必修1第二章指数与指数函数双基自测题
高一数学上册第二章--指数函数知识点及练习题(含答案)
课时 4 指数函数一 . 指数与指数幂的运算( 1)根式的观点①假如xna, a R, x R, n 1,且 nN ,那么 x 叫做 a 的 n 次方根. 当 n 是奇数时, a 的 n 次方根用符号 na 表示;当 n 是偶数时,正数 a 的正的 n 次方根用符号na 表示,负的 n 次方根用符号na表示; 0 的 n 次方根是 0;负数 a 没有 n 次方根.②式子 n a 叫做根式,这里 n 叫做根指数, a 叫做被开方数.当n 为奇数时, a 为随意实数;当 n 为偶数时, a.③根式的性质: (na )n a ;当 n 为奇数时, n a n a ;当 n 为偶数时, n a n | a |a (a 0) .a (a 0)( 2)分数指数幂的观点mna m (a①正数的正分数指数幂的意义是:a n 0, m,n N , 且 n 1) .0 的正分数指数幂等于0.②m(1m1 ) m( a正数的负分数指数幂的意义是:a n)n n (0, m, n N , 且 n1) .0 的负分数指aa数幂没存心义. 注意口诀: 底数取倒数,指数取相反数.( 3)分数指数幂的运算性质①a r a s a r s (a 0, r , s R)② (ar) sa rs (a 0, r , s R)③(ab)ra rb r (a0,b 0, rR)二 . 指数函数及其性质( 4)指数函数函数名称指数函数定义函数 ya x (a 0 且 a1) 叫做指数函数a 1a 1yy a xya xy图象y1y1(0,1)(0,1)OxOx定义域 R值域(0,+ ∞)过定点 图象过定点(0,1 ),即当 x=0 时, y=1.奇偶性非奇非偶单一性在 R 上是增函数在 R 上是减函数函数值的 y > 1(x > 0), y=1(x=0), 0< y < 1(x < 0)y > 1(x < 0), y=1(x=0), 0< y < 1(x > 0)变化状况a 变化对在第一象限内, a 越大图象越高,越凑近 y 轴; 在第一象限内, a 越小图象越高,越凑近 y 轴; 图象影响在第二象限内,a 越大图象越低,越凑近x 轴.在第二象限内,a 越小图象越低,越凑近x 轴.三 .例题剖析1.设 a 、 b 知足 0<a<b<1,以下不等式中正确的选项是 ( C)A.a a <a bB.b a <b bC.a a <b aD.b b <a b 分析: A 、B 不切合底数在 (0,1) 之间的单一性 ; C 、 D 指数同样 , 底小值小 . 应选 C. 2.若 0<a<1,则函数 y=a x 与 y=(a-1)x 2 的图象可能是 (D )分析: 当 0<a<1 时 ,y=a x 为减函数 ,a-1<0, 因此 y=(a-1)x2张口向下 , 应选 D.3.设指数函数 f(x)=a x (a>0 且 a ≠ 1),则以下等式中不正确的选项是 ( D )A.f(x+y)=f(x)f(y)f (x)B.f(x-y)=f ( y)C.f(nx)= [ f(x) ] nD.f [ (xy) n ] =[ f(x) ] n [ f(y) ] n (n ∈ N * )分析: 易知 A 、 B 、 C 都正确 .对于 D,f [(xy)n] =a (xy)n , 而[ f(x) ] n ·[f(y) ] n =(a x ) n ·(a y ) n =a nx+ny , 一般状况下 D 不建立 .11 34.设 a= ( 3) 3,b= ( 4)4,c= ( 3) 4,则 a 、b 、 c 的大小关系是 ( B )43 2A.c<a<b3分析: a= ( )B.c<b<aC.b<a<cD.b<c<a1 111(8133( 4)3 ( 4) 4=b, b=(4) 4)4(3) 4 =c.∴ a>b>c.3 332725.设 f(x)=4 x -2x+1,则 f -1 (0)=______1____________. 分析: 令 f -1 (0)=a, 则 f(a)=0 即有 4a -2 · 2a =0.2a · (2 a -2)=0, 而 2a >0,∴ 2a =2 得 a=1.6.函数 y=a x-3 +4(a>0 且 a ≠ 1)的反函数的图象恒过定点 ______(5,3)____________.分析: 因 y=a x 的图象恒过定点 (0,1), 向右平移 3 个单位 , 向上平移 4 个单位获得 y=a x-3 +4 的图象 , 易知恒过定点 (3,5).故其反函数过定点 (5,3).10 x 10 x.证明 f(x) 在 R 上是增函数 .7.已知函数 f(x)=x10 x10x1010x102x1,设 x 1<x 2∈ R,则f(x 1)-f(x2)=10x 1 1010x 1 10x 110x 210 x 2102 x 11 102 x 21 2(102 x 1102 x2).x 110x2 10x2 102 x1 1102 x21(102 x11)(102 x 2 1)∵ y=10 x是增函数 ,∴ 10 2x 1 10 2x 2 <0.而 10 2x 1 +1>0, 102 x 2 +1>0,故当 x <x 时 ,f(x)-f(x )<0,1212即 f(x 1)<f(x 2). 因此 f(x) 是增函数 .8.若定义运算 a b=b, ab,则函数 f(x)=3 x3-x 的值域为 ( A )a, a b,A.(0,1]B. [ 1,+∞ )C.(0,+ ∞ )D.(- ∞ ,+∞ )分析: 当 3x ≥3-x , 即 x ≥ 0 时 ,f(x)=3-x∈(0,1 ] ;x-x, 即 x<0 时 ,f(x)=3x∈ (0,1).3 x , x 0, 当 3<3∴ f(x)=x值域为 (0,1).3x ,0,9.函数 y=a x 与 y=-a -x (a>0,a ≠1) 的图象 ( C )A. 对于 x 轴对称B.对于 y 轴对称C.对于原点对称D.对于直线 y=-x 对称分析: 可利用函数图象的对称性来判断两图象的关系.10.当 x ∈[ -1,1]时 ,函数 f(x)=3 x-2 的值域为 _______[ -5,1 ] ___________.3分析: f(x) 在[ -1,1 ]上单一递加 .11.设有两个命题 :(1)对于 x 的不等式 x 2+2ax+4>0对全部 x ∈ R 恒建立 ;(2) 函数 f(x)=-(5-2a) x是减函数 .若命题 (1)和 (2)中有且仅有一个是真命题 ,则实数 a 的取值范围是 _______(- ∞ ,-2)__________.分析: (1) 为真命题=(2a) 2-16<0-2<a<2. (2)为真命题 5-2a>1 a<2.若 (1) 假 (2) 真 , 则 a ∈ (- ∞ ,-2]. 若 (1) 真 (2) 假, 则 a ∈ (-2,2)∩[ 2,+ ∞]=.故 a 的取值范围为 (- ∞ ,-2).12.求函数 y=4 -x -2-x +1,x ∈[ -3,2]的最大值和最小值 .解: 设 2-x=t, 由 x ∈[ -3,2 ]得 t ∈[ 1,8 ] , 于是 y=t 2-t+1=(t-1)2+3. 当 t= 1时 ,y3 .424有最小值 这时 x=1.当 t=8 时 ,y 有最大值57.这时 x=-3.2413.已知对于 x 的方程 2a2x-2-7a x-1 +3=0 有一个根是 2,求 a 的值和方程其他的根 . 解: ∵ 2 是方程 2a2x-2-9a x-1+4=0 的根 , 将 x=2 代入方程解得 a= 1或 a=4.2(1) 当 a= 1时 , 原方程化为 2· ( 1)2x-2-9(1) x-1 +4=0.①222x-1 2令 y=( 1) , 方程①变成 2y -9y+4=0,2解得 y 1=4,y 2= 1.∴ ( 1) x-1 =42x=-1,2( 1 ) x-1 = 1x=2.22(2) 当 a=4 时 , 原方程化为 2· 42x-2 -9 · 4x-1 +4=0. ②令 t=4 x-1 , 则方程②变成 2t 2-9t+4=0. 解得 t 1=4,t 2= 1.x-12=4x=2,∴44x-1 = 1x=- 1 .22故方程此外两根是当 a= 1时 ,x=-1;1 .2当 a=4 时 ,x=-214.函数 y= (1) 3 4xx 2的单一递加区间是 ( D )3A. [ 1,2]B.[ 2,3]C.(-∞ ,2]D.[ 2,+∞ )分析: 由于 y=3x2-4x+3 , 又 y=3t 单一递加 ,t=x 2-4x+3 在 x ∈[ 2,+ ∞ ) 上递加 , 故所求的递加区间为[ 2,+ ∞ ).15.已知 f(x)=3 x-b (2≤ x ≤ 4,b 为常数 ) 的图象经过点 (2,1), 则 F(x)=f 2(x)-2f(x) 的值域为 ( B )A. [ -1,+∞ )B. [ -1,63)C.[ 0,+∞ )D.(0,63 ]分析: 由 f(2)=1, 得 32-b =1,b=2,f(x)=3 x-2.∴ F (x)= [ f(x)-1 ]2-1=(3 x-2 -1) 2-1. 令 t=3 x-2 ,2 ≤x ≤4.2∴g(t)=(t-1) - 1,t ∈[ 1,9 ].2.1 指数函数练习1.以下各式中建立的一项A . ( n)71n 7 m 7B .12 ( 3)433m3C . 4 x 3y 3( x y) 4D .393321111 1 52.化简 (a 3 b 2 )( 3a 2 b 3 ) ( a 6 b 6 ) 的结果3D . 9a 2 A . 6aB . aC . 9a3.设指数函数 f ( x)a x ( a 0, a1) ,则以下等式中不正确的选项是f (x) A . f(x+y)=f(x) ·f(y)B . f ( x y )f ( y)C . f (nx)[ f ( x)]n (nQ )D . f ( xy) n [ f ( x)] n ·[f ( y)] n1 4.函数 y (x5) 0 ( x 2)2A . { x | x 5, x 2}B . { x | x 2}C . { x | x 5}D . { x | 2 x 5或 x 5}()()()(n N )( )5.若指数函数 y a x 在 [- 1,1]上的最大值与最小值的差是1,则底数 a 等于 ()A .15 B .1 5 C .15D .5 122 226.当 a0 时,函数 y axb 和 yb ax 的图象只可能是()7.函数 f ( x)2 |x| 的值域是()A . (0,1]B . (0,1)C . (0, )D . R8.函数 f ( x)2 x 1, x 0,知足 f ( x)1的 x 的取值范围1x 2 , x()A . ( 1,1)B . ( 1, )C . { x | x 0或 x2}D . { x | x 1或 x1}9.函数 y(1) x 2x2得单一递加区间是2()A .[ 1,1]B . ( , 1]C .[2,)D .[ 1,2]2exe x210.已知 f ( x)()2 ,则以下正确的选项是A .奇函数,在 R 上为增函数B .偶函数,在 R 上为增函数C .奇函数,在 R 上为减函数D .偶函数,在 R 上为减函数11.已知函数 f (x)的定义域是(1, 2),则函数 f (2 x ) 的定义域是.12.当 a >0 且 a ≠1 时,函数 f (x)=a x -2- 3 必过定点.三、解答题:13.求函数 y1的定义域 .x5 x 1114.若 a >0, b > 0,且 a+b=c ,求证: (1) 当r >1时, a r +b r < c r ; (2) 当r < 1时, a r +b r > c r .a x 1 15.已知函数 f ( x)(a >1) .a x1( 1)判断函数 f (x) 的奇偶性;( 2)证明 f (x)在 (-∞, +∞ )上是增函数 .xa16.函数 f(x) = a (a>0 ,且 a ≠1) 在区间 [1,2] 上的最大值比最小值大2,求 a 的值.参照答案一、 DCDDD AADDA二、 11. (0,1);12. (2,- 2) ;三、 13. 解:要使函数存心义一定:x 1 0x 1x0 x 0x 1∴ 定义域为 : x xR 且 x0, x 1a rrrb r此中a1,0b114. 解:ba,c rcccc.r >1 ,a rb ra b 1,r r r当因此+b< c ;时c c c crrrrr当 r < 1 时, aba b1, 因此 a +b >c .ccc c15. 解 :(1)是奇函数 .(2) 设x <x ,则 f (x 1 )ax11 ax21 。
