大学物理化学3-化学平衡课后习题及答案

合集下载

物理化学第三章课后答案完整版

物理化学第三章课后答案完整版

物理化学第三章课后答案完整版第三章热⼒学第⼆定律3.1 卡诺热机在的⾼温热源和的低温热源间⼯作。

求(1)热机效率;(2)当向环境作功时,系统从⾼温热源吸收的热及向低温热源放出的热。

解:卡诺热机的效率为根据定义3.2 卡诺热机在的⾼温热源和的低温热源间⼯作,求:(1)热机效率;(2)当从⾼温热源吸热时,系统对环境作的功及向低温热源放出的热解:(1) 由卡诺循环的热机效率得出(2)3.3 卡诺热机在的⾼温热源和的低温热源间⼯作,求(1)热机效率;(2)当向低温热源放热时,系统从⾼温热源吸热及对环境所作的功。

解:(1)(2)3.4 试说明:在⾼温热源和低温热源间⼯作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功r W 等于不可逆热机作出的功-W 。

假设不可逆热机的热机效率⼤于卡诺热机效率,其结果必然是有热量从低温热源流向⾼温热源,⽽违反势热⼒学第⼆定律的克劳修斯说法。

证:(反证法)设 r ir ηη>不可逆热机从⾼温热源吸热,向低温热源放热,对环境作功则逆向卡诺热机从环境得功从低温热源吸热向⾼温热源放热则若使逆向卡诺热机向⾼温热源放出的热不可逆热机从⾼温热源吸收的热相等,即总的结果是:得⾃单⼀低温热源的热,变成了环境作功,违背了热⼒学第⼆定律的开尔⽂说法,同样也就违背了克劳修斯说法。

3.5 ⾼温热源温度,低温热源温度,今有120KJ的热直接从⾼温热源传给低温热源,求此过程。

解:将热源看作⽆限⼤,因此,传热过程对热源来说是可逆过程3.6 不同的热机中作于的⾼温热源及的低温热源之间。

求下列三种情况下,当热机从⾼温热源吸热时,两热源的总熵变。

(1)可逆热机效率。

(2)不可逆热机效率。

(3)不可逆热机效率。

解:设热机向低温热源放热,根据热机效率的定义因此,上⾯三种过程的总熵变分别为。

3.7 已知⽔的⽐定压热容。

今有1 kg,10℃的⽔经下列三种不同过程加热成100 ℃的⽔,求过程的。

(1)系统与100℃的热源接触。

大学物理化学3-化学平衡课后习题及答案

大学物理化学3-化学平衡课后习题及答案

化学平衡课后习题一、是非题下列各题中的叙述是否正确?正确的在题后括号内画“√”,错误的画“⨯”。

1. 某一反应在定温、定压且无非体积功的条件下,当该反应的∆r G m <0时,则该反应能正向进行。

( )2. 如果某一化学反应的∆r H < 0,该反应的K 随着温度升高而减小。

( )3. 对理想气体反应:0 = ∑B νB B ,在定温定压下当∑B νB >0时,随着惰性气体的加入而平衡向左移动。

( )4. 对理想气体反应:0 = ∑B νB B ,在定温定压下当∑B νB >0时,随着惰性气体的加入而平衡向左移动。

(9. 如果某一化学反应的∆r H 不随温度变化,那么其∆r S 也不随温度变化,但是其∆r G 却与温度有关。

( )5. 对于真实气体混合物的反应,该反应的标准平衡常数K 仅仅是温度的函数。

( )二、选择题选择正确答案的编号,填在各题后的括号内:1. PCl 5的分解反应PCl 5(g) == PCl 3(g) + Cl 2(g) 在473 K 达到平衡时PCl 5(g) 有48.5%分解,在573 K 达到平衡时,有97 %分解,则此反应是( )(1)吸热反应; (2)放热反应;(3)反应的标准摩尔焓变为零的反应;(4)在这两个温度下标准平衡常数相等的反应。

2. 设反应 a A(g ) == y Y(g) + z Z(g),在101.325 kPa 、300 K 下,A 的转化率是600 K 的2倍,而且在300 K 下系统压力为101 325 Pa 的转化率是2×101 325 Pa 的2 倍,故可推断该反应 ( )(1)标准平衡常数与温度,压力成反比;(2)是一个体积增加的吸热反应 ;(3)是一个体积增加的放热反应;(4)标准平衡常数与温度成正比,与压力成反比。

3.理想气体反应N 2O 5(g )== N 2O 4(g )+1/2O 2(g )的∆r H 为41.84kJ ⋅mol -1,∑=0)(,B C mp B ν。

物理化学核心教程(第二版)思考题习题答案—第5章 化学平衡

物理化学核心教程(第二版)思考题习题答案—第5章 化学平衡

第五章 化学平衡一.基本要求1.掌握化学反应等温式的各种形式,并会用来判断反应的方向和限度。

2.了解标准平衡常数的定义,掌握标准平衡常数的各种表示形式和计算方法。

3.掌握标准平衡常数K 与r m G ∆在数值上的联系,熟练用热力学方法计算r m G ∆,从而获得标准平衡常数的数值。

4.了解标准摩尔生成Gibbs 自由能f m G ∆的定义和它的应用。

5.掌握温度对化学平衡的影响,记住van ’t Hoff 公式及其应用。

6.了解压力和惰性气体对化学平衡的影响。

二.把握学习要点的建议把本章放在多组分系统之后的目的,就是要利用多组分系统中介绍的化学势的概念和各种表示方式,来导出化学反应等温式,从而用来判断化学反应的方向与限度。

本章又用到了反应进度的概念,不过其值处在0 1 mol -的区间之内。

因为在利用化学势的表示式来计算反应的Gibbs 自由能的变化值时,是将化学势看作为一个定值,也就是在有限的反应系统中,化学进度为d ξ,如果在一个很大的系统中, 1 mol ξ=。

严格讲,标准平衡常数应该用绝对活度来定义,由于本教材没有介绍绝对活度的概念,所以利用标准态化学势来对标准平衡常数下定义,其含义是一样的。

从标准平衡常数的定义式可知,标准平衡常数与标准化学势一样,都仅是温度的函数,因为压力已指定为标准压力。

对于液相反应系统,标准平衡常数有其相应的形式。

对于复相化学反应,因为纯的凝聚态物质本身就作为标准态,它的化学势就是标准态化学势,已经归入r m G ∆中,所以在计算标准平衡常数时,只与气体物质的压力有关。

学习化学平衡的主要目的是如何判断反应的方向和限度,知道如何计算平衡常数,了解温度、压力和惰性气体对平衡的影响,能找到一个经济合理的反应条件,为科研和工业生产服务。

而不要过多地去考虑各种浓度表示式和各种平衡常数表示式之间的换算,否则会把自己搞糊涂了,反而没抓住主要内容。

由于标准平衡常数与r m G ∆在数值上有联系,r m ln p G RT K ∆=-,所以有了r m G ∆的值,就可以计算p K 的值。

物理化学《相平衡》习题及参考答案

物理化学《相平衡》习题及参考答案

物理化学《相平衡》习题及答案2-3 选择题1、水煤气发生炉中共有)()()()(22g CO g CO g O H s C 、、、及)(2g H 5种物质,它们能发生下述反应:)(2)()(2g CO s C g CO ⇒+,)()()()(222g O H g CO g H g CO +⇒+,)()()()(22g CO g H s C g O H +⇒+,则此体系的组分数、自由度为( C )A.5、3B.4、3C.3、3D.2、22、物质A 与B 可形成低共沸混合物E ,已知纯A 的沸点小于纯B 的沸点,若将任意比例的A+B 混合在一个精馏塔中精馏,则塔顶的馏出物是( C )A.纯AB.纯BC.低共沸混合物D.都有可能3、克拉贝隆-克劳修斯方程适用于( C )A.)()(22g I s I ⇔B.)()(金刚石石墨C C ⇔C.),,(),,(222112p T g I p T g I ⇔D.)()(22l I s I ⇔4、将一透明容器抽成真空,放入固体碘,当温度为50℃时,可见到明显的碘升华现象,有紫色气体出现。

若温度维持不变,向容器中充入氧气使之压力达到100kPa 时,将看到容器中( C )A.紫色变深B.紫色变浅C.颜色不变D.有液态碘出现5、在一定温度下,水在其饱和蒸汽压下汽化,下列各函数增量中那一项为零( D )A.U ∆B.H ∆C.S ∆D.G ∆6、在一定外压下,多组分体系的沸点( D )A.有恒定值B.随组分而变化C.随浓度而变化D.随组分及浓度而变化7、压力升高时,单组份体系的沸点将( A )A.升高B.降低C.不变D.不一定8、进行水蒸气蒸馏的必要条件是( A )A.两种液体互不相容B.两种液体蒸汽压都较大C.外压小于101kPaD.两种液体的沸点相近9、液体A 与液体B 不相混溶。

在一定温度T ,当有B 存在时,液体A 的蒸汽压为( B )A.与体系中A 的摩尔分数成比例B.等于T 温度下纯A 的蒸汽压C.大于T 温度下纯A 的蒸汽压D.与T 温度下纯B 的蒸汽压之和等于体系的总压力10、氢气和石墨粉在没有催化剂时,在一定温度下不发生化学反应,体系的组分数是( A )A.2B.3C.4D.511、上述体系中,有催化剂存在时可生成n 种碳氢化合物,平衡是组分数为( A )A.2B.4C.n+2D.n12、相率适用于( D )A.封闭体系B.敞开体系C.非平衡敞开体系D.以达到平衡的多向敞开体系13、某物质在某溶剂中的溶解度( C )A.仅是温度的函数B.仅是压力的函数C.同是温度和压力的函数D.除了温度压力以外,还是其他因素的函数14、在实验室的敞口容器中装有单组份液体,对其不断加热,则看到( A )A.沸腾现象B.三项共存现象C.临界现象D.生化现象15、相图与相率之间的关系是( B )A.相图由相率推导得出B.相图由实验结果绘制得出,不能违背相率C.相图决定相率D.相图由实验结果绘制得出,与相率无关16、下述说法中错误的是( C )A.通过相图可确定一定条件下体系由几相构成B.相图可表示出平衡时每一相的组成如何C.相图可表示达到相平衡所需时间的长短D.通过杠杆规则可在相图上计算各相的相对含量17、三组分体系的最大自由度及平衡共存的最大相数为( D )A.3;3B.3;4C.4;4D.4;518、定容条件下)(4s HS NH 的分解压力为1θp 时,反应)()()(234g S H g NH s HS NH +⇔的标准平衡常数是( C )A.1B.1/2C.1/4D.1/819、水的三相点附近其蒸发热为44.821-⋅mol kJ ,熔化热为5.991-⋅mol kJ ,则在三相点附近冰的升华热约为( B )A.38.831-⋅mol kJB.50.811-⋅mol kJC.-38.831-⋅mol kJD.-50.811-⋅mol kJ20、在相图上,当物系点处于哪一点时,只存在一个相( C )A.恒沸点B.熔点C.临界点D.最低共沸点21、具有最低恒沸温度的某两组份体系,在其T-x 相图的最低点有( A )A.l g x x f ==;0B.l g x x f ==;1C.l g x x f >=;0D.l g x x f >=;122、80℃时纯苯的蒸汽压为0.991θp ,纯甲苯的蒸汽压为0.382θp ,若有苯-甲苯气、液平衡混合物在80℃时气相中苯的摩尔分数为30.0=苯y 则液相组成苯x 接近于( D )A.0.85B.0.65C.0.35 D0.1423、体系处于标准状态时,能与水蒸气共存的盐可能是: CA. Na 2CO 3B. Na 2CO 3 Na 2CO 3•H 2O Na 2CO 3•7H 2OC. Na 2CO 3 Na 2CO 3•H 2OD. 以上全否24.一个水溶液共有S 种溶质,相互之间无化学反应。

