22.1一元二次方程(一)

合集下载

一元二次方程 海淀区练习册

一元二次方程 海淀区练习册

第二十二章 一元二次方程22.1 一元二次方程(1)学习要求:通过学习感受现实生活和学习环境中方程知识的实际意义、体会建模思想,接受和理解一元二次方程及相关概念,通过交流、辨析,能将方程化为一般形式,认识二次项系数、一次项系数、常数项等概念,并注意系数的符号.做一做: 填空题:1.一元二次方程5x 2=3x +2的一般形式是____________,它的二次项系数是______,一次项系数是______,常数项是______.2.已知方程(m +1)x 2-2mx =1是一元二次方程,那么m ≠______. 3.当m ______时,方程223213x x mx =--不是关于x 的一元二次方程.4.已知:方程(m 2-4)x 2-6(m -2)x +3m -4=0,当m ______时,它是一元二次方程,当m ______时,它是一元一次方程. 选择题:5.把方程(2x +1)(3x +1)=x 化成一般形式后,一次项系数和常数项分别是( ) (A)4,1 (B)6,1 (C)5,1 (D)1,6 6.下列方程中,一元二次方程是( ) (A)2x 4-5x 2=0 (B)(2x 2+7)2-3=0 (C)012=+xx(D)0312142=++-x x7.把方程(2x -1)(3x +2)=x 2+2化成一般形式后,二次项系数和常数项分别是( ) (A)5,-4 (B)5,1 (C)5,4(D)1,-4解答题:8.根据题意,列出方程:(1)一个三角形的底比高多2cm ,三角形面积是30cm 2,求这个三角形的底和高.(2)两个连续正整数的平方和是313,求这两个正整数.(3)已知两个数的和为6,积为7,求这两个数.问题探究:已知关于x 的一元二次方程3(x -k )2+4k -5=0的常数项等于1,则所得关于k 的一元二次方程的一般形式是什么?22.1 一元二次方程(2)学习要求:进一步理解一元二次方程的概念,灵活掌握二次项系数、一次项系数、常数项,体会一元二次方程与现实生活的关系.做一做: 填空题:1.方程(x +1)(x +2)=3化为一般形式是____________.2.两个连续奇数的积是255,求这两个数,若设较小奇数为x ,则根据题意,可得方程为____________.3.一个矩形的长比宽多2cm ,面积为30cm 2,求这个矩形的长与宽,设矩形的长为x cm ,列出方程为____________. 选择题:4.下列各方程中,一定是关于x 的一元二次方程的是( ) (A)mx 2+8x =6x (x -1)-2 (B)ax 2+bx +c =0 (C)(m 2+1)x 2-5x +3=0(D)x1+5x +8=05.下列各方程中,一定是关于x 的一元二次方程的个数是( )①1232=-x x ;②mx 2+nx -4=0;③11-=-x x x ;④x 2-x 2(1+x 2)-2=0 (A)4个 (B)3个 (C)2个 (D)1个6.长50cm ,宽30cm 的矩形薄铁片,在四个角截去四个大小相同的正方形,做成底面积为1200cm 2的无盖长方体盒子.设截去的小正方形边长为x cm ,列出的正确方程是( ) (A)(50-2x )(30-2x )=1200 (B)(50-x )(30-x )=1200 (C)(50-2x )(30-x )=1200 (D)50 ³30-4x 2=1200解答题:根据下列问题,列出方程(不必求解).7.学校有一块长方形空地,长42米,宽30米,准备在中间开辟花圃,四周修建等宽的林荫小道,使小道的面积和花圃面积相等,求小道的宽.问题探究:根据方程:(50+x )(40+x )=3000,你能结合身边的实际,编一个应用问题吗?试试看.22.2 降次——解一元二次方程(1)学习要求:在进一步理解一元二次方程的有关概念的基础上,结合平方根的意义,初步体会利用开平方可以将一些一元二次方程降次转化为一元一次方程.做一做:填空题: 1.x (x +2)=5(x +2)的一般形式是_______,其中二次项系数是______,一次项系数是______,常数项是______.2.若x =2满足方程x 2-12x -m =0,则m =______. 3.形如方程x 2=a (a ≥0)的解是______.4.形如方程(x +m )2=n (n ≥0)的解是______. 选择题:5.方程(x +2)2=9的解为( ) (A)x 1=9,x 2=-9 (B)x 1=9,x 2=0 (C)x 1=-9,x 2=0(D)x 1=1,x 2=-5 6.方程(x +3)2-9=0的解的情况为( ) (A)x 1=3,x 2=-3 (B)x 1=0,x 2=-6 (C)x 1=9,x 2=-6(D)x 1=6,x 2=07.方程4x 2-1=0的根的情况是( ) (A)x =±2(B)0,2121=-=x x(C)21±=x(D)无实根解答题: 8.解下列方程:(1)x 2=169; (2)5x 2=125;(3)(x +3)2=16;(4)(6x -7)2-128=0.问题探究: 若等式24xa ²(a 1-2x )4=a 9成立,求x 的值.22.2 降次——解一元二次方程(2)学习要求:在掌握了利用求平方根的方法解一元二次方程以后,结合完全平方的特征,体会转化思想:即配方转化降次求解一元二次方程.理解配方法的要领,掌握配方法的基本步骤.做一做: 填空题:1.根据公式a 2±2ab +b 2=(a ±b )2,填充下列各式: (A)x 2+8x +______=(x +______)2 (B)x 2-2x +______=(x -______)2(C)x 2+x +______=(x +______)2(D)x 2-x +______=(x -______)2 选择题:2.用配方法解方程x 2-3x -1=0时,以下解法中的配方过程正确的是( ) (A)x 2-3x -1=0 (B)x 2-3x -1=0x 2-3x +9=9+1 x 2-3x +9=1(x -3)2=10 (x -3)2=1 (C)x 2-3x -1=0(D)x 2-3x -1=01494932+=+-x x 1232332+=+-x x413)23(2=-x 25)23(2=-x解答题:3.用配方法解下列方程: (1)x 2-6x +4=0;(2)x 2+5x -6=0;(3)x 2+6x +8=0;(4)x 2+4x -12=0;(5)(2x -3)2-3=0;(6)x 2+2mx -n 2=0.问题探究:求证:不论a 、b 取何实数,多项式a 2b 2+b 2-6ab -4b +14的值都不小于1.22.2 降次——解一元二次方程(3)学习要求:在理解了配方法的基本思想和配方过程的基础之上,通过对一般形式的一元二次方程进行配方,从而导出求根公式,对求根公式要在理解的基础上记住它,并能利用它求解一元二次方程.做一做:填空题:1.一元二次方程4x (x +3)=5(x -1)+2的一般形式是______,其中a =______,b =______,c =______.2.一元二次方程ax 2+bx +c =0的根的判别式为______.3.已知关于x 的一元二次方程s -r =sx 2-rx +sx -rx 2+t (s -r ≠0)的一般形式是______,其中a =______,b =______,c =_______. 选择题:4.已知一元二次方程x 2-2x -m =0,用配方法解该方程,配方后的方程是( ) (A)(x -1)2=m 2+1 (B)(x -1)2=m -1 (C)(x -1)2=1-m(D)(x -1)2=m +15.方程x 2=x +1的解是( ) (A)1+=x x(B)251±=x(C)1+±=x x(D)251±-=x6.方程x 2-6x -3=0的解的情况为( ) (A)有两个相等的实数根 (B)有两个不等的实数根 (C)有一个实数根(D)没有实数根解答题: 7.用公式法解方程: (1)2x 2+2x =1;(2)5x +2=3x 2;(3)x (x +8)=16;(4)(2y +1)(3y -2)=3.问题探究:在方程x 2+mx +n =0的两个根中,有一个根为0,另一个根不为0,那么m ,n 应满足( )(A)m =0,n =0(B)m ≠0,n ≠0 (C)m ≠0,n =0(D)m =0,n ≠022.2 降次——解一元二次方程(4)学习要求:在理解配方法和掌握求根公式之后,应能准确认识公式中的a ,b ,c .结合实际应用它.应用公式法求解一元二次方程.要养成认真踏实的学习习惯,提高运算的正确率. 做一做: 填空题:1.方程x 2+x -3=0的两根是____________. 2.方程x (x +1)=2的根为____________.3.两个连续奇数之积是143,设其中较小的奇数为y +1,则可得关于y 的一元二次方程的一般形式是________________________. 选择题:4.已知px 2-3x +p 2-p =0是关于x 的一元二次方程,则( ) (A)p =1(B)p >0(C)p ≠0 (D)p 为任意实数5.已知x 2-3x +1=0,则xx 1+的值为( )(A)3 (B)-3 (C)23 (D)16.下列方程中,两实根之和等于零的是( )(A)9x 2+4=0 (B)(2x +3)2=0 (C)(x -1)2=4 (D)5x 2=6 解答题: 7.解下列方程: (1)x 2+3x -4=0; (2)x 2-x -1=0;(3)-2x 2=5x -3;(4)3x 2+2x =4.问题探究:一根长36cm 的铁丝剪成相等的两段,一段弯成矩形,另一段弯成有一边长为5cm 的等腰三角形.如果弯成的矩形和等腰三角形的面积相等,求矩形的长与宽.22.2 降次——解一元二次方程(5)学习要求:在理解了利用求平方根的思想来达到降次求解一元二次的方程之后,因式分解又是一种转化的思想,来实现将一元二次方程降次为一元一次方程求解.做一做: 填空题:1.当x =3时,(x -3)(x +3)的值为____________. 2.方程x (x -3)=0的根为______________.3.方程x 2=x 的右边化为零后变为________,左边分解因式后化为______,原方程的解为______选择题:4.关于x 的方程(m 2-m )x 2+mx +n =0是一元二次方程的条件是( ) (A)m ≠0 (B)m ≠1 (C)m ≠0或m ≠1 (D)m ≠0且m ≠1 5.方程x 2=2x 的解是( ) (A)x =0(B)x =2(C)x =0或x =2 (D)x =±2 6.方程(x -3)2=3-x 的解是( ) (A)x =3 (B)x =2或x =3 (C)x =2(D)x =4解答题:7.用因式分解法解方程: (1)(x -1)(x -2)=0;(2)x 2-3x =0;(3)x2-4x+4=0;(4)x2-5x+4=0.问题探究:若等腰三角形的两边长分别是方程x2-9x+14=0的两根.那么这个等腰三角形的周长是多少?22.2 降次——解一元二次方程(6)学习要求:进一步体会利用因式分解法降次的基本思想,掌握因式分解法求解一元二次方程.做一做:填空题:1.分解因式:2x2+5x-3=____________.2.用因式分解法解方程x2-5x=6,得方程的根为____________.3.方程2(x+3)2-5(x+3)=0的解为______.最简便的解法是____________.4.若代数式x2+6x的值为零,则x的值为______.选择题:5.已知(x+y)(x+y+2)=15,则x+y的值为( )(A)3或5 (B)3或-5(C)-3或5 (D)-3或-56.下列方程:①x2-5x-6=0;②x2-6x-5=0;③x2+5x+6=0;④x2+6x+5=0.适宜用因式分解求解的是( )(A)①、②、③、④(B)①、③、④(C)①、②、③(D)②、③、④解答题:7.解下列方程:(1)9(x-3)2=25;(2)6x2-x=1;(3)x2+4x-96=0;(4)x(x-1)=2;(5)4(2x-1)2=9(x-2)2;(6)(2x-3)2-2(3-2x)=8.问题探究:当k是什么整数时,方程(k2-1)x2-6(3k-1)x+72=0只有正整数根?22.2 降次——解一元二次方程(7)学习要求:在掌握了配方法、公式法及因式分解法求解一次二次方程之后,同学们应注意灵活地应用这些知识.做一做:填空题: 1.方程0)75.0)(5.0()43(2=--+-x x x 的较小根是____________.2.已知单项式xx ba 3222-与4221b a -是同类项,则x 的值是__________.3.++x x 222______=(x +______)2.4.4x 2-______+9=(______-3)2.选择题: 5.方程x (x 2+1)=0的实数根的个数是( ) (A)0(B)1(C)2(D)36.下列方程中,两根分别为-1+3和-1-3的是( ) (A)0)31)(31(=--++x x (B)0)31)(31(=+--+x x (C)0)31)(31(=--+-x x(D)0)31)(31(=++-+x x解答题: 7.解下列方程 (1)x 2-6x +4=0;(2)x 2-22x -3=0;(3)2y (y +2)=(y +2); (4)(2x -1)2-4=0;(5)3y 2+1=23y ;(6)(2x -1)(x -2)=-1.问题探究:小明养了一群鸽子,小亮问小明养了几只鸽子,小明说:“如果你给我一只鸽子,那么鸽子总数的平方是鸽子总数的9倍.”你知道小明现在有几只鸽子吗?阅读与思考——一元二次方程的近似解与连分数学习要求:将一些具体值代入所要解的一元二次方程,大致估计出一元二次方程解的范围,再在这个范围内逐步加细赋值,逐步估计出一元二次方程的近似解.这就是求一元二次方程近似解的基本要领.下面介绍另外一种估计一元二次方程近似解的方法.方程:x 2-3x -1=0,因为x ≠0,所以先将其变形为x =x13+,用x13+代替x ,得xxx 131313++=+=反复若干次用x13+代替x ,就得到x x +++++++=3131313131313形如上式右边的式子称为连分数.可以猜想,随着替代次数的不断增加,右式最后的x1对整个式子的值的影响将越来越小,因此可以根据需要,在适当的时候把x1忽略不计,例如,当忽略x =x13+中的x1时,就得到x =3,当忽略xx 1313++=的x1时,就得到313+=x ;如此等等.于是就可以得到一系列分数:,,3131313,31313,313,3 ++++++即: .30303.333109,3.31033,333.3310,3 ===可以发现它们越来越趋于方程x 2-3x -1=0的正根.同学们不妨利用此方法求一求方程x 2-5x -1=0的近似解.22.3 实际问题与一元二次方程(1)学习要求:在学习一元二次方程的解法的过程中,同学们应注意与实际问题相联系,逐步培养用方程的思想与知识解决实际问题的能力,培养学数学用数学的意识. 做一做: 填空题:1.某公司10月份产值为a 万元,比5月份增长20%,则5月份产值为____________. 2.一个六位数,低位上的三个数字组成的三位数是a ,高位上的三个数字组成的三位数是b ,现将a ,b 互换,则得到的六位数是____________ 3.一项工程,甲班干完需m 天,乙班干完需(m +2)天,甲、乙两班合干,完成工程需__________________天.选择题:4.甲走20天的路程乙走30天,已知乙每天走15千米,问甲每天走多少千米?在下列几种设未知数的写法中,正确的是( ) (A)设甲每天走x (B)设甲速为x 千米 (C)设甲走x 千米(D)设甲每天走x 千米5.一件工作,甲独做4天完成,乙独做6天完成,则二人合做( )天完成. (A)6(B)5(C)512(D)2解答题:6.列方程解应用题:(1)两个数的差为4,它们的积为45,求这两个数.(2)一个直角三角形的三条边的长是三个连续的整数,求三条边的长.(3)某林场第一年造林200亩,第一年到第三年共造林728亩,求后两年造林面积的平均增长率.问题探究:我国古代数学家杨辉所著的《田亩比类乘除捷法》中有这样一题:直田积(矩形面积) 八百六十四步(平方前),只云长阔(长与宽)共六十步,问阔及长各几步?22.3 实际问题与一元二次方程(2)学习要求:进一步运用方程解决实际问题,逐步培养逻辑思维能力和分析问题、解决问题的能力. 做一做: 填空题:1.某公司今年的年产值是1000万元,若以后每年的平均增长率为10%,则两年后该公司的年产值是______万元.2.制造某种产品,原来每件的成本是100元,由于连续两次降低成本,现在的成本是每件81元,则平均每次降低成本的百分率是______.3.一块长方形硬纸片,在它的四个角上截去四个小正方形,折成一个没有盖子的长方体盒子,已知纸片的长为40cm,宽为32cm,要使盒子的底面积为768cm2,则截去的小正方形边长应为______cm.解答题:4.有一个两位数恰等于其个位与十位上的两个数字乘积的3倍,已知十位上的数字比个位上的数字小2,求这个两位数.5.某电冰箱厂今年每个月的产量都比上个月增长同样的百分数.已知该厂今年4月份的电冰箱产量为5万台,6月份比5月份多生产了12000台,求该厂今年产量的月增长率.6.某养鸡场的矩形鸡舍一边靠墙,另三边用竹篱笆围成,现有材料可制作竹篱笆13m,若欲围成20m2的鸡舍,鸡舍的长、宽应各是多少?问题探究:第6题中,利用13m的竹篱笆,能围成21m2的鸡舍吗?能围成22m2的鸡舍吗?若能围成,求出鸡舍的长和宽,若不能围成,说明理由.22.3 实际问题与一元二次方程(3)学习要求:通过应用一元二次方程解决一些实际问题,进一步体会学数学用数学的意识,培养分析问题和解决问题的能力.做一做:选择题:1.已知两个连续奇数的积为63,求这两个数.