高中数学必修一《指数与指数函数》测试及答案2套
高中数学必修一《指数与指数函数》测试及答案2套单元测试卷一(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a <14,则化简44a -12的结果是( )A.1-4aB.4a -1 C .-1-4aD .-4a -12.某林区的森林蓄积量每年比上一年平均增加110.4%,那么经过x 年可增长到原来的y 倍,则函数y =f (x )的图象大致是( )3.设f (x )=⎝ ⎛⎭⎪⎫12|x |,x ∈R ,那么f (x )是( )A .奇函数且在(0,+∞)上是增函数B .偶函数且在(0,+∞)上是增函数C .奇函数且在(0,+∞)上是减函数D .偶函数且在(0,+∞)上是减函数 4.若3a>1,则实数a 的取值范围为( )A .(-∞,0)B .(0,1)C .(0,+∞) D.(2,+∞) 5.函数y =2x-12x +1是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数6.函数y =⎝ ⎛⎭⎪⎫12 x 2-2的单调递减区间为( )A .(-∞,0]B .0,+∞)C .(-∞,2]D .2,+∞)7.函数y=⎝ ⎛⎭⎪⎫12-x 2+2x 的值域是( ) A .R B.⎣⎢⎡⎭⎪⎫12,+∞ C .(2,+∞)D .(0,+∞)8.设f (x )是定义在实数集R 上的函数,满足条件:y =f (x +1)是偶函数,且当x ≥1时,f (x )=5x,则f ⎝ ⎛⎭⎪⎫23,f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫13的大小关系是( )A .f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫32B .f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫23C .f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫13 D .f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫13 9.函数y =|x |e-xx的图象的大致形状是( )10.下列函数中,与y =-3|x |的奇偶性相同,且在(-∞,0)上单调性也相同的是( ) A .y =-1xB .y =|x |-1|x |C .y =-(2x +2-x)D .y =x 3-111.已知函数f (x )=⎩⎪⎨⎪⎧a xx <0,a -3x +4a x ≥0满足对任意x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,则a 的取值范围是( )A.⎝ ⎛⎦⎥⎤0,14 B .(0,1) C.⎣⎢⎡⎭⎪⎫14,1 D .(0,3) 12.设函数f (x )=2-x 2+x +2 ,对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧f x ,f x ≤K ,K ,f x >K ,若对于函数f (x )=2-x 2+x +2定义域内的任意x ,恒有f K (x )=f (x ),则( )A .K 的最大值为2 2B .K 的最小值为2 2C .K 的最大值为1D .K 的最小值为1第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.2-12+-42+12-1-1-5=________.14.函数f (x )=2a x +1-3(a >0,且a ≠1)的图象经过的定点坐标是________.15.若函数f (x )=⎩⎪⎨⎪⎧1x ,x <0,⎝ ⎛⎭⎪⎫13x,x ≥0,则不等式|f (x )|≥13的解集为________.16.设f (x )是定义在R 上的奇函数,且当x >0时,f (x )=2x-3,则当x <0时,f (x )=________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)函数f (x )=k ·a -x(k ,a 为常数,a >0且a ≠1)的图象过点A (0,1),B (3,8). (1)求函数f (x )的解析式; (2)若函数g (x )=f x -1f x +1,试判断函数g (x )的奇偶性并给出证明.18.(本小题满分12分) 已知函数f (x )=2x-4x.(1)求y =f (x )在-1,1]上的值域; (2)解不等式f (x )>16-9×2x;(3)若关于x 的方程f (x )+m -1=0在-1,1]上有解,求m 的取值范围.19.(本小题满分12分)某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的关系近似满足如图所示的曲线.(1)写出服药后y 与t 之间的函数关系式y =f (t );(2)进一步测定:每毫升血液中的含药量不少于0.25毫克时,药物对治疗疾病有效.求服药一次治疗疾病的有效时间.20.(本小题满分12分)已知函数f (x )=a 2+22x +1是奇函数.(1)求a 的值;(2)判断f (x )的单调性,并用定义加以证明; (3)求f (x )的值域.21.(本小题满分12分)已知函数f (x )=⎝ ⎛⎭⎪⎫13x ,x ∈-1,1],函数φ(x )=f (x )]2-2af (x )+3的最小值为h (a ).(1)求h (a );(2)是否存在实数m >n >3,当h (a )的定义域为n ,m ]时,值域为n 2,m 2]?若存在,求出m ,n 的值;若不存在,请说明理由.22.(本小题满分12分)定义在D 上的函数f (x ),如果满足:对任意x ∈D ,存在常数M >0,都有|f (x )|≤M 成立,则称f (x )是D 上的有界函数,其中M 称为函数f (x )的上界.已知函数f (x )=1+a ·⎝ ⎛⎭⎪⎫13x +⎝ ⎛⎭⎪⎫19x.(1)当a =-12时,求函数f (x )在(-∞,0)上的值域,并判断函数f (x )在(-∞,0)上是否为有界函数,请说明理由;(2)若函数f (x )在0,+∞)上是以4为上界的有界函数,求实数a 的取值范围.答案1.A 解析:∵a <14,∴4a -1<0,∴44a -12=1-4a .2.D 解析:经过x 年后y =(1+110.4%)x=2.104x.3.D 解析:函数f (x )的定义域R 关于原点对称,且f (-x )=⎝ ⎛⎭⎪⎫12|-x |=⎝ ⎛⎭⎪⎫12|x |=f (x ),所以f (x )是偶函数.又f (x )=⎝ ⎛⎭⎪⎫12|x |=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x ,x ≥0,2x ,x <0,所以f (x )在(0,+∞)上是减函数.4.C 解析:因为3a>1,所以3a>30,3>1,∴y =3a是增函数.∴a >0.5.A 解析:函数y =2x-12x +1的定义域(-∞,+∞)关于原点对称,且f (-x )=2-x-12-x +1=12x -112x +1=1-2x 1+2x =-f (x ),所以该函数是奇函数. 6.B 解析:函数y =⎝ ⎛⎭⎪⎫12u为R 上的减函数,欲求函数y =⎝ ⎛⎭⎪⎫12x 2-2的单调递减区间,只需求函数u =x 2-2的单调递增区间,而函数u =x 2-2的单调递增区间为0,+∞).7.B 解析:令t =-x 2+2x ,则t =-x 2+2x 的值域为(-∞,1],所以y =⎝ ⎛⎭⎪⎫12-x 2+2x=⎝ ⎛⎭⎪⎫12t 的值域为⎣⎢⎡⎭⎪⎫12,+∞. 解题技巧:本题主要考查了指数型函数的值域,解决本题的关键是先求出指数t =-x 2+2x 的值域,再根据复合函数的单调性求出指数型函数的值域.8.D 解析:∵y =f (x +1)是偶函数,∴y =f (x +1)的对称轴为x =0,∴y =f (x )的对称轴为x =1.又x ≥1时,f (x )=5x,∴f (x )=5x在1,+∞)上是增函数,∴f (x )在(-∞,1]上是减函数.∵f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫12,且23>12>13,∴f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13,即f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫13.9.C 解析:由函数的表达式知,x ≠0,y =e -x|x |x =⎩⎪⎨⎪⎧e -x,x >0,-e -x,x <0,所以它的图象是这样得到的:保留y =e -x,x >0的部分,将x <0的图象关于x 轴对称.故选D.10.C 解析:设函数f (x )=y =-3|x |,x ∈R ,∴f (-x )=-3|-x |.∵f (x )=f (-x ),∴f (x )为偶函数.令t =|x |,∴t =|x |,x ∈(-∞,0)是减函数,由复合函数的单调性知,y=-3|x |在x ∈(-∞,0)为增函数.选项A 为奇函数,∴A 错;选项B 为偶函数但是在x ∈(-∞,0)为减函数,∴B 错;选项C 令g (x )=-(2x+2-x),g (-x )=-(2-x+2x),∴g (x )=g (-x ),∴g (x )为偶函数.由复合函数的单调性知,g (x )在x ∈(-∞,0)为增函数.故选C.11.A 解析:∵对任意x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,∴f (x )是R 上的减函数.∴⎩⎪⎨⎪⎧0<a <1,a 0≥4a ,解得a ∈⎝ ⎛⎦⎥⎤0,14.故选A. 12.B 解析:∵函数f (x )=2-x 2+x +2的值域为1,22],又∵对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧f x ,f x ≤K ,K ,f x >K ,若对于函数f (x )=2-x 2+x +2定义域内的任意x ,恒有f K (x )=f (x ),∴K ≥2 2.故选B.13.-22解析:2- 12+-42+12-1-1-5=12-42+2+11-1=-32+2=-22.14.(-1,-1) 解析:由指数函数恒过定点(0,1)可知,函数f (x )=2ax +1-3(a >0,且a ≠1)的图象恒过定点(-1,-1).15.-3,1] 解析:当x <0时,|f (x )|≥13,即1x ≤-13,∴x ≥-3;当x ≥0时,|f (x )|≥13,即⎝ ⎛⎭⎪⎫13x ≥13,∴x ≤1.综上不等式的解集是x ∈-3,1].