物理化学第四章化学平衡练习题及答案

物理化学第四章化学平衡练习题及答案

第四章化学平衡练习题一、判断与问答题:1・反应的吉布斯函数变就是反应产物与反应物之间的吉布斯函数的差值。

2・在恒定的温度和压力条件下,某化学反应的?「Gm就是在一定量的系统中进行1mol的化学反应时产物与反应物之间的吉布斯函数的差值。

3・因为一RTInK,所以是平衡状态时的吉布斯函数变化。

4•是反应进度的函数。

5 •在等温等压条件下,?rG m> 0的反应一定不能进行。

6・?Gm的大小表示了反应系统处于该反应进度匚时反应的趋势。

7・任何一个化学反应都可以用来判断其反应进行的方向。

8・在等温、等压、W* = 0的条件下,系统总是向着吉布斯函数减小的方向进行。

若某化学反应在给定条件下?GvO,则反应物将完全变成产物,反应将进行到底。

9・在等温、等压不作非体积功的条件下,反应的? rG m< 0时,若值越小,自发进行反应的趋势也越强,反应进行得越快。

10・某化学反应的?「Gm若大于零,则K 一定小于1。

11・理想气体反应A + B = 2C,当p A= p B= pc时,的大小就决定了反应进行方向。

12 •标准平衡常数的数值不仅与方程式的写法有矢,而且还与标准态的选择有矢。

13・在给定温度和压力下发生的PCb的分解反应,只须测定平衡时混合气体的密度就可以求知平衡常数了。

14 •因K = f(T),所以对于理想气体的化学反应;当温度一定时,其平衡组成也一定。

15・若已知某气相生成反应的平衡组成,则能求得产物的。

16 •温度T时,若K = l >说明这个反应在此温度,压力为100kPa的条件下已达到平衡。

17・一个已达平衡的化学反应,只有当标准平衡常数改变时,平衡才会移动。

18 •因K=n但时,所有化学反应的平衡状态随化学反应计量系数而改变。

19 •有供电能力(WfH 0)的可逆电池反应体系的状态,在“G〜了曲线上可存在的位置?20 •“纯是相对的,绝对纯的物质是没有”,试从反应的亲合能A上分析这句话的道理?21 •化学反应亲合势愈大,则自发反应趋势越强,反应进行得愈快,对否?22・标准平衡常数与标准反应自由能的矢系:,那么,为什么反应的平衡态与标准态是不相同的?23 -欲使反应产物的平衡浓度最大,反应物的投料比一般为多大?24・对于计量系数?V = 0的理想气体化学反应,哪些因素变化不改变平衡点?25・平衡常数K = 1的反应,在标准态下反应,反应朝什么方向进行?26 -在空气中金属不被氧化的条件是什么?27 •反应PCI5(g) = PCI 3(g) + Cl 2(g)在212°C、P容器中达到平衡,PCb离解度为,反应的二88 kJ -mol -1,以下情况下,PCb的离解度如何变化:(A) 通过减小容器体积来增加压力;(B)容器体积不变,通入2气来增加总压力;(B) 升高温度;(D)加入催化剂。

物理化学 三元相图详解

物理化学 三元相图详解

液相在E点析晶时,固相 组成由w向M移动,刚离 开w时,L%=Mw/Ew。 到达x时,L%=Mx/Ex, 可见液相不断减少。达 到M点是L%=0
液相:M
L B F 2
u ( B B )
L B B S
L B F 2
v
L B S F 1
E(
固相:B B B B w M
(5)熔体M冷却析晶过程
4.液相到达低共 熔点E时,固相 组成到w点,液 相同时析出BSC, 固相由w逐渐靠 向M,到达M时, 液相消耗完毕, 析晶结束
3.到达在界线上v点后, 同时析出B β和S, F=1,液相组成沿着 界线变化,固相组成 离开B
2.在多晶转变等温 线u上Bа全部转变 为Bβ后继续降温
(1)划分副三角形
有三个无变量点P、 E、Q,其中Q点 是多晶转变点。 连结E点周围初晶 区的组成点BSC, 得到ΔBSC
连结P点周围初晶 区的组成点A、S、 C,得到ΔASC
(2)化合物性质
化合物S在AB连线 上,为二元化合物。 并且不在自己的初 晶区内,因此S是 不一致熔融的二元 化合物
(3)界线性质和温度下降方向
(1) 说明化合物 S1 、S2的性质
S1在其初晶区内,为 一致熔融二元化合物
S2在其初晶区外,为 不一致熔融二元化合 物
(2)在图中划分分三元系统
根据无变量点与对应 三角形的位置关系, 可判断出无变量点的 性质
连结无变量点所对应 初晶区的组成点,可 得到三个副三角形
(3)温度下降方向和界线性质
(5)熔体1冷却析晶过程
1、由1点所在副三 角形判出1的冷却 析晶结束的无变量 点为E4
2、由1点所在初晶 区得出1首次析晶 为B,得到固相组 成点,应用背向线 规则知道液相组成 变化路径

物理化学《相平衡》习题及答案

物理化学《相平衡》习题及答案

物理化学《相平衡》习题及答案选择题1.二元恒沸混合物的组成(A)固定(B) 随温度而变(C) 随压力而变(D) 无法判断答案:C2.一单相体系, 如果有3种物质混合组成, 它们不发生化学反应, 则描述该系统状态的独立变量数应为(A) 3个 (B) 4个 (C) 5个 (D) 6个答案:B。

F=C-P+2=3-1+2=43.通常情况下,对于二组分物系能平衡共存的最多相为(A) 1 (B) 2 (C) 3 (D) 4 答案:D。

F=2-P+2=4-P,F不能为负值,最小为零。

当F=0时P=4。

4.正常沸点时,液体蒸发为气体的过程中(A) ΔS=0 (B) ΔG=0 (C) ΔH=0 (D) ΔU=0 答案:B。

此为可逆过程故ΔG=0。

5.以下各系统中属单相的是(A) 极细的斜方硫和单斜硫混合物 (B) 漂白粉 (C) 大小不一的一堆单斜硫碎粒(D) 墨汁答案:C。

6.NaCl(s), NaCl水溶液及水蒸汽平衡共存时, 系统的自由度(A) F=0 (B) F=1 (C) F=2 (D) F=3 答案:B。

F=C-P+2,C=2,P=3,故F=2-3+2=1。

7.如果只考虑温度和压力的影响, 纯物质最多可共存的相有(A) P=1 (B) P=2 (C) P=3 (D) P=4答案:C。

F=C-P+2=1-P+2=3-P,当F最小为零时P=3。

8.对于相律, 下面的陈述中正确的是(A) 相律不适用于有化学反应的多相系统 (B) 影响相平衡的只有强度因素(C) 自由度为零意味着系统的状态不变 (D) 平衡的各相中, 系统包含的每种物质都不缺少时相律才正确答案:B9.关于三相点, 下面的说法中正确的是(A) 纯物质和多组分系统均有三相点 (B) 三相点就是三条两相平衡线的交点(C) 三相点的温度可随压力改变 (D) 三相点是纯物质的三个相平衡共存时的温度和压力所决定的相点答案:D10.用相律和Clapeyron•方程分析常压下水的相图所得出的下述结论中不正确的是(A) 在每条曲线上, 自由度F=1 (B) 在每个单相区, 自由度F=2(C)在水的凝固点曲线上, ΔHm(相变)和ΔVm的正负号相反(D)在水的沸点曲线上任一点,压力随温度的变化率都小于零。

物理化学 第03章习题(含答案)

物理化学 第03章习题(含答案)

第三章 化学平衡测试练习题选择题:1、化学反应若严格遵循体系的“摩尔吉布斯函数—反应进度”曲线进行,则该反应在( A )[A].曲线的最低点[B].最低点与起点或终点之间的某一侧[C].曲线上的每一点[D].曲线以外某点进行着热力学可逆过程.2、有一理想气体反应A+B=2C ,在某一定温度下进行,按下列条件之一可以用θm r G ∆直接判断反应方向和限度:( C )[A].任意压力和组成[B].总压101.325kPa ,物质的量分数31===C B A x x x [C].总压303.975kPa ,31===C B A x x x [D].总压405.300kPa ,41==B A x x ,21=C x 3、298K 的理想气体化学反应AB=A+B ,当温度不变,降低总压时,反应的转化率( A )[A].增大 [B].减小 [C].不变 [D].不能确定4、已知气相反应)()(3)(126266g H C g H g H C =+在373K 时的143.192-⋅-=∆mol kJ H mr θ,当反应达平衡时,可采用下列哪组条件,使平衡向右移动( C )[A].升温与加压 [B].升温与减压[C].降温与加压 [D].降温与减压5、化学反应的平衡状态随下列因素当中的哪一个面改变? ( A )[A].体系组成 [B].标准态 [C].浓度标度[D].化学反应式中的计量系数νB6、在相同条件下有反应式(1)C B A 2=+,(θ1,m r G ∆);(2) C B A =+2121,(θ2,m r G ∆)则对应于(1),(2)两式的标准摩尔吉不斯函数变化以及平衡常数之间的关系为:( B )[A].θθ2,1,2m r m r G G ∆=∆,θθ21K K =[B].θθ2,1,2m r m r G G ∆=∆,221)(θθK K =[C].θθ2,1,m r m r G G ∆=∆,221)(θθK K =[D].θθ2,1,m r m r G G ∆=∆,θθ21K K = 7、反应)()()()(222g H g CO g O H g CO +=+,在600℃、100 kPa 下达到平衡后,将压力增大到5000kPa ,这时各气体的逸度系数为09.12=CO γ,10.12=H γ,23.1=CO γ,77.02=O H γ。

物理化学课后解答

物理化学课后解答

思考题解答1. 判断下列说法是否正确,为什么?(1) 在一给定的系统中,独立组分数是一个确定的数。

(2) 单组分系统的物种数一定等于1。

(3) 相律适用于任何相平衡系统。

(4) 在相平衡系统中,如果每一相中的物种数不相等,则相律不成立。

解答:(1) 对。

(2) 错。

组份数等于1。

(3) 错。

在有电场、重力场、磁场或渗透质存在时,不适用,必须加以修正。

(4) 错。

由相律得出的结论与每一相中的物种数无关。

2. 指出下列平衡系统中的组分数,相数,及自由度数。

(1) I2(S)与其蒸气成平衡;(2) CaCO3(s)与其分解产物CaO(s)和CO2(g)成平衡;(3) NH4HS(s)放入一抽空的容器中,并与其分解产物NH3(g)和H2S(g)成平衡;(4) 取任意量的NH3(g)和H2S(g)与NH4HS(s)成平衡;(5) I2作为溶质在两不互溶液体H2O和CCl4中达到分配平衡(凝聚系统)。

