6.3实数(1)

合集下载

6.3实数(第1课时)教学设计-2021-2022学年人教版数学七年级下册

6.3实数(第1课时)教学设计-2021-2022学年人教版数学七年级下册

人教版七年级数学下册第六章第三节《实数》教学设计(第1课时)一、教学目标知识技能1.了解无理数及实数的概念,并会对实数进行分类.2.会对实数按照一定标准进行分类,培养分类能力.3.知道实数和数轴上的点一一对应.数学思考1.经历从有理数逐步扩充到实数,了解到人类对数的认识是不断发展的.2.经历对实数进行分类,发展学生的分类意识.解决问题1.通过无理数的引入,使学生对数的认识由有理数扩充到实数.2在交流中学会与人合作,并能与他人交流自己思维的过程和结果.情感态度1.通过无理数的引入,激发学生的求知欲,使学生感受数学活动充满了探索性与创造性,体验发现的快乐,获取成功的体验.2.通过了解数系扩充体会数系扩充对人类发展的作用.3.敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.二、教学重点和难点教学重点:使学生了解无理数和实数的意义,熟练掌握实数的分类教学难点:无理数意义的理解.三、教学方法讲练结合启发教学学生为主四、教学手段多媒体五、课时安排一课时六、教学设计(一).数学故事——无理数的发现:通过俗语“有理走遍天下,无理寸步难行”引入数学故事,古希腊著名的数学家,哲学家毕达哥拉斯有一句名言“万物皆为数。

”他认为宇宙间的一切事物都归为整数或整数的比。

问:整数的比是什么数?答:分数。

问:整数和分数统称为什么数?答:有理数。

〖设计说明〗让学生了解无理数是怎么发现的,经历从有理数逐步扩充到实数,了解到人类对数的认识是不断发展的,从而对数学充满兴趣(二)、回顾旧知,检查预习:1.有理数怎样分类?有理数分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 或 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负整数负整数负有理数零正分数正整数正有理数有理数 〖设计说明〗让学生进行简单的练习,帮助学生回顾旧知识:有理数,为本节课的迁移伏笔. (三)、创设情境,导入新课:1.展示问题,引导学生探究。

人教版七年级数学下册第6章习题课件6.3.1 实数及其分类

人教版七年级数学下册第6章习题课件6.3.1  实数及其分类
第六章 实数
6.3 实数 第1课时 实数及其分类
提示:点击 进入习题
1 无理数 (1)开不尽 2D
3D 4B 5 见习题
6D 7A 8 见习题
答案显示
9 一一对应;实数;实数
10 D
提示:点击 进入习题
11 C 12 C 13 见习题 14 见习题 15 见习题
16 见习题 17 见习题
答案显示
12.(2019·包头) 实数 a,b 在数轴上的对应点的位置如图所示,
下列结论正确的是( C )
A.a>b C.-a>b
B.a>-b D.-a<b
13.面积为 7 的正方形的边长为 x. 请你回答下列问题: (1)x 的整数部分是多少? (2)把 x 的值精确到十分位是多少?精确到百分位呢? (3)x 是有理数吗? 解:设正方形的面积为 S,则 S=x2=7. 当 2<x<3 时,4<S<9; 当 2.6<x<2.7 时,6.76<S<7.29;
16.小明同学在学习了本章的内容后设计了如下问题: 定义:把形如 a+b m和 a-b m (a,b 为有理数且 b≠0,m 为正整数且开方开不尽)的两个实数称为共轭实数.
(1)请你写出一对共轭实数. 解:答案不唯一,如:3+2 2与 3-2 2等.
(2)3 2与-2 3是共轭实数吗?-2 3与 2 3是共轭实数吗? 解:因为 3 2与-2 3的被开方数不相同, 所以 3 2与-2 3不是共轭实数; 而-2 3与 2 3的被开方数都是 3,且 a=0,b=2 或 b=-2, 所以-2 3与 2 3是共轭实数.
所以 b=-2,a=3. 所以 ba=(-2)3=-8. 问题:设 x,y 都是有理数,且满足 x2-2y+ 5y=10+3 5, 求 x+y 的值. 解:原式可化为(x2-2y-10)+ 5(y-3)=0, 因为 x,y 都是有理数,所以 x2-2y-10,y-3 也是有理数. 因为 5是无理数,所以 y-3=0,x2-2y-10=0. 解得 y=3,x=±4,故 x+y=7 或-1.