解题技巧:本题主要考查了关于分段函数的不等式,解决本题的关键是分段求出不等式的解集,最后取并集.16.-2-x+3 解析:当x <0时,-x >0.∵当x >0时,f (x )=2x -3,∴f (-x )=2-x-3.又f (x )是定义在R 上的奇函数,∴当x <0时,f (-x )=2-x-3=-f (x ),∴f (x )=-2-x+3.17.解:(1)由函数图案过点A (0,1)和B (3,8)知,⎩⎪⎨⎪⎧k =1,k ·a -3=8,解得⎩⎪⎨⎪⎧k =1,a =12,∴f (x )=2x.(2)函数g (x )=2x-12x +1为奇函数.证明如下:函数g (x )定义域为R ,关于原点对称;且对于任意x ∈R ,都有g (-x )=2-x-12-x +1=1-2x 1+2x =-2x-12x+1=-g (x )成立. ∴函数g (x )为奇函数.18.解:(1)设t =2x,因为x ∈-1,1],∴t ∈⎣⎢⎡⎦⎥⎤12,2,y =t -t 2=-⎝ ⎛⎭⎪⎫t -122+14,∴t =12时,f (x )max =14,t =2时,f (x )min =-2.∴f (x )的值域为⎣⎢⎡⎦⎥⎤-2,14.(2)设t =2x ,由f (x )>16-9×2x 得t -t 2>16-9t , 即t 2-10t +16<0,∴2<t <8,即2<2x<8,∴1<x <3, ∴不等式的解集为(1,3).(3)方程有解等价于m 在1-f (x )的值域内,∴m 的取值范围为⎣⎢⎡⎦⎥⎤34,3.19.解:(1)当t ∈0,1]时,设函数的解析式为y =kt ,将M (1,4)代入,得k =4,∴ y =4t .又当t ∈(1,+∞)时,设函数的解析式为y =⎝ ⎛⎭⎪⎫12t -a,将点(3,1)代入得a =3,∴ y =⎝ ⎛⎭⎪⎫12t -3.综上,y =f (t )=⎩⎪⎨⎪⎧4t ,0≤t ≤1,⎝ ⎛⎭⎪⎫12t -3,t >1.(2)由f (t )≥0.25,解得116≤t ≤5.所以服药一次治疗疾病的有效时间为5-116=7916(小时).解题技巧:解题时,先观察图形,将图形语言转化成符号语言.由图形可知这是一个一次函数、指数函数相结合的题目.根据条件设出解析式,结合图象中的已知点求出函数解析式,再利用分段函数的知识即可求解服药一次治疗疾病的有效时间.20.解:(1)由题知,f (x )的定义域是R ,∵f (x )是奇函数,∴f (0)=0,即f (0)=a 2+220+1=0,解得a =-2.经验证可知,f (x )是奇函数, ∴a =-2.(3)f (x )=-1+22x +1,∵2x >0,∴2x+1>1,∴0<22x +1<2,-1<-1+22x +1<1,∴-1<y <1.故f (x )的值域为(-1,1).21.解:(1)因为x ∈-1,1],所以⎝ ⎛⎭⎪⎫13x ∈⎣⎢⎡⎦⎥⎤13,3.设t =⎝ ⎛⎭⎪⎫13x ,t ∈⎣⎢⎡⎦⎥⎤13,3,则φ(x )=t 2-2at +3=(t -a )2+3-a 2.当a <13时,y min =h (a )=φ⎝ ⎛⎭⎪⎫13=289-2a 3;当13≤a ≤3时,y min =h (a )=φ(a )=3-a 2; 当a >3时,y min =h (a )=φ(3)=12-6a .∴h (a )=⎩⎪⎨⎪⎧289-2a 3⎝ ⎛⎭⎪⎫a <13,3-a 2⎝ ⎛⎭⎪⎫13≤a ≤3,12-6a a >3.(2)假设满足题意的m ,n 存在,∵m >n >3,∴h (a )=12-6a 在(3,+∞)上是减函数. ∵h (a )的定义域为n ,m ],值域为n 2,m 2],∴⎩⎪⎨⎪⎧12-6m =n 2,12-6n =m 2,两式相减,得6(m -n )=(m -n )(m +n ).由m >n >3,∴m +n =6,但这与m >n >3矛盾,∴满足题意的m ,n 不存在.解题技巧:本题主要考查了指数型函数的值域、存在性问题;解决存在性问题的关键是先假设存在,把假设作为已知条件进行推理,若推理合理则存在,若推理不合理则不存在.22.解:(1)当a =-12时,f (x )=1-12×⎝ ⎛⎭⎪⎫13x +⎝ ⎛⎭⎪⎫19x .令t =⎝ ⎛⎭⎪⎫13x,∵x <0,∴t >1,f (t )=1-12t +t 2.∵f (t )=1-12t +t 2在(1,+∞)上单调递增,∴f (t )>32,即f (x )在(-∞,1)的值域为⎝ ⎛⎭⎪⎫32,+∞. 故不存在常数M >0,使|f (x )|≤M 成立,∴函数f (x )在(-∞,0)上不是有界函数.(2)由题意知,|f (x )|≤4,即-4≤f (x )≤4对x ∈0,+∞)恒成立.令t =⎝ ⎛⎭⎪⎫13x ,∵x ≥0,∴t ∈(0,1],∴-⎝ ⎛⎭⎪⎫t +5t ≤a ≤3t-t 对t ∈(0,1]恒成立,∴⎣⎢⎡⎦⎥⎤-⎝⎛⎭⎪⎫t +5t max ≤a ≤⎝ ⎛⎭⎪⎫3t -t min . 设h (t )=-⎝ ⎛⎭⎪⎫t +5t ,p (t )=3t-t ,t ∈(0,1].由于h (t )在t ∈(0,1]上递增,p (t )在t ∈(0,1]上递减,h (t )在t ∈(0,1]上的最大值为h (1)=-6,p (t )在1,+∞)上的最小值为p (1)=2,则实数a 的取值范围为-6,2].单元测试卷二(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(-2)2] - 12 的结果是( ) A. 2 B .- 2 C.22D .-222.⎝⎛⎭⎪⎫1120-(1-0.5-2)÷⎝⎛⎭⎪⎫27823的值为( )A.-13B.13C.43D.733.若a>1,则函数y=a x与y=(1-a)x2的图象可能是下列四个选项中的( )4.下列结论中正确的个数是( )①当a<0时,(a223=a3;②na n=|a|(n≥2,n∈N);③函数y=(x-2)12-(3x-7)0的定义域是2,+∞);④6-22=32.A.1 B.2 C.3 D.45.指数函数y=f(x)的图象经过点⎝⎛⎭⎪⎫-2,14,那么f(4)·f(2)等于( ) A.8 B.16 C.32 D.646.函数y=21x的值域是( )A.(0,+∞) B.(0,1)C.(0,1)∪(1,+∞) D.(1,+∞)7.函数y=|2x-2|的图象是( )8.a ,b 满足0<a <b <1,下列不等式中正确的是( ) A .a a<a bB .b a<b bC .a a<b aD .b b<a b9.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x关于y 轴对称,则f (x )=( )A .ex +1B .ex -1C .e-x +1D .e-x -110.若函数y =a x+m -1(a >0,a ≠1)的图象在第一、三、四象限内,则( ) A .a >1B .a >1,且m <0C .0<a <1,且m >0D .0<a <111.函数f (x )=2x +2-4x,若x 2-x -6≤0,则f (x )的最大值和最小值分别是( ) A .4,-32 B .32,-4 C.23,0 D.43,1 12.若函数f (x )=3x+3-x与g (x )=3x-3-x的定义域均为R ,则( ) A .f (x )与g (x )均为偶函数 B .f (x )为偶函数,g (x )为奇函数 C .f (x )与g (x )均为奇函数 D .f (x )为奇函数,g (x )为偶函数第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.已知a =0.80.7,b =0.80.9,c =1.20.8,则a ,b ,c 的大小关系为________.14.若方程⎝ ⎛⎭⎪⎫14x +⎝ ⎛⎭⎪⎫12x -1+a =0有正数解,则实数a 的取值范围是________.15.已知函数f (x )=⎝ ⎛⎭⎪⎫12|x -1|,则f (x )的单调递增区间是________.16.定义区间x 1,x 2](x 1<x 2)的长度为x 2-x 1,已知函数y =2|x |的定义域为a ,b ],值域为1,2],则区间a ,b ]的长度的最大值与最小值的差为________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分) 解不等式a 2x +7<a3x -2(a >0,a ≠1).18.(本小题满分12分)已知函数f (x )=3x,且f (a )=2,g (x )=3ax-4x. (1)求g (x )的解析式;(2)当x ∈-2,1]时,求g (x )的值域.19.(本小题满分12分)已知函数f (x )=⎝ ⎛⎭⎪⎫12ax,a 为常数,且函数的图象过点(-1,2).(1)求a 的值;(2)若g (x )=4-x-2,且g (x )=f (x ),求满足条件的x 的值.20.(本小题满分12分)已知函数f (x )=a ·2x +b ·3x,其中常数a ,b 为实数. (1)当a >0,b >0时,判断并证明函数f (x )的单调性; (2)当ab <0时,求f (x +1)>f (x )时x 的取值范围.21.(本小题满分12分)设a ∈R ,f (x )=a -22x +1(x ∈R ).(1)证明:对任意实数a ,f (x )为增函数; (2)试确定a 的值,使f (x )≤0恒成立.22.(本小题满分12分)已知定义域为R 的函数f (x )=-2x+b2x +1+2是奇函数.(1)求b 的值;(2)判断函数f (x )的单调性;(3)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.答案1.C 解析:(-2)2] - 12 =2- 12 =12=22.2.D 解析:原式=1-(1-22)÷⎝ ⎛⎭⎪⎫322=1-(-3)×49=73.故选D.3.C 解析:a >1,∴y =a x在R 上单调递增且过(0,1)点,排除B ,D , 又∵1-a <0,∴y =(1-a )x 2的开口向下.4.A 解析:在①中,a <0时,(a 2) 32 >0,而a 3<0,∴①不成立. 在②中,令a =-2,n =3,则3-23=-2≠|-2|,∴②不成立.在③中,定义域应为⎣⎢⎡⎭⎪⎫2,73∪⎝ ⎛⎭⎪⎫73,+∞,∴③不成立. ④式是正确的,∵6-22=622=32,∴④正确.5.D 解析:设f (x )=a x(a >0且a ≠1), 由已知得14=a -2,a 2=4,所以a =2,于是f (x )=2x,所以f (4)·f (2)=24·22=64.解题技巧:已知函数类型,求函数解析式,常用待定系数法,即先把函数设出来,再利用方程或方程组解出系数.6.C 解析:∵1x≠0,∴21x ≠1,∴函数y =21x的值域为(0,1)∪(1,+∞).7.B 解析:找两个特殊点,当x =0时,y =1,排除A ,C.当x =1时,y =0,排除D.故选B.8.C 解析:∵0<a <b <1,∴a a >a b ,故A 不成立,同理B 不成立,若a a <b a,则⎝ ⎛⎭⎪⎫a b a <1,∵0<a b<1,0<a <1, ∴⎝ ⎛⎭⎪⎫a ba <1成立,故选C. 9.D 解析:与曲线y =e x 关于y 轴对称的曲线为y =e -x ,函数y =e -x的图象向左平移一个单位长度即可得到函数f (x )的图象,即f (x )=e-(x +1)=e-x -1.解题技巧:函数图象的平移变换,要注意平移的方向和平移量.平移规律为:10.B 解析:由函数y =a x+m -1(a >0,a ≠1)的图象在第一、三象限知,a >1.