人教版七年级下册数学动点问题
七年级数学动点问题知识点
七年级数学动点问题知识点数学中的动点问题是数学中常见的类型。
这类问题的特点是有一个或多个运动的“点”,并且需要根据这些点的运动轨迹来求解问题。
在初中数学中,学生通常会学习到直线运动、圆周运动和两点之间的相对运动等知识。
下面将对这些知识点进行具体的讲解。
1. 直线运动直线运动是动点问题中最基本的一种。
在直线运动中,动点随着时间的推移,沿着一定的直线方向进行移动。
对于一个匀速直线运动的动点,我们可以通过公式 s = vt 来求解。
其中,s 表示位移,v 表示速度,t 表示时间。
例如,一辆时速为 60 公里/小时的汽车从 A 地出发,向 B 地驶去,经过 2 小时后到达 B 地。
则这辆汽车的位移 s = vt = 60 * 2 = 120 公里。
对于存在加速度或减速度的直线运动,我们则需要通过加速度来求解。
对于匀加速直线运动的动点,我们可以通过公式 s = vt +1/2at^2 来求解。
其中,s 表示位移,v 表示初速度,t 表示时间,a 表示加速度。
例如,一个起始速度为 0 m/s,加速度为 5 m/s^2 的物体,经过3 秒后的位移为 s = vt + 1/2at^2 = 0 * 3 + 1/2 * 5 * 3^2 = 22.5m。
2. 圆周运动圆周运动也是动点问题中较为常见的一种。
在圆周运动中,动点会绕着圆心进行运动,通常会涉及到角度的概念。
对于一个匀速圆周运动的动点,我们可以通过公式s = rθ 来求解。
其中,s 表示弧长,r 表示半径,θ 表示圆心角的大小(弧度制)例如,半径为 5cm 的圆周上,一个匀速运动的动点在 3 秒钟内绕圈一周,求其位移。
由于一周为2π rad,那么圆心角大小为θ = 2π。
则动点的位移 s = rθ = 5 * 2π = 10π ≈ 31.4cm。
对于存在变速的圆周运动,我们需要通过变速率来求解。
对于一个圆周运动的动点,它的速度通常都是变化的,而其加速度方向则指向圆心。
七年级数学数轴上的动点问题
七年级数学数轴上的动点问题
数轴上的动点问题是七年级数学的一个重要内容,主要涉及到动点在数轴上的运动。
解决这类问题,需要通过运动点的初始位置,运动时间t,运动速度v,计算出运动点将会到达哪个坐标。
例如,假设有一个电子蚂蚁P从点A出发,以2单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以1单位长度/秒的度数向右运动,求经过多长时间两只电子蚂蚁在数轴上到原点的距离相等。
解决这个问题的方法如下:
P、Q在原点左右两侧,此时P、Q表示的数为相反数,即有-6+2t+2+t=0,得t=4/3
P、Q重合,此时P、Q表示的数相等,即有-6+2t=2+t得t=8
综上,经过8秒或4/3秒时,P、Q到原点的距离相等。
这只是一个例子,具体的问题可能会有所不同,但是解题的基本思路是一样的。
人教版七年级下册数学动点问题
人教版七年级下册数学动点问题1.题目描述:给定平面直角坐标系上两个点A、B的坐标,以及一辆汽车从原点出发沿x轴行驶,求汽车到达离A点最近、离B点最近和距离两点和最短的位置坐标。
解题思路:根据勾股定理,可以求出汽车到达任意位置与A、B两点的距离,进而判断哪个位置离A、B最近,哪个位置距离两点和最短。
最终画出图像,标出所求位置的坐标。
2.题目描述:给定平面直角坐标系上三个点A、C和O,满足一定条件,求动点P、Q在规定时间内的运动,以及点F、G、E在特定条件下的运动情况。
解题思路:根据题目所给条件,可以求出点A、C、O的坐标,以及三角形ODP、ODQ的面积。
然后根据P、Q的速度和时间,求出它们的运动轨迹。
对于点F、G、E,根据题目所给条件,可以求出它们的坐标,进而分析它们的运动情况。
3.题目描述:给定平面直角坐标系上一个长方形ABCD的两个顶点坐标,以及一个点P的坐标,求长方形的面积和点P 在一定条件下的伴随点坐标。
解题思路:根据题目所给条件,可以求出长方形ABCD 的面积。
对于点P的伴随点,可以根据题目所给公式求出其坐标,然后根据题目所要求的点的伴随点,反复使用公式求出所求点的坐标。
2.若点A1的坐标为(a,b),对于任意的正整数n,点An均在x轴上方,则a,b应满足的条件为:对于任意的正整数n,An在x轴上方,即An的纵坐标大于0.因此,对于任意的正整数n,有bn>0.而An是由A1向上移动n个单位得到的,因此有An的纵坐标为b+n。
所以对于任意的正整数n,有b+n>0,即b>-n。
综上所述,a和b的取值范围为a∈R,b>-n。
4.如图,在平面直角坐标中,A(0,1),B(2,0),C(2,1.5).1)求△XXX的面积:设AB向量为a,AC向量为b,则△ABC的面积为|a×b|/2,其中×表示向量的叉积。
因为AB向量为(-2,1),AC向量为(2,0.5),所以|a×b|=|-4-1|=5,因此△ABC的面积为5/2.2)如果在第二象限有一点P(a,0.5),试用a的式子表示四边形ABOP的面积:四边形ABOP的面积等于△ABP的面积加上△AOP的面积。
七年级数学动点题型归纳
七年级数学动点题型归纳一、直线运动1.速度与时间的关系2.当物体做直线运动时,速度是一个重要的概念。
通常用v表示速度,t表示时间。
在匀速直线运动中,速度是一个常数,不随时间改变。
但在变速运动中,速度会随时间变化。
速度与时间的关系可以用以下方程表示:v = v0 + at,其中v0是初速度,a是加速度。
3.距离与时间的关系4.在直线运动中,距离是另一个重要的概念。
通常用s表示距离,t表示时间。
距离是速度和时间的乘积。
在匀速直线运动中,距离与时间的关系可以用以下方程表示:s = v0t + 1/2at^2。
5.追及问题6.追及问题是直线运动中的一类常见问题。
两个物体在同一时间出发,沿同一直线运动,一个在前,一个在后。
后一个物体要追上前一个物体,求所需时间。
这类问题通常用速度和距离的关系来解决。
二、圆周运动1.速度与角度的关系2.在圆周运动中,速度与角度的关系是一个重要的概念。
通常用v表示速度,θ表示角度。
在匀速圆周运动中,速度是一个常数,不随角度改变。
但在变速圆周运动中,速度会随角度变化。
速度与角度的关系可以用以下方程表示:v = rω = r2π/T,其中r是半径,ω是角速度,T是周期。
3.半径与角度的关系4.在圆周运动中,半径与角度的关系也是一个重要的概念。
通常用r表示半径,θ表示角度。
在匀速圆周运动中,半径和角度的关系可以用以下方程表示:θ = ωt = 2πt/T,其中ω是角速度,t是时间,T是周期。
5.圆内运动问题在圆内做圆周运动的物体需要满足向心力的条件才能保持做圆周运动。
向心力是由半径和速度的平方之间的比例关系决定的:F=mv2/r,其中F是向心力,m是物体的质量,v是速度,r是半径。
如果物体的速度过大或者半径过小,向心力不足,物体就会做离心运动;如果物体的速度过小或者半径过大,向心力过大,物体就会做向心运动。
在求解这类问题时需要注意对应物体的质量、速度和半径之间关系的考虑。
三、坐标几何1.点坐标的确定2.在坐标几何中,点坐标是一个基本概念。
七年级下册数学动点问题解题技巧
七年级下册数学动点问题解题技巧一、动点问题解题技巧概述。
1. 分析动点的运动轨迹。
- 明确动点是在直线(如数轴、坐标轴上的直线)上运动,还是在平面图形(如三角形、四边形的边或内部)中运动。
例如,在数轴上的动点,其位置可以用一个数来表示,而动点在平面直角坐标系中的坐标则需要用一对数(x,y)来表示。
2. 用含时间t(或其他变量)的代数式表示相关线段的长度。
- 若动点在数轴上,设动点的初始位置为a,速度为v,运动时间为t,则经过t时间后动点的位置为a + vt(当向右运动时v为正,向左运动时v为负),两点间的距离可以根据它们在数轴上的坐标相减的绝对值来表示。
- 在平面直角坐标系中,如果动点P(x,y)从点A(x_1,y_1)出发,沿x轴方向速度为v_x,沿y轴方向速度为v_y,运动时间为t,则x = x_1+v_xt,y=y_1 + v_yt。
对于线段长度,可以利用两点间距离公式d=√((x_2 - x_1)^2+(y_2 - y_1)^2),将坐标用含t 的式子代入来表示线段长度。
3. 根据题目中的等量关系列方程求解。
- 常见的等量关系有:线段相等、面积相等、三角形相似对应边成比例等。
例如,若两个三角形相似,根据相似三角形对应边成比例的性质列出方程,然后求解方程得到关于t(或其他变量)的值。
二、题目及解析。
1. 已知数轴上A、B两点对应的数分别为 - 1和3,点P为数轴上一动点,其对应的数为x。
- 若点P到点A、点B的距离相等,求点P对应的数x。
- 解析:因为点P到点A、点B的距离相等,所以| x - (-1)|=| x - 3|,即| x + 1|=| x - 3|。
当x+1=x - 3时,方程无解;当x + 1=-(x - 3)时,x+1=-x + 3,2x=2,解得x = 1。
- 若点P在点A、点B之间,且PA+PB = 4,求点P对应的数x。
- 解析:因为点P在A、B之间,PA=| x+1|=x + 1,PB=| x - 3|=3 - x,由PA+PB = 4可得x + 1+3 - x=4,恒成立,所以-1中的任意数都满足条件。
人教版七年级数学下册动点问题专题讲义(无答案)
⼈教版七年级数学下册动点问题专题讲义(⽆答案)⼈教版七年级数学下册动点问题专题讲义例1 如图,在数轴上A点表⽰数a,B点表⽰数b,AB表⽰A点和B点之间的距离,且a、b满⾜|a+2|+(b+3a)2=0(1)求A、B两点之间的距离;(2)若在数轴上存在⼀点C,且AC=2BC,求C点表⽰的数;(3)若在原点O处放⼀挡板,⼀⼩球甲从点A处以1个单位/秒的速度向左运动;同时另⼀⼩球⼄从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的⼤⼩,可看作⼀点)以原来的速度向相反的⽅向运动,设运动的时间为t(秒),①分别表⽰甲、⼄两⼩球到原点的距离(⽤t表⽰);②求甲、⼄两⼩球到原点的距离相等时经历的时间.例2如图,有⼀数轴原点为O,点A所对应的数是-1 2,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所⽤时间是3秒,求该点的运动速度.(3)从点A沿数轴匀速平移经过点K到达点C,所⽤时间是9秒,且KC=KA,分别求点K和点C 所对应的数。