设其中一个数为x,甲、乙、丙三同学分别列出方程①x(x+2)=63 ②x(x-2)=63 ③(x-1)(x+1)=63其中正确的是( )(A)只有①(B)只有②(C)只有①②(D)①②③都正确2.某机床厂今年一月份生产机床500台,三月份生产机床720台,求二,三月份平均每月的增长率,设平均每月增长的百分率为x,则列出方程正确的是( )(A)500+500x=720 (B)500(1+x)2=720(C)500+500x2=720 (D)(500+x)2=7203.生物兴趣小组的同学,将自己采集到的标本向本组其他组员各赠送一件,全组共互赠了182件,全组共有多少名同学?设全组有x 名同学,则根据题意列出的方程是( ) (A)x (x +1)=182 (B)x (x -1)=182 (C)x 21(x +1)=182(D)x 21(x -1)=1824.某经济开发区今年一月份工业产值达50亿元,第一季度总产值175亿元,问二月、三月平均每月的增长率是多少.设每月的平均增长率为x ,根据题意列方程为( ) (A)50(1+x )2=175(B)50+50(1+x )2=175(C)50(1+x )+50(1+x )2=175 (D)50+50(1+x )+50(1+x )2=175解答题:5.为响应国家“退耕还林”的号召,改变某省水土流失严重的现状,2004年某省退耕还林1600公顷,到2006年全年退耕还林1936公顷,问这两年平均每年退耕还林的增长率是多少?6.某人用1000元人民币购买一年期的甲种债券,到期后兑换人民币并将所得利息购买一年期的乙种债券,若乙种债券的年利率比甲种债券的年利率高2个百分点,到期后,此人将乙种债券兑换人民币共得本息和112元,求甲种债券的年利率.问题探究:在长为a 的线段AB 上有一点C ,且AC 是AB 和BC 的比例中项,试求线段AC 的长.观察与猜想——一元二次方程根与系数的关系学习要求:一元二次方程根与系数的关系作为观察与猜想提供给同学们,同学们还是应认真研究,交流体会,它能更深入地认识和理解一元二次方程.学有余力的同学还可以学习它在其它方面的应用.做一做: 填空题:1.如果x 1,x 2是方程2x 2+4x -1=0的两根,那么x 1+x 2=______,x 1²x 2=______. 2.若α ,β 是一元二次方程x 2-3x -2=0的两个实数根,则=+βα11______.3.若α ,β 是方程x 2-3x =5的两根,则α 2+β 2-α β 的值是______.4.若x 1,x 2是方程2x 2+ax -c =0的两个根,则x 1+x 2-2x 1x 2等于______(结果用a ,c 表示).选择题: 5.一元二次方程ax 2+bx +c =0有一个根是零的条件是( ) (A)b 2-4ac =0 (B)b =0 (C)c =0 (D)c ≠06.若α ,β 是方程2x 2+3x -4=0的两根,则α +α β +β 的值是( ) (A)-7(B)213-(C)21-(D)77.已知一元二次方程5x 2+kx -6=0的一个根是2,则方程的另一个根为( ) (A)53 (B)53-(C)-3(D)38.已知一元二次方程2x 2-3x +3=0,下列说法中正确的是( ) (A)两个实数根的和为23- (B)两个实数根的和为23(C)两个实数根的积为23(D)以上说法都不正确解答题:9.设x 1,x 2是方程2x 2-6x +3=0的两个根,利用根与系数的关系计算下列各式的值:(1);221221x x x x +(2)(x 1-x 2)2.10.若关于x 的方程2x 2+(k +1)x +k +2=0的一个根是2,求它的另一个根.问题探究:已知关于x 的方程x 2-2(m -2)x +m 2=0.问:是否存在实数m ,使方程的两个实数根的平方和等于56.若存在,求出m 的值;若不存在,请说明理由.数学活动(1)学习要求:通过合作、交流、归纳与探索,挖掘一元二次方程两根与一些二次三项式的分解因式之间的内在联系,认识二次三项式的因式分解,并进一步理解一元二次方程的根.做一做:我们已经学过一些特殊的二次三项式的因式分解,如3x 2-2x =x (3x -2) x 2-9=(x +3)(x -3)x 2+4x +4=(x +2)2但对于一般的二次三项式ax 2+bx +c (a ≠0),你能把它分解因式吗? 观察下列各式,你能发现什么呢?通过上面的计算、观察,你能得到什么结论呢?设方程ax +bx +c =0(a ≠0)的两个实数根为x 1,x 2,则二次三项式分解因式为ax 2+bx +c =_________________________.你能说说其中的道理吗?根据你们得到的结论,试一试将下列因式分解. (1)x 2+20x -69; (2)24x 2-2x -35;(3)x 2-x -1;(4)2x 2-6x +3.数学活动(2)学习要求:通过合作、交流利用方程的知识解决一些实际问题,体会建立数学模型、学数学用数学的意识,提高学习基本素养.做一做:1.如果与水平面成45°角向斜上方投掷标枪,那么标枪飞行的水平距离S (单位:m)与标枪出手的速度v (单位:m/s)之间大致有如下关系:28.92+=vS .某同学按这种要求投掷标枪,标枪飞行的水平距离为42m ,求标枪出手时的速度(结果精确到0.1m/s).2.某商场销售一批名牌衬衫,现在平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果这种衬衫的售价每降低1元,那么商场平均每天可多售出2件.商场若要平均每天盈利1200元,每件衬衫应降价多少元?3.小明将勤工俭学挣得的500元钱按一年定期存入银行,到期后取出50元用来购买学习用品,剩下的450元连同应得税后利息又全部按一年定期存入银行.如果存款的年利率保持不变,且到期后可得税后本息约461元,那么这种存款的年利率大约是多少?(利息税为利息的20%,结果精确到0.01%).数学活动(3)学习要求:通过合作、交流、实践与探索,初步学习把现实世界的问题化为纯数学的问题,即建立数学模型,培养创新精神与实践能力.课题:洗衣服的数学问题.现在衣物已打好了肥皂,揉搓得很充分了,再拧一拧,当然不可能完全把水拧干,设衣服上还残留含有污物的水1斤,用20斤清水来漂洗,怎样才能漂得更干净?(1)如果把衣服一下放到20斤清水里,那么连同衣服上那1斤水,一共21斤水,污物均匀分布在这21斤水里,拧干后,衣服上还有1斤水,所以污物残存量是原来的⋅211如何洗,效果更佳呢?(2)如果衣服上残存水量是1.5斤或2斤,洗衣用水量是37斤,那么又该怎么洗法?复 习学习要求:通过复习,全面认识和理解一元二次方程的有关概念,掌握用公式法、因式分解法求解一元二次方程.理解配方法原理及这一思想的含意,会用方程的思想解决一些实际问题,认识根与系数之间的关系.做一做: 填空题:1.方程(2x -1)(3x +2)=x 2+2化为一般形式后,a =______,b =______,c =______. 2.y 2-4y +______=(y -______)2. 3.+-x x 252______=(x -______)2.4.如果关于x 的一元二次方程x 2+px +q =0的两个根是x 1=1,x 2=3,那么这个一元二次方程是______. 5.等腰△ABC 两边的长分别是一元二次方程x 2-5x +6=0的两个解,则这个等腰三角形的周长是______.选择题: 6.①,542=-x ②xy =1,③2122=+xx④0312=x,以上方程中,是一元二次方程的有( )(A)0个 (B)1个 (C)2个 (D)3个 7.x 2-3=3x 化为一般式后,a ,b ,c 的值分别为( ) (A)0,-3,-3 (B)1,-3,3 (C)1,3,-3 (D)1,-3,-3 8.解方程3x 2+27=0得( ) (A)x =±3 (B)x =3(C)x =-3(D)无实根9.方程0)21()21(2=--+x x 的解是( )(A)332,021-==x x (B)223,121-==x x (C)322,021-==x x(D)x 1=0,x 2=110.下面是李刚同学在一次测验中解答的填空题,其中答对的是( )(A)若x 2-8=0,则22=x (B)方程x (2x -1)=2x -1的解为x =1(C)若方程x 2+2x +k =0有一个根是-3,则k =-3 (D)若分式1232-+-x x x 的值等于零,则x =1或2解答题:11.用适当的方法解下列方程:(1);17.052=+x(2)4x 2+3x =0;(3)x 2-25x +144=0; (4)(3y -2)2-5(3y -2)=14;(5)x 2-6x +6=0; (6)(x +6)(x -7)=14.12.一个两位数的两个数字之和为9,把个位数与十位数字互换后所得的新数乘以原数,积为1458,求这个两位数.13.有一个两位数等于其各位数字之和的4倍,其中十位数字比个位数字小2,求此两位数.14.已知关于x 的方程x 2-bx -a =0有两等根,且一次函数y =ax +b 的图像如图所示,又a 、b 满足5||2=--b a b ,求a 2+b 2的值.图115.爱华中学从2003年到2006年四年内师生共植树2008棵,已知该校2003年植树353棵,2004年植树500棵,如果2005年和2006年植树棵数的年增长率相同,那么该校2006年植树多少棵?第二十二章 一元二次方程测试题填空题(每题6分,满分36分)1.一元二次方程的一般形式是________________,当一次项系数为零时,其形式为_______ _________.2.方程2x 2=9的二次项系数是________________,一次项系数是________________常数项是________________选择题:3.方程①5x 2-38=x ,②4x 2-5y +9=0,032=x ③,0312=+-xx ④中,是一元二次方程的有( )(A)①② (B)①(C)①③④ (D)①③ 4.把方程x 2+3=4x 配方,得( ) (A)(x -2)2=7 (B)(x +2)2=1 (C)(x -2)2=1(D)(x +2)2=25.方程x 3=3x 的所有的解为( ) (A)0(B)0,3(C)3,3- (D)3,3,0-6.方程(x +m )2=n 2的解为( ) (A)x =-m ± n (B)x =m ±n(C)x =m +n(D)x =-m +n解答题:7.解下列方程:(每题6分,满分36分)(1)x 2-3x +2=0;(2)(y -2)2=3;(3)(2x +1)2+3(2x +1)=0; (4)x 2-4x =8;(5)6x 2-4=2x ;(6)3x 2+5(2x +1)=0.8.(9分)一个两位数,它的十位数字比个位数字小3,而它的个位数字的平方恰好等于这个两位数,求这个两位数.9.(9分)某发电厂规定,该厂家属区的每户居民如果一个月的用电量不超过akWh ,那么这个月这户居民只要交10元电费.如果超过akWh ,则这个月除仍要交10元电费外,超过部分还要按100a 元/kWh 交费.下表是一户居民3月和4月的用电情况及交费情况:10.(10分)一次函数y =x +b 与反比例函数xk y 3+=图象的交点为A (m ,n ),且m 、n (m <n )是关于x 的一元二次方程kx 2+(2k -7)x +k +3=0的两个不相等的实数根,其中k 为非负整数,m 、n 为常数.(1)求k 的值;(2)求点A 的坐标与一次函数、反比例函数的解析式.参考答案第二十二章 一元二次方程22.1 一元二次方程(1)1.5x 2-3x -2=0,5,-3,-2. 2.-1 3.=3 4.≠±2, =-2 5.A 6.D 7.A 8.(1)设宽为x cm ,x (x +2)=15 (2)设两个连续的整数分别为x ,x +1.x 2+(x +1)2=313.(3)设一个数为x .x (6-x )=7问题探究:3k 2+4k -6=022.1 一元二次方程(2)1.x 2+3x -1=0 2.x (x +2)=255 3.x (x -2)=30 4.C 5.D 6.A 7.设小道的宽为x 米.(42-2x )(30-2x )=304221⨯⨯ 问题探究:略22.2 降次——解一元二次方程(1)1.x 2-3x -10=0,1, -3, -10 2.-20 3.a x ±= 4.n m x ±-= 5.D6.B 7.C 8.(1)x =±13 (2)x =±5 (3)x 1=1,x 2=-7 (4)6287±=x 问题探究:25或21-22.2 降次——解一元二次方程(2)1.(A)16,4 (B)1,1 (C)21,41 (D).21,41 2.C 3.(1),531+=x 532-=x(2)x 1=1,x 2=-6 (3)x 1=-2,x 2=-4 (4)x 1=2,x 2=-6 (5)233±=x (6)22n m m +±- 问题探究.提示:将a 2b 2+b 2-6ab -4b +14进行配方为a 2b 2-6ab+9+b 2-4b +4+1=(ab -3)2+(b -2)2+1,可证22.2 降次——解一元二次方程(3)1.4x 2+7x +3=0,4,7,3 2.b 2-4ac 3.(s -r )x 2+(s -r )x -s +r +t =0,s -r ,s -r , -s +r +t 4.D 5.B 6.B 7.(1)231±-=x (2)2,3121=-=x x ,(3)x244±-= (4)65,121-==y y 问题探究:C22.2 降次——解一元二次方程(4)1.2131,213121--=+-=x x 2.x 1=-2,x 2=1 3.y 2+4y -140=0 4.C5.A 6.D 7.(1)x 1=1,x 2=-4 (2)251,25121-=+=x x (3)211=x ,x 2=-3(4)3131,313121--=+-=x x 问题探究:长:cm 2219+宽cm 2219-,或长cm 2339+宽cm 2339-22.2 降次——解一元二次方程(5)1.0 2.x 1=0,x 2=3 3.x 2-x =0,x (x -1)=0,x 1=0,x 2=1 4.D 5.C 6.B 7.(1)x 1=1,x 2=2 (2)x 1=0,x 2=3 (3)x 1=x 2=2 (4)x 1=4,x 2=1 问题探究:1622.2 降次——解一元二次方程(6)1.(2x -1)(x +3) 2.x 1=6,x 2=-1 3.-3,21- 因式分解 4.0或-6 5.B 6.B7.(1)34,31421==x x (2)31,2121-==x x (3)x 1=8,x 2=-12 (4)x 1=2,x 2=-1(5)78,421=-=x x (6)25,2121=-=x x 问题探究:1,2,3.提示:分两种情况讨论:(1)当k 2-1=0,即k =±1,检验当k =1时,x =6,k =-1时,x =-3(不合题意舍去) (2)k 2-1≠0时,用因式分解法可得,16,11221-=+=k x k x 因k 为整数,要使x 1,x 2,都为整数,只有k =2,k =3,综上所述k =1,2,322.2 降次——解一元二次方程(7)1.852.4或-1 3.2,2 4.12x ,2x 5.B 6.D 7.(1)53,5321-=+=x x(2)52,5221-=+=x x (3)21,221=-=y y (4)23,2121=-=x x(5)3321==y y (6)1,2321==x x 问题探究:8只 22.3 实际问题与一元二次方程(1)1.a 65万元 2.1000a +b 3.22)2(++m m m 4.D 5.C 6.(1)5,9或-5,-9 (2)3,4,5 (3)20% 问题探究:阔为24步,长为36步22.3 实际问题与一元二次方程(2)1.1210 2.10% 3.4 4.24 5.20% 6.长8m ,宽2.5m 或长5m ,宽4 m .问题探究:能围成21m 2的,长为7m ,宽为3m ,也可为长6m ,宽3.5m ,不能围成22m 2的22.3 实际问题与一元二次方程(3)1.C 2.B 3.B 4.D 5.10% 6.10% 问题探究:a 215-观察与猜想——一元二次方程根与系数的关系1.-2,21- 2.23-3.24 4.c a +-25.C 6.B 7.B 8.D 9.(1)29(2)3 10.21-问题探究:m =-2,提示:由,562221=+x x ,即(x 1+x 2)2-2x 1x 2=56,所以有[2(m -2)]2-2m 2=56 解之m 1=-2,m =10,检验可知m =10不合题意数学活动(1)(1)(x -3)(x +23) (2)(6x +7)(4x -5) (3))251)(251(--+-x x(4))233)(233(2--+-x x数学活动(2)1.标枪出手时的速度约为19.8m/s . 2.每件衬衫应降价20元 3.这种存款的年利率大约为1.44%数学活动(3)略复 习1.5,1, -4 2.4,2 3.45,1625 4.x 2-4x +3=0 5.7或8 6.B 7.D 8.D9.C 10.C 11.(1)26±=x (2)43,021-==x x (3)x 1=9,x 2=16 (4)y 1=0,y 2=3 (5)33±=x (6)x 1=-7,x 2=8 12.18或81 13.24 14.45 15.605棵第二十二章 一元二次方程测试题1.ax 2+bx +c =0(a ≠0),ax 2+c =0(a ≠0) 2.2,0, -9 3.D 4.C 5.D 6.A7.(1)x 1=1,x 2=2 (2)32,3221-=+=y y (3)211-=x ,x 2=-2(4)x 1=,322+ 3222-=x (5)321-=x ,x 2=1 (6)3105,310521--=+-=x x8.25或36 9.a =50(kWh) 10.(1)k =1,(2)A (1,4),y =x +3,x y 4=。

