1.3.2-1函数的奇偶性 课件

合集下载

高一数学人教A版必修1课件1321函数的奇偶性

高一数学人教A版必修1课件1321函数的奇偶性

总结:(1)偶函数 一般地,如果对于函数 f(x)的定义域内 每 一个 x,都有 f(-x)=f(x) ,那么函数 f(x)就叫做偶函数. (2)奇函数 一般地,如果对于函数 f(x)的定义域内 每 一个 x,都有 f(-x)=-f(x) ,那么函数 f(x)就叫做奇函数.
【归纳提升】 (1)奇偶函数的定义域关于原点对称,如 果函数的定义域不关于原点对称,则此函数既不是奇函数也 不是偶函数.
(6)显然函数 f(x)的定义域关于原点对称. 当 x>0 时,-x<0,f(-x)=x2-x=-(x-x2)=-f(x), 当 x<0 时,-x>0,f(-x)=-x-x2=-(x2+x)=-f(x), ∴f(-x)=-f(x), ∴函数 f(x)为奇函数.
2 利用函数的奇偶性求解析式
学法指导:利用函数奇偶性求函数解析式 利用函数奇偶性求函数解析式的关键是利用奇偶函数的 关系式 f(-x)=-f(x)或 f(-x)=f(x)成立,但要注意求给定哪 个区间的解析式就设这个区间上的变量为 x,然后把 x 转化 为-x(另一个已知区间上的解析式中的变量),通过适当推导, 求得所求区间上的解析式.
[例 2] 已知函数 y=f(x)的图象关于原点对称,且当 x>0 时,f(x)=x2-2x+3.试求 f(x)在 R 上的表达式,并画出它的图 象,根据图象写出它的单调区间.
[分析] 由函数图象关于原点对称可知 y=f(x)是奇函 数.利用奇函数性质可求得解析式.
[解析] ∵函数 f(x)的图象关于原点对称. ∴f(x)为奇函数,则 f(0)=0, 设 x<0,则-x>0,∵x>0 时,f(x)=x2-2x+3, ∴f(x)=-f(-x)=-(x2+2x+3)=-x2-2x-3 于是有:

必修1课件1.3.2 奇偶性

必修1课件1.3.2 奇偶性

用定义判断函数奇偶性的步骤:
(1)、先求定义域,看是否关于原点对称; (2)、再判断f(-x)=-f(x)或f(-x)=f(x)是否恒成立.
知识探究(一)
思考1:是否存在函数f(x)既是奇函数又是偶函数?若 存在,这样的函数有何特征? f(x)=0 思考2:一个函数就奇偶性而言有哪几种可能情形? 思考3:若f(x)是定义在R上的奇函数,那么 f(0)的 值如何? f(0)=0 思考4:如果函数f(x)具有奇偶性,a为非零常数,那 么函数af(x),f(ax)的奇偶性如何? 思考5:常数函数
2
思考3:二次函数 f ( x) ax bx c 是偶函数的条
件是什么?
一次函数 f ( x) kx b是奇函数的条件是什么? b=0
课堂练习
判断下列函数的奇偶性:
1 (1) f ( x) x x (3) f ( x) 5 (5) f ( x) x 1
(2) f ( x) x 1
知识探究(一)
考察下列两个函数:
(1) f ( x) x
y o
2
(2) f ( x) | x |
y o x
x
图(1)
图(2)
思考1:这两个函数的图象分别是什么?二者有何共 同特征? 思考2:对于上述两个函数,f(1)与f(-1),f(2)与f(-2), f(3)与f(-3)有什么关系?
思考3:一般地,若函数y=f(x)的图象关于y轴对称, 则f(x)与f(-x)有什么关系?反之成立吗?
y
相等
0
x
例3.已知f(x)是奇函数,且当 x 0时,f ( x) x 3x
2
求当 x 0 时f(x)的解析式.