例3动点A从原点出发向数轴负⽅向运动,同时,动点B也从原点出发向数轴正⽅向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度⽐是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负⽅向运动,⼏秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负⽅向运动时,另⼀动点C同时从B点位置出发向A运动,当遇到A后,⽴即返回向B点运动,遇到B点后⽴即返回向A点运动,如此往返,直到B 追上A时,C⽴即停⽌运动.若点C⼀直以20单位长度/秒的速度匀速运动,那么点C从开始到停⽌运动,运动的路程是多少单位长度.例4已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上⼀动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P⽴即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?例5数轴上两个质点A、B所对应的数为-8、4,A、B两点各⾃以⼀定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向⽽⾏,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正⽅向运动,⼏秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负⽅向运动,与此同时,C点从原点出发作同⽅向的运动,且在运动过程中,始终有CB:CA=1:2,若⼲秒钟后,C停留在-10处,求此时B点的位置?例6在数轴上,点A表⽰的数是-30,点B表⽰的数是170.(1)求A、B中点所表⽰的数.(2)⼀只电⼦青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另⼀只电⼦青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表⽰的数.(3)两只电⼦青蛙在C点处相遇后,继续向原来运动的⽅向运动,当电⼦青蛙m处在A点处时,问电⼦青蛙n处在什么位置?(4)如果电⼦青蛙m从B点处出发向右运动的同时,电⼦青蛙n也向右运动,假设它们在D点处相遇,求D点所表⽰的数例7、已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电⼦蚂蚁甲、⼄分别从A、C 两点同时相向⽽⾏,甲的速度为4个单位/秒。
人教版七年级下册数学动点问题
/ 6 /秒的速度沿OA方向移动,设移动的时间为t秒,△AQB与△BPC的面积分别记为AQBS,BPCS,是否存在某个时间,使AQBS=3OQBPS四边形,若存在,求出t的值,若不存在,试说明理由; (3)在(2)的条件下,四边形QBPO的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围. 11、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D连结AC,BD. (1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC; (2)在y轴上是否存在一点P,连结PA,PB,使S△PAB=S△PDB,若存在这样一点,求出点P点坐标,若不存在,试说明理由; (3)若点Q自O点以0.5个单位/s的速度在线段AB上移动,运动到B点就停止,设移动的时间为t秒,(1)是否是否存在一个时刻,使得梯形CDQB的面积是四边形ABCD面积的三分之一? (4)是否是否存在一个时刻,使得梯形CDQB的面积等于△ACO面积的二分之一? 12、在直角坐标系中,△ABC的顶点A(—2,0),B(2,4),C(5,0). (1)求△ABC的面积 (2)点D为y负半轴上一动点,连BD交x轴于E,是否存在点D使得ADEBCESS?若存在,请求出F A O C B y x A y x O C B DC3-1BAoxyDC3-1BAoxyQDC3-1BAoxy
/ 6 满足035ba. (1)求长方形ABCD的面积. (2)如图2,长方形ABCD以每秒1个单位长度的速度向右平移,同时点E从原点O出发沿x轴以每秒2 个单位长度的速度向右运动,设运动时间为t秒. ①当t=4时,直接写出三角形OAC的面积为 ; ② 若AC∥ED,求t 的值; (3)在平面直角坐标系中,对于点()Pxy,,我们把点(11)Pyx,叫做点P的伴随点,已知点1A的伴随点为2A,点2A的伴随点为3A,点3A的伴随点为4A,…,这样依次得到点1A,2A,3A,…,nA. ①若点1A的坐标为(3,1),则点3A的坐标为 ,点2014A的坐标为 ; ②若点1A的坐标为(a,b),对于任意的正整数n,点nA均在x轴上方,则a,b应满足的条件为 . 4、如图,在平面直角坐标中,A(0,1),B(2,0),C(2,1.5). (1)求△ABC的面积; (2)如果在第二象限内有一点P(a,0.5),试用a的式子表示四边形ABOP的面积; (3)在(2)的条件下,是否存在这样的点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由. yxPOCBA 5、如图,△ABC的三个顶点位置分别是A(1,0),B(-2,3),C(-3,0). (1)求△ABC的面积; (2)若把△ABC向下平移2个单位长度,再向右平移3个单位长度,得到△ABC,请你在图中画出△ABC; (3)若点A、C的位置不变,当点P在y轴上什么位置时,使2ACPABCSS; (4)若点B、C的位置不变,当点Q在x轴上什么位置时,使DCBAEOyx24题图2 24题图1 DCBAOyx
初一下册几何动点问题
初一下册几何动点问题1、(1)已知AB⊥BD,ED⊥BD,AB=CD,BC=DE,要证明AC⊥CE.2)将CD沿CB方向平移得到图②③的情形,其余条件不变,要判断AC⊥CE是否成立,需要重新证明一遍。
2、(1)已知△ABC为等边三角形,动点D在边CA上,动点P边BC上,要证明当AP=BD时,Q点为定点。
2)已知动点D,P在射线CA和射线BC上运动,要证明∠BQP=60°。
3)已知动点P在AB的延长线上运动,连接PD交BC于E,要证明DE=PE。
3、已知梯形ABCD,AD∥BC,CE⊥AB,△BDC为等腰直角三角形,CE与BD交于F,要证明CM=AB和CF=AB+AF。
4、已知∠AOB=120°,OM平分∠AOB,将等边三角形的一个顶点P放在射线OM上,两边分别与OA、OB(或其所在直线)交于点C、D。
1)要证明当三角形绕点P旋转到PC⊥OA时,PC=PD。
2)要说明当三角形绕点P旋转到PC与OA不垂直时,线段PC和PD不相等。
3)要直接给出结论,当三角形绕点P旋转到PC与OA 所在直线相交的位置时,线段PC和PD相等。
5、在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB 边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE,要证明△ADF≌△CEF,并试证明△DFE是等腰直角三角形。
6、(1)已知△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形。
2)当把△ADE绕A点旋转到图②的位置时,需要重新判断CD=BE是否成立。
7、已知△ABC中,AB=AC=10厘米,BC=8厘米,点D 为AB的中点。
点P在线段BC上以3厘米/秒的速度由B点向C点运动,点Q在线段CA上由C点向A点运动。
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等。
答:是。
证明:由于AB=AC,所以∠ABC=∠ACB,又因为D是AB的中点,所以AD=BD。
七年级下册数学动点问题
七年级下册数学动点问题一、动点问题相关知识点1. 数轴上的动点问题在数轴上,点的移动规律是根据移动方向和移动距离来确定新的位置。
如果一个点A表示的数为公式,向右移动公式个单位长度,则移动后的点表示的数为公式;向左移动公式个单位长度,则移动后的点表示的数为公式。
例如:点公式在数轴上表示公式,向右移动公式个单位后,表示的数为公式;向左移动公式个单位后,表示的数为公式。
2. 平面直角坐标系中的动点问题点公式在平面直角坐标系中的移动规律。
如果点公式向右平移公式个单位,其坐标变为公式;向左平移公式个单位,坐标变为公式;向上平移公式个单位,坐标变为公式;向下平移公式个单位,坐标变为公式。
例如:点公式向右平移公式个单位后变为公式;向下平移公式个单位后变为公式。
3. 动点与几何图形的关系在三角形、四边形等几何图形中,动点的运动可能会改变图形的形状、大小或者某些线段的长度、角度等。
例如,在三角形公式中,点公式是公式边上的一个动点,当公式点运动时,三角形公式和三角形公式的面积关系可能会发生变化。
对于线段长度,若点公式,点公式,则线段公式的长度根据两点间距离公式公式来计算。
当点公式或公式为动点时,线段公式的长度会随着动点的运动而变化。
二、典型题目及解析1. 数轴上的动点问题题目:已知数轴上点公式表示的数为公式,点公式表示的数为公式,点公式从点公式出发,以每秒公式个单位长度的速度向右运动,点公式从点公式出发,以每秒公式个单位长度的速度向左运动,设运动时间为公式秒。
(1)当公式时,求点公式和点公式所表示的数。
(2)经过多少秒后,点公式和点公式相遇?(3)当公式时,求公式的值。
解析:(1)点公式从点公式出发,向右运动,速度为每秒公式个单位长度,当公式时,点公式表示的数为公式。
点公式从点公式出发,向左运动,速度为每秒公式个单位长度,当公式时,点公式表示的数为公式。
(2)点公式和点公式相遇时,它们所经过的路程之和等于公式之间的距离。
七年级动点问题解题技巧
七年级动点问题解题技巧
解决七年级的动点问题可以遵循以下技巧:
1. 了解问题背景:首先要弄清楚问题中涉及的物体或人的运动情况,包括起点、终点、速度等。
2. 绘制图像:将问题中的运动情况转化为图形表示,可以是直线图、坐标图或者运动轨迹图等。
3. 分析速度:计算每个物体或人的速度,可以使用距离除以时间的公式来计算速度。
4. 利用速度比较:比较不同物体或人的速度,可以找出谁先到达终点或相遇的时间。
5. 使用公式计算:如果问题涉及到时间、速度和距离的关系,可以使用公式来计算未知数。
