中考数学模拟试题汇编 圆有关的性质

合集下载

2023年山东省中考数学模拟题知识点分类汇编:圆的有关性质及计算(附答案解析)

2023年山东省中考数学模拟题知识点分类汇编:圆的有关性质及计算(附答案解析)

2023年山东省中考数学模拟题知识点分类汇编:圆的有关性质及计算一.选择题(共29小题)1.(2022•张店区二模)如图,⊙O内切于Rt△ABC,点P、点Q分别在直角边BC、斜边AB上,PQ⊥AB,且PQ与⊙O相切,若AC=2PQ,则sin∠B的值为()A.B.C.D.2.(2022•兰陵县二模)如图,在⊙O中,AB是⊙O的直径,AB=10,,点E 是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=30°;②∠DOB=2∠CED;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是()A.1B.2C.3D.4 3.(2022•临沭县二模)如图,在平面直角坐标系中,以M(2,3)为圆心,AB为直径的圆与x轴相切,与y轴交于A,C两点,则AC的长为()A.4B.C.D.6 4.(2022•博山区二模)如图,在正方形网格中,每个小正方形的边长都为1,点A,B,C,D,O都在格点(小正方形的顶点)上,AB和CD所在圆的圆心均为点O,则阴影部分的面积为()A.π﹣2B.π﹣2C.2πD.π5.(2022•莱西市一模)如图,PC,PB分别切⊙O于点C,B.若AB是⊙O的直径,∠P =70°,则∠A的度数为()A.55°B.60°C.70°D.80°6.(2022•泗水县三模)如图所示的“六芒星”图标是由圆的六等分点连接而成,若圆的半径为4,则图中阴影部分的面积为()A.8B.C.16D.7.(2022•乳山市模拟)如图,在四边形ABCD中,AB=AC=AD=3,∠DBC=15°,∠BDC=30°,则点A到BD的距离是()A.3B.C.2D.8.(2022•烟台模拟)下列说法正确的个数是()①相等的圆心角所对的弧相等;②如果一个角的两边分别平行于另一个角的两边,则两个角一定相等;③平分弦的直径一定垂直于弦;④顺次连接对角线相等的四边形四边中点所得的四边形必是菱形;⑤三角形的内心到三角形的三个顶点的距离相等A.0个B.1个C.2个D.3个9.(2022•福山区一模)如图,以五边形ABCDE的顶点A为圆心,以AB的长为半径作圆,若⊙A过点E,且BC和DE分别为⊙A的切线,点P在五边形外但在⊙A内一点,连接PB,PE,若∠C+∠D=236°,则∠P的度数可能是()A.124°B.68°C.62°D.58°10.(2022•淄川区二模)如图,点A,B,C,D,E在⊙O上,所对的圆心角为50°,则∠C+∠E等于()A.155°B.150°C.160°D.162°11.(2021•滨州三模)如图,PA,PB分别切⊙O与点A,B,MN切⊙O于点C,分别交PA,PB于点M,N,若⊙O的半径为,△PMN的周长为6,则扇形AOB的面积是()A.πB.2πC.3πD.4π12.(2021•临沂模拟)如图,AB是⊙O的直径,∠D=40°,则∠AOC=()A.80°B.100°C.120°D.140°13.(2021•岱岳区一模)如图,菱形OABC的顶点A、B、C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为2,则BD的长为()A.3B.C.2D.4 14.(2021•德州模拟)如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则圆锥的表面积为()A.4πcm2B.5πcm2C.6πcm2D.8πcm2 15.(2021•乳山市一模)如图,△ABC内接于⊙O,若∠A=45°,OC=2,则BC的长为()A.B.2C.2D.4 16.(2021•青岛二模)如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB为()A.22°B.44°C.48°D.68°17.(2021•沂南县模拟)如图,AB为⊙O的直径,C为半圆的中点,D为⊙O上的一点,且C、D两点分别在AB的异侧,则∠D的度数为()A.30°B.45°C.60°D.75°18.(2021•历城区一模)如图,扇形AOB的圆心角是直角,半径为2,C为OB边上一点,将△AOC沿AC边折叠,圆心O恰好落在弧AB上,则阴影部分面积为()A.3π﹣4B.3π﹣2C.3π﹣4D.2π19.(2021•济宁二模)如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC=2,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是()A.B.C.πD.2π20.(2021•泰山区模拟)如图,△ACD内接于⊙O,CB垂直于过点D的切线,垂足为B.已知⊙O的半径为,BC=3,那么sin∠A=()A.B.C.D.21.(2020•历下区校级模拟)如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则AB的长为()A.10B.12C.16D.20 22.(2020•德城区模拟)圆锥的底面半径为1,母线长为3,则该圆锥侧面积为()A.3B.6πC.3πD.6 23.(2020•新泰市二模)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,∠AOD 的大小为()A.130°B.100°C.120°D.110°24.(2020•槐荫区模拟)如图,从⊙O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC.若∠A=28°,则∠ACB的度数是()A.28°B.30°C.31°D.32°25.(2020•平阴县二模)如图,在边长为2的正方形ABCD中,以点D为圆心,AD为半径画,再以BC为直径画半圆,若阴影部分①的面积为S1,阴影部分②的面积为S2,则图中S2﹣S1的值为()A.﹣4B.+4C.﹣2D.+2 26.(2020•河东区一模)如图,A、D是⊙O上的两个点,BC是直径,若∠D=34°,则∠OAC等于()A.68°B.58°C.72°D.56°27.(2020•平邑县一模)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.πB.C.3+πD.8﹣π28.(2020•济宁模拟)如图,在△ABC中,∠BAC=90°,AB=AC=4,以点C为中心,把△ABC逆时针旋转45°,得到△A′B′C,则图中阴影部分的面积为()A.2B.2πC.4D.4π29.(2020•武城县模拟)下列说法错误的是()A.平分弦的直径,垂直于弦,并且平分弦所对的弧B.已知⊙O的半径为6,点O到直线a的距离为5,则直线a与⊙O有两个交点C.如果一个三角形的外心在三角形的外部,则这个三角形是钝角三角形D.三角形的内心到三角形的三边的距离相等二.填空题(共1小题)30.(2020•武城县模拟)在⊙O中,半径为2,弦AB的长为2,则弦AB所对的圆周角的度数为.2023年山东省中考数学模拟题知识点分类汇编:圆的有关性质及计算参考答案与试题解析一.选择题(共29小题)1.(2022•张店区二模)如图,⊙O内切于Rt△ABC,点P、点Q分别在直角边BC、斜边AB上,PQ⊥AB,且PQ与⊙O相切,若AC=2PQ,则sin∠B的值为()A.B.C.D.【考点】三角形的内切圆与内心;解直角三角形;圆周角定理;切线的性质.【专题】圆的有关概念及性质;与圆有关的位置关系;与圆有关的计算;解直角三角形及其应用;运算能力.【分析】设⊙O的半径是R,PE=PF=x,BQ=y,连接OD,OG,OF,OE,得出正方形CDOE和OGQF,推出OD=CD=CE=OE=GQ=QF=R,求出y=2R,x=R,根据锐角三角函数值求出即可.【解答】解:如图:设⊙O的半径是R,PE=PF=x,BQ=y,连接OD,OG,OF,OE,∵⊙O内切于Rt△ABC,∴∠ODC=∠OEC=90°=∠C,AD=AG,∵OD=OE,∴四边形CDOE是正方形,∴OD=CD=CE=OE=R,同理OG=GQ=FQ=OF=R,则PQ=CP,AC=AQ,∵PQ⊥AB,∠C=90°,∴∠C=∠PQB=90°,∵∠B=∠B,∴△BQP∽△BCA,∴==,∴BC=2BQ=2y,根据BG=BE得:y+R=2y﹣R,解得:y=2R,在Rt△PQB中,由勾股定理得:PQ2+BQ2=BP2,即(2R)2+(R+x)2=(4R﹣R﹣x)2,解得:x=R,即PQ=R+R=R,BQ=2R,tan B===.故选:C.【点评】本题考查了正方形的性质和判定,切线的性质,勾股定理,相似三角形的性质和判定,切线长定理等知识点的应用,主要考查学生的推理和计算能力,难度偏大.2.(2022•兰陵县二模)如图,在⊙O中,AB是⊙O的直径,AB=10,,点E 是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=30°;②∠DOB=2∠CED;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是()A.1B.2C.3D.4【考点】圆周角定理;轴对称﹣最短路线问题;垂径定理;圆心角、弧、弦的关系.【专题】与圆有关的计算;推理能力.【分析】①错误,证明∠EOB=∠BOD=60°即可;②正确.证明∠CED=30°,可得结论;③错误,M是动点,DM不一定垂直CE;④正确,连接EM,证明ME=MD,推出MC+MD=MC+ME≥CE=10,可得结论.【解答】解:∵==,∴∠AOC=∠COD=∠DOB=60°,∵E,D关于AB对称,∴∠EOB=∠BOD=60°,故①错误,∵∠CED=∠COD=30°,∴∠DOB=2∠CED,故②正确,∵M是动点,∴DM不一定垂直CE,故③错误,连接EM.则ME=MD,∴CM+DM=MC+ME≥CE=10,故④正确,故选:B.【点评】本题考查圆周角定理,垂径定理,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.(2022•临沭县二模)如图,在平面直角坐标系中,以M(2,3)为圆心,AB为直径的圆与x轴相切,与y轴交于A,C两点,则AC的长为()A.4B.C.D.6【考点】切线的性质;坐标与图形性质;垂径定理.【专题】圆的有关概念及性质;运算能力.【分析】设⊙M与x轴相切于点D,连接MD,过点M作ME⊥AC,垂足为E,根据垂径定理可得AC=2AE,再利用切线的性质可得∠MDO=90°,然后根据点M的坐标可得ME=2,MA=MD=3,最后在Rt△AEM中,利用勾股定理进行计算即可解答.【解答】解:设⊙M与x轴相切于点D,连接MD,过点M作ME⊥AC,垂足为E,∴AC=2AE,∵⊙M与x轴相切于点D,∴∠MDO=90°,∵M(2,3),∴ME=2,MD=3,∴MA=MD=3,在Rt△AEM中,AE===,∴AC=2AE=2,故选:B.【点评】本题考查了切线的性质,垂径定理,坐标与图形的性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.4.(2022•博山区二模)如图,在正方形网格中,每个小正方形的边长都为1,点A,B,C,D,O都在格点(小正方形的顶点)上,AB和CD所在圆的圆心均为点O,则阴影部分的面积为()A.π﹣2B.π﹣2C.2πD.π【考点】扇形面积的计算.【专题】与圆有关的计算;推理能力.【分析】如图,连接,OA,OB,OD.证明S阴=S扇形AOB﹣S扇形COD,可得结论.【解答】解:如图,连接,OA,OB,OD.S阴=S△AOB+S△OBD﹣S△AOC﹣S扇形OCD=S扇形AOB﹣S扇形COD=﹣=π,故选:D.【点评】本题考查扇形的面积,解题的关键是学会利用割补法求阴影部分的面积,属于中考常考题型.5.(2022•莱西市一模)如图,PC,PB分别切⊙O于点C,B.若AB是⊙O的直径,∠P =70°,则∠A的度数为()A.55°B.60°C.70°D.80°【考点】切线的性质;圆周角定理.【专题】与圆有关的位置关系;推理能力.【分析】连接OC,根据切线的性质得到∠PCO=∠PBO=90°,根据等腰三角形的性质得到∠A=∠ACO,根据三角形外角的性质和四边形的内角和定理即可得到结论.【解答】解:连接OC,∵PC,PB分别切⊙O于点C,B,AB是⊙O的直径,∴∠PCO=∠PBO=90°,∵∠P=70°,∴∠BOC=360°﹣90°﹣90°﹣70°=110°,∵OC=OA,∴∠A=∠ACO,∵∠BOC=∠A+∠ACO=110°,∴∠A=55°,故选:A.【点评】本题考查了切线的性质,等腰三角形的性质,三角形外角的性质,正确地作出辅助线是解题的关键.6.(2022•泗水县三模)如图所示的“六芒星”图标是由圆的六等分点连接而成,若圆的半径为4,则图中阴影部分的面积为()A.8B.C.16D.【考点】正多边形和圆.【专题】正多边形与圆;几何直观.【分析】如图,连接OB交AC与点H.解直角三角形求出AC,可得结论.【解答】解:如图,连接OB交AC与点H.由题意△ABC是等边三角形,OB=4,OH=BH=2,∵OB⊥AC,∴CH=AH==,∴AC=2CH=,∴阴影部分的面积=6××()2=8.故选:A.【点评】本题考查正多边形与圆,解直角三角形,等边三角形的性质,正六边形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.7.(2022•乳山市模拟)如图,在四边形ABCD中,AB=AC=AD=3,∠DBC=15°,∠BDC=30°,则点A到BD的距离是()A.3B.C.2D.【考点】圆周角定理;等腰三角形的性质.【专题】圆的有关概念及性质;推理能力.【分析】根据圆周角定理和等腰直角三角形的性质解答即可.【解答】解:∵AB=AC=AD=3,∴点B、C、D在以A为圆心,AB长为半径的圆上,∴∠BAC=2∠BDC=60°,∠DAC=2∠DBC=30°,∴∠BAD=90°,∴△BAD是等腰直角三角形,∵AB=AD=3,∴BD=3,∴点A到BD的距离等于BD的一半,∴A到BD的距离为.故选:B.【点评】本题主要考查了圆周角定理,等腰直角三角形的性质,熟练掌握相关性质和定理是解答本题的关键.8.(2022•烟台模拟)下列说法正确的个数是()①相等的圆心角所对的弧相等;②如果一个角的两边分别平行于另一个角的两边,则两个角一定相等;③平分弦的直径一定垂直于弦;④顺次连接对角线相等的四边形四边中点所得的四边形必是菱形;⑤三角形的内心到三角形的三个顶点的距离相等A.0个B.1个C.2个D.3个【考点】三角形的内切圆与内心;菱形的判定与性质;中点四边形;垂径定理.【专题】圆的有关概念及性质;推理能力.【分析】①根据同心圆定义即可判断;②根据平行四边形的性质即可判断;③根据圆的性质即可判断;④根据菱形的判定即可判断;⑤根据三角形内心定义即可判断.【解答】解:①在同心圆中,同一个圆心角所对的弧不相等,故结论错误;②如图,在▱ABCD中,∠B=∠ADC,它们的两条边互相平行,∵∠ADC+∠CDE=180°,∴∠B+∠CDE=180°,它们的两条边也互相平行,故结论错误;③如图,在⊙O中,∵AB、CD是直径,∴它们互相平分,但是不垂直,故结论错误;④解:如图,E、F、G、H分别是四边形ABCD的边AB、BC、CD、DA的中点,连接AC、BD,根据三角形的中位线定理,EF=AC,GH=AC,HE=BD,FG=BD,∵四边形ABCD的对角线相等,∴AC=BD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,故④正确;⑤三角形的内心到三角形的三边的距离相等,故⑤错误,综上所述:正确的有④,共1个,故选:B.【点评】本题考查了三角形内切圆与内心,菱形的判定和性质,中点四边形,垂径定理,三角形的中位线的应用,熟记性质和判定定理是解此题的关键,注意:有四条边都相等的四边形是菱形.作图要注意形象直观.9.(2022•福山区一模)如图,以五边形ABCDE的顶点A为圆心,以AB的长为半径作圆,若⊙A过点E,且BC和DE分别为⊙A的切线,点P在五边形外但在⊙A内一点,连接PB,PE,若∠C+∠D=236°,则∠P的度数可能是()A.124°B.68°C.62°D.58°【考点】切线的性质;圆周角定理.【专题】与圆有关的位置关系;正多边形与圆;推理能力.【分析】根据多边形内角和定理和切线的性质即可得到结论.【解答】解:∵多边形ABCDE是五边形,∴∠A+∠ABC+∠AED+∠D+∠C=540°,∵BC和DE分别为⊙A的切线,∴∠ABC=∠AED=90°,∴∠A=540°﹣90°﹣90°﹣236°=124°,∵A<∠P<∠A,∴∠P的度数可能是68°,故选:B.【点评】本题考查了切线的性质,多边形内角和定理,熟练掌握切线的性质是解题的关键.10.(2022•淄川区二模)如图,点A,B,C,D,E在⊙O上,所对的圆心角为50°,则∠C+∠E等于()A.155°B.150°C.160°D.162°【考点】圆内接四边形的性质;圆心角、弧、弦的关系;圆周角定理.【专题】圆的有关概念及性质;推理能力.【分析】连接AE,利用圆内接四边形对角互补求解即可.【解答】解:连接AE,∵四边形ACDE是⊙O的内接四边形,∴∠C+∠AED=180°,∵所对的圆心角为50°,∴∠AEB=×50°=25°,∴∠C+∠BED=180°﹣∠AEB=155°,故选:A.【点评】此题考查了圆内接四边形的性质,熟记“圆内接四边形对角互补”是解题的关键.11.(2021•滨州三模)如图,PA,PB分别切⊙O与点A,B,MN切⊙O于点C,分别交PA,PB于点M,N,若⊙O的半径为,△PMN的周长为6,则扇形AOB的面积是()A.πB.2πC.3πD.4π【考点】切线的性质;扇形面积的计算.【专题】与圆有关的位置关系;推理能力.【分析】根据切线长定理得MA=MC,NC=NB,可得PA+PB=6,PA=PB=3,根据直角三角形的性质得∠AOP=∠BOP=60°,∠AOB=120°,然后根据扇形的面积公式进行计算即可.【解答】解:连接OA,OB,OP,∵直线PA、PB、MN分别与⊙O相切于点A、B、C,∴MA=MC,NC=NB,PA=PB,∵△PMN的周长=PM+PN+MC+NC=PM+MA+PN+NB=PA+PB=6,∴PA=PB=.在Rt△POA中,PA=3,AO=,∴PO==,∴∠AOP=∠BOP=60°,∴∠AOB=120°,==π.∴S扇形AOB故选:A.【点评】本题考查了切线长定理,切线的性质,扇形的面积,解决本题的关键是掌握切线长定理.12.(2021•临沂模拟)如图,AB是⊙O的直径,∠D=40°,则∠AOC=()A.80°B.100°C.120°D.140°【考点】圆心角、弧、弦的关系.【专题】圆的有关概念及性质;推理能力.【分析】根据圆周角定理求出∠BOC,然后由邻补角的定义即可解决问题.【解答】解:∵∠D=40°,∴∠BOC=2∠D=80°,∴∠AOC=100°.故选:B.【点评】本题考查圆周角定理,邻补角定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.(2021•岱岳区一模)如图,菱形OABC的顶点A、B、C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为2,则BD的长为()A.3B.C.2D.4【考点】切线的性质;菱形的性质;圆周角定理.【专题】矩形菱形正方形;与圆有关的位置关系;推理能力.【分析】连接OB,根据切线的性质定理得到∠OBD=90°,根据菱形的性质、等边三角形的判定定理得到△OAB为等边三角形,得到∠AOB=60°,根据直角三角形的性质、勾股定理计算,得到答案.【解答】解:连接OB,∵BD是⊙O的切线,∴∠OBD=90°,∵四边形OABC为菱形,∴OA=AB,∵OA=OB,∴OA=OB=AB,∴△OAB为等边三角形,∴∠AOB=60°,∴∠ODB=30°,∴OD=2OB=4,由勾股定理得,BD==2,故选:C.【点评】本题考查的是切线的性质、菱形的性质、等边三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.14.(2021•德州模拟)如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则圆锥的表面积为()A.4πcm2B.5πcm2C.6πcm2D.8πcm2【考点】圆锥的计算.【专题】正多边形与圆;推理能力.【分析】设AB=xcm,则DE=(6﹣x)cm,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可.【解答】解:设AB=xcm,则DE=(6﹣x)cm,根据题意,得=π(6﹣x),解得x=4,S底=×42π+π=5π(cm2).所以圆锥的表面积=S侧+故选:B.【点评】本题考查了圆锥的计算,矩形的性质,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.15.(2021•乳山市一模)如图,△ABC内接于⊙O,若∠A=45°,OC=2,则BC的长为()A.B.2C.2D.4【考点】圆周角定理;勾股定理.【专题】圆的有关概念及性质;几何直观.【分析】根据圆周角定理得到∠BOC=2∠A=90°,根据等腰直角三角形的性质即可得到结论.【解答】解:由圆周角定理得,∠BOC=2∠A=90°,∴BC=OC=2,故选:B.【点评】本题考查的是圆周角定理及解直角三角形的知识,掌握圆周角定理是解题的关键.16.(2021•青岛二模)如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB为()A.22°B.44°C.48°D.68°【考点】切线的性质;圆周角定理.【专题】三角形;等腰三角形与直角三角形;与圆有关的位置关系;推理能力;模型思想.【分析】根据切线的性质、等腰三角形的性质,三角形的内角和可求出答案.【解答】解:连接OB,∵OA=OB,∴∠A=∠OBA=22°,∴∠AOB=180°﹣22°﹣22°=136°,又∵OA⊥OC,∴∠AOC=90°,∴∠BOC=136°﹣90°=46°,∵BC是⊙O的切线,∴OB⊥BC,∴∠OBC=90°,∴∠OCB+∠BOC=90°,∴∠OCB=90°﹣46°=44°,故选:B.【点评】本题考查切线的性质、等腰三角形的性质、三角形的内角和定理,掌握切线的性质、等腰三角形的性质,三角形的内角和定理是正确解答的前提.17.(2021•沂南县模拟)如图,AB为⊙O的直径,C为半圆的中点,D为⊙O上的一点,且C、D两点分别在AB的异侧,则∠D的度数为()A.30°B.45°C.60°D.75°【考点】圆周角定理.【专题】圆的有关概念及性质;推理能力.【分析】连接BD,由圆周角定理得∠ADB=90°,再证,然后由圆周角定理求解即可.【解答】解:连接BD,如图所示:∵AB为⊙O的直径,∴∠ADB=90°,∵C为半圆的中点,∴,∴∠ADC=∠BDC=∠ADB=45°,故选:B.【点评】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.18.(2021•历城区一模)如图,扇形AOB的圆心角是直角,半径为2,C为OB边上一点,将△AOC沿AC边折叠,圆心O恰好落在弧AB上,则阴影部分面积为()A.3π﹣4B.3π﹣2C.3π﹣4D.2π【考点】扇形面积的计算;翻折变换(折叠问题);垂径定理.【专题】与圆有关的计算;运算能力;应用意识.【分析】根据题意和折叠的性质,可以得到OA=AD,∠OAC=∠DAC,然后根据OA=OD,即可得到∠OAC和∠DAC的度数,再根据扇形AOB的圆心角是直角,半径为2,可以得到OC的长,结合图形,可知阴影部分的面积就是扇形AOB的面积减△AOC和△ADC的面积.【解答】解:连接OD,∵△AOC沿AC边折叠得到△ADC,∴OA=AD,∠OAC=∠DAC,又∵OA=OD,∴OA=AD=OD,∴△OAD是等边三角形,∴∠OAC=∠DAC=30°,∵扇形AOB的圆心角是直角,半径为2,∴OC=2,∴阴影部分的面积是:(×2)=3π﹣4,故选:A.【点评】本题考查扇形面积的计算,解答本题的关键是明确扇形面积的计算公式,利用数形结合的思想解答.19.(2021•济宁二模)如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC=2,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是()A.B.C.πD.2π【考点】扇形面积的计算;旋转的性质;等腰直角三角形.【专题】与圆有关的计算.【分析】先根据等腰直角三角形的性质得到∠BAC=45°,AB=AC=2,再根据旋转的性质得∠BAB′=∠CAC′=45°,则点B′、C、A共线,利用线段BC在上述旋转过程中所扫过部分(阴影部分)的面积=S扇形BAB′﹣S扇形CAC′进行计算即可.【解答】解:∵△ABC是等腰直角三角形,∴∠BAC=45°,AB=AC=2,∵△ABC绕点A按顺时针方向旋转45°后得到△AB′C,∴∠BAB′=∠CAC′=45°,∴点B′、C、A共线,∴线段BC在上述旋转过程中所扫过部分(阴影部分)的面积=S扇形BAB′+S△AB′C﹣S扇形CAC′﹣S△ABC=S扇形BAB′﹣S扇形CAC′=﹣=π.故选:A.【点评】本题考查了扇形面积的计算:阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.也考查了等腰直角三角形的性质和旋转的性质.20.(2021•泰山区模拟)如图,△ACD内接于⊙O,CB垂直于过点D的切线,垂足为B.已知⊙O的半径为,BC=3,那么sin∠A=()A.B.C.D.【考点】切线的性质;解直角三角形;圆周角定理.【专题】与圆有关的位置关系;图形的相似;运算能力.【分析】作⊙O的直径DK,连接CK,求出△KCD∽△DBC,求出CD,再解直角三角形求出即可.【解答】解:如图,作⊙O的直径DK,连接CK,∵CB垂直于过点D的切线,垂足为B,∴∠KDB=90°,∠KCD=90°,∴∠CDB=90°﹣∠KDC=∠K,∵∠KCD=∠B=90°,∴△KCD∽△DBC,∴,∵⊙O的半径为,BC=3,∴=,即CD=4,∴sin∠A=sin K==,故选:B.【点评】本题考查了圆周角定理、切线的性质、解直角三角形、相似三角形的性质和判定等知识点,能够正确作出辅助线是解此题的关键.21.(2020•历下区校级模拟)如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则AB的长为()A.10B.12C.16D.20【考点】圆周角定理;解直角三角形;圆心角、弧、弦的关系.【专题】综合题;推理能力.【分析】连接BD,如图,先利用圆周角定理证明∠ADE=∠DAC得到FD=FA=5,再根据正弦的定义计算出EF=3,则AE=4,DE=8,接着证明△ADE∽△DBE,利用相似比得到BE=16,所以AB=20.【解答】解:连接BD,如图,∵AB为直径,∴∠ADB=∠ACB=90°,∵AD=CD,∴∠DAC=∠DCA,而∠DCA=∠ABD,∴∠DAC=∠ABD,∵DE⊥AB,∴∠ABD+∠BDE=90°,而∠ADE+∠BDE=90°,∴∠ABD=∠ADE,∴∠ADE=∠DAC,∴FD=FA=5,在Rt△AEF中,∵sin∠CAB=,∴EF=3,∴AE==4,DE=5+3=8,∵∠ADE=∠DBE,∠AED=∠BED,∴△ADE∽△DBE,∴DE:BE=AE:DE,即8:BE=4:8,∴BE=16,∴AB=4+16=20.故选:D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.22.(2020•德城区模拟)圆锥的底面半径为1,母线长为3,则该圆锥侧面积为()A.3B.6πC.3πD.6【考点】圆锥的计算.【专题】与圆有关的计算;运算能力.【分析】根据扇形面积公式求出圆锥侧面积.【解答】解:圆锥的底面周长=2π×1=2π,即圆锥的侧面展开图扇形的弧长为2π,则圆锥侧面积=×2π×3=3π,故选:C.【点评】本题考查的是圆锥的计算,掌握圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长是解题的关键.23.(2020•新泰市二模)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,∠AOD 的大小为()A.130°B.100°C.120°D.110°【考点】圆内接四边形的性质;等腰三角形的性质;圆周角定理.【专题】与圆有关的计算;应用意识.【分析】首先证明∠ADC=∠CBE,再利用等腰三角形的性质求出∠ACD,利用圆周角定理即可解决问题.【解答】解:∵∠ADC+∠ABC=180°,∠ABC+∠CBE=180°,∴∠ADC=∠CBE=50°,∵DA=DC,∴∠DAC=∠DCA=(180°﹣50°)=65°,∴∠AOB=2∠ACD=130°,故选:A.【点评】本题考查圆内接四边形的性质,等腰三角形的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(2020•槐荫区模拟)如图,从⊙O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC.若∠A=28°,则∠ACB的度数是()A.28°B.30°C.31°D.32°【考点】切线的性质;圆周角定理.【专题】与圆有关的计算.【分析】连接OB,如图,先根据切线的性质得到∠ABO=90°,再计算出∠AOB=62°,然后根据圆周角定理得到∠ACB的度数.【解答】解:连接OB,如图,∵AB为切线,∴OB⊥AB,∴∠ABO=90°,∴∠AOB=90°﹣∠A=90°﹣28°=62°,∴∠ACB=∠AOB=31°.故选:C.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.25.(2020•平阴县二模)如图,在边长为2的正方形ABCD中,以点D为圆心,AD为半径画,再以BC为直径画半圆,若阴影部分①的面积为S1,阴影部分②的面积为S2,则图中S2﹣S1的值为()A.﹣4B.+4C.﹣2D.+2【考点】扇形面积的计算;正方形的性质.【专题】与圆有关的计算.【分析】根据图形得到S2﹣S1=扇形ADC的面积+半圆BC的面积﹣正方形ABCD的面积,根据扇形面积公式计算即可.【解答】解:由图形可知,扇形ADC的面积+半圆BC的面积+阴影部分①的面积﹣正方形ABCD的面积=阴影部分②的面积,∴S2﹣S1=扇形ADC的面积+半圆BC的面积﹣正方形ABCD的面积=+π×12﹣22=﹣4,故选:A.【点评】本题考查的是扇形面积计算,掌握扇形面积公式:S=是解题的关键.26.(2020•河东区一模)如图,A、D是⊙O上的两个点,BC是直径,若∠D=34°,则∠OAC等于()A.68°B.58°C.72°D.56°【考点】圆周角定理.【专题】与圆有关的计算.【分析】根据圆周角定理求出∠AOC即可解决问题.【解答】解:∵∠AOC=2∠ADC,∠ADC=34°,∴∠AOC=68°,∵OA=OC,∴∠OAC=∠OCA=(180°﹣68°)=56°,故选:D.【点评】本题考查圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.27.(2020•平邑县一模)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.πB.C.3+πD.8﹣π【考点】扇形面积的计算;旋转的性质.【专题】与圆有关的计算.【分析】作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积、利用扇形面积公式计算即可.【解答】解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴AB==,由旋转的性质可知,OE=OB=2,DE=EF=AB=,∵∠OFE+∠FEO=∠OED+∠FEO=90°,∴∠OFE=∠OED∴△DHE≌△BOA,∴DH=OB=2,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×5×2+×2×3+﹣=8﹣π,故选:D.【点评】本题考查的是扇形面积的计算、旋转的性质、全等三角形的性质,掌握扇形的面积公式S=和旋转的性质是解题的关键.28.(2020•济宁模拟)如图,在△ABC中,∠BAC=90°,AB=AC=4,以点C为中心,把△ABC逆时针旋转45°,得到△A′B′C,则图中阴影部分的面积为()A.2B.2πC.4D.4π【考点】扇形面积的计算;旋转的性质;等腰直角三角形.【专题】几何图形.【分析】根据阴影部分的面积是(扇形CBB'的面积﹣△CA'B'的面积)+(△ABC的面积﹣扇形CAA'的面积),代入数值解答即可.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC=4,∴BC=,∠ACB=∠A'CB'=45°,∴阴影部分的面积==2π,故选:B.【点评】本题考查了扇形面积公式的应用,注意:圆心角为n°,半径为r的扇形的面积为S=.29.(2020•武城县模拟)下列说法错误的是()A.平分弦的直径,垂直于弦,并且平分弦所对的弧B.已知⊙O的半径为6,点O到直线a的距离为5,则直线a与⊙O有两个交点C.如果一个三角形的外心在三角形的外部,则这个三角形是钝角三角形D.三角形的内心到三角形的三边的距离相等【考点】垂径定理;三角形的外接圆与外心;直线与圆的位置关系;三角形的内切圆与内心.【分析】根据垂径定理,三角形的外接圆与内切圆,直线与圆的关系等知识分析此题.【解答】解:A、如果直径平分的弦也是直径的话,此种情况是不成立的;。