第一章 1.3.2 第1课时 奇偶性的概念

第一章 1.3.2 第1课时  奇偶性的概念

第一章 1.3.2奇偶性第1课时奇偶性的概念学习目标 1.了解函数奇偶性的定义.2.掌握函数奇偶性的判断和证明方法.3.会应用奇、偶函数图象的对称性解决简单问题.知识点一函数奇偶性的几何特征一般地,图象关于y轴对称的函数称为偶函数,图象关于原点对称的函数称为奇函数.知识点二函数奇偶性的定义函数奇偶性的概念:(1)偶函数:如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.其实质是函数f(x)上任一点(x,f(x))关于y轴的对称点(-x,f(x))也在f(x)图象上.(2)奇函数:如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.其实质是函数f(x)上任一点(x,f(x))关于原点的对称点(-x,-f(x))也在f(x)的图象上.知识点三奇(偶)函数的定义域特征及奇(偶)函数的性质1.奇(偶)函数的定义域关于原点对称.2.重要性质(1)奇函数在区间[a,b]和[-b,-a](b>a>0)上有相同的单调性.(2)偶函数在区间[a,b]和[-b,-a](b>a>0)上有相反的单调性.1.奇、偶函数的定义域都关于原点对称.( )2.函数f(x)=x2+|x|的图象关于原点对称.()3.对于定义在R上的函数f(x),若f(-1)=f(1),则函数f(x)一定是偶函数.()4.存在既是奇函数又是偶函数的函数,且不止一个.()题型一函数奇偶性的判断例1 判断下列函数的奇偶性.(1)f (x )=1x; (2)f (x )=x 2(x 2+2);(3)f (x )=x x -1; (4)f (x )=x 2-1+1-x 2.反思感悟 利用定义法判断函数是否具有奇偶性时,首先应看函数定义域是否关于原点对称,即对于定义域内的任意一个x ,-x 也一定属于定义域.其次验证f (-x )=f (x )或f (-x )=-f (x )是否成立.跟踪训练1 判断下列函数的奇偶性.(1)f (x )=x ;(2)f (x )=1-x 2x; (3)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.题型二 利用函数的奇偶性求函数值(参数)例2 (1)已知函数f (x )=x 3+ax 2+bx +c 是定义在[2b -5,2b -3]上的奇函数,则f ⎝⎛⎭⎫12的值为( )A.13B.98C.1D.无法确定 (2)已知f (x )=x 7-ax 5+bx 3+cx +2,若f (-3)=-3,则f (3)=________.延伸探究1.本例(1)的条件改为“f (x )=ax 2+bx +b +1是定义在[a -1,2a ]上的偶函数”,求f ⎝⎛⎭⎫12的值.2.把本例(2)的条件“f (-3)=-3”换为“f (d )=10”,求f (-d )的值.(1)定义域含参数:奇、偶函数f (x )的定义域为[a ,b ],根据定义域关于原点对称,利用a +b =0求参数.(2)解析式含参数:根据f (-x )=-f (x )(f (x )为奇函数)或f (-x )=f (x )(f (x )为偶函数)列式,比较系数即可求解.跟踪训练2 已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x >0,ax 2+x ,x <0是奇函数,则a =________. 答案 1解析 当x <0时,-x >0,f (-x )=-(-x )2+(-x )=-x 2-x .又∵f (x )为奇函数,∴f (x )=-f (-x )=x 2+x ,即ax 2+x =x 2+x ,∴a =1.题型三 奇、偶函数图象的应用例3 定义在R 上的奇函数f (x )在[0,+∞)上的图象如图所示.(1)画出f (x )的图象;(2)解不等式xf (x )>0.反思感悟 可以用奇(偶)函数图象关于原点(y 轴)对称这一特性去画图,求值,求解析式,研究单调性.跟踪训练3 已知奇函数f (x )的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出函数f (x )在区间[-5,0]上的图象;(2)写出使f (x )<0的x 的取值集合.1.下列函数是偶函数的是( )A.y =xB.y =2x 2-3C.y =xD.y =x 2,x ∈(-1,1]2.函数f (x )=1x-x 的图象关于( ) A.y 轴对称B.直线y =-x 对称C.坐标原点对称D.直线y =x 对称 3.下列图象表示的函数具有奇偶性的是( )4.已知函数y=f(x)+x是偶函数,且f(2)=1,则f(-2)=________.5.若函数f(x)=(m-1)x2+(m-2)x+m2-7m+12为偶函数,则m的值是________.1.两个定义:对于f(x)定义域内的任意一个x,如果都有f(-x)=-f(x)⇔f(-x)+f(x)=0⇔f(x)为奇函数;如果都有f(-x)=f(x)⇔f(-x)-f(x)=0⇔f(x)为偶函数.2.两个性质:函数为奇函数⇔它的图象关于原点对称;函数为偶函数⇔它的图象关于y轴对称.3.证明一个函数是奇函数,必须对f(x)的定义域内任意一个x,都有f(-x)=-f(x).而证明一个函数不是奇函数,只要能举出一个反例就可以了.一、选择题1.下列函数中奇函数的个数为( )①f (x )=x 3;②f (x )=x 5;③f (x )=x +1x ;④f (x )=1x 2. A.1 B.2 C.3 D.42.已知f (x )是定义在R 上的奇函数,f (-3)=2,则下列各点中一定在函数f (x )的图象上的是( )A.(3,-2)B.(3,2)C.(-3,-2)D.(2,-3)3.设f (x )是定义在R 上的一个函数,则函数F (x )=f (x )-f (-x )在R 上一定( )A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数4.f (x )是定义在R 上的奇函数,下列结论中,不正确的是( )A.f (-x )+f (x )=0B.f (-x )-f (x )=-2f (x )C.f (-x )·f (x )≤0D.f (x )f (-x )=-1 5.设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)等于( )A.-3B.-1C.1D.36.设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是( )A.f (x )+|g (x )|是偶函数B.f (x )-|g (x )|是奇函数C.|f (x )|+g (x )是偶函数D.|f (x )|-g (x )是奇函数7.若f (x )=a -22x +1是定义在R 上的奇函数,则a 的值为( ) A.0 B.-1 C.1 D.2答案 C解析 ∵f (x )是定义在R 上的奇函数,∴f (0)=0即f (0)=a -220+1=0,∴a =1.8.如图,给出奇函数y=f(x)的局部图象,则f(-2)+f(-1)的值为()A.-2B.2C.1D.09.若f (x )=(x +a )(x -4)为偶函数,则实数a =________.10.已知函数f (x )是奇函数,当x ∈(-∞,0)时,f (x )=x 2+mx .若f (2)=-3,则m 的值为________.11.函数f (x )=ax 3+bx +c x+5,满足f (-3)=2,则f (3)的值为________.三、解答题12.判断下列函数的奇偶性:(1)f (x )=x 3+x 5;(2)f (x )=|x +1|+|x -1|;(3)f (x )=2x 2+2x x +1.13.(1)如图①,给出奇函数y =f (x )的局部图象,试作出y 轴右侧的图象并求出f (3)的值.(2)如图②,给出偶函数y =f (x )的局部图象,试作出y 轴右侧的图象并比较f (1)与f (3)的大小.14.已知函数f (x )=x 2+x +1x 2+1,若f (a )=23,则f (-a )=________. 15.函数f (x )的定义域D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明.。