6. 注意单位转换:注意问题中给出的单位,如果不一致则需要进行单位转换。
7. 检查答案:最后要检查所得答案是否符合实际情况,例如速度是否为正数、物体是否在规定时间内到达终点等。
通过以上技巧,可以更好地解决七年级的动点问题。
七年级数学几何动点问题
七年级数学几何动点问题一、点在直线上运动。
题目1:已知数轴上点A表示的数为 - 3,点B表示的数为1,点P以每秒2个单位长度的速度从点A出发向左运动,同时点Q以每秒4个单位长度的速度从点B出发向左运动。
设运动时间为t秒。
当t为何值时,点P与点Q重合?当t为何值时,点Q到原点的距离是点P到原点距离的2倍?解析:点P表示的数为-3 - 2t,点Q表示的数为1-4t。
当点P与点Q重合时,-3-2t = 1 - 4t移项得:4t-2t=1 + 32t=4,解得t = 2。
点P到原点的距离为|-3-2t|,点Q到原点的距离为|1-4t|。
由题意得|1 - 4t|=2|- 3-2t|情况一:当1-4t = 2(-3 - 2t)1-4t=-6 - 4t,此方程无解。
情况二:当1-4t=-2(-3 - 2t)1-4t = 6 + 4t移项得:-4t-4t=6 - 1-8t=5,解得t=-(5)/(8)题目2:在数轴上,点A表示的数为20,点B表示的数为 - 10,动点P从点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒。
当t = 5时,求点P表示的数;点P到点A和点B的距离相等时,求t的值。
解析:当t = 5时,点P向左运动的距离为3×5=15点P表示的数为20-15 = 5点P表示的数为20-3t,点P到点A的距离为|20-(20 - 3t)|=3t,点P到点B的距离为|20-3t+ 10|=|30 - 3t|当点P到点A和点B的距离相等时,3t=|30 - 3t|情况一:3t=30 - 3t6t=30,解得t = 5情况二:3t=-(30 - 3t)3t=-30 + 3t,此方程无解。
二、点在三角形边上运动。
题目3:在ABC中,BC = 8,AC = 6,∠ C = 90^∘,点P从点B出发,沿BC方向以每秒2个单位长度的速度向点C运动,点Q从点C出发,沿CA方向以每秒1个单位长度的速度向点A运动,设运动时间为t秒(0)。
人教版七年级下册数学期末复习:动点问题压轴题
人教版七年级下册数学期末复习: 动点问题压轴题1. 如图, 点A在x轴的负半轴上, 点D在y轴的正半轴上, 将三角形AOD沿x轴向右平移, 平移后得到三角形BEC, 点A的对应点是点B. 已知点A的坐标为(a, 0), 点C 的坐标为(b, c), 且a, b, c满足.(1)求点B的坐标;(2)求证: ∠DAE=∠BCD;(3)点P是线段BC上一动点(不与点B、C重合), 连接DP、AP, 在点P运动过程中, ∠CDP、∠DPA、∠PAE之间是否存在永远不变的数量关系?若存在, 写出它们之间的数量关系, 并请证明;若不存在, 请说明理由.2. 已知, 直线, 直线和, 分别交于C, D点, 点A, B分别在直线, 上, 且位于直线的左侧, 动点P在直线上, 且不和点C, D重合.(1)如图1, 当动点P在线段CD上运动时, 求证: ∠APB=∠CAP+∠DBP;(2)如图2, 当动点P在点C上方运动时(P, A, B不在同一直线上), 请写出∠APB, ∠CAP, ∠DBP之间的数量关系, 并选择其中一种的数量关系说明理由.3. 如图①, 平直角坐标系中, 已知点A(a, 0), B(0, b), 其中a, b满足|2a﹣3b﹣39|=0, 将点B向右平移24个单位长度得到点C.(1)点A和点C的坐标;(2)如图①, 点D为线段BC上一动点, 点D从点C以2个单位长度/秒的速度向点B运动, 同时点E为线段OA上一动点, 从点O以3个单位长度/秒的速度向点A运动, 设运动的时间为t秒(0<t<10), 四边形BOED的面积记为S四边形BOED(以下同理表示), 若S四边形BOEDS四边ACDE, 求t的取值范围;(3)如图②, 在(2)的条件下, 在点D, E运动的过程中, DE交OC于点F, 求证:S△OEF>S△DCE总成立.4. 在平面直角坐标系中, O为原点, 点A(0, 2), B(﹣2, 0), C(4, 0).(1)如图1, △ABC的面积为;(2)如图2, 将点B向右平移7个单位长度, 再向上平移4个单位长度, 得到对应点D.①求①ACD的面积;②点P是x轴上一动点, 若△PAO的面积等于3, 请求出点P的坐标.5. 在平面直角坐标系中, O为原点, 点A(0, −3), B(−2, 0).(1)如图①, 则三角形OAB的面积为_______;(2)如图②, 将线段AB向右平移5个单位长度, 再向上平移4个单位长度, 得到平移后的线段A′B′.连接OA′, OB′.①求三角形OA′B′的面积;②P(−1, m)(m>0)是一动点, 若SΔPOB′=10, 请直接写出点P坐标.6. 在平面直角坐标系中, , 满足.(1)直接写出、的值: ;;(2)如图1, 若点满足的面积等于6, 求的值;(3)设线段交轴于C, 动点E从点C出发, 在轴上以每秒1个单位长度的速度向下运动, 动点F从点出发, 在轴上以每秒2个单位长度的速度向右运动, 若它们同时出发, 运动时间为秒, 问为何值时, 有?请求出的值.7. 如图1, ABCD, 定点E, F分别在直线AB, CD上, 在平行线AB, CD之间有一动点P, 满足0°<∠EPF<180°.(1)试问∠AEP, ∠EPF, ∠PFC满足怎样的数量关系?解: 由于点P是平行线AB, CD之间有一动点, 因此需要对点P的位置进行分类讨论: 如图1, 当P点在EF的左侧时, ∠AEP, ∠EPF, ∠PFC满足数量关系为, 如图2, 当P点在EF的右侧时, ∠AEP, ∠EPF, ∠PFC满足数量关系为.(2)如图3, EQ, FQ分别平分∠PEB和∠PFD, 且点P在EF左侧.①若∠EPF=60°, 则∠EQF=.②猜想∠EPF与∠EQF的数量关系, 并说明理由;③如图4, 若∠BEQ与∠DFQ的角平分线交于点Q1, ∠BEQ1与∠DFQ1的角平分线交于点Q2, ∠BEQ2, 与∠DFQ2的角平分线交于点Q3;此次类推, 则∠EPF与∠EQ2021F满足怎样的数量关系?(直接写出结果)8. 已知直线、, 直线与直线、分别交于点C和点D, 在直线上有动点P(点P与点C.D 不重合), 点A在直线上, 点B在直线上.(1)如图①, 如果点P在C.D之间运动时, 且满足∠1+∠3=∠2, 请写出与之间的位置关系并说明理由;(2)如图②, 如果, 点P在直线的上方运动时, 请写出∠1, ∠2与∠3之间的数量关系并说明理由;(3)如图③, 如果, 点P在直线的下方运动时, 请直接写出∠PAC、∠PBD、∠APB之间的关系(不需说明理由).9. 如图, , 平分, 设为, 点E是射线上的一个动点.(1)若时, 且, 求的度数;(2)若点E运动到上方, 且满足, , 求的值;(3)若, 求的度数(用含n和的代数式表示).10. 如图所示, 已知, 点P是射线AM上一动点(与点A不重合), BC.BD分别平分和, 分别交射线AM于点C.D, 且(1)求的度数.(2)当点P运动时, 与之间的数量关系是否随之发生变化?若不变化, 请写出它们之间的关系, 并说明理由;若变化, 请写出变化规律.(3)当点P运动到使时, 求的度数.11. 已知点D在∠ABC内, E为射线BC上一点, 连接DE, CD. (1)如图1, 点E在线段BC上, 连接AE, ∠AED=∠A+∠D.①求证AB①CD;②过点A作AM∥ED交直线BC于点M, 请猜想∠BAM与∠CDE的数量关系, 并加以证明;(2)如图2, 点E在BC的延长线上, ∠AED=∠A﹣∠D.若M平面内一动点, MA∥ED, 请直接写出∠MAB与∠CDE的数量关系.12. 如图1, 在平面直角坐标系中, 点A, B的坐标分别为(1, 0), (4, 0), 现同时将点A, B分别向上平移3个单位长度, 再向左平移1个单位长度, 分别得到A, B的对应点C, D, 连接AC, BD, CD.图1图2(1)求点C, D的坐标.(2)P是x轴上(除去B点)的动点.①连接PC, BC, 使S△PBC=2S△ABC, 求符合条件的P点坐标.②如图2, Q是线段BD上一定点, 连接PQ, 请直接写出∠BPQ+∠PQB与∠CDB的数量关系.13. 如图, 在长方形ABCD中, AB=8cm, BC=6cm, 点E是CD边上的一点, 且DE=2cm, 动点P从A点出发, 以2cm/s的速度沿A→B→C→E运动, 最终到达点E. 设点P运动的时间为t秒.(1)请以A点为原点, AB所在直线为x轴, 1cm为单位长度, 建立一个平面直角坐标系, 并用t表示出点P在不同线段上的坐标.(2)在(1)相同条件得到的结论下, 是否存在P点使△APE的面积等于20cm2时,若存在, 请求出P点坐标;若不存在, 请说明理由.14. 如图, 直线PQ∥MN, 点C是PQ、MN之间(不在直线PQ, MN上)的一个动点.(1)若∠1与∠2都是锐角, 如图甲, 请直接写出∠C与∠1, ∠2之间的数量关系;(2)若把一块三角尺(∠A=30°, ∠C=90°)按如图乙方式放置, 点D, E, F是三角尺的边与平行线的交点, 若∠AEN=∠A, 求∠BDF的度数;(3)将图乙中的三角尺进行适当转动, 如图丙, 直角顶点C始终在两条平行线之间, 点G在线段CD上, 连接EG, 且有∠CEG=∠CEM, 求值.15. 如图,在直角坐标系中,点A. C分别在x轴、y轴上,CB∥OA, OA=8,若点B的坐标为.(1)直接写出点A, C的坐标;(2)动点P从原点O出发沿x轴以每秒2个单位的速度向右运动, 当直线PC把四边形OABC分成面积相等的两部分时停止运动, 求P点运动时间;(3)在(2)的条件下, 点P停止运动时, 在y轴上是否存在一点Q, 连接PQ, 使三角形CPQ的面积与四边形OABC的面积相等?若存在, 求点Q的坐标;若不存在, 请说明理由.16. 如图, 已知点, 且, 满足.过点分别作轴、轴, 垂足分别是点、.(1)求出点B的坐标;(2)点是边上的一个动点(不与点重合), 的角平分线交射线于点, 在点运动过程中, 的值是否变化?若不变, 求出其值;若变化, 说明理由.(3)在四边形的边上是否存在点, 使得将四边形分成面积比为1:4的两部分?若存在, 请直接写出点的坐标;若不存在, 说明理由.17. 