2019年广东省深圳市高三第二次模拟考试数学文科

合集下载

2019广东二模文数答案

2019广东二模文数答案

2019年普通高等学校招生全国统一考试广东省文科数学模拟试卷(二)参考答案及评分标准评分标准:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题不给中间分.1.D2.C3.D4.B5.C6.A7.A8.A9.C 10.B 11.C 12.B13.3 14.43 15.34 16.4017.解:(1)由余弦定理得AB 2=BC 2+AC 2-2BC×AC×cos C , ............................................................................................. 1分 代入数据整理得BC 2+3BC-40=0,.................................................................................................................................. 3分 解得BC=5(BC=-8舍去). ............................................................................................................................................... 5分(2)由cos A=√3sin B 及C=120°,得cos(60°-B )=√3sin B , .................................................................................................................................................. 6分 展开得12cos B+√32sin B-√3sin B=0, ............................................................................................................................... 7分 即√32sin B=12cos B ,tan B=sinB cosB =√33, ................................................................................................................................. 8分 所以B=30°. ..................................................................................................................................................................... 9分 从而A=60°-B=30°,即A=B=30°,所以BC=AC=3. ............................................................................................................................................................ 10分 故△ABC 的面积为12×3×3×sin 120°=9√34. .................................................................................................................. 12分 评分细则:第(1)问中,只要由余弦定理得到BC=5,就给5分;第(2)问中,cos(60°-B )=√3sin B 是关键,得到B=30°或A=30°,就给3分.18.解:(1)填写列联表如下:性别入围人数 未入围人数 总计 男生24 76 100 女生20 80100总计 44 156 200......................................................................................................................................................................................... 4分因为K 2的观测值k=200×(24×80-76×20)2100×100×44×156=200429<2.706, ............................................................................................... 6分 所以没有90%以上的把握认为脑力测试后是否为“入围学生”与性别有关. .............................................................. 7分(2)(ⅰ)这11名学生中,被抽到的女生人数为20×1144=5. ............................................................................................... 9分(ⅱ)因为入围的分数不低于120分,且每个女生的测试分数各不相同,每个人的分数都是整数,所以这11名学生中女生的平均分的最小值为120+121+122+123+1245=122. ......................................................... 12分 评分细则:第(1)问计算得到K 2的观测值k=200429即可得1分.19.