高一数学必修一全套课件 PPT课件 人教课标版15

高一数学必修一全套课件 PPT课件 人教课标版15
1.3.2 奇偶性 第一课时 函数的奇偶性
问题提出
1.研究函数的基本性质不仅是解决实际问题的 需要,也是数学自身发展的必然结果. 例如事物 的变化趋势,利润最大、效率最高等,这些特性 反映在函数上,就是要研究函数的单调性及最值.
2.我们从函数图象的升降变化引发了函数的单
调性,从函数图象的最高点最低点引发了函数的
最值,如果从函数图象的对称性出发又能得到什
么性质?
函数的奇偶性
知识探究(一)
考察下列两个函数:
(1) f (x) x2 ;
yo
x
(2) f (x) | x |.
y
o
x
图(1)
图(2)
思考1:这两个函数的图象分别是什么?二者
有何共同特征?
思考2:对于上述两个函数,f(1)与f(-1), f(2)与f(-2),f(3)与f(-3)有什么关系?

52、思想如钻子,必须集中在一点钻下去才有力量。

53、年少时,梦想在心中激扬迸进,势不可挡,只是我们还没学会去战斗。经过一番努力,我们终于学会了战斗,却已没有了拼搏的勇气。因此,我们转向自身,攻击自己,成为自己最大的敌人。

54、最伟大的思想和行动往往需要最微不足道的开始。

55、不积小流无以成江海,不积跬步无以至千里。

56、远大抱负始于高中,辉煌人生起于今日。

57、理想的路总是为有信心的人预备着。

58、抱最大的希望,为最大的努力,做最坏的打算。

59、世上除了生死,都是小事。从今天开始,每天微笑吧。

60、一勤天下无难事,一懒天下皆难事。

61、在清醒中孤独,总好过于在喧嚣人群中寂寞。

新人教版高中数学《函数的奇偶性说课稿》精品PPT课件

新人教版高中数学《函数的奇偶性说课稿》精品PPT课件

-x0
0
x0
x
问题1:这两个函数图象的共同特征是什么? 问题2:如何用函数解析式表达该图象的这个特征?
教学过程分析
概 首先形成直观观念在“形”上图象关于Y轴对称,然后 念 引导学生从简单的特殊值发现, 比如f(-2)=f(2), 形 f(-3)=f(3)等,再通过独立思考、合作探究、动 成 手操作的学习方式得出对定义域内任意的x都有