解答:(1) C = 1;Φ= 2;f = 1 – 2 + 2 = 1(2) C = 2;(∵S = 3;R = 1,∴C = 3-1 = 2);Φ= 3;f = 2 – 3 + 2 = 1(3) C = S-R-R' = 3-1-1=1(浓度限制条件,产物NH3(g):H2S(g) = 1:1);Φ= 2;f = 1(4) C = 3-1 = 2;Φ= 2;f = 2(5) C = 3;Φ= 2;f = C-Φ+ 1=3 – 2 + 1 = 2(凝聚相可以不考虑压力的影响)3. 证明:(1) 在一定温度下,某浓度的NaCl水溶液只有一个确定的蒸气压;(2) 在一定温度下,草酸钙分解为碳酸钙和一氧化碳时只能有一个确定的CO压力。

解答:(1) Φ= 2,浓度一定,C = 1,温度一定,则f = 1 – 2 + 1 = 0。

(2) Φ= 3,C = 2,当T一定时,f = 2 – 3 + 1 = 0。

4. Na2CO3与水可形成三种水合物Na2CO3·H2O(s),Na2CO3·7H2O(s)和Na2CO3·10H2O(s)。

物理化学《化学平衡》习题及答案

物理化学《化学平衡》习题及答案

物理化学《化学平衡》习题及答案选择题1.下面的叙述中违背平衡移动原理的是(A) 升高温度平衡向吸热方向移动 (B) 增加压力平衡向体积缩小的方向移动(C) 加入惰性气体平衡向总压力减少的方向移动 (D) 降低压力平衡向增加分子数的方向移动答案:C 。

加入惰性气体平衡向总压力增大的方向移动2.要使一个化学反应系统在发生反应后焓值不变, 必须满足的条件是(A) 温度和内能都不变 (B) 内能和体积都不变 (C) 孤立系统 (D) 内能, 压力与体积的乘积都不变答案:D 。

因ΔH =ΔU +Δ(pV )3.在等温等压下,当反应的∆r G m ∃ = 5kJ ·mol -1时,该反应能否进行?(A) 能正向自发进行 (B) 能逆向自发进行 (C) 不能判断 (D) 不能进行答案:C 。

应该用∆r G m 判断而不是∆r G m ∃ 。

4.已知反应 2NH 3 = N 2 + 3H 2,在等温条件下,标准平衡常数为0.25,那么,在此条件下,氨的合成反应1/2 N 2 + 3/2 H 2 = NH 3 的标准平衡常数为: (A) 4 (B) 0.5 (C) 2 (D) 1 答案:C 。

5.反应 2C(s) + O 2(g) ←→ 2CO(g),其∆r G m ∃ /(J ·mol -1) = -232600 - 167.7T /K ,若温度升高,则:(A) ∆r G m ∃ 变负,反应更完全 (B) K p ∃ 变大,反应更完全 (C) K p ∃ 变小,反应更不完全 (D )无法判断 答案:C6.对于气相反应,当体系总压力p 变化时(A) 对K f ∃ 无影响 (B) 对K r 无影响 (C) 对K p ∃ 无影响 (D) 对K f ∃ 、K r 、K p ∃ 均无影响答案:A 。

理想气体的K p ∃ 不受压力的影响而真实气体的K p ∃ 将随压力而变。

7.理想气体反应CO(g)+2H 2(g) = CH 3OH(g)的∆r G m ∃与温度T 的关系为:∆r G m ∃ = -21660+52.92T ,若要使反应的平衡常数K p ∃ >1,则应控制的反应温度: (A) 必须低于409.3℃ (B) 必须高于409.3K (C) 必须低于409.3K (D) 必须等于409.3K 答案:C8.某化学反应在298K 时的标准吉布斯自由能变化为负值,则该温度时反应的K p ∃将是: (A)K p ∃= 0 (B) K p ∃ < 0 (C) K p Θ > 1 (D) 0 < K p ∃ < 1 答案:C 。