知函数在第四象限,∴a 0+m -1<0,则有m <0.11.A 解析:f (x )=2x +2-4x =-(2x )2+4·2x =-(2x -2)2+4,又∵x 2-x -6≤0,∴-2≤x ≤3,∴14≤2x≤8.当2x =2时,f (x )max =4,当2x=8时,f (x )min =-32. 12.B 解析:因为f (-x )=3-x+3-(-x )=3-x +3x=f (x ),g (-x )=3-x -3-(-x )=3-x -3x =-g (x ),所以f (x )为偶函数,g (x )为奇函数.13.c >a >b 解析:由指数函数y =a x当0<a <1时为减函数知, 0.80.7>0.80.9,又1.20.8>1,0.80.7<1, ∴1.20.8>0.80.7>0.80.9,即c >a >b .14.(-3,0) 解析:令⎝ ⎛⎭⎪⎫12x=t ,∵方程有正根,∴t ∈(0,1).方程转化为t 2+2t +a =0, ∴a =1-(t +1)2.∵t ∈(0,1),∴a ∈(-3,0).15.(-∞,1] 解析:解法一:由指数函数的性质可知,f (x )=⎝ ⎛⎭⎪⎫12x在定义域上为减函数,故要求f (x )的单调递增区间,只需求y =|x -1|的单调递减区间.又y =|x -1|的单调递减区间为(-∞,1],所以f (x )的单调递增区间为(-∞,1].解法二:f (x )=⎝ ⎛⎭⎪⎫12|x -1|=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -1,x ≥1,2x -1,x <1.可画出f (x )的图象,并求其单调递增区间.解题技巧:既可以利用复合函数的“同增异减”法则求解,也可以去绝对值符号,转化为分段函数求解.16.1 解析:作出函数y =2|x |的图象(如图所示).当x =0时,y =20=1, 当x =-1时,y =2|-1|=2,当x =1时,y =21=2,所以当值域为1,2]时,区间a ,b ]的长度的最大值为2,最小值为1,它们的差为1. 17.解:当a >1时,a 2x +7<a3x -2等价于2x +7<3x -2,∴x >9; 当0<a <1时,a 2x +7<a3x -2等价于2x +7>3x -2.∴x <9.综上,当a >1时,不等式的解集为{x |x >9}; 当0<a <1时,不等式的解集为{x |x <9}. 解题技巧:注意按照底数进行分类讨论. 18.解:(1)由f (a )=2,得3a=2,a =log 32, ∴g (x )=(3a )x-4x=(3log 32)x -4x=2x-4x=-(2x )2+2x. ∴g (x )=-(2x )2+2x. (2)设2x=t ,∵x ∈-2,1], ∴14≤t ≤2. g (t )=-t 2+t =-⎝⎛⎭⎪⎫t -122+14,由g (t )在t ∈⎣⎢⎡⎦⎥⎤14,2上的图象可得, 当t =12,即x =-1时,g (x )有最大值14;当t =2,即x =1时,g (x )有最小值-2. 故g (x )的值域是⎣⎢⎡⎦⎥⎤-2,14.19.解:(1)由已知得⎝ ⎛⎭⎪⎫12-a=2,解得a =1.(2)由(1)知,f (x )=⎝ ⎛⎭⎪⎫12x ,又g (x )=f (x ),则4-x-2=⎝ ⎛⎭⎪⎫12x ,即⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x -2=0,即⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x 2-⎝ ⎛⎭⎪⎫12x-2=0. 令⎝ ⎛⎭⎪⎫12x =t ,则t 2-t -2=0,即(t -2)(t +1)=0. 又t >0,故t =2,即⎝ ⎛⎭⎪⎫12x=2,解得x =-1.20.解:(1)函数f (x )在R 上是增函数.证明如下:a >0,b >0,任取x 1,x 2∈R ,且x 1<x 2,(2)∵f (x +1)>f (x ), ∴f (x +1)-f (x )=(a ·2x +1+b ·3x +1)-(a ·2x+b ·3x)=a ·2x+2b ·3x>0,当a <0,b >0时,⎝ ⎛⎭⎪⎫32x >-a 2b ,则x >log 1.5⎝ ⎛⎭⎪⎫-a 2b , 当a >0,b <0时,⎝ ⎛⎭⎪⎫32x <-a 2b ,则x <log 1.5⎝ ⎛⎭⎪⎫-a 2b . 综上,当a <0,b >0时,x 的取值范围是⎝ ⎛⎭⎪⎫log 1.5⎝ ⎛⎭⎪⎫-a 2b ,+∞;当a >0,b <0时,x 的取值范围是⎝ ⎛⎭⎪⎫-∞,log 1.5⎝ ⎛⎭⎪⎫-a 2b . 21.(1)证明:任取x 1,x 2∈R ,且x 1<x 2,故对于任意实数a ,f (x )为增函数.(2)解:f (x )=a -22x +1≤0恒成立,只要a ≤22x +1恒成立,问题转化为只要a 不大于22x+1的最小值.∵x ∈R,2x>0恒成立,∴2x+1>1. ∴0<12x +1<1,0<22x +1<2,∴a ≤0.故当a ∈(-∞,0]时,f (x )≤0恒成立.22.解:(1)因为f (x )是奇函数,所以f (0)=0,即b -12+2=0,解得b =1.(3)因为f (x )是奇函数,f (t 2-2t )+f (2t 2-k )<0,则f (t 2-2t )<-f (2t 2-k )=f (k -2t 2), 因f (x )为减函数,由上式推得,t 2-2t >k -2t 2. 即对一切t ∈R 有3t 2-2t -k >0, 从而判别式Δ=4+12k <0,解得k <-13.故k 的取值范围是⎝ ⎛⎭⎪⎫-∞,-13.。
高一数学必修1第2章基本初等函数同步测试指数与指数函数
高一数学必修1第2章基本初等函数同步测试指数与指数函数一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( )A 、11321122--⎛⎫- ⎪⎝⎭B 、113212--⎛⎫- ⎪⎝⎭ C 、13212-- D 、1321122-⎛⎫- ⎪⎝⎭2、44等于( )A 、16aB 、8aC 、4aD 、2a3、若1,0a b ><,且bba a -+=则b b a a --的值等于( )A 、6B 、2±C 、2-D 、24、函数()2()1xf x a =-在R 上是减函数,则a 的取值范围是( ) A 、1>a B 、2<a C、a <、1a <<5、下列函数式中,满足1(1)()2f x f x +=的是( ) A 、1(1)2x + B 、14x + C 、2x D 、2x - 6、下列2()(1)x xf x a a-=+是( )A 、奇函数B 、偶函数C 、非奇非偶函数D 、既奇且偶函数7、已知,0a b ab >≠,下列不等式(1)22a b >;(2)22a b>;(3)ba 11<;(4)1133a b >;(5)1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭中恒成立的有( )A 、1个B 、2个C 、3个D 、4个8、函数2121x x y -=+是( )A 、奇函数B 、偶函数C 、既奇又偶函数D 、非奇非偶函数 9、函数121x y =-的值域是( )A 、(),1-∞B 、()(),00,-∞+∞C 、()1,-+∞D 、()(,1)0,-∞-+∞10、已知01,1a b <<<-,则函数xy a b =+的图像必定不经过( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 11、2()1()(0)21x F x f x x ⎛⎫=+⋅≠ ⎪-⎝⎭是偶函数,且()f x 不恒等于零,则()f x ( ) A 、是奇函数 B 、可能是奇函数,也可能是偶函数 C 、是偶函数 D 、不是奇函数,也不是偶函数12、一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为( )A 、(1%)na b -B 、(1%)a nb -C 、[1(%)]na b - D 、(1%)na b - 二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上)13、若103,104xy==,则10x y-= 。
高中数学必修一2.2指数函数测试题
2.2指数函数重难点:对分数指数幂的含义的理解,学会根式与分数指数幂的互化并掌握有理指数幂的运算性质;指数函数的性质的理解与应用,能将讨论复杂函数的单调性、奇偶性问题转化为讨论比较简单的函数的有关问题.考纲要求:①了解指数函数模型的实际背景;②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算;③理解指数函数的概念,并理解指数函数的单调性与函数图像通过的特殊点;④知道指数函数是一类重要的函数模型.经典例题:求函数y=3的单调区间和值域.当堂练习:1.数的大小关系是()A.B.C.D.2.要使代数式有意义,则x的取值范围是()A.B.C.D.一切实数3.下列函数中,图象与函数y=4x的图象关于y轴对称的是()A.y=-4x B.y=4-x C.y=-4-x D.y=4x+4-x4.把函数y=f(x)的图象向左、向下分别平移2个单位长度,得到函数的图象,则()A.B.C.D.5.设函数,f(2)=4,则()A.f(-2)>f(-1) B.f(-1)>f(-2) C.f(1)>f(2) D.f(-2)>f(2)6.计算..7.设,求.8.已知是奇函数,则= .9.函数的图象恒过定点.10.若函数的图象不经过第二象限,则满足的条件是.11.先化简,再求值: (1),其中;(2) ,其中.12.(1)已知x[-3,2],求f(x)=的最小值与最大值.(2)已知函数在[0,2]上有最大值8,求正数a的值.(3)已知函数在区间[-1,1]上的最大值是14,求a的值.13.求下列函数的单调区间及值域:(1) ;(2);(3)求函数的递增区间.14.已知(1)证明函数f(x)在上为增函数;(2)证明方程没有负数解.参考答案:经典例题:解:由题意可知,函数y=3的定义域为实数R.设u=-x2+2x+3(x∈R),则f(u)=3u,故原函数由u=-x2+2x+3与f(u)=3u复合而成.∵f(u)=3u在R上是增函数,而u=-x2+2x+3=-(x-1)2+4在x∈(-∞,1)上是增函数,在[1,+∞]上是减函数.∴y=f(x)在x∈(-∞,1)上是增函数,在[1,+∞]上是减函数.又知u≤4,此时x=1,∴当x=1时,ymax=f(1)=81,而3>0,∴函数y=f(x)的值域为(0,81)当堂练习:1.A ;2. C ;3. B ;4. A ;5. A ;6. ;7. ;8. ;9. (1,0);10. ;11.(1) 原式=(2)原式=12. (1)解:f(x)=, ∵x[-3,2], ∴.则当2-x=,即x=1时,f(x)有最小值;当2-x=8,即x=-3时,f(x)有最大值57.(2)解:设,当[0,2]时,,当0<a<1时,,矛盾;当a>1时,.综上所述,a=2.(3)原函数化为,当a>1时,因,得,从而,同理, 当0<a<1时,.13. (1)由得时单调递增,而是单调减函数,所以原函数的递减区间是,递增区间是; 值域是. (2),所以值域是;单调减区间是,单调增区间. (3).设的定义域是,当时,单调递增,又是单调增函数,所以原函数的递增区间是.14.解: (1)任取且,则,又=,,故f(x)在上为增函数.(2)设存在,满足,则,由得,即与假设矛盾,所以方程无负数解.。
自己整理必修1第二章单元练习