例3、判断下列函数的奇偶性,并结合图程拓 度展象的重
学 在
生 思
都 维
有 训
发 练
展 ,
。 多
念 观察结论的正确性:
点想,少点算。
深 化
f(x)=x2 , x∈ [-1,2] f(x)=3x,x ∈[-1,1)
f(x)=1,x ∈ R
f(x)=√x-2+ √ 2-x
y
例4、已知y=f(x) (x∈R)是偶函数,
性的方法。
过程与方法目标:
1, 通过函数y=x2,y=|x|图象的观察、分析、讨论等数学活动过程,初步形成
偶函数的概念,类比研究y=x与y=1/x的图象,得出奇函数的概念。同时渗
透“数形结合” 、“由特殊到一般”、 “类比” 的思想方法。
2, 在概念运用的过程中,初步掌握从“数”与“形”两个途径判断奇偶性
f(-x)=f(x),师生共同总结出偶函数的概念。
教学过程分析
y

f(x1)


-x1

0
y=x
x1
x
f(-x1)
概念课的教学,应走出 “概念一带而过,练习铺 天盖地”的误区,走向 “重视过程、重视探究、 重视交流y” 的新天地。
y=1/x

高中数学第一章集合与函数概念1.3.2奇偶性第一课时函数奇偶性的定义与判定课件新人教A版

高中数学第一章集合与函数概念1.3.2奇偶性第一课时函数奇偶性的定义与判定课件新人教A版

自我检测
1.(偶函数定义)已知f(x)=ax2+bx是定义在[a-1,3a]上的偶函数,那么a+ b的值是( C )
(A)1 3
(B)
1 3
(C)
1 4
(D)-
1 4
2.(奇函数定义)已知f(x)=x3+2x,则f(a)+f(-a)的值是( A (A)0 (B)-1 (C)1 (D)2
)
3.(偶函数定义)f(x)为定义在R上的偶函数,若f(2)=3,则f(-2)等于 ( C ) (A)-3 (B)-2 (C)3 (D)2
得x2=1,即x=±1.
因此函数的定义域为{-1,1},关于原点对称. ……………………4分 又f(1)=f(-1)=-f(-1)=0,所以f(x)既是奇函数又是偶函数. …6分 (3)函数f(x)的定义域是(-∞,-1)∪(-1,+∞), …………………7分 不关于原点对称,所以f(x)既不是奇函数也不是偶函数. ………9分
所以f(x)在(-∞,1]上单调递增,f(0)=0,
画出函数的示意图.由图得,f(x)>0的解集是(0,2),故选D.
题型三 利用函数奇偶性求参数
x 1 x a 【例3】 (1)设函数f(x)= 为奇函数,则a= x
;
解析:(1)法一(定义法) 由已知 f(-x)=-f(x), 即
f x
[f(-x)≠0]是否等
②图象法:通过函数的图象可直观地看出函数的奇偶性.
③性质法:偶函数的和、差、积、商(分母不为零)仍为偶函数;奇函数的 和、差仍为奇函数;奇(偶)数个奇函数的积为奇(偶)函数;两个奇函数的 商(分母不为零)为偶函数;一个奇函数与一个偶函数的积为奇函数.