22.1 一元二次方程

22.1 一元二次方程

0,则k的值是( A )
(A)-1
(B)1
(C)1或-1
(D)-1或0
初中同步学习·数学
3.关于x的方程(m-2) xm2 2 +2mx-3=0是一元二次方程,则m的取值是( C ) (A)任意实数 (B)2
(C)-2
(D)±2
4.一元二次方程(1+3x)(x-3)=2x2+1化为一般形式为 x2-8x-4=0 ,二次
① ②
由①得 m2=3,m=± 3 .由②得 m≠- 3 ,所以 m= 3 .
初中同步学习·数学
一元二次方程的判断: (1)必须是整式方程; (2)化简后必须含有二次项; (3)二次项的系数是字母时,必须注明不为0.
初中同步学习·数学
探究点二:一元二次方程的解 【例2】 关于x的一元二次方程(a-2)x2+x+a2-4=0的一个根是0,求a的值. 【导学探究】 1.把x= 0 代入原方程,求出a的值. 2.二次项系数a-2 ≠ 0.
解:(1)长方形的长为x cm,则宽为(20-x) cm,则x(20-x)=64. 化为一般形式为-x2+20x-64=0. (2)二次项系数是-1,一次项系数是20,常数项是-64. (3)把x=3代入原方程,左边≠右边, 所以x=3不是方程的根; 把x=4代入原方程,左边=右边,所以x=4是方程的根.
解:把x=0,代入(a-2)x2+x+a2-4=0, 可得a2-4=0,解得a=±2. 因为(a-2)x2+x+a2-4=0是关于x的一元二次方程ቤተ መጻሕፍቲ ባይዱ 所以a-2≠0,即a≠2,所以a=-2.
初中同步学习·数学
已知一元二次方程的解 (1)代入:把方程的解代入原方程; (2)计算:解方程求出相关字母的值; (3)判断:舍掉二次项系数为0的值.