一、选择题1.化简3a a 的结果是( )A .aB .12aC .a 2D .13a2.指数函数y =a x 与y =b x的图象如图,则( )A .a <0,b <0B .a <0,b >0C .0<a <1,b >1D .0<a <1,0<b <13.函数y =πx 的值域是( )A .(0,+∞)B .[0,+∞)C .RD .(-∞,0)4.函数y =(12)x -2的图象必过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5.若(12)2a +1<(12)3-2a ,则实数a 的取值范围是( )A .(1,+∞)B .(12,+∞)C .(-∞,1)D .(-∞,12)6.若指数函数f (x )=(a +1)x 是R 上的减函数,那么a 的取值范围为() A .a <2 B .a >2C .-1<a <0D .0<a <17.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则( )A .f (x )与g (x )均为偶函数B .f (x )为偶函数,g (x )为奇函数C .f (x )与g (x )均为奇函数D .f (x )为奇函数,g (x )为偶函数二、填空题8.若a >0,且a x =3,a y =5,则22yx a +=________.9.函数f (x )=a x 的图象经过点(2,4),则f (-3)的值为________10.函数y =2212x x-+⎛⎫ ⎪⎝⎭的单调递增区间是________11.比较下列各组数中两个值的大小:(1)0.2-1.5-——0.2-1.7; (2) 1314⎛⎫ ⎪⎝⎭——2314⎛⎫ ⎪⎝⎭; (3)2-1.5——30.2.一、选择题1.有下列说法:①零和负数没有对数;②任何一个指数式都可以化成对数式;③以10为底的对数叫做常用对数;④以e 为底的对数叫做自然对数.其中正确命题的个数为( )A .1B .2C .3D .42.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =100;④若e =ln x ,则x =e 2.其中正确的是( )A .①③B .②④C .①②D .③④3.0.51log 412-+⎛⎫ ⎪⎝⎭的值为( )A .6 B.72C .8 D.374.若log a 3=m ,log a 5=n ,则a 2m +n 的值是( )A .15B .75C .45D .2255.计算:log 916·log 881的值为( )A .18 B.118 C.83 D.386.已知3a =5b =A ,若1a +1b=2,则A 等于( ) A .15 B.15C .±15D .2257.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则(lg a b)2的值等于( ) A .2 B.12 C .4 D.14二、填空题8.若log 2(log x 9)=1,则x =________.9.(lg 5)2+lg 2·lg 50=________.三、解答题10.(1)计算:lg 12-lg 58+lg 12.5-log 89·log 34;(2)已知3a =4b =36,求2a +1b的值.2.2 对数函数及其性质练习一、选择题1.函数y =log 2x -2的定义域是( )A .(3,+∞)B .[3,+∞)C .(4,+∞)D .[4,+∞)2.已知函数f (x )=log 2(x +1),若f (α)=1,则α等于( )A .0B .1C .2D .33.函数f (x )=|log 3x |的图象是( )4.已知图中曲线C 1,C 2,C 3,C 4分别是函数y =log a 1x ,y =log a 2x ,y =log a 3x ,y =log a 4x 的图象,则a 1,a 2,a 3,a 4的大小关系是( )A .a 4<a 3<a 2<a 1B .a 3<a 4<a 1<a 2C .a 2<a 1<a 3<a 4D .a 3<a 4<a 2<a 15.若log a 23<1,则a 的取值范围是( ) A .(0,23) B .(23,+∞) C .(23,1) D .(0,23)∪(1,+∞) 6.设a =log 54,b =(log 53)2,c =log 45,则( )A .a <c <bB .b <c <aC .a <b <cD .b <a <c二、填空题7.已知函数y =log a (x -3)-1的图象恒过定点P ,则点P 的坐标是________.三、解答题8.已知集合A ={x |x <-2或x >3},B ={x |log 4(x +a )<1},若A ∩B =∅,求实数a 的取值范围.。
高中数学必修一单元测试:指数与指数函数word版含答案
指数与指数函数单元测试一抓基础,多练小题做到眼疾手快1.函数y =2x与y =2-x的图象关系是( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y =x 对称解析:选B 作出y =2x 与y =2-x =⎝ ⎛⎭⎪⎫12x 的图象(图略),观察可知其关于y 轴对称.2.设a =22.5,b =2.50,c =⎝ ⎛⎭⎪⎫12 2.5,则a ,b ,c 的大小关系是( )A .a >c >bB .c >a >bC .b >a >cD .a >b >c解析:选D a >1,b =1,0<c <1,所以a >b >c .3.(2018·丽水模拟)已知实数a ,b 满足12>⎝ ⎛⎭⎪⎫12a >⎝ ⎛⎭⎪⎫22b >14,则( )A .b <2b -aB .b >2b -aC .a <b -aD .a >b -a解析:选B 由12>⎝ ⎛⎭⎪⎫12a,得a >1,由⎝ ⎛⎭⎪⎫12a >⎝ ⎛⎭⎪⎫22b,得⎝ ⎛⎭⎪⎫222a >⎝ ⎛⎭⎪⎫22b ,得2a <b , 由⎝⎛⎭⎪⎫22b >14,得⎝ ⎛⎭⎪⎫22b >⎝ ⎛⎭⎪⎫224,得b <4. 由2a <b ,得b >2a >2,a <b2<2,∴1<a <2,2<b <4.取a =32,b =72,得b -a =72-32=2, 有a >b -a ,排除C ;b >2b -a ,排除A ;取a =1110,b =3910得,b -a =3910-1110= 145, 有a <b -a ,排除D ,故选B.4.(2017·宁波期中)若指数函数f (x )的图象过点(-2,4),则f (3)=________;不等式f (x )+f (-x )<52的解集为____________.解析:设指数函数解析式为y =a x, 因为指数函数f (x )的图象过点(-2,4), 所以4=a -2,解得a =12,所以指数函数解析式为y =⎝ ⎛⎭⎪⎫12x ,所以f (3)=⎝ ⎛⎭⎪⎫123=18;不等式f (x )+f (-x )<52,即⎝ ⎛⎭⎪⎫12x +2x <52,设2x =t ,不等式化为1t +t <52,所以2t 2-5t +2<0,解得12<t <2,即12<2x<2,所以-1<x <1,所以不等式的解集为(-1,1). 答案:18(-1,1)5.若函数f (x )=a x-1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a =________.解析:当a >1时,f (x )=a x-1在[0,2]上为增函数, 则a 2-1=2,∴a =± 3.又∵a >1,∴a = 3. 当0<a <1时,f (x )=a x-1在[0,2]上为减函数, 又∵f (0)=0≠2,∴0<a <1不成立. 综上可知,a = 3. 答案: 3二保高考,全练题型做到高考达标 1.(2018·贵州适应性考试)函数y =ax +2-1(a >0且a ≠1)的图象恒过的点是( ) A .(0,0) B .(0,-1) C .(-2,0)D .(-2,-1)解析:选C 法一:因为函数y =a x (a >0,a ≠1)的图象恒过点(0,1),将该图象向左平移2个单位,再向下平移1个单位得到y =a x +2-1(a >0,a ≠1)的图象,所以y =ax +2-1(a >0,a ≠1)的图象恒过点(-2,0),选项C 正确.法二:令x +2=0,x =-2,得f (-2)=a 0-1=0,所以y =a x +2-1(a >0,a ≠1)的图象恒过点(-2,0),选项C 正确.2.已知函数y = x +a 的图象如图所示,则函数y =ax +的图象可能是( )解析:选B 由函数y = x +a 的图象可得 <0,0<a <1,又因为与x 轴交点的横坐标大于1,所以 >-1,所以-1< <0.函数y =ax +的图象可以看成把y =a x的图象向右平移- 个单位得到的,且函数y =a x +是减函数,故此函数与y 轴交点的纵坐标大于1,结合所给的选项,故选B.3.若函数f (x )=⎩⎪⎨⎪⎧a x, x >1, 2-3a x +1,x ≤1是R 上的减函数,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫23,1B.⎣⎢⎡⎭⎪⎫34,1C.⎝ ⎛⎦⎥⎤23,34 D.⎝ ⎛⎭⎪⎫23,+∞ 解析:选C 依题意,a 应满足⎩⎪⎨⎪⎧0<a <1,2-3a <0,2-3a ×1+1≥a 1,解得23<a ≤34.4.已知函数f (x )=⎩⎨⎧1-2-x,x ≥0,2x-1,x <0,则函数f (x )是( )A .偶函数,在[0,+∞)单调递增B .偶函数,在[0,+∞)单调递减C .奇函数,且单调递增D .奇函数,且单调递减解析:选C 易知f (0)=0,当x >0时,f (x )=1-2-x,-f (x )=2-x-1, 而-x <0,则f (-x )=2-x-1=-f (x ); 当x <0时,f (x )=2x -1,-f (x )=1-2x,而-x >0,则f (-x )=1-2-(-x )=1-2x=-f (x ).即函数f (x )是奇函数,且单调递增,故选C.5.(2018·温州月考)若函数f (x )=a e -x -e x为奇函数,则f (x -1)<e -1e的解集为( )A .(-∞,0)B .(-∞,2)C .(2,+∞)D .(0,+∞)解析:选D 由于函数f (x )为R 上奇函数, 所以f (0)=0⇒a =1,所以f (x )=1e -e x,由于e x为增函数,而1e x 为减函数,所以f (x )=1ex -e x是减函数,又因为f (-1)=e -1e ,由f (x -1)<e -1e 可得f (x -1)<f (-1),x -1>-1⇒x >0,故选D.6.已知函数f (x )=a -x(a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是________.解析:因为f (x )=a -x=⎝ ⎛⎭⎪⎫1a x ,且f (-2)>f (-3),所以函数f (x )在定义域上单调递增, 所以1a>1,解得0<a <1.答案:(0,1)7.(2018·温州模拟)已知函数f (x )=⎩⎪⎨⎪⎧x +1,0≤x <1,2x -12,x ≥1,设a >b ≥0,若f (a )=f (b ),则b ·f (a )的取值范围是________.解析:依题意,在坐标平面内画出函数y =f (x )的大致图象,结合图象可知b ∈⎣⎢⎡⎭⎪⎫12,1,bf (a )=bf (b )=b (b +1)=b 2+b ∈⎣⎢⎡⎭⎪⎫34,2.答案:⎣⎢⎡⎭⎪⎫34,2 8.当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x<0恒成立,则实数m 的取值范围是________.解析:原不等式变形为m 2-m <⎝ ⎛⎭⎪⎫12x ,因为函数y =⎝ ⎛⎭⎪⎫12x在(-∞,-1]上是减函数,所以⎝ ⎛⎭⎪⎫12x ≥⎝ ⎛⎭⎪⎫12-1=2,当x ∈(-∞,-1]时,m 2-m <⎝ ⎛⎭⎪⎫12x 恒成立等价于m 2-m <2,解得-1<m <2.