如图, 在平面直角坐标系中, 点A, B的坐标分别为A(0, a), B(b, a), 且a、b满足(a﹣2)2+|b﹣4|=0, 现同时将点A, B分别向下平移2个单位, 再向左平移1个单位, 分别得到点A, B的对应点C, D, 连接AC, BD, AB.(1)求点C, D的坐标及四边形ABDC的面积S四边形ABCD;(2)在y轴上是否存在一点M, 连接MC, MD, 使S△MCD=S四边形ABDC?若存在这样一点, 求出点M的坐标, 若不存在, 试说明理由;(3)点P是直线BD上的一个动点, 连接PA, PO, 当点P在BD上移动时(不与B, D 重合), 直接写出∠BAP、∠DOP、∠APO之间满足的数量关系.18. 如图1, 在平面直角坐标系中, A(a, 0)是x轴正半轴上一点, C是第四象限内一点, CB⊥y轴交y轴负半轴于B(0, b), 且|a﹣3|+(b+4)2=0, S四边形AOBC=16.(1)求点C的坐标.(2)如图2, 设D为线段OB上一动点, 当AD⊥AC时, ∠ODA的角平分线与∠CAE 的角平分线的反向延长线交于点P, 求∠APD的度数;(点E在x轴的正半轴). (3)如图3, 当点D在线段OB上运动时, 作DM⊥AD交BC于M点, ∠BMD、∠DAO的平分线交于N点, 则点D在运动过程中, ∠N的大小是否会发生变化?若不变化, 求出其值;若变化, 请说明理由.19. 如图1, 在平面直角坐标系中, 点A为x轴负半轴上一点, 点B为x轴正半轴上一点, C(0, a), D(b, a), 其中a, b满足关系式: |a+3|+(b-a+1)2=0.(1)a=___, b=___, △BCD的面积为______;(2)如图2, 若AC⊥BC, 点P线段OC上一点, 连接BP, 延长BP交AC于点Q, 当∠CPQ=∠CQP时, 求证:BP平分∠ABC;(3)如图3, 若AC⊥BC, 点E是点A与点B之间一动点, 连接CE,CB始终平分∠ECF,当点E在点A与点B之间运动时, 的值是否变化?若不变, 求出其值;若变化, 请说明理由.20. 已知: 在平面直角坐标系中, 四边形ABCD是长方形, ∠A=∠B=∠C=∠D=90°, AB∥CD, AB=CD=8, AD=BC=6, D点与原点重合, 坐标为(0, 0).(1)直接写出点B的坐标__________.(2)动点P从点A出发以每秒3个单位长度的速度向终点B匀速运动, 动点Q从点C出发以每秒4个单位长度的速度沿射线CD方向匀速运动, 若P, Q两点同时出发, 设运动时间为t秒, 当t为何值时, PQ∥y轴?(3)在Q的运动过程中, 当Q运动到什么位置时, 使△ADQ的面积为9?求出此时Q 点的坐标?。
人教版七年级下册数学动点问题
动点问题(一)1、如图6-7,已知A、B两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x轴上行驶,从原点O出发.(1)汽车行驶到什么位置时离A村最近?写出此点的坐标.(2)汽车行驶到什么位置时离B村最近?写出此点的坐标.(3)请在图中画出汽车行驶到什么位置时,距离两村的和最短?2.如图,以直角三角形AOC的直角顶点O为原点,以OC、OA所在直线为x轴和y轴建立平面直角坐标系,点A(0,a),C(b,0)20 b-=.(1)则A点的坐标为___________,C点的坐标为__________;(2)已知坐标轴上有两动点P、Q同时出发,P点从C点出发沿x轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿y轴正方向移动,点Q到达A点整个运动随之结束.AC的中点D的坐标是(1,2),设运动时间为t(t>0)秒.问:是否存在这样的t,使S△ODP=S△ODQ,若存在,请求出t的值;若不存在,请说明理由;(3)点F是线段AC上一点,满足∠FOC=∠FCO,点G是第二象限中一点,连OG,使得∠AOG=∠AOF.点E是线段OA上一动点,连CE交OF于点H,当点E在线段OA上运动的过程中,OHC ACEOEC∠+∠∠的值是否会发生变化,若不变,请求出它的值;若变化,请说明理由.3.如图1,在平面直角坐标系中,第一象限内长方形ABCD , AB∥y轴,点A(1,1),点C(a,b), 满足35=-+-ba.(1)求长方形ABCD 的面积.(2)如图2,长方形ABCD 以每秒1个单位长度的速度向右平移,同时点E 从原点O 出发沿x 轴以每秒2个单位长度的速度向右运动,设运动时间为t 秒. ①当t=4时,直接写出三角形OAC 的面积为 ; ② 若AC ∥ED ,求t 的值;(3)在平面直角坐标系中,对于点()P x y ,,我们把点(11)P y x '-++,叫做点P 的伴随点,已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点1A ,2A ,3A ,…,n A . ①若点1A 的坐标为(3,1),则点3A 的坐标为,点2014A 的坐标为; ②若点1A 的坐标为(a ,b ),对于任意的正整数n ,点n A 均在x 轴上方,则a ,b应满足的条件为.4、如图,在平面直角坐标中,A (0,1),B (2,0),C (2,1.5).(1)求△ABC 的面积;(2)如果在第二象限内有一点P (a ,0.5),试用a 的式子表示四边形ABOP 的面积; (3)在(2)的条件下,是否存在这样的点P ,使四边形ABOP 的面积与△ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.yxPOCBA5、如图,△ABC 的三个顶点位置分别是A (1,0),B (-2,3),C (-3,0). (1)求△ABC 的面积;(2)若把△ABC 向下平移2个单位长度,再向右平移3个单位长度,得到△A B C ''',请你在图中画出△A B C ''';(3)若点A 、C 的位置不变,当点P 在y 轴上什么位置时,使2ACPABCSS=;(4)若点B 、C 的位置不变,当点Q 在x 轴上什么位置时,使2BCQABCSS=.6、如图1,在平面直角坐标系中,A (a ,0),C (b ,2),且满足2(2)20a b ++-=,过C 作CB ⊥x 轴于B . D C BAEOy x24题图2 24题图1DC B A O y x(1)求三角形ABC 的面积;(2)若过B 作BD ∥AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,求∠AED 的度数;(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等,若存在,求出P 点坐标;若不存在,请说明理由.7、如图,在平面直角坐标系中,四边形ABCD 各顶点的坐标分别是A (0,0),B (7,0),C (9,5),D (2,7) (1)在坐标系中,画出此四边形; (2)求此四边形的面积;(3)在坐标轴上,你能否找一个点P ,使S △PBC =50,若能,求出P 点坐标,若不能,说明理由.8、如图,A 点坐标为(-2, 0),B 点坐标为(0,-3).(1)作图,将△ABO 沿x 轴正方向平移4个单位,得到△DEF ,延长ED 交y 轴于C 点,过O 点作OG ⊥CE ,垂足为G ;(2) 在(1)的条件下,求证: ∠COG =∠EDF ;(3)求运动过程中线段AB 扫过的图形的面积. 9、在平面直角坐标系中,点B (0,4),C (-5,4),点A 是x 轴负半轴上一点,S 四边形AOBC =24.图1yxHOFEDAC B(1)线段BC 的长为,点A 的坐标为;A(-2,0)B(0,-3)y x(2)如图1,EA 平分∠CAO ,DA 平分∠CAH ,CF ⊥AE 点F ,试给出∠ECF 与∠DAH 之间满足的数量关系式,并说明理由;(3)若点P 是在直线CB 与直线AO 之间的一点,连接BP 、OP ,BN 平分CBP ∠,ON 平分AOP ∠,BN 交ON 于N ,请依题意画出图形,给出BPO ∠与BNO ∠之间满足的数量关系式,并说明理由.10、在平面直角坐标系中,OA =4,OC =8,四边形ABCO 是平行四边形.(1)求点B 的坐标及的面积ABCOS 四边形;(2)若点P 从点C 以2单位长度/秒的速度沿CO 方向移动,同时点Q 从点O 以1单位长度/秒的速度沿OA 方向移动,设移动的时间为t 秒,△AQB 与△BPC 的面积分别记为AQBS ∆,BPC S ∆,是否存在某个时间,使AQB S ∆=3OQBPS 四边形,若存在,求出t 的值,若不存在,试说明理由;(3)在(2)的条件下,四边形QBPO 的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围.11、如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D 连结AC ,BD . (1)求点C ,D 的坐标及四边形ABDC 的面积S 四边形ABDC ;(2)在y 轴上是否存在一点P ,连结PA ,PB ,使S △PAB =S △PDB点P 点坐标,若不存在,试说明理由;(3)若点Q 自O 点以0.5个单位/s 的速度在线段AB 上移动,运动到B 点就停止,设移动的时间为t 秒,(1)是否是否存在一个时刻,使得梯形CDQB 的面积是四边形ABCD 面积的三分之一?(4)是否是否存在一个时刻,使得梯形CDQB 的面积等于△ACO 面积的二分之一? 12、在直角坐标系中,△ABC 的顶点A (—2,0),B (2,4),C (5,0). (1)求△ABC 的面积(2)点D 为y是否存在点D 使得ADE BCES S ∆∆=点D (3)点F (5,n CF ,G 是x 轴上一点,若△ABG ABDC 的面积,则点G 示)。
七年级动点问题知识点讲解
七年级动点问题知识点讲解动点问题是数学中的一种重要概念,对于初学者来说,它可能是比较难理解和掌握的知识点。
本文将对七年级中常见的动点问题进行讲解,希望能够帮助初学者更好地理解和掌握这一概念。
1. 什么是动点问题动点问题是指在坐标系中,某一点在运动的过程中所经过的所有点的集合。
通俗来讲,就是一个点在运动时所经过的所有位置都可以组成一个集合,这个集合就是所谓的动点问题。
2. 动点问题的表示方法动点问题可以用如下两种表示方法:(1) 用图像表示。
在平面直角坐标系中,画出运动物体所经过的路径。
路径上的每一个点都是该点在运动过程中所处的位置,这些位置的集合就是动点问题的集合。
(2) 用方程表示。