(1)证明:如图,连接BC 1. ............................................................................................................................................. 1分 在三棱柱ABC-A 1B 1C 1中,E 为AC 1的中点. ................................................................................................................... 2分 又因为F 为AB 的中点,所以EF ∥BC 1. ................................................................................................................................................................ 3分 又EF ⊄平面BCC 1B 1,BC 1⊂平面BCC 1B 1,所以EF ∥平面BCC 1B 1. ................................................................................................................................................. 5分(2)解:因为AC ⊥AB ,AA 1⊥AC ,AA 1∩AB=A ,所以AC ⊥平面ABB 1A 1, ............................................................................ 7分 又AC=4,E 为A 1C 的中点,所以E 到平面ABB 1A 1的距离为12×4=2. ............................................................................ 9分 因为△AB 1F 的面积为12×2×6=6, ................................................................................................................................. 10分 所以V B 1-AEF =V E -AB 1F =13×2×6=4. .............................................................................................................................. 12分 评分细则:第(1)问中,先证面面平行,再证线面平行,也是常见的方法,阅卷时应同样给分.20.(1)证明:设A (x 1,y 1),B (x 2,y 2),联立{y =kx +1,x 2=4y,得x 2-4kx-4=0, ............................................................................... 1分 则x 1x 2=-4, ....................................................................................................................................................................... 2分 所以y 1y 2=(x 1x 2)216=1, ...................................................................................................................................................... 3分 从而OA ⃗⃗⃗⃗⃗ ·OB⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=-3<0, ...................................................................................................................................... 4分 则∠AOB 为钝角,故△AOB 为钝角三角形. ................................................................................................................... 5分(2)解:由(1)知,x 1+x 2=4k ,y 1+y 2=k (x 1+x 2)+2=4k 2+2, ....................................................................................................... 6分 则|AB|=y 1+y 2+p=4k 2+4. ................................................................................................................................................. 7分 由x 2=4y ,得y=x 24,y'=x 2,设P (x 0,y 0),则12x 0=k ,x 0=2k ,y 0=k 2,则点P 到直线y=kx+1的距离d=√k 2+1. ................................................................................................................ 