自变量的取值范围);(3)若另一名滑雪爱好者小张在小李出发5秒后沿着滑道B滑行(两条滑道互相平行,且起点在同一直线上),他的滑行距离(单位:m)与滑行时间(单位:s)可近似地看成二次函数,当小李滑行距离为384m时,他比小张多滑行的距离不超过160m,求的最小值.(参考数据:)3.综合与实践【问题提出】某兴趣小组开展综合实践活动:在中,,为上一点,,动点以每秒1个单位的速度从点出发,在三角形边上沿匀速运动,到达点时停止,以为边作正方形.设点的运动时间为,正方形的面积为,探究与的关系.(1)【初步感知】如图1,当点由点运动到点时,①当时,;②关于的函数解析式为.(2)当点由点运动到点时,经探究发现是关于的二次函数,并绘制成如图2所示的图象.请根据图象信息,求关于的函数解析式及线段的长.(3)【延伸探究】若存在3个时刻,,对应的正方形的面积均相等.①▲;②当时,求正方形的面积.4.如图①,利用喷水头喷出的水对小区草坪进行喷灌作业是养护草坪的一种方法.如图②,点处有一个喷水头,距离喷水头的处有一棵高度是的树,距离这棵树的处有一面高的围墙,建立如图所示的平面直角坐标系,已知某次浇灌时,喷水头喷出的水柱的坚直高度(单位:)与水平距离(单位:近似满足函数关系.(1)某次喷水浇灌时,测得与的几组数据如下:0261012141600.88 2.16 2.80 2.88 2.80 2.56①根据上述数据,求这些数据满足的函数关系;②判断喷水头喷出的水柱能否越过这棵树,并请说明理由;(2)某次喷水浇灌时,已知喷水头喷出的水柱的坚直高度与水平距离近似满足函数关系.假设喷水头喷出的水柱能够越过这棵树,且不会浇到墙外,下面有四个关于的不等式:A.B.C.D.其中正确的不等式是.(填上所有正确的选项)5.定义:对角线互相垂直且相等的四边形叫做垂等四边形.(1)理解应用:如图,在平面直角坐标系xOy中,已知四边形OABC是垂等四边形,点A的坐标为(4,0),点C的坐标为(0,3),则点B的坐标为.(2)综合探究:如图,已知抛物线y=﹣x2+2x+3与x轴交于A,B两点,点A在点B的左侧,C,D两点在该抛物线上.若以A,B,C,D为顶点的四边形是垂等四边形.设点C的横坐标为m,点D 的横坐标为n,且m>n,求m的值.6.用一条直线截三角形的两边,若所截得的四边形对角互补,则称该直线为三角形第三条边上的逆平行线.如图1,DE为△ABC的截线,截得四边形BCED,若∠BDE+∠C=180°,则称DE为△ABC 边BC的逆平行线.如图2,已知△ABC中,AB=AC,过边AB上的点D作DE∥BC交AC于点E,过点E作边AB的逆平行线EF,交边BC于点F.(1)求证:DE 是边BC 的逆平行线.(2)点O 是△ABC 的外心,连接CO .求证:CO ⊥FE .(3)已知AB =5,BC =6,过点F 作边AC 的逆平行线FG ,交边AB 于点G .①试探索AD 为何值时,四边形AGFE 的面积最大,并求出最大值;②在①的条件下,比较AD +BG▲AB 大小关系.(“<、>或=”)7.根据以下素材,探索完成任务.素材1某学校一块劳动实践基地大棚的横截面如图所示,上部分的顶棚是抛物线形状,下部分是由两根立柱和组成,立柱高为,顶棚最高点距离地面是,的长为.素材2为提高灌溉效率,学校在的中点处安装了一款可垂直升降的自动喷灌器,从喷水口喷出的水流可以看成抛物线,其形状与的图象相同,,此时水流刚好喷到立柱的端点处.问题解决任务1确定顶棚的形状以顶棚最高点为坐标原点建立平面直角坐标系,求出顶棚部分抛物线的表达式.任务2探索喷水的高度问处喷出的水流在距离点水平距离为多少米时达到最高.任调整喷头的高度如何调整喷水口的高度(形状不变),使水流喷灌时恰好落在边缘处.8.根据以下材料,探索完成任务:智能浇灌系统使用方案材料如图1是一款智能浇灌系统,水管OP垂直于地面并可以随意调节高度(OP最大高度不超过2.4m),浇灌花木时,喷头P处会向四周喷射水流形成固定形状的抛物线,水流落地点M与点O的距离即为最大浇灌距离,各方向水流落地点形成一个以点O为圆心,OM为半径的圆形浇灌区域.当喷头P位于地面与点O重合时,某一方向的水流上边缘形成了如图2的抛物线,经测量,,水流最高时距离地面0.1m.如图3,农科院将该智能浇灌系统应用于一个长8m,宽6m的矩形试验田中,水管放置在矩形中心O处.问题解决任务1确定水流形状在图2中建立合适的平面直角坐标系,求抛物线的函数表达式.任务2探究浇灌最大区域当调节水管OP的高度时,浇灌的圆形区域面积会发生变化,请你求出最大浇灌圆形区域面积.(结果保留)任务3解决具体问题若要保证浇灌区域能完全覆盖矩形试验田,则水管OP至少需要调节到什么高度?9.在平面直角坐标系中,抛物线y=﹣x2+bx+c(b,c是常数)与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C.P为x轴上方抛物线上的动点(不与点C重合),设点P的横坐标为m.(1)直接写出b,c的值;(2)如图,直线l是抛物线的对称轴,当点P在直线l的右侧时,连接PA,过点P作PD⊥PA,交直线l于点D.若PA=PD,求m的值;(3)过点P作x轴的平行线与直线BC交于点Q,线段PQ的长记为d.①求d关于m的函数解析式;②根据d的不同取值,试探索点P的个数情况.10.(1)【建立模型】如图1,点B是线段CD上的一点,AC⊥BC,AB⊥BE,ED⊥BD,垂足分别为C,B,D,AB=BE.求证:;(2)【类比迁移】如图2,点A(﹣3,a)在反比例函数图像上,连接OA,将OA绕点O 逆时针旋转90°到OB,若反比例函数经过点B.①求点B的坐标;②求反比例函数的解析式;(3)【拓展延伸】如图3,抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于C点,已知点Q(0,﹣1),连接AQ,抛物线上是否存在点M,使得∠MAQ=45°,若存在,求出点M的横坐标.11.综合与实践问题提出:某兴趣小组开展综合实践活动:在中,,D为上一点,,动点P以每秒1个单位的速度从C点出发,在三角形边上沿匀速运动,到达点A时停止,以为边作正方形设点P的运动时间为,正方形的面积为S,探究S与t的关系(1)初步感知:如图1,当点P由点C运动到点B时,①当时,.②S关于t的函数解析式为.(2)当点P由点B运动到点A时,经探究发现S是关于t的二次函数,并绘制成如图2所示的图象请根据图象信息,求S关于t的函数解析式及线段的长.(3)延伸探究:若存在3个时刻()对应的正方形的面积均相等.①▲;②当时,求正方形的面积.12.我们不妨约定,如果点(x,y)满足2x+y=2024,那么称这个点(x,y)为“郡系点”.如果一个函数的图象经过一个“郡系点”,那么称这个函数为“郡系函数”.(1)对下面的结论进行判断,请在正确结论的后面的括号中打“√”,错误结论后面的括号中打“×”.①点(1,2022)为“郡系点”(▲);②已知y(m为常数,且m≠0),它的图象经过的“郡系点”的坐标为(﹣1,n),则m=2025(▲),n=2026(▲).(2)已知点A(1,c)和B(2,c+2),那么线段AB上是否存在“郡系点”?如果存在,请表示出来;如果不存在,请说明理由.(3)已知关于x的二次函数y=ax2+(b﹣2024)x+a﹣2(a,b均为正整数)为“郡系函数”,其图象满足下面两个条件:(Ⅰ)图象经过四个象限;(Ⅱ)M,N是图象上的两个“郡系点”,且MN=90,试求该二次函数的解析式和它的“郡系点”M,N的坐标.13.我们把与轴有两个不同交点的函数称为“五好函数”,交点称为“五好点”,两交点间的距离称为“五好距”.(1)判断下列函数是“五好函数”吗?如果是,请在括号里打“”,如果不是则打“”;▲;;(2)求出“五好函数”的“五好距”;(3)已知“五好函数”:左侧的“五好点”位于和之间含,两点,求的取值范围;不论取何值,不等式恒成立,在的条件下,函数为常数的最小值为,求的值.14.定义:若抛物线与x轴有两个交点,其顶点与这两个交点构成的三角形是等腰直角三角形,则这种抛物线就称为:“美丽抛物线”.(1)已知一条抛物线是“美丽抛物线”,且与x轴的两个交点为(1,0)、(5,0),则此抛物线的顶点为;(2)若抛物线y=x2﹣bx(b>0)是“美丽抛物线”,求b的值;(3)如图,抛物线y=ax2+bx+c是“美丽抛物线”,此抛物线顶点为B(1,2),与轴交与A,C,AB与y轴交于点D,连接OB,在抛物线找一点Q,使得∠QCA=∠ABO,求Q点的横坐标.15.在学习二次函数与一元二次方程时,从二次函数图象可得如下结论.如果抛物线与x轴有公共点的横坐标是,那么当x=时,函数值是0,因此是方程的一个根.同学们,请你结合所学的数学知识解决下列问题(1)若二次函数(m为常数)与x轴两交点的横坐标为,,,求二次函数的解析式;(2)不论m为何值,该函数的图象都会经过一个定点,求定点的坐标;(3)在(1)的条件下,当,时,对应的函数值为N,Q,若求证:16.我们约定:若关于x的二次函数y1与同时满足0,则称函数y1与函数y2互为“美美与共”函数.根据该约定,解答下列问题:(1)若关于x的二次函数.与y2=互为“美美与共”函数,求k,m,n的值.