大学物理化学核心教程课后参考答案第3章

大学物理化学核心教程课后参考答案第3章

第三章 热力学第二定律一.基本要求1.了解自发变化的共同特征,熟悉热力学第二定律的文字和数学表述方式;2.掌握Carnot 循环中,各步骤的功和热的计算,了解如何从Carnot 循环引出熵这个状态函数;3.理解Clausius 不等式和熵增加原理的重要性,会熟练计算一些常见过程如:等温、等压、等容和,,p V T 都改变过程的熵变,学会将一些简单的不可逆过程设计成始、终态相同的可逆过程;4.了解熵的本质和热力学第三定律的意义,会使用标准摩尔熵值来计算化学变化的熵变;5.理解为什么要定义Helmholtz 自由能和Gibbs 自由能,这两个新函数有什么用处熟练掌握一些简单过程的,,H S A ∆∆∆和G ∆的计算;6.掌握常用的三个热力学判据的使用条件,熟练使用热力学数据表来计算化学变化的r m H ∆,r m S ∆和r m G ∆,理解如何利用熵判据和Gibbs 自由能判据来判断变化的方向和限度;7.了解热力学的四个基本公式的由来,记住每个热力学函数的特征变量,会利用d G 的表示式计算温度和压力对Gibbs 自由能的影响;二.把握学习要点的建议自发过程的共同特征是不可逆性,是单向的;自发过程一旦发生,就不需要环境帮助,可以自己进行,并能对环境做功;但是,热力学判据只提供自发变化的趋势,如何将这个趋势变为现实,还需要提供必要的条件;例如,处于高山上的水有自发向低处流的趋势,但是如果有一个大坝拦住,它还是流不下来;不过,一旦将大坝的闸门打开,水就会自动一泻千里,人们可以利用这个能量来发电;又如,氢气和氧气反应生成水是个自发过程,但是,将氢气和氧气封在一个试管内是看不到有水生成的,不过,一旦有一个火星,氢气和氧气的混合物可以在瞬间化合生成水,人们可以利用这个自发反应得到热能或电能;自发过程不是不能逆向进行,只是它自己不会自动逆向进行,要它逆向进行,环境必须对它做功;例如,用水泵可以将水从低处打到高处,用电可以将水分解成氢气和氧气;所以学习自发过程的重要性在于如何利用自发过程为人类做功,而不要拘泥于自发过程的定义;热力学第二定律就是概括了所有自发的、不可逆过程的经验定律,通过本章的学习,原则上解决了判断相变化和化学变化的自发变化的方向和限度的问题,完成了化学热力学的最基本的任务;所以,学好本章是十分重要的;通过学习Carnot 循环,一方面要熟练不同过程中功和热的计算,另一方面要理解热机效率总是小于1的原因;了解如何从Carnot 循环导出熵函数,以及了解Carnot 定理及其推论与热力学第二定律的联系;Clausius 不等式就是热力学第二定律的数学表达式,从这个不等式可以引出熵判据,并从熵判据衍生出Helmholtz 自由能判据和Gibbs 自由能判据,原则上完成了化学热力学判断变化方向和限度的主要任务;从Carnot 定理引入了一个不等号,I R ηη≤,通过熵增加原理引出了熵判据;但必须搞清楚,用绝热过程的熵变只能判断过程的可逆与否,而只有用隔离系统的熵变才能判断过程的可逆与否及自发与否;要计算隔离系统的熵变,必须知道如何计算环境的熵变;在计算熵变时,一定要用可逆过程的热效应;如果实际过程是一个不可逆过程,则要设计始、终态相同的可逆过程,所以要掌握几种设计可逆过程的方法;例如,如何将不可逆相变,设计成可逆地绕到可逆相变点如熔点、沸点或饱和蒸汽压点的可逆过程,并能熟练地掌握可逆过程中,,H S ∆∆和G ∆的计算;不一定完整地了解熵的本质和热力学第三定律因为本教材没有介绍统计热力学,只需要了解,熵是系统的混乱度的一种量度,凡是混乱度增加的过程都是自发过程;由于热力学能的绝对值无法计算,所以使得与热力学能有联系的其他函数如,H A 和G 的绝对值也无法计算,所以,只能计算它们的变化值;在使用这些函数时,都要加上“∆”的符号,即U ∆,H ∆,A ∆和G ∆;原则上熵的绝对值也是不知道的,但是,热力学第三定律规定了:在0 K 时,完整晶体的熵等于零这个相对标准,由此而得到的熵值称为规定熵;在298 K 时的常见物质的规定熵,即标准摩尔熵值,可以从热力学数据表上查阅,并可以用来计算化学反应的熵变;定义新函数的出发点就是为了使用方便;在用熵作为判据时,既要利用可逆过程的热效应计算系统的熵变,又要计算环境的熵变,这很不方便;而平时实验是在等温、等容的条件下进行较少,或在等温、等压的条件下进行绝大多数,所以定义了Helmholtz 自由能和Gibbs 自由能这两个新函数,希望利用系统本身的性质作为判据,显然,Gibbs 自由能的用处更广;既然是定义的函数,说明它实际上是不存在的,所以只有在特定的条件下才有一定的物理意义;化学热力学之所以能判断变化的方向和限度,主要是利用判据,熵判据是最根本的,而Helmholtz自由能和Gibbs自由能判据是在熵判据的基础上衍生出来的;今后Gibbs自由能判据用得最多,因为大部分化学反应实验都是在等温、等压和不做非膨胀功的条件下进行的;在使用判据时,必须满足判据所需要的适用条件;四个热力学基本公式的导出,主要是通过热力学第一定律和热力学第二定律的联合公式,以及,,H A G的定义式,它们与第一定律的适用条件一样,只适用于恒定组成的均相封闭系统,并且还引入了不做非膨胀功的限制条件;从这四个基本公式,可以知道每个热力学函数的特征变量,这在今后定义化学势时很有用;四个基本公式中,公式=-+在今后将用得最多,必须记住;G S T V pd d d至于Maxwell方程,它主要用在求算热力学函数与,,p V T之间的变化关系,把实验可测量如,,p V T去替代实验不可测量如熵,或在做证明题时,知道如何进行偏微分公式的变换;对于非化学专业的学生,这部分内容本教材已删除了,免得陷在偏微分方程中,感到热力学是如此的难学而失去信心,其实这部分并非是化学热力学的主要研究任务;初学者对热力学的基本概念不容易掌握,课听懂了,书看懂了,但是碰到具体问题还是不会判断;所以,在学完热力学第一和第二定律之后,最好要总结一下各种热力学函数变量的计算,讨论一些容易混淆的问题,或精选一些选择题,搞一次抢答竞赛,活跃一下学习气氛,便于在愉快的气氛中,理解和巩固热力学的基本概念;三.思考题参考答案1.自发过程一定是不可逆的,所以不可逆过程一定是自发的;这说法对吗答:前半句是对的,但后半句是错的;因为不可逆过程不一定是自发的,如不可逆压缩过程就是一个不自发的过程;2.空调、冰箱不是可以把热从低温热源吸出、放给高温热源吗,这是否与热力学第二定律矛盾呢答:不矛盾;Claususe说的是:“不可能把热从低温物体传到高温物体,而不引起其他变化”;而冷冻机系列,把热从低温物体传到了高温物体,环境做了电功,却得到了热;而热变为功是个不可逆过程,所以环境发生了变化;3.能否说系统达平衡时熵值最大,Gibbs自由能最小答:不能一概而论,这样说要有前提,即:绝热系统或隔离系统达平衡时,熵值最大;等温、等压、不做非膨胀功,系统达平衡时,Gibbs 自由能最小;也就是说,使用判据时一定要符合判据所要求的适用条件;4.某系统从始态出发,经一个绝热不可逆过程到达终态;为了计算熵值,能否设计一个绝热可逆过程来计算答:不可能;若从同一始态出发,绝热可逆和绝热不可逆两个过程的终态绝不会相同;反之,若有相同的终态,两个过程绝不会有相同的始态;所以只有设计一个除绝热以外的其他可逆过程,才能有相同的始、终态;5.对处于绝热钢瓶中的气体,进行不可逆压缩,这过程的熵变一定大于零,这说法对吗答:对;因为是绝热系统,凡是进行一个不可逆过程,熵值一定增大,这就是熵增加原理;处于绝热钢瓶中的气体,虽然被压缩后体积会减小,但是它的温度会升高,总的熵值一定增大;6.相变过程的熵变,可以用公式H S T∆∆=来计算,这说法对吗 答:不对,至少不完整;一定要强调是等温、等压可逆相变,H ∆是可逆相变时焓的变化值,R p H Q ∆=,T 是可逆相变的温度;7.是否,m p C 恒大于,m V C答:对气体和绝大部分物质是如此;但有例外,4摄氏度时的水,它的,m p C 等于,m V C ;8.将压力为 kPa,温度为 K 的过冷液态苯,凝固成同温、同压的固态苯;已知苯的凝固点温度为 K,如何设计可逆过程答:可以用等压、可逆变温的方法,绕到苯的凝固点 K,设计的可逆过程如下:分别计算1,2和3,三个可逆过程的热力学函数的变化值,加和就等于过冷液态苯凝固这个不可逆过程的热力学函数的变化值;用的就是状态函数的性质:异途同归,值变相等;9.在下列过程中,Q ,W ,ΔU ,ΔH ,ΔS ,ΔG 和ΔA 的数值,哪些等于零哪些函数的值相等1 理想气体真空膨胀6666(2)6666C H (l,268.2 K,101.3 kPa)C H (s,268.2 K,101.3 kPa)(1) (3) C H (l,278.7 K,101.3 kPa)C H (s,278.7 K,101.3 kPa)→↓等压可逆升温等压可逆降温↑2 实际气体绝热可逆膨胀3 水在正常凝固点时结成冰4 理想气体等温可逆膨胀5 H 2g 和O 2g 在绝热钢瓶中生成水6 在等温、等压且不做非膨胀功的条件下,下列化学反应达成平衡答:1 0Q W U H ==∆=∆=,G A ∆=∆2 0, R Q S U W =∆=∆=3 e 0, , P G H Q A W ∆=∆=∆=4 e 0, =, U H Q W G A ∆=∆=-∆=∆5 e = 0V U Q W ∆==6 r m 0G ∆=,r m max 0A W ∆==,r m r m U H ∆=∆10. 298 K 时,一个箱子的一边是1 mol N 2 100 kPa,另一边是2 mol N 2 200 kPa ,中间用隔板分开;问在298 K 时,抽去隔板后的熵变值如何计算答:设想隔板可以活动,平衡时隔板两边气体的压力均为150 kPa;在等温、等压下,相同的理想气体混合时的熵变等于零,即mix 0S ∆=;只要计算气体从始态压力到终态压力的熵变,11. 指出下列理想气体,在等温混合过程中的熵变计算式;1 2221 mol N (g,1) 1 mol N (g,1)2 mol N (g,1)V V V +=2 221 mol N (g,1) 1 mol Ar(g,1)(1 mol N 1 mol Ar)(g,1)V V V +=+3 2221 mol N (g,1) 1 mol N (g,1) 2 mol N (g,2)V V V +=答: 1 mix 12ln 2S R ∆=;因为相同气体混合,总体积没变,相当于每个气体的体积都缩小了一半;2 mix 0S ∆=;因为理想气体不考虑分子自身的体积,两种气体的活动范围都没有改变;3 mix 0S ∆=;因为同类气体混合,体积是原来体积的加和,气体的活动范围都没有改变,仅是加和而已;12.四个热力学基本公式适用的条件是什么 是否一定要可逆过程答: 适用于组成不变的均相封闭系统,不作非膨胀功的一切过程;不一定是可逆过程;因为在公式推导时,虽然用了d Q T S =的关系式,这公式只有对可逆过程成立,但是由于基本公式中计算的是状态函数的变化量,对于不可逆过程,可以设计一个始终态相同的可逆过程进行运算;四.概念题参考答案1.理想气体在等温条件下反抗恒定外压膨胀,该变化过程中系统的熵变S ∆sys 及环境的熵变S ∆sur 应为:A S ∆sys >0,S ∆sur =0B S ∆sys <0,S ∆sur =0C S ∆sys >0,S ∆sur <0D S ∆sys <0,S ∆sur >0答:C;理想气体等温膨胀,体积增加,熵增加,但要从环境吸热,故环境的熵减少;2.在绝热条件下,用大于气缸内的压力迅速推动活塞压缩气体,气体的熵变:A 大于零B 小于零C 等于零D 不能确定答:A;封闭系统的绝热不可逆过程,熵增加,这就是熵增加原理;因为气体的体积虽然变小了,但是它的温度升高了,总的熵一定是增加的;3.2H (g)和2O (g)在绝热钢瓶中反应生成水的过程A ΔH = 0B ΔU = 0C ΔS = 0D ΔG = 0答:B;因为钢瓶是恒容的,并与外界无功和热的交换,所以能量守衡,ΔU = 0;4.在 K 和101 325 Pa 条件下,水凝结为冰,系统的下列热力学量中,何者一定为零A ΔUB ΔHC ΔSD ΔG答:D;等温、等压、不作非膨胀功的可逆相变,Gibbs 自由能等于零;5.一定量的理想气体向真空作绝热膨胀,体积从1V 变到2V ,则熵变的计算公式为A 0S ∆=B 21ln V S nR V ∆= C 21ln p S nR p ∆= D 无法计算答:B;虽然真空绝热膨胀是一个不可逆过程,但是理想气体的温度不变,可以设计一个始、终态相同的等温可逆膨胀过程,用B 式来计算熵变;6.在对2N (g)和2O (g)的混合气体进行绝热可逆压缩,系统的热力学函数变化值在下列结论中正确的是:A ΔU = 0B ΔA = 0C ΔS = 0D ΔG = 0答:C;绝热可逆过程是恒熵过程,由于Q R = 0,所以ΔS = 0;7. 1 mol 单原子分子理想气体,温度由T 1变到T 2时,等压可逆过程,系统的熵变为p S ∆,等容可逆过程,系统的熵变为V S ∆,两着之比p V S S ∆∆∶等于:A 11∶B 21∶C 35∶D 53∶答:D;等压、变温可逆过程,2,m 1lnp p T S nC T ∆=,等容、变温可逆过程,2,m 1ln V V T S nC T ∆=;现在温度区间相同,单原子分子理想气体的,m 32V C R =,,m 52p C R =,所以,5p V S S ∆∆=∶∶3,相当于摩尔等压热容与摩尔等容热容之比; 8.1 g 纯的2H O(l)在 373 K,101.3 kPa 的条件下,可逆汽化为同温同压的2H O(g),热力学函数的变量为 ΔU 1,ΔH 1和 ΔG 1;现把1 g 纯的2H O(l)温度、压力同上,放在373 K 的恒温真空箱中,控制体积,使系统终态的蒸气压也为101.3 kPa ,这时热力学函数变量为ΔU 2,ΔH 2和 ΔG 2;这两组热力学函数的关系为:A ΔU 1> ΔU 2, ΔH 1> ΔH 2, ΔG 1> ΔG 2B ΔU 1< ΔU 2, ΔH 1< ΔH 2, ΔG 1< ΔG 2C ΔU 1= ΔU 2, ΔH 1= ΔH 2, ΔG 1= ΔG 2D ΔU 1= ΔU 2, ΔH 1> ΔH 2, ΔG 1= ΔG 2答:C;系统的始态与终态都相同,所有热力学状态函数的变量也都相同,与变化途径无关;9. 