9分 从而△PAB 的面积S=12d|AB|=2(k 2+1)√k 2+1=16, ................................................................................................ 10分 解得k=±√3, ................................................................................................................................................................. 11分 故直线l 的方程为y=±√3x-3. ..................................................................................................................................... 12分 评分细则: 第(1)问中,得到x 1x 2,y 1y 2的值分别给1分;若只是得到其中一个,且得到OA ⃗⃗⃗⃗⃗ ·OB⃗⃗⃗⃗⃗ =-3<0 ,可以共给3分. 21.(1)解:当a=-4时,f (x )=12x 2+3x-4ln x ,定义域为(0,+∞). .............................................................................................. 1分f'(x )=x+3-4x =x 2+3x -4x =(x -1)(x+4)x . .................................................................................................................................. 2分 当x>1时,f'(x )>0,f (x )单调递增,则f (x )的单调递增区间为(1,+∞); ................................................................................ 3分 当0<x<1时,f'(x )<0,f (x )单调递减, 则f (x )的单调递减区间为(0,1). .............................................................................. 4分(2)证明:f'(x )=x 2-(a+1)x+a x =(x -1)(x -a)x, ........................................................................................................................... 5分 g'(x )=3x 2+2bx-(2b+4)+1x =(x -1)[3x 2+(2b+3)x -1]x . .......................................................................................................... 6分 令p (x )=3x 2+(2b+3)x-1.因为a ∈(1,2],所以f (x )的极小值点为a ,则g (x )的极小值点为a , ................................................................................. 8分 所以p (a )=0,即3a 2+(2b+3)a-1=0,即b=1-3a 2-3a 2a, ......................................................................................................... 9分 此时g (x )的极大值为g (1)=1+b-(2b+4)=-3-b=-3-1-3a 2-3a 2a =32a-12a -32. ......................................................................... 10分 因为a ∈(1,2],所以32a-12a -32≤32×2-12×2-32=54. .................................................................................................................. 11分 故g (x )的极大值不大于54. ............................................................................................................................................. 12分评分细则:第(1)问中,计算导数时未因式分解不扣分;第(2)问中,计算g (x )的导数时未因式分解扣1分.22.解:(1)由ρ2-4ρcos θ-6ρsin θ+12=0,得x 2+y 2-4x-6y+12=0, ........................................................................................ 3分 即(x-2)2+(y-3)2=1,此即为曲线C 的直角坐标方程. ...................................................................................................... 4分(2)由(1)可设P 的坐标为(2+cos α,3+sin α),0≤α<2π, .................................................................................................... 