高中数学必修一课件 第一章集合与函数概念 1.3.2.1 奇偶性

高中数学必修一课件 第一章集合与函数概念 1.3.2.1 奇偶性

[规律方法] 1.(1)首先考虑定义域是否是关于原点对称,如 果定义域不关于原点对称,则函数是非奇非偶函数;(2)在定 义 域 关 于 原 点 对 称 的 前 提 下 , 进 一 步 判 定 f( - x) 是 否 等 于 ±f(x). 2.分段函数的奇偶性应分段说明f(-x)与f(x)的关系,只有 当对称区间上的对应关系满足同样的关系时,才能判定函数 的奇偶性.
4.若函数f(x)=(x+a)(x-4)为偶函数,则实数a=________. 解析 f(x)=x2+(a-4)x-4a, 又f(x)为偶函数, ∴a-4=0,则a=4. 答案 4
5.(1)如图①所示,给出奇函数y=f(x)的局部图象,试作出y 轴右侧的图象并求出f(3)的值; (2)如图②所示,给出偶函数y=f(x)的局部图象,比较f(1) 与f(3)的大小,并试作出y轴右侧的图象.
|1-m|<|m|.
-2≤m≤2, 即-1≤m≤3,
m>12.
因此,m 的取值范围为12<m≤2.
易错辨析 忽视定义域,错判函数的奇偶性 【示例】 判断函数 f(x)=(x-1) 11+ -xx的奇偶性. [错解] f(x)=- 1-x2·11+-xx=- 1+x1-x =- 1-x2, ∴f(-x)=- 1--x2=- 1-x2=f(x), ∴f(x)为偶函数.
互动探究 探究点1 奇函数、偶函数的定义域一定关于原点对称吗?为 什么? 提示 一定关于原点对称.由定义知,若x是定义域内的一 个元素,-x也一定是定义域内的一个元素,所以函数y=f(x) 具有奇偶性的一个必不可少的条件是:定义域关于原点对 称. 探究点2 有没有既是奇函数又是偶函数的函数? 提示 有.如f(x)=0,x∈R.
∴--22≤≤m1-≤m2,≤2, 1-m>m,

函数的奇偶性-精品PPT课件

函数的奇偶性-精品PPT课件

设计意图:帮助学生完善奇偶函数的定义
人民教育出版社A版必修一《1.3.2函数的奇偶性》 四
过程分析
(1) f x x4
(3) f x x
课堂练习,评价反馈
(2) f x x5
1 x2
例1. 用定义判断下列函数的奇偶性
1 x
(4) f x
(5) f ( x) x2 yx [1,3]
y
-a
(a,f(a)) a
o
x
f(-x)=-f(x)
图 像 性 质 判 断 步 骤
f(-x)=f(x)
(-a,f(-a)) x D
y
(-a,f(-a)) -a
关于原点对称 关于y轴对称
(a,f(a))
o
a
x
定义域是否关于原点对称.
xD
f(-x)=-f(x)
f(-x)=f(x)
人民教育出版社A版必修一《1.3.2函数的奇偶性》 四
观引起矛盾,这里单独列出作为一个教学步骤,是想突出 这个中心环节,并有意识地训练学生依据知觉中的分散的 已知知识给概念下定义的创造能力。到此给对象(偶函数) 以明确的定义是水到渠成

过程分析
植入探索,发现新知
(1)如何理解函数的奇偶性定义域内“任意”一个x? (2)试讨论:奇函数和偶函数的定义域的特征. (3)判断函数奇偶性的方法和步骤是什么?
过程分析
一看
课堂小节,反思提高
判断或证明函数奇偶性的基本步骤:
二找 三判断
看定义域
找关系
下结论
是否关于原点对称
f(x)与f(-x)
奇或偶
注意:若可以作出函数图象的,直接观察图象是否 关于y轴对称或者关于原点对称。

人教版函数的奇偶性-高中数学(共41张PPT)教育课件

人教版函数的奇偶性-高中数学(共41张PPT)教育课件

f(-x)= f(x) 函数f(x)叫作偶函数
图象关于 y轴 对称
f(-x)= -f(x) 函数f(x)叫作奇函数 图象关于 原点 对 称
3
知识点聚焦:
• 二、奇偶性
定义
如果函数f(x)是奇函数或是偶函数,那么就说函数 f(x)具有 奇偶性
图象特征 奇(偶)函数 图象关于原点或y轴对称
4
探究一 函数奇偶性的判断
∵f(x)是奇函数,

∴f(x)=-f(-x)=-[(-x)(1+x)]=x(1+x).
• 【答案】B
37
随堂训练
• 5.已知函数f(x)是定义域为R的奇函数且f(1)=-2,那么f(-1)+f(0)=( )