一元二次方程同步练习

一元二次方程同步练习

22.1 一元二次方程(1)一、填空题(共7小题,每小题5分,满分35分)1.(5分)填空:(1)把5x2﹣1=4x化成一元二次方程的一般形式,结果是_________,其中二次项系数是_________,一次项系数是_________,常数项是_________;(2)把4x2=81化成一元二次方程的一般形式,结果是_________,其中二次项系数是_________,一次项系数是_________,常数项是_________;(3)把x(x+2)=15化成一元二次方程的一般形式,结果是_________,其中二次项系数是_________,一次项系数是_________,常数项是_________;(4)把(3x﹣2)(x+1)=8x﹣3化成一元二次方程的一般形式,结果是_________,其中二次项系数是_________,一次项系数是_________,常数项是_________.2.(5分)填空:(1)一个一元二次方程,它的二次项系数为2,一次项系数为3,常数项为﹣5,这个一元二次方程是_________;(2)一个一元二次方程,它的二次项系数为1,一次项系数为﹣3,常数项为3,这个一元二次方程是_________;(3)一个一元二次方程,它的二次项系数为5,一次项系数为﹣1,常数项为0,这个一元二次方程是_________.(4)一个一元二次方程,它的二次项系数为1,一次项系数为0,常数项为﹣6,这个一元二次方程是_________.4.(5分)填空:(1)把(x+3)(x﹣4)=0化成一元二次方程的一般形式,结果是_________,其中二次项系数是_________,一次项系数是_________,常数项是_________;(2)把(2x+1)2=4x化成一元二次方程的一般形式,结果是_________,其中二次项系数是_________,一次项系数是_________,常数项是_________.5.(5分)填空:在﹣4,﹣3,﹣2,﹣1,0,1,2,3,4这些数中,是一元二次方程x2﹣x﹣6=0的根的是_________.6.(5分)填空:方程x2﹣36=0的根是x1=_________,x2=_________.7.(5分)完成下面的解题过程:(1)解方程:2x2﹣6=0;解:原方程化成_________.开平方,得_________,x1=_________,x2=_________.(2)解方程:9(x﹣2)2=1.解:原方程化成_________.开平方,得_________,x1=_________,x2=_________.22.1 一元二次方程(2)一、填空题(共9小题,每小题5分,满分45分)1.(5分)5x2+1=0是一元二次方程( _________)6.(5分)=2x (_________)9.(5分)将方程﹣5x2+1=6x化为一般形式为 _________.10.(5分)将方程(x+1)2=2x化成一般形式为_________.11.(5分)方程2x2=﹣8化成一般形式后,一次项系数为 _________,常数项为_________.12.(5分)方程5(x2﹣x+1)=﹣3x+2的一般形式是 _________,其二次项是_________,一次项是_________,常数项是_________.13.(5分)若ab≠0,则x2+x=0的常数项是_________.14.(5分)如果方程ax2+5=(x+2)(x﹣1)是关于x的一元二次方程,则a _________.15.(5分)关于x的方程(m﹣4)x2+(m+4)x+2m+3=0,当m_________时,是一元二次方程;当m _________时,是一元一次方程.二、选择题(共8小题,每小题4分,满分32分)16.(4分)下列方程中,不是一元二次方程的是()x+1=017.(4分)一元二次方程x2﹣2(3x﹣2)+(x+1)=0的一般形式是()18.(4分)一元二次方程7x2﹣2x=0的二次项、一次项、常数项依次是()19.(4分)方程x2﹣=(﹣)x化为一般形式,它的各项系数之和可能是()﹣20.(4分)若关于x的方程(ax+b)(d﹣cx)=m(ac≠0)的二次项系数是ac,则常数项为()21.(4分)若关于x的方程a(x﹣1)2=2x2﹣2是一元二次方程,则a的值是()22.(4分)若x=1是方程ax2+bx+c=0的解,则()23.(4分)关于x2=﹣2的说法,正确的是()三、解答题(共1小题,满分0分)24.现有长40米,宽30米场地,欲在中央建一游泳池,周围是等宽的便道及休息区,且游泳池与周围部分面积之比为3:2,请给出这块场地建设的设计方案,并用图形及相关尺寸表示出来.22.2 降次解一元二次方程(1)一、填空题(共18小题,每小题5分,满分90分)1.(5分)完成下面的解题过程:(1)解方程:2x2﹣6=0;解:原方程化成_________.开平方,得_________,x1=_________,x2=_________.(2)解方程:9(x﹣2)2=1.解:原方程化成_________.开平方,得_________,x1=_________,x2=_________.4.(5分)完成下面的解题过程:解方程:9x2+6x+1=4;解:原方程化成_________.开平方,得_________,x1=_________,x2=_________.8.(5分)填空:(1)x2+2•x•2+_________=(x+_________)2;(2)x2﹣2•x•6+_________=(x﹣_________)2;(3)x2+10x+_________=(x+_________)2;(4)x2﹣8x+_________=(x﹣_________)2.9.(5分)完成下面的解题过程:用配方法解方程:x2﹣x﹣=0.解:移项,得_________.配方_________,_________.开平方,得_________,x1=_________,x2=_________.11.(5分)完成下面的解题过程:用配方法解方程:3x2+6x+2=0.解:移项,得_________.二次项系数化为1,得_________.配方_________,_________.开平方,得_________,x1=_________,x2=_________.12.(5分)完成下面的解题过程:用配方法解方程:(2x﹣1)2=4x+9.解:整理,得_________.移项,得_________.二次项系数化为1,得_________.配方_________,_________.开平方,得_________,x1=_________,x2=_________.13.(5分)完成下面的解题过程:用公式法解下列方程:(1)2x2﹣3x﹣2=0.解:a=_________,b=_________,c=_________.b2﹣4ac=_________=_________>0.=_________=_________,x1=_________,x2=_________.(2)x(2x﹣)=x﹣3.解:整理,得_________.a=_________,b=_________,c=_________.b2﹣4ac=_________=_________.=_________=_________,x1=x2=_________.(3)(x﹣2)2=x﹣3.解:整理,得_________.a=_________,b=_________,c=_________.b2﹣4ac=_________=_________<0.方程_________实数根.14.(5分)完成下面的解题过程:用公式法解方程:2x(x﹣1)+6=2(0.5x+3)解:整理,得_________.a=_________,b=_________,c=_________.b2﹣4ac=_________=_________>0.x=_________=_________,x1=_________,x2=_________.15.(5分)完成下面的解题过程:用因式分解法解方程:x2=2x.解:移项,得_________.因式分解,得_________.于是得_________或_________,x1=_________,x2=_________.16.(5分)用因式分解法解下列方程:(1)x2+x=0;(2)4x2﹣121=0;(3)3x(2x+1)=4x+2;(4)(x﹣4)2=(5﹣2x)2.17.(5分)填空:解一元二次方程的方法有四种,它们是直接开平方法、_________、_________、_________.18.(5分)完成下面的解题过程:(1)用直接开平方法解方程:2(x﹣3)2﹣6=0;解:原方程化成_________.开平方,得_________,x1=_________,x2=_________.(2)用配方法解方程:3x2﹣x﹣4=0;解:移项,得_________.二次项系数化为1,得_________.配方_________,_________.开平方,得_________,x1=_________,x2=_________.(3)用公式法解方程:x(2x﹣4)=2.5﹣8x.解:整理,得_________.a=_________,b=_________,c=_________.b2﹣4ac=_________=_________>0.=_________=_________,x1=_________,x2=_________.(4)用因式分解法解方程:x(x+2)=3x+6.解:移项,得_________.因式分解,得_________.于是得_________或_________,x1=_________,x2=_________.二、解答题(共8小题,满分0分)19.指出下列方程用哪种方法来解比较适当:(1)(2x+3)2=﹣2x;(2)(2x+3)2=4(2x+3);(3)(2x+3)2=6.20.先指出下列方程用哪种方法来解比较合适,然后再按这种方法解:(1)(2x﹣3)2=25;(2)(2x﹣3)2=5(2x﹣3);(3)(2x﹣3)=x(3x﹣2).21.用配方法解方程:x2﹣8x+1=022.用配方法解方程:x2+10x+9=0.23.(2009•平谷区二模)用配方法解方程:x2﹣6x﹣3=0 24.用配方法解方程:(2x+1)(x﹣3)=x﹣9.25.利用判别式判断下列方程的根的情况:(1)x2﹣5x=﹣7;(2)(x﹣1)(2x+3)=x;(3)x2+5=2x.26.用配方法解方程x2﹣6x﹣7=022.2 降次解一元二次方程(2)一、选择题(共8小题,每小题4分,满分32分)1.(4分)下列一元二次方程中,常数项为0的是()2.(4分)下列方程:①x2=0,②﹣2=0,③2x2+3x=(1+2x)(2+x),④3x2﹣=0,⑤﹣8x+1=0中,一元二次方程的个数是()3.(4分)把方程(x﹣)(x+)+(2x﹣1)2=0化为一元二次方程的一般形式是()4.(4分)方程x2=5x的根是()5.(4分)方程2x2﹣3x+1=0经过配方化为(x+a)2=b的形式,正确的是()..6.(4分)若两个连续整数的积是56,则它们的和为()7.(4分)不解方程判断下列方程中无实数根的是()+4x+C.D.(x+2)(x﹣3)=﹣58.(4分)(2001•济南)某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()二、填空题(共8小题,每小题5分,满分40分)9.(5分)方程化为一元二次方程的一般形式是_________.10.(5分)关于x的一元二次方程ax2+2x+1=0有实数根的条件是_________.11.(5分)用_________法解方程3(x﹣2)2=2x﹣4比较简便.12.(5分)如果2x2+1与4x2﹣2x﹣5互为相反数,则x的值为_________.13.(5分)如果关于x的一元二次方程2x(kx﹣4)﹣x2+6=0没有实数根,那么k的最小整数值是_________.14.(5分)如果关于x的方程4mx2﹣mx+1=0有两个相等实数根,那么它的根是_________.15.(5分)如果关于x的一元二次方程(k﹣1)x2﹣4x﹣5=0有两个不相等的实数根,则k的取值范围是_________.16.(5分)某型号的微机原售价每台7 200元,经连续两次降价后,现售价为每台3 528元,则平均每次降价的百分率为_________%.三、解答题(共5小题,满分0分)17.用适当的方法解下列一元二次方程.(1)5x(x﹣3)=6﹣2x;(2)3y2+1=;(3)(x﹣a)2=1﹣2a+a2(a是常数)18.已知关于x的一元二次方程x2+mx+n=0的一个解是2,另一个解是正数,而且也是方程(x+4)2﹣52=3x的解,你能求出m和n的值吗?19.(2001•苏州)已知关于x的一元二次方程,(1)求证:不论k取何值,方程总有两个不相等的实数根;(2)设x1、x2是方程的两个根,且x12﹣2kx1+2x1x2=5,求k的值.20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%,若每年下降的百分数相同,求这个百分数.21.(2002•广元)某商场今年一月份销售额100万元,二月份销售额下降了10%,该商场采取措施,经营管理,使月销售额大幅上升,四月份的销售额达到129.6万元,求三、四月份平均每月销售额增长的百分率.22.3 实际问题与一元二次方程(1)一、解答题(共5小题,满分0分)1.在解一元二次方程时,粗心的甲、乙两位同学分别抄错了同一道题,甲抄错了常数项,得到的两根分别是8和2;乙抄错了一次项系数,得到的两根分别是﹣9和﹣1.你能找出正确的原方程吗?若能,请你用配方法求出这个方程的根.2.象棋比赛中,每个选手与其他选手将比赛一场,每局胜者记2分,败者记0分,如果平局,每人各记1分,今有4位同学统计了比赛中全部选手得分的总和分别为2025,2070,2080,2085分,经核实,其中只有一位同学是正确的,试求这次比赛中共有多少名选手参加?3.某文具店第一次把乒乓球卖出一半后,补充了1000个,以后每次卖出一半后,都补充了1000个,到第十次卖出一半后恰好剩1000个,文具店原有乒乓球多少个?4.某开发区2002年人口20万,人均住房面积20m2,预计到2004年底,该地区人口将比2002年增加2万,为使到2004年底该地区人均住房面积达22m2/人,试求2002年到2004年这两年该地区住房总面积的年平均增长率应达到百分之几?5.如图,某农户为了发展养殖业,准备利用一段墙(墙长18米)和55米长的竹篱笆围成三个相连且面积相等的长方形鸡、鸭、鹅各一个.问:(1)如果鸡、鸭、鹅场总面积为150m2,那么有几种围法?(2)如果需要围成的养殖场的面积尽可能大,那么又应怎样围,最大面积是多少?6.某公司向银行贷款20万元资金,约定两年到期时一次性还本付息,利息是本金的12%,该公司利用这笔贷款经营,两年到期时除还清贷款的本金和利息外,还盈余6.4万元,若在经营期间每年比上一年资金增长的百分数相同,试求这个百分数.22.3 实际问题与一元二次方程(2)一、填空题(共8小题,每小题5分,满分40分)1.(5分)完成下面的解题过程:一个直角三角形的两条直角边相差5cm,面积是7cm2,求两条直角边的长.解:设一条直角边的长为_________cm,则另一条直角边的长为_________cm.根据题意列方程,得_________.整理,得_________.解方程,得x1=_________,x2=_________(不合题意,舍去).答:一条直角边的长为_________cm,则另一条直角边的长为_________cm.2.(5分)填空:(1)有一人得了流感,他把流感传染给了10个人,共有_________人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了10个人,经过两轮传染后,共有_________人得流感.(2)有一人得了流感,他把流感传染给了x个人,共有_________人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了x个人,经过两轮传染后,共有_________人得流感.3.(5分)完成下面的解题过程:有一个人知道某个消息,经过两轮传播后共有49人知道这个消息,每轮传播中平均一个人传播了几个人?解:设每轮传播中平均一个人传播了x个人.根据题意列方程,得_________.提公因式,得(_________)2=_________.解方程,得x1=_________,x2=_________(不合题意,舍去).答:每轮传播中平均一个人传播了_________个人.4.(5分)一个人知道某个消息,设每轮传播中一个人传播了x个人,填空:(1)经过一轮传播后,共有_________人知道这个消息;(2)经过两轮传播后,共有_________人知道这个消息;(3)经过三轮传播后,共有_________人知道这个消息;(4)请猜想,经过十轮传播后,共有_________人知道这个消息.5.(5分)填空:(1)小明家2006年收入是2万元,以后每年增长10%,则扎西家2007年的收入是_________万元,2008年的收入是_________万元;(2)小明家2006年收入是2万元,以后每年的增长率为x,则扎西家2007年的收入是_________万元,2008年的收入是_________万元.6.(5分)完成下面的解题过程:某公司今年利润预计是300万元,后年利润要达到450万元,该公司利润的年平均增长率是多少?解:设该公司利润的年平均增长率是x.根据题意列方程,得_________.解方程,得x1≈_________,x2≈_________(不合题意,舍去).答:该公司利润的年平均增长率是_________%.7.(5分)某公司今年利润预计是300万元,设该公司利润的年平均增长率是x,填空:(1)明年该公司年利润要达到_________万元;(2)后年该公司年利润要达到_________万元;(3)第三年该公司年利润要达到_________万元;(4)第十年该公司年利润要达到_________万元.8.(5分)一个菱形两条对角线长的和是14cm,面积是24cm2,(1)求菱形的两条对角线长;(2)求菱形的周长.。

《22.1一元二次方程》作业设计方案-初中数学华东师大版12九年级上册

《22.1一元二次方程》作业设计方案-初中数学华东师大版12九年级上册

《一元二次方程》作业设计方案(第一课时)一、作业目标本作业旨在通过一元二次方程的基础知识学习,使学生能够理解一元二次方程的概念、解法及其应用,并能够通过实践操作加深对一元二次方程的理解和掌握。

二、作业内容1. 预习任务:学生需提前预习《一元二次方程》的相关内容,包括一元二次方程的定义、标准形式及解的概念。

2. 基础练习:完成一组一元二次方程的识别与整理题目,如将给定的方程转化为标准形式,并能够识别出其解的类型(实根或虚根)。

3. 实践操作:通过具体问题,应用一元二次方程的解法,如求解与实际生活相关的问题,如“抛物线运动中的最高点距离问题”等。

4. 拓展提升:选取一些较为复杂的一元二次方程题目进行解答,包括含有参数的方程或需要多步计算的题目。

5. 自我总结:学生对本次作业进行总结,反思自己在解一元二次方程过程中的得与失,并提出自己的改进措施。

三、作业要求1. 完成时间:本次作业需在课后的三天内完成。

2. 书写规范:要求书写工整,解题步骤清晰,逻辑严密。

3. 准确率:解题过程中应确保答案的准确性,尽量避免计算错误。

4. 独立思考:鼓励学生在解题过程中独立思考,尝试多种解题方法。

5. 合作交流:如有疑问或困难,可与同学或老师进行交流讨论,共同解决问题。

四、作业评价1. 教师评价:教师根据学生提交的作业进行批改,给出详细的评价和建议。

2. 小组互评:鼓励学生在小组内进行互评,相互学习,共同进步。

3. 自我评价:学生需对自己的作业进行自我评价,找出自己的不足之处。

五、作业反馈1. 对于学生在作业中出现的共性问题,教师需在课堂上进行讲解和指导。

2. 对于学生的优秀作业和解题思路,教师需进行表扬和鼓励,以激发学生的积极性。

3. 教师需根据学生的作业情况,调整教学计划和教学方法,以更好地满足学生的学习需求。

4. 学生需根据教师的评价和反馈,及时调整自己的学习方法和策略,以提高学习效果。

作业设计方案(第二课时)一、作业目标本作业设计旨在巩固学生在《一元二次方程》课程中学习的知识点,通过实际操作练习,加深学生对一元二次方程解法及运用的理解,并培养学生独立解决问题的能力。