(2)对于任意非零实数r,s,点P(r,t)与点Q(s,t)(r≠s)始终在关于x的函数.的图象上运动,函数y2与y1互为“美美与共”函数.①求函数y2的图象的对称轴.②函数y2的图象是否经过某两个定点?若经过某两个定点,求出这两个定点的坐标;若不经过,请说明理由.(3)在同一平面直角坐标系中,若关于x的二次函数与它的“美美与共”函数y2的图象顶点分别为A,B,函数y1的图象与x轴相交于不同两点C,D,函数y2的图象与x轴相交于不同两点E,F.当CD=EF时,以A,B,C,D为顶点的四边形能否为正方形?若能,求出该正方形面积的取值范围;若不能,请说明理由.17.根据以下素材,探索完成任务.如何设计拱桥景观灯的悬挂方案?素材1图1中有一座拱桥,图2是某抛物线形桥拱的示意图,某时测得水面宽20m,拱顶离水面5m.据调查,该河段水位在此基础上再涨1.8m达到最高.素材2为迎佳节,拟在图1桥沿前面的桥拱上悬挂40cm长的灯笼,如图3.为了安全,灯笼底部距离水面不小于1m;为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6m;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.问题解决(1)任务1确定桥拱形状在图2中建立合适的直角坐标系,求抛物线的函数表达式.(2)任务2探究悬挂范围在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.(3)任务3拟定设计方案给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.18.综合与探究如图,已知抛物线经过点、、,连接,点是的中点,抛物线的对称轴交轴于点,连接.(1)求抛物线的解析式及的值;(2)点在抛物线的对称轴上,若的周长最小,则点的坐标为;(3)求线段的长及的度数;(4)若点是轴上一动点,则在坐标平面内是否存在点,使以点、、、为顶点的四边形是正方形?若存在,请直接写出点的坐标;若不存在,请说明理由.19.二次函数的图象交轴于原点及点.(1)感知特例:当时,如图1,抛物线上的点,,,,分别关于点中心对称的点为,,,,,如下表:…(▲,▲)………①补全表格:A(▲,▲)②请在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为.(2)形成概念:我们发现形如(1)中的图象上的点和抛物线上的点关于点中心对称,则称是的“孔像抛物线”.例如,当时,图2中的抛物线是抛物线的“孔像抛物线”.探究问题①当时,若抛物线与它的“孔像抛物线”的函数值都随着的增大而减小,则的取值范围为▲;②若二次函数及它的“孔像抛物线”与直线有且只有三个交点,求的值.20.【定义】在平面直角坐标系中,有一条直线,对于任意一个函数图象,把该图象在直线上的点以及直线右边的部分向上平移(为正整数)个单位长度,再把直线左边的部分向下平移个单位长度,得到一个新的函数图象,则这个新函数叫做原函数关于直线的“移函数”,例如:函数关于直线的2移函数为.根据以上信息,解答下列问题:(1)已知点在函数()关于直线的“3移函数”图象上,求的值;(2)若二次函数关于直线的“移函数”与轴有三个公共点,设是这三个点的横坐标之和,是否存在一个正整数,使得的值为整数?若存在,求出的值;若不存在,请说明理由.21.综合运用如图,在平面直角坐标系中,已知抛物线与轴交于、两点,与轴交于点,连接.(1)求抛物线的解析式与顶点坐标;(2)如图1,在对称轴上是否存在一点,使,若存在,请求出点的坐标;若不存在,请说明理由;(3)如图2,若点是抛物线上的一个动点,且,请直接写出点的横坐标.22.阅读素材,完成任务.测试机器人行走路径素材一图1是某校科技兴趣小组设计的一个可以帮助餐厅上菜的机器人,该机器人能根据指令要求进行旋转和行走.如图为机器人所走的路径.机器人从起点出发,连续执行如下指令:机器人先向前直行(表示第次行走的路程),再逆时针旋转,直到第一次回到起点后停止.记机器人共行走的路程为,所走路径形成的封闭图形的面积为S .素材二如图2,当每次直行路程均为1(即),时,机器人的运动路径为,机器人共走的路程,由图2图3易得所走路径形成的封闭图形的面积为.素材三如图4,若,机器人执行六次指令后回到起点处停止.解决问题任固定变探索探索内容程度,求度程,请直接写出与最大时23.配方法是数学中重要的一种思想方法,利用配方法可求一元二次方程的根,也可以求二次函数的顶点坐标等,所谓配方法是指将一个式子的某部分通过恒等变形化为完全平方式或几个完全平方式的和的方法,其实这种方法还经常被用到代数式的变形中,并结合非负数的意义解决某些问题.我们规定:一个整数能表示成(a,b是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”,理由:因为,所以5是“完美数”.(1)【解决问题】:下列各数中,“完美数”有(只填序号);①10②24③34④60(2)【探究问题】:若可配方成(m,n为常数),则的值为;(3)已知(a,b是整数,k是常数),要使S为“完美数”,试求出符合条件的一个k值,并说明理由;(4)【拓展应用】:已知实数x,y均满足,求代数式的最小值.24.综合与探究如图,某一次函数与二次函数的图象交点为A(-1,0),B(4,5).(1)求抛物线的解析式;(2)点C为抛物线对称轴上一动点,当AC与BC的和最小时,点C的坐标为;(3)点D为抛物线位于线段AB下方图象上一动点,过点D作DE⊥x轴,交线段AB于点E,求线段DE长度的最大值;(4)在(2)条件下,点M为y轴上一点,点F为直线AB上一点,点N为平面直角坐标系内一点,若以点C,M,F,N为顶点的四边形是正方形,请直接写出点N的坐标.25.【综合与实践】根据以下素材,探索完成任务.素材1图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽,拱顶离水面.据调查,该河段水位在此基础上再涨达到最高.素材2为迎佳节,拟在图1桥洞前面的桥拱上悬挂长的灯笼,如图3.为了安全,灯笼底部距离水面不小于;为了实效,相邻两盏灯笼悬挂点的水平间距均为;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.(1)任务1确定桥拱形状:在图2中建立合适的直角坐标系,求抛物线的函数表达式.(2)任务2探究悬挂范围:在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.(3)任务3拟定设计方案:请你设计一种符合所有悬挂条件的方案.26.定义:关于x轴对称且对称轴相同的两条抛物线叫作“同轴对称抛物线”.例如:的“同轴对称抛物线”为.(1)抛物线的顶点坐标为,它的“同轴对称抛物线”为;(2)如图,在平面直角坐标系中,第四象限的点B是抛物线上一点,点B的横坐标为1,过点B作x轴的垂线,交抛物线的“同轴对称抛物线”于点C,分别作点B、C关于抛物线的对称轴对称的点、,连接BC、、、.当四边形为正方形时,求a的值.27.某数学兴趣小组对函数y=|x2+2x|的图象和性质进行了探究,探究过程如下所示,其中自变量x 取全体实数,x与y的几组对应值如表所示.x-4-3-2-10123y8m0n03815(1)根据如表数据填空:m=,n=;(2)在如图所示的平面直角坐标系中描点,并用平滑的曲线将函数图象补充完整;(3)观察该函数的图象,解决下列问题.①该函数图象与直线y=的交点有个;②当x取何值时,y随x的增大而减小,请写出x的取值范围;③在同一平面内,若直线y=x+b与函数y=|x2+2x|的图象有a个交点,且a≥3,求b的取值范围.28.前面我们学习了一次函数,反比例函数,二次函数的图象和性质,积累了一定的学习经验,相信大家都掌握了探究函数图象和性质的路径.下面是探究函数的图象和性质的过程.阅读并回答相关问题.列表:自变量x与函数y的对应值表.x…-5-4-3-2-1012345…y…1m-3-3n…(1)①表格中的m=,n=.②描点:根据表中的数值描点(x,y),请在下面的平面直角坐标系中补充描点(-2,m)和点(4,n).③连线:请在下面的平面直角坐标系中用光滑曲线顺次连接各点,画出函数图象.(2)请写出该函数图象的一条性质:.(3)运用该函数图象,直接写出方程的解是:x=.(4)若关于x 方程有4个实数解,则实数k 的范围是.29.定义:若一个函数图象上存在纵坐标与横坐标互为相反数的点,则称该点为这个函数图象的“互逆点”(1)若点M (-2,m )是一次函数y =kx +6的图象上的“互逆点”,则k =若点N (n ,-n )是函数y的图象上的“互逆点”,则n =(2)若点P (p ,3)是二次函数y =x 2+bx +c 的图象上唯一的“互逆点”,求这个二次函数的表达式;(3)若二次函数y =ax 2+bx +c (a ,b 是常数,a >0)的图象过点(0,2),且图象上存在两个不同的“互逆点”A (x 1,-x 1),B (x 2,-x 2),且满足-1<x 1<1,|x 1x 2|=2,如果z =b 2+2b +2,请求出z 的取值范围。