A.-2
B.0
C.1
D.2
38
解析:
• 【解析】函数f(x)是定义域为R的奇函数且f(1)=-2,

: 其实兴趣真的那么重要吗?很多事情我 们提不 起兴趣 可能就 是运维 我们没 有做好 。想想 看,如 果一件 事情你 能做好 ,至少 做到比 大多数 人好, 你可能 没有办 法岁那 件事情 没有兴 趣。再 想想看 ,一个 刚来到 人世的 小孩, 白纸一 张,开 始什么 都不会 ,当然 对事情 开始的 时候也 没有 兴趣这 一说了 ,随着 年龄的 增长, 慢慢的 开始做 一些事 情,也 逐渐开 始对一 些事情 有兴趣 。通过 观察小 孩的兴 趣,我 们可以 发现一 个规律 ,往往 不是有 了兴趣 才能做 好,而 是做好 了才有 了兴趣 。人们 总是搞 错顺序 ,并对 错误豪 布知晓 。尽管 并不绝 对是这 样,但 大多数 事情都 需要熟 能生巧 。做得 多了, 自然就 擅长了 ;擅长 了,就 自然比 别人做 得好; 做得比 别人好 ,兴趣 就大起 来,而 后就更 喜欢做 ,更擅 长,更 。。更 良性循 环。教 育小孩 也是如 此,并 不是说 买来一 架钢琴 ,或者 买本书 给孩子 就可以 。事实 上,要 花更多 的时间 根据孩 子的情 况,选 出孩子 最可能 比别人 做得好 的事情 ,然后 挤破脑 袋想出 来怎样 能让孩 子学会 并做到 很好, 比一般 人更好 ,做到 比谁都 好,然 后兴趣 就自然 出现了 。

1.3.2 奇偶性第一课时 课件(人教A版必修1)

1.3.2 奇偶性第一课时 课件(人教A版必修1)

课前自主学习
课堂讲练互动
课后智能提升
ቤተ መጻሕፍቲ ባይዱ
1.判断下列函数的奇偶性. (1)f(x)=|x+1|-|x-1|; (2)f(x)= 1 3 x2 ;
(3)f(x)= x-1+ 1-x.
解:(1)f(x)定义域为R,关于原点对称, 又f(-x)=|-x+1|-|-x-1|=|x-1|-|x+1| =-f(x), ∴f(x)为奇函数.
课前自主学习
课堂讲练互动
课后智能提升
(2)在判断 f(-x)与 f(x)的关系时,可以从 f(-x) 开始化简,也可以去考虑 f(-x)+f(x)或 f(-x)-f(x) f-x 是否为 0,当 f(x)不等于 0 时也可考虑, 与1或 fx -1 的关系.
3.奇、偶函数的图象特征 (1)如果一个函数是奇函数,则这个函数的图象 是以坐标原点为对称中心的中心对称图形.反之, 如果一个函数的图象是以坐标原点为对称中心的中 心对称图形,则这个函数是奇函数.
课前自主学习
课堂讲练互动
课后智能提升
1.3.2
第1课时
奇偶性
函数奇偶性的概念
课前自主学习
课堂讲练互动
课后智能提升
1.结合具体函数,了解函数奇偶性的含义. 2.掌握判断函数奇偶性的方法. 3.了解奇函数和偶函数的图象的特点.
课前自主学习
课堂讲练互动
课后智能提升
课前自主学习
课堂讲练互动
课后智能提升
课前自主学习
课堂讲练互动
课后智能提升
(2)定义域关于原点对称是函数具有奇偶性的前 提条件.由函数奇偶性的定义知,若x是定义域中的 一个数值,则-x必然在定义域中,因此,函数y= f(x)是奇函数或偶函数的一个必不可少的条件是定义 域在数轴上所示的区间关于原点对称.换言之,若 所给函数的定义域不关于原点对称,则函数一定不 具有奇偶性.如函数y=2x在(-∞,+∞)上是奇函数, 但在[-2,3] 上则无奇偶性可言. (3)既奇又偶函数的表达式是f(x)=0,x∈A,定 义域A是关于原点对称的非空数集. (4)若奇函数在原点处有定义,则有f(0)=0.