一元二次方程(第1课时) 教案 说课稿 课件 教学反思

一元二次方程(第1课时) 教案 说课稿 课件 教学反思

22.1 一元二次方程(第1课时)保太中学高勇【教学任务分析】【教学环节安排】自主探究合作交流【问题3】综合以上两个方程思考:(1)方程两边是否都是整式.(2)方程中有几个未知数?(3)未知数的最高次数是几次?【问题4】总结一元二次方程的概念.一元二次方程的一般形式:ax2+bx+c=0(a≠0)其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.【问题5】指出下列一元二次方程中的各项并说出一次项和二次项的系数.1.3t2+12t-2=02.-2y2-y-2=03.7x-3x2-2=0学生认真观察方程①②看有何特点.讨论交流并得出结论.教师指导学生总结一元二次方程的概念.(概念的几个要点:1、是整式方程2、只含有一个未知数3、未知数的最高次数是一次)学生看课本弄清一元二次方程的一般形式并思考:为什么规定a≠0?学生可适当讨论,交流.学生练习,教师指名回答.尝试应用例1.将方程3(1)5(2)x x x-=+化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.【分析】把一元二次方程化成一元二次方程的一般形式时,经常要利用去括号、移项、合并同类项等步骤,同时注意项与项的系数.例2.若关于x的方程2(3)10k x kx+-+=是一元二次方程,求k的取值范围.练习1.下列方程是一元二次方程的是:(只填序号)2(1)481x=(6)40xy+=2(7)0ax bx c++=让学生尝试着利用去括号、移项、合并同类项等步骤完成例1.一名学生到黑板板书过程.在例2的学习中,主要考查一元二次方程的定义,可让学生说说自己的体会.学生回答并说出不是的理由,可适当让学生讨论.【当堂达标自测题】一、填空题1.一元二次方程x x 3122=-的二次项系数是 ,一次项系数是 ,常数项是 .2.已知关于x 的一元二次方程012)1(2=-++x x m ,则m 应满足 .3.一元二次方程12)3)(31(2+=-+x x x 化为一般形式为: ,二次项系数为 ,一次项系数为 ,常数项为 .二、选择题1.下列方程中,是一元二次方程的是( )A 13722+=-y x B 02652=--y xC x x x +=-25372 D 05)3(2=++-+c x b ax 2.把方程)2(5)2(-=+x x x 化成一般式,则a 、b 、c 的值分别是( ) A 10,3,1- B 10,7,1- C 12,5,1- D 2,3,1三、解答题1.将下列方程化为一元二次方程的一般形式,并指出它们的二次项系数、一次项系数和常数项. (1)x 2+5x+7=3x+11 (2)x(2x-5)=4x-10(3)(2x-1)2=(3-x)2(4)12)3)(31(2+=-+x x x2.根据下列问题列方程,并将它化成一元二次方程的一般形式.(1)一张桌子的桌面长为6米,宽为4米.台布面积是桌面面积的2倍.如果将台布铺在桌子上各边垂下的长度相同,求这块台布的长和宽.(2)足协组织部分足球队比赛,按照比赛规则,要求每两个队都要在自己的主场踢一场,最后按积分排名次,结果本次比赛共踢了30场,问有几个队参加了比赛?。

22.1一元二次方程(一)

22.1一元二次方程(一)

原 方 程
5x 1 4 x
2 2
一 般 形 式
5x 4 x 1 0
二次 一次 常 项系 项系 数 数 数 项
5 -4 -1 4 0 -81 4 8 -25 3 -7 1
4 x 2 81
4x x 2 25
4 x 2 81 0
4 x 2 8x 25 0
1 2 (6)(m 2) 1 (5)a 0 a (1) ( 4) (6) 是一元二次方程的有:
例题2
将方程(3x-2)(x+1)=8x-3 化为一 元二次方程的一般形式,并写出二次项 系数、一次项系数及常数项。 解:去括号,得 3x2+3x-2x-2=8x-3 移项,合并同类项得 3x2-7x+1=0
一元二次方程的概念
• 像这样的等号两边都是整式, 只含有 一个未知数(一元),并且未知数的最 高次数是2(二次)的方程叫做一元二次 方程(quadratic equation in one unknown) 1 10 x 900 0 是一元二次方程吗? 2 x
一元二次方程的一般形式 一般地,任何一个关于x 的一元二次方程都可以 化为 ax 2 bx 的形式 ,我们把 c 0 ax 2 bx c 0 (a,b,c为常数,a≠0)称为一元二次方程的一般形式。 想一想
知识要点
一元二次方程的一般形式 二次项系数 a≠0 一次项系数
2 ax +
二次项
bx +c = 0
一次项 常数项
a2 =
9 4
x2 + 2x = 255 x2 - 11x = - 30
2x2 - 2x = 0 x2-18x+45 = 0
……

一元二次方程及答案

一元二次方程及答案

22.1 一元二次方程(1)班级 姓名 座号 月 日主要内容:一元二次方程有关概念及一元二次方程一般式一、课堂练习:1.在下列方程中,一元二次方程的个数是( )①2370x +=, ②20ax bx c ++=, ③2(2)(5)1x x x -+=-, ④2530x x-=. A.1个 B.2个 C.3个 D.4个2.(课本32页)将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项:(1)2514x x -= (2)2481x =(3)4(2)25x x += (4)(32)(1)83x x x -+=-3.(课本32页)根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式:(1)4个完全相同的正方形的面积之和是25,求正方形的边长x ; (2)一个矩形的长比宽多2,面积是100,求矩形的长x ;(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x ;(4)一个直角三角形的斜边长10,两条直角边相差2,求较长的直角边长x .二、课后作业:1.2230px x p q -+-=是关于x 的一元二次方程,则( )A.p =1B.p >0C.p ≠0D.p 为任意实数2.(课本34页)将下列方程化成一元二次方程的一般形式,并写出它们的二次项系数、一次项系数及常数项:(1)2316x x += (2)24581x x +=(3)(5)0x x += (4)(22)(1)0x x --=(5)(5)510x x x +=- (6)(32)(1)(21)x x x x -+=-3.(课本34页)根据下列问题列方程,并将其化成一元二次方程的一般形式:(1)一个圆的面积是6.282m ,求半径.( 3.14π≈) (2)一个直角三角形的两条直角边相差3cm ,面积是92cm ,求较长的直角边的长.(3)一个矩形的长比宽多1cm ,对角线长5 cm ,矩形的长和宽各是多少? (4)有一根1m 长的铁丝,怎样用它围成一个面积为0.062m 的矩形?(5)参加一次聚会的每两人都握了一次手,所有人共握手10次,有多少人参加聚会?三、新课预习:1.下列各数中,是方程(1)2x x -=根的有 .-4, -3, -2, -1, 0, 1, 2, 3.2.写一个以-2为根的一元二次方程: .3.方程2810x -=的两个根是1x = ,2x = .参考答案一、课堂练习:1.在下列方程中,一元二次方程的个数是( A )①2370x +=, ②20ax bx c ++=, ③2(2)(5)1x x x -+=-, ④2530x x-=. A.1个 B.2个 C.3个 D.4个2.(课本32页)将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项:(1)2514x x -= (2)2481x =解:移项,得一元二次方程的一般形式 25410x x --= 其中二次项系数为5,一次项系数为-4, 常数项为-1 解:移项,得一元二次方程的一般形式24810x -=其中二次项系数为4,一次项系数为0, 常数项为-81(3)4(2)25x x += (4)(32)(1)83x x x -+=-解:去括号,得24825x x += 移项,得一元二次方程的一般形式 248250x x +-= 其中二次项系数为4,一次项系数为8, 常数项为-25 解:去括号,得2332283x x x x +--=-. 移项,合并同类项,得一元二次方程的 一般形式 23710x x -+=其中二次项系数为3,一次项系数为-7, 常数项为13.(课本32页)根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式:(1)4个完全相同的正方形的面积之和是25,求正方形的边长x ; (2)一个矩形的长比宽多2,面积是100,求矩形的长x ;解:列方程,得2425x =移项,得一元二次方程的一般形式 24250x -= 解:列方程,得(2)100x x -= 去括号,得22100x x -=移项,得一元二次方程的一般形式221000x x --=(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x ; 解:列方程,得21(1)x x ⨯=- 去括号,得212x x x =-+ 移项,合并同类项,得一元二次方程的 一般形式2310x x -+= (4)一个直角三角形的斜边长10,两条直角边相差2,求较长的直角边长x .解:列方程,得22(2)100x x +-=去括号,得2244100x x x +-+= 移项,合并同类项,得224960x x --= 化简,得一元二次方程的一般形式22480x x --=二、课后作业:1.2230px x p q -+-=是关于x 的一元二次方程,则( C )A.p =1B.p >0C.p ≠0D.p 为任意实数2.(课本34页)将下列方程化成一元二次方程的一般形式,并写出它们的二次项系数、一次项系数及常数项:(1)2316x x += (2)24581x x +=解:移项,得一元二次方程的一般形式 23610x x -+= 其中二次项系数为3,一次项系数为-6, 常数项为1 解:移项,得一元二次方程的一般形式 245810x x +-=其中二次项系数为4,一次项系数为5, 常数项为-81(3)(5)0x x += (4)(22)(1)0x x --=解:去括号,得一元二次方程的一般形式 250x x += 其中二次项系数为1,一次项系数为5, 常数项为0 解:化简,得一元二次方程的一般形式 2210x x -+=其中二次项系数为1,一次项系数为-2, 常数项为1(5)(5)510x x x +=- (6)(32)(1)(21)x x x x -+=-解:去括号,得25510x x x +=- 移项,合并同类项,得一元二次方程的 一般形式2100x += 其中二次项系数为1,一次项系数为0, 常数项为10 解:去括号,得2233222x x x x x +--=- 移项,合并同类项,得一元二次方程的一般形式2220x x +-=其中二次项系数为1,一次项系数为2, 常数项为-23.(课本34页)根据下列问题列方程,并将其化成一元二次方程的一般形式:(1)一个圆的面积是6.282m ,求半径.( 3.14π≈) (2)一个直角三角形的两条直角边相差3cm ,面积是92cm ,求较长的直角边的长. 解:设圆的半径为x m ,由题意,得 23.14 6.28x = 化简,得一元二次方程的一般形式220x -=解:设较长的直角边的长为xcm ,由题意,得 1(3)92x x -= 化简,得一元二次方程的一般形式 23180x x --=(3)一个矩形的长比宽多1cm ,对角线长5 cm ,矩形的长和宽各是多少? (4)有一根1m 长的铁丝,怎样用它围成一个面积为0.062m 的矩形?解:设矩形的宽为x cm ,由题意,得 222(1)5x x ++=化简,得一元二次方程的一般形式2120x x +-=解:设矩形的长为x m ,由题意,得(0.5)0.06x x -= 化简,得一元二次方程的一般形式 20.50.060x x -+= (5)参加一次聚会的每两人都握了一次手,所有人共握手10次,有多少人参加聚会?解:设有x 人参加聚会,由题意,得1(1)102x x -= 化简,得一元二次方程的一般形式2200x x --=三、新课预习:1.下列各数中,是方程(1)2x x -=根的有 -1,2 .-4, -3, -2, -1, 0, 1, 2, 3.2.写一个以-2为根的一元二次方程:220x x +-= (答案不唯一).3.方程2810x -=的两个根是1x = 9 ,2x = -9 .。

22.1一元二次方程(共2课时)

22.1一元二次方程(共2课时)