6分 则|PM|=3+sin α, ............................................................................................................................................................. 7分 又直线ρcos θ=-1的直角坐标方程为x=-1,所以|PN|=2+cos α+1=3+cos α. ..................................................................................................................................... 8分 所以|PM|+|PN|=6+√2sin (α+π4), .............................................................................................................................. 9分 故当α=π4时,|PM|+|PN|取得最大值,且最大值为6+√2. ............................................................................................ 10分评分细则:第(2)问中,亦可设P 的坐标为(2+sin α,3+cos α),|PM|=3+cos α,|PN|=3+sin α,各给1分.23.解:(1)由f (x )<0,得|x +1|+|2-x |<4. ....................................................................................................................... 1分 当x<-1时,-x-1+2-x<4,解得-32<x<-1; ............................................................................................................................ 2分 当-1≤x ≤2时,x+1+2-x=3<4恒成立,则-1≤x ≤2; ............................................................................................................... 3分 当x>2时,x+1+x-2<4,解得2<x<52. ............................................................................................................................... 4分 故f (x )<0的解集为(-32,52). ........................................................................................................................................... 5分(2)因为f (x )=|x +1|+|2-x |-k ≥|x+1+2-x|-k=3-k , ........................................................................................................ 6分 所以f (x )的最小值为3-k. ................................................................................................................................................ 7分 因为不等式f (x )≥√k +3对x ∈R 恒成立,所以3-k ≥√k +3, k+3≥0,所以{3-k ≥0,(3-k)2≥k +3,................................................................................................................................................. 9分 解得-3≤k ≤1,则k 的取值范围为[-3,1]. .......................................................................................................................... 10分 评分细则:第(1)问中,先将f (x )化为三段的分段函数,得3分,再得出不等式的解集,得2分;第(2)问中,未写3-k ≥0,扣1分.。

2019届广东省普通高等学校招生全国统一考试模拟试卷(二)文科数学(解析版)

2019届广东省普通高等学校招生全国统一考试模拟试卷(二)文科数学(解析版)