专题06 函数探究型问题(解析版)-备战2022年中考数学必刷300题(全国通用)

专题06 函数探究型问题(解析版)-备战2022年中考数学必刷300题(全国通用)

六、函数探究型问题例题演练1.小帆根据学习函数的过程与方法,对函数y=x|ax+b|(a>0)的图象与性质进行探究.已知该函数图象经过点(2,1),且与x轴的一个交点为(4,0).(1)求函数的解析式;(2)在给定的平面直角坐标系中:①补全该函数的图象;②当2≤x≤4时,y随x的增大而减小(在横线上填增大或减小);③当x<4时,y=x|ax+b|的最大值是1;①直线y=k与函数y=x|ax+b|有两个交点,则k=0或1.【解答】解:(1)将点(2,1),(4,0)代入y=x|ax+b|,得到a=﹣1,b=4或a=1,b=﹣4,∵a>0,∴a=1,b=﹣4,∴y=x|x﹣4|;(2)①如图所示:②由图可知,当2≤x≤4时,y随x的增大而减小;故答案为减小;③当x<4时,由图象可知,当x=2时,y=x|x﹣4|有最大值,此时y=1,故答案为1;④直线y=k与函数y=x|x﹣4|有两个交点,由图象可知,k=0或k=1;故答案0或1.2.有这样一个问题:探究函数y=的图象与性质,小童根据学习函数的经验,对函数的图象与性质进行了研究.已知当x=2时,y=7;当x=0时,y=﹣3.下面是小童探究的过程,请补充完整:(1)该函数的解析式为y=(x≠1),m=1;n=;根据图中描出的点,画出函数图象.x…﹣4﹣3﹣20234…y…m﹣37n…(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“×”.①该函数图象是中心对称图形,它的对称中心是原点.(×)②该函数既无最大值也无最小值.(√)③在自变量的取值范围内,y随x的增大而减小.(×)(3)请结合(1)中函数图象,直接写出关于x的不等式﹣2x﹣2≥0的解集x≤﹣1.2或1<x≤2.2.【解答】解:(1)把x=2,y=7;x=0,y=﹣3代入y=,得,解得∴函数的解析式为y=(x≠1);当x=﹣4时,y===1;当x=3时,y==,∴m=1,n=,描点、连线,画出函数图象如图:故答案为y=(x≠1),1,;(2)由图象可知:①该函数图象是中心对称图形,它的对称中心是(1,2).②该函数既无最大值也无最小值.③x>1时,y随x的增大而减小;故答案为×,√,×;(3)由图象可知,关于x的不等式﹣2x﹣2≥0的解集故答案为:x≤﹣1.2或1<x ≤2.2,故答案为x≤﹣1.2或1<x≤2.2.3.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=﹣性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在图中补全该函数图象:x…﹣5﹣4﹣3﹣2﹣1012345…y=﹣…30﹣3﹣﹣…(2)观察函数图象,写出该函数的一条性质:当x<0时,y随x值的增大而增大;(3)已知函数y =﹣x +1的图象如图所示,结合你所画的函数图象,直接写出不等式的解集(保留1位小数,误差不超过0.2).【解答】解:(1)把下表补充完整如下:x … ﹣5 ﹣4 ﹣3 ﹣2 ﹣10 1 2 34 5 … y =﹣…3﹣3﹣…函数y =﹣的图象如图所示:(2)由图可知,当x <0时,y 随x 值的增大而增大, 故答案为当x <0时,y 随x 值的增大而增大; (3)由图象可知,不等式的解集为﹣2≤x ≤1.3或x ≥2.5.4.函数图象在探索函数的性质中有非常重要的作用,现在就一类特殊的函数展开探索:y =x +,探索函数图象和性质过程如下: x … ﹣6 ﹣4 ﹣2 ﹣1 ﹣0.5 0.5 1 n 4 6 …y…﹣m﹣4﹣5﹣545…(1)上表是该函数y 与自变量x 的几组对应值,则a = 4 ,m = ﹣5 ,n = 2 ;(2)如图,在平面直角坐标系中,已经描出了表中部分点,请根据描出的点画出该函数图象;(3)由函数图象,写出该函数的一条性质: 该函数图象关于原点对称 ;(4)请在同一个平面直角坐标系中画出函数y =2x 的图象,并直接写出不等式x +≤2x 的解集: ﹣2≤x <0或x ≥2 . 【解答】解:(1)x =﹣1时,y =﹣5, ∴﹣1﹣a =﹣5, ∴a =4. ∴,令x =﹣4,得m =﹣5, 令y =4,得n =2, 故答案为:4;﹣5;2. (2)图象如图所示:(3)该函数图象关于原点对称;当x>2时,随x的增大而增大;当x<﹣2时,随x的增大而增大,(答案不唯一,写出一条即可).(4)图象如图所示;﹣2≤x<0或x≥2.解:两个函数的交点坐标为(﹣2,﹣4)和(2,4),数形结合可知不等式的解集为﹣2≤x<0或x≥2.故答案为:﹣2≤x<0或x≥2.5.在初中阶段的学习中,我们经历了列表,描点,连线画函数图象,并结合函数图象研究函数性质的过程.若函数y1=的图象过点(2,2),请根据函数学习的经验,完成下列问题:(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,用你喜欢的方法画出这个函数的图象并写出这个函数的一条性质;(3)结合你所画的函数图象,直接写出不等式y1≥3的解集.【解答】解:(1)点(2,2)代入y1=,得:2=4+b,∴b=﹣2,∴y1=.(2)列表如下:描点、连线如下图:由图可知:①当x≤0时,y随x的增大而减小;②当0<x≤2时,y随x的增大而减小;③当x>2时,y随x的增大而增大;④当x=0时,y1取最小值﹣3.(3)由图可知,当y1=3时,x1=﹣3,x2=1,x3=4,∵当x≤0时,y随x的增大而减小;当0<x≤2时,y随x的增大而减小;当x>2时,y 随x的增大而增大;∴不等式y1≥3的解集为:x≤﹣3或0<x≤1或x>4.6.在初中阶段的函数学习中,我们经历了“确定函数解析式﹣﹣利用函数图象研究其性质﹣﹣运用函数图象解决问题”的学习过程,以下是我们研究函数y=||﹣4性质及其应用的部分过程,请按要求完成下列各小题.(1)该函数的自变量取值范围是x≠﹣1;下表中p=2,q=0,在所给的平面直角坐标系中补全该函数图象;x…﹣5﹣4﹣3﹣2﹣﹣01234…y=||﹣4…1p4﹣q﹣4﹣2﹣﹣1﹣…(2)根据函数图象写出该函数的一条性质:x<﹣1时,y随x值的增大而增大.(3)已知函数y=﹣x﹣1的图象如图所示,结合你所画的函数图象,直接写出不等式| |﹣4<﹣x﹣1的解集(保留1位小数,误差不超过0.2).【解答】解:(1)∵x+1≠0,∴x≠﹣1,∴函数y=||﹣4的自变量x的取值范围是x≠﹣1,把x=﹣3和﹣分别代入函数关系式求得p=2,q=0,画出函数图象如图:故答案为x≠﹣1,2,0.(2)观察图象可知:x<﹣1时,y随x值的增大而增大;故答案为:x<﹣1时,y随x值的增大而增大;(3)由图象可知,不等式||﹣4<﹣x﹣1的解集为x<﹣3或﹣0.4<x<﹣2.7.重庆八中的学子课外活动丰富多彩,开展了很多社团活动.最近数学社的同学在探究函数y=的图象与性质,请你根据之前学习函数的经验和方法,画出函数图象,并回答下列问题.(1)选择恰当的值补充表格,在平面直角坐标系中,描出表中各对对应值为坐标的点,根据描出的点,画出函数图象.x…﹣5﹣4﹣3﹣202345…y…034 4.65 4.6430…(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“×”.①该函数图象是轴对称图形,它的对称轴为y轴.(√)②当x=0时,函数取得最大值5;当x=﹣5或5时,函数取得最小值0.(√)③当﹣5≤x<0时,y随x的增大而减小;当0<x≤5时,y随x的增大而增大.(×)(3)请结合(1)中函数图象,直接写出关于x的不等式>﹣x+3的解集.【解答】解:(1)列表:x…﹣5﹣4﹣3﹣202345…y…034 4.65 4.6430…描点、连线,画出函数图象如图:(2)观察图象可知,①该函数图象是轴对称图形,它的对称轴为y轴.②当x=0时,函数取得最大值5;当x=﹣5或5时,函数取得最小值0.③当﹣5≤x<0时,y随x的增大而增大;当0<x≤5时,y随x的增大而减小.故答案为√,√,×;(3)由图象可知关于x的不等式>﹣x+3的解集为﹣3<x<4.5.8.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,观察分析函数特征,概括函数性质的过程,已知函数y=+,结合已有的学习经验,完成下列各小题.(1)请在表格中空白填入恰当的数据:x…﹣2﹣1﹣0.500.51.52346…y…﹣01222223…(2)根据上表中的数据,在所给的平面直角坐标系中补全函数y=+的图象;(3)根据函数图象,判断下列关于该函数的性质说法是否正确,正确的在答题卡相应的括号内打“√”,错误在答题卡上相应括号内打“×”;①该函数图象是轴对称图形,它的对称轴是直线x=1.(×)②该函数在自变量的取值范围内,既无最大值,也无最小值.(√)③当1<x<2时,y随x的增大而减小:当x>2时,y随x的增大而增大.(×)(4)结合你所画的函数图象,直接写出不等式组的解集为:≤x<1或1<x≤1.5.【解答】解:(1)补充完整下表为:x…﹣2﹣1﹣0.500.51.52346…y…﹣01222223…(2)画出函数的图象如图:(3)根据函数图象:①该函数图象是轴对称图形,它的对称轴是直线x=1.说法错误;②该函数在自变量的取值范围内,既无最大值,也无最小值.说法正确;③当1<x<2时,y随x的增大而减小:当x>2时,y随x的增大而增大,说法错误.(4)由图象可知:不等式组的解集为0≤x<1或1<x≤1.5,故答案为0≤x<1或1<x≤1.5.9.问题:探究函数y=|x|﹣2的图象与性质.小华根据学习函数的经验,对函数y=|x|﹣2的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)在函数y=|x|﹣2中,自变量x可以是任意实数;(2)下表是y与x的几组对应值.x…﹣3﹣2﹣10123…y…10﹣1﹣2﹣10m…①m=1;②若A(n,8),B(10,8)为该函数图象上不同的两点,则n=﹣10;(3)在下面的平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点.并根据描出的点,画出该函数的图象:根据函数图象可得:①该函数的最小值为﹣2;②已知直线y1=x与函数y=|x|﹣2的图象交于C(﹣,﹣)、D(4,2)两点,当y1<y时x的取值范围是x<﹣或x<4.【解答】解:(2)①把x=3代入y=|x|﹣2,得m=3﹣2=1.故答案为1;②把y=8代入y=|x|﹣2,得8=|x|﹣2,解得x=﹣10或10,∵A(n,8),B(10,8)为该函数图象上不同的两点,∴n=﹣10.故答案为﹣10;(3)该函数的图象如图,①该函数的最小值为﹣2;故答案为﹣2;②在同一平面直角坐标系中画出直线y1=x,由图象可知,y1<y时x的取值范围是x<﹣或x>4.故答案为x<﹣或x>4.10.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,观察分析函数特征,概括函数性质的过程,已知函数y=﹣上,结合已有的学习经验,完成下列各小题.(1)请在表格中空白处填入恰当的数据:x…﹣3﹣2﹣102345…y…346﹣4﹣20﹣1﹣﹣…(2)根据表中的数据,在所给的平面直角坐标系中画出函数y=﹣的图象;(3)根据函数图象,写出该函数的一条性质:当x<1时,y随x的增大而增大;(4)结合所画函数图象,直接写出不等式﹣<﹣x+5的解集为:x<0.3或1<x<3.7.(保留1位小数,误差不超过0.2)【解答】解:(1)补充完整下表为: x … ﹣3 ﹣2 ﹣1 02 3 4 5 …y …3 4 6 ﹣4 ﹣20 ﹣1﹣ ﹣…(2)画出函数的图象如图:(3)观察函数图象:当x <1时,y 随x 的增大而增大,故答案为当x<1时,y随x的增大而增大.(4)由图象可知:不等式﹣<﹣x+5的解集为x<0.3或1<x<3.7,故答案为x<0.3或1<x<3.7.11.某兴趣小组根据学习函数的经验,对函数y=+3图象和性质进行了探究,请完成下列探究过程.x…﹣4﹣3﹣2﹣10123…﹣y 0﹣3a b…﹣(1)表格中a=0,b=;(2)请你根据表中的数据在如图所示的平面直角坐标系中通过描点、连线的方法,画出该函数图象,并写出该函数的一条性质;(3)已知函数y=x的图象如图所示,结合你所画的函数图象请直接写出+3>x的解集x<﹣1.6或0<x≤2.6,.(1)把x=0代入y=+3得,y=+3=0;把x=2代入y=【解答】解:+3得,y=+3=,∴a=0,b=,故答案为0,;(2)画出函数的图象如图:根据函数图象:当x>﹣1时,y随x的增大而增大:当x<﹣1时,y随x的增大而减小.(3)由图象可知:+3>x的解集为x<﹣1.6或0<x≤2.6,故答案为x<﹣1.6或0<x≤2.6.12.某数学学习小组根据以往学习函数的经验,研究函数y=的图象和性质.列表如下:x…﹣5﹣4﹣3﹣2﹣10123…y…1m43n1…(1)直接写出m、n的值:m=3.n=;(2)请在给出的平面直角坐标系中画出该函数图象,并写出该函数的一条性质:图象关于直线x=﹣1对称.(3)已知函数y=|x+1|的图象如图所示,请结合图象,直接写出方程|x+1|=的解(精确到0.1,误差不超过0.2)x=0.85或x=﹣2.85.【解答】解:(1)将x=﹣2代入y=,解得y=3,∴m=3,将x=1代入y=,解得y=,∴n=,故答案为:3,.(2)如图,曲线y =关于直线x =﹣1对称.(3)由图象可得x =0.85或x =﹣2.85满足题意. 故答案为:x =0.85或x =﹣2.85.13.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,观察分析函数特征,概括函数性质的过程,已知函数y =+,结合已有的学习经验,完成下列各小题.(1)请在表格中空白填入恰当的数据: x … ﹣3 ﹣2 ﹣1 02 345 6… y… ﹣1 ﹣233…(2)根据表中的数据,在所给的平面直角坐标系中画出函数y =+的图象;(3)根据函数图象,写出该函数的一条性质: 函数在自变量的取值范围内,既无最大值,也无最小值 ;(4)结合你所画的函数图象,直接写出不等式组+≤x +3的解集为: ﹣3≤x ≤0.4或x ≤ .【解答】解:(1)补充完整下表为:x…﹣3﹣2﹣1023456…y…﹣1﹣233…(2)画出函数的图象如图:(3)由函数图象可知,函数在自变量的取值范围内,既无最大值,也无最小值,故答案为函数在自变量的取值范围内,既无最大值,也无最小值;(4)由图象可知:不等式+≤x+3的解集为﹣3≤x≤0.4或x≤,故答案为﹣3≤x≤0.4或x≤.14.小明根据学习函数的经验,对函数y=的图象与性质进行探究.下面是小明的探究过程,请补充完整:(1)函数y=的自变量的取值范围是x≠2;(2)如表是函数y与自变量x的几组对应值,则m=,n=3;x…﹣3﹣2﹣10134567…y…0.6m1 1.53n 1.510.750.6…(3)在平面直角坐标系xOy中,补全此函数的图象,并写出这个函数的一条性质:图象是轴对称图形,对称轴x=2;(4)根据函数图象,直接写出=x﹣1的近似解x≈3.3.(精确到0.1)【解答】解:(1)函数y=的自变量x的取值范围是x≠2,故答案为:x≠2;(2)由题意x=﹣2时,y==,当x=3时,y==3,∴m=,n=3,故答案为,3.(3)函数图象如图所示:观察图象可知图象是轴对称图形,对称轴x=2;故答案为图象是轴对称图形,对称轴x=2.(4)由图像可知,=x﹣1的近似解为x≈3.3,故答案为x≈3.3.15.参照学习函数的过程与方法,探究函数y=﹣(x≠0)的图象和性质,请按要求完成下列各小题.(1)请把下表补充完整,并在图中画出该函数图象;x…﹣5﹣4﹣3﹣2﹣112345…y=﹣…346﹣20﹣﹣1﹣…(2)观察函数图象,下列关于函数性质的描述正确的是④;①函数y=﹣的图象关于原点中心对称;②当x>0时,y随x的增大而减小;③当x=2时,函数y=﹣取得最小值0;④当x>2时,y随x的增大而减小;(3)请结合(1)问中画出的函数图象,直接写出关于x的不等式﹣+2x+2≤0的解集(误差不超过0.2).【解答】解:(1)列表:x…﹣5﹣4﹣3﹣2﹣112345…y=﹣…346﹣20﹣﹣1﹣…;(2)观察函数图象,①函数y=﹣的图象关于原点不对称,故错误;②当x>0时,y随x的增大先增大后减小,故错误③函数y=﹣没有最大值和最小值,故错误④当x>2时,y随x的增大而减小,故正确;故答案为④;(3)在同一坐标系中画出直线y=﹣2x﹣2,由图象可知,关于x的不等式﹣+2x+2≤0的解集为x≤﹣2.6或0<x≤0.8.。