人教A版数学必修一1.3.2第1课时函数奇偶性的概念

人教A版数学必修一1.3.2第1课时函数奇偶性的概念

误区:判断函数的奇偶性时,因忽略定义域而出错
【典例】判断函数 f(x)=(x-1)
11+ -xx的奇偶性.
【错误解答】f(x)=- 1-x2·11+-xx =- 1+x1-x=- 1-x2, ∴f(-x)=- 1--x2=- 1-x2=f(x), ∴f(x)为偶函数.
【正确解答】函数f(x)的定义域为{x|-1≤x<1},不关于原 点对称,故此函数既不是奇函数又不是偶函数.
(2)用定义判断函数奇偶性的步骤为: ①求函数f(x)的定义域;
Байду номын сангаас
②判断函数f(x)的定义域是否关于原点对称,若不关于原点 对称,则该函数既不是奇函数,也不是偶函数,若关于原点对 称,则进行下一步;
③结合函数f(x)的定义域,化简函数f(x)的解析式; ④求f(-x); ⑤根据f(-x)与f(x)之间的关系,判断函数f(x)的奇偶性. (3)函数的奇偶性也可以用图象法判断,即若函数的图象关 于原点对称,则函数为奇函数;若函数图象关于y轴对称,则函 数为偶函数.此法多用在解选择、填空题中.
(3)∵4|x-+x22|≥-02,≠0, ∴f(x)的定义域为[-2,0)∪(0,2],关于原点对称. 此时 f(x)=|x+42-|-x22= 4-x x2. 又 f(-x)= 4---x x2=- 4-x x2=-f(x), ∴f(x)=|x+42-|-x22为奇函数.
x2+2x+3 x<0, 已知函数 f(x)=0 x=0,
4分
(2)f(x)的定义域是 R,
6分
又 f(-x)=|-x+1|+|-x-1|
=|x-1|+|x+1|=f(x),
∴f(x)是偶函数.
8分
(3)函数f(x)的定义域是(-∞,-1)∪(-1,+∞),10分 不关于原点对称, ∴f(x)是非奇非偶函数.12分

1.3.2函数的奇偶性

1.3.2函数的奇偶性

(3). f(x)=x+1
(4). f(x)=2x2 x∈[- 1 , 3]
解: (3)定义域为R ∵ f(-x)= -x+1
解: (4)∵定义域不关于原 点对称
- f(x)= -x-1
∴f(-x)≠f(x)
∴f(x)为非奇非偶函数
且f(-x)≠ –f(x)
y
∴f(x)为非奇非偶函数
y
-1 o
3x
函数为偶函数 函数图象关于y轴对称
2、奇函数定义:
作业:P36 练习1;P44A10
如果对于f(x)定义域内的任意一个x,都有f(-x)= -f(x),
那么函数f(x)就叫奇函数.
函数为奇函数 函数图象关于原点对称
3、奇、偶函数的定义域关于原点对称!
4、判断函数奇偶性的步骤: (1)先求定义域,看是否关于原点对称; (2)求出f(-x)并化简,判断f(-x)与f(x)关系; (3)作结论.
奇函数
{ 3、函数按奇偶性分类 偶函数 非奇非偶函数 既是奇函数又是偶函数f(x)=0
注意:
4、
例1. 判断下列函数的奇偶性
(1) f (x) x 1 ; x
(2)
f(x)

1 x2
练习. 判断下列函数的奇偶性
(1) f(x)=x3+2x
解: 定义域为R
∵f(-x)=(-x)3+2(-x)
函数为偶函数 函数图象关于y轴对称
思考(5.1)函数 f (x) x2, x [1, 2]是偶函数吗?偶函数
的定义域有什么特征?
y
x o
图(1)
偶函数的定义域 关于原点对称!
考察下列两个函数:
(1) f (x) x ;

函数的奇偶性课件

函数的奇偶性课件
如果函数 f(x)是奇函数或偶函数,我们就说函数 f(x)具有 __奇__偶__性______.
1.3.2 │ 预习探究
[思考] (1)为什么奇、偶函数的定义域一定要 关于原点对称?
(2)对于定义在 R 上的函数 f(x),若 f(-2)= f(2),则函数 f(x)一定是偶函数吗?
1.3.2 │ 预习探究
1.3.2 │ 考点类析
解:(1)由22+ -xx≥0,得定义域为[-2,2),不关于原点对称, 所以 f(x)是非奇非偶函数.
(2)x<-1 时,f(x)=x+2,-x>1,所以 f(-x)=-(-x)+ 2=x+2=f(x);
x>1 时,f(x)=-x+2,-x<-1,所以 f(-x)=-x+2= f(x);
1.3.2 │ 考点类析
考点类析
考点一 函数奇偶性的判断 重点探究型 [导入] (1)给出一个函数的解析式,你如何判断函数的奇偶性? (2)若给出一个函数的图像,你如何判断函数的奇偶性?
1.3.2 │ 考点类析
解:(1)先判断定义域是否关于原点对称,再检验 f(-x) =f(x)或 f(-x)=-f(x)是否恒成立;也可以作出函数的图像, 观察图像是否关于原点对称或关于 y 轴对称.
(2)若已知函数的图像,则观察图像是否关于原点或 y 轴 对称,依此判断函数的奇偶性.
1.3.2 │ 考点类析
考点二 利用函数奇偶性求参数的值 基础夯实型
例 2 (1)函数 f(x)=ax2+2x 是奇函数,则 a=__0______.
(2)若函数 f(x)=ax2+bx+3a+b 是偶函数,定义域为[a
-1≤x≤1 时,f(x)=0,-1≤-x≤1,所以 f(-x)=0=f(x). 所以对定义域内的每一个 x 都有 f(-x)=f(x),所以 f(x)是偶函 数.