6.3.实数(1)

6.3.实数(1)

。即:设 a 表示一个实数,则
a
例1 (1)写出 3.14 的相反数; (2) 1 (3)求
3
3
3 是什么数的相反数;
125 的绝对值;
2 ,求这个数。
(4)已知一个数的绝对值是
[应用习新]
1、课本 57 页习题 1、2 2、课本 56 页练习 1、2 3、写出
2、问题:我们知道,有理数都可以在数轴上表示出来,无理数也能在数轴上表 示出来吗?
3、 (1) 2 的相反数是
,-π 的相反数是
,0 的相反数是
(2)
2
=


=

0
=
归纳:当数从有理数扩充到实数以后, 1、数 a 的相反数是 2、一个正实数的绝对值是它 0 的绝对值是 ; ;一个负实数的绝对值是它的 ;
5 和 3 之间的所有整数:
4、实数 a 在数轴上的位置如图所示,则
a 2
= (

A.
a 2
B、
2 a
C、 a
2
D、 a
2
9 11
[探究知新]
1、阅读课本 53 页内容,并完成下列问题: (1) 叫做无理数。 (2) 有理数和无理数统称 。 (3) 实数分类
实数
(4)把下列各数分别填在相应的集合中。
1 3
3 ,3.1, 0 .02020020002„, 2 , 8 , 36 ,3.1415926,
π 。 2
...
.1)
[学习目标] 了解无理数和实数的概念;知道实数与数轴上的点具有一一对应关系,初步体 会“数形结合”的数学思想。
[温故导新]
1、
备注

人教版七年级下册6.3.1 实数及其分类

人教版七年级下册6.3.1  实数及其分类
第六章 实 数
6.3 实 数 第1课时 实数及其分类
1 课堂讲解
无理数 实数及其分类 实数与数轴上的点的关系
2 课时流程
பைடு நூலகம்
逐点 导讲练
课堂 小结
课后 作业
回顾旧知
什么是有理数?有理数怎样分类?
有理数
整数 分数
正有理数
有理数

0
负有理数
知识点 1 无理数
知1-导
探究 我们知道有理数包括整数和分数,请把下列分数写成 小数的形式,你有什么发现?
如,将3看成3.0), 那么任何一个有理数都可以写成有
限小数或无限循环小数的形式. 反过来,任 何有限小
数或无限循环小数也都是有理数.
(来自教材)
知1-讲
1. 定义:无限不循环小数叫做无理数. 判断标准:小数位数无限,小数形式为不循环.
2. 三种常见形式: (1)开方开不尽的数,如 3 ,3 5 ,…; (2)含有π的一类数: 1 π, 1 π,π+1,…;
5 8
,0,0.8,
45 6
,-4.2.
正数:{ ,…};负数:{ ,…};
正整数:{ ,…};正分数:{ ,…};
负整数:{ ,…};负分数:{ ,…}.
分析: 以前学过的0以外的数就是正数,正数前面加上 “-”号就是负数,再看它们是整数还是分数.
解:正数:{13,+6, ,0.8,4 5 ,…}; 6
议一议 (1)如图,OA=OB,数轴上点A对应的数是什么?它介
于哪两个整数之间? (2)你能在坐标轴上找到 5 对应的点吗?与同伴进
行交流.
知3-讲
1.实数与数轴间的关系:实数和数轴上的点是一一对应 的. 它包含着两层含义:

人教版七年级数学下册6.3实数(第1课时)一等奖优秀教学设计

人教版七年级数学下册6.3实数(第1课时)一等奖优秀教学设计

人教版义务教育课程标准实验教科书七年级下册6.3.1实数(第1课时)教学设计一、教材分析1、地位作用:本章内容相当于旧教材《数的开方》一章,但编排顺序有所差别,旧教材先学习平方根,再将算术平方根作为其中的一种特例进行学习,而本套教材先联系实际学习认识算术平方根后,再进一步认识平方根。