专题27圆的有关性质(优选真题60道)-学易金卷:三年(2021-2023)中考数学真题分

专题27圆的有关性质(优选真题60道)-学易金卷:三年(2021-2023)中考数学真题分
47.(2021•德阳)在锐角三角形ABC中,∠A=30°,BC=2,设BC边上的高为h,则h的取值范围是.
48.(2023•成都)为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A到B有一笔直的栏杆,圆心O到栏杆AB的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳名观众同时观看演出.(π取3.14, 取1.73)
A.95°B.100°C.105°D.130°
16.(2022•贵港)如图,⊙O是△ABC的外接圆,AC是⊙O的直径,点P在⊙O上,若∠ACB=40°,则∠BPC的度数是( )
A.40°B.45°C.50°D.55°
17.(2022•株洲)如图所示,等边△ABC的顶点A在⊙O上,边AB、AC与⊙O分别交于点D、E,点F是劣弧 上一点,且与D、E不重合,连接DF、EF,则∠DFE的度数为( )
31.(2022•上海)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为.(结果保留π)
32.(2022•日照)一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB=12cm,BC=5cm,则圆形镜面的半径为.
三.解答题(共12小题)
49.(2023•北京)如图,圆内接四边形ABCD的对角线AC,BD交于点E,BD平分∠ABC,∠BAC=∠ADB.
(1)求证DB平分∠ADC,并求∠BAD的大小;
(2)过点C作CF∥AD交AB的延长线于点F,若AC=AD,BF=2,求此圆半径的长.
50.(2023•内蒙古)如图,AB是⊙O的直径,AC是弦,D是 上一点,P是AB延长线上一点,连接AD,DC,CP.

初中数学《圆的基本性质》中考集锦(含答案)

初中数学《圆的基本性质》中考集锦(含答案)

初中数学《圆的基本性质》好题集锦一、圆的有关线段和角1.如图所示,已知△ABC 内接于⊙O ,AB =AC ,∠BOC =120°,延长BO 交⊙O 于D 点.(1)试求∠BAD 的度数; (2)求证:△ABC 为等边三角形.2.如图,在⊙O 中,直径CD ⊥弦AB 于点E ,AM ⊥BC 于点M ,交CD 于点N ,连接AD . (1)求证:AD =AN ;(2)若AB =24,ON =1,求⊙O 的半径.3.已知,在⊙O 中,AB 是⊙O 的直径,点C .、P 在AB 的两侧,AC =21AB ,连接CP ,BP . (Ⅰ)如图①,若CP 经过圆心,求∠P 的大小;(Ⅱ)如图②,点D 是PB 上一点,CD ⊥PB ,若CP ⊥AB ,求∠BCD 的大小.4.如图,⊙P 的圆心的坐标为(2,0),⊙P 经过点)25,4(B .(1)求⊙P 的半径r ;(2)⊙P 与坐标轴的交点A ,E ,C ,F 的坐标;(3)点B 关于x 轴的对称点D 是否在⊙P 上,请说明理由.5.如图,AB 是⊙O 的直径,C 是BD 的中点,CE ⊥AB 于 E ,BD 交CE 于点F . (1)求证:CF =BF ;(2)若CD =6,AC =8,求CE 的长.6.已知:如图,△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交⊙O 于点D ,DE ⊥AB 于点E ,且交AC 于点P ,连结AD . (1)求证:∠DAC =∠DBA ; (2)求证:P 是线段AF 的中点;(3)连接CD ,若CD =3,BD =4,求⊙O 的半径和DE 的长.7.如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F,且∠CAD =60°,DC=DE.求证:(1)AB=AF;(2)A为△BEF的外心(即△BEF外接圆的圆心).二、圆与四边形8.如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC 的外接圆O于点E,连结A E.(1)求证:四边形AECD为平行四边形;(2)连结CO,求证:CO平分∠BCE.9.如图,正方形ABCD的外接圆为⊙O,点P在劣弧上(不与C点重合).(1)求∠BPC的度数;(2)若⊙O的半径为8,求正方形ABCD的边长.10.如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.11.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)在平行四边形、矩形、菱形、正方形中,一定是“十字形”的有________.(2)如图1,在四边形ABCD中,AB=AD,且CB=CD①证明:四边形ABCD是“十字形”;②若AB=2.∠BAD=60°,∠BCD=90°,求四边形ABCD的面积.(3)如图2.A、B、C、D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,若∠ADB﹣∠CDB=∠ABD﹣∠CBD.满足AC+BD=3,求线段OE的取值范围.三、圆的综合运用12.已知圆O的直径AB=12,点C是圆上一点,且∠ABC=30°,点P是弦BC上一动点,过点P作PD┴OP交圆O于点D.(1)如图1,当PD∥AB时,求PD的长;(2)如图2,当BP平分∠OPD时,求PC的长.13.如图,点E为⊙O的直径AB上一个动点,点C、D在下半圆AB上(不含A、B两点),且∠CED=∠OED=60°,连OC、OD(1)求证:∠C=∠D;(2)若⊙O的半径为r,请直接写出CE+ED的变化范围(用含r的代数式表示).14.如图,有两条公路OM、ON相交成 30°角,沿公路OM方向离O点 80 米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心 50 米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为 18 千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.15.如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D 两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.16.如图,△ABC内接于⊙O,AB=AC,CF垂直直径BD于点E,交边AB于点F.(1)求证:∠BFC=∠ABC.(2)若⊙O的半径为5,CF=6,求AF长.《圆的基本知识好题》参考答案1.解:(1)∵BD是⊙O的直径,∴∠BAD=90°(直径所对的圆周角是直角).(2)证明:∵∠BOC =120°,∴∠BAC =21∠BOC =60°.又∵AB =AC ,∴△ABC 是等边三角形. 2.(1)证明:∵∠BAD 与∠BCD 是同弧所对的圆周角, ∴∠BAD =∠BCD ,∵AE ⊥CD ,AM ⊥BC ,∴∠AEN =∠AMC =90°,∵∠ANE =∠CNM ,∴∠BAM =∠BCD , ∴∠BAM =∠BAD ,,∴△ANE ≌△ADE (A S A ),∴AN =AD ;(2)解:∵AB =42,AE ⊥CD ,∴AE =22,又∵ON =1,∴设NE =x ,则OE =x -1,NE =ED =x ,OD =OE +ED =2x -1,解图,连接AO ,则AO =OD =2x -1,第2题解图3.解:(1)∵AB 是⊙O 的直径,∴∠ACB =90°,∵AC =21AB ,∴∠ABC =30°,∴∠A =90°-∠ABC =60°, ∴∠P =∠A =60°;(Ⅱ) ∵AB 是⊙O 的直径,AC =21AB , ∴∠A =60°,∴∠BPC =∠A =60°, ∵CD ⊥PB ∴∠PCD =90°-BPC =30°,∵CP ⊥AB ,AB 是⊙O 的直径, ∴BC =BP ,∴∠P =∠BCP =60°,∴∠BCD =∠BCP -∠PCD =60°-30°=30°.4..解:(1)过点B 作x 轴的垂线,交x 轴于点G ,连接BP . 则点G 坐标为(4,0).在Rt △PBG 中,PG =4-2=2,BG =25,斜边PB =241∴⊙P 的半径r =241.(2)点E 坐标为(2-241,0),点F 坐标为(2+241,0)∵点A 坐标的y 值=25,∴点A 坐标为(0,25).点C 坐标为(0,-25). (3)∵⊙P 关于x 轴对称,又∵B 与D 关于x 轴对称,∴D 在⊙P 上.5.证明:如图.∵AB 是⊙O 的直径,∴∠ACB =90°,又∵CE ⊥AB ,∴∠CEB =90°.∴∠2=90°-∠ACE =∠A . 又∵C 是弧BD 的中点,∴∠1=∠A .∴∠1=∠2,∴ CF =BF .(2)此时,CE =5246.(1)证明:∵BD 平分∠CBA , ∴∠CBD =∠DBA ,∵∠DAC 与∠CBD 都是弧CD 所对的圆周角, ∴∠DAC =∠CBD , ∴∠DAC =∠DBA ;(2)证明:∵AB 为直径, ∴∠ADB =90°,∵DE ⊥AB 于E , ∴∠DEB =90°,∴∠1+∠3=∠5+∠3=90°,∴∠1=∠5=∠2, ∴PD =P A ,∵∠4+∠2=∠1+∠3=90°,且∠ADB =90°,∴∠3=∠4, ∴PD =PF ,∴P A =PF ,即P 是线段AF 的中点;(3)解:连接CD , ∵∠CBD =∠DBA ,∴CD =AD ,∵CD =3,∴AD =3, ∵∠ADB =90°,AB =5,⊙O 的半径为2.5,∵DE ×AB =AD ×BD ,∴5DE =3×4, ∴DE =2.4.即DE 的长为2.4.7.(1)证明:∠ABF =∠ADC =120°﹣∠ACD =120°﹣∠DEC =120°﹣(60°+∠ADE )=60°﹣∠ADE , 而∠F =60°﹣∠ACF , 因为∠ACF =∠ADE ,所以∠ABF =∠F ,所以AB =AF .(2)证明:四边形ABCD 内接于圆,所以∠ABD =∠ACD , 又DE =DC ,所以∠DCE =∠DEC =∠AEB , 所以∠ABD =∠AEB , 所以AB =AE . ∵AB =AF ,∴AB =AF =AE ,即A 是三角形BEF 的外心.8.(1)根据圆周角定理知∠E =∠B , 又∵∠B =∠D ,∴∠E =∠D .∵AD ∥CE ,∴∠D +∠DCE =180°, ∴∠E +∠DCE =180°,∴AE ∥DC ,∴四边形AECD 为平行四边形. (2)如图,连结OE ,OB ,由(1)得四边形AECD 为平行四边形, ∴AD =EC .又∵AD =BC ,∴EC =BC . ∵OC =OC ,OB =OE , ∴△OCE ≌△OCB (SSS ),∴∠ECO =∠BCO ,即OC 平分∠BCE .9.11.解:连接OB ,OC ,∵四边形ABCD 为正方形,∴∠BOC =90°,∴∠BPC =21∠BOC =45°;(2)解:过点O 作OE ⊥BC 于点E , ∵OB =OC ,∠BOC =90°,∴∠OBE =45°,∴OE =BE ,∵OE 2+BE 2=OB 2 , ∴BE = 24 ∴BC =2BE =2810.解析:(1)∵A B 是直径, ∴∠AEB =90°,∴AE ⊥BC , ∵AB =AC ,∴BE =CE ,∵AE =EF ,∴四边形ABFC 是平行四边形, ∵AC =AB ,∴四边形ABFC 是菱形.(2)设CD =x .连接BD . ∵AB 是直径,∴∠ADB =∠BDC =90°, ∴AB2﹣AD2=CB2﹣CD2, ∴(7+x )2﹣72=42﹣x 2, 解得x=1或﹣8(舍弃)∴AC=8,BD=157822=-, ∴S 菱形ABF C=158. ∴S 半圆=ππ84212=⨯11.15. (1)菱形,正方形(2)解:①如图1,连接AC ,BD∵AB =AD ,且CB =CD∴AC 是BD 的垂直平分线,∴AC ⊥BD ,∴四边形ABCD 是“十字形”②如图,设AC 与BD 交于点O∵AB =AD ,AC ⊥BD∴∠BAO =∠BAD =30°同理可证∠BCO =45°在Rt △ABO 中,OB =1AO =AB ×cos30°=3OB =OC =1∴AC =AO +CO =1+3, BD =2∴ 四边形ABCD 的面积=21×AB ×BD =21×2×(1+3)=1+3(3)解:如图2∵∠ADB +∠CBD =∠ABD +∠CDB ,∠CBD =∠CDB =∠CAB ,∴∠ADB +∠CAD =∠ABD +∠CAB ,∴180°﹣∠AED =180°﹣∠AEB ,∴∠AED =∠AEB =90°,∴AC ⊥BD ,过点O 作OM ⊥AC 于M ,ON ⊥BD 于N ,连接OA ,OD ,∴OA =OD =1,OM 2=OA 2﹣AM 2 , ON 2=OD 2﹣DN 2 , AM =21AC ,DN = 21BD ,四边形OMEN 是矩形,∴ON =ME ,OE 2=OM 2+ME 2 ,∴OE 2=OM 2+ON 2=2﹣41(AC 2+BD 2) 设AC =m ,则BD =3﹣m ,∵⊙O 的半径为1,AC +BD =3,∴1≤m≤2,∴41423≤≤OE由图可知:以 50m 为半径画圆,分别交 ON 于 B ,C 两点,AD ⊥BC ,BD =CD =21BC ,OA =80m , ∵在 Rt △AOD 中,∠AOB =30°,AD = 21OA = 21×80=40m , 在 Rt △ABD 中,AB =50,AD =40,由勾股定理得:BD =30m , 故BC =2×30=60 米,即重型运输卡车在经过 BC 时对学校产生影响.∵重型运输卡车的速度为 18 千米/小时,即300 米/分钟,∴重型运输卡车经过 BC 时需要 60÷300=0.2(分钟)=12(秒).答:卡车 P 沿道路 ON 方向行驶一次给学校 A 带来噪声影响的时间为 12 秒.15.(1)连接PA ,如图1所示.∵PO ⊥AD ,∴AO =DO .∵AD =2,∴OA =.点P 坐标为(﹣1,0),∴OP =1.∴PA ==2.∴BP =CP =2. ∴B (﹣3,0),C (1,0). (2)连接AP ,延长AP 交⊙P 于点M ,连接MB 、MC .如图2所示,线段MB 、MC 即为所求作. 四边形AC MB 是矩形.理由如下∵△MCB 由△ABC 绕点P 旋转180°所得,∴四边形ACMB 是平行四边形.∵BC 是⊙P 的直径,∴∠CAB =90°.∴平行四边形ACMB 是矩形.过点M 作MH ⊥BC ,垂足为H ,如图2所示.在△MHP 和△AOP 中,∵∠MHP =∠AOP ,∠HPM =∠OPA ,MP =AP ,∴△MHP ≌△AOP .∴MH =OA =,PH =PO =1.∴OH =2.∴点M 的坐标为(﹣2,).(3)在旋转过程中∠MQG 的大小不变.∵四边形ACMB 是矩形,BMC =90°.EG ⊥BO ,∴∠BGE =90°.∴∠BMC =∠BGE =90°.∵点Q 是BE 的中点,∴QM =QE =QB =QG .∴点E 、M 、B 、G 在以点Q 为圆心,QB 为半径的圆上,如图3所示.∴∠MQG =2∠MBG .∵∠COA =90°,OC =1,OA =,∴tan ∠OCA =.∴∠OCA =60°.∴∠MBC =∠BCA =60°.MQG =120°.∴在旋转过程中∠MQG 的大小不变,始终等于120°.16.(1)证明:连结AD ,∵BD 是⊙O 的直径,∴∠BAD =90°,∵CF ⊥BD ,∴∠BEF =90°,∵∠ABD +∠ADB =90°,∠ABD +∠BFE =90°,∴∠BFC =∠ADB ,∵AB =AC ,∴∠ABC =∠ACB ,∵∠ACB =∠ADB ,∴∠BFC =∠ABC .(2)解:连结CD ,∵BD 是⊙O 的直径,∴∠BCD =90°,∵∠BFC =∠ABC ,∴BC =CF =6,∵BD =10,∴CD =8在Rt △BCE 中,BE=518,CE =524,56 EF , ,∴AF =AB -BF =1059。