九年级数学中考总复习专题《函数》测试卷含答案

九年级数学中考总复习专题《函数》测试卷含答案

专题《函数》测试卷含答案(考试时间120分钟,试卷满分120分)一、选择题1.函数21-=x y 的自变量x 的取值范围是( ) A.x >-2 B.x <2 C.x ≠2 D.x ≠-22.王芳同学为参加学校组织的科技知识竞赛,她周末到新华书店购买资料.如图是王芳离家的距离与时间的函数图象.若黑点表示王芳家的位置,则王芳走的路线可能是( )3.一个正比例函数的图象过点(2,-3),它的表达式为( )A 、32y x =-B 、23y x =C 、32y x =D 、23y x =- 4.在平面直角坐标系中,函数1y x =-+的图象经过( ) A .一、二、三象限 B .二、三、四象限 C .一、三、四象限 D .一、二、四象限5. P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y = -x 图象上的两点,则下列判断正确的是( )A .y 1>y 2B .y 1<y 2C .当x 1<x 2时,y 1>y 2D .当x 1<x 2时,y 1<y 26.如图,直线y 1=k 1x+a 与y 2=k 2x+b 的交点坐标为(1,2),则使y 1<y 2的x 的取值范围为( )A .x >1B .x >2C .x <1D .x <27.某航空公司规定,旅客乘机所携带行李的质量x (kg)与其运费y (元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为( )A .20kgB .25kgC .28kgD .30kg8.一个水池接有甲、乙、丙三个水管,先打开甲,一段时间后再打开乙,水池注满水后关闭甲,同时打开丙,直到水池中的水排空.水池中的水量)(3m v 与时间)(h t 之间的函数关系如图,则关于三个水管每小时的水流量,下列判断正确的是( )A .乙>甲B .丙>甲C .甲>乙D .丙>乙y9.如图1,在直角梯形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△BCD 的面积是( ) A .3B .4C .5D .610.已知反比例函数y =x2,则下列点中在这个反比例函数图象的上的是( ) A .(-2,1) B .(1,-2) C .(-2,-2) D .(1,2) 11.已知反比例函数xy 1=,下列结论不正确的是( ) A 、图象经过点(1,1) B 、图象在第一、三象限C 、当1>x 时,10<<yD 、当0<x 时,y 随着x 的增大而增大 12.已知(x 1, y 1),(x 2, y 2),(x 3, y 3)是反比例函数xy 4-=的图象上的三个点,且x 1<x 2<0<x 3, 则y 1,y 2,y 3的大小关系是( )A . y 3<y 1<y 2B . y 2<y 1<y 3C . y 1<y 2<y 3D . y 3<y 2<y 113.在反比例函数1ky x-=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( ) A .1-B .0C .1D .214.函数y ax a =-与ay x=(a ≠0)在同一直角坐标系中的图象可能是( )15.如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为( )A .12B .9C .6D .416.如图,A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则( )A .2S =B .4S =C .24S <<D .4S > 17.二次函数2365y x x =--+的图象的顶点坐标是 ( ) A .(-1,8) B .(1,8)C .(-1,2)D .(1,-4)18、抛物线(1)(3)(0)y a x x a =+-≠的对称轴是直线( ) A .1x =B .1x =-C .3x =-D .3x =19、函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( )20.将抛物线C :y=x²+3x -10平移到C ˋ,若两条抛物线C,C ˋ关于直线x=1对称,则下列平移方法中正确的是( ) A .将抛物线C 向右平移52个单位 B .将抛物线C 向右平移3个单位 C .将抛物线C 向右平移5个单位 D .将抛物线C 向右平移6个单位21.已知抛物线c bx ax y ++=2的开口向下,顶点坐标为(2,-3) ,那么该抛物线有( ) A . 最小值-3B . 最大值-3C . 最小值2D . 最大值222.在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( )A .3B .2C .1D .023.二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y = ax 与正比例函数y =(b +c )x 在同一坐标系中的大致图象可能是( )24.已知抛物线2y ax bx c =++(a <0)过A (2-,0)、O (0,0)、B (3-,1y )、C (3,2y )四点,则1y 与2y 的大小关系是( )A .1y >2yB .1y 2y =C .1y <2yD .不能确定25.如图,四边形ABCD 中,∠BAD =∠ACB =90°,AB =AD ,AC =4BC ,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( )A .2225y x =B .2425y x =C .225y x =D .245y x =26.如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线n m x a y +-=2)(的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标最大值为( )A .-3B .1C .5D .8 二、填空题27.已知一次函数26y x =-与3y x =-+的图象交于点P ,则点P 的坐标为 . 28.一次函数y =34x +4分别交x 轴、y 轴于A 、B 两点,在x 轴上取一点,使△ABC 为等腰三角形,则这样的的点C 最多..有 个. 29.如图,已知一次函数1y x =+的图象与反比例函数ky x=的图象在第一象限相交于点A ,与x 轴相交于点C AB x ,⊥轴于点B ,AOB △的面积为1,则AC 的长为 (保留根号).30.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y kx b =+(k >0)和x 轴上,已知点B 1(1,1),B 2(3,2), 则B n 的坐标是__________.31.如图,⊙A 和⊙B 都与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x=的图象上,则图中阴影部分的面积等于 .32.如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A 在反比例函数xy 2=的图象上,则菱形的面积为____________. 33.如图,已知双曲线)0k (xk y >=经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k =____________.34.如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S += . 35.已知A(x 1,y 2),B(x 2,y 2)都在6y x=图象上.若x 1 x 2=-3,则y 1 y 2的值为 . 36.反比例函数 xm y 1+=的图象经过点(2,1),则m 的值是 . 37、如图,A 、B 是双曲线 y = kx (k >0) 上的点, A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC =6.则k= .38.若二次函数k x x y ++-=22的部分图象如图所示,则关于x 的一元二次方程022=++-k x x 的一个解31=x ,另一个解=2x ;39.已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是 个.40、已知二次函数的图象经过原点及点(12-,14-),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为 . 三、解答题41.暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y 与x 的函数关系式; (2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.42.在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与.B.港的距离....分别为1y、2y(km),1y、2y与x的函数关系如图所示.a;(1)填空:A、C两港口间的距离为km,(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10 km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.43.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.答案一、选择题1.C 2.B 3.A 4.D 5.C 6.C 7.B 8.C 9.A 10.D 11.D 12.A 13.D 14.D 15.B 16.B 17.A 18、A 19、C 20.C 21.B 22.B 23.B 24.A 25.C 26.D 二、填空题27.(3,0) 28.4 29. 30.)2,2...222(1121--++++n n 31.π232.4 33.2 34.4 35.-12 36.1 37、4 38.-1 39.4 40、x x y 31312+-=或x x y +=2 三、解答题41解:(1)设y =kx +b,当x =0时,y =45,当x =150时,y =30.∴⎩⎨⎧=+=3015045b k b ,解得⎪⎩⎪⎨⎧=-=45101b k ,∴45101+-=x y . (2)当x =400时,y =110-×400+45=5>3. ∴他们能在汽车报警前回到家. 42.解:(1)120,2a =;(2)由点(3,90)求得,230y x =.当x >0.5时,由点(0.5,0),(2,90)求得,16030y x =-. 当12y y =时,603030x x -=,解得,1x =.此时1230y y ==. 所以点P 的坐标为(1,30).该点坐标的意义为:两船出发1 h 后,甲船追上乙船,此时两船离B 港的距离为30 km . (3)①当x ≤0.5时,由点(0,30),(0.5,0)求得,16030y x =-+. 依题意,(6030)30x x -++≤10. 解得,x ≥23.不合题意. ②当0.5<x ≤1时,依题意,30(6030)x x --≤10.解得,x ≥23.所以23≤x ≤1. ③当x >1时,依题意,(6030)30x x --≤10.解得,x ≤43.所以1<x ≤43.综上所述,当23≤x≤43时,甲、乙两船可以相互望见.43.22.解:(1)∵抛物线过点B(6,0)、C(﹣2,0),∴设抛物线解析式为y=a(x﹣6)(x+2),将点A(0,6)代入,得:﹣12a=6,解得:a=﹣,所以抛物线解析式为y=﹣(x﹣6)(x+2)=﹣x2+2x+6;(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB解析式为y=kx+b,将点A(0,6)、B(6,0)代入,得:,解得:,则直线AB解析式为y=﹣x+6,设P(t,﹣t2+2t+6)其中0<t<6,则N(t,﹣t+6),∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,∴S△PAB=S△PAN+S△PBN=PN•AG+PN•BM=PN•(AG+BM)=PN•OB=×(﹣t2+3t)×6=﹣t2+9t=﹣(t﹣3)2+,∴当t=3时,△PAB的面积有最大值;(3)如图2,若△PDE为等腰直角三角形,则PD=PE,设点P的横坐标为a,∴PD=﹣a2+2a+6﹣(﹣a+6)=﹣a2+3a,PE=2|2﹣a|,∴﹣a2+3a=2|2﹣a|,解得:a=4或a=5﹣,所以P(4,6)或P(5﹣,3﹣5).。