这样可以引发学生的疑惑,激发学生学习兴趣,从而使学生积极主动地投入到数学活动中去。

本节篇幅不长,内容也不多,但知识比较抽象,而且与学生以前接触的数学知识差异较大,根据以前的教学经验,我感觉学生学习起来不会很顺手,而且它又是以后学习二次根式、一元二次方程的基础,需要老师在教学中精心构思,认真落实。

2、教学目标:(1)了解无理数和实数的概念.(2)知道实数与数轴上的点具有一一对应关系,初步体会“数形结合”的数学思想。

3、教学重、难点:重点:了解无理数和实数的概念,知道实数与数轴上的点的一一对应关系。

难点:理解实数的概念突破重难点的方法:观察与动手作图实践,让学生知道实数和数轴上的点是一一对应的,从而理解学习实数的必要性。

二、教学准备:多媒体课件、导学案三、教学过程.圆周率及一些含有3、下列结论正确的是( )A.无限小数是无理数B.实数不是正数就是负数合起来就是:数轴上的点。

C.无理数都是带根号的数D.无理数都是无限不循环小数 4、判断:(1).实数不是有理数就是无理数。

( ) (2).无理数都是无限不循环小数。

( ) (3).无理数都是无限小数。

( ) (4).带根号的数都是无理数。

( ) 2、下列说法中,正确的是()、都是无理数234、、A 、B 、无理数都是带根号的数C 、实数分为正实数和负实数D 、实数和数轴上的点是一一对应的D。

人教版数学七年级下册6.3《实数》教学设计1

人教版数学七年级下册6.3《实数》教学设计1

人教版数学七年级下册6.3《实数》教学设计1一. 教材分析人教版数学七年级下册6.3《实数》是学生在掌握了有理数和无理数的概念之后,进一步对实数进行系统学习的开始。

本节内容主要包括实数的定义、实数与数轴的关系、实数的运算等。

通过本节课的学习,使学生对实数有一个清晰的认识,为后续的代数学习和解决实际问题打下基础。

二. 学情分析学生在之前的学习中已经掌握了有理数和无理数的概念,对数轴也有了一定的了解。

但实数作为介于有理数和无理数之间的一个整体,其定义和性质还需要进一步引导和探究。

此外,实数与数轴的关系以及实数的运算对学生来说也是一个新的挑战。

三. 教学目标1.理解实数的定义,掌握实数与数轴的关系。

2.掌握实数的运算规则,能进行实数的基本运算。

3.培养学生的逻辑思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.实数的定义和性质。

2.实数与数轴的关系。

3.实数的运算规则。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题引导学生思考,通过案例让学生理解实数的定义和性质,通过小组合作学习法让学生在讨论中掌握实数与数轴的关系和实数的运算规则。

六. 教学准备1.PPT课件。

2.数轴教具。

3.练习题。

七. 教学过程1.导入(5分钟)通过复习有理数和无理数的概念,引导学生思考实数的定义。

同时,提出问题:“实数与数轴有什么关系?”激发学生的学习兴趣。

2.呈现(10分钟)通过PPT课件呈现实数的定义和性质,实数与数轴的关系,实数的运算规则。

结合案例,让学生直观地理解实数的内涵。

3.操练(10分钟)让学生在小组内进行实数的运算练习,如加、减、乘、除等。

教师巡回指导,解答学生疑问。

4.巩固(5分钟)选取一些典型练习题,让学生独立完成,检验对实数知识的掌握程度。

教师及时点评,指出错误并讲解。

5.拓展(5分钟)引导学生思考实数在实际生活中的应用,如面积、体积计算等。

让学生举例说明,培养解决实际问题的能力。

6.3实数1

6.3实数1


4.带根号的数都是无理数.( × )
5.无理数一定都带根号.( × )
二、填空 在实数 22 , 7 整数有
1 , 3
,
3
2,
0. 3,

9,
3
8 , 0 中,
9,
3
8, 0
9,
3
有理数有
22 1 , , 0. 3, 7 3
8, 0
无理数有 ,
3
2
3
22 1 , , , 实数有 7 3
3
【解析】选B.数a的相反数为-a,有-(- 3)= 3 .
2. 在 -3,- 3,-1,0这四个实数中,最大的是( (A)-3 (B)- 3 (C)-1 (D)0

【解析】选D.前三个为负数,0大于任何负数.
3.正实数的绝对值是 它本身 0
,0的绝对值是 它的相反数
3
,负实数的绝对值是
.