中考真题训练圆的有关性质

中考真题训练圆的有关性质

中考数学试题专题汇编:圆的有关性质1. 如图1,⊙O 弦AB 若AB =6,则⊙O 的半径为( )A. 2 B.2 2 C.22 D.622. 圆柱形油槽内装有一些油。

截面图,油面宽AB 为6分米,如果再注入一些油 后,油面AB 上升1分米,油面宽变为8分米,圆柱形油槽直径MN 为( )分米(A )6(B )8(C )10(D )123. 一个圆形人工湖如图3,弦AB 是湖上的一座桥,已知桥AB 长100m ,测得圆周角45ACB ∠=︒,则这个人工湖的直径AD 为()A.B.C.D.4. 一条排水管的截面如图4.已知排水管的截面圆半径10OB =,截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( ) A.16 B.10 C.8 D.65. 如下图1,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( )个单位 A . 12 B. 10 C.4 D. 156. 如图(六),△ABC 的外接圆上,AB 、BC 、CA 三弧的度数比为12:13:11.自弧BC 上取一点D ,过D 分别作直线AC 、直线AB 的并行线,且交弧BC 于E 、F 两点,则∠EDF 的度数为何? ( )A . 55B . 60C . 65D . 707. 如图3,⊙O 过点B 、C ,圆心O 在等腰Rt △ABC 的内部,∠BAC=90°,OA=1,BC=6。

则⊙O 的半径为( )A .6B .13CD .8. 如图4,若AB 是⊙0的直径,CD 是⊙O 的弦,∠ABD =58°, 则∠BCD =( )(A)116° (B)32° (C)58° (D)64°9. 如图5,⊙O 是△ABC 的外接圆,∠BAC=60°,若⊙O 的半径OC 为2,则弦BC 的长为( )A .1B C .2 D .10. 如右面图1,⊙O 的直径CD =5cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,O M :OD =3:5,则AB 的长是( )A .2cm B .3cm C .4cm D .221cm11.矩形ABCD 中,AB =8,BC =P 在边AB 上,且BP =3AP ,如果圆P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( ).(A) 点B 、C 均在圆P 外; (B) 点B 在圆P 外、点C 在圆P 内;(C) 点B 在圆P 内、点C 在圆P 外; (D) 点B 、C 均在圆P 内. 12. 如图2,CD 是⊙ O 的弦,直径AB 过CD 的中点M ,若∠ BOC=40°,则∠ ABD=( ) A .40° B .60° C .70° D .80°13. 如上图3,100AOB ∠=,点C 在O 上,且点C 不与A 、B 重合,则ACB ∠的度数为( ) A .50 B .80或50 C .130 D .50 或13014. 如上图4,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD =105°,则∠DCE 的大小是( ) A . 115°B . 105°C . 100°D . 95°15. 如上图5, AB 为 ⊙ O 的直径, CD 为弦, AB ⊥ CD ,如果∠ BOC = 700 ,那么∠ A 的度数为( ) A .70︒ B . 35︒ C . 30︒ D . 20︒16.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为( )A. (4 cmB. 9 cmC.D.17.如图2,的直径AB 长为10,弦AC 长为6,∠ACB 的平分线交⊙O 于D ,则CD 的长为( )A 、7B 、 C、 D 、918.如图3,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN=30°,B 为AN 弧的中点,点P 是直径MN 上一个动点,则PA+PB 的最小值为( ) A .22 B .2 C .1 D .2 19.如图4,在圆⊙O 内有折线OABC ,其中OA =8,AB =12,∠A =∠B =60°,则BC 的长为( )A .19 B .16 C .18 D .2020. 已知⊙O 的半径为13cm ,弦AB//CD ,AB=24cm ,CD=10cm ,则AB 、CD 之间的距离为( ) A .17cm B .7 cm C .12 cmD .17 cm 或7 cm(第3题)ABCOOCA B第10题图D CAO二、填空题1. 如下图1,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD ,已知CE =1,ED =3,则⊙O 的半径是 .2. 如上图2,⊙O 的弦CD 与直径AB 相交,若∠B AD=50°,则∠ACD=3. 如下图3,在以AB 为直径的半圆中,有一个边长为1的内接正方形CDEF ,则以AC 和BC 的长为两根的一元二次方程是 .4. 如图4,⊙O 的直径AB 与弦CD 相交于点E ,若AE =5,BE =1,CD =则∠AED= .__________.6. 如图上2,点A ,B ,C ,D 都在⊙O上,的度数等于84°,CA 是∠OCD 的平分线,则∠ABD 十∠CAO = °. 7. 如上图3,AB 是⊙ O 的直径,点C ,D 都在⊙ O 上,连结CA ,CB ,DC ,DB .已知∠ D =30°,BC =3,则AB 的长是 .8. 如上图4,OB 是⊙O 的半径,点C 、D 在⊙O 上,∠DCB=27°,则∠OBD= 度。

中考数学试题分考点解析汇编圆的有关性质

中考数学试题分考点解析汇编圆的有关性质

中考数学试题分考点解析汇编圆的有关性质一、选择题1.(2011上海4分)矩形ABCD中,AB=8,BC=,点P在边AB上,且BP=3AP,如果圆P是以点P 为圆心,PD为半径的圆,那么下列判断正确的是.(A) 点B、C均在圆P外; (B) 点B在圆P外、点C在圆P内;(C) 点B在圆P内、点C在圆P外;(D) 点B、C均在圆P内.【答案】 C。

2011-2012全国各中考数学试题分考点解析汇编圆的有关性质【考点】点与圆的位置关系,矩形的性质,勾股定理。

【分析】根据BP=3AP和AB的长度求得AP=2,然后利用勾股定理求得圆P的半径PD=7==。

点B、C到P点的距离分别为:PB=6,9=。

∴由PB<半径PD,PC>半径PD,得点B在圆P内、点C在外。

故选C。

2.(2011重庆4分)如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于A、60°B、50°C、40°D、30°【答案】B。

【考点】等腰三角形的性质,三角形内角和定理,圆周角定理。

【分析】在等腰三角形OCB中,由已知∠OCB=40°和三角形内角和定理求得顶角∠COB的度数100°,然后由同弧所对的圆周角是圆心角的度数一半的圆周角定理,求得∠A=∠C0B=50°。

故选B。

3.(2011重庆綦江4分)如图,PA、PB是⊙O的切线,切点是A、B,已知∠P=60°,OA=3,那么∠AOB所对弧的长度为A、6πB、5πC、3πD、2π【答案】D。

【考点】切线的性质,多边形内角和定理,弧长的计算。

【分析】由于PA、PB是⊙O的切线,由此得到∠OAP=∠OBP=90°,而∠P=60°,利用四边形的内角和即可求出∠AOB=120°;利用已知条件和弧长公式即可求出∠AOB所对弧的长度=12032180=ππ⋅⋅。

故选D。

4.(2011重庆潼南4分)如图,AB为⊙O的直径,点C在⊙O上,∠A=30°,则∠B的度数为A、15°B、30°C、45°D、60°【答案】D。

中考数学模拟测试试题圆的有关性质一,试题(共8页)

中考数学模拟测试试题圆的有关性质一,试题(共8页)

圆的有关(yǒuguān)性质1一、选择题1.如图,⊙O的半径为13,弦AB长为24,那么点O到AB的间隔是〔〕A.6 B.5 C.4 D.32.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,那么OC=〔〕A.3cm B.4cm C.5cm D.6cm3.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,那么AC的长等于〔〕A.4B.6C.2D.84.如图,AB为圆O的直径,BC为圆O的一弦,自O点作BC的垂线,且交BC于D 点.假设AB=16,BC=12,那么△OBD的面积为何?〔〕A.6B.12C.15 D.305.如图,⊙O的直径(zhíjìng)AB⊥CD于点E,那么以下结论一定错误的选项是〔〕A.CE=DE B.AE=OE C. =D.△OCE≌△ODE6.⊙O过点B,C,圆心O在等腰直角△ABC内部,∠BAC=90°,OA=1,BC=6,那么⊙O的半径为〔〕A.B.2C.D.37.在⊙O中,圆心O到弦AB的间隔为AB长度的一半,那么弦AB所对圆心角的大小为〔〕A.30°B.45°C.60°D.90°8.如图,在⊙O中,直径CD⊥弦AB,那么以下结论中正确的选项是〔〕A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠ A=∠BOD9.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA 的长等于〔〕A.B.C.3 D.210.⊙O的直径(zhíjìng)CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,那么AC的长为〔〕A. cm B. cm C. c m或者cm D. cm或者cm 11.⊙O的面积为2π,那么其内接正三角形的面积为〔〕A.3B.3C.D.12.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为〔〕A.2B.4 C.4D.813.在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作,如下图.假设AB=4,AC=2,S1﹣S2=,那么S3﹣S4的值是〔〕A.B.C.D.二、填空题14.如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,CD=4,AE=1,那么⊙O的半径为.15.如图,点A〔0,1〕,B〔0,﹣1〕,以点A为圆心(yuánxīn),AB为半径作圆,交x轴的正半轴于点C,那么∠BAC等于度.16.如图,AB是⊙O的直径,点C是⊙O上的一点,假设BC=6,AB=10,OD⊥BC于点D,那么OD的长为.17.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.假设∠CAB=22.5°,CD=8cm,那么⊙O的半径为 cm.18.如图,AD是⊙O的直径,弦BC⊥AD于E,AB=BC=12,那么OC=.19.如图,圆O的直径(zhíjìng)AB=8,AC=3CB,过C作AB的垂线交圆O于M,N两点,连结MB,那么∠MBA的余弦值为.20.如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A作AP的垂线交射线PB于点C,当△PAB是等腰三角形时,线段BC的长为.21.如图,在扇形OAB中,∠AOB=60°,扇形半径为r,点C在上,CD⊥OA,垂足为D,当△OCD的面积最大时,的长为.22.如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,那么CD= cm.23.如图,AB是⊙O的直径(zhíjìng),弦CD垂直平分半径OA,那么∠ABC的大小为度.24.如图,AB是⊙O的直径,弦CD⊥AB于点E,假设AB=8,CD=6,那么BE=.25.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC.假设AB=2,∠BC D=30°,那么⊙O的半径为.26.如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,那么AB=cm.27.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,那么弦AB的长是.28.如图,以△ABC的边BC为直径(zhíjìng)的⊙O分别交AB、AC于点D、E,连结OD、OE,假设∠A=65°,那么∠DOE=.29.如图,在⊙O中,∠OAB=45°,圆心O到弦AB的间隔 OE=2cm,那么弦AB的长为cm.三、解答题30.如图,△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.〔1〕求证:BE=CE;〔2〕试判断四边形BFCD的形状,并说明理由;〔3〕假设BC=8,AD=10,求CD的长.内容总结。

沪科版九年级数学下册第24章 圆——圆的有关概念及性质中考题汇编(含答案)

沪科版九年级数学下册第24章 圆——圆的有关概念及性质中考题汇编(含答案)

沪科版九年级数学下册圆的有关概念及性质中考题汇编(含答案)一、 选择题1. (2019·宜昌)如图,点A ,B ,C 均在⊙O 上,当∠OBC =40°时,∠A 的度数是( )第1题A. 50°B. 55°C. 60°D. 65°2. (2019·柳州)如图,A ,B ,C ,D 是⊙O 上的点,则图中与∠A 相等的角是( )第2题A. ∠BB. ∠CC. ∠DEBD. ∠D3. (2019·兰州)如图,四边形ABCD 内接于⊙O.若∠A =40°,则∠C 的度数为( )第3题A. 110°B. 120°C. 135°D. 140°4. (2019·吉林)如图,在⊙O 中,AB ︵所对的圆周角∠ACB =50°.若P 为AB ︵上一点,∠AOP =55°,则∠POB 的度数为( )第4题A. 30°B. 45°C. 55°D. 60° 5. (2019·葫芦岛)如图,在⊙O 中,∠BAC =15°,∠ADC =20°,则∠ABO 的度数为( )第5题A. 70°B. 55°C. 45°D. 35°6. (2019·赤峰)如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,D 是⊙O 上一点,∠ADC =30°,则∠BOC 的度数为( )第6题A. 30°B. 40°C. 50°D. 60° 7. (2019·广元)如图,AB ,AC 分别是⊙O 的直径和弦,OD ⊥AC 于点D ,连接BD ,BC ,且AB =10,AC =8,则BD 的长为( )第7题A. 2 5B. 4C. 213D. 4.88. (2019·贵港)如图,AD 是⊙O 的直径,AB ︵=CD ︵.若∠AOB =40°,则圆周角∠BPC 的度数是( )第8题A. 40°B. 50°C. 60°D. 70°9. (2019·天水)如图,四边形ABCD 是菱形,⊙O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE.若∠D =80°,则∠EAC 的度数为( )第9题A. 20°B. 25°C. 30°D. 35°10. (2019·聊城)如图,BC 是半圆O 的直径,D ,E 是BC ︵上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE.如果∠A =70°,那么∠DOE 的度数为( )第10题A. 35°B. 38°C. 40°D. 42°11. (2019·德州)如图,O 为线段BC 的中点,点A ,C ,D 到点O 的距离相等.若∠ABC=40°,则∠ADC 的度数是( )第11题A. 130°B. 140°C. 150°D. 160°12. (2019·陕西)如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF =EB ,EF 与AB 交于点C ,连接OF.若∠AOF =40°,则∠F 的度数是( )第12题A. 20°B. 35°C. 40°D. 55°13. (2019·眉山)如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,∠CAO =22.5°,OC =6,则CD 的长为( )第13题A. 6 2B. 32C. 6D. 1214. (2019·襄阳)如图,AD 是⊙O 的直径,BC 是弦,四边形OBCD 是平行四边形,AC 与OB 相交于点P.下列结论错误的是( )第14题A. AP =2OPB. CD =2OPC. OB ⊥ACD. AC 平分OB15. (2019·黄冈)如图,一条公路的转弯处是一段圆弧(AB ︵),点O 是这段弧所在圆的圆心,AB =40 m ,C 是AB ︵的中点,D 是AB 的中点,且CD =10 m ,则这段弯路所在圆的半径为( )第15题A. 25 mB. 24 mC. 30 mD. 60 m16. (2019·镇江)如图,四边形ABCD 是半圆O 的内接四边形,AB 是直径,DC ︵=CB ︵.若∠C =110°,则∠ABC 的度数为( )第16题A. 55°B. 60°C. 65°D. 70°17. (2019·十堰)如图,四边形ABCD 内接于⊙O ,AE ⊥CB 交CB 的延长线于点E.若BA 平分∠DBE ,AD =5,CE =13,则AE 的长为( )第17题A. 3B. 32C. 4 3D. 2318. (2019·菏泽)如图,AB 是⊙O 的直径,C ,D 是⊙O 上的两点,且BC 平分∠ABD ,AD 分别与BC ,OC 相交于点E ,F ,则下列结论不一定成立的是( )第18题A. OC ∥BDB. AD ⊥OCC. △CEF ≌△BEDD. AF =FD19. (2019·威海)如图,⊙P 与x 轴交于点A(-5,0),B(1,0),与y 轴的正半轴交于点C. 若∠ACB =60°,则点C 的纵坐标为( )第19题A. 13+ 3B. 22+3C. 4 2D. 22+220. (2019·梧州)如图,在半径为13的⊙O 中,弦AB 与CD 交于点E ,∠DEB =75°,AB =6,AE =1,则CD 的长是( )第20题A. 2 6B. 210C. 211D. 4321. (2019·台湾)A ,B ,C ,D 四点在⊙O 上的位置如图所示,其中AD ︵=180°,且AB ︵=BD ︵,BC ︵=CD ︵.若在AB ︵上取一点P ,在BD ︵上取一点Q ,使得∠APQ =130°,则下列说法正确的是( )第21题A. 点Q 在BC ︵上,且BQ ︵>QC ︵B. 点Q 在BC ︵上,且BQ ︵<QC ︵C. 点Q 在CD ︵上,且CQ ︵>QD ︵D. 点Q 在CD ︵上,且CQ ︵<QD ︵二、 填空题22. (2019·鸡西)如图,在⊙O 中,半径OA 垂直于弦BC ,点D 在圆上,且∠ADC =30°,则∠AOB 的度数为________.第22题23. (2019·娄底)如图,C ,D 两点在以AB 为直径的圆上,AB =2,∠ACD =30°,则AD =________.第23题24. (2019·铜仁)如图,四边形ABCD 为⊙O 的内接四边形,∠A =100°,则∠DCE 的度数为________.第24题25. (2019·常州)如图,AB 是⊙O 的直径,C ,D 是⊙O 上的两点,∠AOC =120°,则∠CDB =________.第25题26. (2019·随州)如图,点A ,B ,C 在⊙O 上,点C 在AMB ︵上.若∠OBA =50°,则∠C 的度数为________.第26题27. (2019·东营)如图,AC 是⊙O 的弦,AC =5,B 是⊙O 上的一个动点,且∠ABC =45°,M ,N 分别是AC ,BC 的中点,则MN 的最大值是________.第27题28. (2019·宜宾)如图,⊙O 有两条相交弦AC ,BD ,∠ACB =∠CDB =60°,AC =23,则⊙O 的面积是________.第28题29. (2019·湖州)已知一条弧所对的圆周角的度数是15°,则它所对的圆心角的度数是________.30. (2019·连云港)如图,点A ,B ,C 在⊙O 上,BC =6,∠BAC =30°,则⊙O 的半径为________.第30题31. (2019·台州)如图,AC 是圆内接四边形ABCD 的一条对角线,点D 关于AC 的对称点E 在边BC 上,连接AE.若∠ABC =64°,则∠BAE 的度数为________.第31题32. (2019·安徽)如图,△ABC 内接于⊙O ,∠CAB =30°,∠CBA =45°,CD ⊥AB 于点D.若⊙O 的半径为2,则CD 的长为________.第32题33. (2019·凉山州)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点H ,∠A =30°,CD =23,则⊙O 的半径是________.第33题34. (2019·盐城)如图,点A ,B ,C ,D ,E 在⊙O 上,且AB ︵为50°,则∠E +∠C =________.第34题35. (2019·衡阳)已知圆的半径是6,则圆内接正三角形的边长是________.36. (2019·株洲)如图,AB 为⊙O 的直径,点C 在⊙O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC =65°,连接AD ,则∠BAD =________°.第36题37. (2019·嘉兴)如图,在⊙O 中,弦AB =1,点C 在AB 上移动,连接OC ,过点C 作CD ⊥OC 交⊙O 于点D ,则CD 的最大值为________.第37题38. (2019·泰州)如图,⊙O 的半径为5,点P 在⊙O 上,点A 在⊙O 内,且AP =3,过点A 作AP 的垂线交⊙O 于点B ,C.设PB =x ,PC =y ,则y 与x 之间的函数解析式为________.第38题39. (2019·绥化)半径为5的⊙O 是锐角三角形ABC 的外接圆,AB =AC ,连接OB ,OC ,延长CO 交弦AB 于点D.若△OBD 是直角三角形,则弦BC 的长为________.40. (2019·德州)如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,AB ︵=BF ︵,CE =1,AB=6,则弦AF 的长度为________.第40题41. (2019·雅安)如图,△ABC 内接于⊙O ,BD 是⊙O 的直径,∠CBD =21°,则∠A 的度数为________.第41题42. (2019·广元)如图,△ABC 是⊙O 的内接三角形,且AB 是⊙O 的直径,P 为⊙O 上的动点,且∠BPC =60°,⊙O 的半径为6,则点P 到AC 距离的最大值是________.第42题三、 解答题43. (2019·南京)如图,⊙O 的弦AB ,CD 的延长线相交于点P ,且AB =CD.求证:PA =PC.第43题44. (2019·自贡)如图,在⊙O 中,弦AB 与CD 相交于点E ,AB =CD ,连接AD ,BC.求证:(1) AD ︵=BC ︵; (2) AE =CE.第44题45. (2019·包头)如图,在⊙O 中,B 是⊙O 上的一点,∠ABC =120°,弦AC =23,弦BM 平分∠ABC 交AC 于点D ,连接MA ,MC.(1) 求⊙O 的半径;(2) 求证:AB +BC =BM.第45题46. (2019·绵阳)如图,AB 是⊙O 的直径,C 是BD ︵的中点,CF 为⊙O 的弦,且CF ⊥AB ,垂足为E ,连接BD 交CF 于点G ,连接CD ,AD ,BF.(1) 求证:△BFG ≌△CDG ;(2) 若AD =BE =2,求BF 的长.第46题47. (2019·温州)如图,在△ABC 中,∠BAC =90°,点E 在BC 边上,且CA =CE ,过A ,C ,E 三点的⊙O 交AB 于另一点F ,作直径AD ,连接DE 并延长交AB 于点G ,连接CD ,CF.(1) 求证:四边形DCFG 是平行四边形;(2) 当BE =4,CD =38AB 时,求⊙O 的直径.第47题参考答案一、 1. A 2. D 3. D 4. B 5. B 6. D 7. C 8. B 9. C 10. C 11. B 12. B 13. A 14. A 15. A 16. A 17. D 18. C 19. B 20. C 21. B二、 22. 60° 23. 1 24. 100° 25. 30° 26. 40° 27.52228. 4π 29. 30° 30. 6 31. 52° 32. 2 33. 2 34. 155° 35. 63 36. 20 37. 12 38. y =30x39. 53或52 40.48541. 69° 42. 6+33 三、 43. 如图,连接AC.∵ AB =CD ,∴ AB ︵=CD ︵.∴ AB ︵+BD ︵=BD ︵+CD ︵,即AD ︵=CB ︵.∴ ∠C =∠A.∴ PA =PC第43题44. (1) ∵ CD =AB ,∴ CD ︵=AB ︵,即AD ︵+AC ︵=BC ︵+AC ︵ .∴ AD ︵=BC ︵ (2) ∵ AD ︵=BC ︵,∴ AD =BC.又∵ ∠ADE =∠CBE ,∠DAE =∠BCE ,∴ △ADE ≌△CBE.∴ AE =CE45. (1) 如图,连接OA ,OC ,过点O 作OH ⊥AC 于点H.∵ ∠ABC =120°,∴ ∠AMC =180°-∠ABC =60°.∴ ∠AOC =2∠AMC =120°.∴ ∠AOH =12∠AOC =60°,AH =12AC =3.∴ OA =AHsin ∠AOH =2.∴ ⊙O 的半径为2 (2) 如图,在BM 上截取BE =BC ,连接CE.∵∠ABC =120°,BM 平分∠ABC ,∴ ∠ABM =∠CBM =60°.∴ ∠ACM =∠ABM =60°.∵ ∠CBM =60°,BE =BC ,∴ △EBC 是等边三角形.∴ CE =CB =BE ,∠BCE =60°.∴ ∠BCD +∠DCE =60°.∵ ∠ACM =60°,∴ ∠ECM +∠DCE =60°.∴ ∠ECM =∠BCD.在△ACB 和△MCE 中,⎩⎪⎨⎪⎧∠ACB =∠MCE ,CB =CE ,∠CAB =∠CME ,∴ △ACB ≌△MCE.∴ AB =ME.∵ ME +EB =BM ,∴ AB +11BC =BM第45题46. (1) ∵ C 是BD ︵的中点,∴ CD ︵=BC ︵.∵ AB 是⊙O 的直径,且CF ⊥AB ,∴ BC ︵=BF ︵.∴ CD ︵=BF ︵.∴ CD =BF.在△BFG 和△CDG 中,⎩⎪⎨⎪⎧∠F =∠CDG ,∠FGB =∠DGC ,BF =CD ,∴ △BFG ≌△CDG(2) 如图,过点C 作CH ⊥AD 交AD 的延长线于点H ,连接AC ,BC.∵ CD ︵=BC ︵,∴ ∠HAC=∠BAC ,CD =BC.∵ CE ⊥AB ,∴ CH =CE.∵ AC =AC ,∴ Rt △AHC ≌Rt △AEC.∴ AH =AE.∵ CH =CE ,CD =CB ,∴ Rt △CDH ≌Rt △CBE.∴ DH =BE =2.∴ AE =AH =AD +DH =2+2=4.∴ AB =AE +BE =4+2=6.∵ AB 是⊙O 的直径,∴ ∠ACB =∠CEB =90°.∵ ∠ABC =∠CBE ,∴ △ABC ∽△CBE.∴ AB CB =BC BE.∴ BC 2=AB·BE =6×2=12.∴ BC =23(负值舍去).∵ BC ︵=BF ︵,∴ BF =BC =23第46题47. (1) 如图,连接AE.∵ ∠BAC =90°,∴ CF 是⊙O 的直径.∵ CA =CE ,∴ CF ⊥AE.∵ AD 是⊙O 的直径,∴ ∠ACD =∠AED =90°,即DG ⊥AE.∴ CF ∥DG.∵ ∠ACD +∠BAC =180°,∴ AB ∥CD.∴ 四边形DCFG 是平行四边形 (2) ∵ CD =38AB ,∴ 可设CD =3x ,AB =8x.∵ 四边形DCFG 是平行四边形,∴ FG =CD =3x.∵ ∠AOF =∠COD ,∴ AF =CD =3x.∴ BG =AB -AF -FG =8x -3x -3x =2x.∵ GE ∥CF ,∴ BE EC =BG GF =23.∵ BE =4,∴ CA =CE =6.∴ BC =CE +BE =6+4=10.∴ AB =BC 2-AC 2=102-62=8.∴ 8=8x ,解得x =1.∴ AF =3.在Rt △ACF 中,由勾股定理,得CF =AF 2+AC 2=32+62=3 5.∴ ⊙O 的直径为35第47题。