298 K 时,1 mol 理想气体等温可逆膨胀,压力从1 000 kPa 变到100 kPa,系统的Gibbs 自由能的变化值为A 0.04 kJB 12.4 kJ -C 5.70 kJD 5.70 kJ -答:D;理想气体等温可逆膨胀,10.对于不做非膨胀功的隔离系统,熵判据为: A ,(d )0T U S ≥ B ,(d )0p U S ≥C ,(d )0T p S ≥D ,(d )0U V S ≥答:D;在不做非膨胀功时,保持系统的U ,V 不变,即膨胀功等于零,0U ∆=,这就是一个隔离系统;11.甲苯在101.3 kPa 时的正常沸点为110℃,现在将1 mol 甲苯放入与110℃的热源接触的真空容器中,控制容器的容积,使甲苯迅速气化为同温、同压的蒸气;如下描述该过程的热力学变量正确的是A vap 0U ∆=B vap 0H ∆=C vap 0S ∆=D vap 0G ∆=答:D;甲苯的始、终态与等温、等压可逆蒸发的始终态完全相同,所以状态函数的变化量也相同;对于等温、等压可逆相变,vap 0G ∆=;12. 某实际气体的状态方程为m pV RT p α=+,其中α为大于零的常数,该气体经等温可逆膨胀后,其热力学能将A 不变B 增大C 减少D 不能确定答:A;可以将该实际气体的状态方程改写为m ()p V RT α-=,与理想气体的状态方程相比,只对体积项进行了校正,说明该实际气体分子本身所占的体积不能忽略,但对压力项没有进行校正,说明该气体分子之间的相互作用可以忽略,这一点与理想气体相同,所以在膨胀时,不需克服分子间的引力,所以在等温膨胀时,热力学能保持不变;这种气体作绝热真空膨胀时,温度也不会改变;13.在封闭系统中,若某过程的max A W ∆=,应满足的条件是A 等温、可逆过程B 等容、可逆过程C 等温、等压、可逆过程D 等温、等容、可逆过程答:A;在等温、可逆过程中,Helmholtz 自由能的变化值就等于对环境做的最大功,包括膨胀功和非膨胀功,这就是将Helmholtz 自由能称为功函的原因;在定义Helmholtz 自由能时,只引入了等温的条件;14. 热力学第三定律也可以表示为A 在0 K 时,任何晶体的熵等于零B 在0 K 时,任何完整晶体的熵等于零C 在0 ℃时,任何晶体的熵等于零D 在0 ℃时,任何完整晶体的熵等于零答:B;完整晶体通常只有一种排列方式,根据描述熵的本质的Boltzmann 公式,B ln S k =Ω,可得到,在0 K 时,完整晶体的1=Ω,则熵等于零;15.纯2H O(l)在标准压力和正常沸点时,等温、等压可逆汽化,则A Δvap U =Δvap H ,Δvap A =Δvap G ,Δvap S > 0B Δvap U <Δvap H ,Δvap A <Δvap G ,Δvap S > 0C Δvap U >Δvap H ,Δvap A >Δvap G ,Δvap S < 0D Δvap U <Δvap H ,Δvap A <Δvap G ,Δvap S < 0答:B;任何液体在汽化时,其Δvap S > 0;在正常沸点等温、等压可逆汽化时,Δvap G =0,液体等压变为气体时,要对环境做功,所以Δvap A <0,Δvap U <Δvap H ;16.在 -10℃、下,1mol 水凝结成冰的过程中,下列哪个公式仍适用A U = TSB TG H S ∆-∆=∆ C H = TS + Vp D G T,p = 0答:B;过冷水结冰是一个不可逆过程,但是温度保持不变,根据Gibbs 自由能的定义式,在等温时,G H T S ∆=∆-∆,这个公式总是可以使用的;只是H ∆和S ∆的数值要通过设计可逆过程进行计算;五.习题解析1.热机的低温热源一般是空气或水,平均温度设为293 K;为了提高热机的效率,只有尽可能提高高温热源的温度;如果希望可逆热机的效率能达到60%,试计算这时高温热源的温度;高温热源一般是加压水蒸气,这时水蒸气将处于什么状态已知水的临界温度为647 K;解:根据理想的Carnot 热机,可逆热机效率与两个热源温度的关系式为解得高温热源的温度 h 733 K T =这时加压水蒸气的温度已远远超过水的临界温度,水蒸气处于远超临界状态,压力很高,需要耐压性能很好的锅炉;事实上,实用的热机都是不可逆的,就是有这样的高温热源,实用热机的效率也远低于60%;2.①5 mol 双原子分子理想气体,在等容的条件下,由448 K 冷却到298 K ;② 3 mol 单原子分子理想气体,在等压条件下由300 K 加热到600 K,试计算这两个过程的S ;解:① 该过程系等容、变温过程,双原子分子理想气体的,m 52V C R =,所以 ② 该过程系等压、变温过程,单原子分子理想气体的,m 52p C R =3.某蛋白质在323 K 时变性,并达到平衡状态,即:天然蛋白质变性蛋白质,已知该变性过程的摩尔焓变1r m 29.288 kJ mol H -∆=⋅,,求该反应的摩尔熵变r m S ∆;;解: 因为已达到平衡状态,可以认为变性过程的焓变就是可逆热效应,4.1 mol 理想气体在等温下,分别经历如下两个过程:① 可逆膨胀过程;② 向真空膨胀过程,终态体积都是始态体积的10倍;分别计算这两个过程系统的熵变;解:① 因该过程系理想气体等温可逆膨胀过程,所以:② 虽然与1的膨胀方式不同,但其始、终态相同,熵是状态函数,所以该过程的熵变与①的相同,即1219.14 J K S -∆=⋅;5.有2 mol 单原子分子理想气体,由始态500 kPa,323 K 加热到终态1 000 kPa,373 K;试计算此气体的熵变;解:这是一个p ,V ,T 都改变的过程,计算熵变要分两步进行;第一步,等温可逆改变压力的过程,第二步,等压可逆改变温度的过程,熵变的计算式为6.在300 K 时,有物质的量为n 的单原子分子理想气体,从始态100 kPa,122 dm 3,反抗50 kPa 的外压,等温膨胀到50 kPa;试计算:1U ∆,H ∆,终态体积V 2,以及如果过程是可逆过程的热R Q 和功R W ;2如果过程是不可逆过程的热I Q 和功I W ;3sys S ∆,sur S ∆和iso S ∆;解:1 这是理想气体的等温膨胀,所以 0H ∆=,0U ∆=;假设理想气体进行等温可逆膨胀至终态,则2理想气体进行等温、等外压膨胀至终态3计算系统的熵变,用假设的可逆过程的热温商计算计算环境的熵变,用系统实际不可逆过程的热的负值来计算,因为环境是个大热源,对于系统是不可逆的热效应,但是对于环境还是可以认为是可逆的;7.有一个绝热的刚性容器,中间用隔板将容器分为两个部分,分别充以不同温度的N 2 g 和O 2 g,如图所示;N 2 g 和O 2 g 皆可视为理想气体;1 设中间隔板是导热的,并能滑动以保持两边的压力相等;计算整个系统达到热平衡时的ΔS ;2 达到热平衡后,将隔板抽去,求系统的混合熵变Δmix S ;解:1 首先要求出达到热平衡时的温度T ;因为两种气体的总体积未变,又是绝热容器,所以0W =,0Q =,则0U ∆=;已知N 2g 的温度为1293 K T =,O 2 g 的温度为2283 K T =,达到热平衡时,有因为两种气体都是双原子分子理想气体,等容摩尔热容相同,物质的量也相等,所以有:解得 288 K T =其实,对于物质的量相等、等容摩尔热容也相同的两种不同温度的气体,达热平衡时的温度就等于两者温度的平均值,12()/2288 K T T T =+=;设想这个热传导是在等压可逆的情况下进行的,所以2 达热平衡后抽去隔板,两种气体的体积都扩大一倍,8.人体活动和生理过程是在恒压下做广义电功的过程;问在298 K 时,1mol 葡萄糖最多能提供多少能量来供给人体活动和维持生命之用;已知在298 K 时:葡萄糖的标准摩尔燃烧焓1c m 6126(C H O ) 2 808 kJ mol H -∆=-⋅,11m 6126(C H O )212.0 J K mol S --=⋅⋅,11m 2(CO )213.74 J K mol S --=⋅⋅,11m 2(H O,l)69.91 J K mol S --=⋅⋅, 11m 2(O ,g)205.14 J K mol S --=⋅⋅解:要计算最大的广义电功,实际是计算1 mol 葡萄糖在燃烧时的摩尔反应Gibbs 自由能的变化值;葡萄糖的燃烧反应为9.某化学反应,若在298 K 和标准压力下进行,放热 4000 kJ,若使该反应通过可逆电池来完成,在与化学反应的始、终态相同时,则吸热 400 kJ;试计算:1 该化学反应的r m S ∆;2 当该反应自发进行,不做电功时的环境熵变,及隔离系统的熵变;3 计算系统可能做的最大电功;解: 1 化学反应能自发进行,说明是一个不可逆过程,不能用它的热效应来计算熵变,要利用始终态相同的可逆电池的热效应来计算熵变,所以2 系统在化学反应中的不可逆放热,环境可以按可逆的方式来接收,所以3 在可逆电池中,系统可能做的最大电功在数值上就等于r m G ∆,所以10.在 298 K 的等温情况下,两个容器中间有旋塞连通,开始时一边放 mol 2O (g),压力为 20 kPa,另一边放 mol 2N (g),压力为 80 kPa,打开旋塞后,两气体相互混合,设气体均为理想气体;试计算:1 终态时容器中的压力;2 混合过程的Q ,W ,mix U ∆,mix S ∆和mix G ∆;3 如果在等温下,可逆地使气体分离,都恢复原状,计算过程的Q 和W ;解: 1 首先计算旋塞两边容器的体积,然后得到两个容器的总体积,就能计算最终混合后的压力2 理想气体的等温混合过程,mix 0U ∆=,mix 0H ∆=,混合时没有热效应,0Q =,所以0W =;事实上,将两种气体看作系统,没有对环境做功,所以0W =;3 1R mix 298 K 5.76 J K 1 716 J Q T S -=-∆=-⨯⋅=-mix 0U ∆=,R 1 716 J W Q =-=11. 1mol 理想气体,在273 K 等温可逆地从1 000 kPa 膨胀到100 kPa,试计算此过程的Q ,W 以及气体的ΔU ,ΔH ,ΔS ,ΔG 和ΔA ;解: 理想气体等温可逆膨胀,ΔU = 0 ,ΔH =0,12.在300 K 时,将1 mol 理想气体,压力从100 kPa 经等温可逆压缩到1 000 kPa,计算Q ,W ,U ,H ,S ,A 和G ;解: 理想气体的等温物理变化,0U ∆=,0H ∆=13.1mol 单原子分子理想气体,始态温度为273 K,压力为p ;分别经下列三种可逆变化:① 恒温下压力加倍;② 恒压下体积加倍;③ 恒容下压力加倍;分别计算其Gibbs 自由能的变化值G ∆;假定在273 K 和标准压力下,该气体的摩尔熵11m 100 J K mol S --=⋅⋅;解: ① 这是一个等温改变压力的可逆过程,② 在恒压下体积加倍,则温度也加倍,212T T =,根据Gibbs 自由能的定义式, ③ 恒容下压力加倍,212T T =121108.6 J K S S S -=+∆=⋅ 所以14. 在 373 K 及101325 kPa 条件下,将2 mol 水可逆蒸发为同温、同压的蒸气;计算此过程的Q ,W ,U ∆,H ∆和S ∆;已知水的摩尔汽化焓1vap m 40.68 kJ mol H -∆=⋅;假设水气可作为理想气体,忽略液态水的体积;解: vap m (240.68) kJ 81.36 kJ Q H n H =∆=∆=⨯=15.在一玻璃球中封入1 mol H 2Ol,压力为 kPa,温度为373 K;将玻璃球放入一个真空容器中,真空容器恰好能容纳 1mol kPa,373 K 的H 2Og;设法将小球击破,水全部汽化成kPa,373 K 的水蒸气;计算Q ,W ,ΔU ,ΔH ,ΔS ,ΔG ,ΔA ;根据计算结果说明,这一过程是自发的吗可以用哪一个热力学性质作为判据已知水在 kPa,373 K 时的摩尔汽化焓1vap m 2(H O,l)40.68 kJ mol H -∆=⋅;; 解: H 2Ol 向真空汽化,0W =这是一个与可逆相变始终态相同的过程,所以0G ∆=或 max (18.314373) J 3.10 kJ A W nRT ∆==-∆=-⨯⨯=-该过程是恒温、恒容过程,故可用ΔA 作判据,因为ΔA < 0,故该过程是自发的不可逆过程;当然,也可以用iso S ∆作为判据,所以,水的真空蒸发过程是自发的不可逆过程;16.1 mol 理想气体,在122 K 等温的情况下反抗恒定外压,从10 dm 3膨胀到终态;已知在该过程中,系统的熵变为119.14 J K -⋅,求该膨胀过程系统反抗的外压e p ,终态的体积V 2,并计算:ΔU ,ΔH ,ΔA ,ΔG ,环境熵变sur S ∆和孤立系统熵变iso S ∆;解:因为是理想气体的等温物理变化,所以0U ∆=,0H ∆=,A G T S ∆=∆=-∆; 已知熵变的值可以解出终态的体积2V解得 32100 dm V =17. 在-5℃和标准压力下,1 mol 过冷液体苯凝固为同温、同压的固体苯,计算该过程的ΔS 和ΔG;已知 -5℃ 时,固态苯和液态苯的饱和蒸气压分别为 kPa 和 kPa,在该条件下,苯的摩尔熔化焓1melt m 66(C H ,s)9.86 kJ mol H -∆=⋅;解:过冷液体的凝固是一个不可逆过程,要设计一个始、终态相同的可逆过程,才能计算ΔS 和ΔG;保持温度都为-5℃,设计的可逆过程有如下5步 构成:第2步和第4步,是在饱和蒸气压的条件下,恒温、恒压的可逆相变,所以240G G ∆=∆=;因为液体和固体的可压缩性较小,受压力影响不大,它们的摩尔体积差别不大,可近似认为150G G ∆+∆≈;所以18.苯的正常沸点为 353 K,摩尔气化焓Δvap H m = kJmol -1;今在 353 K 和标准压力下,将1mol 液态苯向真空等温汽化为同温同压的苯蒸气设为理想气体;试计算: 1 该过程中苯吸收的热量Q 和做的功W ;2 苯的摩尔气化Gibbs 自由能Δvap G m 和摩尔气化熵Δvap S m ;3 环境的熵变;。