4. 3 的相反数是
11 , 90
5 9
3 47 3 3.0, 0 .6, 5.875 , 5 8 9 11 5 0. 81, 0 .1 2 , 0. 5 11 90 9
事实上,任何一个有理数都可以写成有 限小数或无限循环小数. 反过来,任何有限小数或无限循环小数 也都是有理数.
2 , 0. 3,

9,
3
ห้องสมุดไป่ตู้
8, 0
每个有理数都可以用数轴上的点表示,
那么无理数是否也可以用数轴上的点来表
示呢?
你能在数轴上找到表示 和 2及 理数的点吗? 直径为1的圆
2 这样的无
-2
-1
0

七年级数学下册:第六章实数6.3实数第1课时实数的概念教学课件(新版新人教版)

七年级数学下册:第六章实数6.3实数第1课时实数的概念教学课件(新版新人教版)

7.下列说法正确的有( A )
①不存在绝对值最小的无理数;
②不存在绝对值最小的实数;
③不存在与本身的算术平方根相等的数;
④比正实数小的数都是负实数;
⑤非负实数中最小的数是 0.
A.2 个
B.3 个
C.4 个
D.5 个
8.[2018·咸宁]写出一个比 2 大但比 3 小的无理数(用含根号的式子表示) ___5__.
-64;
(2) 225;
(3) 11;
(4) 2-2.
解:(1)因为3 -64=-4,所以3 -64的相反数是 4,倒数是-14,绝对值是 415,倒数是115,绝对值是 15;
(3)
11的相反数是-
11,倒数是
1 ,绝对值是 11
11;
(4) 2-2 的相反数是 2- 2,倒数是 21-2,绝对值是 2- 2.
类型之三 数轴上的点与实数一一对应的关系 如图 6-3-1,数轴上 A,B 两点表示的数分别为 2和 5.1,则 A,B 两
点之间表示整数的点共有( C )
A.6 个
B.5 个
图 6-3-1 C.4 个
D.3 个
类型之四 实数的大小比较 三个数-π,-3,- 3 的大小顺序是__-__π_<_-__3_<__-___3_____ (按从小
2019年春人教版数学七年级下册课件
6.3 实根
第六章 实数
6.3 实根 第1课时 实数的概念
学习指南 知识管理 归类探究 当堂测评 分层作业
学 习 指 南 [教用专有]
教学目标 1.了解无理数和实数的概念,会对实数按照一定的标准进行分类,培养分 类能力. 2.实数和数轴上的点一一对应,了解实数的运算法则及运算律,会进行实 数的运算.

6.3.1实数的概念-人教版七年级数学下册教案

6.3.1实数的概念-人教版七年级数学下册教案
2.在举例说明时,尽量选择与学生们生活密切相关的例子,提高他们对实数学习的兴趣。
3.加强对讨论环节的引导,确保学生们围绕主题展开讨论,提高讨论效果。
4.关注沉默的学生,鼓励他们积极参与讨论,提高他们的自信心。
5.在教学过程中,注意观察学生的反应,及时调整教学方法,以提高教学效果。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“实数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
6.3.1实数的概念-人教版七年级数学下册教案
一、教学内容
本节课选自人教版七年级数学下册第六章第三节,标题为“6.3.1实数的概念”。教学内容主要包括以下三个方面:
1.实数的定义:介绍实数的概念,让学生了解实数是包含有理数和无理数的全体数,是数轴上的所有点对应的数。
2.实数的分类:将有理数和无理数进行分类,并举例说明。有理数包括整数、分数等,无理数如π、√2等。
-实数的精确表示:学生在表示无理数时可能会遇到困难,如何用有限的小数或分数精确表示无理数。
-实数运算的规则:尤其是无理数参与运算时,如何进行合理化简和计算。
-实数在数轴上的定位:在数轴上准确地找到无理数的位置,以及理解无理数与有理数之间的关系。
举例解释:
-对于无理数的理解,可通过π的近似值3.14的由来,说明π是无限不循环的小数,从而引出无理数的概念。
3.增强学生的空间观念:结合数轴,让学生在实际操作中感受实数与数轴的关系,提高空间想象力和直观感知能力。