假设运动物体在平面直角坐标系中的坐标为(x,y),并且其运动方程为x=f(t),y=g(t),其中t为时间,f(t)和g(t)是分别关于时间t的函数,则该物体在运动过程中所经过的点的集合就可以用方程集合{(f(t),g(t))}表示。
3. 动点问题的分类根据运动的特点和物体的形状,动点问题可以分为直线运动、曲线运动、圆周运动等不同的类型。
(1) 直线运动。
指某一物体以恒定的速度沿直线方向运动。
在平面直角坐标系中,其运动方程为y=kx+b或者x=h,其中k、b、h为常数。
(2) 曲线运动。
指某一物体在平面内沿着一条曲线运动。
在平面直角坐标系中,其运动方程可以表示为y=f(x),其中f(x)为一个关于x的连续函数,且在所考虑的区间内有定义。
(3) 圆周运动。
指某一物体以恒定速度绕定点做圆周运动。
在平面直角坐标系中,设圆心为(h,k),半径为r,则圆周运动的方程为(x-h)²+(y-k)²=r²。
4. 动点问题的应用(1) 运动物体的轨迹。
在物理学中,运动物体的轨迹是研究物体运动的重要依据,动点问题也可以帮助我们求出一个物体在运动过程中所经过的轨迹。
(2) 运动物体的速度和加速度。
动点问题可以帮助我们求得运动物体在不同时间点的速度和加速度,这些对于物理学的研究是至关重要的。
2022年人教版七年级下册数学期末动点压轴题训练(含答案)
2022年人教版七年级下册数学期末动点压轴题训练(含答案)人教版七年级下册数学期末动点压轴题训练1.如图,点A、B的坐标分别为(a,0),(b,0),且满足(2a+2)20,现同时将A、B分别向上平移2个单位,再向右平移1个单位,分别得到A、B对应点C、D,连接AC、BD.(1)求点A、B的坐标;(2)如图1,点P(0,m)是y轴负半轴上一动点,连接AP、PD,其中直线PD交x轴于E点,若S△PAE=S△BDE,求m的值;(3)如图2,连接BC,在直线B C上取一点F,使BF=3CF,求点F的坐标.2.如图1,在平面直角坐标系中,点A、B的坐标分别为A(a,0),B(0,b)=0,现同时将点A、B分别向上平移3个单位长度,再向右平移6个单位,分别得到点A、B的对应点D,C,连接AD,,CD.(1)求点C,D的坐标;(2)在y轴上是否存在一点P,使三角形PAC的面积等于四边形ABCD的面积?若存在,请求出点P的坐标,请说明理由;(3)如图2,设点E是直线CD上一动点(点不与点C、D重合),连接AE、BE,请直接写出,∠CBE和∠AEB之间的数量关系.3.如图①,在平面直角坐标系中,点,,其中,是16的算术平方根,,线段由线段平移所得,并且点与点A对应,点与点对应.(1)点A的坐标为;点的坐标为;点的坐标为;(2)如图②,是线段上不同于的任意一点,求证:;(3)如图③,若点满足,点是线段OA上一动点(与点、A不重合),连交于点,在点运动的过程中,是否总成立?请说明理由.4.已知,在平面直角坐标系中,AB⊥x轴于点B,点A满足,平移线段AB使点A与原点重合,点B的对应点为点C.(1)则a=,b=,点C坐标为;(2)如图1,点D(m,n)在线段BC上,求m,n满足的关系式;(3)如图2,E是线段OB上一动点,以OB为边作∠BOG=∠AOB,交BC于点G,连CE交OG于点F,当点E在线段OB上运动过程中,的值是否会发生变化?若变化请说明理由,若不变,请求出其值.5.如图,在平面直角坐标系,点A、B的坐标分别为(a,0),(0,b).且|a﹣26|+=0,将点B向右平移24个单位长度得到C.(1)求A、B两点的坐标;(2)点P、Q分别为线段BC、O A两个动点,P自B点向C点以2个单位长度/秒向右运动,同时点Q自A点向O点以4个单位长度/秒向左运动,设运动的时间为t,连接PQ,当PQ恰好平分四边形BOAC的面积时,求t的值;(3)点D是直线AC上一点,连接QD,作∠QDE=120°,边DE与BC的延长线相交于点E,DM平分∠CDE,DN平分∠ADQ,当点Q运动时,∠MDN的度数是否变化?请说明理由.6.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CB⊥y轴,交y轴负半轴于B(0,b),且(a﹣3)2+|b+4|=0,S四边形A OBC=16.(1)求C点坐标;(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数.(3)如图3,当D点在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N的大小是否变化?若不变,求出其值,若变化,说明理由.7.如图,已知AM∥BN,∠A=64°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)①∠ABN的度数是;②∵AM∥BN,∴∠ACB=∠;(2)求∠CBD的度数;(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是.8.在平面直角坐标系中,D(0,﹣3),M(4,﹣3),直角三角形ABC的边与x轴分别相交于O、G两点,与直线DM分别交于E、F点,∠ACB=90°.(1)将直角三角形如图1位置摆放,如果∠AOG=46°,则∠CEF=;(2)将直角三角形ABC如图2 位置摆放,N为AC上一点,∠NED+∠CEF=180°,请写出∠NEF 与∠AOG之间的等量关系,并说明理由.(3)将直角三角形AB C如图3位置摆放,若∠GOC=140°,延长AC交DM于点Q,点P是射线GF上一动点,探究∠POQ,∠OPQ与∠PQF的数量关系,请直接写出结论(题中的所有角都大于0°小于180°).9.在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,c)(见图1),且.(1)求a、b、c的值;(2)①在x轴的正半轴上存在一点M,使三角形COM的面积是三角形ABC的面积的一半,求出点M 的坐标;②在坐标轴的其它位置是否存在点M,使三角形COM的面积三角形ABC的面积的一半仍然成立?若存在,请直接写出符合条件的点M的坐标;(3)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上的一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P 运动时,的值是否会改变?若不变,求其值;若改变,说明理由.10.已知:b是立方根等于本身的负整数,且a、b满足(a+2b)2+|c+|=0,请回答下列问题:(1)请直接写出a、b、c的值:a=_______,b=_______,c=_______.(2)a、b、c在数轴上所对应的点分别为A、B、C,点D是B、C之间的一个动点(不包括B、C两点),其对应的数为m,则化简|m+|=_______ _.(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点B、点C都以每秒1个单位的速度向左运动,同时点A以每秒2个单位长度的速度向右运动,假设t秒钟过后,若点A与点C之间的距离表示为AC,点A与点B之间的距离表示为AB,请问:AB?AC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求出AB?AC的值.11.如图①,在平面直角坐标系中,点A在x轴上,直线OC上所有的点坐标,都是二元一次方程的解,直线AC上所有的点坐标,都是二元一次方程的解,过C作x轴的平行线,交y轴与点B.(1)求点A、B、C的坐标;(2)如图②,点M、N分别为线段BC,OA上的两个动点,点M从点C以每秒1个单位长度的速度向左运动,同时点N从点O以每秒1.5个单位长度的速度向右运动,设运动时间为t秒,且0<t<4,试比较四边形MNAC的面积与四边形MNOB的面积的大小.12.已知点A(1,a),将线段OA平移至线段BC,B(b,0),a 是m+6n的算术平方根,=3,n=,且m<n,正数b满足(b+1)2=16.(1)直接写出A、B两点坐标为:A,B;(2)如图1,连接AB、OC,求四边形AOCB的面积;(3)如图2,若∠AOB=a,点P为y轴正半轴上一动点,试探究∠CPO与∠BCP之间的数量关系.13.如图,,点为直线上一定点,为直线上的动点,在直线与之间且在线段的右方作点,使得.设为锐角).(1)求与的和;(提示过点作(2)当点在直线上运动时,试说明;(3)当点在直线上运动的过程中,若平分,也恰好平分,请求出此时的值14.如图1,在平面直角坐标系中,点A(a,0),B(b,3),C(c,0),满足++=0.(1)分别求出点,,的坐标及三角形ABC的面积.(2)如图2.过点C作于点D,F是线段AC上一点,满足,若点G是第二象限内的一点,连接DG,使,点E是线段AD上一动点(不与A、D重合),连接CE交DF于点H,点E在线段AD上运动的过程中,的值是否会变化若不变,请求出它的值;若变化,请说明理由.(3)如图3,若线段AB与轴相交于点F,且点F的坐标为(0,),在坐标轴上是否存在一点P,使三角形ABP和三角形ABC的面积相等?若存在,求出P点坐标.若不存在,请说明理由.(点C除外)15.如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,分别得到点A,B的对应点C,D.连接AC,BD.(1)写出点C,D的坐标及四边形ABDC的面积.(2)在y轴上是否存在一点P,连接PA,PB,使S三角形PAB=S四边形ABDC?若存在,求出点P的坐标,若不存在,试说明理由;(3)点Q是线段BD上的动点,连接QC,QO,当点Q在BD上移动时(不与B,D重合),给出下列结论:①的值不变;②的值不变,其中有且只有一个正确,请你找出这个结论并求值.16.如图1,已知直角梯形ABCO中,∠AOC=90°,AB∥x轴,AB=6,若以O为原点,OA,OC所在直线为y轴和x轴建立如图所示直角坐标系,A(0,a),C(c,0)中a,c满足|a+c﹣10|+=0(1)求出点A、B、C的坐标;(2)如图2,若点M从点C出发,以2单位/秒的速度沿CO方向移动,点N从原点出发,以1单位/秒的速度沿OA方向移动,设M、N两点同时出发,且运动时间为t秒,当点N从点O运动到点A时,点M同时也停止运动,在它们的移动过程中,当2S△ABN≤S△BCM时,求t的取值范围:(3)如图3,若点N是线段OA延长上的一动点,∠NCH=k∠OCH,∠CNQ=k∠BNQ,其中k >1,NQ∥CJ,求的值(结果用含k的式子表示).17.问题情境(1)如图1,已知AB∥CD,∠PBA=125°,∠PCD=155°,求∠BPC的度数.