物理化学课后答案 第六章 相平衡

物理化学课后答案 第六章 相平衡

第六章相平衡6.1指出下列平衡系统中的组分数C,相数P及自由度F。

(1)I2(s)与其蒸气成平衡;(2)CaCO3(s)与其分解产物CaO(s)和CO2(g)成平衡;(3)NH4HS(s)放入一抽空的容器中,并与其分解产物NH3(g)和H2S(g)成平衡;(4)取任意量的NH3(g)和H2S(g)与NH4HS(s)成平衡。

(5)I2作为溶质在两不互溶液体H2O和CCl4中达到分配平衡(凝聚系统)。

解:(1)C = 1, P = 2, F = C–P + 2 = 1 – 2 + 2 = 1.(2)C = 3 – 1 = 2, P = 3, F = C–P + 2 = 2 – 3 + 2 = 1.(3)C = 3 – 1 – 1 = 1, P = 2, F = C–P + 2 = 1 – 2 + 2 = 1.(4)C = 3 – 1 = 2, P = 2, F = C–P + 2 = 2 – 2 + 2 = 2.(5)C = 3, P = 2, F = C–P + 1 = 3 – 2 + 1 = 2.6.2已知液体甲苯(A)和液体苯(B)在90 C时的饱和蒸气压分别为=和。

两者可形成理想液态混合物。

今有系统组成为的甲苯-苯混合物5 mol,在90 C下成气-液两相平衡,若气相组成为求:(1)平衡时液相组成及系统的压力p。

(2)平衡时气、液两相的物质的量解:(1)对于理想液态混合物,每个组分服从Raoult定律,因此(2)系统代表点,根据杠杆原理6.3单组分系统的相图示意如右图。

试用相律分析途中各点、线、面的相平衡关系及自由度。

解:单相区已标于图上。

二相线(F = 1):三相点(F = 0):图中虚线表示介稳态。

6.4已知甲苯、苯在90 ︒C下纯液体的饱和蒸气压分别为54.22 kPa和136.12 kPa。

两者可形成理想液态混合物。

取200.0 g甲苯和200.0 g苯置于带活塞的导热容器中,始态为一定压力下90 ︒C的液态混合物。

物理化学《相平衡》习题及参考答案

物理化学《相平衡》习题及参考答案

物理化学《相平衡》习题及答案2-3 选择题1、水煤气发生炉中共有)()()()(22g CO g CO g O H s C 、、、及)(2g H 5种物质,它们能发生下述反应:)(2)()(2g CO s C g CO ⇒+,)()()()(222g O H g CO g H g CO +⇒+,)()()()(22g CO g H s C g O H +⇒+,则此体系的组分数、自由度为( C )A.5、3B.4、3C.3、3D.2、22、物质A 与B 可形成低共沸混合物E ,已知纯A 的沸点小于纯B 的沸点,若将任意比例的A+B 混合在一个精馏塔中精馏,则塔顶的馏出物是( C )A.纯AB.纯BC.低共沸混合物D.都有可能3、克拉贝隆-克劳修斯方程适用于( C )A.)()(22g I s I ⇔B.)()(金刚石石墨C C ⇔C.),,(),,(222112p T g I p T g I ⇔D.)()(22l I s I ⇔4、将一透明容器抽成真空,放入固体碘,当温度为50℃时,可见到明显的碘升华现象,有紫色气体出现。

若温度维持不变,向容器中充入氧气使之压力达到100kPa 时,将看到容器中( C )A.紫色变深B.紫色变浅C.颜色不变D.有液态碘出现5、在一定温度下,水在其饱和蒸汽压下汽化,下列各函数增量中那一项为零( D )A.U ∆B.H ∆C.S ∆D.G ∆6、在一定外压下,多组分体系的沸点( D )A.有恒定值B.随组分而变化C.随浓度而变化D.随组分及浓度而变化7、压力升高时,单组份体系的沸点将( A )A.升高B.降低C.不变D.不一定8、进行水蒸气蒸馏的必要条件是( A )A.两种液体互不相容B.两种液体蒸汽压都较大C.外压小于101kPaD.两种液体的沸点相近9、液体A 与液体B 不相混溶。

在一定温度T ,当有B 存在时,液体A 的蒸汽压为( B )A.与体系中A 的摩尔分数成比例B.等于T 温度下纯A 的蒸汽压C.大于T 温度下纯A 的蒸汽压D.与T 温度下纯B 的蒸汽压之和等于体系的总压力10、氢气和石墨粉在没有催化剂时,在一定温度下不发生化学反应,体系的组分数是( A )A.2B.3C.4D.511、上述体系中,有催化剂存在时可生成n 种碳氢化合物,平衡是组分数为( A )A.2B.4C.n+2D.n12、相率适用于( D )A.封闭体系B.敞开体系C.非平衡敞开体系D.以达到平衡的多向敞开体系13、某物质在某溶剂中的溶解度( C )A.仅是温度的函数B.仅是压力的函数C.同是温度和压力的函数D.除了温度压力以外,还是其他因素的函数14、在实验室的敞口容器中装有单组份液体,对其不断加热,则看到( A )A.沸腾现象B.三项共存现象C.临界现象D.生化现象15、相图与相率之间的关系是( B )A.相图由相率推导得出B.相图由实验结果绘制得出,不能违背相率C.相图决定相率D.相图由实验结果绘制得出,与相率无关16、下述说法中错误的是( C )A.通过相图可确定一定条件下体系由几相构成B.相图可表示出平衡时每一相的组成如何C.相图可表示达到相平衡所需时间的长短D.通过杠杆规则可在相图上计算各相的相对含量17、三组分体系的最大自由度及平衡共存的最大相数为( D )A.3;3B.3;4C.4;4D.4;518、定容条件下)(4s HS NH 的分解压力为1θp 时,反应)()()(234g S H g NH s HS NH +⇔的标准平衡常数是( C )A.1B.1/2C.1/4D.1/819、水的三相点附近其蒸发热为44.821-⋅mol kJ ,熔化热为5.991-⋅mol kJ ,则在三相点附近冰的升华热约为( B )A.38.831-⋅mol kJB.50.811-⋅mol kJC.-38.831-⋅mol kJD.-50.811-⋅mol kJ20、在相图上,当物系点处于哪一点时,只存在一个相( C )A.恒沸点B.熔点C.临界点D.最低共沸点21、具有最低恒沸温度的某两组份体系,在其T-x 相图的最低点有( A )A.l g x x f ==;0B.l g x x f ==;1C.l g x x f >=;0D.l g x x f >=;122、80℃时纯苯的蒸汽压为0.991θp ,纯甲苯的蒸汽压为0.382θp ,若有苯-甲苯气、液平衡混合物在80℃时气相中苯的摩尔分数为30.0=苯y 则液相组成苯x 接近于( D )A.0.85B.0.65C.0.35 D0.1423、体系处于标准状态时,能与水蒸气共存的盐可能是: CA. Na 2CO 3B. Na 2CO 3 Na 2CO 3•H 2O Na 2CO 3•7H 2OC. Na 2CO 3 Na 2CO 3•H 2OD. 以上全否24.一个水溶液共有S 种溶质,相互之间无化学反应。

物理化学《相平衡》习题及答案

物理化学《相平衡》习题及答案

物理化学《相平衡》习题及答案选择题1.二元恒沸混合物的组成(A)固定(B) 随温度而变(C) 随压力而变(D) 无法判断答案:C2.一单相体系, 如果有3种物质混合组成, 它们不发生化学反应, 则描述该系统状态的独立变量数应为(A) 3个 (B) 4个 (C) 5个 (D) 6个答案:B。

F=C-P+2=3-1+2=43.通常情况下,对于二组分物系能平衡共存的最多相为(A) 1 (B) 2 (C) 3 (D) 4 答案:D。

F=2-P+2=4-P,F不能为负值,最小为零。

当F=0时P=4。

4.正常沸点时,液体蒸发为气体的过程中(A) ΔS=0 (B) ΔG=0 (C) ΔH=0 (D) ΔU=0 答案:B。

此为可逆过程故ΔG=0。

5.以下各系统中属单相的是(A) 极细的斜方硫和单斜硫混合物 (B) 漂白粉 (C) 大小不一的一堆单斜硫碎粒(D) 墨汁答案:C。

6.NaCl(s), NaCl水溶液及水蒸汽平衡共存时, 系统的自由度(A) F=0 (B) F=1 (C) F=2 (D) F=3 答案:B。

F=C-P+2,C=2,P=3,故F=2-3+2=1。

7.如果只考虑温度和压力的影响, 纯物质最多可共存的相有(A) P=1 (B) P=2 (C) P=3 (D) P=4答案:C。

F=C-P+2=1-P+2=3-P,当F最小为零时P=3。

8.对于相律, 下面的陈述中正确的是(A) 相律不适用于有化学反应的多相系统 (B) 影响相平衡的只有强度因素(C) 自由度为零意味着系统的状态不变 (D) 平衡的各相中, 系统包含的每种物质都不缺少时相律才正确答案:B9.关于三相点, 下面的说法中正确的是(A) 纯物质和多组分系统均有三相点 (B) 三相点就是三条两相平衡线的交点(C) 三相点的温度可随压力改变 (D) 三相点是纯物质的三个相平衡共存时的温度和压力所决定的相点答案:D10.用相律和Clapeyron•方程分析常压下水的相图所得出的下述结论中不正确的是(A) 在每条曲线上, 自由度F=1 (B) 在每个单相区, 自由度F=2(C)在水的凝固点曲线上, ΔHm(相变)和ΔVm的正负号相反(D)在水的沸点曲线上任一点,压力随温度的变化率都小于零。