圆的相关性质(46题):2023年中考数学真题分项汇编(全国通用)(解析版)

圆的相关性质(46题):2023年中考数学真题分项汇编(全国通用)(解析版)

圆的有关性质(46题)一、单选题 1.(2023·四川自贡·统考中考真题)如图,ABC 内接于O ,CD 是O 的直径,连接BD ,41DCA ∠=︒,则ABC ∠的度数是( )A .41︒B .45︒C .49︒D .59︒【答案】C 【分析】由CD 是O 的直径,得出90DBC ∠=︒,进而根据同弧所对的圆周角相等,得出41ABD ACD ∠=∠=︒,进而即可求解.【详解】解:∵CD 是O 的直径,∴90DBC ∠=︒,∵AD AD =,∴41ABD ACD ∠=∠=︒,∴904149ABC DBC DBA ∠=∠−∠=︒−︒=︒,故选:C .【点睛】本题考查了圆周角定理的推论,熟练掌握圆周角定理是解题的关键.统考中考真题)如图,在O 中,OA【答案】B【分析】连接OB ,由圆周角定理得60AOB ∠=︒,由OA BC ⊥得,60COE BOE ∠=∠=︒,CE BE =在Rt OCE 中,由sin 60CE OC =︒,计算即可得到答案.【详解】解:连接OB ,如图所示,,30ADB ∠=︒,223060AOB ADB ∴∠=∠=⨯︒=︒,OA BC ⊥,60COE BOE ∴∠=∠=︒,1122CE BE BC ===⨯=在Rt OCE中,60COE CE ∠=︒=,2sin 60CE OC ∴===︒,故选:B .【点睛】本题主要考查了圆周角定理,垂径定理,解直角三角形,解题的关键是熟练掌握圆周角定理,垂径定理,添加适当的辅助线.A .1123−【答案】B【分析】连接ON ,根据等边三角形的性质,垂径定理,勾股定理,特殊角的三角函数,后代入公式计算即可.【详解】连接ON ,根据题意,AB 是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,MN AB ⊥,得ON AB ⊥,∴点M ,N ,O 三点共线,∵4OA =,60AOB ∠=︒,∴OAB 是等边三角形,∴4,60sin 60OA AB OAN ON OA ==∠=︒=︒=,∴4,60sin 60OA AB OAN ON OA ==∠=︒=︒=,∴(2244114MN l AB OA −=+=+=−故选:B .【点睛】本题考查了等边三角形的性质,垂径定理,勾股定理,特殊角的函数值,熟练掌握相关知识是解题的关键. 4.(2023·四川宜宾·统考中考真题)如图,已知点A B C 、、在O 上,C 为AB 的中点.若35BAC ∠=︒,则AOB ∠等于( )A .140︒B .120︒C .110︒D .70︒【答案】A【分析】连接OC ,如图所示,根据圆周角定理,找到各个角之间的关系即可得到答案.【详解】解:连接OC ,如图所示:点A B C 、、在O 上,C 为AB 的中点,BC AC ∴=,12BOC AOC AOB ∴∠=∠=∠,35BAC ∠=︒,根据圆周角定理可知270BOC BAC ∠=∠=︒,2140AOB BOC ∴∠=∠=︒,故选:A .【点睛】本题考查圆中求角度问题,涉及圆周角定理,找准各个角之间的和差倍分关系是解决问题的关键. 5.(2023·安徽·统考中考真题)如图,正五边形ABCDE 内接于O ,连接,OC OD ,则BAE COD ∠−∠=( )A .60︒B .54︒C .48︒D .36︒【答案】D 【分析】先计算正五边形的内角,再计算正五边形的中心角,作差即可.【详解】∵360360180,55BAE COD ︒︒∠=︒−∠=, ∴3603601803655BAE COD ︒︒∠−∠=︒−−=︒, 故选:D .【点睛】本题考查了正五边形的外角,内角,中心角的计算,熟练掌握计算公式是解题的关键.6.(2023·江苏连云港·统考中考真题)如图,甲是由一条直径、一条弦及一段圆弧所围成的图形:乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O 的两条线段与一段圆弧所围成的图形,下列叙述正确的是( )A .只有甲是扇形B .只有乙是扇形C .只有丙是扇形D .只有乙、丙是扇形【答案】B 【分析】根据扇形的定义,即可求解.扇形,是圆的一部分,由两个半径和和一段弧围成.【详解】解:甲是由一条直径、一条弦及一段圆弧所围成的图形:乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O 的两条线段与一段圆弧所围成的图形,只有乙是扇形,故选:B .【点睛】本题考查了扇形的定义,熟练掌握扇形的定义是解题的关键.是O 的直径,是O 上一点.若 A .66︒B 【答案】B 【分析】根据圆周角定理即可求解.【详解】解:∵BC BC =,66BOC ∠=︒,∴1332A BOC ∠=∠=︒, 故选:B .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.8.(2023·新疆·统考中考真题)如图,在O 中,若30ACB ∠=︒,6OA =,则扇形OAB (阴影部分)的面积是( )A .12πB .6πC .4πD .2π【答案】B 【分析】根据圆周角定理求得60AOB ∠=︒,然后根据扇形面积公式进行计算即可求解.【详解】解:∵AB AB =,30ACB ∠=︒,∴60AOB ∠=︒,∴260π66π360S =⨯=.故选:B.【点睛】本题考查了圆周角定理,扇形面积公式,熟练掌握扇形面积公式以及圆周角定理是解题的关键. 内接于O ,BC ∥ 【答案】C 【分析】过点O 作OE AD ⊥于点E ,由题意易得45CAD ADB CBD BCA ∠=∠=︒=∠=∠,然后可得30OAD ODA ∠=∠=︒,1602ABD ACD AOD ∠=∠=∠=︒,12AE AD ==,进而可得12CD CF CD ====,最后问题可求解.【详解】解:过点O 作OE AD ⊥于点E ,如图所示:∵BC AD ∥,∴CBD ADB ∠=∠,∵CBD CAD ∠=∠,∴CAD ADB ∠=∠,∵AC BD ⊥,∴90AFD ∠=︒,∴45CAD ADB CBD BCA ∠=∠=︒=∠=∠,∵120AOD ∠=︒,OA OD =,AD =∴30OAD ODA ∠=∠=︒,1602ABD ACD AOD ∠=∠=∠=︒,12AE AD ==, ∴15CAO CAD OAD ∠=∠−∠=︒,1cos30AE OA OC OD ====︒,105BCD BCA ACD ∠=∠+∠=︒, ∴290,18030COD CAD CDB BCD CBD ∠=∠=︒∠=︒−∠−∠=︒,∴122CD CF CD ====,∴1BC =;故选:C .【点睛】本题主要考查平行线的性质、圆周角定理及三角函数,熟练掌握平行线的性质、圆周角定理及三角函数是解题的关键. 10.(2023·浙江台州·统考中考真题)如图,O 的圆心O 与正方形的中心重合,已知O 的半径和正方形的边长都为4,则圆上任意一点到正方形边上任意一点距离的最小值为( ).【答案】D 【分析】设正方形四个顶点分别为A B C D 、、、,连接OA 并延长,交O 于点E ,由题意可得,EA 的长度为圆上任意一点到正方形边上任意一点距离的最小值,求解即可.【详解】解:设正方形四个顶点分别为A B C D 、、、,连接OA 并延长,交O 于点E ,过点O 作OF AB ⊥,如下图:则EA 的长度为圆上任意一点到正方形边上任意一点距离的最小值,由题意可得:4OE AB ==,122AF OF AB ===由勾股定理可得:OA ==∴4AE =−故选:D.【点睛】此题考查了圆与正多边形的性质,勾股定理,解题的关键是熟练掌握圆与正多边形的性质,确定出圆上任意一点到正方形边上任意一点距离的最小值的位置.11.(2023·山东枣庄·统考中考真题)如图,在O 中,弦AB CD ,相交于点P ,若4880A APD ∠=︒∠=︒,,则B ∠的度数为( )A .32︒B .42︒C .48︒D .52︒【答案】A【分析】根据圆周角定理,可以得到D ∠的度数,再根据三角形外角的性质,可以求出B ∠的度数.【详解】解:48A D A ∠=∠∠=︒,,48D ∴∠=︒,80APD APD B D ∠=︒∠=∠+∠,,804832B APD D ∴∠=∠−∠=︒−︒=︒,故选:A .【点睛】本题考查圆周角定理、三角形外角的性质,解答本题的关键是求出D ∠的度数. 12.(2023·四川内江·统考中考真题)如图,正六边形ABCDEF 内接于O ,点P 在AF 上,Q 是DE 的中点,则CPQ ∠的度数为( )A .30︒B .36︒C .45︒D .60︒【答案】C 【分析】先计算正六边形的中心角,再利用同圆或等圆中,等弧对的圆心角相等,圆周角定理计算即可.【详解】如图,连接,,,OC OD OQ OE ,∵正六边形ABCDEF ,Q 是DE 的中点,∴360606COD DOE ︒∠=∠==︒,1302DOQ EOQ DOE ∠=∠=∠=︒,∴90COQ COD DOQ ∠=∠+∠=︒,∴1452CPQ COQ ∠=∠=︒,故选:C.【点睛】本题考查了正多边形与圆,圆周角定理,熟练掌握正多边形中心角计算,圆周角定理是解题的关键.如图,O 是ABC 的外接圆,A .43【答案】B 【分析】作BM AC ⊥于点M ,由题意可得出AEB DEC V V ≌,从而可得出EBC 为等边三角形,从而得到6030GEF EGF ∠=︒∠=︒,,再由已知得出EF ,BC 的长,进而得出CM ,BM 的长,再求出AM 的长,再由勾股定理求出AB 的长.【详解】解:作BM AC ⊥于点M ,在AEB △和DEC 中,A D AE EDAEB DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA AEB DEC ≌, ∴EB EC =,又∵BC CE =,∴BE CE BC ==,∴EBC 为等边三角形,∴60GEF ∠=︒,BC EC =∴30EGF ∠=︒,∵2EG =,OF AC ⊥,30EGF ∠=︒ ∴112EF EG ==,又∵3AE ED ==,OF AC ⊥∴4CF AF AE EF ==+=,∴285AC AF EC EF CF ===+=,,∴5BC EC ==,∵60BCM ∠=︒,∴∠30MBC =︒,∴52CM =, BM =, ∴112AM AC CM =−=,∴7AB =.故选:B .【点睛】本题考查全等三角形的判定与性质、等边三角形的判定与性质、三角形的外接圆与外心、勾股定理等知识点,综合性较强,掌握基本图形的性质,熟练运用勾股定理是解题关键. 内接于,,O AC BD A .40︒【答案】B 【分析】由同弧所对圆周角相等及直角三角形的性质即可求解.【详解】解:∵BC BC =,∴40BDC BAC ∠=∠=︒,∵BD 为圆的直径,∴90BCD ∠=︒,∴9050DBC BDC ∠=︒−∠=︒;故选:B .【点睛】本题考查了直径所对的圆周角是直角,同圆中同弧所对的圆周角相等,直角三角形两锐角互余,掌握它们是关键. 15.(2023·湖北宜昌·统考中考真题)如图,OA OB OC ,,都是O 的半径,AC OB ,交于点D .若86AD CD OD ===,,则BD 的长为( ).A .5B .4C .3D .2【答案】B 【分析】根据等腰三角形的性质得出,OD AC ⊥根据勾股定理求出10OC =,进一步可求出BD 的长.【详解】解:∵8AD CD ==,∴点D 为AC 的中点,∵,AO CO =∴OD AC ⊥,由勾股定理得,10,OC =∴10,OB =∴1064,BD OB OD =−=−=故选:B .【点睛】本题主要考查了等腰三角形的性质,勾股定理以及圆的有关性质,正确掌握相关性质是解答本题的关键.16.(2023·河北·统考中考真题)如图,点18~P P 是O 的八等分点.若137PP P ,四边形3467P P P P 的周长分别为a ,b ,则下列正确的是( )A .a b <B .a b =C .a b >D .a ,b 大小无法比较 【答案】A【分析】连接1223,PP P P ,依题意得12233467PPP P P P P P ===,4617P P PP =,137PP P 的周长为131737a PP PP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+,故122313b a PPP P PP +−=−,根据123PP P 的三边关系即可得解.【详解】连接1223,PP P P ,∵点18~P P 是O 的八等分点,即1223345566778148PP P P P P P P P P P P P P P P ======= ∴12233467PP P P P P P P ===,464556781178P P P P P P P P P P PP =+=+= ∴4617P P PP =又∵137PP P 的周长为131737a PP PP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+,∴()()34466737131737b a P P P P P P P P PP PP P P ++−++=+−()()12172337131737PP PP P P P P PP PP P P =+++−++ 122313PP P P PP =−+在123PP P 中有122313PP P P PP >+∴1223130b a PPP P PP −=+>− 故选:A .【点睛】本题考查等弧所对的弦相等,三角形的三边关系等知识,利用作差比较法比较周长大小是解题的关键. 17.(2023·浙江杭州·统考中考真题)如图,在O 中,半径,OA OB 互相垂直,点C 在劣弧AB 上.若19ABC ∠=︒,则BAC ∠=( )A .23︒B .24︒C .25︒D .26︒【答案】D 【分析】根据,OA OB 互相垂直可得ADB 所对的圆心角为270︒,根据圆周角定理可得12701352ACB ∠=⨯︒=︒,再根据三角形内角和定理即可求解.【详解】解:如图,半径,OA OB 互相垂直,∴90AOB ∠=︒,∴ ADB 所对的圆心角为270︒,∴ADB 所对的圆周角12701352ACB ∠=⨯︒=︒,又19ABC ∠=︒,∴18026BAC ACB ABC ∠=︒−∠−∠=︒,故选:D .【点睛】本题考查圆周角定理、三角形内角和定理,解题的关键是掌握:同圆或等圆中,同弧所对的圆周角等于圆心角的一半. 18.(2023·湖北黄冈·统考中考真题)如图,在O 中,直径AB 与弦CD 相交于点P ,连接AC AD BD ,,,若20C ∠=︒,70BPC ∠=︒,则ADC ∠=( )A .70︒B .60︒C .50︒D .40︒【答案】D 【分析】先根据圆周角定理得出20B C ∠=∠=︒,再由三角形外角和定理可知702050BDP BPC B ∠=∠−∠=︒−︒=︒,再根据直径所对的圆周角是直角,即90ADB ∠=︒,然后利用ADB ADC BDP ∠=∠+∠进而可求出ADC ∠.【详解】解:∵20C ∠=︒,∴20B ∠=︒,∵70BPC ∠=︒,∴702050BDP BPC B ∠=∠−∠=︒−︒︒,又∵AB 为直径,即90ADB ∠=︒,∴905040ADC ADB BDP ∠=∠−∠=︒−︒=︒,故选:D .【点睛】此题主要考查了圆周角定理,三角形外角和定理等知识,解题关键是熟知圆周角定理的相关知识. 19.(2023·广西·统考中考真题)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为( )A .20mB .28mC .35mD .40m【答案】B【分析】由题意可知,37m AB =,7m =CD ,主桥拱半径R ,根据垂径定理,得到37m 2AD =,再利用勾股定理列方程求解,即可得到答案.【详解】解:如图,由题意可知,37m AB =,7m =CD ,主桥拱半径R ,()7m OD OC CD R ∴=−=−, OC 是半径,且OC AB ⊥,137m 22AD BD AB ∴===,在Rt △ADO 中,222AD OD OA +=,()2223772R R ⎛⎫∴+−= ⎪⎝⎭, 解得:156528m 56R =≈,故选:B.【点睛】本题考查了垂径定理,勾股定理,利用直角三角形求解是解题关键. 20.(2023·四川·统考中考真题)如图,AB 是O 的直径,点C ,D 在O 上,连接CD OD AC ,,,若124BOD ∠=︒,则ACD ∠的度数是( )A .56︒B .33︒C .28︒D .23︒【答案】C 【分析】根据圆周角定理计算即可.【详解】解:∵124BOD ∠=︒,∴18012456AOD Ð=°-°=°, ∴1282ACD AOD ∠=∠=︒,故选:C .【点睛】此题考查圆周角定理,熟知同弧所对的圆周角是圆心角的一半是解题的关键. 21.(2023·山东聊城·统考中考真题)如图,点O 是ABC 外接圆的圆心,点I 是ABC 的内心,连接OB ,IA .若35CAI ∠=︒,则OBC ∠的度数为( )A .15︒B .17.5︒C .20︒D .25︒【答案】C 【分析】根据三角形内心的定义可得BAC ∠的度数,然后由圆周角定理求出BOC ∠,再根据三角形内角和定理以及等腰三角形的性质得出答案.【详解】解:连接OC ,∵点I 是ABC 的内心,CAI ∠=︒,∴270BAC CAI ∠=∠=︒,∴2140BOC BAC ∠=∠=︒,∵OB OC =,∴1801801402022BOC OBC OCB ︒−∠︒−︒∠=∠===︒,故选:C .【点睛】本题主要考查了三角形内心的定义和圆周角定理,熟知三角形的内心是三角形三个内角平分线的交点是解题的关键..如图,O 的半径为,以圆内接正六边形面积近似估计O 的面积,可得2A .3【答案】C 【分析】根据圆内接正多边形的性质可得30AOB ∠=︒,根据30度的作对的直角边是斜边的一半可得12BC =,根据三角形的面积公式即可求得正十二边形的面积,即可求解. 【详解】解:圆的内接正十二边形的面积可以看成12个全等的等腰三角形组成,故等腰三角形的顶角为30︒,设圆的半径为1,如图为其中一个等腰三角形OAB ,过点B 作BC OA ⊥交OA 于点于点C ,∵30AOB ∠=︒,∴1122BC OB ==, 则1111224OAB S =⨯⨯=, 故正十二边形的面积为1121234OAB S =⨯=,圆的面积为113π⨯⨯=,用圆内接正十二边形面积近似估计O 的面积可得3π=,故选:C .【点睛】本题考查了圆内接正多边形的性质,30度的作对的直角边是斜边的一半,三角形的面积公式,圆的面积公式等,正确求出正十二边形的面积是解题的关键. 23.(2023·广东·统考中考真题)如图,AB 是O 的直径,50BAC ∠=︒,则D ∠=( )A .20︒B .40︒C .50︒D .80︒【答案】B【分析】根据圆周角定理可进行求解.【详解】解:∵AB 是O 的直径,∴90ACB ∠=︒,∵50BAC ∠=︒,∴9040ABC BAC ∠=︒−∠=︒,∵AC AC =,∴40D ABC ∠=∠=︒;故选:B .【点睛】本题主要考查圆周角的相关性质,熟练掌握直径所对圆周角为直角是解题的关键.24.(2023·河南·统考中考真题)如图,点A ,B ,C 在O 上,若55C ∠=︒,则AOB ∠的度数为()A .95︒B .100︒C .105︒D .110︒【答案】D【分析】直接根据圆周角定理即可得.【详解】解:∵55C ∠=︒,∴由圆周角定理得:2110AOB C ==︒∠∠,故选:D .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键. 25.(2023·全国·统考中考真题)如图,AB ,AC 是O 的弦,OB ,OC 是O 的半径,点P 为OB 上任意一点(点P 不与点B 重合),连接CP .若70BAC ∠=︒,则BPC ∠的度数可能是( )A .70︒B .105︒C .125︒D .155︒【答案】D 【分析】根据圆周角定理得出2140BOC BAC ∠=∠=︒,进而根据三角形的外角的性质即可求解.【详解】解:∵BC BC =,70BAC ∠=︒,∴2140BOC BAC ∠=∠=︒,∵140BPC BOC PCO ∠=∠+∠≥︒,∴BPC ∠的度数可能是155︒故选:D .