佩佩同学的思路:过点P作PG∥AB,进而PG∥CD,由平行线的性质来求∠BPC,求得∠BPC=问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,∠ACB=90°,DF∥CG,AB与FD 相交于点E,有一动点P在边BC上运动,连接PE,PA,记∠PE D=∠α,∠PAC=∠β.①如图2,当点P在C,D两点之间运动时,请直接写出∠APE与∠α,∠β之间的数量关系;②如图3,当点P 在B,D两点之间运动时,∠APE与∠α,∠β之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P在C,D两点之间运动时,若∠PED,∠PAC的角平分线EN,AN相交于点N,请直接写出∠ANE与∠α,∠β之间的数量关系.18.如图1,在平面直角坐标系中,,,且.(1)求点A、B的坐标;(2)如图1,P点为y轴正半轴上一点,连接BP,若,请求出P点的坐标;(3)如图2,已知,若C点是x轴上一个动点,是否存在点C,使,若存在,请直接写出所有符合条件的点C的坐标;若不存在,请说明理由.19.已知平面直角坐标系内两点A、B,点,点B与点A关于y轴对称.(1)则点B的坐标为________;(2)动点P、Q分别从A点、B点同时出发,沿直线AB向右运动,同向而行,点P的速度是每秒4个单位长度,点Q的速度是每秒2个单位长度,设P、Q的运动时间为t秒,用含t的代数式表示的面积S,并写出t的取值范围;(3)在平面直角坐标系中存在一点,满足.求m的取值范围.20.如图1,O为平面直角坐标系的原点,点A坐标为(4,0),同时将点A,O分别向上平移2个单位,再向左平移1个单位,得到对应点B,C.(1)求四边形OABC的面积;(2)在y轴上是否存在一点M,使△MOA的面积与四边形OABC的面积相等?若存在这样一点,求出点M的坐标,若不存在,请说明理由;(3)如图2,点P 在OA边上,且∠CBP=∠CPB,Q是AO延长线上一动点,∠PCQ的平分线CD交BP的延长线于点D,在点Q运动的过程中,求∠D和∠CQP的数量关系.参考答案:1.(1)解:,,,,,,,;(2)∵将A、B 分别向上平移2个单位,再向右平移1个单位,分别得到A、B对应点C、D,,,,∵点P(0,m)是y轴负半轴上一动点,,,∵S△PAE=S△BDE,S梯形OCDB=S梯形OCDE+=S梯形OCDE+=S梯形OCDE++=+,∴,即:,整理得:,;(3)分如下两种情况进行讨论:①当F在BC中间,如图所示:过F作于M,于N,过点O作于G,∵BF=3CF,,,,,,,∵,,,,②当F在BC延长线上,则只能在第二象限,如图所示:过F作于P,于Q,过点O作于H,∵BF=3CF,,,,,,,,,,,∵F在第二象限,,综上所述:或者.2.(1)=0,,,解得将点A、B分别向上平移3个单位长度,再向右平移6个单位,分别得到点A、B的对应点D,C,由平移的性质可知,即将A、B的横坐标+6,纵坐标+3,,即;(2)存在,理由如下:设,,,,三角形PAC的面积为,四边形ABCD的面积为,,解得,或者;(3)如图,过点作,,平移后对应的点分别为,,,,,..3.(1)连接∵是16的算术平方根∴∴∴∵∴∴∴∵线段由线段平移所得,并且点与点A对应,点与点对应∴,∴故答案为:,,;(2)∵线段由线段平移所得∴,∴∵∴∵∴∴(3)∵∴∵∴∵∴,即∵∴∴∵∴∵,∴由(2)的结论得:,∵,∴∴∵∴∴∴在点运动的过程中,总成立.4.(1)解:∵,∴∴∵且C在y轴负半轴上,∴,故填:;(2)如图1,过点D分别作DM⊥x轴于点M,DN⊥y轴于点N,连接OD.∵AB⊥x轴于点B,且点A,D,C三点的坐标分别为:∴,∴,又∵S△BOC=S△BOD+S△COD=OB×MD+OC×ND,∴;(3)解:的值不变,值为2.理由如下:如图所示,分别过点E,F作EP∥OA,FQ∥OA分别交y轴于点P,点Q,∵线段OC是由线段AB 平移得到,∴BC∥OA,又∵EP∥OA,∴EP∥BC,∴∠GCF=∠PEC,∵EP∥OA,∴∠AOE=∠OEP,∴∠OEC=∠OEP+∠PEC=∠AOE+∠GCF,同理:∠OFC=∠AOF+∠GCF,又∵∠AOB=∠BOG,∴∠OFC=2∠AOE+∠GCF,∴.5.解:(1)∵|a﹣26|+=0,,,∴,∴,解得:∴点A、B的坐标分别为(26,0),(0,8);(2)∵点B向右平移24个单位长度得到C,∴C(24,8),设,,,,∵PQ平分四边形BOAC的面积,∴∴∴∴解得;(3)当点Q运动时,∠MDN的度数不变,理由如下:如图,当D在线段CA的延长线上时,∵DM平分∠CDE,DN平分∠ADQ,∴,,∴,∵∠QDE=120°,∴∠MDN=60°;同理求得当D在线段AC的延长线上时,∠MDN=60°;当点D在线段AC上时,∵DM平分∠CDE,DN平分∠ADQ,∴,,设∵∠QDE=120°∴∠QDC=120°-x,∴∠ADQ=180°-∠QDC=60°+x,∴,综上所述:∠MDN=60°或150°.6.解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0,∴a =3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S四边形AOBC=16.∴(OA+BC)×OB=16,∴(3+BC)×4=16,∴BC=5,∵C是第四象限一点,CB⊥y轴,∴C(5,﹣4);(2)如图,延长CA,∵AF是∠CAE 的角平分线,∴∠CAF=∠CAE,∵∠CAE=∠OAG,∴∠CAF=∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=∠ADO,∵DP是∠ODA的角平分线∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°;(3)不变,∠ANM=45°理由:如图,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分线,∴∠DAN=∠DAO=∠BDM,∵CB⊥y轴,∴∠BDM+∠BMD=90°,∴∠DAN=(90°﹣∠BMD),∵MN是∠BMD的角平分线,∴∠DMN=∠BMD,∴∠DAN+∠DMN=(90°﹣∠BMD)+∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)]=180°﹣(45°+90°)=45°,∴D点在运动过程中,∠N 的大小不变,求出其值为45°.7.解:(1)①∵AM//BN,∠A=64°,∴∠ABN=180°﹣∠A=116°,故答案为:116°;②∵AM//BN,∴∠ACB=∠CBN,故答案为:CBN;(2)∵AM//BN,∴∠ABN+∠A=180°,∴∠ABN=180°﹣64°=116°,∴∠ABP+∠PBN=116°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=116°,∴∠CBD=∠CBP+∠DBP=58°;(3)不变,∠APB:∠ADB=2:1,∵AM//BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1;(4)∵AM//BN,∴∠AC B=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN∴∠ABC=∠DBN,由(1)∠ABN=116°,∴∠C BD=58°,∴∠ABC+∠DBN=58°,∴∠ABC=29°,故答案为:29°.8.(1)如图1,作CP∥x轴,∵D(0,﹣3),M(4,﹣3),∴DM∥x轴,∴CP∥DM∥x轴,∴∠AOG=∠1,∠2+∠CEF=180°,∴∠2=180°﹣∠CEF,∵∠1+∠2=90°,∴∠AOG+180°﹣∠CEF=90°,∵∠AOG=46°,∴∠CEF=136°,故答案为136°;(2)∠AOG+∠NEF=90°.理由如下:如图2,作CP∥x轴,∵CP∥DM∥x轴,∴∠AOG=∠1,∠2+∠CEF=180°,而∠NED+∠CEF=180°,∴∠2=∠NED,∵∠1+∠2=90°,∴∠AOG+∠NEF=90°;(3)如图3,当点P在GF上时,过点P作PN∥OG,∴NP∥OG∥DM,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠GOP+∠PQF,∴∠OPQ=140°﹣∠POQ+∠PQF;如图4,当点P在线段GF的延长线上时,过点P作PN∥O G,∴NP∥OG∥DM,∴∠GOP=∠OPN,∠PQF=∠N PQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP=∠OPQ+∠PQF,∴140°﹣∠POQ=∠OPQ+∠PQF.9.(1)因为,根据绝对值、二次根式和平方的非负性,可以得到,(c-2)2=0,解得到a=-2,b=3;因为(c-2)2=0,所以c=2,故a=- 2,b=3,c=2;(2)解:由(1)可知A(-2,0),B(3,0),则分情况讨论点M:①当M在x轴上时,设M(m,0),由题意:?|m|?2=52,∴m=±,∴M(,0)或(-,0).②当M在y轴上时,设M(0,m),由题意:?|m|?1=52,∴m=±5,∴M(5,0)或(0,-5),综上所述,满足条件的点M坐标为M(,0)或(-,0)或(0,5)或(0,-5).(3)解:如图中,结论:的值是定值,=2.理由:∵OE⊥OF,∴∠EOF=90°,∴∠AOE+∠FOG=90°,∵∠AOE=∠EOP,∠EOP+∠POF=90°,∴∠FOG=∠POF,∵∠DOE+∠AOE=90°,∠AOE+∠FOG=90°,∴∠DOE=∠FOG,∵CP∥AG,∴∠OPD=∠POG=2∠FOG,∴∠OPD=2∠FOG,∴=2.10.解:(1)∵b是立方根等于本身的负整数,∴b=-1∵(a+2b)2+|c+|=0,(a+2b)2≥0,|c+|≥0∴a+2b=0,c+=0解得:a=2,c=故答案为:2;-1;;(2)∵b=-1,c=,b、c在数轴上所对应的点分别为B、C,点D是B、C之间的一个动点(不包括B、C两点),其对应的数为m,∴-1<m <∴m+<0∴|m+|=-m-故答案为:-m-;(3)运动前AB=2-(-1)=3,AC=2-()=由题意可知:运动后AB=3+2t+t=3+3t,AC=+2t+t=+3t∴AB-AC=(3+3t)-(+3t)=∴AB?AC的值不会随着时间t的变化而改变,AB-AC=.11.(1)令,则,解得,.解得.