葛华才编物理化学3-4章习题详细答案

葛华才编物理化学3-4章习题详细答案

17
葛华才编.《物理化学》 (多媒体版)配套部分章节的计算题解.高等教育出版社
B,试求过程的mixVm,mixHm,mixSm,mixGm。假设 A 和 B 能形成理想液态混合物。 解: 混合过程如下 0.6mol A+0.4mol B nB*=1.4mol G1 nA*=0.6mol nB*=1.8mol mixG 0.6mol A +1.8mol B G2
第三章 多组分系统
三、计算题答案 1. 两种挥发性液体 A 和 B 混合形成理想液态混合物,某温度时液面的蒸汽总压为 5.41×104 Pa,气相 中 A 物质的量分数为 0.450,液相中为 0.650。试求此温度时纯 A 和纯 B 的蒸汽压? 解:由题意得 p*B=p yB/ xB=5.41× 104Pa × (1-0.450)/(1-0.650)=8.50× 104 Pa p*A=p yA/ xA= 5.41× 104Pa× 0.450/0.650=3.75× 104 Pa 2. 总压为 1.01×106 Pa 的 N2、H2、O2 的混合气体,与纯水达到平衡后,形成稀溶液。溶液中三种气 体的浓度相等。已知三种气体的亨利常数为:kx(N2)=1.199×109Pa,kx(H2)=1.299×109 Pa,kx(O2) =2.165× 109 Pa。问气体混合物的原来组成为多少?(以物质的摩尔分数表示) 解:由题意得 c(N2)= c(H2)= c(O2) n=cV 根据亨利定律得: p(N2)= kx(N2) x(N2);p(H2)= kx(H2) x(H2); p(O2)= kx(O2) x(O2) 又因为 p(N2)= p y(N2);所以 y(N2)= p(N2)/p= kx(N2) x(N2)/[ kx(N2) x(N2)+ kx(H2) x(H2)+ kx(O2) x(O2)] 将(1),(2)代入得 y(N2)= kx(N2)/[ kx(N2) + kx(H2) + kx(O2)]=1.199/(1.199+1.299+2.165)=0.2571 同理得: y(H2)=0.2786; y(O2)=0.4643 (1) (2)

物理化学答案——第四章_化学平衡习题解答[1]

物理化学答案——第四章_化学平衡习题解答[1]

第四章 化学平衡一、基本公式和内容提要 1. 化学反应的方向和限度(1)反应系统的吉布斯自由能和反应进度反应进行过程中,A 和B 均各以纯态存在而没有相互混合,则在反应进度为ξ时反应体系的总吉布斯自由能G *为:G * = n A μA * + n B μB * = (1-ξ)μA * +ξμB * = μA * +ξ(μB * -μA *)对于封闭体系在定温定压下在反应实际进行过程中,A 和B 是不可能以纯态存在的。

它们是混合在一起的,因此还存在混合吉布斯自由能△mix G 。

△mix G = RT (n A lnX A + n B lnX B ) = RT [(1-ξ)ln(1-ξ) + ξlnξ](2)化学反应标准平衡常数理想气体的化学反应()()()()aA g bB g gG g hH g −−→++←−− bB a A hH gG P P P P P P P P )/()/()/()/(θθθθ= e )--(1θθθθμμμμB A H G b a h g RT-+= 常数 = K θK θ称为标准平衡常数。

(3)化学反应的等温方程式(a )对任意反应达平衡时:△r G m θ = -RTlnK θ△r G m θ是指产物和反应物均处于标准态时,产物的吉布斯自由能和反 应物的吉布斯自由能总和之差,称为反应的“标准吉布斯自由能变化”。

(b )反应在定温定压条件下△r G m = △r G m θ+ RT ln Q p上式称为范特霍夫(Vait Hoff) 等温方程。

(c )依据吉布斯自由能函数可判断反应进行的方向,在温度、压力一定的条件下:RT ln Q a < RTlnK θ Q a <K θ △r G m <0 反应正向自发进行 若 RT ln Q a >RTlnK θ Q a >K θ △r G m >0 反应逆向自发进行若 RT ln Q a = RTlnK θ Q a = K θ △r G m =0 反应达平衡 2. 反应的标准吉布斯自由能变化 (1)化学反应的△r G m 与△r G m θ(a )在一定温度和压力为p θ下,任何物质的标准态化学势μi θ都有确定值,所以任何化学反应的△r G m θ都是常数;(b )△r G m 不是常数,在一定T ,p 下,它与各物质的活度(分压、浓度)等有关,即与Q a 有关;(c )在定温定压条件下0W '=时,△r G m 的正负可以指示化学反应自发进行的方向,在定温下△r G m θ的正负通常不能指示反应进行的方向,根据公式△r G m = △r G m θ+ RT ln Q p ,但当△r G m θ的数值很大时,也可用其值估计反应的方向。

物理化学第三章课后答案完整版

物理化学第三章课后答案完整版

第三章热力学第二定律3.1 卡诺热机在的高温热源和的低温热源间工作。

求(1)热机效率;(2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热。

解:卡诺热机的效率为根据定义3.2 卡诺热机在的高温热源和的低温热源间工作,求:(1)热机效率;(2)当从高温热源吸热时,系统对环境作的功及向低温热源放出的热解:(1) 由卡诺循环的热机效率得出(2)3.3 卡诺热机在的高温热源和的低温热源间工作,求(1)热机效率;(2)当向低温热源放热时,系统从高温热源吸热及对环境所作的功。

解: (1)(2)3.4 试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功r W 等于不可逆热机作出的功-W 。

假设不可逆热机的热机效率大于卡诺热机效率,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克劳修斯说法。

证: (反证法) 设 r ir ηη>不可逆热机从高温热源吸热,向低温热源放热,对环境作功则逆向卡诺热机从环境得功从低温热源吸热向高温热源放热则若使逆向卡诺热机向高温热源放出的热不可逆热机从高温热源吸收的热相等,即总的结果是:得自单一低温热源的热,变成了环境作功,违背了热力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。

3.5 高温热源温度,低温热源温度,今有120KJ的热直接从高温热源传给低温热源,求此过程。

解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6 不同的热机中作于的高温热源及的低温热源之间。

求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。

(1)可逆热机效率。

(2)不可逆热机效率。

(3)不可逆热机效率。

解:设热机向低温热源放热,根据热机效率的定义因此,上面三种过程的总熵变分别为。

3.7 已知水的比定压热容。

今有1 kg,10℃的水经下列三种不同过程加热成100 ℃的水,求过程的。

(1)系统与100℃的热源接触。

(2)系统先与55℃的热源接触至热平衡,再与100℃的热源接触。

物理化学上策化学平衡1、2、3及答案

物理化学上策化学平衡1、2、3及答案

物理化学上策化学平衡1、2、3及答案物理化学化学平衡1试卷一、选择题 ( 共21题 40分 )1. 2 分 (3338) 下述说法中哪一种正确(A) 增加压力一定有利于液体变为固体 (B) 增加压力一定不利于液体变为固体(C) 增加压力不一定有利于液体变为固体 (D) 增加压力与液体变为固体无关2. 2 分 (2799) 对反应CO(g)+H 2O(g)=H 2(g)+CO 2(g)(A) K p $=1 (B) K p $=K c (C) K p $>K c (D) K p $<K c3. 2 分 (2913) Ag 2O 分解可用下面两个计量方程之一表示,其相应的平衡常数也一并列出: Ag O s Ag s O g 22212()()()→+ K P ()1 2422Ag O s Ag s O g ()()()→+ K p ()2设气相为理想气体,且已知反应是吸热的,试判断下列结论哪个是正确的:()(A )K K P P ()()2112= (B )K K p p ()()21=(C )K p ()2随温度的升高而增大(D )O 2气的平衡压力与计量方程的写法无关4. 2 分 (3339) 反应 A+3B 2C ,已知:A B C Δf H m $(298 K)/kJmol -1 0 0 -44 S m $(298 K) /JK -1mol -1 180 120 180 C ,m p $(298 K)/JK -1mol -1 30 20 30298 K 时反应的: ( )(A) (ΔS m $/T )p > 0 , (Δr G m $/T )p > 0 , (ln K /T )p > 0 ;(B) (ΔS m $/T )p < 0 , (Δr G m $/T )p < 0 , (ln K /T )p < 0 ;(C) (ΔS m $/T )p < 0 , (Δr G m $/T )p > 0 , (ln K /T )p > 0 ;(D) (ΔS m $/T )p < 0 , (Δr G m $/T )p >0 , (ln K /T )p < 0 。

物理化学第三章习题答案

物理化学第三章习题答案
nT T12 ?
S3 nC p,m(s)lnT T21 ?
S2
nfusHm T2
?
S ?
G H T S ?
12. 在400K、标准压力下,理想气体间进行下列 恒温、恒压化学反应:A(g)+ 2B(g)→ 3C(g)+ D (g)
求进行1mol上述反应的AΔrGmθ已B知25℃数C据如下:D
G H T S 56 2 21 .6 1 0 ( 3 5-2 05) . 5 22 1 .4J 27
8. 1 mol液体水于298.15K,101.325 kPa下蒸发为水蒸气,
试计算此过程的W、Q、∆U、∆H、∆S及 ∆G,
并判断此过程能否自发进行.已知在298.15K、3.167 kPa
H 2
H 2 O (l) H 2 O (g)
H H 2
29 .18 K 5 ,p23.16 k7 Pa 29.185K,3.16k7Pa
U H p ( V g V l) H p g V H n R ? T
S S 1 S 2 S 3
S1 0
S3
nRln 3.167 10.1325
何者可以作为上述过程是否自发进行的判据。 请计算出具体数值来说明。
C 6H 6(l) 不 可 C 逆 6H 6(g) H
35.23K 5,10.312k5Pa 35.23K 5,10.312k5Pa
可逆
H n v a H p m3.7 0k 7J
U H p ( V g V l) H p g V H n R 2 . 0 k 8 T 8 J
已知H2O(l)在298.15K时饱和蒸气压为3.168kPa, H2O(l)的摩尔体积为 18.02 mL/mol 。
p1

物理化学核心教程第三版沈文霞答案第三章相平衡

物理化学核心教程第三版沈文霞答案第三章相平衡

物理化学核心教程第三版沈文霞答案第三章相平衡1、50.下列现象中与电视机的荧光屏表面常沾有许多灰尘的物理道理相同的是()[单选题] *A.塑料梳子梳头发,头发变得蓬松B.冬天脱毛衣时产生电火花C.塑料泡沫容易吸在化纤衣服上(正确答案)D.油罐车后拖有长长的铁链2、原子核分裂或聚合,可以释放出巨大的能量,这种能叫做化学能[判断题] *对错(正确答案)答案解析:核能不是化学能3、其原因错误的是()*A.使用的用电器总功率过大B.电路中有断路(正确答案)C.开关接触不良(正确答案)D.电路的总电阻过大(正确答案)4、57.彩色电视机荧光屏上呈现各种颜色,都是由三种基本色光混合组成的,这三种基本色光是()[单选题] *A.红、橙、绿B.红、绿、蓝(正确答案)C.蓝、靛、紫D.红、黄、蓝5、31.在生产和生活中,人们常以密度作为选择材料的主要因素。