2019年广东省高考数学二模试卷(文科)一、选择题(本大题共12小题,共60.0分)1.设i为虚数单位,则复数z=i(2-i)的共轭复数=()A. B. C. D.2.已知集合A={x|-1<x<6},集合B={x|x2<4},则A∩(∁R B)=()A. B. C. D.3.在样本的频率直方图中,共有9个小长方形,若中间一个长方形的面积等于其他8个小长方形面积的和的,且样本容量为200,则中间一组的频数为()A. B. C. 40 D. 504.设向量与向量垂直,且=(2,k),=(6,4),则下列下列与向量+共线的是()A. B. C. D.5.设S n为等差数列{a n}的前n项和,若公差d=1,S9-S4=10,则S17=()A. 34B. 36C. 68D. 726.某几何体的三视图如图所示,三个视图都是半径相等的扇形,若该几何体的表面积为,则其体积为()A.B.C.D.7.阿基米德(公元前287年-公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴与短半轴的乘积.若椭圆C的对称轴为坐标轴,焦点在y轴上,且椭圆的离心率为,面积为12π,则椭圆C的方程为()A. B. C. D.8.函数f(x)在(-∞,+∞)单调递增,且为奇函数.已知f(1)=2,f(2)=3,则满足-3<f(x-3)<2的x的取值范围是()A. B. C. D.9.某轮胎公司的质检部要对一批轮胎的宽度(单位:mm)进行质检,若从这批轮胎中随机选取3个,至少有2个轮胎的宽度在195±3内,则称这批轮胎基本合格.已知这批轮胎的宽度分别为195,196,190,194,200,则这批轮胎基本合格的概率为()A. B. C. D.10.函数的部分图象不可能为()A.B.C.D.11.若函数f(x)=x3-ke x在(0,+∞)上单调递减,则k的取值范围为()A. B. C. D.12.已知直线x=2a与双曲线C:(a>0,b>0)的一条渐近线交于点P,双曲线C的左、右焦点分别为F1,F2,且cos∠PF2F1=-,则双曲线C的离心率为()A. B. C. 或 D. 或二、填空题(本大题共4小题,共20.0分)13.若函数f(x)=log2(x+a)的零点为-2,则a=______.14.若x,y满足约束条件,则的最大值为______.15.在四棱锥P-ABCD中,PA与矩形ABCD所在平面垂直,AB=3,AD=,PA=,则直线PC与平面PAD所成角的正切值为______.16.在数列{a n}中,a n+1=2(a n-n+3),a1=-1,若数列{a n-pn+q)为等比数列,其中p,q为常数,则a p+q=______.三、解答题(本大题共7小题,共82.0分)17.在△ABC中,AC=3,C=120°.(1)若AB=7,求BC边的长;(2)若cos A=sin B,求△ABC的面积.18.《最强大脑》是江苏卫视推出的大型科学竞技真人秀节目.节目筹备组透露挑选选手的方式:不但要对选手的空间感知、照相式记忆能力进行考核,而且要让选手经过名校最权威的脑力测试,120分以上才有机会入围.某重点高校准备调查脑力测试成绩是否与性别有关,在该高校随机抽取男、女学生各100名,然后对这200名学生进行脑力测试.规定:分数不小于120分为“入围学生”,分数小于120分为“未入围学生”.已知男生入围24人,女生未入围80人.(1)根据题意,填写下面的2×2列联表,并根据列联表判断是否有90%以上的把握认为脑力测试后是否为“入围学生”与性别有关.(2)用分层抽样的方法从“入围学生”中随机抽取11名学生.(ⅰ)求这11名学生中女生的人数;(ⅱ)若抽取的女生的脑力测试分数各不相同(每个人的分数都是整数),求这11名学生中女生测试分数的平均分的最小值.附:K2=,其中n=a+b+c+d.19.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面A1B1C1,AC⊥AB,AC=AB=4,AA1=6,点E,F分别为CA1与AB的中点.(1)证明:EF∥平面BCC1B1.(2)求三棱锥B1-AEF的体积.20.在平面直角坐标系xOy中,直线y=kx+1与抛物线C:x2=4y交于A,B两点.(1)证明:△AOB为钝角三角形.(2)若直线l与直线AB平行,直线l与抛物线C相切,切点为P,且△PAB的面积为16,求直线l的方程.21.已知函数f(x)=x2-(a+1)x+a ln x.(1)当a=-4时,求f(x)的单调区间;(2)已知a∈(1,2],b∈R,函数g(x)=x3+bx2-(2b+4)x+ln x.若f(x)的极小值点与g(x)的极小值点相等,证明:g(x)的极大值不大于.22.在平面直角坐标系xOy中,以坐标原点O为极点,x轴为正半轴建立极坐标系,已知曲线C的极坐标方程为ρ2-4ρcosθ-6ρsinθ+12=0.(1)求曲线C的直角坐标方程;(2)过曲线C上一动点P分别作极轴、直线ρcosθ=-1的垂线,垂足分别为M,N,求|PM|+|PN|的最大值.23.设函数f(x)=|x+1|+|2-x|-k.(1)当k=4时,求不等式f(x)<0的解集;(2)若不等式对x∈R恒成立,求k的取值范围.答案和解析1.【答案】D【解析】解:∵z=i(2-i)=1+2i,∴.故选:D.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.2.【答案】C【解析】解:B={x|x2<4}={x|-2<x<2},则∁R B={x|x≥2或x≤-2},则A∩(∁R B)={x|2≤x<6},故选:C.求出集合B的等价条件,结合补集交集的定义进行求解即可.本题主要考查集合的基本运算,求出集合的等价条件以及利用交集补集的定义是解决本题的关键.3.【答案】D【解析】解:在样本的频率直方图中,共有9个小长方形,中间一个长方形的面积等于其他8个小长方形面积的和的,且样本容量为200,设其他8组的频率数和为m,则由题意得:m+m=200,解得m=150,∴中间一组的频数为=50.故选:D.设其他8组的频率数和为m,则由题意得:m+m=200,由此能求出中间一组的频数.本题考查频数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.4.【答案】B【解析】解:∵;∴;∴k=-3;∴;∴;∴(-16,-2)与共线.故选:B.根据即可得出,从而得出k=-3,从而可求出,从而可找出与共线的向量.考查向量垂直的充要条件,向量坐标的加法和数量积的运算,共线向量基本定理.5.【答案】C【解析】解:因为数列{a n}是等差数列,且S9-S4=10,所以10=5a1+(36d-6d)=5(a1+6d)=5a7,所以a7=2,所以a9=a7+2d=2+2=4,S17===17a9=17×4=68.故选:C.数列{a n}是等差数列,S9-S4=10=5a1+(36d-6d)=5(a1+6d)=5a7,所以a7=2,所以a9=a7+2d=2+2=4,S17===17a9,将a9代入可得S17.本题考查了等差数列的前n项和公式,通项公式,属于基础题.6.