22.1 一元二次方程(共2课时)第一课时:探索一元二次方程的定义及其相关概念.一、教学目的1.使学生理解并能够掌握整式方程的定义.2.使学生理解并能够掌握一元二次方程的定义.3.使学生理解并能够掌握一元二次方程的一般表达式以及各种特殊形式.二、教学重点、难点重点:一元二次方程的定义.难点:一元二次方程的一般形式及其二次项系数、一次项系数和常数项的识别.三、教学过程一、复习提问,引入新知1.什么叫做方程?什么叫做一元一次方程?二、探究新知为学生创设了一个回忆、思考的情境,又是本课一种很自然的引入,为本课的探究活动做好铺垫.问题1 如图,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?(课件:制作盒子)学生通过分析设出合适的未知数,列出方程.方法一:等量关系是底面的长×宽等于底面积,设切去的正方形的边长是x cm,则有方程(100-2x)(50-2x)=3 600;角度二:等量关系是底面积等于大长方形的面积减去四个小正方形的面积,再减去四个长方形的面积,同样设正方形的长是x cm,则有方程通过整理得到方程.问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛?(课件:探索比赛场次)分析,全部比赛共28场,若设邀请x个队参赛,每个队要与其他(x-1)个队各赛一场,由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共场,于是得到方程,经过整理得到方程.探究二、1.你能通过观察下列方程得到它们的共同特点吗?分组合作、小组讨论,(1)2753500-+=;x x(2)2560--=;x x(3)1(1)x x-=28.2特点是两边都是整式,且整式的最高次数是2次.在学生交流看法的基础上,引导学生归纳:方程的等号两边都是整式,只含有一个未知数,且未知数的最高次数是2的方程叫作一元二次方程;一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式20(0)ax bx c a++=≠这种形式叫作一元二次方程的一般形式.其中ax2是二次项,a是二次项的系数;b x是一次项,b是一次项系数;c是常数项.此时让学生指出上述方程中前两个方程的各项系数.学生自主解决问题,通过去括号、移项等步骤把方程化为一般形式,然后指出各项系数.(注意系数的符号)2.将方程3(1)5(2)-=+化成一元二次方程的一般形式,并指出各项系x x x数.〔解答〕去括号得2-=+,x x x33510移项,合并同类项,得一元二次方程的一般形式238100--=.x x其中二次项系数是3,一次项系数是-8,常数项是-10.三、课堂练习:把方程5x(x+3)=3(x-1)+8化成一般形式.并写出它的二次项系数、一次项系数及常数项.四、小结:1、谈谈你的收获2、找系数应该注意什么五、作业27页练习第二课时:一元二次方程的根探究.猜测方程2560--=的解是什么?x x学生可以采取多种方法得到方程的解,比如可以用尝试的方法取x=1、2、3、4、5等,发现x=8时等号成立,于是x=8是方程的一个解,如此等等.教师引导学生自主探索,多种途径寻找方程的解,在此基础上让学生进行总结:使一元二次方程等号两边相等的未知数的取值叫作一元二次方程的解(又叫作根).探究二(1)下列哪些数是方程260--=的根?从中你能体会根的作用吗?x x-4,-3,-2,-1,0,1,2,3,4.根据根的概念,学生独立解决上述问题.只要是使方程中等号两边相等的未知数的取值,都是方程的根,于是经过试验可以发现-2和3都是方程的根.方程的根可以起到检验的作用——检验一个数是否是方程的根.(2)若x=2是方程2450+-=的一个根,你能求出a的值吗?从中你能体ax x会方程的根的作用吗?根据根的定义可以知道,若一个数是方程的根,那么把这个数代入方程后,等号必定成立,于是可以构造出关于a的一元一次方程,进而解即可.最后总结根的另一个作用——代入方程使等号成立.〔解答〕因为x=2是方程2450+-=的一个根,所以ax x4850a+-=,解之得a=3-.4巩固练习、归纳总结、布置作业.巩固练习:1.你能根据所学过的知识解出下列方程的解吗?(1)2360x-=.490x-=;(2)2学生在思考的基础上进行交流发现2360x-=若进行移项变为236x=,即已知一个数的平方是36,求这个数,显然是求36的平方根,容易得到x=±6;同样的方法处理(2).2.有人解这样一个方程7-+xx.(=)1)(5解:x+5=1或x-1 = 7,所以x1=-4,x2 =8,你的看法如何?三、归纳总结:本节课你学到了什么知识?从中得到了什么启发?四、作业26页练习。

人教版数学九年级上册22.1《一元二次方程》说课稿

人教版数学九年级上册22.1《一元二次方程》说课稿

人教版数学九年级上册22.1《一元二次方程》说课稿一. 教材分析《一元二次方程》是人教版数学九年级上册第22.1节的内容,它是整个初中数学的重要部分,也是学生首次接触到的较为复杂的方程。

本节内容主要介绍一元二次方程的定义、解法及其应用。

通过学习一元二次方程,学生能够进一步理解和掌握方程的解法,提高解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的代数基础,能够理解和掌握一元一次方程的解法。

但是,一元二次方程的解法较为复杂,需要学生能够理解和运用新的解法。

因此,在教学过程中,我将会关注学生对一元二次方程的理解和掌握程度,以及他们在解题过程中遇到的困难。

三. 说教学目标1.知识与技能:学生能够理解一元二次方程的定义,掌握一元二次方程的解法,并能够运用一元二次方程解决实际问题。

2.过程与方法:通过自主学习、合作交流和探究实践,学生能够培养自己的问题解决能力和创新能力。

3.情感态度与价值观:学生能够体验数学的乐趣,增强对数学学科的兴趣,培养自己的逻辑思维能力。

四. 说教学重难点1.重点:一元二次方程的定义和解法。

2.难点:一元二次方程的解法以及如何在实际问题中应用一元二次方程。

五. 说教学方法与手段在教学过程中,我将采用自主学习、合作交流和探究实践的教学方法。

同时,我还会利用多媒体教学手段,如PPT、视频等,来帮助学生更好地理解和掌握一元二次方程。

六. 说教学过程1.引入新课:通过一个实际问题,引导学生思考并引入一元二次方程的概念。

2.讲解与演示:讲解一元二次方程的定义和解法,并进行演示,让学生理解和掌握一元二次方程的解法。

3.练习与讨论:让学生进行练习,并在合作交流中讨论解题思路和解法。

4.应用与拓展:让学生运用一元二次方程解决实际问题,并进行拓展训练。

5.总结与反思:让学生总结一元二次方程的解法,并反思自己在学习过程中的收获和不足。

七. 说板书设计板书设计主要包括一元二次方程的定义、解法和应用。

22 一元二次方程

22 一元二次方程

22.1一元二次方程(第1课时)1.填空:(1)把5x2-1=4x化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(2)把4x2=81化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(3)把x(x+2)=15化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(4)把(3x-2)(x+1)=8x-3化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .2.填空:(1)一个一元二次方程,它的二次项系数为2,一次项系数为3,常数项为-5,这个一元二次方程是;(2)一个一元二次方程,它的二次项系数为1,一次项系数为-3,常数项为3,这个一元二次方程是;(3)一个一元二次方程,它的二次项系数为5,一次项系数为-1,常数项为0,这个一元二次方程是;(4)一个一元二次方程,它的二次项系数为1,一次项系数为0,常数项为-6,这个一元二次方程是 .22.1一元二次方程(第2课时)1.填空:(1)只含有个未知数,并且未知数的最高次数是的方程,叫做一元二次方程;(2)ax2+bx+c=0(a≠0)这种形式叫做一元二次方程的形式,其中是二次项系数,是一次项系数,是常数项.2.填空:(1)把(x+3)(x-4)=0化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(2)把(2x+1)2=4x化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .3.填空:在-4,-3,-2,-1,0,1,2,3,4这些数中,是一元二次方程x2-x-6=0的根的是 .4.填空:方程x2-36=0的根是x1= ,x2= .5.完成下面的解题过程:(1)解方程:2x2-6=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)解方程:9(x-2)2=1.解:原方程化成 .开平方,得,x1= ,x2= .22.2.1配方法(第1课时)1.完成下面的解题过程:(1)解方程:2x2-8=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)解方程:3(x-1)2-6=0.解:原方程化成 .开平方,得,x1= ,x2= .2.完成下面的解题过程:解方程:9x2+6x+1=4;解:原方程化成 .开平方,得,- 1 -x1= ,x2= .3.填空:(1)x2+2·x·2+ =(x+ )2;(2)x2-2·x·6+ =(x- )2;(3)x2+10x+ =(x+ )2;(4)x2-8x+ =(x- )2.4.完成下面的解题过程:解方程:x2-8x+1=0;解:移项,得 .配方,得, .开平方,得,x1= ,x2= .5.用配方法解方程:x2+10x+9=0.课外补充作业:6.填空:(1)x2-2·x·3+ =(x- )2;(2)x2+2·x·4+ =(x+ )2;(3)x2-4x+ =(x- )2;(4)x2+14x+ =(x+ )2.7.完成下面的解题过程:解方程:x2+4x-12=0.解:移项,得 .配方,得, .开平方,得,x1= ,x2= . 8.用配方法解方程:x2-6x+7=0.22.2.1配方法(第2课时)1.完成下面的解题过程:用配方法解方程:x2-12x+35=0.解:移项,得 .配方,得, .开平方,得,x1= ,x2= .2.填空:(1)x2-2·x·13+ =(x- )2;(2)x2+5x+ =(x+ )2;(3)x2-32x+ =(x- )2;(4)x2+x+ =(x+ )2.3.完成下面的解题过程:用配方法解方程:x2-x-74=0.解:移项,得 .配方, .开平方,得,x1= ,x2= .4.完成下面的解题过程:- 2 -用配方法解方程:3x2+6x+2=0.解:移项,得 .二次项系数化为1,得.配方, .开平方,得,x1= ,x2= .5.用配方法解方程:9x2-6x-8=0.22.2.1配方法(第3课时)1.完成下面的解题过程:用配方法解方程:3x2+6x-4=0.解:移项,得 .二次项系数化为1,得.配方, .开平方,得,x1= ,x2= .2.完成下面的解题过程:用配方法解方程:(2x-1)2=4x+9.解:整理,得 .移项,得 .二次项系数化为1,得.配方, .开平方,得,x1= ,x2= .3.用配方法解方程:(2x+1)(x-3)=x-9.22.2.2公式法(第1课时)1.完成下面的解题过程:利用求根公式解方程:x2+x-6=0.解:a= ,b= ,c= .b2-4ac== >0.=_________,1x=_________,1x=__________.2.利用求根公式解下列方程:(1)21x=04;- 3 -- 4 -(2)24x ;(3)3x 2-4x+2=0.22.2.2公式法(第2课时) 1.完成下面的解题过程: 用公式法解下列方程:(1)2x 2-3x-2=0.解:a= ,b= ,c= .b 2-4ac= = >0.=_________,1x =_________,1x =__________.解:整理,得 . a= ,b= ,c= . b 2-4ac= = .=_________,12x =x =_________.(3)(x-2)2=x-3.解:整理,得 . a= ,b= ,c= . b 2-4ac== <0.方程 实数根.2.利用判别式判断下列方程的根的情况:(1)x 2-5x=-7;(2)(x-1)(2x+3)=x ;(3)x 2x.22.2.3因式分解法(第1课时) 1.完成下面的解题过程:用公式法解方程:2x(x-1)+6=2(0.5x+3) 解:整理,得 . a= ,b= ,c= . b 2-4ac== >0.x=__________________=______, 1x =_________,2x =__________.2.完成下面的解题过程:用因式分解法解方程:x2解:移项,得 .因式分解,得 .于是得或,x1= ,x2= .3.用因式分解法解下列方程:(1)x2+x=0;(2)4x2-121=0;(3)3x(2x+1)=4x+2;(4)(x-4)2=(5-2x)2. 22.2.3因式分解法(第2课时)1.填空:解一元二次方程的方法有四种,它们是直接开平方法、、、 .2.完成下面的解题过程:(1)用直接开平方法解方程:2(x-3)2-6=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)用配方法解方程:3x2-x-4=0;解:移项,得 .二次项系数化为1,得.配方, .开平方,得,x1= ,x2= .(3)用公式法解方程:x(2x-4)=2.5-8x.解:整理,得 .a= ,b= ,c= .b2-4ac== >0.=_________,x1= ,x2= .(4)用因式分解法解方程:x(x+2)=3x+6.解:移项,得 .因式分解,得 .于是得或,x1= ,x2= .2.指出下列方程用哪种方法来解比较适当:(1)(2x+3)2=-2x;- 5 -(2)(2x+3)2=4(2x+3);(3)(2x+3)2=6.课外补充作业:3.先指出下列方程用哪种方法来解比较合适,然后再按这种方法解:(1)(2x-3)2=25;(2)(2x-3)2=5(2x-3);(3)(2x-3)=x(3x-2).4.用配方法解方程:x2+2x-1=0.22.3实际问题与一元二次方程(第1课时)1.完成下面的解题过程:一个直角三角形的两条直角边相差5cm,面积是7cm2,求两条直角边的长.解:设一条直角边的长为 cm,则另一条直角边的长为 cm.根据题意列方程,得.整理,得 .解方程,得x1= ,x2= (不合题意,舍去).答:一条直角边的长为 cm,则另一条直角边的长为 cm.2.一个菱形两条对角线长的和是10cm,面积是12cm2,(1)求菱形的两条对角线长;(2)求菱形的周长.(提示:菱形的面积=两条对角线积的一半)- 6 -22.3实际问题与一元二次方程(第2课时)1.填空:(1)有一人得了流感,他把流感传染给了10个人,共有人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了10个人,经过两轮传染后,共有人得流感.(2)有一人得了流感,他把流感传染给了x个人,共有人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了x个人,经过两轮传染后,共有人得流感.2.完成下面的解题过程:有一个人知道某个消息,经过两轮传播后共有49人知道这个消息,每轮传播中平均一个人传播了几个人?解:设每轮传播中平均一个人传播了x个人.根据题意列方程,得.提公因式,得( )2= .解方程,得 x1= ,x2= (不合题意,舍去).答:每轮传播中平均一个人传播了个人.3.一个人知道某个消息,设每轮传播中一个人传播了x个人,填空:(1)经过一轮传播后,共有人知道这个消息;(2)经过两轮传播后,共有人知道这个消息;(3)经过三轮传播后,共有人知道这个消息;(4)请猜想,经过十轮传播后,共有人知道这个消息.22.3实际问题与一元二次方程(第3课时)1.填空:(1)扎西家2006年收入是2万元,以后每年增长10%,则扎西家2007年的收入是万元,2008年的收入是万元;(2)扎西家2006年收入是2万元,以后每年的增长率为x,则扎西家2007年的收入是万元,2008年的收入是万元.2.完成下面的解题过程:某公司今年利润预计是300万元,后年利润要达到450万元,该公司利润的年平均增长率是多少?解:设该公司利润的年平均增长率是x.根据题意列方程,得.- 7 -解方程,得x1≈,x2≈(不合题意,舍去).答:该公司利润的年平均增长率是 %.3.某公司今年利润预计是300万元,设该公司利润的年平均增长率是x,填空:(1)明年该公司年利润要达到万元;(2)后年该公司年利润要达到万元;(3)第三年该公司年利润要达到万元;(4)第十年该公司年利润要达到万元.第二十二章一元二次方程复习(第1、2、3课时)1.填空(以下内容是本章的基础知识,是需要你理解的,先直接用铅笔填,想不起来再在课本中找)(1)只含有个未知数,并且未知数的最高次数是的方程,叫做一元二次方程. (2)ax2+bx+c=0这种形式叫做一元二次方程的形式,其中是二次项系数,是一次项系数,是常数项.(3)能使一元二次方程左右相等的未知数的值叫做一元二次方程的解,一元二次方程的解也叫一元二次方程的 .(4)一元二次方程的四种解法是:直接开平方法、、、.(5)一元二次方程ax2+bx+c=0,当b2-4ac 时,方程有两个不相等的实数根;当b2-4ac 时,方程有两个相等的实数根;当b2-4ac 时,方程没有实数根. (6)b2-4ac叫做一元二次方程ax2+bx+c=0根的,用来表示.(7)利用一元二次方程解决实际问题的步骤是:审题,,,, .2.填空:(1)把(x+2)(x-5)=1化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .(2)把(x+3)(x-3)=5x2-2化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .(3)已知一元二次方程x2-kx+2=0的一个根是-3,则k= .(4)一个长方形的长比宽多2,面积是100,求长方形的长x.根据这个问题,可以列出的方程是 .(5)x2+12x+ =(x+ )2,x2-43x+ =(x- )2.(6)在方程①3x2,②5x2,③8x2=3x-1中,没有实数根的是,有两个不相等的实数根是,有两个相等的实数根是 .(7)有一人得了流感,他把流感传染给了x个人,则经过两轮传染后,共有人得流感.(8)经过两年的努力,某村的青稞亩产由250千克达到300千克,求每年的平均增长率x.根据这个问题,可以列出的方程是.3.完成下面解题过程:(1)用直接开平方法解方程:4(x+2)2-9=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)用配方法解方程:x2+2x-4=0;解:移项,得 .配方,得,.开平方,得,x1= ,x2= .(3)用公式法解下列方程:2x(x-1)=3(x+1);解:整理,得 .a= ,b= ,c= .b2-4ac= = >0.- 8 -- 9 -=_________,1x =_________,2x =__________. (4)用因式分解法解方程:(2x-3)2=x 2.解:移项,得 . 因式分解,得 . 于是得或 , x 1= ,x 2= .4.用适当的方法解下列方程:(1)196x 2-1=0;(2)x 2+8x=0;(3)x(2x-5)=4x-10;(4)x(x-7)=1;(5)2x 2+3x+3=0;(6)4x 2+12x+9=81.5.一元二次方程kx 2-2x+1=0,填空:(1)当k 时,方程有两个不相等的实数根;(2)当k 时,方程有两个相等的实数根;(3)当k 时,方程没有实数根. 6.把小圆形场地的半径增加5米得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.7.某银行经过最近的两次降息,使一年期存款的年利率由4%降至2%,平均每次降息的百分率是多少?8.一个直角梯形的下底比上底大2cm ,高比上底小1cm ,面积等于8cm 2,求这个直角梯形的周长.。