人教版数学七年级下册6.3.1无理数、实数概念课件

人教版数学七年级下册6.3.1无理数、实数概念课件

(1)了解无理数和实数的概念;
实数的分类——按定义分 关系。 实数的分类——按定义分
(第一课时)
(1)了解无理数和实数的概念;
实数的分类——按性质分
3 实数
(第一课时)
41421356237309504880. 实数的分类——按性质分 你能将两个面积是1的正方形通过裁剪拼成一个大正方形吗?大正方形的边长是多少?和小正方形的对角线有什么关系? (3)知道实数和数轴上的点一一对应
0.1010010001000010000010000001.....
实数的分类——按性质分
正有理数
正实数
实 数
0
负实数
正无理数 负有理数
负无理数
把下列各数分别填在相应的集合中:


3.1415926 √ 7 0.6 -8
√3 3

√36 0 ~
22
0.191191119…
7
每相邻两个9之间依次多一个1
(1)了解无理数和实数的概念; (1)了解无理数和实数的概念; 来表示,反过来,数轴上的每一个点都可以用一
来表示,反过来,数轴上的每一个点都可以用一
6.3 来表示,反过来,数轴上的每一个点都可以用一
π能否在数轴上表示呢? π能否在数轴上表示呢?
实数
(1)了解无理数和实数的概念;
π能否在数轴上表示呢?
((21) )来了了解解表实无数理示的数分和类实,; 数的反概念过; 来,数轴上的每一个点都可以用一
个实数来表示。 你能将两个面积是1的正方形通过裁剪拼成一个大正方形吗?大正方形的边长是多少?和小正方形的对角线有什么关系?
(1)了解无理数和实数的概念;
(1)了解无理数和实数的概念;

数学七年级下人教新课标6.3《实数》(1)教学设计

数学七年级下人教新课标6.3《实数》(1)教学设计

1.教学环境:多媒体录播教室。

2.资源准备:教学所用的PPT 课件,课本。

六、教学媒体选择分析表知识点 学习 目标 媒体 类型媒体内容要点 教学 作用 使用 方式所得结论占用 时间媒体 来源 知识回 顾 感知 图片文字 提出问题,学生回答B B 有理数的分类方法 2分钟自制探究新知 了解图片 将给出的数写成小数的形式 I C 感知无理数与有理数的区别 3分钟 自制学以致用 掌握PPT课件出示问题GF理解概念,掌握方法 3分钟自制再探新知 知道 PPT 课件 在数轴上表示π, A F 无理数也可以在数轴上表示 8分钟 下载应用新知 应用 PPT 课件 出示问题,学生独立完成。

H I 通过练习,进一步理解并握掌所学知识。

6分钟 自制归纳总结了解 PPT 归纳本节课所学数学知识与思想方法。

H J 知识梳理,进一步落实相关概念。

2分钟自制①媒体在教学中的作用分为:A.提供事实,建立经验;B.创设情境,引发动机;C.举例验证,建立概念;D.提供示范,正确操作;E.呈现过程,形成表象;F.演绎原理,启发思维;G.设难置疑,引起思辨;H.展示事例,开阔视野;I.欣赏审美,陶冶情操;J.归纳总结,复习巩固;K.其它。

②媒体的使用方式包括:A.设疑—播放—讲解;B.设疑—播放—讨论;C.讲解—播放—概括;D.讲解—播放—举例;E.播放—提问—讲解;F.播放—讨论—总结;G.边播放、边讲解;H.设疑_播放_概括;I. 讨论_交流_总结;J 其他七、教学过程一、知识回顾请你把下列各数进行分类:二、探究新知问题1: 把下列有理数写成小数的形式,你有什么发现? (可以使用计算器) 3 , 35-,478 ,911 ,119 ,5923300.11655--7,,, ,,,,27119104911-,,,.22-和0.81,111.29=,50.59=体会有理数都可以写成有限小数或无限循环小数的形式。

任何一个有理数都可以写成有限小数或无限循环小数的形式。

2020人教版七年级数学下册第六章6.3实数(1)实数的概念课件(共32张PPT)

2020人教版七年级数学下册第六章6.3实数(1)实数的概念课件(共32张PPT)

6,

••
, 1. 2 3,
22 , 36
2
7
1.232232223 (两个3之间依次多一个 2)
有理数是:1.