【点睛】本题考查了圆周角定理,三角形的外角的性质,熟练掌握圆周角定理是解题的关键. 26.(2023·内蒙古赤峰·统考中考真题)如图,圆内接四边形ABCD 中,105BCD ∠=︒,连接OB ,OC ,OD ,BD ,2BOC COD ∠=∠.则CBD ∠的度数是( )A .25︒B .30︒C .35︒D .40︒【答案】A【分析】根据圆内接四边形对角互补得出18010575A ∠=︒−︒=︒,根据圆周角定理得出2150BOD A ∠=∠=︒,根据已知条件得出1503COD BOD ∠=∠=︒,进而根据圆周角定理即可求解.【详解】解:∵圆内接四边形ABCD 中,105BCD ∠=︒,∴18010575A ∠=︒−︒=︒∴2150BOD A ∠=∠=︒∵2BOC COD ∠=∠ ∴1503COD BOD ∠=∠=︒,∵CD CD = ∴11502522CBD COD ∠=∠=⨯︒=︒,故选:A .【点睛】本题考查了圆内接四边形对角互补,圆周角定理,熟练掌握以上知识是解题的关键. A .35︒B .30︒ 【答案】A 【分析】证明35NMO MNO ∠=∠=︒,可得23570AOB ∠=⨯︒=︒,结合OA OB =,C 为AB 的中点,可得35AOC BOC ∠=∠=︒.【详解】解:∵35MNO ∠=︒,MO NO =,∴35NMO MNO ∠=∠=︒,∴23570AOB ∠=⨯︒=︒,∵OA OB =,C 为AB 的中点,∴35AOC BOC ∠=∠=︒,故选A .【点睛】本题考查的是圆的基本性质,等腰三角形的性质,平行线的判定,三角形的外角的性质,熟记等腰三角形的性质是解本题的关键.二、填空题 28.(2023·四川南充·统考中考真题)如图,AB 是O 的直径,点D ,M 分别是弦AC ,弧AC 的中点,12,5AC BC ==,则MD 的长是________.【答案】4【分析】根据圆周角定理得出90ACB ∠=︒,再由勾股定理确定13AB =,半径为132,利用垂径定理确定OM AC ⊥,且6AD CD ==,再由勾股定理求解即可.【详解】解:∵AB 是O 的直径,∴90ACB ∠=︒,∵12,5AC BC ==,∴13AB =,∴11322AO AB ==,∵点D ,M 分别是弦AC ,弧AC 的中点,∴OM AC ⊥,且6AD CD ==,∴52OD ==,∴4MD OM OD AO OD =−=−=,故答案为:4.【点睛】题目主要考查圆周角定理、垂径定理及勾股定理解三角形,理解题意,综合运用这些知识点是解题关键. 29.(2023·浙江金华·统考中考真题)如图,在ABC 中,6cm,50AB AC BAC ==∠=︒,以AB 为直径作半圆,交BC 于点D ,交AC 于点E ,则弧DE 的长为__________cm .【答案】56π【分析】连接AD ,OD ,OE ,根据等腰三角形三线合一性质,圆周角定理,中位线定理,弧长公式计算即可.【详解】解:如图,连接AD ,OD ,OE ,∵AB 为直径,∴AD AB ⊥,∵6cm,50AB AC BAC ==∠=︒,∴BD CD =,1252BAD CAD BAC ∠=∠=∠=︒,∴250DOE BAD ∠=∠=︒,113cm 22OD AB AC ===, ∴弧DE 的长为()50351806cm ππ⨯⨯=,故答案为:56πcm . 【点睛】本题考查了等腰三角形三线合一性质,中位线定理,弧长公式,熟练掌握三线合一性质,弧长公式,圆周角定理是解题的关键.30.(2023·四川广安·统考中考真题)如图,ABC 内接于O ,圆的半径为7,60BAC ∠=︒,则弦BC 的长度为___________.【答案】【分析】连接,OB OC ,过点O 作OD BC ⊥于点D ,先根据圆周角定理可得2120BOC BAC ∠=∠=︒,再根据等腰三角形的三线合一可得60BOD ∠=︒,2BC BD =,然后解直角三角形可得BD 的长,由此即可得.【详解】解:如图,连接,OB OC ,过点O 作OD BC ⊥于点D ,60BAC ∠=︒,2120BOC BAC ∴∠=∠=︒,,OB OC OD BC =⊥Q ,1602BOD BOC ∴∠=∠=︒,2BC BD =,∵圆的半径为7,7OB ∴=,sin 60BD OB ∴=⋅︒=2BC BD ∴==故答案为:【点睛】本题考查了圆周角定理、解直角三角形、等腰三角形的三线合一,熟练掌握圆周角定理和解直角三角形的方法是解题关键.31.(2023·甘肃武威·统考中考真题)如图,ABC 内接于O ,AB 是O 的直径,点D 是O 上一点,55CDB ∠=︒,则ABC ∠=________︒.【答案】35【分析】由同弧所对的圆周角相等,得55,A CDB ∠=∠=︒再根据直径所对的圆周角为直角,得90ACB ∠=︒,然后由直角三角形的性质即可得出结果.【详解】解:,A CDB ∠∠Q 是BC 所对的圆周角,55,A CDB ∴∠=∠=︒AB 是O 的直径,90ACB ∠=︒,在Rt ACB △中,90905535ABC A ∠=︒−∠=︒−︒=︒,故答案为:35.【点睛】本题考查了圆周角定理,以及直角三角形的性质,利用了转化的思想,熟练掌握圆周角定理是解本题的关键.32.(2023·浙江绍兴·统考中考真题)如图,四边形ABCD 内接于圆O ,若100D ∠=︒,则B ∠的度数是________.【答案】80︒【分析】根据圆内接四边形的性质:对角互补,即可解答.【详解】解:∵四边形ABCD 内接于O ,∴180B D Ð+а=, ∵100D ∠=︒,∴18080B D ∠︒∠︒=﹣=. 故答案为:80︒.【点睛】本题主要考查了圆内接四边形的性质,掌握圆内接四边形的对角互补是解答本题的关键. 33.(2023·山东烟台·统考中考真题)如图,将一个量角器与一把无刻度直尺水平摆放,直尺的长边与量角器的外弧分别交于点A ,B ,C ,D ,连接AB ,则BAD ∠的度数为_______.【答案】52.5︒【分析】方法一∶如图:连接,,,,,OA OB OC OD AD AB ,由题意可得:OA OB OC OD ===,502525AOB ∠=︒−︒=︒,然后再根据等腰三角形的性质求得65OAB ∠=︒、25OAD ∠=︒,最后根据角的和差即可解答.方法二∶ 连接,OB OD ,由题意可得:105BAD ∠=︒,然后根据圆周角定理即可求解.【详解】方法一∶ 解:如图:连接,,,,,OA OB OC OD AD AB ,由题意可得:OA OB OC OD ===,502525AOB ∠=︒−︒=︒,15525130AOD ∠=︒−︒=︒,∴()118077.52OAB AOB ∠=︒−∠=︒,()1180252OAD AOB ∠=︒−∠=︒,∴52.5OAB A BAD O D ∠∠−∠==︒.故答案为52.5︒.方法二∶解∶ 连接,OB OD ,由题意可得:15550105BAD ∠=︒−︒=︒,根据圆周角定理,知1110552.522BAD BOD ∠=∠=⨯︒=︒.故答案为:52.5︒.【点睛】本题主要考查了角的度量、圆周角定理等知识点,掌握圆周角的度数等于它所对弧上的圆心角度数的一半是解答本题的关键. 34.(2023·湖南·统考中考真题)如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是________ 个.【答案】10︒,则1272∠=∠=︒,进而得出36AOB ∠=︒,即可求解.【详解】解:根据题意可得:∵正五边形的一个外角360725︒==︒,∴1272∠=∠=︒,∴18072236AOB ∠=︒−︒⨯=︒,∴共需要正五边形的个数3601036︒==︒(个), 故答案为:10.【点睛】本题主要考查了圆的基本性质,正多边形的外角,解题的关键是掌握正多边形的外角的求法. 35.(2023·湖南永州·统考中考真题)如图,O 是一个盛有水的容器的横截面,O 的半径为10cm .水的最深处到水面AB 的距离为4cm ,则水面AB 的宽度为_______cm .【答案】16【分析】过点O 作OD AB ⊥于点D ,交O 于点E ,则12AD DB AB ==,依题意,得出6OD =,进而在Rt AOD 中,勾股定理即可求解.【详解】解:如图所示,过点O 作OD AB ⊥于点D ,交O 于点E ,则12AD DB AB ==,∵水的最深处到水面AB 的距离为4cm ,O 的半径为10cm .∴1046OD =−=cm ,在Rt AOD 中,8AD =cm∴216AB AD ==cm故答案为:16.【点睛】本题考查了垂径定理的应用,勾股定理,熟练掌握垂径定理是解题的关键.36.(2023·湖北随州·统考中考真题)如图,在O 中,60OA BC AOB ⊥∠=︒,,则ADC ∠的度数为___________.【答案】30︒【分析】根据垂径定理得到»»AB AC=,根据圆周角定理解答即可.【详解】解:∵OA BC⊥,∴»»AB AC=,∴1302ADC AOB∠=∠=︒,故答案为:30︒.【点睛】本题考查的是垂径定理和圆周角定理,掌握同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.是O上不同的三点,点在ABC的内部,连接【答案】80【分析】先根据圆周角定理求出BOC∠的度数,再根据三角形的外角定理即可得出结果.【详解】解:在O中,2260120BOC A∠=∠=⨯︒=︒Q,1204080ODC BOC OCD∴∠=∠−∠=︒−︒=︒故答案为:80.【点睛】本题考查了圆周角定理,三角形的外角定理,熟练掌握圆周角定理是本题的关键.38.(2023·湖南郴州·统考中考真题)如图,某博览会上有一圆形展示区,在其圆形边缘的点P 处安装了一台监视器,它的监控角度是55︒,为了监控整个展区,最少..需要在圆形边缘上共安装这样的监视器___________台.【答案】4【分析】圆周角定理求出P ∠对应的圆心角的度数,利用360︒÷圆心角的度数即可得解.【详解】解:∵55P ∠=︒,∴P ∠对应的圆心角的度数为110︒,∵360110 3.27︒÷︒≈,∴最少需要在圆形边缘上共安装这样的监视器4台;故答案为:4【点睛】本题考查圆周角定理,熟练掌握同弧所对的圆周角是圆心角的一半,是解题的关键.是O 的内接正六边形,设正六边形 【答案】2【分析】连接,,OA OC OE ,首先证明出ACE △是O 的内接正三角形,然后证明出()ASA BAC OAC ≌,得到BAC AFE CDE S S S ==,OAC OAE OCE S S S ==,进而求解即可.【详解】如图所示,连接,,OA OC OE ,∵六边形ABCDEF 是O 的内接正六边形,∴AC AE CE ==,∴ACE △是O 的内接正三角形,∵120B ∠=︒,AB BC =, ∴()1180302BAC BCA B ∠=∠=︒−∠=︒,∵60CAE ∠=︒,∴30OAC OAE ∠=∠=︒,∴30BAC OAC ∠=∠=︒,同理可得,30BCA OCA ∠=∠=︒,又∵AC AC =,∴()ASA BAC OAC ≌, ∴BAC OAC S S =,由圆和正六边形的性质可得,BAC AFE CDE SS S ==, 由圆和正三角形的性质可得,OAC OAE OCE S S S ==, ∵()2122BAC AFE CDE OAC OAE OCE OAC OAE OCE S S S S S S S S S S S =+++++=++=, ∴122S S =.故答案为:2.【点睛】此题考查了圆内接正多边形的性质,正六边形和正三角形的性质,全等三角形的性质和判定等知识,解题的关键是熟练掌握以上知识点. 40.(2023·广东深圳·统考中考真题)如图,在O 中,AB 为直径,C 为圆上一点,BAC ∠的角平分线与O 交于点D ,若20ADC ∠=︒,则BAD ∠=______°.【答案】35【分析】由题意易得90ACB ∠=︒,20ADC ABC ∠=∠=︒,则有70BAC ∠=︒,然后问题可求解.【详解】解:∵AB 是O 的直径,∴90ACB ∠=︒,∵AC AC =,20ADC ∠=︒,∴20ADC ABC ∠=∠=︒,∴70BAC ∠=︒,∵AD 平分BAC ∠,∴1352BAD BAC ∠∠==︒;故答案为:35.【点睛】本题主要考查圆周角的性质,熟练掌握直径所对圆周角为直角是解题的关键.41.(2023·山东东营·统考中考真题)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”.用现在的几何语言表达即:如图,CD 为O 的直径,弦AB CD ⊥,垂足为点E ,1CE =寸,10AB =寸,则直径CD 的长度是______寸.【答案】26【分析】连接OA 构成直角三角形,先根据垂径定理,由DE 垂直AB 得到点E 为AB 的中点,由6AB =可求出AE 的长,再设出圆的半径OA 为x ,表示出OE ,根据勾股定理建立关于x 的方程,求解方程可得2x 的值,即为圆的直径.【详解】解:连接OA,AB=寸,⊥,且10AB CD∴==寸,5AE BE==,设圆O的半径OA的长为x,则OC OD x1Q,CE=∴=−,1OE x在直角三角形AOE中,根据勾股定理得:222(1)5−−=,化简得:222125x x−+−=,x x xx=,即226∴=(寸).CD26故答案为:26.【点睛】本题考查了垂径定理和勾股定理,解题的关键是正确作出辅助线构造直角三角形.三、解答题在第一象限内,A与x轴相切于点(1)求证:四边形ABOH为矩形.(2)已知A的半径为4,【答案】(1)见解析(2)6【分析】(1)根据切线的性质及有三个角是直角的四边形是矩形判定即可.(2)根据矩形的性质、垂径定理及圆的性质计算即可.【详解】(1)证明:∵A 与x 轴相切于点B ,∴AB x ⊥轴.∵,AH CD HO OB ⊥⊥,∴90AHO HOB OBA ∠=∠=∠=︒,∴四边形AHOB 是矩形.(2)如图,连接AC .四边形AHOB 是矩形,AH OB ∴==在Rt AHC 中,222CH AC AH =−,3CH ∴==.点A 为圆心,AH CD ⊥,2CD CH ∴=6=.【点睛】本题考查了矩形的判定,垂径定理,圆的性质,熟练掌握矩形的判定和垂径定理是解题的关键. 43.(2023·甘肃武威·统考中考真题)1672年,丹麦数学家莫尔在他的著作《欧几里得作图》中指出:只用圆规可以完成一切尺规作图.1797年,意大利数学家马斯凯罗尼又独立发现此结论,并写在他的著作《圆规的几何学》中.请你利用数学家们发现的结论,完成下面的作图题:如图,已知O ,A 是O 上一点,只用圆规将O 的圆周四等分.(按如下步骤完成,保留作图痕迹)①以点A 为圆心,OA 长为半径,自点A 起,在O 上逆时针方向顺次截取AB BC CD ==;②分别以点A ,点D 为圆心,AC 长为半径作弧,两弧交于O 上方点E ;③以点A 为圆心,OE 长为半径作弧交O 于G ,H 两点.即点A ,G ,D ,H 将O 的圆周四等分.【答案】见解析【分析】根据作图提示逐步完成作图即可.再根据图形基本性质进行证明即可.【详解】解:如图,即点A ,G ,D ,H 把O 的圆周四等分.理由如下:如图,连接,,,,,,,,,,OB OC AG AE DE AC DC OE OH OG AH ,由作图可得:AB BC CD ==,且OA OB AB ==,∴AOB 为等边三角形,60AOB ∠=︒,同理可得:60BOC COD ∠=∠=︒,∴180AOB BOC COD ∠+∠+∠=︒,∴A ,O ,D 三点共线,AD 为直径,∴=90ACD ∠︒,设CD x =,而30DAC ∠=︒,∴2AD x =,AC ,由作图可得:DE AE AC ===,而OA OD x ==,∴⊥EO AD ,OE =,∴由作图可得AG AH =,而OA OH x ==,∴22222OA OH x AH +==,∴90AOH =︒∠,同理90AOG DOG DOH ∠=︒=∠=∠,∴点A ,G ,D ,H 把O 的圆周四等分.【点睛】本题考查的是等腰三角形的性质,圆弧与圆心角之间的关系,等边三角形的判定与性质,勾股定理与勾股定理的逆定理的应用,圆周角定理的应用,熟练掌握图形的基本性质并灵活应用于作图是解本题的关键. 统考中考真题)如图,在O 中,弦52求O 的半径;【答案】(1)5(2)94【分析】(1)延长BC ,交O 于点D ,连接AD ,先根据圆周角定理可得90BAD ∠=︒,再解直角三角形可得10BD =,由此即可得;(2)过点C 作CE AB ⊥于点E ,先解直角三角形可得6BE =,从而可得2AE =,再利用勾股定理可得92CE =,然后根据正切的定义即可得.【详解】(1)解:如图,延长BC ,交O 于点D ,连接AD ,由圆周角定理得:90BAD ∠=︒,弦AB 的长为8,且4cos 5ABC ∠=,845AB BD BD ∴==,解得10BD =,O ∴的半径为152BD =. (2)解:如图,过点C 作CE AB ⊥于点E ,O 的半径为5,5OB ∴=, 12OC OB =, 31522BC OB ∴==,4cos 5ABC ∠=,45BE BC ∴=,即41552BE =,解得6BE =,2AE AB BE ∴=−=,92CE ==,则BAC ∠的正切值为99224CE AE ==. 【点睛】本题考查了圆周角定理、解直角三角形、勾股定理等知识点,熟练掌握解直角三角形的方法是解题关键. 都是O 的半径,,求O 的半径.【答案】(1)见解析(2)52【分析】(1)由圆周角定理得出,11,22∠=∠∠=∠ACB AOB BAC BOC ,再根据2A CB B AC ∠=∠,即可得出结论; (2)过点O 作半径OD AB ⊥于点E ,根据垂径定理得出1,2∠=∠=DOB AOB AE BE ,证明DOB BOC ∠=∠,得出BD BC =,在Rt BDE △中根据勾股定理得出1DE =,在Rt BOE 中,根据勾股定理得出222(1)2OB OB =−+,求出OB 即可.【详解】(1)证明:∵AB AB =,∴12ACB AOB ∠=∠, ∵BC BC =,∴12BAC BOC ∠=∠,2ACB BAC ∠=∠,2AOB BOC ∴∠=∠.(2)解:过点O 作半径OD AB ⊥于点E ,则1,2∠=∠=DOB AOB AE BE ,2AOB BOC Ð=ÐQ , ∴DOB BOC ∠=∠,BD BC ∴=,4,==AB BC2,∴==BE DB在Rt BDE △中,90DEB =︒∠Q1∴==DE ,在Rt BOE 中,90OEB ∠=︒,222(1)2∴=−+OB OB ,52OB ∴=,即O 的半径是52.【点睛】本题主要考查了勾股定理,垂径定理,圆周角定理,解题的关键是作出辅助线,熟练掌握圆周角定理. 46.(2023·贵州·统考中考真题)如图,已知O 是等边三角形ABC 的外接圆,连接CO 并延长交AB 于点D ,交O 于点E ,连接EA ,EB .(1)写出图中一个度数为30︒的角:_______,图中与ACD 全等的三角形是_______;(2)求证:AED CEB ∽△△;(3)连接OA ,OB ,判断四边形OAEB 的形状,并说明理由.【答案】(1)1∠、2∠、3∠、4∠;BCD △(2)见详解(3)四边形OAEB 是菱形【分析】(1)根据外接圆得到CO 是ACB ∠的角平分线,即可得到30︒的角,根据垂径定理得到90ADC BDC ∠=∠=︒,即可得到答案;(2)根据(1)得到3=2∠∠,根据垂径定理得到5660∠=∠=︒,即可得到证明;(3)连接OA ,OB ,结合5660∠=∠=︒得到OAE △ ,OBE △是等边三角形,从而得到OA OB AE EB r ====,即可得到证明;【详解】(1)解:∵O 是等边三角形ABC 的外接圆,∴CO 是ACB ∠的角平分线,60ACB ABC CAB ∠=∠=∠=︒,∴1230∠=∠=︒,∵CE 是O 的直径,∴90CAE CBE ∠=∠=︒,∴3430∠=∠=︒,∴30︒的角有:1∠、2∠、3∠、4∠,∵CO 是ACB ∠的角平分线,∴90ADC BDC ∠=∠=︒,56903060∠=∠=︒−︒=︒,在ACD 与BCD △中,∵1290CD CD ADC BDC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴ACD BCD ≌,故答案为:1∠、2∠、3∠、4∠,BCD △;(2)证明:∵56∠=∠,3=230∠∠=︒,。