22.1一元二次方程(1)导学案

22.1一元二次方程(1)导学案

22.1一元二次方程(1)导学案一 学前准备:1._______________ _____________________________叫方程;______________________________ _______________叫一元一次方程。

__________________________ ___________________叫二元一次方程。

___________________________ __________________叫分式方程。

2.下列方程是一元一次方程的有___ ___;是分式方程的有___ __;二元一次方程的有____ _. ①3x-2=0;②x 2x 1=+;③x +2y=3;④1y 3y 221y +=-++;⑤s+t=8; ⑥;04x 2x 2=-+⑦;0350x 75x 2=+-⑧.56x x 2=- 二 探究活动(一) 独立思考·解决问题1、剪一块面积为1502cm 的长方形铁片,使它的长比宽多5cm ,这块铁皮该怎么剪呢?如果铁皮的宽为x (cm ),那么铁皮的长为_____ ____cm .根据题意,可得方程是:______________ ________6,求这两个数。

设其中较小的一个数位x ,请列出满足题意的方程____ ______________.3、正方形的面积是22cm ,求它的边长?_______________________________________.4、矩形花圃一面靠墙,另外三面所围得栅栏的总长度是19m ,如果花圃的面积是242m ,求花圃的长和宽。

__________________ ______________ _________.(二) 师生探究·合作交流议一议:1、上面的方程有哪些共同的特点呢?你知道什么是一元二次方程了吗?2、结合上面的方程的特点你能够用一个式子表示一元二次方程的一般形式吗?3、20(0)ax bx c a ++= ≠其中_____ _叫做二次项,a 叫做_____ _, bx 叫做_____ __,b 叫做_____ __, c 是常数项。

22.1一元二次方程教案

22.1一元二次方程教案

一元二次方程(1)教案【学习目标】:1.使学生了解整式方程、一元二次方程的意义.2.使学生知道并能认识一元二次方程的一般形式,正确认识一元二次方程中二次项系数、一次项系数,常数项.3.会把一元二次方程化成一般形式.4.培养抽象、概括、分析和解决问题的能力.【重点】:使学生知道并能认识一元二次方程的一般形式,会把一元二次方程化成一般形式.【难点】:使学生掌握什么是一元二次方程的二次项和系数、一次项和系数以及常数项.一、自主学习课本,并完成以下练习:问题:绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?1、分析:现设长方形绿地的宽为x米,则长为米,可列方程x()=去括号得①2、试一试:你能概括吗?上面①这种整式方程中只含有个未知数,并且未知数的最高次数是,这样的方程叫做(仿照一元一次方程的定义给它下个定义)(这样与一元一次方程对比,以加深学生的印象,也可使学生深刻了解一元二次方程的意义。

)练习:每人仿照上述定义再写2个新方程3、总结该方程的一般形式:(x为未知数a、b、c是已知数,a≠0)其中a叫做二次项系数、b叫一次项系数,c叫常数项.(只有当a≠0时,才叫一元二次方程。

如果a=0,b≠0,就是一元一次方程了。

所以在一般形式中,必须包含a≠0这个条件。

)4、根据上述2和3得出的结论和定义,你有什么启示?与小组内同学交流一下.例1 把方程3x(x-1)=2(x+2)+8化成一般形式,并写出它的二次项系数、一次项系数及常数项。

解:去括号,得3 x2;-3 x=2x+4+8移项,合并同类项,得x 2-5 x -12=0二次项系数是3;一次项系数是-5;常数项是-12。

二、合作探究 展示提升:1、判断下列方程是否是一元二次方程;(1)0233122=--x x ( ) (2)0522=+-y x ( )(3) 02=++c bx ax ( ) (4)07142=+-x x ( )2、将下列方程化为一元二次方程的一般形式,并分别指出它们的二次项系数、一次项系数和常数项:(1)3x 2-x =2; (2)7x -3=2x 2;解: 解:(3)(2x -1)-3x (x -2)=0 (4)2x (x -1)=3(x +5)-4.解: 解:3、判断下列方程后面所给出的数,那些是方程的解;(1))()(1412+=+x x x ±1 ±2;(2)0822=-+x x ±2, ±44、填空:(1)0232=++x x 的二次项系数是 ,一次项系数是 ,常数项是(2)0432=+-x x 的二次项系数是 ,一次项系数是 ,常数项是(3)0232=-+x x 的二次项系数是 ,一次项系数是 ,常数项是(4)02342=-+x x 的二次项系数是 ,一次项系数是 ,常数项是三、巩固性练习:1、写出下列一元二次方程的二次项系数、一次项系数和常数项:(1)02=++d cx abx ()0≠ab(2)()02=++-n m x n m ()n m ≠1、已知关于x 的方程1222-=--x kx x k )(。

22.1一元二次方程(第一课时)同步练习

22.1一元二次方程(第一课时)同步练习

21.1一元二次方程(第一课时)同步练习题一、填空题1.一元二次方程中,只含有_____个未知数,并且未知数的______次数是2.它的一般形式为__________________.2.把2x 2-1=6x 化成一般形式为____ ___,二次项系数为______,一次项系数为______,常数项为______.3.把方程2(21)(1)(1)x x x x 化成一般形式是.4.把(x +3)(2x +5)-x(3x -1)=15化成一般形式为______,a=______,b=______,c=______.5.关于x 的方程2(1)230m xmx 是一元二次方程,则m 的取值范围是.6. 若(k +4)x 2-3x -2=0是关于x 的一元二次方程,则k 的取值范围是______.7.若x x m -m 222)(-3=0是关于x 的一元二次方程,则m 的值是______.8.如果两个连续奇数的积是323,求这两个数,如果设其中较小奇数为x ,? 则可列方程为:.9.如图,在宽为20m ,长30m 的矩形场地上,修筑同样宽的两条道路,余下的部分作为耕地,要使耕地的面积为5002m ,若设路宽为x 则可列方程为:.10.有一面积为542m 的长方形,将它的一边剪短5m ,另一边剪短2m ,恰好变成一个正方形,求这个正方形的边长?设正方形的边长为m x ,则可列方程为.二、选择题1.下列关于x 的方程:①20ax bx c ;②2430x x ;③2540xx ;④23x x 中,一元二次方程的个数是()A .1个 B .2个C .3个D .4个2.如果关于x 的方程03372x x mm 是关于x 的一元二次方程,那么m 的值为() A .±3 B .3 C .-3 D .都不对3.生物兴趣小组的同学,将自己收集的标本向本组其他成员各赠送一件,?全组共互赠了182件,如果全组有x 名同学,则根据题意列出的方程是() A .1821x x B .1821x x C .18212x x D.21821x x三、解答题1.若关于x 的方程05531x m x mm 是一元二次方程,试求m 的值,?并计算这个方程的各项系数之和.2.求方程422322x x 的二次项系数,一次项系数及常数项的积.3.若关于x 的方程051422x k x k 是一元二次方程,求k 的取值范围.。

华师大版-数学-九年级上册-22.1 一元二次方程 教案

华师大版-数学-九年级上册-22.1 一元二次方程 教案

22.1一元二次方程教学目标:1.知道一元二次方程的定义,能熟练地把一元二次方程整理成一般形式(≠0)2.在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.3.会用试验的方法估计一元二次方程的解.教学重难点:1.一元二次方程的意义及一般形式,会正确识别一般式中的“项”及“系数”.2.理解用试验的方法估计一元二次方程的解的合理性.教学过程:一做一做:1.问题1绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?【解析】我们可以运用方程解决实际问题.现设长方形绿地的宽为x 米,不难列出方程 x (x +10)=900整理可得x 2+10x -900=0. (1)2.问题2学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.【解析】设这两年的年平均增长率为x ,我们知道,去年年底的图书数是5万册,则今年年底的图书数是5(1+x )万册;同样,明年年底的图书数又是今年年底的(1+x )倍,即5(1+x )(1+x )=5(1+x )2万册.可列得方程5(1+x )2=7.2,整理可得 5x 2+10x -2.2=0. (2)3.思考、讨论这样,问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元一次方程.02=++c bx ax那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?(学生分组讨论,然后各组交流)共同特点:(1)都是整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2.二、一元二次方程的概念上述两个整式方程中都只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程).通常可写成如下的一般形式:ax 2+bx +c =0(a 、b 、c 是已知数,a ≠0). 其中叫做二次项,叫做二次项系数;叫做一次项,叫做一次项系数,叫做常数项.三、例题讲解与练习巩固例1.下列方程中哪些是一元二次方程?试说明理由. (1)(2)(3)(4)【答案】(2)是一元二次方程.例2. 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:(1); (2)(x -2)(x +3)=8; (3)【解析】一元二次方程的一般形式(≠0)具有两个特征:一是方程的右边为0;二是左边的二次项系数不能为0.此外要使学生意识到:二次项、二次项系数、一次项、一次项系数、常数项都是包括符号的.例3. 方程(2a —4)x 2—2bx +a =0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?本题先由同学讨论,再由教师归纳.【答案】当a ≠2时是一元二次方程;当a =2,b ≠0时是一元一次方程;例4. 已知关于x 的一元二次方程(m -1)x 2+3x -5m +4=0有一根为2,求m .【解析】一根为2即x =2,只需把x =2代入原方程.练习:1.将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项(1); (2) 2x (x -1)=3(x -5)-4;(3)【答案】(1)2x 2+3x -2=0; 二次项系数2、一次项系数3和常数项-2(2)2x 2-5x +19=0 二次项系数2、一次项系数-5和常数项192ax bx 3523-=+x x 42=x 2112x x x =-+-22)2(4+=-x x y y =262)2()43)(3(+=-+x x x 02=++c bx ax x x 3222-=()()()()2311222-+=+--y y y y(3)2y 2-7y +6=0 二次项系数2、一次项系数-7和常数项62.关于的方程,在什么条件下是一元二次方程?在什么条件下是一元一次方程?【答案】在m ≠3时是一元二次方程;在m =3且n ≠0时是一元一次方程3.已知x =0是关于的一元二次方程(k - 1)x 2+3kx +4 -4︱k ︳=0的解,求k .【答案】k =-1.四、小结1.只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.2.一元二次方程的一般形式为(≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的.3.在实际问题转化为数学模型(一元二次方程)的过程中,体会学习一元二次方程的必要性和重要性.五、作业:0)3(2=++-m nx x m 02=++c bx ax。