2

3
22
,7
36
无理数是: 6
,,

2
1.232232223 ,(两个3之间依次多一个 2)
思考:无理数一般有哪些形式?
(1)像 7, 3, 12 的开不尽方的数是无理数。
020
002
000
02…是无
理数吗?
1.57079632679...
2
它们都是无限 不循环小数,
2.02002000200002…
是无理数
常见的一些无理数:
(1)含 π 的一些数;
(2)含开不尽方的数; (3)有规律但不循环的小数,如1.01001000100001…
例:判断下列数哪些是有理数?哪些是无理数?
人教版七年级数学 下册
6.3 实 数 第1课时 实数的概念
1.了解实数的意义,并能将实数按要求进 行准确的分类;
2.熟练掌握实数大小的比较方法;(重点) 3.了解实数和数轴上的点一一对应,能用 数轴上的点 表示无理数.(难点)
认真阅读课本中6.3 实数的 内容,完成下面练习并体验知 识点的形成过程。
• 这个矛盾说明, 2 不能写成分数的形式, 即 2 不是有理数。
• 实际上, 2 是无限不循环小数。
实数的概念:
在前面的学习中,我们知道,许多数的平方根和 立方根都是无限不循环小数,它们不能化成分数.我 们给无限不循环小数起个名字,叫“无理数”.有理 数和无理数统称为实数.
思考:

6.3实数

6.3实数

有理数集合
无理数集合
把下列各数分别填在相应的集合中;
3.1415926
√7

0.6
22 7
-8
√36

— √3
3
0

0.191191119…
每相邻两个9之间依次多一个1
有理数集合
无理数集合
把下列各数填入相应的集合内:
0.13
3
9
3
5
64 0 . 6

3 4
0
9
3
(1)有理数集合:{
6 2 1 2 3 6
这节课我们学习了什么?
6.3实数(1) 1. 无理数:无限不循环小数。 2. 无理数的常见形式: (1)开方开不尽的数; (2)圆周率 ,以及一些含有 的数; (3)有规律但不循环的无限小数 3. 实数与数轴的关系:一一对应。


课堂检测
判断快枪手——看准最快最准!
1.实数不是有理数就是无理数。( 2.无理数都是无限不循环小数。( 3.带根号的数都是无理数。( ×) 4.无理数都是无限小数。( )
) )
5.无理数一定都带根号。( × )
判断题 ①有理数都可以用数轴上的点表示; ②无理数都可以用数轴上的点表示; ③任意两个有理数之间都有有理数, 因此,有理数可以铺满整个数轴; ④任意两个无理数之间都有无理数, 因此,无理数可以铺满整个数轴; ⑤没有最小的有理数; ⑥没有最小的无理数; ⑦没有绝对值最小的有理数; ⑧没有绝对值最小的无理数;
3 = 3.0 9 ~ 0.81 ~ 11
3 - = -0.6 5
11 ~ ~ 0.12 90
47 = 5.875 8
5~ ~ 0.5 9

人教版七年级数学下册6.3.1《实数的概念》教学设计

人教版七年级数学下册6.3.1《实数的概念》教学设计

人教版七年级数学下册6.3.1《实数的概念》教学设计一. 教材分析人教版七年级数学下册6.3.1《实数的概念》是学生在掌握了有理数的基础上,进一步对实数进行学习。