全国名校2013年中考数学模拟试卷分类汇编31 圆有关的性质

全国名校2013年中考数学模拟试卷分类汇编31 圆有关的性质

圆有关的性质一、选择题1、(2013江苏东台实中)如右图,⊙O 的半径OA 等于5,半径OC ⊥AB 于点D ,若OD =3,则弦AB 的长为( )A 、10B 、8C 、6D 、4答案:B2、如图,⊙O 的弦AB =8,M 是AB 的中点,且OM =3,则⊙O 的半径等于( )A .8B .4C .10D .5 答案:D3、(2013江苏扬州弘扬中学二模)若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是( )A.点A 在圆外B. 点A 在圆上C. 点A 在圆内D.不能确定 答案:C4、如图,已知⊙O 是正方形ABCD 的外接圆,点E 是 AD 上任意 一点,则∠BEC 的度数为 ( ) A. 30° B. 45°答案:B5、(2013山西中考模拟六) 如图,AB 是⊙O 的直径,AB =4,AC 是弦,AC =∠AOC 为( )A .120°B .130C .140° D.150°答案:A 6、(2013温州市一模)如图,⊙O 的半径为5,若OP =3,,则经过点P 的弦长可能是 ( )A .3B .6C .9D .12答案:C O P(第5题)7、(2013·湖州市中考模拟试卷1)如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C=70°,现给出以下四个结论:① ∠A=45°; ②AC=AB ;③ ; ④CE·AB=2BD 2其中正确结论的个数为 ( )A .1个B .2个C .3个D .4个答案:B 8、(2013·湖州市中考模拟试卷7)如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于C ,若25A = ∠.则D ∠等于( )A .20 B .30 C .40 D .50 答案:C9、(2013·湖州市中考模拟试卷8)如右图,已知圆的半径是5,弦AB 的长是6,则弦AB 的弦心距是( )A .3B .4C .5D .8答案:B10、(2013·湖州市中考模拟试卷10)如图,AB 是⊙O 的直径,CD 为弦,AB CD ⊥于E ,则下列结论中不.成立的是( ) A.∠A ﹦∠D B.CE ﹦DE C.∠ACB ﹦90°D .CE ﹦BD︵ ︵ AE =答案:D11、(2013年河北四摸)如图,半径为10的⊙O 中,弦AB 的长为16,则这条弦的弦心距为( ) (A )6 (B )8 (C )10(D )12答案:A二、填空题 1、(2013江苏东台实中)已知⊙O 的半径为6cm ,弦AB 的长为6cm ,则弦AB 所对的圆周角的度数是 _____. 答案:30°或150°2、(2013江苏东台实中)如第18题图,已知过D 、A 、C 三点的圆的圆心为E ,过B 、E 、F 三点的圆的圆心为D ,如果∠A =63 º,那么∠B = º. 答案:18°3、(2013江苏射阴特庸中学)如图,AB 为⊙O 的直径,PD切⊙O 于点C ,交AB 的延长线于D ,且CO =CD , 则∠PCA = °.答案:67.54、(2013·曲阜市实验中学中考模拟)如图,AB 为⊙O 的直径,弦CD ⊥AB ,E 为 BC上一点,若∠CEA=28,则∠ABD=°.答案: 28°5、(2013·湖州市中考模拟试卷7)一条弦把圆分成2:3两部分,那么这条弦所对的圆周角的度数为__________.(第4题)答案: 72°或108°6、(2013·湖州市中考模拟试卷8)如图,点A 、B 、C 在圆O 上,且040BAC ∠=,则BOC ∠= .答案:0807、 (2013年河北二摸)如图,⊙O 的半径OA =5cm ,弦AB =8cm ,点P 为弦AB 上一动点,则点P 到圆心O 的最短距离是 cm . 答案:38、(2013年上海市)如果一边长为20cm 的等边三角形硬纸板刚好能不受损地从用铁丝围成的圆形铁圈中穿过,那么铁圈直径的最小值为 ▲ cm (铁丝粗细忽略不计).答案: 三、解答题1、(2013安徽芜湖一模)如图,在Rt ABC △中,90C ∠=,BE 平分ABC ∠交AC 于点E ,点D 在AB 边上且DE BE ⊥.(1)判断直线AC 与DBE △外接圆的位置关系,并说明理由; (2)若6AD AE ==,BC 的长.解:(1)直线AC 与DBE △外接圆相切.理由:∵D E BE ⊥, ∴ BD 为DBE △外接圆的直径, 取BD 的中点O (即DBE △外接圆的圆心),连结OE , ∴OE OB =,∴OEB OBE ∠=∠,∵BE 平分ABC ∠,∴ OBE CBE ∠=∠,∴ OEB CBE ∠=∠, ∵90CBE CEB ∠+∠=°,∴ 90OEB CEB ∠+∠=°, 即OE AC ⊥,C(第1题) BD AE第17题图∴直线AC 与DBE △外接圆相切. ………………………………………………(6分) (2)设OD OE OB x ===,∵OE AC ⊥,∴222(6)x x +-=, ∴3x =, ∴12AB AD OD OB =++=,∵OE AC ⊥,∴AOE ABC △∽△, ∴AO OE AB BC =,即9312BC=,] ∴4BC =. ……………………………………………………………………(12分) 2、(2013吉林镇赉县一模)如图,BC 是⊙O 的直径,AD ⊥CD ,垂足为D ,AC 平分∠BCD ,AC =3,CD =1,求⊙O 的半径.答案:3、(2013吉林镇赉县一模)已知A 、B 、C 是半径为2的圆O 上的三个点,其中点A 是弧BC 的中点,连接AB 、AC ,点D 、E 分别在弦AB 、AC 上,且满足AD =CE .(1)求证:OD =OE ;(2)连接BC ,当BC =22时,求∠DOE 的度数. 答案:DA 20题图B4、(2013江苏射阴特庸中学)如图,AB 是⊙O 的直径,点A 、C 、D 在⊙O 上,过D 作PF ∥AC 交⊙O 于F 、交AB 于E ,且∠BPF =∠ADC .(1)判断直线BP 和⊙O 的位置关系,并说明你的理由; (2)当⊙O 的半径为5,AC =2,BE =1时,求BP 的长. 答案:(1)直线BP 和⊙O 相切. ......1分 理由:连接BC,∵AB 是⊙O 直径,∴∠ACB=90°. ......2分 ∵PF ∥AC,∴BC ⊥PF, 则∠PBH+∠BP F=90°. ......3分 ∵∠BPF=∠ADC,∠ADC=∠ABC,得AB ⊥BP, (4)所以直线BP 和⊙O 相切.(2)由已知,得∠ACB=90°,∵AC=2,AB=25,∴BC=4. ……6分 ∵∠BPF=∠ADC,∠ADC=∠ABC,∴∠BPF=∠ABC,由(1),得∠ABP=∠ACB=90°,∴△ACB ∽△EBP, ……8分∴AC BE =BCBP,解得BP=2.即BP 的长为2. ……10分 5、(2013山西中考模拟六) 如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,连接CD ,若⊙O的半径32r =,2AC =,请你求出cos B 的值.答案:∵AD 是⊙O 的直径,32r =,∴∠ACD =90°,AD =3, ∵AC =2,∴CD ==cos D∵∠B 和∠D 是同弧所对的圆周角,∴∠B =∠D , ∴cos cos B D ==6、(2013温州市一模)如图,AB 是⊙O 的直径,BC 是⊙O 的切线, D 是⊙O 上一点,且AD ∥OC .(1)求证:△ADB ∽△OBC .P BAABP 5题图(2)若AB=6,BC=4.求AD的长度.(结果保留根号)答案:证明:(1)∵AB是⊙O的直径,BC是⊙O的切线,∴∠D=∠OBC=90°∵AD∥OC[中国^∴∠A=∠COB∴△ADB∽△OBC(2)∵AB=6, ∴OB=3,∵BC=4,[]5OC∴==∵△ADB∽△OBC∴6,,35 AD AB ADOB OC=∴=185AD∴=。

初三数学圆的有关性质练习题

初三数学圆的有关性质练习题

初三数学圆的有关性质练习题1. 问题描述:已知圆A的半径为5cm,圆B的直径为10cm,求圆B的半径和周长。

解答:根据圆的性质,圆的周长公式为C = 2πr,其中C代表周长,π为圆周率,r为半径。

对于圆A,已知其半径为5cm,可以直接带入周长公式计算,得到圆A的周长为:C(A) = 2π × 5 = 10π ≈ 31.42cm对于圆B,已知其直径为10cm,可以通过直径与半径的关系计算其半径。

直径等于半径的两倍,即d = 2r:10 = 2rr = 10/2 = 5cm圆B的半径为5cm,可以带入周长公式计算,得到圆B的周长为:C(B) = 2π × 5 = 10π ≈ 31.42cm所以,圆B的半径为5cm,周长为31.42cm。

2. 问题描述:已知圆C的半径为8cm,圆的面积等于35.2平方厘米,求圆的周长。

解答:对于圆C,已知其半径为8cm,可以带入圆的面积公式计算,面积公式为S = πr^2,其中S代表面积,π为圆周率,r为半径。

已知圆的面积为35.2平方厘米,可以带入面积公式求解:35.2 = π × 8^235.2 = 64ππ ≈ 35.2/ 64 ≈ 0.55将计算得到的π带入圆的周长公式C = 2πr,可以计算圆的周长:C = 2π × rC = 2 × 0.55 × 8 ≈ 8.8 × 8 ≈ 70.4cm所以,已知圆C的半径为8cm,面积为35.2平方厘米,该圆的周长约为70.4cm。

3. 问题描述:已知圆D和圆E的半径分别为6cm和10cm,圆E的面积比圆D的面积大多少平方厘米?解答:对于圆D,已知其半径为6cm,可以带入圆的面积公式计算,面积公式为S = πr^2,其中S代表面积,π为圆周率,r为半径。

对于圆E,已知其半径为10cm,同样带入圆的面积公式计算。

首先计算圆D的面积:S(D) = π × 6^2S(D) ≈ 3.14 × 36 ≈ 113.04平方厘米然后计算圆E的面积:S(E) = π × 10^2S(E) ≈ 3.14 × 100 ≈ 314平方厘米圆E的面积大于圆D的面积的差为:S(E) - S(D) = 314 - 113.04 ≈ 200.96平方厘米所以,圆E的面积比圆D的面积大约200.96平方厘米。

中考数学一轮复习专题过关检测卷—圆的基本性质(含答案解析)

中考数学一轮复习专题过关检测卷—圆的基本性质(含答案解析)

中考数学一轮复习专题过关检测卷—圆的基本性质(含答案解析)(考试时间:90分钟,试卷满分:100分)一、选择题(本题共10小题,每小题3分,共30分)。

1.如图,AB是⊙O的直径,,∠COB=40°,则∠A的度数是()A.50°B.55°C.60°D.65°【答案】B【解答】解:∵AB是⊙O的直径,,∠COB=40°,∴∠AOD=∠DOC,∴,∵OA=OD,∴.故选:B.2.如图,点A、B、C在⊙O上,∠ACB=30°,则∠AOB的度数是()A.30°B.40°C.60°D.65°【答案】C【解答】解:∵∠AOB=2∠ACB,∠ACB=30°,∴∠AOB=60°,故选:C.3.如图,OA是⊙O的半径,弦BC⊥OA,D是优弧上一点,如果∠AOB=58°,那么∠ADC的度数为()A.32°B.29°C.58°D.116°【答案】B【解答】解:∵弦BC⊥OA,∴=,∴∠ADC=∠AOB=×58°=29°.故选:B.4.如图,四边形ABCD内接于⊙O,它的一个外角∠CBE=70°,则∠ADC的度数为()A.110°B.70°C.140°D.160°【答案】B【解答】解:∵∠ADC+∠ABC=180°,∠ABC+∠CBE=180°,∴∠ADC=∠CBE=70°.故选:B.5.如图,弦AB⊥OC,垂足为点C,连接OA,若OC=4,AB=6,则sin A等于()A.B.C.D.【答案】C【解答】解:∵弦AB⊥OC,AB=4,OC=2,∴AC=AB=3,∴OA===5,∴sin A==.故选:C.6.如图,将⊙O沿着弦AB翻折,劣弧恰好经过圆心O.如果弦AB=4,那么⊙O的半径长度为()A.2B.4C.2D.4【答案】B【解答】解:作OD⊥AB于D,连接OA.∵OD⊥AB,AB=4,∴AD=AB=2,由折叠得:OD=AO,设OD=x,则AO=2x,在Rt△OAD中,AD2+OD2=OA2,(2)2+x2=(2x)2,x=2,∴OA=2x=4,即⊙O的半径长度为4;故选:B.7.如图,已知AB与⊙O相切于点A,AC是⊙O的直径,连接BC交⊙O于点D,E为⊙O上一点,当∠C ED=58°时,∠B的度数是()A.32°B.64°C.29°D.58°【答案】D【解答】解:连接AD,∵AB与⊙O相切于点A,∴CA⊥AB,∴∠CAB=90°,∵∠CED=∠CAD=58°,∴∠DAB=90°﹣∠CAD=32°,∵AC是⊙O的直径,∴∠ADC=90°,∴∠B=90°﹣∠DAB=58°,故选:D.8.如图,△ABC内接于⊙O,E是的中点,连接BE,OE,AE,若∠BAC=70°,则∠OEB的度数为()A.70°B.65°C.60°D.55°【答案】D【解答】解:连接OB、OC,则∠BOC=2∠BAC=140°,∵OB=OC,∴∠OBC=∠OCB=20°,∵E是的中点,∴,∴∠EBC=∠EAC=∠EAB=∠BAC=35°,∴∠OBE=∠OBC+∠EBC=55°,∵OB=OE,∴∠OEB=∠OBE=55°,故选:D.9.如图,AB是⊙O的直径,过点A作⊙O的切线AC,连接BC,与⊙O交于点D,E是⊙O上一点,连接AE,DE.若∠C=48°,则∠AED的度数为()A.42°B.48°C.32°D.38°【答案】A【解答】解:∵AB是⊙O的直径,过点A作⊙O的切线AC,∴BA⊥AC,∴△ABC为直角三角形,∴∠B+∠C=90°,∴∠B=90°﹣∠C=90°﹣48°=42°,∴∠AED=∠B=42°.故选:A.10.如图,AB是⊙O的直径,C、D、E是⊙O上的点,若,∠E=70°,则∠ABC的度数()A.30°B.40°C.50°D.60°【答案】B【解答】解:连接DB,∵∠E=70°,∴∠A=70°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD=90°﹣∠A=90°﹣70°=20°,∵,∴∠DBC=∠DBA=20°,∴∠ABC=∠DBC+∠DBA=20°+20°=40°.故选:B.二、填空题(本题共6题,每小题2分,共12分)。

中考数学模拟试题圆的运算与性质

中考数学模拟试题圆的运算与性质

中考数学模拟试题圆的运算与性质中考数学模拟试题圆的运算与性质圆是数学中一种重要的几何形状,对于圆的运算与性质的理解是学习数学的基础。

本文将通过一系列的模拟试题,来深入了解圆的运算与性质。

一、计算圆的面积和周长1. 已知一个圆的半径为6cm,求其面积。

解析:圆的面积公式为S=πr²,其中r为半径。

代入半径的值得到S=π(6)²=36π cm²。

2. 一个圆的周长为18π cm,求它的直径。

解析:圆的周长公式为C=2πr,其中r为半径。

将周长的值代入公式得到18π=2πr,通过化简得到r=9 cm。

由于直径是半径的两倍,所以直径为2r=2×9=18 cm。

二、求圆的切线和弦的性质1. 图中A、B、C、D为圆上的四个点,以AC为直径的圆和以BD为直径的圆相切于点E,若AB=8 cm,DE=6 cm,求正弦∠ACB的值。

解析:根据题意,AD与BC为两根切线,且切点在一条直线上。

由于两条切线在外切圆上的切点E是圆心连线的一条垂直平分线,所以DE与AB的垂直平分线重合,即DE平分∠ADB。

根据垂直平分线性质可知∠DAE=∠EAB。

由于以AC和BD为直径的两个圆相切于一点E,所以∠EDC=90°。

由于∠ADC为半圆角,所以∠ADC=90°。

因此,∠EDC=∠ADC。

综上所述,∠DAE=∠EAB=∠EDC=∠ADC=90°/2=45°。

2. 如图,AB是圆O的直径,CD是它的一条弦,若∠CBA=30°,求∠COD的度数。

解析:根据题意,∠CBA=30°,由于直径为弦的特殊情况,可知C、B、O三点共线,且OC为AO的垂直平分线。

根据垂直平分线性质可知∠CAO=∠OAB=15°。

由于CD是弦,所以∠CAD=∠CBD。

综上所述,∠CAD=∠CBD=15°。

又根据圆心角与弦的关系可知∠COB=2∠CAD=2×15°=30°。

初中数学中考模拟模拟考试题分类 圆的有关性质1考试卷及答案.docx

初中数学中考模拟模拟考试题分类   圆的有关性质1考试卷及答案.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx 题总分得分一、xx题(每空xx 分,共xx分)试题1:如图,以点P为圆心,以为半径的圆弧与x轴交于A,B两点,点A的坐标为(2,0),点B的坐标为(6,0),则圆心P的坐标为()A.(4,) B.(4,2) C.(4,4) D.(2,)试题2:如图,DC是以AB为直径的半圆上的弦,DM⊥ CD交AB于点M,CN⊥ CD交AB于点N.AB=10,CD=6.则四边形DMNC的面积()A.等于24 B.最小为24 C.等于48 D.最大为48试题3:下列命题中,正确的是()A.圆心角相等,所对的弦的弦心距相等评卷人得分B.三点确定一个圆C.平分弦的直径垂直于弦,并且平分弦所对的弧D.弦的垂直平分线必经过圆心试题4:如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()A.①③ B.①②③④ C.②③④ D.①③④试题5:如图,⊙O的半径为2,弦AB=,点C在弦AB上, ,则OC的长为()A . B. C. D.试题6:如图,四边形是的内接四边形,若,则的度数是(A)60°.(B)80°.(C)90°.(D)100°.试题7:如图,⊙O的直径AB垂直于弦CD,垂足是E,∠ A=30°,CD=6,则圆的半径长为()A.2 B.2 C.4 D.试题8:如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠ OAC的度数是()A.35° B.55° C.65° D.70°试题9:一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角∠ACB=45°,则这个人工湖的直径AD 为()A. B. C. D.试题10:如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A .2 B.4 C.4 D.8试题11:如图,是⊙O 直径,,则A. B .C.D.试题12:如图,AB是⊙O的直径,点C在圆周上,连结BC、OC,过点A作AD∥ OC交⊙O于点D,若∠ B=25°,则∠ BAD的度数是()试题13:下列图形中,∠ 1一定大于∠ 2的是()A. B. C.D.试题14:如图,已知EF是⊙O的直径,把∠ A为60°的直角三角板ABC的一条直角边BC放在直线EF上,斜边AB与⊙O交于点P,点B与点O重合,且AC大于OE,将三角板ABC沿OE方向平移,使得点B与点E重合为止.设∠ POF=x,则x的取值范围是()A.30≤x≤60 B.30≤x≤90 C.30≤x≤120 D.60≤x≤120试题15:如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60°.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q从A 点出发沿着A→C的方向运动,当点P到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为()A. B. C. 或 D. 或或试题16:如图,已知⊙O的直径AB为10,弦CD=8,CD⊥ AB于点E,则sin∠ OCE的值为()A. B. C. D.试题1答案:C【考点】垂径定理;坐标与图形性质;勾股定理.【分析】过点P作PC⊥AB于点C,利用垂径定理以及结合点A和点B的坐标即可得出点C的坐标,即可得出AC的长度,从而可得出PC的长度,且点P位于第一象限,即可得出P的坐标.【解答】解:过点P作PC⊥ AB于点C;即点C为AB的中点,又点A的坐标为(2,0),点B的坐标为(6,0),故点C(4,0)在Rt△ PAC中,PA=,AC=2,即有PC=4,即P(4,4).故选C.试题2答案:A【考点】垂径定理;勾股定理;梯形中位线定理.【分析】过圆心O作OE⊥ CD于点E,则OE平分CD,在直角△ ODE中利用勾股定理即可求得OE的长,即梯形DMNC的中位线,根据梯形的面积等于OE•CD即可求得.【解答】解:过圆心O作OE⊥ CD于点E,连接OD.则DE=CD=×6=3.在直角△ODE中,OD=AB=×10=5,OE===4.则S四边形DMNC=OE•CD=4×6=24.故选A.试题3答案:D【考点】命题与定理.【分析】根据有关性质和定理分别对每一项进行判断即可.【解答】解:A、在同圆或等圆中,相等的圆心角所对的弦相等,故本选项错误;B、不在一条直线上的三点确定一个圆,错误;C、平分弦的直径不一定垂直于弦,错误;D、弦的垂直平分线必经过圆心,正确;故选D【点评】此题考查了命题与定理,关键是熟练掌握有关性质和定理,能对命题的真假进行判断.试题4答案:B【考点】垂径定理;菱形的判定;圆周角定理;解直角三角形.【专题】几何图形问题.【分析】分别根据垂径定理、菱形的判定定理、锐角三角函数的定义对各选项进行逐一判断即可.【解答】解:∵点A是劣弧的中点,OA过圆心,∴ OA⊥BC,故①正确;∵∠ D=30°,∴∠ ABC=∠ D=30°,∴∠ AOB=60°,∵点A是劣弧的中点,∴ BC=2CE,∵ OA=OB,∴ OA=OB=AB=6cm,∴ BE=AB•cos30°=6×=3cm,∴ BC=2BE=6cm,故②正确;∵∠ AOB=60°,∴ sin∠AOB=sin60°=,故③正确;∵∠ AOB=60°,∴ AB=OB,∵点A是劣弧的中点,∴ AC=AB,∴ AB=BO=OC=CA,∴四边形ABOC是菱形,故④正确.故选:B.【点评】本题考查了垂径定理、菱形的判定、圆周角定理、解直角三角形,综合性较强,是一道好题.试题5答案:D试题6答案:D试题7答案:A试题8答案:B【考点】圆周角定理.【分析】在同圆和等圆中,同弧所对的圆心角是圆周角的2倍,所以∠ AOC=2∠ D=70°,而△ AOC中,AO=CO,所以∠ OAC=∠ OCA,而180°﹣∠ AOC=110°,所以∠ OAC=55°.【解答】解:∵∠ D=35°,∴∠ AOC=2∠ D=70°,∴∠ OAC=(180°﹣∠ AOC)÷2=110°÷2=55°.故选:B.【点评】本题考查同弧所对的圆周角和圆心角的关系.规律总结:解决与圆有关的角度的相关计算时,一般先判断角是圆周角还是圆心角,再转化成同弧所对的圆周角或圆心角,利用同弧所对的圆周角相等,同弧所对的圆周角是圆心角的一半等关系求解,特别地,当有一直径这一条件时,往往要用到直径所对的圆周角是直角这一条件.试题9答案:B【分析】连接OB.根据圆周角定理求得∠AOB=90°;然后在等腰Rt△AOB中根据勾股定理求得⊙O的半径AO=OB=50m,从而求得⊙O的直径AD=100m.【解答】解:连接OB.∵∠ACB=45°,∠ACB=∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠AOB=90°;在Rt△AOB中,OA=OB(⊙O的半径),AB=100m,∴由勾股定理得,AO=OB=50m,∴AD=2OA=100m;故选B.试题10答案:C【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=D E,且可判断△OCE 为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选:C.试题11答案:A试题12答案:D【考点】圆周角定理;平行线的性质.【分析】根据∠B=25°,得∠ C=25°,再由外角的性质得∠ AOC,根据平行线的性质得出∠ BAD的度数.【解答】解:∵ OB=OC,∴∠ B=∠ C,∵∠ B=25°,∴∠ C=25°,∵∠ AOC=2∠B,∴∠ AOC=50°,∵ AD∥OC,∴∠ BAD=∠ AOC=50°,故选D.【点评】本题考查的是圆周角定理,以及平行线的性质,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等是解答此题的关键.试题13答案:C【考点】三角形的外角性质;对顶角、邻补角;平行线的性质;圆周角定理.【分析】根据对顶角、内错角、外角、圆周角的性质,对选项依次判断即可得出答案.【解答】解:A、根据对顶角相等,∠ 1=∠ 2,故本选项错误;B、根据两直线平行、内错角相等,∠ 1=∠ 2,故本选项错误;C、根据外角等于不相邻的两内角和,∠ 1>∠ 2,故本选项正确;D、根据圆周角性质,∠ 1=∠ 2,故本选项错误.故选C.【点评】本题主要考查了对顶角、内错角、外角、圆周角的性质,难度适中.试题14答案:A【考点】圆周角定理;平移的性质.【专题】压轴题;动点型.【分析】分析可得:开始移动时,x=30°,移动开始后,∠ POF逐渐增大,最后当B与E重合时,∠ POF取得最大值,即2×30°=60°,故x的取值范围是30≤x≤60.【解答】解:开始移动时,x=30°,移动开始后,∠ POF逐渐增大,最后当B与E重合时,∠ POF取得最大值,则根据同弧所对的圆心角等于它所对圆周角的2倍得:∠ POF=2∠ ABC=2×30°=60°,故x的取值范围是30≤x≤60.故选A.【点评】本题考查圆周角定理和平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.试题15答案:C试题16答案:B【考点】垂径定理;解直角三角形.【分析】由AB是⊙O的直径,弦CD⊥ AB,根据垂径定理,可求得CE的长,然后由勾股定理即可求得OE,继而求得sin ∠ OCE的值.【解答】解:∵ AB是⊙O的直径,弦CD⊥ AB,∴ CE=CD=×8=4,OC=AB=×10=5,∴ OE==3,∴ sin∠ OCE==.故选B.【点评】此题考查了垂径定理、勾股定理以及三角函数.此题比较简单,注意掌握数形结合思想的应用.。