初中数学九年级总复习《函数》专题复习卷含答案

初中数学九年级总复习《函数》专题复习卷含答案

中考《函数》总复习检测试题含答案时间: 120分钟 满分: 150分一. 选择题(每小题3分, 共30分)1.点P 关于 轴的对称点P1的坐标是(3, -2), 则点P 关于 轴的对称点P2的坐标是( ) A.(-3,-2) B.(-2,3) C.(-3,2 ) D.(3,-2)2.若一次函数 的图象经过第一、二、四象限, 则下列不等式中总是成立的是( ) A. ab >0 B. b -a >0 C. a +b >0 D. a -b >03.对于二次函数 , 下列说法正确的是( )A.当x>0时, y 随x 的增大而增大B.图象的顶点坐标为(-2, -7)C.图象与x 轴有两个交点D.当x=2时,y 有最大值-3.4.如图, 一次函数 与反比例函数 的图象在第一象限 交于点A, 与y 轴交于点M, 与x 轴交于点N, 若AM:MN=1:2, 则k =( ) A.2 B.3 C.4 D.55.若将抛物线 沿着x 轴向左平移1个单位, 再沿y 轴向下平移2个单位, 则得到的新抛物线的顶点坐标是( )A. (0, -2 )B. (0, 2)C. (1, 2)D. (-1, 2) 6.如图, 直线 相交于点P, 已知点P 的坐标为(1, -3), 则关于x 的不等式 的解集是( ) A. x>1 B.x<1 C.x>-3 D.x<-37.向最大容量为60升的热水器内注水, 每分钟注水10升, 注水2分钟后停止注水1分钟, 然后继续注水, 直至注满.则能反映注水量与注水时间函数关系的图象是( )A. B. C. D.8.如图, 将函数 的图象沿y 轴向上平移得到一条新函数的图象, 其中点A (1, m ), B (4, n )平移后的对应点分别为点A'、B'. 若曲线段AB 扫过的面积为9(图中的阴影部分), 则新图象的函数表达式是( ) A. B.C. D.9.如图, 菱形ABCD 边AD 与x 轴平行, A.B 两点的横坐标分别为1和3, 反比例函数 的图象经过A.B 两点, 则菱形ABCD 的面积是( ) A.4 B. C. D.210.如图,抛物线 与x 轴交于点(-3,0),其对称轴为直线 ,结合图象分析下列结论: (abc>0 ; (3a+c>0; (当x<0时,y 随x 的增大而增大;④一元二次方程 的两根分别为 ;⑤ ,其中正确的结论有( )个. A.2 B.3 C.4 D.5填空题(每小题4分, 共24分) 11.函数13-+=x x y 中自变量x 的取值范围是_________________.第8题图12.二次函数 图象先沿x 轴水平向左平移3个单位, 再向上平移4个单位后得到的表达式为_________________.13.如图, 在平面直角坐标系中, 的顶点A.C 的坐标分别为(0, 3)和(3, 0), , AC=2BC,函数 的图象经过点B, 则k 的值为_______.14.二次函数 的部分图象如图所示, 若关于x 的一元二次方程 的一根为 , 则另一个根为________.15.如图, 直线 与坐标轴交于A 、B 两点, 在射线AO 上有一点P, 当 是以AP 为腰的等腰三角形时, 点P 的坐标是_________.16.如图, 平面直角坐标系中, 点A ( , 1)在射线OM 上, 点B ( , 3)在射线ON 上, 以AB 为直角边做 , 以BA1为直角边作第二个 , 以A1B1为直角边作第三个 ……依此规律, 得到 , 则点B2018的纵坐标为___________.(1)三、解答题(17题8分, 18-22题每题10分, 23.24题每题12分, 25题14分, 共96分) (2)17.(8分)在平面直角坐标系中, 点O 为坐标原点, 如图摆放, 按要求回答下列问题. (3)将 沿y 轴向下平移3个单位, 得到 , 并写出B1的坐标. (4)将111B O A ∆作关于原点O 成中心对称图形222B O A ∆.在第三象限做 , 与 关于原点O 位似, 相似比为1: 2.18.(10分)在平面直角坐标系中, 若点 在坐标系象限角平分线上, 求a 的值及点的坐标.第13题图A 第14题图 第15题图19.(10分)如图, 在平面直角坐标系中, 点A.B的坐标分别为, , 连接AB, 以AB为边向上作等边三角形ABC.(1)求点C的坐标.(2)求线段BC所在直线的解析式.20.(10分)已知A.B 两地之间有一条270 千米的公路, 甲、乙两车同时出发, 甲车以60千米/时的速度沿此公路从 A 地匀速开往 B 地, 乙车从 B 地沿此公路匀速开往 A 地, 两车分别到达目的地后停止.甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示.(1)乙车的速度为_____ 千米/时, a=____b=_____.(2)求甲、乙两车相遇后y 与x 之间的函数关系式.(3)当甲车到达距B 地70 千米处时, 求甲、乙两车之间的路程.21.(10分)某演唱会购买门票的方式有两种: 方式一, 若单位赞助广告费10万元, 则该单位所购门票的价格为每张0.02万元;方式二, 如图所示.设购买门票x张, 总费用为y 万元.问题: (1)求方式一中y与x 的函数关系式;(总费用=广告费+门票费)(2)若甲乙两个公司分别采用方式一和方式二购买本场演唱会门票共400张, 且乙单位购买门票超过100张, 两单位共花费27.2万元, 求甲乙两公司各购买多少张门票?(1)22.(10分)如图, 抛物线与x轴交于A(-1, 0)、B(3, 0)两点, 与y轴交于点C, OB=OC, 连接BC, 抛物线的顶点为D, 连接BD.(2)求抛物线的解析式.的正弦值.(3)求CBD(1)23.(12分)如图, 在平面直角坐标系中, 反比例函数 的图象过等边三角形BOC 的顶点B, OC=2, 点A 在反比例函数图象上, 连接AC.AO. (2)求反比例函数)0(≠=k xky 的表达式. 若四边形ACBO 的面积是 , 求点A 的坐标.24.(12分)某游泳馆每年夏季推出两种游泳付费方式.方式一: 先购买会员证, 每张会员证100元, 只限本人当年使用, 凭证游泳每次再付费5元;方式二: 不购买会员证, 每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(2)若小明计划今年夏季游泳的总费用为270元, 选择哪种付费方式, 他游泳的次数比较多?(3)当x>20时, 小明选择哪种付费方式更合算?并说明理由.25.(14分)如图, 一次函数的图象分别交y轴、x轴于A.B两点, 抛物线过A.B两点.(1)求这个抛物线的解析式.(2)作垂直于x轴的直线x=t, 在第一象限交直线AB于M, 交这个抛物线于N.当t取何值时, MN有最大值?最大值为多少?(3)在(2)的情况下, 以点AMND为顶点作平行四边形, 直接写出第四个顶点D的坐标.参考答案一.选择题(每小题3分, 共30分)1.C2.B3.D4.C5.A6.A7.D8.D9.B 10.C 备用图二.填空题(每小题4分, 共24分)11.13≠-≥x x 且 12.1)2(22++-=x y 或7822---=x x y 13.427 14. 15. 16. 三.解答题 17.(8分)(1) 如图 即为所求, B1(4, -1).…… (3分) (2)如图222B O A ∆即为所求.……(5分)(3)如图33OB A ∆即为所求.……(8分)18.解: (10分)当点在第一、三象限角平分线上时, …… (1分) 即 1-2a=a-2∴ a=1 ……(3分) 此时, 点的坐标为(-1, -1). …… (5分)当点在第二、四象限角平分线上时, …… (6分) 即 1-2a= -(a-2)∴ a=-1 …… (8分) 此时, 点的坐标为(3, -3). ……(9分) 因此, 当a 的值为1时, 点的坐标为(-1, -1);当a 的值为-1时, 点的坐标为(3, -3) ……(10分) 19.(10分)解: 过点B 作BE ⊥x 轴, 交x 轴于点E, ……(1分) ∵点A.B 的坐标分别为 , ∴AE= , BE=1……(2分) 在 中, 根据勾股定理可得, AB=2…… ∵sin ∠BAE=AB BE =21∴∠BAE=30°……(4分) ∵⊿ABC 是等边三角形 ∴∠CAE=90°……(5分) ∴点C )2,23(-.……(6分) (2)设BC 所在直线表达式为)0(≠+=k b kx y ……(7分)∵直线过点C )2,23(-和点B )1,23(代入得∴{b k b k +-=+=232231……(8分)解得 ⎪⎪⎩⎪⎪⎨⎧=-=2333b k ……(9分) ∴BC 所在直线表达式为2333+-=x y ……(10分) 20.(10分)(1)乙车的速度为75 千米/时, a=3.6 ,b= 4.5.……(3分) (2)60×3.6=216(千米)当2<x ≤3.6时, 设 , 根据题意得:⎩⎨⎧=+=+2166.3021111b x b k 解得⎩⎨⎧-==27013511b k);6.32(270135≤<-=x x y ……(5分)当3.6<x ≤4.5时, 设 , 根据题意得:⎩⎨⎧=+=+2705.42166.32222b k b k 解得⎩⎨⎧==06022b k∴)5.46.3(60≤<=x x y ……(7分)因此⎩⎨⎧≤<≤<-=)5.46.3(60)6.32(270135x x x x y ……(8分)甲车到达距B 地70千米处时行驶的时间为: , 将x =620代入得千米)(180270620135=-⨯=y ……(9分)21.因此, 甲车到达距B 地70千米处时, 甲乙两车之间的路程为180千米。