轴,∴点B的纵坐标与点C的纵坐标相同,;(2),,,.∵点M从点C以每秒1 个单位长度的速度向左运动,同时点N从点O以每秒1.5个单位长度的速度向右运动,,,,.当时,即时,;当时,即时,;当时,即时,.12.(1)∵a是m+6n的算术平方根,=3,n=,且m<n,正数b满足(b+1)2=16.∴m=﹣3,n=2,a=3,b=3 ,∴A(1,3),B(3,0);故答案为:A(1,3);B(3,0);(2)如图1所示:由题意知:C(2,﹣3),∵B(3,0),∴OB=3,∴S四边形AOCB=S△AOB+S△BOC=,故答案为:9;(3)过点P作PD∥OA,如图2所示:∵OA∥BC,∴PD∥OA∥BC∴∠BCP=∠DPC,∠DPO=∠AOP.∵∠AOB=a,∴∠AOP=90°﹣∠AOB=90°﹣a.∴∠DPO=90°﹣a.∵∠DPC=∠DPO+∠CPO,∴∠BCP=∠CPO+90°﹣a,即∠BCP﹣∠CPO=90°﹣a,故答案为:∠BCP﹣∠CPO=90°﹣a.13.解:(1)过点D作EF∥MN,如下图所示∵∴EF∥OP∴∠NAD=∠ADE,∠PBD=∠BDE∵∴∠ADB=90°∴∠ADE+∠BDE=∠ADB=90°∴∠NAD+∠PBD=90°(2)∵∠NAD+∠PBD=90°∴∠PBD=90°-∠NAD∵∠OBD+∠PBD=180°,∴∠OBD+90°-∠NAD=180°∴;(3)∵平分,也恰好平分,∴∠NAD=,∠NA B=2,∠OBD=2∠OBA∵∴∠OBA=∠NAB=∴∠OBD=由(2)知即解得:14.解:(1)∵++=0,∴,解得:,∴,,如图,过点B作,则AC=7,BM=3,∴,(2)不变,∵,∴∠ADC=90°,∴∠DAC+∠FCD=90°,∠FDC+∠ADF=90°,∵∴∠DAC=∠ADF,∴∠CED=∠ACE+∠DAC∠DHC=∠CED+∠ADF=∠ACE+∠DAC+∠DAC =∠ACE+2∠DAC∴,∴的值不变,;(3)存在,①当点P在x轴上时,则AF=AC=7,因为点P不与点C重合,所以点;②当点P在y轴上时,设P(0,t)则PF=,∴=4∴,解得或,所以或综上,存在一点P,使三角形ABP和三角形ABC的面积相等,点或或.15.(1)∵将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,∴C(0,2),D(4,2),AB∥CD且AB=CD=4,∴四边形ABDC是平行四边形,∴S四边形ABCD=4×2=8.(2)存在,设点P的坐标为(0,y),根据题意,得×4×|y|=8.解得y =4或y=-4.∴点P的坐标为(0,4)或(0,-4).(3)结论①正确.过点Q作QE∥AB,交CO于点E.∵AB∥CD,∴QE∥CD.∴∠DCQ=∠EQC,∠BOQ=∠EQO.∵∠EQC+∠EQO=∠CQO,∴∠DCQ+∠BOQ=∠CQO.∴=1.16.(1)∵∴,且,∴,∴,∴,∵AB∥轴,,∴;(2)∵,∴,由题意得:,∴,∵2S△ABN≤S△BCM,∴,解得:,∵当点N从点O运动到点A时,点M同时也停止运动,∴,∴t的取值范围为:;(3)设AB与CN交于点D,如图所示:∵AB∥OC,∴∠BDC=∠OCD,∵∠BDC=∠BND+∠ABN,∠CNQ=k∠BNQ,∠NCH=k∠OCH,∴∠BDC=(k+1)∠BNQ+∠ABN,∠OCD=(k+1)∠OCH,∴(k+1)∠BNQ+∠ABN=(k+1)∠OCH,∴∠ABN═(k+1)∠OCH﹣(k+1)∠BNQ=(k+1)(∠OCH﹣∠BNQ),∵NQ∥CJ,∴∠NCJ=∠CNQ=k∠BNQ,∵∠HCJ+∠NCJ=∠NCH=k∠OCH,∴∠HCJ=k∠OCH﹣∠NCJ=k∠OCH﹣k∠BNQ=k(∠OCH﹣∠BNQ),∴=.17.解:(1),,,,,,故答案为:;(2)①,理由如下:如图,过点作,,,,,;②,理由如下:如图,过点作,,,,,;(3),理由如下:分别平分,,如图,过点作,,,,,.18.解:(1),∴,∴,(2)作轴于点M,如图所示设,且∴若即∴∴(3)存在,,∵,,∴当C点在x正半轴上时,坐标为,当C点在x负半轴上时,坐标为故答案为,.19.解:(1)∵A(-3,4),A、B两点关于y轴对称,∴点B的坐标为(3,4).故答案为(3,4).(2)∵AP=4t,BQ=2t,AB=6,当P与Q相遇时?解得∴当时,PQ=6+2t-4t=6-2t;当t>3时,PQ=4t-6-2t=2t-6∴当时,当时,(3)如图,设AB交y轴于D.∵点M的坐标为(m,-m),∴点M在二四象限的角平分线上,①当m<-4时,显然不存在.②当-4<m<0时,M在第二象限;③当m>0时,M在第四象限;由题意可得∴综上所述,满足条件的m的值为:或20.(1)如图1中,由题意B(3,2),C (-1,2),∴BC∥OA,BC=OA,∴四边形ABCO是平行四边形.∴S 平行四边形ABCD=4×2=8.(2)存在.理由:如图1中,设M(0,m)由题意S△AOM=8,∴×4×|m|=8∴m=±4,∴M(0,4)或(0,-4).(3)结论:∠CQP=2∠D.理由:如图3中,延长CP到K.∵BC∥OA,∴∠CBP=∠DPQ,∵∠CBP=∠CPB,∠CPB=∠DPK,∴∠DPQ=∠DPK,设∠DPQ=∠DPK=x,∠DCQ=∠DCP=y,则有,①-2×②得到∠CQP=2∠D.学科网(北京)股份有限公司答案第1页,共2页试卷第1页,共3页。
数学人教版七年级下册动点问题系列1
一、课前任务反馈----我的“二货”
一、课前任务反馈----我的“二货”
一、课前任务反馈----我的“二货”
一、课前任务反馈----我的“二货”
一、课前任务反馈----我的“二货”
一、课前任务反馈----我的“二货”
一、课前自主学习---自主检测答案展示
解: 设点P运动速度为x个单位长度/秒,点Q运动速度
一、课前任务反馈----优秀学案:刘隆宇
一、课前任务反馈----优秀学案:王渝鑫
一、课前任务反馈----优秀学案:徐慧然
一、课前任务反馈----优秀学案:赵悦涵
一、课前任务反馈----优秀学案:郑荣禹
一、课前任务反馈----优秀学案:刘百彬
一、课前任务反馈----优秀学案:乔健
一、课前任务反馈----我的“二货”
五、布置作业:
选做题:如图,长方形ABCO中,边AB=12,BC=6,
以O为原点,以OA和OC所在的直线为△OPB>12时,运动时间t 的取值范围.
奔跑吧,孩子们, 愿你与咱们的大博伦一起 越来越美好!!
一、课前自主学习---自主检测答案展示
解: (2)当两点相遇后,即P在前,Q在后时, PQ=4 可得方程为:3t-(t+12)=4,解得 t=8 ∴3t=3×8=24 24-12-6=6 ∴此时,点P坐标为(6, 6).
答:t为4秒或8秒时,P、Q两点之间的距离等于4; 此时,点P坐标为(0, 0)或(6, 6).
三、课堂检测:
如图,长方形ABCO中,边OA=BC=6,AB=OC=12,以O为原点, 以OA为x轴,OC为y轴建立直角坐标系。动点P从点C出发,沿CO-A-B路线运动到点B停止,速度为3个单位长度/秒;动点Q从点 O出发,沿O-A-B路线运动到点B停止,速度为1个单位长度/秒; 当点P到达点B时,两点同时停止运动。设运动时间为t。当点P恰 好追上点Q时,求此时点P的坐标;
初一下册动点问题解题技巧
初一下册动点问题解题技巧初一下册动点问题解题技巧1. 弄清题目要求•仔细阅读题目,理解题目中所给的信息和要求。
•确定题目中提到的关键词,例如:找规律、求最值、计算等。
•判断题目要求的是一个具体的答案还是一个解答过程。
2. 分析问题•将问题分解为更简单的小问题,逐步解决。
•寻找已知条件和未知量之间的关系,建立数学模型。
•根据题目中的条件和要求,确定所需的计算方法或公式。
3. 运用合适的策略•尝试逆向思维,从答案出发推导出问题的解决过程。
•善用图表、图像和模型等工具,帮助理解和解决问题。
•运用不同的解题方法,例如:猜测与检验、试错法、寻找规律等。
4. 正确解答问题•使用适当的计算方法,包括基本的四则运算、分数运算、方程求解、代数运算等。
•将计算过程和结果清晰地展示出来,避免漏写步骤。
•仔细检查答案,确保计算无误,符合题目要求。
5. 总结和反思•回顾整个解题过程,思考是否有更优的解题方法。
•总结解题的困难和难点,以及如何克服。
•反思自己在解题过程中的不足和需要改进的地方。
通过以上的技巧,你可以更好地解决初一下册动点问题。
记住,解题是一个需要思考和实践的过程,通过反复的练习和总结,你将能够提高解题的能力和水平。
学会灵活运用各种策略,并不断学习和思考,相信你一定可以成为优秀的数学解题者!希望以上内容对你有所帮助,祝你在解题过程中取得好成绩!6. 典型例题例题1:动点问题某车站有两列长途汽车A、B,每列车均按相同的速度行驶,相距300公里。
从车站出发,A在5小时后到达目的地,并返回车站。
而B在8小时后到达目的地,并返回车站。
求A、B两列车的速度。
解题思路: 1. 假设两列车的速度分别为v1和v2,并设从车站到目的地的时间为t。
2. 根据题目中的信息,我们可以列出以下的方程: - A的行程:2v1t = 300 - B的行程:2v2t = 300 3. 解方程可以得到v1 = 60 km/h,v2 = 37.5 km/h。
初一下册动点问题解题技巧(一)
初一下册动点问题解题技巧(一)初一下册动点问题解题技巧1. 了解题意了解题意是解决动点问题的第一步,这个步骤十分重要。
首先,读懂题目,理解题目所给的条件和要求。
2. 明确所求在解答动点问题时,要明确题目所求的东西是什么。
可能需要求出距离、时间、速度等等。
只有明确所求,才能有针对性地解题。
3. 定义变量为了更好地解题,可以定义相应的变量。
例如,定义t为时间,d 为距离等等。
通过定义变量,可以把题目中的文字转化为方程或者不等式,便于解题。
4. 列方程或不等式根据所定义的变量,把题目所给的条件转化为方程或者不等式。
通过列方程或不等式,可以有效地解决动点问题。
5. 解方程或不等式根据列出的方程或不等式,开始解题。
根据方程或不等式的性质,可以使用各种方法求解,如代入法、消元法等等。
6. 检查解的合理性在解答完方程或者不等式后,要对解进行检查。
检查解的合理性是很重要的,可以通过代入原题中的条件,看是否满足要求。
如果解不合理,可能需要重新检查方程或不等式的列写。
7. 回答问题并给出解释在解题过程中,注意回答问题并给出相应的解释。
解释应该简洁明了,清晰地表达出问题的答案。
同时,可以进行推理和归纳,以及对解的可行性进行论证。
8. 总结在解决动点问题时,要善于总结经验和归纳问题。