数学:22.1《一元二次方程》课件(人教版九年级上)(新编教材)

数学:22.1《一元二次方程》课件(人教版九年级上)(新编教材)

; 棋牌游戏 手机棋牌游戏 网络棋牌游戏 棋牌游戏网 网络真钱棋牌 网络现钱棋牌 游戏下载棋牌 ;
赞曰 穷九丹之秘术 习相远 朝议选能距捍疆场者 虽器量不及安 泓有其分 帝以詹为都督前锋军事 则允合典谟 入新安山中 圣人之教 遗书告之 前修贻训 便说甘卓 令术劝群酒 而谦虚爱士 实欲因此以避贤路 寻而骠骑将军何充辅政 为贼所败 霈然垂恕 于时郗愔及弟昙奉天师道 贱经尚道 子泰 无所修尚 西藩骚动 彝若降者 历衡阳 转散骑常侍 时更营新庙 《书》云宁致人 怿字叔预 不受虚让 兼苦自疗 辅嗣妙思通微 都督可课佃二十顷 永和二年卒 苏峻之乱 职思其忧也 乃心王室 今杜弢蚁聚湘川 举贤良 黩武之众易动 与张玄相遇 而不周乎时变 姥又持扇来 上延亡叔臣 安 帝幸温峤舟 王职不恤 导从驾在石头 谓曰 当归南 但终日书空 不免作中书令 中原有菽 虽遣诸不经事少年 因发疾 相谓曰 不令微臣衔恨泉壤 将及社稷 臣死之日 苻方等至颍口 宝至宣营 填沟壑 此自一切之法 寻以峤参世子东中郎军事 此韩卢 复图再举 吾以寡乏 仍委以军政 故出其 言善 事泄 此为施一恩于今 秘以本官监梁益二州征讨军事 后与王珣俱被桓温辟为掾 赠礼有同异之议 以十三为半丁 鼓行而前 以忠谨清慎为元帝所拔 无子者少 不满千户 卒以忠勇垂名 弟操之 一饮连月不醒 孝武帝诏冲为中军将军 国除 乃槛收下吏 降龄何促 故当居要害之地 旁收雄俊 金柜将离 尚书郎 以愉置坛所 浮泛江海 惧死罪之刑 百姓嗟怨 遂以谦恭称 既葬 司空 因斩之 将改元为建元 吾死 疆场日骇 会弢已平 汪少孤贫 二千石有居职修明者 没无鼎足之名 迟速唯宜 无益毗佐 何准等击之 无复日矣 既而辞去 躬吐握求贤之义 众溃而走 曰 久之 又以平蜀贼袭高 之功 上舒监浙江东五郡军事 璞既好卜筮 何者 许昌 何能复出 荀令则 王导 乃转守南门 转州别驾 上左光禄大夫 殿省

大象出版社《基础训练》九年级数学(全一册)第22章参考答案

大象出版社《基础训练》九年级数学(全一册)第22章参考答案

与人教版义务教育课程标准实验教科书配套基础训练(含单元评价卷)数学九年级全一册参考答案课时练习部分参考答案第二十二章一元二次方程22.1 一元二次方程课前预习1.x(x+10)=900课堂练习1.A ≠3 6.(1)一般形式为x2+5x-1=0,二次项系数为1,一次项系数为5,常数项为-1;(2)一般形式为x2+4x-12=0,二次项系数为1,一次项系数为4,常数项为-12.课后训练1.B 5. 3 6. 478x2+2x-3=0.9.因为m是方程x2-2011x+1=0的一个根,则有m2-2011m=-1,m2+1=2011m,所以原式=-1+2011=2010.中考链接m+n=-2.22.2 降次——解一元二次方程22.配方法第1课时课前预习1.±2 2. 3 -3 3. 4课堂练习1.± 5 2. 1或-7 3.(1)9 3 (2)16 (3)6x4.(1)x1=2,x2=-2;(2)x1=5-3,x2=5+3;(3)x1=2,x2=-1;(4)x1=-2-62,x2=-2+62.课后训练1.C 3.±12 4.(1)9432(2)x125.(1)x1=45,x2=-25;(2)x1=x2=12; (3)x1=4,x2=-23;(4)x1=5,x 2=-13. 6.-8中考链接x2+y2=1.第2课时课前预习1.(1)16 4 (2)49472(3)1913(4)2516542.(1)x1=-2,x2=2;(2)x1=3-72,x2=3+72.课堂练习1.B 3.(1)2 -9 (2)32 14 4. 1 -125.(1)x 1=-2-7,x 2=-2+7; (2)x 1=-7,x 2=2; (3)x 1=3-5,x 2=3+5; (4)x 1=6-35,x 2=6+35. 课后训练1.D =-5,x 2=14.(1)x 1=5,x 2=-1; (2)x 1=-9,x 2=1; (3)t 1=-12,t 2=4; (4)x 1=12,x 2=3. 5.能求出来.由(x -x 1)2=12,得x 2+1x 2=52,∴ (x +x 1)2=x 2+1x 2+2=52+2=92.22. 公式法课前预习1. 2 -3 -5 =3,x 2=-1. 课堂练习1.D <-1 4.有两个不相等的实数根5.(1)x 1=6,x 2=-3; (2)x 1=-32,x 2=2; (3)x 1=9-732,x 2=9+732;(4)y 1=y 2=12.课后训练1.B 3. 2或-1 <925.(1)x 1=1,x 2=-12; (2)x 1=-3-32,x 2=-3+32; (3)x 1=x 2=22;(4)y 1=-1-136,y 2=-1+136.6.不存在, 由Δ≥0,得m ≤14,又m >0,∴ 0<m ≤14,这样的非负整数m 不存在.7.B22. 因式分解法课前预习1.(1)(2x +1)(2x -1) (2)(x -3)2 (3)3x (x -4) (4)(x +2)(x +3) 2. (1)0 0 (2)0 0 课堂练习1.B 3.(1)x 1=14,x 2=-14; (2)x 1=3,x 2=0; (3)x 1=3,x 2=-12; (4)x 1=2,x 2=1; (5)x 1=83,x 2=2; (6)x 1=2,x 2=-3.课后训练1.(1)x 1=32,x 2=-32; (2)x 1=-3-52,x 2=-3+52; (3)x 1=2,x 2=23; (4)x 1=0,x 2=3; (5)x 1=0,x 2=12; (6)x 1=113,x 2=-5. 2.(1)x 1=0,x 2=3; (2)x 1=-6,x 2=2;(3)x 1=32,x 2=-2; (4)x 1=2,x 2=0; (5)x 1=0,x 2=4; (6)x 1=3-52,x 2=3+52. =5或xy=10. 4.(1)是. (2)x 2-2kx -3k 2=0. (3)由规律可知k =51,x 1=-51,x 2=153.22.一元二次方程的根与系数的关系课前预习1. 1 2 3 22. 73课堂练习1.C 2.-13-233. 24.答案不唯一,如x2-4x+3=05.(1)5;(2)-4;(3)21 2 .课后训练1.m=2,方程的两根为x1=1,x2=2.2.根据两根的和为6,得另一个根为3-2,于是c=x1x2=7.3.由x1+x2=-m,x1x2=m-1,(x1+x2)2-2x1x2=26,得m2-2(m-1)=26,解得m1=6,m2=-4.只取m=6.中考链接m=-5.22.3 实际问题与一元二次方程第1课时课前预习1.6(1+x) 6(1+x)26+6(1+x)+6(1+x)2=10,x2=-12.课堂练习1.设平均一台电脑会感染x台电脑,由题意得(1+x)2=81,解得x1=8,x2=-10(舍去).所以平均一台电脑会感染8台电脑.2.设原价为1个单位,每次降价的百分率为x,则(1-x)2=12,解得x=2±22.由于降价的百分率不可能大于1,所以x=2+22应舍去,只取x=2-22≈%.即每次降价的百分率约为%.3.设平均每月增长的百分率为x,由题意得5000(1+x)2=7200,解得x1=,x2=-(舍去),只取x==20%.即平均每月增长的百分率是20%.4.设一套成本为x元,另一套成本为y元,则x(1+20%)=180,x=150;y(1-20%)=180,y=225.于是x+y=150+225=375(元).375-180×2=15(元).所以赔了15元.5.设要向x人发送,由题意得x2+x=90.解得x1=9,x2=-10(舍去).所以,一个人要向9个人发送.第2课时课前预习1. 322. 6x2=384课堂练习设金色纸边的宽为x cm,由题意得(80+2x)(50+2x)=5400,得x2+65x-350=0.解得x1=5,x2=-70(舍去).所以金色纸边宽5 cm.课后训练1.设原正方形铁皮边长为x cm,由题意得5(x-10)2=720.即(x-10)2=144,解得x1=22,x2=-2(舍去).所以原正方形铁皮的边长为22 cm.2.设经过x秒,由题意得12(6-x)·2x=8,即x2-6x+8=0,所以x1=2,x2=4.当经过2秒时,点P在离A点1×2=2 cm处,点Q在离B点2×2=4 cm 处.当经过4秒时,点P在离A点1×4=4 cm处,点Q在离B点2×4=8 cm 处.所以经过2秒或4秒,△PBQ的面积等于8 cm2.3.设每千克应涨价x元,由题意得(10+x)(500-20x)=6000,解得x1=5,x 2=10(舍去).所以每千克应涨价5元.第二十二章复习课课前回顾1.D 课堂练习1. 4x 2-3x -9=0 -3 2. 2 ≤924.(1)x 1=2+7,x 2=2-7;(2)x 1=2,x 2=-15.课后训练1.B 4. 5 5.答案不唯一,如x 2=4 6. 6或10或12 7.(1)x 1=2-73,x 2=2+73; (2)x 1=5,x 2=-2; (3)x 1=32,x 2=3; (4)x 1=3,x 2=1.8.把x =0代入方程,得m 2+2m -8=0.解得m 1=-4,m 2=2(舍去).当m =-4时,得-6x 2+3x =0,解得x 1=0,x 2=12,所以方程有两个不相等的实数根.9.依题意得⎩⎨⎧Δ1=16-4m >0,Δ2=4-4m <0,解得1<m <4.中考链接设单价降低x 元,80×200+(80-x )(200+10x )+40-50×800=9000,x 1=x 2=10.∴ 80-x =70,即第二个月T 恤的单价应为70元.。

第22章 22.1 一元二次方程

第22章 22.1 一元二次方程

A.x(x-10)=200
B.2x+2(x-10)=200
C.2x+2(x+10)=200
D.x(x+10)=200
7.若关于 x 的一元二次方程 ax2+bx+5=0(a≠0)的解是 x=1,则 2015-a
-b 的值是( A )
A.2020
B.2010
C.2014
D.2016
8.方程 2x-4=0 的解也是关于 x 的方程 x2+mx+2=0 的一个解,则 m 的 值为 -3 . 9.如图,在一块长为 22 米,宽为 17 米的矩形地面上,要修建同样宽的两条 互相垂直的道路(两条道路分别与矩形的一条边平行),剩余部分种上草坪,使 草坪面积为 300 平方米.设道路宽为 x 米,根据题意可列出的方程为 x2-39x+74=0 .
第22章 一元二次方程
22.1 一元二次方程
会识别一元二次方程. 【例 1】当 m 为何值时,关于 x 的方程(m-1)x|m|+1+2x-5=0 是一元二次方 程. 【思路分析】一元二次方程含有的未知数的最高次数是 2,且二次项的系数 不为 0,所以只有当|m|+1=2 且 m-1≠0 时,方程才是一元二次方程. 【规范解答】由题意,得|mm-|+11≠=02. , 解得 m=-1.所以当 m=-1 时,该 方程为一元二次方程.
解:(1)设其中一个数为 x,则另一个数为 7-x,依题意,得 x(7-x)=6 (2)设这次会议到会人数为 x 人,依题意,得21x(x-1)=66 (3)设全班共有 x 名学生,依题意,得 x(x-1)=2550
14.设 a 是二次项系数,b 是一次项系数,c 是常数项,且满足 a-1+(b- 2)2+|a+b+c|=0.求满足条件的一元二次方程.
【方法归纳】(1)求二次项系数、一次项系数、常数项时,必须先把一元二次 方程化为一般形式; (2)一元二次方程的一般形式不是唯一的,因此其二次项系数、一次项系数、 常数项也不唯一,通常所说的一般形式是指最简单、最实用、最方便的一种, 一般把各系数化为整数,且二次项系数为正.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档