答案:(-1,2)9.已知函数f (x )=⎝ ⎛⎭⎪⎫13243-+ax x .(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值; (3)若f (x )的值域是(0,+∞),求a 的值.解:(1)当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-243-+x x ,令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增, 即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由于f (x )有最大值3, 所以g (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,3a -4a=-1,解得a =1,即当f (x )有最大值3时,a 的值等于1. (3)由指数函数的性质知,要使y =⎝ ⎛⎭⎪⎫13g (x )的值域为(0,+∞).应使g (x )=ax 2-4x +3的值域为R ,因此只能a =0.(因为若a ≠0,则g (x )为二次函数,其值域不可能为R). 故f (x )的值域为(0,+∞)时,a 的值为0. 10.已知函数f (x )=a|x +b |(a >0,b ∈R).(1)若f (x )为偶函数,求b 的值;(2)若f (x )在区间[2,+∞)上是增函数,试求a ,b 应满足的条件. 解:(1)∵f (x )为偶函数,∴对任意的x ∈R ,都有f (-x )=f (x ). 即a|x +b |=a|-x +b |,|x +b |=|-x +b |,解得b =0.(2)记h (x )=|x +b |=⎩⎪⎨⎪⎧x +b ,x ≥-b ,-x -b ,x <-b .①当a >1时,f (x )在区间[2,+∞)上是增函数, 即h (x )在区间[2,+∞)上是增函数,∴-b ≤2,b ≥-2.②当0<a <1时,f (x )在区间[2,+∞)上是增函数,即h (x )在区间[2,+∞)上是减函数,但h (x )在区间[-b ,+∞)上是增函数, 故不存在a ,b 的值,使f (x )在区间[2,+∞)上是增函数.∴f (x )在区间[2,+∞)上是增函数时,a ,b 应满足的条件为a >1且b ≥-2.三上台阶,自主选做志在冲刺名校1.(2018·杭州模拟)已知定义在R 上的函数g (x )=2x +2-x+|x |,则满足g (2x -1)<g (3)的x 的取值范围是________.解析:∵g (x )=2x +2-x +|x |,∴g (-x )=2x +2-x +|-x |=2x +2-x+|x |=g (x ),则函数g (x )为偶函数,当x ≥0时,g (x )=2x +2-x +x ,则g ′(x )=(2x -2-x)·ln 2+1>0,则函数g (x )在 [0,+∞)上为增函数,而不等式g (2x -1)<g (3)等价于g (|2x -1|)<g (3),∴|2x -1|<3,即-3<2x -1<3,解得-1<x <2,即x 的取值范围是(-1,2).答案:(-1,2)2.已知定义在R 上的函数f (x )=2x-12|x |.(1)若f (x )=32,求x 的值;(2)若2tf (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围. 解:(1)当x <0时,f (x )=0,无解; 当x ≥0时,f (x )=2x-12x ,由2x-12=32,得2·22x-3·2x-2=0,将上式看成关于2x的一元二次方程, 解得2x =2或2x=-12,∵2x>0,∴x =1.(2)当t ∈[1,2]时,2t ⎝ ⎛⎭⎪⎫22t-122t +m ⎝ ⎛⎭⎪⎫2t -12t ≥0,即m (22t-1)≥-(24t-1), ∵22t-1>0, ∴m ≥-(22t+1),∵t∈[1,2],∴-(22t+1)∈[-17,-5],故实数m的取值范围是[-5,+∞).。
高中数学必修一2-1指数与指数函数-检测题
指数与指数函数一、填空题1.函数y =8-4x 的定义域是________. 解析 由8-4x ≥0,得22x ≤23,所以2x ≤3,x ≤32.答案 ⎝⎛⎦⎥⎤-∞,32 2.函数y =4-2-x 的值域是________.解析 由4-2-x ≥0,且2-x >0,得0≤4-2x <4,所以y ∈[0,2). 答案 [0,2)3.已知p :关于x 的不等式|x -1|+|x -3|<m 有解,q :f (x )=(7-3m )x 为减函数,则p 成立是q 成立的________条件.解析 p 成立,得m >|x -1+3-x |=2;q 成立,得0<7-3m <1,即2<m <73.设A ={m |m >2},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m |2<m <73,则B A ,所以p 是q 的必要不充分的条件.答案 必要不充分4.与函数()3xf x =的图象关于直线y =x 对称的曲线C 对应的函数为g(x ),则1()3g 的值为______.解析 依题意得g(x )=log 3x , 所以1()3g =log 3113=-.答案 -15.定义在R 上的函数f (x )满足f (x )=⎩⎨⎧3x -1,x ≤0,f x -1-fx -2,x >0,则f (2 010)=________.解析 当x >0时,f (2 010)=f (2 009)-f (2 008)=f (2 008)-f (2 007)-f (2 008)=-f (2 007)=f (2 005)-f (2 006)=f (2 005)-f (2 005)+f (2 004)=f (2 004),所以f (x )是以T =6的周期函数,所以f (2 010)=f (335×6)=f (0)=3-1=13.答案 136.已知函数f (x ),g (x )分别是R 上的奇函数、偶函数,且满足f (x )-g (x )=e x ,则g (0),g (2),g (3)的大小关系是________.解析 因为f (-x )=-f (x ),g (-x )=g (x ),所以由f (-x )-g (-x )=e -x ,得-f (x )-g (x )=e -x ,与f (x )-g (x )=e x 联立,求得f (x )=12(e x -e -x ),g (x )=-12(e x +e -x ),所以g (3)<g (2)<g (0).答案 g (3)<g (2)<g (0)7.已知1+2x +4x ·a >0对一切x ∈(-∞,1]上恒成立,则实数a 的取值范围是________. 解析 由题意,得a >-⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x 对x ≤1恒成立,因为f (x )=-⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x是(-∞,1]上的增函数,所以当x =1时,f (x )max =f (1)=-34,所以a >-34.答案 ⎝ ⎛⎭⎪⎫-34,+∞8.设函数f (x )=⎩⎨⎧2x,x <0g x ,x >0,若f (x )是奇函数,则g (2)的值是________.解析 因为f (x )是奇函数,所以g (2)=f (2)=-f (-2)=-2-2=-14.答案 -149.已知函数f (x )=⎩⎨⎧log 3x ,x >0,⎝ ⎛⎭⎪⎫13x,x ≤0,那么不等式f (x )≥1的解集为________.解析 若x >0,则由log 3x ≥1,得xx ≤0,则由⎝ ⎛⎭⎪⎫13x≥1,得x ≤0.综上,得x ≤0或x ≥3.答案 (-∞,0]∪[3,+∞)10.若2|x +1|-|x -1|≥22,则x 取值范围是________. 解析 由2|x +1|-|x -1|≥22=232,得|x +1|-|x -1|≥32,于是由⎩⎨⎧ x <-1,-x -1+x -1≥32或⎩⎨⎧-1≤x <1,x +1+x -1≥32或⎩⎨⎧x ≥1,x +1-x +1≥32,解得x ≥34.答案 ⎣⎢⎡⎭⎪⎫34,+∞11.已知函数f (x )=9x -m ·3x +m +1对x ∈(0,+∞)的图象恒在x 轴上方,则m 的取值范围是________.解析 设t =3x >1问题转化为m <t 2+1t -1,t ∈(1,+∞),即m 比函数y =t 2+1t -1,t ∈(1,+∞)的最小值还小,又y =t 2+1t -1=t -1+2t -1+2≥2t -12t -1+2=2+22,所以m <2+2 2.答案 (-∞,2+22)12.对于函数f (x )=e x -e -x (x ∈R ),有下列结论:①f (x )的值域是R ;②f (x )是R 上的增函数;③对任意x ∈R ,有f (-x )+f (x )=0成立;④若方程|f (x )|=a 有两个相异实根,则a ≥0,其中所有正确的命题序号是________. 解析 因为e >1,x ∈R ,所以f (x )是奇函数且在(-∞,+∞)上单调递增,所以①②③均正确.设y =|f (x )|=|e x -e -x |,y =a ,画出其图象可知,当a >0时,它们有两个相异交点,所以④不正确. 答案 ①②③13.设函数f (x )在其定义域(-∞,+∞)上的取值恒不为0,且对任意实数x ,y 满足f (xy )=[f (x )]y ,f ⎝ ⎛⎭⎪⎫12a >b >c 且a ,b ,c 成等差数列,则f (a )+f (c )与2f (b )的大小关系是________.解析 因为f (x )=f ⎝ ⎛⎭⎪⎫12·2x =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫122x =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫122x 是增函数⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12>1,于是由f (a )+f (c )≥2[f (a )·f (c )]12=2[f (a )]12[f (c )]12=2f ⎝ ⎛⎭⎪⎫12a ·f ⎝ ⎛⎭⎪⎫12c =2⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12a ·⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12c =2⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12a +c =2⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫122b=2f (b ),及a >b >c 得f (a )+f (c )>2f (b ). 答案 f (a )+f (c )>2f (b ) 二、解答题1()2x f x a =⋅+3x b ⋅,其中常数a ,b 满足0ab ≠. (1)若a b>0,判断函数f (x )的单调性;(2)若a b<0,求f (x +1)>f (x )时的x 的取值范围.