中考数学总复习《函数基础知识》专项测试卷-附参考答案

中考数学总复习《函数基础知识》专项测试卷-附参考答案

中考数学总复习《函数基础知识》专项测试卷-附参考答案一、单选题(共12题;共24分)1.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为().A.B.C.D.2.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.。

图描述了他上学的情景,下列说法中错误的是()A.修车时间为15分钟B.学校离家的距离为2000米C.到达学校时共用时间20分钟D.自行车发生故障时离家距离为1000米3.王师傅驾车到某地办事,汽车出发前油箱中有50升油.王师傅的车每小时耗油12升,行驶3小时后,他在一高速公路服务站先停车加油26升,再吃饭、休息,此过程共耗时1小时,则然后他继续行驶,下列图象大致反映油箱中剩余油量y(升)与行驶时间t(小时)之间的函数关系的是()A.B.C.D.4.小李和小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离S(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中的信息,有下列说法:(1)他们都行驶了20 km;(2)小陆全程共用了1.5h;(3)小李和小陆相遇后,小李的速度小于小陆的速度(4)小李在途中停留了0.5h。

其中正确的有A.4个B.3个C.2个D.1个5.在直角三角形ABC中,∠C=90∘,∠A=x,∠B=2y,则y与x之间的函数关系式是()A.B.C.D.6.如图,在平面直角坐标系中,直线y= 23x- 23与矩形ABCO的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是()A.3B.12C.6D.7.如图①,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图②所示,则△ABC的面积是()A.10B.16C.18D.208.小明和爸爸从家里出发,沿同一路线到学校.小明匀速跑步先出发,2分钟后,爸爸骑自行车出发,匀速骑行一段时间后,在途中商店购买水果花费了5分钟,这时发现小明已经跑到前面,爸爸骑车速度增加60米/分钟,结果与小明同时到达学校.小明和爸爸两人离开家的路程s(米)与爸爸出发时间t(分钟)之间的函数图象如图所示.则下列说法错误的是()A.a=15B.小明的速度是150米/分钟C.爸爸从家到商店的速度为200米/分钟D.爸爸出发7分钟追上小明9.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s表示李明离家的距离,t为时间.在下面给出的表示s与t的关系图中,符合上述情况的是()A.B.C.D.10.圆周长公式C=2πR中,下列说法正确的是()A.π、R是变量,2为常量B.C、R为变量,2、π为常量C.R为变量,2、π、C为常量D.C为变量,2、π、R为常量11.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()A.B.C.D.12.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B,C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作△BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.二、填空题(共6题;共9分)13.如图1,矩形ABCD中,点E为BC的中点,点P沿BC从点B运动到点C,设B,P两点间的距离为x,PA−PE=y,图2是点P运动时y随x变化的关系图象,则BC=14.已知点P从长方形的顶点A出发,沿A→B→C→D以2cm/s的速度匀速移动,如图1,设△PAD的面积为S(cm2),点P移动的时间为t(s),S关于t的函数图象如下图2所示,则a的值为.15.如图1,平行四边形ABCD边上一动点P,从点A出发,沿A→B→C→D方向,以每秒2个单位长度的速度运动,设点P的运动时间是t,△DAP的面积为S,S与t之间函数关系的图像如图2所示.(1)G点表示的横坐标为;(2)则点D到BC边的距离是.16.函数y= √2−x+ 1x+3中自变量x的取值范围是.17.日出日落,一天的气温随时间的变化而变化,在这一问题中,自变量是18.在“变量之间的关系”一章中,我们学习的“变量”是指自变量和因变量,而表达它们之间关系的通常有三种方法,这三种方法是指、和三、综合题(共6题;共75分)19.参照学习函数的过程方法,探究函数y=x−2x(x≠0)的图象与性质,因为y=x−2x=1−2x,即y=−2x+1,所以我们对比函数y=−2x来探究列表:x…-4-3-2-1−12121234…y=−2x…1223124-4-2-1−23−12…y=x−2x…3253235-3-201312…描点:在平面直角坐标系中以自变量x的取值为横坐标,以y=x−2x相应的函数值为纵坐标,描出相应的点如图所示:(1)请把y轴左边各点和右边各点分别用一条光滑曲线,顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x<0时,则y随x的增大而;(“增大”或“减小”)②y=x−2x的图象是由y=−2x的图象向平移个单位而得到的;③图象关于点中心对称.(填点的坐标)(3)函数y=x−2x与直线y=−2x+1交于点A,B,求ΔAOB的面积.20.二次函数y=ax2+bx−3中的x,y满足如表x…−1012…y…0−3m−3…(2)求m的值.21.郑小舟在学习中遇到这样一个问题:“如图①,菱形ABCD的边长是4,∠ABC=120°,点P 为对角线AC上一动点,过点P作MN⊥AC,交边AD、AB于点M、N,把△AMN沿MN折叠得到△A′MN,若△A′DC恰为等腰三角形,求AP的长.”他尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:(1)根据点P在AC上的不同位置,画出相应的图形,测量线段AP,A′D的长度,得到下表几组对应值.AP cm⁄00.5 1.0 1.5 2.0 2.5 3.0 A′D cm⁄ 4.0 3.18 2.48 2.06 2.07 2.53 3.23操作中发现:“线段A′C的长度无需测量即可得到”.因为A′C与AP满足关系式:.(2)将线段AP的长度作为自变量x,A′D的长度是x的函数,记作y1,在图②所示的平面直角坐标系中画出函数y1的图象.(3)设A′C=y2,CD=y3,继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△A′DC为等腰三角形时,则线段AP长度的近似值(结果保留一位小数,√3≈1.73). 22.在压力不变的情况下,某物体所受的压强p(Pa)与它的受力面积S(m2)之间成反比例关系,其图像如图所示。

中考数学专题复习函数探究题测试题0.

中考数学专题复习函数探究题测试题0.