通过总结和归纳,可以提高解题的效率和准确性,进而提高数学能力。
以上是初一下册动点问题解题的一些技巧和方法,希望对你在解决动点问题时有所帮助。
通过逐步掌握这些技巧,相信你能在动点问题中取得更好的成绩!9. 举例说明为了更好地理解和应用动点问题解题技巧,下面以几个例子来详细说明:例子1题目:小明骑自行车以每小时15公里的速度行驶1个小时,然后以每小时10公里的速度行驶2个小时。
求他行驶的总距离。
解析:根据题意,可以定义变量d1和d2分别表示小明在第一个小时和第二个小时行驶的距离。
根据速度等于距离除以时间的公式,可以得到方程15 * 1 = d1和10 * 2 = d2。
初一数学动点问题解析
初一数学动点问题解析初一数学动点问题是指涉及动点概念的数学问题。
在动点问题中,点代表一个物体的位置,在一段时间内,这个点的位置会发生改变。
初一数学动点问题可以涉及到位置的移动、速度的计算、时间的计算、距离的计算以及复杂的运动轨迹等内容。
在解决初一数学动点问题时,我们需要理解一些基本概念和原理。
首先,一维运动是指点在一条直线上运动,而二维运动是指点在一个平面上运动。
其次,我们需要知道速度的定义,即速度等于位移与时间的比值。
速度的单位可以是米/秒、米/小时等。
另外,我们还需要了解加速度的概念,即速度的变化率。
加速度的单位可以是米/每二次方秒等。
最后,我们需要掌握一些常见的运动公式,例如速度等于位移与时间的比值、距离等于速度乘以时间等。
在解决初一数学动点问题时,我们可以运用一些具体的步骤和方法。
首先,我们需要明确问题中所给的初始条件和要求。
读懂题意并且将其转化为数学语言对问题的解决至关重要。
其次,我们可以根据问题中所给的信息进行数学符号的表示,例如用字母表示位置、速度、时间等。
然后,我们可以根据已知条件进行问题的分析和计算。
根据速度等于位移与时间的比值、距离等于速度乘以时间等运动公式,我们可以求解出所需要的未知数。
最后,我们需要进行问题的验证和解释。
验证可以通过运用其他方法进行计算得到相同的结果来进行,解释则需要将数学计算结果转化为自然语言描述问题的解决过程。
例如,有一个初一数学动点问题:“小明从家里骑自行车去学校,他的家与学校的距离为5公里,他的速度是10千米/小时,问他骑到学校要多长时间?”我们首先明确问题的初始条件和要求,家与学校的距离为5公里,速度为10千米/小时,要求求解小明骑到学校所花费的时间。
我们可以用t表示时间,v表示速度,d表示距离,我们需要求解的是t。
根据速度等于位移与时间的比值的公式,我们可以得到t=d/v。
将已知条件代入公式,我们可以求解出t=5/10=0.5小时。
因此,小明骑到学校所花费的时间是0.5小时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动点问题
1、如图6-7,已知A 、B 两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x 轴上行驶,从原点O 出发.
(1)汽车行驶到什么位置时离A 村最近?写出此点的坐标. (2)汽车行驶到什么位置时离B 村最近?写出此点的坐标. (3)请在图中画出汽车行驶到什么位置时,距离两村的和最短?
2.如图,以直角三角形AOC 的直角顶点O 为原点,以OC 、OA 所在直线为x 轴 和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)
20b -=.
(1) 则A 点的坐标为___________,C 点的坐标为__________; (2) 已知坐标轴上有两动点P 、Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是(1,2),设运动时间为t (t >0)秒.问:是否存在这样的t ,使S △ODP =
S △ODQ ,若存在,请求出t 的值;若不存在,请说明理由;
(3) 点F 是线段AC 上一点,满足∠FOC =∠FCO ,点G 是第二象限中一点,连OG ,使得∠AOG =∠AOF .点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACE OEC
∠+∠∠的值是否会发生变化,若不变,请求出它的值;若变化,请说明理由.
3.如图1,在平面直角坐标系中,第一象限内长方形ABCD , AB ∥y 轴,点A (1,1),点C (a , b ),
满足035=-+-b a .
(1)求长方形ABCD 的面积.
(2)如图2,长方形ABCD 以每秒1个单位长度的速度向右平移,同时点E 从原点O 出发沿x 轴以每秒2 个单位长度的速度向右运动,设运动时间为t 秒. ①当t=4时,直接写出三角形OAC 的面积为 ; ② 若AC ∥ED ,求t 的值;
(3)在平面直角坐标系中,对于点()P x y ,,我们把点(11)P y x '-++,叫做点P 的伴随点,
已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点1A ,2A ,3A ,…,n A .
①若点1A 的坐标为(3,1),则点3A 的坐标为 ,点2014A 的坐标为 ; ②若点1A 的坐标为(a ,b ),对于任意的正整数n ,点n A 均在x 轴上方,则a ,b 应满足的条件为 .
4、如图,在平面直角坐标中,A (0,1),B (2,0),C (2,1.5).
(1)求△ABC 的面积;
(2)如果在第二象限内有一点P (a ,0.5),试用a 的式子表示四边形ABOP 的面积; (3)在(2)的条件下,是否存在这样的点P ,使四边形ABOP 的面积与△ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.
y
x
P
O
C
B
A
5、如图,△ABC 的三个顶点位置分别是A (1,0),B (-2,3),C (-3,0). (1)求△ABC 的面积;
(2)若把△ABC 向下平移2个单位长度,再向右平移3个单位长度,得到△A B C ''',请你在图中画出△A B C ''';
(3)若点A 、C 的位置不变,当点P 在y 轴上什么位置时,使
2ACP ABC S S =V V ;
(4)若点B 、C 的位置不变,当点Q 在x 轴上什么位置时,使
D
C B A
E
O
y x
24题图2
24题图1
D
C B A
O y x
2BCQ ABC S S =V V .
6、如图1,在平面直角坐标系中,A (a ,0),C (b ,2),且满足2
(2)20a b ++-=,过
C 作CB ⊥x 轴于B .
(1)求三角形ABC 的面积;
(2)若过B 作BD ∥AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,求∠AED 的度数;(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等,若存在,求出P 点坐标;若不存在,请说明理由.
7、如图,在平面直角坐标系中,四边形ABCD 各顶点的坐标分别是A (0,0),B (7,0),C (9,5),D (2,7)
(1)在坐标系中,画出此四边形; (2)求此四边形的面积;
(3)在坐标轴上,你能否找一个点P ,使S △PBC =50,若能,求出P 点坐标,若不能,说明理由.
8、如图,A 点坐标为(-2, 0), B 点坐标为(0, -3).
(1)作图,将△ABO 沿x 轴正方向平移4个单位, 得到△DEF , 延长ED 交y 轴于C 点, 过O 点作OG ⊥CE , 垂足为G ;
(2) 在(1)的条件下, 求证: ∠COG =∠EDF ;
(3)求运动过程中线段AB 扫过的图形的面积.
9、在平面直角坐标系中,点B (0,4),C (-5,4),点A 是x 轴负
半轴上一点,S 四边形AOBC =24.
图1
y
x
H
O
F
E
D
A
C B
(1)线段BC 的长为 ,点A 的坐标为 ;
(2)如图1,EA 平分∠CAO ,DA 平分∠CAH ,CF ⊥AE 点F ,试给出∠ECF 与∠DAH 之间满
足的数量关系式,并说明理由;
(3)若点P 是在直线CB 与直线AO 之间的一点,连接BP 、OP ,BN 平分CBP ∠,ON 平分
AOP ∠,BN 交ON 于N ,请依题意画出图形,给出BPO ∠与BNO ∠之间满足的数量
关系式,并说明理由.
10、在平面直角坐标系中,OA =4,OC =8,四边形ABCO 是平行四边形.
x
y O
C
B
A
P Q
x
y
O
C
B
A
(1)求点B 的坐标及的面积ABCO S 四边形;
(2)若点P 从点C 以2单位长度/秒的速度沿CO 方向移动,同时点Q 从点O 以1单位长度
A(-2,0)
B(0,-3)
y x
/秒的速度沿OA 方向移动,设移动的时间为t 秒,△AQB 与△BPC 的面积分别记为AQB S ∆,
BPC S ∆,是否存在某个时间,使AQB S ∆=
3
OQBP
S 四边形,若存在,求出t 的值,若不存
在,试说明理由;
(3)在(2)的条件下,四边形QBPO 的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围.
11、如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0)
(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D 连结AC ,BD . (1)求点C ,D 的坐标及四边形ABDC 的面积S 四边形ABDC ;
(2)在y 轴上是否存在一点P ,连结PA ,PB ,使S △PAB =S △PDB ,若存在这样一点,求出点P 点坐标,若不存在,试说明理由;
(3)若点Q 自O 点以0.5个单位/s 的速度在线段AB 上移动,运
动到B 点就停止,设移动的时间为t 秒,(1)是否是否存在一个时刻,使得梯形CDQB 的面积是四边形ABCD 面积的三分之一?
(4)是否是否存在一个时刻,使得梯形CDQB 的面积等于△ACO
面积的二分之一?
12、在直角坐标系中,△ABC 的顶点A (—2,0),B (2,4),C (5,0). (1)求△ABC 的面积
(2)点D 为y 是否存在点D 使得ADE BCE S S ∆∆=
点D的坐标;若不存在,请说明理由.
(3)点F(5,n)是第一象限内一点,,连BF,CF,G是x轴上一点,若△ABG的面积等于四边形ABDC的面积,则点G的坐标为(用含n的式子表示)。