2023年北京市初三一模数学试题汇编:圆的性质

2023年北京市初三一模数学试题汇编:圆的性质

2023北京初三一模数学汇编圆的性质统考一模)如图,O的半径为,ABC是O的内接三角形,半径A.2二、填空题2.(2023·北京顺义是O的直径,是O上两点,若的度数为_______.统考一模)如图,在O中,AB,交O于点D_________(写出两组即可)4.(2023·北京延庆·统考一模)如图,⊙=________°.5.(2023·北京西城·统考一模)“圆”是中国文化的一个重要精神元素,在中式建筑中有着广泛的应用,例如古典园林中的门洞,如图,某地园林中的一个圆弧形门洞的高为2.5m ,地面入口宽为1m ,则该门洞的半径为__________m .三、解答题6.(2023·北京平谷·统考一模)已知:如图,ABC 为锐角三角形.求作:以BC 为一边作Rt MBC ,使90MBC ∠=︒,M A ∠=∠.作法:①作AC 边的垂直平分线DE ;②作BC 边的垂直平分线FG ,与直线DE 交于点O ;③以O 为圆心,OA 为半径作O ;④连接CO 并延长,交O 于点M ,连接BM ;MBC 即为所求作的三角形.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵DE 是AC 的垂直平分线,FG 是BC 的垂直平分线,DE 与FG 交于点O∴OA OB OC ==∴点A 、B 、C 都在O 上∵CM 为O 的直径∴MBC ∠=______°∵BC BC =∴M A ∠=∠(_____________)(填推理依据)∴MBC即为所求作的三角形.∵45BAC ∠=︒,∴2BOC BAC ∠=∠∵OD BC ⊥,∴CE BE =,∵O 的半径为2BC OB =12BE BC =故选:A .【点睛】本题考查了三角形外接圆与外心,垂径定理,等腰直角三角形的判定和性质,正确地作出辅助线是解题的关键.是O 的直径,40AOC =︒,, 【点睛】本题主要考查了圆周角的性质和邻补角的性质,解题的关键是熟知圆周角的性质定理的圆周角等于它所对的圆心角的一半.【详解】∵在O 中,AB(2)证明:∵DE 是AC 的垂直平分线,∴OA OB OC ==∴点A 、B 、C 都在O 上∵CM 为O 的直径∴90MBC ∠=︒BCA ∠(同弧(或等弧)所对的圆周角相等)∴MBC 即为所求作的三角形.故答案为:90,同弧(或等弧)所对的圆周角相等.【点睛】本题考查尺规作图、线段垂直平分线的作法及性质、圆周角定理,解题的关键是找出ABC 外接圆的圆心.。

中考数学模拟试题汇编圆的有关性质含解析试题(共27页)

中考数学模拟试题汇编圆的有关性质含解析试题(共27页)

圆的有关(yǒuguān)性质一、单项选择题1、以下语句中,正确的选项是〔〕A、长度相等的弧是等弧B、在同一平面上的三点确定一个圆C、三角形的内心是三角形三边垂直平分线的交点D、三角形的外心到三角形三个顶点的间隔相等2、以下说法:①三点确定一个圆;②垂直于弦的直径平分弦;③三角形的内心到三条边的间隔相等;④圆的切线垂直于经过切点的半径.其中正确的个数是〔〕A、0B、2C、3D、43、如图,将半径为6的⊙O沿AB折叠,弧AB与AB垂直的半径OC交于点D且CD=2OD,那么折痕AB的长为〔〕A、B、C、6D、4、如图,以直角梯形ABCD的腰CD为直径的半圆O与梯形的上底AD、下底BC以及腰AB均相切,切点分别是D、C、E.假设半圆O的半径为2,梯形的腰AB为5,那么(nà me)该梯形的周长是〔〕.A、9B、10C、12D、145、如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,那么∠B的度数是〔〕A、15°B、25°D、75°6、〔如图,△ABC内接于⊙O,AB是⊙O的直径,∠B=30°,CE平分∠ACB交⊙O于E,交AB于点D,连接(liánjiē)AE,那么S△ADE:S△CDB的值等于〔〕A、1:B、1:C、1:2D、2:37、如图,四边形ABCD内接于⊙O,F是上一点,且= ,连接CF 并延长交AD的延长线于点E,连接AC.假设∠ABC=105°,∠BAC=25°,那么∠E的度数为〔〕A、45°B、50°C、55°8、把一张圆形纸片按如下(rúxià)图方式折叠两次后展开,图中的虚线表示折痕,那么的度数是〔〕A、120°B、135°C、150°D、165°9、如图,四边形ABCD内接于⊙O,假设四边形ABCO是平行四边形,那么∠ADC的大小为〔〕A、45°B、50°C、60°D、75°10、如图,BD是⊙O的直径(zhíjìng),点A、C在⊙O上,= ,∠AOB=60°,那么∠BDC的度数是〔〕A、60°B、45°C、35°D、30°11、如图,直线AB,AD与⊙O相切于点B,D,C为⊙O上一点,且∠BCD=140°,那么∠A的度数是〔〕A、70°B、105°C、100°D、110°12、如图,小敏家厨房一墙角处有一自来水管,装修时为了美观,准备用木板从AB处将水管密封起来(qǐ lái),互相垂直的两墙面与水管分别相切于D,E 两点,经测量AD=10cm,BE=15cm,那么该自来水管的半径为〔〕cm.A、5B、10C、6D、8二、填空题〔一共5题;一共5分〕13、如图,四边形ABCD为⊙O的内接四边形,∠BCD=110°,那么∠BAD=________度.14、如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,那么图中阴影局部的面积是________.15、如图,AB是半圆O的直径,C是半圆O上一点,弦AD平分(píngfēn)∠BAC,交BC于点E,假设AB=6,AD=5,那么DE的长为________.16、如图,⊙O的弦AB、CD相交于点E,假设CE:BE=2:3,那么AE:DE=________17、如图1,小敏利用课余时间是制作了一个脸盆架,图2是它的截面图,垂直放置的脸盆与架子的交点为A,B,AB=40cm,脸盆的最低点C到AB的间隔为10cm,那么该脸盆的半径为________ cm.三、解答(jiědá)题18、点P到圆的最大间隔为11,最小间隔为7,那么此圆的半径为多少?19、一条排水管的截面如下图.排水管的半径OB=10,水面宽AB=16.求截面圆心O到水面的间隔.四、综合题20、如图,⊙O是△ABC的外接圆,AC为直径,弦BD=BA,BE⊥DC交DC的延长线于点E.(1)求证:∠1=∠BAD;(2)求证:BE是⊙O的切线.21、如图,四边形ABCD内接于圆O,连结(lián jié)BD,∠BAD=105°,∠DBC=75°.(1)求证:BD=CD;(2)假设圆O的半径为3,求的长.22、如图1,2,3分别以△ABC的AB和AC为边向△ABC外作正三角形〔等边三角形〕、正四边形〔正方形〕、正五边形,BE和CD相交于点O.(1)在图1中,求证:△ABE≌△ADC.(2)由〔1〕证得△ABE≌△ADC,由此可推得在图1中∠BOC=120°,请你探究在图2中,∠BOC的度数,并说明理由或者写出证明过程.(3)填空:在上述〔1〕〔2〕的根底上可得在图3中∠BOC=________〔填写上度数〕.(4)由此推广到一般情形〔如图4〕,分别以△ABC的AB和AC为边向△ABC 外作正n边形,BE和CD仍相交于点O,猜测得∠BOC的度数为________〔用含n的式子(shì zi)表示〕.答案(dá àn)解析局部一、单项选择题【答案】D【考点】圆的认识,确定圆的条件,三角形的外接圆与外心,三角形的内切圆与内心【解析】【解答】A、能完全重合的弧才是等弧,故错误;B、不在同一直线上的三点确定一个圆,故错误;C、三角形的内心到三边的间隔相等,是三条角平分线的交点,故错误;D、三角形的外心是外接圆的圆心,到三顶点的间隔相等,故正确;应选D.【分析】确定圆的条件及三角形与其外心和内心之间的关系解得即可.【答案】C【考点】垂径定理,确定圆的条件,切线的性质,三角形的内切圆与内心【解析】【解答】解:不一共线的三点确定一个圆,所以①错误;垂直于弦的直径平分弦,所以②正确;三角形的内心到三条边的间隔相等,所以③正确;圆的切线垂直于经过切点的半径,所以④正确.应选C.【分析】根据确定圆的条件对①进展判断;根据垂径定理对②进展判断;根据三角形内心的性质对③进展判断;根据切线的性质对④进展判断.【答案】B【考点】勾股定理(dìnglǐ),垂径定理,翻折变换〔折叠问题〕【解析】【解答】延长CO交AB于E点,连接OB,∵CE⊥AB,∴E为AB的中点,∵OC=6,CD=2OD,∴CD=4,OD=2,OB=6,∴DE=〔2OC-CD)=〔6×2-4)=×8=4,∴OE=DE-OD=4-2=2,在Rt△OEB中,∵OE2+BE2=OB2∴∴AB=2BE=应选B.【分析】根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键。

圆的有关性质(共30道)—2023年中考数学真题(全国通用)(解析版)

圆的有关性质(共30道)—2023年中考数学真题(全国通用)(解析版)