本节内容主要介绍实数的概念,包括实数的定义、实数的性质等。

教材通过实例和问题,引导学生理解实数的意义,并能够运用实数进行简单的运算和解决问题。

二. 学情分析学生在学习本节内容前,已经掌握了有理数的概念和运算方法,具备一定的数学基础。

但实数概念相对抽象,学生可能存在一定的理解难度。

因此,在教学过程中,需要结合学生的实际情况,通过实例和问题,引导学生理解和掌握实数的概念。

三. 教学目标1.理解实数的定义,掌握实数的性质。

2.能够运用实数进行简单的运算和解决问题。

3.培养学生的抽象思维能力,提高学生的数学素养。

四. 教学重难点1.实数的定义和性质。

2.实数的运算方法。

五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。

通过问题引导学生思考,实例帮助学生理解,小组合作促进学生交流和讨论。

六. 教学准备1.教材、PPT等相关教学资料。

2.实例和问题。

3.小组合作学习分组。

七. 教学过程1. 导入(5分钟)通过提问方式引导学生回顾有理数的概念和性质,为新课的学习做好铺垫。

例如:“同学们,我们已经学习了有理数,那么有理数能表示所有的数吗?还有哪些数是有理数无法表示的?”2. 呈现(15分钟)利用PPT展示实数的定义和性质,结合实例进行讲解。

例如,通过数轴展示实数,解释实数包括有理数和无理数,以及实数的性质如大小关系、加减乘除等。

3. 操练(15分钟)让学生进行实数的运算练习,巩固所学知识。

例如,给出一些实数的运算题目,让学生独立完成,然后集体讲解答案。

4. 巩固(10分钟)通过问题和小测验的形式,巩固学生对实数的理解和掌握。

例如,提出一些关于实数的问题,让学生回答,或者让学生解决一些实际问题,运用实数进行计算。

5. 拓展(10分钟)引导学生思考实数在实际生活中的应用,拓展学生的思维。

6.3实数(1)

6.3实数(1)

15,4 ,
16
,2
,3
27
,0.15

7.5

π
,0

,2.3

3
①有理数集合:{ ②无理数集合:{ ③正实数集合:{ ④负实数集合:{
…}; …}; …}; …}.
展示:小组讨论+班级展示 2+4 min
知识盘点
1、 举例说明有理数和无理数的特点是什么? 2 、实数是由哪些数组成的? 3 、实数与数轴上的点有什么关系?
(1)怎样用两个面积为1的小正方形(如下图)拼成一
个面积为2的大正方形?
1
2
1
1 1
2
(2)拼成后的正方形的边长为多少?
2
模块二:合作探究
在数轴上能否找到表示 π 的点?
导航:结合图形,回忆圆的周长与直径的关系。
直径为1个单位长度的圆从原点沿数轴向右滚动一周, 圆上的一点由原点到达点O,点O' 对应的数是多少?
有理数分 整数 数
正有理数 有理数 0
负有理数

正有理数
有理数0
有限小数或无限循环小数
实数
负有理数
无理数负 正无 无理 理数 数无限不循环小数
正实数正 正无 有理 理数 数 实数0
负实数负 负无 有理 理数 数
模块二:合作探究
我们知道,每个有理数都可以用数轴上的点来表示, 那么无理数是否也可以用数轴上的点表示出来呢?
导航:自学课本54页内容,小组讨论,推荐组员起立回答 3+2min
以单位长度为边长画一个正方形,以原点为圆心, 正方形对角线为半径画弧,与正半轴的交点就表示
2 ,与负半轴的交点就表示 2.