1.3.2-1函数的奇偶性)

1.3.2-1函数的奇偶性)
问题提出
我们从函数图象的升降变化引发了函数的单 调性,从函数图象的最高点最低点引发了函数的 最值,如果从函数图象的对称性出发又能得到什 么性质?
知识探究(一)
考察下列两个函数:
(1) f ( x) x ;
2
(2)
y o
f ( x) |.x |y oxx图(1)
图(2)
思考1:这两个函数的图象分别是什么?二者 有何共同特征?
例3 确定函数 f ( x) x 2 | x | 3的单调区间.
2
作业:
P36练习:1,2
知识探究(二)
考察下列两个函数:
(1) f ( x) x ;
y o 图(1) x
1 (2) f ( x) . x y
o x 图(2)
思考1:这两个函数的图象分别是什么?二者 有何共同特征?
思考2:对于上述两个函数,f(1)与f(-1), f(2)与f(-2),f(3)与f(-3)有什么关系?
思考3:一般地,若函数y=f(x)的图象关于坐 标原点对称,则f(x)与f(-x)有什么关系?反 之成立吗? f(x)=-f(-x)
思考4:我们把具有上述特征的函数叫做奇函 数,那么怎样定义奇函数?
如果对于函数f(x)定义域内的任意一个x, 都有f(-x)=-f(x)成立,则称函数f(x)为奇 函数.
思考5:等式f(-x)=-f(x)用文字语言怎样表 述? 自变量相反时对应的函数值相反
思考6:函数 f ( x) x, x [1, 2] 是奇函数吗? 奇函数的定义域有什么特征? 奇函数的定义域关于原点对称
理论迁移
例1 判断下列函数的奇偶性:
以函数的奇偶性为标准,可以把函数分为 哪几类?
思考2:对于上述两个函数,f(1)与f(-1), f(2)与f(-2),f(3)与f(-3)有什么关系?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
既是奇函数又是偶函数
理论迁移
例1 判断下列函数的奇偶性: (1) f (x) x 1 ; (2) f (x) 1 x2 .
x
例2 确定函数 f (x) x2 2 | x | 3的单调区间.
y
x -1 o 1
作业: P36练习:1,2
f(x)=f(-x)
思考3:我们把具有上述特征的函数叫做偶函 数,那么怎样定义偶函数?
如果对于函数f(x)定义域内的任意一个x, 都有f(-x)=f(x)成立,则称函数f(x)为偶函数.
思考4:函数 f (x) x2, x [1, 2] 是偶函数
吗?偶函数的定义域有什么特征?
偶函数的定义域关于原点对称
1.3.2 函数的奇偶性
知识探究(一)
考察下列两个函数:
(1) f (x) x2 ;
yo
x
(2) f (x) | x | .
y
o
x
图(1)
图(2)
思考1:这两个函数的图象分别是什么?
二者有何共同特征?
思考2:一般地,若函数y=f(x)的图象关于y轴 对称,则f(x)与f(-x)有什么关系?反之成立吗?
知识探究(二)
考察下列两个函数:
(1) f (x) x ;
y
(2) f (x) 1 .
y
x
oபைடு நூலகம்
x
图(1)
o
x
图(2)
思考1:这两个函数的图象分别是什么? 二者有何共同特征?
思考2:一般地,若函数y=f(x)的图象关于坐标 原点对称,则f(x)与f(-x)有什么关系?反之成 立吗?
f(x)=-f(-x)
思考3:我们把具有上述特征的函数叫做奇函 数,那么怎样定义奇函数?
如果对于函数f(x)定义域内的任意一个x, 都有f(-x)=-f(x)成立,则称函数f(x)为奇函数.
思考4:函数 f (x) x, x [1, 2] 是奇函数吗?
奇函数的定义域有什么特征?
奇函数的定义域关于原点对称
思考5:函数 f(x)=0,x∈R 是偶函数吗?是奇 函数吗?
相关文档
最新文档