函数探究【例1】 1.抛物线y=ax 2+bx+c 的图象如图所示,则一次函数y=ax+b 与反比例函数y=在同一平面直角坐标系内的图象大致为( )A .B .C .D .2.已知x=2m+n+2和x=m+2n 时,多项式x 2+4x+6的值相等,且m ﹣n+2≠0,则当x=3(m+n+1)时,多项式x 2+4x+6的值等于 .3.已知二次函数y=ax 2﹣2ax+1(a <0)图象上三点A (﹣1,y 1),B (2,y 2)C (4,y 3),则y 1、y 2、y 3的大小关系为( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 1<y 3<y 2D .y 3<y 1<y 2方法总结 1.将抛物线解析式写成y =a(x -h)2+k 的形式,则顶点坐标为(h ,k),对称轴为直线x =h ,也可应用对称轴公式x =-,顶点坐标(-,)来求对称轴及顶点坐标.2.比较两个二次函数值大小的方法: (1)直接代入自变量求值法;(2)当自变量在对称轴两侧时,看两个数到对称轴的距离及函数值的增减性判断; (3)当自变量在对称轴同侧时,根据函数值的增减性判断.举一反三 1.已知点A (a ﹣2b ,2﹣4ab )在抛物线y=x 2+4x+10上,则点A 关于抛物线对称轴的对称点坐标为( ) A .(﹣3,7)B .(﹣1,7)C .(﹣4,10)D .(0,10)2.已知关于x 的函数y=(2m ﹣1)x 2+3x+m 图象与坐标轴只有2个公共点,则m= .3.设A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .312y y y >>B .312y y y >>C .321y y y >>D .213y y y >>考点二、二次函数系数的符号及其之间的关系【例2】二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①2a+b>0;②b>a>c;③若﹣1<m<n<1,则m+n<﹣;④3|a|+|c|<2|b|.其中正确的结论是(写出你认为正确的所有结论序号).方法总结根据二次函数的图象确定有关代数式的符号,是二次函数中的一类典型的数形结合问题,具有较强的推理性.解题时应注意a决定抛物线的开口方向,c决定抛物线与y轴的交点,抛物线的对称轴由a,b共同决定,b2-4ac决定抛物线与x轴的交点情况.当x=1时,决定a+b+c的符号,当x=-1时,决定a-b+c的符号.在此基础上,还可推出其他代数式的符号.运用数形结合的思想更直观、更简捷.举一反三 1.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2﹣4ac>0;②4a+c>2b;③(a+c)2>b2;④x(ax+b)≤a﹣b.其中正确结论的是.(请把正确结论的序号都填在横线上)2.一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(﹣2,0),则下列结论中,正确的是()A.b=2a+k B.a=b+k C.a>b>0 D.a>k>0考点三、二次函数图象的平移【例3】二次函数y=-2x2+4x+1的图象怎样平移得到y=-2x2的图象( )A.向左平移1个单位,再向上平移3个单位B.向右平移1个单位,再向上平移3个单位C.向左平移1个单位,再向下平移3个单位D.向右平移1个单位,再向下平移3个单位方法总结二次函数图象的平移实际上就是顶点位置的变换,因此先将二次函数解析式转化为顶点式确定其顶点坐标,然后按照“左加右减、上加下减”的规律进行操作.举一反三将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数解析式是( )A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-2考点四、确定二次函数的解析式【例4】如图,四边形ABCD是菱形,点D的坐标是(0,3),以点C为顶点的抛物线y=ax2+bx+c恰好经过x轴上A,B两点.(1)求A,B,C三点的坐标;(2)求经过A,B,C三点的抛物线的解析式.方法总结用待定系数法求二次函数解析式,需根据已知条件,灵活选择解析式:若已知图象上三个点的坐标,可设一般式;若已知二次函数图象与x轴两个交点的横坐标,可设交点式;若已知抛物线顶点坐标或对称轴与最大(或小)值,可设顶点式.举一反三已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p 的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为.考点五、二次函数的实际应用【例5】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.方法总结运用二次函数的性质解决生活和实际生产中的最大值和最小值问题是最常见的题目类型,解决这类问题的方法是:1.列出二次函数的关系式,列关系式时,要根据自变量的实际意义,确定自变量的取值范围.2.在自变量取值范围内,运用公式法或配方法求出二次函数的最大值和最小值.举一反三大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).(1)直接写出y与x之间的函数关系式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润不少于6000元应如何控制销售价格?考点六、二次函数的面积问题【例6】如图,对称轴为x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标.(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标.②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.方法总结对于此类二次函数题型考查了待定系数法求二次函数、一次函数的解析式,二次函数的性质以及三角形面积、线段长度问题,解题的关键是运用方程思想与数形结合思想.其次就是应用到二次函数常见的水平宽铅垂高.举一反三如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣),点M是抛物线C2:y=mx2﹣2mx﹣3m (m<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.考点七、二次函数的综合应用【例7】如图抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C,顶点为D,连接AC、CD、AD.(1)求该二次函数的解析式;(2)求△ACD的面积;(3)若点Q在抛物线的对称轴上,抛物线上是否存在点P,使得以A、B、Q、P四点为顶点的四边形为平行四边形?若存在,求出满足条件的点P的坐标;若不存在,请说明理由.方法总结此类题型主要考查二次函数与其他知识点的综合应用,利用待定系数法求函数解析式,利用勾股定理、勾股定理的逆定理求三角形的形状;利用平行四边形的性质:对角线互相平分,对边相等是求出题中P 点的关键.所以对于考查二次函数与三角形、四边形、圆、相似等相关知识的结合性题目时一定要把握好它们的性质及其常考定理与推理的综合应用.举一反三 在平面直角坐标系中,已知抛物线经过A (﹣4,0),B (0,﹣4),C (2,0)三点. (1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S . 求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线y=﹣x 上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.一、选择题1.已知抛物线()3y k x 1x k ⎛⎫=+ ⎪⎝⎭-与x 轴交于点A ,B ,与y 轴交于点C ,则能使△ABC 为等腰三角形的抛物线的条数是( )A .2B .3C .4D .5 2.已知下列命题:①对于不为零的实数c ,关于x 的方程1+=+c xcx 的根是c ; ②在反比例函数xy 2=中,如果函数值y <1时,那么自变量x >2; ③二次函数 2222-+-=m mx x y 的顶点在x 轴下方;④函数y= kx 2+(3k+2)x+1,对于任意负实数k ,当x<m 时,y 随x 的增大而增大,则m 的最大整数值为2-.其中真命题为( )A .①③B .③C .②④D .③④3.(2013杭州,10)给出下列命题及函数x y =,2x y =和xy 1=的图象 ①如果21a a a>>,那么10<<a ; ②如果aa a 12>>,那么1>a ;③如果a a a>>21,那么01<<-a ;④如果a aa >>12时,那么1-<a 。

2024年中考数学复习专题课件★★-二次函数综合探究题精选全文

2024年中考数学复习专题课件★★-二次函数综合探究题精选全文

解:(1)∵抛物线与 x 轴交于 A(1,0)和 B(-5,0)两点, ∴抛物线对称轴为直线 x=-52+1=-2,在 y=-3x+3 中,当 x=-2 时,y=9, ∴抛物线顶点 P 的坐标为(-2,9), 设抛物线解析式为 y=a(x+2)2+9, ∴a(1+2)2+9=0,∴a=-1, ∴抛物线解析式为 y=-(x+2)2+9=-x2-4x+5.
(2)①∵抛物线解析式为 y=-x2-4x+5,点 C 是抛物线与 y 轴的交点,
∴C(0,5).设直线 BC 的解析式为 y=kx+b1,∴-b1=5k5+,b1=0,∴kb==15,, ∴直线 BC 的解析式为 y=x+5,
∵直线 x=m(-5<m<0)与抛物线交于点 E,与直线 BC 交于点 F,
解:(1)点 B 在直线 y=x+m 上, 理由:∵直线 y=x+m 经过点 A(1,2), ∴2=1+m,解得 m=1,∴y=x+1, 把 x=2 代入 y=x+1,得 y=3, ∴点 B(2,3)在直线 y=x+m 上. (2)易得直线 y=x+1 与抛物线 y=ax2+bx+1 都经过点(0,1),若抛物 线经过 A,B 两点,则直线与抛物线有三个交点,与实际不符, 又∵B,C 两点的横坐标相同,∴抛物线只能经过 A,C 两点, 把 A(1,2),C(2,1)代入 y=ax2+bx+1,得 a=-1, b=2.
6 2-2).
【教学反思】 教学启发:
教学总结:
类型二:与线段有关的探究 (安徽:2021T22,2019T22)
已知二次函数 y=ax2+2x+c 的图象与 x 轴交于点 A(-1,0),B, 与 y 轴交于点 C(0,3). (1)求该二次函数的解析式和直线 BC 的解析式; (2)如图,过直线 BC 上方的拋物线上一动点 P 作 x 轴的垂线 PH,垂足为 H,线段 PH 交 BC 于点 Q,过点 P 作 PG⊥BC 于点 G,求△PGQ 周长的最大 值.

中考数学 函数图象与性质的探究题

中考数学 函数图象与性质的探究题

y=1x 的图象交点的个数.
答图3
专题九 函数图象与性质的探究题
由图象可知,函数 y=x+x 2 与函数 y=x1 的图象只有一个交点, ∴方程 x+x 2=1x 的根的个数为 1.
专题九 函数图象与性质的探究题
3.探究函数性质时,我们经历了列表、描点、连线画出函数图象,
观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画
专题九 函数图象与性质的探究题
(3)类比延伸:利用题中的平面直角坐标系,在不解方程的情况下,
判断方程 x+x 2=1x 的根的个数. 解:由题意可知,反比例函数的图象也遵循
“上加下减”的平移规律.
如答图3,画出函数y=x+2 的图象,则方 x
程 x+2=1 的根的个数即函数y=x+2 与函数
xx
x
图1 明 明 发 现 , 随 着 点 C 位 置 的 改 变 , △ ODE 的 三 边 都 随 之 改 变 , 所 以,明明决定以BC的长度为自变量,设BC的长为x cm,借助学习函数 的经验来研究△ODE三边的变化规律,请你将下面的探究过程补充完 整.
专题九 函数图象与性质的探究题
(1)根据点C在OB上的不同位置,画出相应的图形,测量线段OD, DE的长度,得到下表中的几组对应值.
解:①3,2.②描点见答图1. ③图象见答图1.
答图 1
专题九 函数图象与性质的探究题
(3)结合画出的函数图象,解决问题:当图1中小正方形的边长约为 ___0_._5_6___dm时,盒子的体积最大,最大值约为____3_.0_3___dm3(结果精 确到0.01).
解:【提示】结合画出的函数图象,看最高点(0.56,3.03). 当答图1中小正方形的边长约为0.56 dm时,盒子的体积最大,最大 值约为3.03 dm3.