【答案】A【解析】解:将三视图还原可知该几何体为球体的,S=3×+=,r=,几何体的体积为:=.故选:A.首先把几何体的三视图进行转换,进一步利用表面积公式的应用求出结果.本题考查的知识要点:三视图和几何体的转换,几何体的体积公式和面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.7.【答案】A【解析】解:由题意可得:,解得a=4,b=3,因为椭圆的焦点坐标在y轴上,所以椭圆方程为:.故选:A.利用已知条件列出方程组,求出a,b,即可得到椭圆方程.本题考查椭圆飞简单性质的应用,考查转化思想以及计算能力.8.【答案】A【解析】解:∵f(x)是奇函数,且(1)=2,f(2)=3,∴f(-2)=-3,则不等式-3<f(x-3)<2等价为f(-2)<f(x-3)<f(1),∵f(x)是增函数,∴-2<x-3<1得1<x<4,即x的取值范围是(1,4),故选:A.根据函数奇偶性和单调性的性质将不等式进行转化求解即可.本题主要考查不等式的求解,结合函数奇偶性和单调性的性质进行转化是解决本题的关键.9.【答案】C【解析】解:某轮胎公司的质检部要对一批轮胎的宽度(单位:mm)进行质检,从这批轮胎中随机选取3个,至少有2个轮胎的宽度在195±3内,则称这批轮胎基本合格.这批轮胎的宽度分别为195,196,190,194,200,基本事件总数n==10,至少有2个轮胎的宽度在195±3内包含的基本事件个数m==7,∴这批轮胎基本合格的概率为p==.故选:C.基本事件总数n==10,至少有2个轮胎的宽度在195±3内包含的基本事件个数m=C =7,由此能求出这批轮胎基本合格的概率.本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.10.【答案】B【解析】解:A.由图象知函数的周期T=2π,则=2π得ω=1,此时f(x)=2sin(x-)=-2cosx为偶函数,对应图象为A,故A图象可能B.由图象知函数的周期T=-(-)==,即=,得ω=±3,当ω=3时,此时f(x)=2sin(3x-),f()=2sin(3×-)=2sin≠-2,即B图象不可能,当ω=-3时,此时f(x)=2sin(-3x+),f()=2sin(-3×+)=-2sin≠-2,即B图象不可能,C.由图象知函数的周期T=4π,则=4π得ω=±,当ω=时,此时f(x)=2sin (x-π)=-2sin x,f(π)=-2sin=-1,即此时C图象不可能,当ω=-时,此时f(x)=2sin(-x-π)=2sin x,f(π)=2sin=-1,即此时C图象可能,D.由图象知函数的周期=-=,即t=π,则=π得ω=2,此时f(x)=2sin(2x-),f ()=2sin(2×-)=2sin=2,即D图象可能,综上不可能的图象是B,故选:B.根据三角函数的图象判断周期性性以及对称轴是否对应即可得到结论.本题主要考查三角函数图象的识别和判断,利用周期性求出ω以及利用特殊值进行验证是解决本题的关键.注意本题的ω有可能是复数.11.【答案】C【解析】解:∵函数f(x)=x3-ke x在(0,+∞)上单调递减,∴f′(x)=3x2-ke x≤0在(0,+∞)上恒成立,∴k在(0,+∞)上恒成立,令g(x)=,x>0,则,当0<x<2时,g′(x)>0,此时g(x)单调递增,x>2时,g′(x)<0,g(x)单调递减故当x=2时,g(x)取得最大值g(2)=,则k,故选:C.令f′(x)≤0在(0,+∞)上恒成立得k在(0,+∞)上恒成立,求出右侧函数的最大值即可得出k的范围.本题考查了导数与函数单调性的关系,函数恒成立问题,属于中档题.12.【答案】B【解析】解:双曲线C的左、右焦点分别为F1(-c,0),F2(c,0),cos∠PF2F1=-,可得sin∠PF2F1==,即有直线PF2的斜率为tan∠PF2F1=,由直线x=2a与双曲线C :(a>0,b>0)的一条渐近线y=x交于点P,可得P(2a,2b),可得=,即有4b2=15(4a2-4ac+c2)=4(c2-a2),化为11c2-60ac+64a2=0,由e=可得11e2-60e+64=0,解得e=或e=4,由2a-c>0,可得c<2a,即e<2,可得e=4舍去.故选:B.设出双曲线的焦点,求得一条渐近线方程可得P的坐标,求得直线PF2的斜率,由两点的斜率公式和离心率公式,可得所求值.本题考查双曲线的方程和性质,主要是渐近线方程和离心率的求法,考查方程思想和运算能力,属于中档题.13.【答案】3【解析】解:根据题意,若函数f(x)=log2(x+a)的零点为-2,则f(-2)=log2(a-2)=0,即a-2=1,解可得a=3,故答案为:3根据题意,由函数零点的定义可得f(-2)=log2(a-2)=0,解可得a的值,即可得答案.本题考查函数的零点,关键是掌握函数零点的定义,属于基础题.14.【答案】【解析】解:设z=,则k得几何意义为过原点得直线得斜率,作出不等式组对应得平面区域如图:则由图象可知OA的斜率最大,由,解得A (3,4),则OA 得斜率k=,则的最大值为.故答案为:.设z=,作出不等式组对应得平面区域,利用z 得几何意义即可得到结论.本题主要考查直线斜率的计算,以及线性规划得应用,根据z 的几何意义,利用数形结合是解决本题的关键. 15.【答案】【解析】解:∵在四棱锥P-ABCD 中,PA 与矩形ABCD 所在平面垂直, ∴CD ⊥AD ,CD ⊥PA ,∵AD∩PA=A ,∴CD ⊥平面PAD , ∴∠CPD 是直线PC 与平面PAD 所成角, ∵AB=3,AD=,PA=,∴直线PC 与平面PAD 所成角的正切值: tan ∠CPD===.故答案为:.推导出CD ⊥AD ,CD ⊥PA ,从而CD ⊥平面PAD ,进而∠CPD 是直线PC 与平面PAD 所成角,由此能求出直线PC 与平面PAD 所成角的正切值.本题考查线面角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理推论证能力、运算求解能力,是中档题. 16.【答案】-2【解析】解:数列{a n }中,a n+1=2(a n -n+3),a 1=-1, 若数列{a n -pn+q )为等比数列, 则:,所以:a n+1-p (n+1)+q=2(a n -pn+q )解得:p=2,q=2,故:数列{a n -pn+q}是以-1+2-2=-1为首项,2为公比的等比数列. 