七年级数学下册 第六章 实数 6.3 实数 第1课时 实数的概念

七年级数学下册 第六章 实数 6.3 实数 第1课时 实数的概念
3 f的值.
第二十二页,共二十六页。
课时 第1
(kèshí)
实数的概念
解:因为 a,b 互为倒数,所以 ab=1. 因为 c,d 互为相反数,所以 c+d=0. 因为 e 的绝对值为 2,所以 e=± 2, 所以 e2=(± 2)2=2. 因为 f 的算术平方根是 8, 所以 f=64,所以3 f=3 64=4,所以12ab+c+5 d+e2+3 f=21+0+2+4=612.
A.1a<a<-a B.-a<1a<a
C.a<1a<-a D.1a<-a<a
图 6-3-2
[解析] 采用特殊值法来解决.不妨设 a=-12,则-a=21,1a=-2. 因为-2<-12<12,所以1a<a<-a.故选 A.
第十五页,共二十六页。
课时 第1
(kèshí)
实数的概念
17.已知 a 为实数,则下列四个数中一定为非负数的是( C )
6.按大小分,实数可分为__正_实__数___、__0______、__负_实__数___三类.
(shìshù)
(shìshù)
第六页,共二十六页。
第1课时 实数(shìshù)的概念
7.把下列各数分别填入相应的数集里.
-13π,-2123, 7,3 27,0.324371,0.5,3 9,- 0.4, 16,
第1课时(kèshí) 实数的概念 2.任何一个有理数都可以写成_有_限_小__数_或__无_限_(_wú_xià_n)_循_环_小__数_的形式,反 过来,任何_有__限_小_数__或_无__限_(w_úx_ià_n)循__环_小_数__都是有理数. 3.下列各数中:-14,3.14159,-π,ππ5 ,0,0.3,15,5.2·01·, 2.121122111222…,其中无理数有__-_π__,__5_,__2._1_21_1_2_2_11_1_2_22_…____.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
火石岗中学课程改革数学学案
初备人: 袁付超 备课组:
课题
共备时间: 2016 年 3 月 30 日 审印人:
学习 目标 ★★了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数; 学习流 1、仔细浏览学案,带着问题认真阅读教材 53-54 页的内容,把有疑问的做上记号; 程 2 独自完成学案,所有同学完成活动一、二、三; 任务分 3、有困难的问题提交小组讨论,组长并对小组的完成情况进行检查; 工 主要方 4、严禁抄袭或借给其他同学抄袭; 法 5、学习方法:自主探究,小组合作讨论,归纳总结。 学习 程序 学习活动 学法指导
4、试一试 把实数进行分类,有几种分法?
5.像有理数一样,无理数也有正负之分。例如 2 , 3 3 , 是____无理数, 2 ,
3 3 , 是____无理数.
★★ 活动二、探究无理数能否在数轴上表示出来 1、我们知道,每个有理数都可以用数轴上的点来表示。无理数是否也可以用数轴上 的点来表示呢? (1)如图所示,直径为 1 个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原 点到达点 O′,点 O′的坐标是多少?
从图 OO′的长时这个圆的周长______,点 O′的坐标是_______ 这样,无理数 可以用____________表示出来.
中可以看 出
2.以单位长度为边长画一个正方形,以原点为圆心,正方形为半径画弧,与正半轴的交 点就表示______,与负半轴的交点就表示______,
归纳总结:1.事实上,每一个无理数都可以用数轴上的__________表示出来,这就是 说,数轴上的点有些表示__________,有些表示__________ 当从有理数扩充到实数以后,实数与数轴上的点就是__________的,即每一个实数都可 以用数轴上的__________来表示;反过来,数轴上的__________都是表示一个实数 2.与有理数一样,对于数轴上的_ ★★ 活动三、新知巩固
自我评价
学组评价
教师抽评
签名 时间
实数(第一课时) ★了解实数的意义,能对实数按要求进行分类;
6.3
★ 活动一、探究新知 1.我们知道有理数包括整数和分数,你能把下列有理数写成小数的形式,你有什么发 现?
3 , 2

3 47 9 11 5 , , , , 5 8 11 9 9
2.归纳: 任何一个有理数都可以写成_______小数或________小数的形式。反过来,任 何______小数或____________小数也都是有理数 观 察 通 过 前 两 节 的 探 讨 和 学 习 , 我 们 知 道 , 很 多 数 的 _____ 根 和 ______ 根 都 是 ____________小数, ____________小数又叫无理数, 3.14159265 也是无理数 结论: _______和_______统称为实数 3、你能举出一些无理数吗? 由于非 0 有理数和 无理数都有正负 之分,
1.
. 3 ,3 3 - 9, 5,64,, 0. 6, - , - 27 ,2,0.11 4
有理数集合{ 整数集合{ 实数集合{ 2.完成书上
} 无理数集合{ } 分数集合{ }
} }
P56 练习第 1 题 , 1、2 题 P57
学习收获 (完成目标) 学习困惑
(需要帮助)
项目 星级评价
(数字+★)
相关文档
最新文档