中考数学总复习《函数初步》专项测试卷带答案

中考数学总复习《函数初步》专项测试卷带答案

中考数学总复习《函数初步》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________【A层·基础过关】1.如图,水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为C=2πr.下列判断正确的是( )A.2是变量B.π是变量C.r是变量D.C是常量2.已知点A(a-1,3),点B(-3,a+1),且直线AB∥y轴,则a的值为( )A.1B.-1C.2D.-23.(2024·河南中考)把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I与使用电器的总功率P的函数图象(如图1),插线板电源线产生的热量Q与I的函数图象(如图2).下列结论中错误的是( )A.当P=440 W时,I=2 AB.Q随I的增大而增大C.I每增加1 A,Q的增加量相同D.P越大,插线板电源线产生的热量Q越多4.(2024·威海中考)同一条公路连接A,B,C三地,B地在A,C两地之间.甲、乙两车分别从A地、B地同时出发前往C地.甲车速度始终保持不变,乙车中途休息一段时间,继续行驶.如图表示甲、乙两车之间的距离y(km)与时间x(h)的函数关系.下列结论正确的是( )h与乙车相遇A.甲车行驶83B.A,C两地相距220 kmC.甲车的速度是70 km/hD.乙车中途休息36分钟5.在平面直角坐标系中,点P(-3,-2)所在象限是第象限.6.(2024·泸州中考)函数y=√x+2的自变量x的取值范围是.7.画一条水平数轴,以原点O为圆心,过数轴上的每一刻度点画同心圆,过原点O 按逆时针方向依次画出与正半轴的角度分别为30°,60°,90°,120°,…,330°的射线,这样就建立了“圆”坐标系.如图,在建立的“圆”坐标系内,我们可以将点A,B,C的坐标分别表示为A(6,60°),B(5,180°),C(4,330°),则点D的坐标可以表示为.【B层·能力提升】8.(2024·广安中考)向如图所示的空容器内匀速注水,从水刚接触底部时开始计时,直至把容器注满,在注水过程中,设容器内底部所受水的压强为y(单位:帕),时间为x(单位:秒),则y关于x的函数图象大致为( )9.(2024·广西中考)激光测距仪L发出的激光束以3×105 km/s的速度射向目标M,t s后测距仪L收到M反射回的激光束.则L到M的距离d km与时间t s的关系式为( )t B.d=3×105tA.d=3×1052C.d=2×3×105tD.d=3×106t【C层·素养挑战】10.(2024·广元中考)如图①,在△ABC中,∠ACB=90°,点P从点A出发沿A→C→B 以1 cm/s的速度匀速运动至点B,图②是点P运动时,△ABP的面积y( cm2)随时间x(s)变化的函数图象,则该三角形的斜边AB的长为( )A.5B.7C.3√2D.2√311.(2024·安徽中考)如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=2,BD是边AC上的高.点E,F分别在边AB,BC上(不与端点重合),且DE⊥DF.设AE=x,四边形DEBF 的面积为y,则y关于x的函数图象为( )12.在平面直角坐标系xOy中,点P(5,-1)关于y轴对称的点的坐标是.13.一条笔直的路上依次有M,P,N三地,其中M,N两地相距1 000米.甲、乙两机器人分别从M,N两地同时出发,去目的地N,M,匀速而行.图中OA,BC分别表示甲、乙两机器人离M地的距离y(米)与行走时间x(分钟)的函数关系图象.(1)求OA所在直线的表达式;(2)出发后甲机器人行走多少时间,与乙机器人相遇?(3)甲机器人到P地后,再经过1分钟乙机器人也到P地,求P,M两地间的距离.参考答案【A层·基础过关】1.如图,水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为C=2πr.下列判断正确的是(C)A.2是变量B.π是变量C.r是变量D.C是常量2.已知点A(a-1,3),点B(-3,a+1),且直线AB∥y轴,则a的值为(D)A.1B.-1C.2D.-23.(2024·河南中考)把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I与使用电器的总功率P的函数图象(如图1),插线板电源线产生的热量Q与I的函数图象(如图2).下列结论中错误的是(C)A.当P=440 W时,I=2 AB.Q随I的增大而增大C.I每增加1 A,Q的增加量相同D.P越大,插线板电源线产生的热量Q越多4.(2024·威海中考)同一条公路连接A,B,C三地,B地在A,C两地之间.甲、乙两车分别从A地、B地同时出发前往C地.甲车速度始终保持不变,乙车中途休息一段时间,继续行驶.如图表示甲、乙两车之间的距离y(km)与时间x(h)的函数关系.下列结论正确的是(A)h与乙车相遇A.甲车行驶83B.A,C两地相距220 kmC.甲车的速度是70 km/hD.乙车中途休息36分钟5.在平面直角坐标系中,点P(-3,-2)所在象限是第三象限.6.(2024·泸州中考)函数y=√x+2的自变量x的取值范围是x≥-2.7.画一条水平数轴,以原点O为圆心,过数轴上的每一刻度点画同心圆,过原点O 按逆时针方向依次画出与正半轴的角度分别为30°,60°,90°,120°,…,330°的射线,这样就建立了“圆”坐标系.如图,在建立的“圆”坐标系内,我们可以将点A,B,C的坐标分别表示为A(6,60°),B(5,180°),C(4,330°),则点D的坐标可以表示为(3,150°).【B层·能力提升】8.(2024·广安中考)向如图所示的空容器内匀速注水,从水刚接触底部时开始计时,直至把容器注满,在注水过程中,设容器内底部所受水的压强为y(单位:帕),时间为x(单位:秒),则y关于x的函数图象大致为(B)9.(2024·广西中考)激光测距仪L发出的激光束以3×105 km/s的速度射向目标M,t s后测距仪L收到M反射回的激光束.则L到M的距离d km与时间t s的关系式为(A)t B.d=3×105tA.d=3×1052C.d=2×3×105tD.d=3×106t【C层·素养挑战】10.(2024·广元中考)如图①,在△ABC中,∠ACB=90°,点P从点A出发沿A→C→B 以1 cm/s的速度匀速运动至点B,图②是点P运动时,△ABP的面积y( cm2)随时间x(s)变化的函数图象,则该三角形的斜边AB的长为(A)A.5B.7C.3√2D.2√311.(2024·安徽中考)如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=2,BD是边AC上的高.点E,F分别在边AB,BC上(不与端点重合),且DE⊥DF.设AE=x,四边形DEBF 的面积为y,则y关于x的函数图象为(A)12.在平面直角坐标系xOy中,点P(5,-1)关于y轴对称的点的坐标是(-5,-1).13.一条笔直的路上依次有M,P,N三地,其中M,N两地相距1 000米.甲、乙两机器人分别从M,N两地同时出发,去目的地N,M,匀速而行.图中OA,BC分别表示甲、乙两机器人离M地的距离y(米)与行走时间x(分钟)的函数关系图象.(1)求OA所在直线的表达式;【解析】(1)由题图可知,OA所在直线为正比例函数∴设y=kx∵A(5,1 000)∴1 000=5k,k=200∴OA所在直线的表达式为y=200x.(2)出发后甲机器人行走多少时间,与乙机器人相遇?【解析】(2)由题图可知甲机器人速度为1 000÷5=200(米/分钟)乙机器人速度为:1 000÷10=100(米/分钟),两人相遇时:1000100+200=103(分钟)答:出发后甲机器人行走103分钟,与乙机器人相遇.(3)甲机器人到P地后,再经过1分钟乙机器人也到P地,求P,M两地间的距离.【解析】(3)设甲机器人行走t分钟后到P地,P地与M地距离为200t则乙机器人(t+1)分钟后到P地,P地与M地距离为1 000-100(t+1)由200t=1 000-100(t+1),解得t=3∴200t=600答:P,M两地间的距离为600米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数探究
【例1】 1.抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系
内的图象大致为()
A.B.C.D.
2.已知x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,且m﹣n+2≠0,则当x=3(m+n+1)时,多项式x2+4x+6
的值等于.
3.已知二次函数y=ax2﹣2ax+1(a<0)图象上三点A(﹣1,y1),B(2,y2)C(4,y3),则y1、y2、y3的大小关
系为()
A.y1<y2<y3 B.y2<y1<y3C.y1<y3<y2 D.y3<y1<y2
方法总结1.将抛物线解析式写成y=a(x-h)2+k的形式,则顶点坐标为(h,k),对称轴为直线x=h,也可应
)来求对称轴及顶点坐标.
用对称轴公式x=-,顶点坐标(-

2.比较两个二次函数值大小的方法:
(1)直接代入自变量求值法;
(2)当自变量在对称轴两侧时,看两个数到对称轴的距离及函数值的增减性判断;
(3)当自变量在对称轴同侧时,根据函数值的增减性判断.
举一反三 1.已知点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为()A.(﹣3,7)B.(﹣1,7)C.(﹣4,10)D.(0,10)
2.已知关于x的函数y=(2m﹣1)x2+3x+m图象与坐标轴只有2个公共点,则m=.
3.设A,B,C是抛物线上的三点,则,,的大小关系为()A. B.C.D.
考点二、二次函数系数的符号及其之间的关系
【例2】二次函数y=ax2+bx+c的图象如图所示,给出下列结论:
①2a+b>0;②b>a>c;③若﹣1<m<n<1,则m+n<﹣;④3|a|+|c|<2|b|.
其中正确的结论是(写出你认为正确的所有结论序号).
方法总结根据二次函数的图象确定有关代数式的符号,是二次函数中的一类典型的数形结合问题,具有较强的推理性.解题时应注意a决定抛物线的开口方向,c决定抛物线与y轴的交点,抛物线的对称轴由a,b共同决定,b2-4ac决定抛物线与x轴的交点情况.当x=1时,决定a+b+c的符号,当x=-1时,决定a-b+c的符号.在此基础上,还可推出其他代数式的符号.运用数形结合的思想更直观、更简捷.
举一反三 1.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:
①b2﹣4ac>0;②4a+c>2b;③(a+c)2>b2;④x(ax+b)≤a﹣b.
其中正确结论的是.(请把正确结论的序号都填在横线上)
2.一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(﹣2,0),则下列结论中,正确的是()
A.b=2a+k B.a=b+k C.a>b>0 D.a>k>0
考点三、二次函数图象的平移
【例3】二次函数y=-2x2+4x+1的图象怎样平移得到y=-2x2的图象( )
A.向左平移1个单位,再向上平移3个单位
B.向右平移1个单位,再向上平移3个单位
C.向左平移1个单位,再向下平移3个单位
D.向右平移1个单位,再向下平移3个单位
方法总结二次函数图象的平移实际上就是顶点位置的变换,因此先将二次函数解析式转化为顶点式确定其顶点。

相关文档
最新文档