下面属于主要从密度的角度考虑选材的是()[单选题] *A.用铁制作炒锅B.用塑料泡沫做表演场景中的“落石”(正确答案)C.用水银做温度计内的液体D.用软木做暖壶瓶塞6、41.下列物态变化现象中,说法正确的是()[单选题] *A.夏天从冰箱取出的冰棍周围冒“白气”,这是空气中水蒸气的凝华现象B.市场上售卖“冒烟”的冰激凌,是由于其中的液氮汽化吸热致使水蒸气液化形成(正确答案)C.在饮料中加冰块比加冰水的冰镇效果更好,是因为冰块液化成水的过程中吸热D.手部消毒可以用酒精喷在手上,感到凉爽是因为酒精升华吸热7、38.在日常生活中,常见的几种物态变化现象中,属于液化的是()[单选题] *A.太阳光下晒的衣服变干B.房间窗户玻璃的内表面出现冰花C.湖面结了一层厚厚的冰D.在炎热的夏天,从冷饮柜中取出啤酒瓶,啤酒瓶变得模糊(正确答案)8、10.用同种材料制成体积相等的甲、乙两个小球,其中一个是实心的,另一个是空心的。

甲、乙两球的质量之比为5:3,则下列说法错误的是()[单选题] *A.甲球是实心的B.乙球是实心的(正确答案)C.空心金属球的空心部分与实心部分的体积之比为2:3D.空心金属球的空心部分与整个球的体积之比为2:59、错答案解析:应要先刹后轮,但不能抱死,否则会失控。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化学平衡课后习题一、是非题下列各题中的叙述是否正确正确的在题后括号内画“”,错误的画“”。

1. 某一反应在定温、定压且无非体积功的条件下,当该反应的r G m <0时,则该反应能正向进行。

( )2. 如果某一化学反应的r H 0,该反应的K 随着温度升高而减小。

( )3. 对理想气体反应:0 = BB B ,在定温定压下当BB >0时,随着惰性气体的加入而平衡向左移动。

( )4. 对理想气体反应:0 = BB B ,在定温定压下当BB >0时,随着惰性气体的加入而平衡向左移动。

(9. 如果某一化学反应的r H 不随温度变化,那么其r S 也不随温度变化,但是其r G 却与温度有关。

( ) 5. 对于真实气体混合物的反应,该反应的标准平衡常数K 仅仅是温度的函数。

( )二、选择题选择正确答案的编号,填在各题后的括号内:1. PCl 5的分解反应PCl 5(g) == PCl 3(g) + Cl 2(g) 在473 K 达到平衡时PCl 5(g) 有%分解,在573 K 达到平衡时,有97 %分解,则此反应是( ) (1)吸热反应; (2)放热反应; (3)反应的标准摩尔焓变为零的反应;(4)在这两个温度下标准平衡常数相等的反应。

2. 设反应 a A(g ) == y Y(g) + z Z(g),在 kPa 、300 K 下,A 的转化率是600 K 的2倍,而且在300 K 下系统压力为101 325 Pa 的转化率是2×101 325 Pa 的2 倍,故可推断该反应 ( )(1)标准平衡常数与温度,压力成反比; (2)是一个体积增加的吸热反应 ; (3)是一个体积增加的放热反应;(4)标准平衡常数与温度成正比,与压力成反比。

3.理想气体反应N 2O 5(g )== N 2O 4(g )+1/2O 2(g )的r H 为mol -1,∑=0)(,B C mp B ν。

要增加N 2O 4(g )的产率可以( )(1)降低温度; (2)提高温度;(3)提高压力; (4)定温定容加入惰性气体。

4. 影响任意一个化学反应的标准平衡常数值的因素为:( )。

(1) 催化剂 ;(2) 温度 ; (3) 压力 。

5. 温度升高时,固体氧化物的分解压力(分解反应是吸热反应):( ) (1)降低; (2)增大;(3)恒定; (4)无法确定。

6. 反应 2NO(g) + O 2(g) == 2NO 2(g) 是放热的, 当反应在某温度、压力下达平衡时,若使平衡向右移动。

则应采取的措施是:( )(1)降低温度和减小压力;(2)降低温度和增大压力; (3)升高温度和减小压力;(4)升高温度和增大压力。

三、填空题在以下各小题的“”处填上答案。

1. 某气相反应A ==Y+ Z 是吸热反应, 在 25 ℃时其标准平衡常数K =1 , 则25 ℃时反应的r S 0,此反应在40 ℃时的K 25 ℃时的K 。

(选填 ,=,)四、计算题1.将丁烯脱氢制取丁二烯的反应如下: C 4H 8(g)=C 4H 6(g)+H 2(g) 各物质在298K 的△r m r m (2) 计算该反应在298K 的△r G m 和K ;(3) 计算该反应830K 的K (假定该反应的△r H m 不随温度而变);(4)为提高丁烯的转化率,在反应时加入惰性气体水蒸气。

若反应开始时,丁烯与水蒸气物质的量之比为1:15,反应在830K,条件下进行,C 4H 8(g)的平衡转化率为多少2.在1500K 下,金属Ni 土存在总压为的CO(g)和CO 2(g)混合气体,可能进行的反应为:Ni(s)+CO 2(g)=NiO(s)+CO(g) 为了不使Ni(s)被氧化,在上述混合气体中CO 2(g)的分压力p(CO 2)不得大于多大的压力已知下列反应的△r G m 与温度T 的关系为:(ⅰ)2Ni(s)+O 2(g)=2NiO(s), △r G m ,i =(-+K)kJ·mol-1 (ⅱ)2C(石墨)+O 2(g)=2CO(g), △r G m,ii =(--K)kJ·mol-1 (ⅲ)C(石墨)+O 2(g)=CO2(g), △r G m,iii =(--×10-3T /K)kJ·mol-13.已知下列反应在373K时,K =×108 CO(g)+Cl 2(g)=COCl 2(g) (1)已知上述反应的△r S m (373k)=·mol -1·K -1 ,求COCl 2(g)的解离反应在373K下的△r H m =___;(2) 设反应的∑B C p ,m =0,且反应开始时系统中只有COCl 2(g),则保持系统压力的条件下,若要COCl 2(g)的解离度为,则反应温度为_______(p =100kPa)。

4.在200K~400K 湿度范围内,反应 NH 4Cl(s)=NH 3(g)+HCl(g)的标准平衡常数与T 的关系为:K/91272.16lg T K -=(1)计算300K 时,反应的△r H m ,△r G m ,△r S m ;(2)在300K 时,若反应开始只有NH 4Cl(s)放在一真空容器内,求平衡时HCl(g)的分压;化学平衡习题答案一、是非题1. 2. 3. 4. 5.二、选择题1.(1)2.(2)3.(1)4.(2)5.(2) 6(2)三、填空题 1. >, >四、计算题 1.【题解】:(1) △r H m (298K)=∑B △f H m (B,298K)=[-(-]kJ·mol -1=·mol -1△r S m (298K) =∑B S m (B,298K)=·mol -1·K -1(2) △r G m (298K)= △r H m (298K)-298K×△r S m (298K)=××10-3)kJ·mol -1 =·mol -1 由 △r G m (298K)=-298Rln K (298K)㏑K (298K)= 1113K mol 8.314J 298K mol J 1079.26---⋅⋅⨯⋅⨯-解得 K =×10-14 (3)由㏑)K 8301K 2981()K 298()K 298()K 830(m r -∆=R H K K)K 8301K 2981(Kmol 8.314J mol J 10110.191113-⋅⋅⋅⨯=--- 解得 K (830K)=×10-2(4) C 4H 8(g) = C 4H 6(g) + H 2(g)开始:n /mol 1 0 0平衡:n eq /mol 1-x A x A x A平衡:∑n eq =[(1-x A )+x A +x A +15]=(16+x A )mol2AA 2AA 1007.3/)161()/16()K 830(-⨯=+-+= p p x x p p x x K代入p =,解得,C 4H 8(g)的平衡转化率x A =【剖析】:本题从物质的热力学数据△f H m (298K)、S m (298K)出发计算反应的△r H m (298K)及△r S m (298K),继而算出△r G m (298K),并算得K (298K),再忽略温度对△r H m 的影响,由范特荷夫方程算出830K 时的K (830K),最后利用K (830K),计算C 4H 8(g)脱氢制取丁二烯时,C 4H 8(g)的平衡转化率。

比较全面考察了标准平衡常数的热力学计算及其应用。

这一整套热力学计算的思路,是必须掌握的重点内容。

2.【题解】:可能进行的反应=11(i)(ii)(iii)22⨯+⨯-反应反应反应, 故可能进行的反应的iii m,ii m,i m,m r r 21r 21)(r G G G T G ∆-∆⨯+∆⨯=∆则11()[(489.10.1917/K)(223.00.1753/K)r m 2231(394.00.8410/K)] kJ mol G T T T T ∆=⨯-++⨯-------⨯⋅ 1m ol K)kJ /0117.09.37(-⋅+=T得 △r G m (1500K)=·mol由 △r G m (T )=-RT lnK(T )△r G m (1500K)=-1500K R ln K (1500K) ·mol -1=-1500K×·mol -1·K -1K (1500K) 解得 K (1500K)=而 )CO ()CO (kPa 325.101/)CO (/)CO ()K 1500(222p p p p p p J -==为使可能进行的反应不发生,则根据范特荷夫定温方程△r G m (1500K)=-RT ln K (1500K)+RT ln J (1500K)J >K , △r G m (1500K)>0才行。

故0117.0)CO ()CO (kPa 325.10122>-p p即p (CO 2)不得大于【剖析】:本题所给反应是理想气体纯固体的多相反应。

(i)先由给定的三个反应△r G m与温度T 的关系式通过线性组合求出可能发生的反应的△r G m (1500K) ,进而求出K (1500K);(ii)再列出J (1500K)的表达式,此时应注意对有纯固体参加的多相反应的表达式,式中只出现气体的分压;(iii)最后根据范特荷夫定温方程,确定防止可能进行的反应发生,CO 2(g)分压的最大值。

3.【题解】:(1)已知COCl 2(g)的合成反应K (373K)=×108,则其解离反应的88108.01025.11)K 373(1)K 373(-⨯=⨯=='K K 故COCl 2解离反应的△r G m ’(373K)=-RT ln K ’(3773K)=·mol -1·K -1×373Kln×10-8) =·mol -1 而解离反应的△r S m ’(373K)=-△r S m (373K)=·mol -1·K -1所以解离反应△r H m ’(373K)= △r G m ’(373K)+373K △r S m ’(373 K)=·mol -1+373K×·mol -1·K -1 =104635J·mol -1(2) COCl 2(g)=CO(g)+Cl 2(g) 开始n /mol : 1 0 0 平衡n eq /mol : 平衡 ∑n eq /mol=++=1+p p p p p p T K/)COCl (]/)Cl (][/)CO ([)(22=')/(001.1001.01)/001.1001.0(2p p p p -= 代入p =200kPa,解得K ’(T)=2×10-6因解离反应的△r C p ,m =0,即△r H m ’与温度无关,则由范特荷夫方程:)1K 3731(r )K 373()(lnm TR H K T K -'∆=''代入K ’(373K)=×10-8, △r H m ’(373K)=104635J·mol -1, 解得 T =446K 【剖析】:解本题需要正确应用最基本的热力学公式外,关键还在于要把COCl 2(g)解离反应与合成反应的标准平衡常数的关系(互为倒数,即)(1)(T K T K=')以及热力学函数变化值的关系[正、负号相反,如 )()(m r m r T S T S∆='∆, )()(m r m r T H T H∆='∆,)()(m r m r T G T G ∆='∆]理顺,这是是否得到正确结果的关键所在,稍不留神就会铸成错误。

相关文档
最新文档