圆的有关性质(30道)一、单选题 为O 的两条弦,的中点,O 的 【答案】D 【分析】连接,,OA OB AB ,圆周角定理得到290AOB C ∠=∠=︒,勾股定理求出AB ,三角形的中位线定理,即可求出DG 的长.【详解】解:连接,,OA OB AB ,∵O 的半径为2.45C ∠=︒,∴2,290OA OB AOB C ==∠=∠=︒,∴AB ∵D ,G 分别为,AC BC 的中点,∴DG 为ABC 的中位线,∴12DG AB ==故选D .【点睛】本题考查圆周角定理和三角形的中位线定理.熟练掌握相关定理,并灵活运用,是解题的关键.2.(2023·辽宁阜新·统考中考真题)如图,A ,B ,C 是O 上的三点,若9025AOC ACB ∠=︒∠=︒,,则BOC ∠的度数是( )A .20︒B .25︒C .40︒D .50︒【答案】C 【分析】先利用圆周角定理求出50AOB ∠=︒,然后利用角的和差关系进行计算,即可解答.【详解】解:∵25ACB ∠=︒,∴250AOB ACB ∠=∠=︒,∵=90AOC ∠︒,∴40BOC AOC AOB ∠=∠−∠=︒,故选:C .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.3.(2023·黑龙江哈尔滨·统考中考真题)如图,AB 是O 的切线,A 为切点,连接OA ﹐点C 在O 上,OC OA ⊥,连接BC 并延长,交O 于点D ,连接OD .若65B ∠=︒,则DOC ∠的度数为( )A .45︒B .50︒C .65︒D .75︒【答案】B 【分析】利用垂线的性质及切线的性质得到90OAB ∠=︒和=90AOC ∠︒,再利用四边形的内角和为360︒进而可求得65OCD ∠=︒,再利用等边对等角及三角形的内角和即可求解.【详解】解:OC OA ⊥Q ,90AOC ∴∠=︒,又AB 是O 的切线,OA AB ∴⊥,90OAB ︒∴∠=,又65B ∠=︒,360115OCB OAB AOC B ∴∠=︒−∠−∠−∠=︒,18065OCD OCB ∴∠=︒−∠=︒,又OC OD =,65ODC OCD ∴∠=∠=︒,180250DOC ODC ∴∠=︒−∠=︒,故选B .【点睛】本题考查了圆的切线的性质,四边形内角和是360︒,等腰三角形的性质及三角形的内角和,熟练掌握其基本知识是解题的关键. 是O 的一部分,,则O 的半径 A .13cmB .16cmC .17cmD .26cm【答案】A 【分析】首先利用垂径定理的推论得出OD AB ⊥,1122AC BC AB cm ===,再设O 的半径OA 为cm R ,则()8cmOC R =−.在Rt OAC 中根据勾股定理列出方程22212(8)R R =+−,求出R 即可. 【详解】解:AB 是O 的一部分,D 是AB 的中点,24cm AB =,OD AB ∴⊥,112cm 2AC BC AB ===. 设O 的半径OA 为cm R ,则(8)cm OC OD CD R =−=−.在Rt OAC 中,90OCA ∠=︒,222OA AC OC ∴=+,22212(8)R R ∴=+−,13R ∴=,即O 的半径OA 为13cm .故选:A .【点睛】本题考查了垂径定理、勾股定理的应用,设O 的半径OA 为cm R ,列出关于R 的方程是解题的关键. 在O 上,∠.若O 的 【答案】D 【分析】先利用圆周角定理求出AOC ∠的度数,然后利用扇形面积公式求解即可.【详解】解:∵40ABC ∠=︒,∴280AOC ABC ∠=∠=︒,又O 的半径为3,∴扇形AOC (阴影部分)的面积为28032360ππ⨯=.故选:D .【点睛】本题考查的是圆周角定理,扇形面积公式等,掌握“同弧所对的圆周角是它所对的圆心角的一半”是解题的关键.6.(2023·湖南娄底·统考中考真题)如图,正六边形ABCDEF 的外接圆O 的半径为2,过圆心O 的两条直线1l 、2l 的夹角为60︒,则图中的阴影部分的面积为( )A .433π−B .【答案】C【分析】如图,连接AO ,标注直线与圆的交点,由正六边形的性质可得:A ,O ,D 三点共线,COD △为等边三角形,证明扇形AOQ 与扇形COG 重合,可得COD COD S S S =−阴影扇形,从而可得答案.【详解】解:如图,连接AO ,标注直线与圆的交点,由正六边形的性质可得:A ,O ,D 三点共线,COD △为等边三角形,∴AOQ DOH ∠=∠,60COD GOH ∠=∠=︒,∴COG DOH AOQ ∠=∠=∠,∴扇形AOQ 与扇形COG 重合,∴COD COD S S S =−阴影扇形,∵COD △为等边三角形,2OC OD ==,过O 作OK CD ⊥于K ,∴60COD ∠=︒,1CK DK ==,OK∴260212236023COD COD S S S ππ⨯=−==⨯=阴影扇形故选C【点睛】本题考查的是正多边形与圆,扇形面积的计算,勾股定理的应用,熟记正六边形的性质是解本题的关键.内接于O ,O 的半径为 A .π【答案】C 【分析】根据圆内接四边形的性质得到=60B ∠︒,由圆周角定理得到120AOC ∠=︒,根据弧长的公式即可得到结论.【详解】解:四边形ABCD 内接于O ,120D ∠=︒,60B ∴∠=︒,2120AOC B ∴∠=∠=︒,AC ∴的长12032180ππ⨯==. 故选:C .【点睛】本题考查的是弧长的计算,圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.A .225πm 3B .2125πm 3【答案】B【分析】种草区域的面积等于大扇形面积减去小扇形面积,利用利用扇形的面积公式计算即可.【详解】解∶∵120AOB ∠=︒,15m OA =,10m OC =,∴种草区域的面积为2221201512010125(m )3603603πππ⋅⋅−=,故选:B . 【点睛】本题考查扇形的面积,解题的关键是记住扇形的面积公式:扇形面积2360n r π=. 如图,O 是ABC 的外接圆, 【答案】C【分析】先根据等腰三角形的性质以及三角形内角和定理求得180302120BOC ∠=︒−︒⨯=︒,再根据扇形的面积公式即可求解.【详解】解:∵OC OB =,OA =,40CAO ∠=︒,∴40OCA OAC ∠=∠=︒,OCB OBC ∠=∠,∵70ACB ∠=︒,∴704030OBC OCB ACB ACO ∠=∠=∠−∠=︒−︒=︒,∴180302120BOC ∠=︒−︒⨯=︒,∴22120116ππ4π36033S r ︒=⨯=⨯⨯=︒阴影,故选:C .【点睛】本题考查等腰三角形的性质、三角形内角和定理以及扇形的面积公式等知识,求出120BOC ∠=︒是解答的关键.10.(2023·山东泰安·统考中考真题)如图,AB 是O 的直径,D ,C 是O 上的点,115ADC ∠=︒,则BAC ∠的度数是( )A .25︒B .30︒C .35︒D .40︒【答案】A 【分析】根据圆内接四边形对角互补和直径所对圆周角等于90度求解即可.【详解】解:∵115ADC ∠=︒,∴65B ∠=︒,∵AB 是O 的直径,∴90ACB ∠=︒,∴180906525BAC ∠=︒−︒−︒︒=,故选:A .【点睛】本题考查圆的性质,涉及到圆内接四边形对角互补和直径所对圆周角等于90度,熟记知识点是关键.11.(2023·黑龙江牡丹江·统考中考真题)如图,A ,B ,C 为O 上的三个点,4AOB BOC ∠=∠,若60ACB ∠=︒,则BAC ∠的度数是( )A .20︒B .18︒C .15︒D .12︒【答案】C 【分析】由60ACB ∠=︒,可得2120AOB ACB ∠=∠=︒,结合4AOB BOC ∠=∠,可得1120304BOC ∠=⨯︒=︒,再利用圆周角定理可得答案.【详解】解:∵60ACB ∠=︒,∴2120AOB ACB ∠=∠=︒,∵4AOB BOC ∠=∠, ∴1120304BOC ∠=⨯︒=︒, ∴1152BAC BOC ∠=∠=︒,故选C .【点睛】本题考查的是圆周角定理的应用,熟记圆周角定理的含义是解本题的关键. 统考中考真题)如图,等圆1O 和2O 相交于两点,1O 经过2O 的圆心 A .2πB .43π 【答案】D【分析】先证明12ACO BCO ≌,再把阴影部分面积转换为扇形面积,最后代入扇形面积公式即可.【详解】如图,连接2O B ,1O B ,∵等圆1O 和2O 相交于A ,B 两点 ∴12O O AB ⊥,AC BC = ∵1O 和2O 是等圆 ∴11212O A O O O B O B === ∴12O O B 是等边三角形∴1260O O B ∠=︒∵1290ACO BCO ∠=∠=︒,AC BC =,21O A B O =∴12ACO BCO ≌ ∴121211*********ACO BCO BCO BCO BO O S S S S S S ππ=+=+===图形图形扇形.故选:D .【点睛】本题考查了相交弦定理,全等的判定及性质,扇形的面积公式,转化思想是解题的关键. 13.(2023·辽宁营口·统考中考真题)如图所示,AD 是O 的直径,弦BC 交AD 于点E ,连接AB AC ,,若30BAD ∠=︒,则ACB ∠的度数是( )A .50︒B .40︒C .70︒D .60︒【答案】D 【分析】如图所示,连接CD ,先由同弧所对的圆周角相等得到30BCD BAD ∠=∠=︒,再由直径所对的圆周角是直角得到=90ACD ∠︒,则60ACB ACD BCD =−=︒∠∠∠.【详解】解:如图所示,连接CD ,∵30BAD ∠=︒,∴30BCD BAD ∠=∠=︒,∵AD 是O 的直径,∴=90ACD ∠︒,∴60ACB ACD BCD =−=︒∠∠∠,故选D .【点睛】本题主要考查了同弧所对的圆周角相等,直径所对的圆周角是直角,正确求出ACD BCD ∠,∠的度数是解题的关键. 统考中考真题)如图,在ABC 中,ACA .3533π−B .【答案】C 【分析】连接OD ,BD ,作OH CD ⊥交CD 于点H ,首先根据勾股定理求出BC 的长度,然后利用解直角三角形求出BD 、CD 的长度,进而得到OBD 是等边三角形,60BOD ∠=︒,然后根据30︒角直角三角形的性质求出OH 的长度,最后根据ACB COD ODB S S S S =−−形阴影扇进行计算即可.【详解】解:如图所示,连接OD ,BD ,作OH CD ⊥交CD 于点H∵在ABC 中,90ABC ∠=︒,30ACB ∠=︒,4AB =,∴tan tan 30AB AB BC ACB ===∠︒, ∵点O 为BC 的中点,以O 为圆心,OB 长为半径作半圆,∴BC 是半圆的直径,∴90CDB ∠=︒,∵30ACB ∠=︒,∴12BD BC ==cos 6CD BC BCD =⋅∠==,又∵12OB OC OD BC ==== ∴OB OD BD ==,∴OBD 是等边三角形,∴60BOD ∠=︒,∵OH CD ⊥,30OCH ∠=︒,∴12OH OC ==∴(2601146222360ACB COD ODB S S S S ππ∆∆⨯=−−=⨯⨯−=形阴影扇.故选:C . 【点睛】本题考查了30︒角直角三角形的性质,解直角三角形,等边三角形的性质和判定,扇形面积,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键. 15.(2023·甘肃兰州·统考中考真题)我国古代天文学确定方向的方法中蕴藏了平行线的作图法.如《淮南子天文训》中记载:“正朝夕:先树一表东方;操一表却去前表十步,以参望日始出北廉.日直入,又树一表于东方,因西方之表,以参望日方入北康.则定东方两表之中与西方之表,则东西也.”如图,用几何语言叙述作图方法:已知直线a 和直线外一定点O ,过点O 作直线与a 平行.(1)以O 为圆心,单位长为半径作圆,交直线a 于点M ,N ;(2)分别在MO 的延长线及ON 上取点A ,B ,使OA OB =;(3)连接AB ,取其中点C ,过O ,C 两点确定直线b ,则直线a b ∥.按以上作图顺序,若35MNO ∠=︒,则AOC ∠=( )A .35︒B .30︒C .25︒D .20︒【答案】A 【分析】证明35NMO MNO ∠=∠=︒,可得23570AOB ∠=⨯︒=︒,结合OA OB =,C 为AB 的中点,可得35AOC BOC ∠=∠=︒.【详解】解:∵35MNO ∠=︒,MO NO =,∴35NMO MNO ∠=∠=︒,∴23570AOB ∠=⨯︒=︒,∵OA OB =,C 为AB 的中点,∴35AOC BOC ∠=∠=︒,故选A .【点睛】本题考查的是圆的基本性质,等腰三角形的性质,平行线的判定,三角形的外角的性质,熟记等腰三角形的性质是解本题的关键. 16.(2023·内蒙古赤峰·统考中考真题)如图,圆内接四边形ABCD 中,105BCD ∠=︒,连接OB ,OC ,OD ,BD ,2BOC COD ∠=∠.则CBD ∠的度数是( )A .25︒B .30︒C .35︒D .40︒【答案】A 【分析】根据圆内接四边形对角互补得出18010575A ∠=︒−︒=︒,根据圆周角定理得出2150BOD A ∠=∠=︒,根据已知条件得出1503COD BOD ∠=∠=︒,进而根据圆周角定理即可求解.【详解】解:∵圆内接四边形ABCD 中,105BCD ∠=︒,∴18010575A ∠=︒−︒=︒∴2150BOD A ∠=∠=︒∵2BOC COD ∠=∠∴1503COD BOD ∠=∠=︒,∵CD CD =∴11502522CBD COD ∠=∠=⨯︒=︒,故选:A .【点睛】本题考查了圆内接四边形对角互补,圆周角定理,熟练掌握以上知识是解题的关键.17.(2023·内蒙古·统考中考真题)如图,O 是锐角三角形ABC 的外接圆,,,OD AB OE BC OF AC ⊥⊥⊥,垂足分别为,,D E F ,连接,,DE EF FD .若 6.5,DE DF ABC +=△的周长为21,则EF 的长为( )A .8B .4C .3.5D .3【答案】B 【分析】根据三角形外接圆的性质得出点D 、E 、F 分别是AB BC AC 、、的中点,再由中位线的性质及三角形的周长求解即可.【详解】解:∵O 是锐角三角形ABC 的外接圆,,,OD AB OE BC OF AC ⊥⊥⊥,∴点D 、E 、F 分别是AB BC AC 、、的中点, ∴111,,222DF BC DE AC EF AB ===,∵ 6.5,DE DF ABC +=△的周长为21,∴21CB CA AB ++=即22221DF DE EF ++=,∴4EF =,故选:B .【点睛】题目主要考查三角形外接圆的性质及中位线的性质,理解题意,熟练掌握三角形外接圆的性质是解题关键. 18.(2023·湖南·统考中考真题)如图,圆锥底面圆的半径为4,则这个圆锥的侧面展开图中AA '的长为( )A .4πB .6πC .8πD .16π【答案】C 【分析】根据底面周长等于AA '的长,即可求解.【详解】解:依题意,AA '的长2π48π=⨯=,故选:C .【点睛】本题考查了圆锥的侧面展开图的弧长,熟练掌握圆锥底面周长等于AA '的长是解题的关键. 19.(2023·吉林·统考中考真题)如图,AB ,AC 是O 的弦,OB ,OC 是O 的半径,点P 为OB 上任意一点(点P 不与点B 重合),连接CP .若70BAC ∠=︒,则BPC ∠的度数可能是( )A .70︒B .105︒C .125︒D .155︒【答案】D 【分析】根据圆周角定理得出2140BOC BAC ∠=∠=︒,进而根据三角形的外角的性质即可求解.【详解】解:∵BC BC =,70BAC ∠=︒,∴2140BOC BAC ∠=∠=︒,∵140BPC BOC PCO ∠=∠+∠≥︒,∴BPC ∠的度数可能是155︒故选:D .【点睛】本题考查了圆周角定理,三角形的外角的性质,熟练掌握圆周角定理是解题的关键.A .26π+B .【答案】A 【分析】由于AD l 是定值,只需求解AC CD +的最小值即可,作点D 关于OB 对称点D ¢,连接AD '、CD '、OD ',则AC CD +最小值为AD '的长度,即阴影部分周长的最小最小值为AD AD l '+.利用角平分线的定义可求得90AOD '∠=︒,进而利用勾股定理和弧长公式求得AD '和AD l 即可.【详解】解:如图,作点D 关于OB 对称点D ¢,连接AD '、CD '、OD ',则CD CD '=,OD OD '=,DOB BOD '∠=∠,∴AC CD AC CD AD ''+=+≥,当A 、C 、D ¢共线时取等号,此时,AC CD +最小,即阴影部分周长的最小,最小值为AD AD l '+.∵OD 平分AOB ∠,60AOB ∠=︒, ∴1302AOD DOB AOB ∠=∠=∠=︒, ∴90AOD '∠=︒,在Rt OAD '中,1OA OD '==,∴AD '== 又30π1π1806AD l ⨯==,∴阴影部分周长的最小值为π6AD AD l '+=,故选:A . 【点睛】本题考查弧长公式、勾股定理、角平分线的定义、轴对称性质,能利用轴对称性质求解最短路径问题是解答的关键.二、填空题 21.(2023·江苏·统考中考真题)如图,AD 是O 的直径,ABC 是O 的内接三角形.若DAC ABC ∠=∠,4AC =,则O 的直径AD = .【答案】【分析】连接CD ,OC ,根据在同圆中直径所对的圆周角是90︒可得=90ACD ∠︒,根据圆周角定理可得COD COA ∠=∠,根据圆心角,弦,弧之间的关系可得AC CD =,根据勾股定理即可求解.【详解】解:连接CD ,OC ,如图:∵AD 是O 的直径,∴=90ACD ∠︒,∵DAC ABC ∠=∠,∴COD COA ∠=∠,∴AC CD =,又∵4AC =,∴4CD =,在Rt ACD △中,AD ,故答案为:【点睛】本题考查了在同圆中直径所对的圆周角是90︒,圆周角定理,圆心角,弦,弧之间的关系,勾股定理,熟练掌握以上知识是解题的关键. 22.(2023·江苏南通·统考中考真题)如图,AB 是O 的直径,点C ,D 在O 上.若66DAB ∠=︒, 则ACD ∠= 度.【答案】24【分析】连接BC ,根据直径所对的圆周角是直角,同弧所对的圆周角相等,可得90ACB ∠=︒,66DCB DAB ∠=∠=︒,进而即可求解.【详解】解:如图所示,连接BC ,∵AB 是直径,∴90ACB ∠=︒,∵BD BD =,66DAB ∠=︒,∴66DCB DAB ∠=∠=︒,∴906624ACD ACB DCB ∠=∠−∠=︒−︒=︒,故答案为:24.【点睛】本题考查了直径所对的圆周角是直角,同弧所对的圆周角相等,熟练掌握圆周角定理的推论是解题的关键. 23.(2023·山东济南·统考中考真题)如图,正五边形ABCDE 的边长为2,以A 为圆心,以AB 为半径作弧BE ,则阴影部分的面积为 (结果保留π).【答案】65π【分析】根据正多边形内角和公式求出正五边形的内角和,再求出A ∠的度数,利用扇形面积公式计算即可.【详解】解:正五边形的内角和()52180540=−⨯︒=︒,5401085A ︒∴∠==︒, 2108263605ABE S ππ∴==扇形,故答案为:65π.【点睛】本题考查了扇形面积和正多边形内角和的计算,熟练掌握扇形面积公式和正多边形内角和公式是解答本题的关键. 24.(2023·宁夏·统考中考真题)如图,四边形ABCD 内接于O ,延长AD 至点E ,已知140AOC ∠=︒,那么CDE ∠= ︒.【答案】70【分析】根据圆周角定理得到70B ∠=︒,再根据圆内接四边形性质和平角的定义即可得解.【详解】解:∵140AOC ∠=︒,∴7201B AOC ∠∠=︒=,∵四边形ABCD 内接于O ,∴180B ADC ∠+∠=︒,∵180CDE ADC ∠+∠=︒,∴70CDE B ∠=∠=︒,故答案为:70.【点睛】此题考查了圆内接四边形的性质、圆周角定理,熟记圆内接四边形的性质、圆周角定理是解题的关键.25.(2023·湖南·统考中考真题)如图,点A ,B ,C 在半径为2的O 上,60ACB ∠=︒,OD AB ⊥,垂足为E ,交O 于点D ,连接OA ,则OE 的长度为 .【答案】1【分析】连接OB ,利用圆周角定理及垂径定理易得60AOD ∠=︒,则30OAE ∠=︒,结合已知条件,利用直角三角形中30︒角对的直角边等于斜边的一半即可求得答案.【详解】解:如图,连接OB ,∵60ACB ∠=︒,∴2120AOB ACB ∠=∠=︒,∵OD AB ⊥,∴AD BD =,90OEA ∠=︒, ∴1602AOD BOD AOB ∠=∠=∠=︒,∴906030OAE ∠=︒−︒=︒, ∴112122OE OA ==⨯=,故答案为:1.【点睛】本题考查圆与直角三角形性质的综合应用,结合已知条件求得60AOD ∠=︒是解题的关键. 26.(2023·江苏徐州·统考中考真题)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥母线l =6,扇形的圆心角120θ=°,则该圆锥的底面圆的半径r 长为 .【答案】2【分析】结合题意,根据弧长公式,可求得圆锥的底面圆周长.再根据圆的周长的公式即可求得底面圆的半径长.【详解】∵母线l 长为6,扇形的圆心角120θ=°,∴圆锥的底面圆周长12064180ππ⨯==,∴圆锥的底面圆半径422r ππ==.故答案为:2. 【点睛】本题考查圆锥的侧面展开图的相关计算,弧长公式等知识.掌握圆锥侧面展开图的弧长等于圆锥底面圆的周长是求解本题的关键. 27.(2023·山东东营·统考中考真题)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”.用现在的几何语言表达即:如图,CD 为O 的直径,弦AB CD ⊥,垂足为点E ,1CE =寸,10AB =寸,则直径CD 的长度是 寸.【答案】26【分析】连接OA 构成直角三角形,先根据垂径定理,由DE 垂直AB 得到点E 为AB 的中点,由6AB =可求出AE 的长,再设出圆的半径OA 为x ,表示出OE ,根据勾股定理建立关于x 的方程,求解方程可得2x 的值,即为圆的直径.【详解】解:连接OA ,AB CD ⊥,且10AB =寸,5AE BE ∴==寸,设圆O 的半径OA 的长为x ,则OC OD x ==,1CE =Q ,1OE x ∴=−,在直角三角形AOE 中,根据勾股定理得:222(1)5x x −−=,化简得:222125x x x −+−=,即226x =,26CD ∴=(寸).故答案为:26.【点睛】本题考查了垂径定理和勾股定理,解题的关键是正确作出辅助线构造直角三角形. 28.(2023·内蒙古·统考中考真题)如图,正方形ABCD 的边长为2,对角线,AC BD相交于点O ,以点B 为圆心,对角线BD 的长为半径画弧,交BC 的延长线于点E ,则图中阴影部分的面积为 .【答案】π【分析】根据正方形的性质得出阴影部分的面积为扇形BED 的面积,然后由勾股定理得出BD =再由扇形的面积公式求解即可.【详解】解:正方形ABCD ,∴,,AO CO BO DO AD CD ===,45DBE ∠=︒,∴(SSS)AOD COB ≌,∵正方形ABCD 的边长为2,∴BD ==∴阴影部分的面积为扇形BED 的面积,即(245360ππ⨯⨯=,故答案为:π. 【点睛】题目主要考查正方形的性质及扇形的面积公式,理解题意,将阴影部分面积进行转化是解题关键. 29.(2023·吉林·统考中考真题)如图①,A ,B 表示某游乐场摩天轮上的两个轿厢.图②是其示意图,点O 是圆心,半径r 为15m ,点A ,B 是圆上的两点,圆心角120AOB ∠=︒,则AB 的长为 m .(结果保留π)【答案】10π 【分析】利用弧长公式π180n r l =直接计算即可.【详解】∵半径15m OA =,圆心角120AOB ∠=︒,∴AB l 120π1510π180⨯⨯==,故答案为:10π. 【点睛】本题考查了弧长计算,熟练掌握弧长公式π180n r l =,并规范计算是解题的关键. 30.(2023·广东深圳·统考中考真题)如图,在O 中,AB 为直径,C 为圆上一点,BAC ∠的角平分线与O 交于点D ,若20ADC ∠=︒,则BAD ∠= °.【答案】35【分析】由题意易得90ACB ∠=︒,20ADC ABC ∠=∠=︒,则有70BAC ∠=︒,然后问题可求解.【详解】解:∵AB 是O 的直径,∴90ACB ∠=︒,∵AC AC =,20ADC ∠=︒,∴20ADC ABC ∠=∠=︒,∴70BAC ∠=︒,∵AD 平分BAC ∠,∴1352BAD BAC ∠∠==︒;故答案为35.【点睛】本题主要考查圆周角的性质,熟练掌握直径所对圆周角为直角是解题的关键.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年中考数学模拟试题汇编 圆有关的性质
一、选择题
1、(2013江苏东台实中)如右图,⊙O 的半径OA 等于5,半径OC ⊥AB 于点D ,若OD =3,则弦AB 的长为
( )
A 、10
B 、8
C 、6
D 、4
答案:B
2、如图,⊙O 的弦AB =8,M 是AB 的中点,且OM =3,则⊙O 的半径等于
( )
A .8
B .4
C .10
D .5 答案:D
3、(2013江苏扬州弘扬中学二模)若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是( )
A.点A 在圆外
B. 点A 在圆上
C. 点A 在圆内
D.不能确定 答案:C
4、如图,已知⊙O 是正方形ABCD 的外接圆,点E 是AD 上任意 一点,则∠BEC 的度数为 ( ) A. 30° B. 45°
答案:B
5、(2013山西中考模拟六) 如图,AB 是⊙O 的直径,AB =4,AC 是弦,AC =,∠AOC 为( )
A .120° B.130
C .140° D.150°
答案:A 6、(2013温州市一模)如图,⊙O 的半径为5,若OP =3,,则经过点P 的弦长可能是 ( )
A .3
B .6
C .9
D .12
答案:C
O P
(第5题)
7、(2013·湖州市中考模拟试卷1)如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C=70°,现给出以下四个结论:
① ∠A=45°; ②AC=AB ;
③ ; ④CE·AB=2BD 2
其中正确结论的个数为 ( )
A .1个
B .2个
C .3个
D .4个
答案:B 8、(2013·湖州市中考模拟试卷7)如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于C ,若25A =∠.则D ∠等于( )
A .
20 B .
30 C .
40 D .
50 答案:C
9、(2013·湖州市中考模拟试卷8)如右图,已知圆的半径是5,弦AB 的长是6,则弦AB 的弦心距是( )
A .3
B .4
C .5
D .8
答案:B
10、(2013·湖州市中考模拟试卷10)如图,AB 是⊙O 的直径,CD 为弦,AB CD ⊥于E ,则下列结论中不.成立的是( ) A.∠A ﹦∠D B.CE ﹦DE C.∠ACB ﹦90°
D .C
E ﹦BD
︵ ︵ AE =
答案:D
11、(2013年河北四摸)如图,半径为10的⊙O 中,弦AB 的长为16,则这条弦的弦心距为( ) (A )6 (B )8 (C )10
(D )12
答案:A
二、填空题 1、(2013江苏东台实中)已知⊙O 的半径为6cm ,弦AB 的长为6cm ,则弦AB 所对的圆周角的度数是 _____. 答案:30°或150° 2、(2013江苏东台实中)如第18题图,已知过D 、A 、C 三点的圆的圆心为E ,过B 、E 、F 三点的圆的圆心为D ,如果∠A =63 º,那么∠B = º. 答案:18°
3、(2013江苏射阴特庸中学)如图,AB 为⊙O 的直径,PD 切
⊙O 于点C ,交AB 的延长线于D ,且CO =CD , 则∠PCA = °
.
答案:67.5
4、(2013·曲阜市实验中学中考模拟)如图,AB 为⊙O 的直径,弦CD ⊥AB ,E 为BC 上一点,若∠CEA=28,则∠ABD=
°
.
答案: 28° 5、(2013·湖州市中考模拟试卷7)一条弦把圆分成2:3两部分,那么这条弦所对的圆周角的度数为
__________.
(第4题)
答案: 72°或108°
6、(2013·湖州市中考模拟试卷8)如图,点A 、B 、C 在圆O 上,且040BAC ∠=,则
BOC ∠= .
答案:080
7、 (2013年河北二摸)如图,⊙O 的半径OA =5cm ,弦AB =8cm ,点P 为弦AB 上一动点,则
点P 到圆心O 的最短距离是 cm . 答案:3
8、(2013年上海市)如果一边长为20cm 的等边三角形硬纸板刚好能不受损地从用铁丝围成
的圆形铁圈中穿过,那么铁圈直径的最小值为 ▲ cm (铁丝粗细忽略不计). 答案
: 三、解答题
1、(2013安徽芜湖一模)如图,在Rt ABC △中,90C ∠=,BE 平分ABC ∠交AC 于点
E ,点D 在AB 边上且DE BE ⊥.
(1)判断直线AC 与DBE △外接圆的位置关系,并说明理由;
(2
)若6AD AE ==,BC 的长.
解:(1)直线AC 与DBE △外接圆相切.
理由:∵D E BE ⊥, ∴ BD 为DBE △外接圆的直径, 取BD 的中点O (即DBE △外接圆的圆心),连结OE , ∴OE OB =,∴OEB OBE ∠=∠,
∵BE 平分ABC ∠,∴ OBE CBE ∠=∠,∴ OEB CBE ∠=∠, ∵90CBE CEB ∠+∠=°,∴ 90OEB CEB ∠+∠=°,
C
(第1题) B
D A
E
第17题图
即OE AC ⊥,
∴直线AC 与DBE △外接圆相切. ………………………………………………(6分) (2)设OD OE OB x ===,
∵OE AC ⊥
,∴222(6)x x +-=, ∴3x =, ∴12AB AD OD OB =++=,
∵OE AC ⊥,∴AOE ABC △∽△, ∴
AO OE AB BC =
,即93
12BC
=,] ∴4BC =. ……………………………………………………………………(12分) 2、(2013吉林镇赉县一模)如图,BC 是⊙O 的直径,AD ⊥CD ,垂足为D ,AC 平分∠BCD ,AC =3,
CD =1,求⊙O 的半径.
答案:
3、(2013吉林镇赉县一模)已知A 、B 、C 是半径为2的圆O 上的三个点,其中点A 是弧BC 的中点,连接AB 、AC ,点D 、E 分别在弦AB 、AC 上,且满足AD =CE . (1)求证:OD =OE ;
(2)连接BC ,当BC =22时,求∠DOE 的度数. 答案:
D
A 20题图
B
4、(2013江苏射阴特庸中学)如图,AB 是⊙O 的直径,点A 、
C 、
D 在⊙O 上,过D 作PF ∥AC 交⊙O 于F 、交AB 于
E ,
且∠BPF =∠ADC .
(1)判断直线BP 和⊙O 的位置关系,并说明你的理由; (2)当⊙O 的半径为5,AC =2,BE =1时,求BP 的长. 答案:
(1)直线BP 和⊙O 相切. ……1分
理由:连接BC,∵AB 是⊙O 直径,∴∠ACB=90°. ......2分 ∵PF ∥AC,∴BC ⊥PF, 则∠PBH+∠BPF=90°. ......3分 ∵∠BPF=∠ADC,∠ADC=∠ABC,得AB ⊥BP, (4)
所以直线BP 和⊙O 相切.
(2)由已知,得∠ACB=90°,∵AC=2,AB=25,∴BC=4. ……6分 ∵∠BPF=∠ADC,∠ADC=∠ABC,∴∠BPF=∠ABC,
由(1),得∠ABP=∠ACB=90°,∴△ACB ∽△EBP, ……8分
∴AC BE =BC
BP
,解得BP=2.即BP 的长为2. ……10分 5、(2013山西中考模拟六) 如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,连接CD ,若
⊙O 的半径3
2
r =,2AC =,请你求出cos B 的值.
答案:∵AD 是⊙O 的直径,3
2
r =
,∴∠ACD =90°,AD =3, ∵AC =2,∴CD ==cos D ∵∠B 和∠D 是同弧所对的圆周角,∴∠B =∠D ,
∴cos cos B D ==
6、(2013温州市一模)如图,AB 是⊙O 的直径,BC 是⊙O 的切线, D 是⊙O 上一点,且AD ∥OC .
(1)求证:△ADB ∽△OBC .
P B
A
A
B
P 5题图
(2)若AB=6,BC=4.求AD的长度.(结果保留根号)答案:证明:(1)∵AB是⊙O的直径,BC是⊙O的切线,∴∠D=∠OBC=90°
∵AD∥OC[中国^
∴∠A=∠COB
∴△ADB∽△OBC
(2)∵AB=6, ∴OB=3,
∵BC=4,[]
5
OC
∴==
∵△ADB∽△OBC

6
,,
35 AD AB AD
OB OC
=∴=
18
5
AD
∴=。

相关文档
最新文档