解析 (1)当a >0,b>0时,因为2x a ⋅、3x b ⋅都随x 的增大而增大,所以函数f (x )单调递增; 当a <0,b<0时,因为2x a ⋅、3x b ⋅都随x 的增大而减小,所以函数f (x )单调递减. (2)f (x 1)()2230x x f x a b +-=⋅+⋅>. (ⅰ)当a <0,b>0时3()22x a b ,>-,解得x >log 32()2a b-;(ⅱ)当a >0,b<0时3()22x a b,<-,解得x <log 32()2a b-.15. 若方程2a =|a x -1|(a >0,且a ≠1)有两解,求a 的取值范围.解析 原方程有两解,即直线y =2a 与函数y =|a x -1|(a >0,且a ≠1)的图象有两个公共点,数形结合.当a >1时,如图①,只有一个公共点,不符合题意. 当0<a <1时,如图②,由图象可知0<2a <1,∴0<a <12.16.定义域为R 的函数f (x )=-2x+b2x +1+a是奇函数.(1)求a ,b 的值;(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.解析(1)因为f(x)是奇函数,所以f(0)=0,即-1+b2+a=0,解得bf(x)=-2x+12x+1+a.又由f(1)=-f(-1)知-2+14+a=--12+11+a,解得aa=2,b=1.(2)法一由(1)知f(x)=-2x+12x+1+2=-12+12x+1,由上式易知f(x)在(-∞,+∞)上为减函数.又因f(x)是奇函数,从而不等式f(t2-2t)+f(2t2-k)<0等价于f(t2-2t)<-f(2t2-k)=f(-2t2+k).因f(x)是减函数,由上式推得t2-2t>-2t2+k,即对一切t∈R有3t2-2t-k>0,从而判别式Δ=4+12k<0,解得k<-1 3 .法二由(1)知f(x)=-2x+1 2x+1+2.又由题设条件得-2t2-2t+12t2-2t+1+2+-22t2-k+122t2-k+1+2<0,即(22t2-k+1+2)·(-2t2-2t+1)+(2t2-2t+1+2)·(-22t2-k+1)<0,整理得23t2-2t-k>1.因底数2>1,故3t2-2t-k>0,即上式对一切t∈R均成立,从而判别式Δ=4+12k<0,解得k<-1 3 .17.已知f(x)=aa2-1(a x-a-x)(a>0且a≠1).(1)判断f(x)的奇偶性;(2)讨论f(x)的单调性;(3)当x∈[-1,1]时,f(x)≥b恒成立,求b的取值范围.解析(1)函数的定义域为R,关于原点对称.又因为f(-x)=aa2-1(a-x-a x)=-f(x),所以f(x)为奇函数.(2)当a>1时,a2-1>0,y=a x为增函数,y=a-x为减函数,从而y=a x-a-x为增函数,所以f(x)为增函数.当0<a<1时,a2-1<0,y=a x为减函数,y=a-x为增函数,从而y=a x-a-x为减函数,所以f(x)为增函数.故当a>0,且a≠1时,f(x)在定义域内单调递增.(3)由(2)知f(x)在R上是增函数,所以在区间[-1,1]上为增函数.所以f(-1)≤f(x)≤f(1),所以f(x)min=f(-1)=aa2-1(a-1-a)=aa2-1·1-a2a=-1,所以要使f(x)≥b在[-1,1]上恒成立,则只需b≤-1,故b的取值范围是(-∞,-1].18.如果函数f(x)=a x(a x-3a2-1)(a>0,a≠1)在区间[0,+∞)上是增函数,求实数a的取值范围.解析法一设a x=t,g(t)=t2-(3a2+1)t,对称轴t=3a2+12当a>1时,t=a x是增函数,且当x≥0时,t≥1,要使原函数在[0,+∞)上递增,只要g(t)=t2-(3a2+1)t在[1,+∞)上递增,所以t=3a2+12≤1,解得0≤a≤33(舍去).当0<a<1时,t=a x是减函数,且x≥0时,0<t≤1,要使原函数在[0,+∞)上递增,只要g(x)=t2-(3a2+1)t在(0,1]上递减,所以t=3a2+12≥1,解得33≤a<1.综上,得33≤a<1.法二设x1,x2∈[0,+∞),且x1<x2,则由f(x)=a x(a x-3a2-1)在[0,+∞)上递增,得a2x1-(3a2+1)ax1<a2x2-(3a2+1)ax2,即(ax1-ax2)[ax1+ax2-(3a2+1)]<0.若0<a<1,则由0<ax2<ax1<1,得ax1+ax2-(3a2+1)<0,3a2+1>ax1+ax2恒成立,所以3a2+1≥2,解得33≤a<1.若a>1,则由ax2>ax1>1,得3a2+1<ax1+ax2恒成立.所以3a2+1≤2,解得a<33(不合,舍去).综上,得33≤a<1.附件1:律师事务所反盗版维权声明附件2:独家资源交换签约学校名录(放大查看)学校名录参见:h aspx?ClassID=3060。
最新新人教高一数学必修1第二章指数函数单元测试卷优秀名师资料
高一数学指数函数单元测试卷一.选择题(每小题5分,共50分)1.若函数f (x )=()xa 1-在R 上是减函数,那么实数a 的取值范围是( )A .a >1 且1≠aB .1<a <2C .a >1且2≠aD .a >02.已知0>a ,41=--a a ,则22-+a a 的值是( )A .14B .16C .18D .203.一套邮票现价值a 元,每过一年都将增值00b ,则10年后其价值为( ) A .()00110b a + B .()00101b a +C .()[]10001b a + D .()1001ba +4.设f (x )=x)21(,x ∈R ,那么f (x )是( ) A .偶函数且在(0,+∞)上是减函数B .偶函数且在(0,+∞)上是增函数C .奇函数且在(0,+∞)上是减函数D .奇函数且在(0,+∞)上是增函数 5.函数y =-2-x的图象一定过哪些象限( )A .一、二象限B .二、三象限C .三、四象限D .一、四象限 6.函数y =a x在[0,1]上的最大值与最小值和为3,则函数y =123-⋅x a 在[0,1]上的最大值是( )A .3B .1C .6D .23 7.下列函数中值域为(0,+∞)的是( ) A .y =x15B .y =x)31( C .y =12+-xD .y =12-x8.若-1<x <0,则不等式中成立的是( ) A .5-x<5x <0.5xB .0.5x <5-x <5xC .5x <5-x <0.5xD .5x <0.5x <5-x9.当a ≠0时,函数y ax b =+和y b ax=的图象只可能是( )10.设指数函数)1,0()(≠>=a a a x f x,则下列等式中不正确的是( )A .)()()(y f x f y x f ⋅=+B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)(+∈=N n y f x f xy f n n n二.填空题(每小题5分,共20分) 11.已知函数f (x )=21)31(x -,其定义域是________________.12.函数f (x )=ax -1+3的图象一定过定点P ,则P 点的坐标是____________.13.函数121+⎪⎭⎫⎝⎛=x y ,[]1,2-∈x 的值域是_____________.14.函数y =x-3的图象与函数________________的图象关于y 轴对称.三.解答题(共6小题,共80分) 15.(本小题12分)(1)计算:3122726141-⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛- (2)化简:2433221---÷⎪⎪⎭⎫ ⎝⎛⋅a b b a16.(12分)(1) 解不等式145-+<x x a a(a>0且a ≠1)(2)函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,求满足1)(>x f 的x 的取值范围17.(14分) 求函数2233x x y -++=的单调区间和最值(单调区间请加以证明).18.(14分)(1)已知m x f x+-=132)(是奇函数,求常数m 的值; (2)画出函数|13|-=x y 的图象,并利用图象回答:k 为何值时,方程k x =-|13|无解?有一解?有两解?19.(14分)已知函数4()42xx f x =+ (1)试求()(1)f a f a +-的值.(2)求1232007()()()()2008200820082008f f f f +++⋅⋅⋅+的值.20.(14分)已知函数11)(+-=x x a a x f (a >1).(1)判断函数f (x )的奇偶性; (2)求f (x )的值域;(3)证明f (x )在(-∞,+∞)上是增函数.<指数函数>参考答案1—10 BCDAC CBDAD9.[-1,1] 10.(1,4) 11.27 12.[41,2]13.x y 3= 14.1415.1>a 时,x>2;10<<a 时,x<2. 16.1-a17.解:单调增区间:(,1]-∞;单调减区间:[1,)+∞;值域:(,81]-∞。
甘肃省兰州大学附属中学人教版高中数学必修1第二章指数与指数函数双基自测题(无答案)
必修1第二章指数与指数函数双基自测题1.计算(122-⎡⎤⎢⎥⎣⎦的结果是( )AB. CD.- 2.函数()()()10252f x x x =-+-的定义域是( )A .{}|5,2x x R x x ∈≠≠且B .{}|2,x x x R >∈C .{}|5,x x x R >∈D .{}|255x x x <<>或3.化简)(1)1(44<-+a a a 的结果是 ( ) A .1 B .2a-1 C .|1|a a -+ D .04.下列运算结果中错误的是( )A .532a a a =⋅B .()632a a =C .()a a =212D .()()2332a a -=-5.下列函数中是指数函数的为( )A .()3x y =-B .3x y =-C .13x y -= D.13xy ⎛⎫= ⎪⎝⎭ 6.设函数的取值范围是则若0021,1)(,.0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=-( )A .(-1,1)B .(-1,+∞)C .),0()2,(+∞⋃--∞D .),1()1,(+∞⋃--∞ 7.设5.1344.029.01)21(,8,4-===y y y ,则( ) A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2 8.在下列图象中,二次函数y =ax 2+bx +c 与函数y =(ab )x 的图象可能是( )A .1>a >b >0B .a <bC .a >bD .1>b >a9.已知4323)21(2--<x x ,则x 的取值范围是 ( )A .1<xB .1>xC .57>xD .57<x 10.函数]0,1[,)21(23-∈=+x y x 的值域是 ( ) A .R B .(-∝,23] C .(23,+∝) D .[2,41] 11.函数y =21x-与y =112x ⎛⎫- ⎪⎝⎭的图象关于 ( ) A.x 轴对称 B.y 轴对称 C.原点对称 D.直线y =1对称12.将5.35.37.22,01.101.1, 用“<”连接起来 .13.若a >1,b <-1,则函数x y a b =+图象必不经过第 ___象限.14.已知函数32x y a-=-(a >0,且a ≠1)图象恒过定点P ,则P 点坐标为______. 15.计算:0.02731-412256)61(+--.16.比较下列各组数值的大小:⑴3.37.1和1.28.0; ⑵7.03.3和8.04.3; ⑶25log ,27log ,2398.17.解方程:⑴192327x x ---⋅= ; ⑵649x x x +=.18. 求下列函数的定义域与值域:⑴12x y =; ⑵y = ⑶15)21(-=x y .19. 求x y )21(=,x ∈[-3,2]的值域.20.已知,3234+⋅-=x x y 当其值域为[1,7]时,求x 的取值范围.21.已知函数)1(1>=+a a y x 在[0,2]上有最小值8,求a 的值.22.已知:函数f(x)=1222+-+⋅x x a a 为奇函数; ⑴求a 的值;⑵讨论函数f(x)的单调性;⑶求函数f(x)的值域.。
高中数学 21指数与指数函数测试 必修1 试题(共6页)
二指数(zhǐshù)与指数函数一.选择题1.函数(a>1且a是常数)是( )A.奇函数且在[0,+∞)上是增函数B.偶函数且在[0,+∞)上是增函数C.奇函数且在[0,+∞)上是减函数D.偶函数且在[0,+∞]上是减函数2.满足的实数a的取值范围是( )A.(0,1) B.(1,+∞)C.(0,+∞) D.(0,1)∪(1,+∞)3.函数,使f(x)>f(2x)成立的x的值的集合是( ) A.(-∞,+∞) B.(-∞,0)C.(0,+∞) D.(0,1)4.函数f(x)的定义域是[-1,2],那么函数的定义域是( ) A.(-∞,1] B.(0,1]C.D.[1,+∞]5.那么a、b、c的关系是( )A.a>b>c B.b>a>cC.c>a>b D.c>b>a6.函数(hánshù)的值域是( )A.(0,+∞) B.(3,+∞)C.(27,+∞) D.(0,27)7.假设,那么m、n、p的关系中正确的选项是( )A.m<n<p<0 B.m<p<n<0C.p<m<n<0 D.p<n<m<08.函数,使f(x)≤0成立的x的值的集合是( )A.{x|x<0} B.{x|x<1}C.{x|x=0} D.{x|x=1})x(f=,g(x)=x+2,使f(x)=g(x)成立的x的值的集合( ) 9.函数x2A.是B.有且只有一个元素C.有两个元素D.有无数个元素二、填空题1.指数函数f(x)的图象上一点的坐标是(-3,),那么f(2)=____________________.2.,,,那么三个数由小到大排列的顺序是____________________.3.函数,当0<x<1时,f(x)<x恒成立,那么实数m的取值范围是____________________.)x(f=与函数,那么将函数f(x)的图象向__________平移4.函数x2__________个单位,就可以得到函数g(x)的图象.5.函数(hánshù),使f(x)是增函数的x的区间是___________________.三、解答题1.假设a>0且a≠1,b>0且b≠1,求函数的定义域.)x(f ,是任意实数且,证明:2.函数x2.3.当a>1时,求使成立的x的值的集合.·答案解析·一、1.D 提示:,a>1时,.2.B 提示:,∵,∴是增函数,a>1.3.B 提示:4.A 提示:5.C6.A 提示:当x∈R时,3-x∈R.7.A8.C 提示:.9.C 提示(tíshì):两个函数x2)x(f=,g(x)=x+2的图象有两个交点,那么有两个x的值使f(x)=g(x)成立.二、1.4 提示:.2.b<a<c 提示:,.3.(1,+∞) 提示:当0<x<1时,是减函数,.4.右;25.(-∞,1) 提示:函数是减函数,那么只有当u=|x-1|也是减函数的区间才是函数|1x|)21()x(f-=的增函数区间.三、1.解:∴∵b>0且b≠1 ∴∴当a>b>0时,∴x≥0当a=b>0时,∴x∈R当0<a<b 时,∴x ≤0 当a>b>0时,函数(h ánsh ù)的定义域是[0,+∞); 当a =b>0时,函数的定义域是R ;当0<a<b 时,函数的定义域是(-∞,0].2.证明:∵21x x ≠, ∴ 即 ∴)2x x (f )]x (f )x (f [212121+>+.3.解:∵a>1,x a y =是增函数∴当a x 2x a a 2>-时∴⊿=4+4a =4(1+a)>0 ∴∴所求x 值的集合(j íh é)是.内容总结。
【高中】高中数学必修一212指数与指数函数单元测验
【关键字】高中指数与指数函数单元测验一、选择题:(每小题4分,共40分)1.计算的结果是()2.下列根式、分数指数幂的互化中,正确的是()3.设集合则是( )(A) S (B) T (C) (D) 有限集4.下列函数中值域为的是()5.如果函数的定义域为,那么a的取值范围是()6.函数y=ax-2+1(a>0,a≠1)的图象必经过点()(A).(0,1)(B).(1,1)(C).(2,0)(D).(2,2)7.函数y=ax在[0,1]上的最大值与最小值和为3,则函数y=3ax-1在[0,1]上的最大值是()(A).6 (B).1 (C).3 (D).8.设f(x)=,x∈R,那么f(x)是()(A).奇函数且在(0,+∞)上是增函数(B).偶函数且在(0,+∞)上是增函数(C).奇函数且在(0,+∞)上是减函数(D).偶函数且在(0,+∞)上是减函数9.函数y=2-x+1+2的图象可以由函数y=()x的图象经过怎样的平移得到()(A).先向左平移1个单位,再向上平移2个单位(B).先向左平移1个单位,再向下平移2个单位(C).先向右平移1个单位,再向上平移2个单位(D).先向右平移1个单位,再向下平移2个单位10. 一批设备价值万元,由于使用磨损,每年比上一年价值降低,则年后这批设备的价值为()(A)、(B)、(C)、(D)、2、填空题:(每小题4分,共16分)11.等式成立的x的范围是12. 已知则13.比较大小:14.函数的定义域为,则的定义域为三、解答题:15.计算:(1)(2)16.()设,确定为何值时,有:(1) (2)17.对于函数(1)探索函数的单调性;(2)是否存在实数,使函数为奇函数?18.已知函数,求其单调区间及值域一、选择题:DAABCDCDCD2、填空题:11. 12. 13. 14.三、解答题:15.计算:(1)3;(2)16.(1)(2)当1<a时:;当0<a<1时:.17.(1)在R上单调增;(2)a=1时,为奇函数。
【高中数学新人教A版必修1】2.1《指数函数》测试1.docx
高中数学学习材料鼎尚图文*整理制作【高中数学新人教A 版必修1】 2.1《指数函数》测试1一、选择题1、 若指数函数在上是减函数,那么( )A 、B 、C 、D 、2、已知,则这样的 ( )A 、 存在且只有一个B 、 存在且不只一个C 、 存在且D 、 根本不存在3、函数在区间上的单调性是( )A 、 增函数B 、 减函数C 、 常数D 、 有时是增函数有时是减函数4、下列函数图象中,函数,与函数的图象只能是( )5、函数,使成立的的值的集合是( )A 、B 、C 、D 、6、函数使成立的的值的集合( )A 、 是B 、 有且只有一个元素C 、 有两个元素D 、 有无数个元素7、若函数(1)x y a b =+-(0a >且1a ≠)的图象不经过第二象限,则有( )A 、1a >且1b <B 、01a <<且1b ≤C 、01a <<且0b >D 、1a >且0b ≤8、F(x)=(1+)0)(()122≠⋅-x x f x 是偶函数,且f(x)不恒等于零,则f(x)( )A 、是奇函数B 、可能是奇函数,也可能是偶函数C 、是偶函数D 、不是奇函数,也不是偶函数二、填空题9、 函数的定义域是_________。
10、 指数函数的图象经过点,则底数的值是_________。
11、 将函数的图象向_________平移________个单位,就可以得到函数的图象。
12、 函数,使是增函数的的区间是_________三、解答题13、已知函数是任意实数且,证明:14、已知函数 222xx y -+= 求函数的定义域、值域15、已知函数(1)求的定义域和值域;(2)讨论的奇偶性;(3)讨论的单调性。
参考答案一、选择题B;2、A;3、B;4、C;5、C;6、C;7、D;8、A 二、填空题9、10、11、右、212、三、解答题13、证明:即14、 解:由222xx y -+=得 012222=+⋅-x x y ∵x ∈R, ∴△≥0, 即 0442≥-y , ∴12≥y , 又∵0>y ,∴1≥y15、 解:(1)的定义域是R ,令,解得的值域为(2)是奇函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修1第二章指数与指数函数双基自测题
1.
计算(1
22
-⎡⎤⎢⎥⎣⎦
的结果是( )
A
B
. C
.
2
D
.2-
2.函数()()()10
2
52f x x x =-+-的定义域是( ) A .{}|5,2x x R x x ∈≠≠且 B .{}|2,x x x R >∈ C .{}|5,x x x R >∈ D .{}
|255x x x <<>或
3.化简)(1)1(44
<-+a a a 的结果是 ( )
A .1
B .2a-1
C .|1|a a -+
D .0
4.下列运算结果中错误的是( ) A .5
3
2
a a a =⋅ B .()
6
3
2a a
= C .()
a a
=2
12 D .()
()
2
33
2
a a -=-
5.下列函数中是指数函数的为( )
A .()3x
y =- B .3x
y =- C .1
3
x y -= D.13x
y ⎛⎫
= ⎪⎝⎭
6.设函数的取值范围是则若0021,1)(,.
0,,0,12)(x x f x x x x f x >⎪⎩⎪
⎨⎧>≤-=-( )
A .(-1,1)
B .(-1,+∞)
C .),0()2,(+∞⋃--∞
D .),1()1,(+∞⋃--∞
7.设5.1344.029
.01)2
1
(,8,4-===y y y ,则( )
A .y 3>y 1>y 2
B .y 2>y 1>y 3
C .y 1>y 2>y 3
D .y 1>y 3>y 2
8.在下列图象中,二次函数y =ax 2+bx +c 与函数y =(
a
b )x
的图象可能是( )
A .1>a >b >0
B .a <b
C .a >b
D .1>b >a
9.已知4323)2
1
(2
--<x x
,则x 的取值范围是 ( ) A .1<x B .1>x C .57>x D .5
7
<x
10.函数]0,1[,)2
1(2
3-∈=+x y x 的值域是 ( )
A .R
B .(-∝,
23] C .(23,+∝) D .[2,4
1] 11.函数y =21x
-与y =112x
⎛⎫- ⎪⎝⎭
的图象关于 ( )
A.x 轴对称
B.y 轴对称
C.原点对称
D.直线y =1对称 12.将5.35.37
.22,01.101
.1,
用“<”连接起来 .
13.若a >1,b <-1,则函数x
y a b =+图象必不经过第 ___象限. 14.已知函数3
2x y a
-=-(a >0,且a ≠1)图象恒过定点P ,则P 点坐标为______.
15.计算:0.0273
1
-41
2256)6
1
(+--.
16.比较下列各组数值的大小:
⑴3
.37
.1和1
.28
.0; ⑵7
.03
.3和8
.04
.3; ⑶
25log ,27log ,2
3
98.
17.解方程:⑴192327x x ---⋅= ; ⑵649x x x +=.
18. 求下列函数的定义域与值域:
⑴12x
y =; ⑵y = ⑶1
5)2
1
(-=x y .
19. 求x
y )2
1(=,x ∈[-3,2]的值域.
20.已知,3234+⋅-=x
x
y 当其值域为[1,7]时,求x 的取值范围.
21.已知函数)1(1>=+a a y x 在[0,2]上有最小值8,求a 的值.
22.已知:函数f(x)=1
22
2+-+⋅x
x a a 为奇函数; ⑴求a 的值;⑵讨论函数f(x)的单调性;⑶求函数f(x)的值域.。