所以:, 整理得:.故:a p+q =a 4=-8+8-2=-2, 故答案为:-2首先求出数列的通项公式,进一步求出结果.本题考查的知识要点:数列的通项公式的求法及应用,主要考察学生的运算能力和转换能力,属于基础题型.17.【答案】解:(1)由余弦定理得AB 2=BC 2+AC 2-2BC ×AC ×cos C ,代入数据整理得BC 2+3BC -40=0,解得BC =5(BC =-8舍去). (2)由cos A = sin B 及C =120°, 得cos (60°-B )= sin B , 展开得cos B +sin B - sin B =0,即sin B =cos B ,tan B ==, 所以B =30°.从而A =60°-B =30°, 即A =B =30°, 所以BC =AC =3.故△ABC 的面积为×3×3×sin120°=. 【解析】(1)直接利用余弦定理和一元二次方程的解的应用求出结果. (2)利用三角函数关系式的变换和三角形的面积公式的应用求出结果.本题考查的知识要点:三角函数关系式的变换,正弦定理余弦定理和三角形面积的应用,主要考察学生的运算能力和转换能力,属于基础题型.【答案】解:(1)填写列联表如下:…(4分)因为K2的观测值k==<2.706,…(6分)所以没有90%以上的把握认为脑力测试后是否为“入围学生”与性别有关…(7分)(2)(ⅰ)这11名学生中,被抽到的女生人数为20×=5…(9分)(ⅱ)因为入围的分数不低于120分,且每个女生的测试分数各不相同,每个人的分数都是整数,所以这11名学生中女生的平均分的最小值为×(120+121+122+123+124)=122…(12分)【解析】(1)由题意填写列联表,计算观测值,对照临界值得出结论;(2)(ⅰ)根据分层抽样原理计算被抽到的女生人数;(ⅱ)由题意计算所求平均分的最小值.本题考查了列联表与独立性检验的应用问题,也考查了分层抽样原理与平均数的计算问题,是基础题.19.【答案】(1)证明:如图,连接BC1.(1分)在三棱柱ABC-A1B1C1中,E为AC1的中点.(2分)又因为F为AB的中点,所以EF∥BC1.(3分)又EF⊄平面BCC1B1,BC1⊂平面BCC1B1,所以EF∥平面BCC1B1.(5分)(或先证面面平行,再证线面平行,也是常见的方法,阅卷时应同样给分.)(2)解:因为AC⊥AB,AA1⊥AC,AA1∩AB=A,所以AC⊥平面ABB1A1,(7分)又AC=4,E为A1C的中点,所以E到平面ABB1A1的距离为:×4=2.(9分)因为△AB1F的面积为:×2×6=6,(10分)所以==×2×6=4.(12分)【解析】(1)连接BC1.证明EF∥BC1,然后证明EF∥平面BCC1B1.(2)说明AC⊥平面ABB1A1,求出E到平面ABB1A1的距离,通过=求解体积即可.本题考查直线与平面平行的判断定理以及性质定理的应用,几何体的体积的求法,考查空间想象能力以及计算能力.20.【答案】(1)证明:设A(x1,y1),B(x2,y2),联立,得x2-4kx-4=0,(1分)则x1x2=-4,(2分)所以y1y2==1,(3分)从而•=x1x2+y1y2=-3<0,(4分)则∠AOB为钝角,故△AOB为钝角三角形.(5分)(得到x1x2,y1y2的值分别给(1分);若只是得到其中一个,且得到•=-3<0,可以共给(3分)).(2)解:由(1)知,x1+x2=4k,y1+y2=k(x1+x2)+2=4k2+2,(6分)则|AB|=y1+y2+p=4k2+4.(7分)由x2=4y,得y=,y'=,设P(x0,y0),则x0=2k,y0=k2,则点P到直线y=kx+1的距离d==.(9分)从而△PAB的面积S=d|AB|=2(k2+1)=16,(10分)解得k=±,(11分)故直线l的方程为y=±x-3.(12分)【解析】(1)设A(x1,y1),B(x2,y2),联立,得x2-4kx-4=0,利用韦达定理以及向量的数量积证明△AOB为钝角三角形.(2)求出|AB|=y1+y2+p=4k2+4,结合函数的导数,利用斜率关系,求出点P到直线y=kx+1的距离,写出|AB|,利用△PAB的面积,转化求解即可.本题考查直线与抛物线的位置关系的综合应用,函数的导数的应用,考查转化思想以及计算能力.21.【答案】(1)解:当a=-4时,f(x)=x2+3x-4ln x,定义域为(0,+∞).f'(x)=x+3-=.当x>1时,f'(x)>0,f(x)单调递增,则f(x)的单调递增区间为(1,+∞);当0<x<1时,f'(x)<0,f(x)单调递减,则f(x)的单调递减区间为(0,1).(2)证明:f'(x)==,g'(x)=3x2+2bx-(2b+4)+=.令p(x)=3x2+(2b+3)x-1.因为a∈(1,2],所以f(x)的极小值点为a,则g(x)的极小值点为a,所以p(a)=0,即3a2+(2b+3)a-1=0,即b=,此时g(x)的极大值为g(1)=1+b-(2b+4)=-3-b=-3-=a--.因为a∈(1,2],所以a-≤3-=.故g(x)的极大值不大于.【解析】(1)当a=-4时,f(x)=x2+3x-4ln x,定义域为(0,+∞).f'(x)=x+3-=.即可得出单调区间.(2)f'(x)=,g'(x)=3x2+2bx-(2b+4)+=.令p(x)=3x2+(2b+3)x-1.由a∈(1,2],可得f(x)的极小值点为a,则g(x)的极小值点为a,可得p(a)=0,b=,此时g(x)的极大值为g(1)=1+b-(2b+4)代入利用函数的单调性即可得出.本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、转化方法,考查了推理能力与计算能力,属于难题.22.【答案】解:(1)由ρ2-4ρcosθ-6ρsinθ+12=0,得x2+y2-4x-6y+12=0,即(x-2)2+(y-3)2=1,此即为曲线C的直角坐标方程.(2)由(1)可设P的坐标为(2+cosα,3+sinα),0≤α<2π,则|PM|=3+sinα,又直线ρcosθ=-1的直角坐标方程为x=-1,所以|PN|=2+cosα+1=3+cosα,所以|PM|+|PN|=6+sin(α+),故当α=时,|PM|+|PN|取得最大值为6+.【解析】(1)由ρ2-4ρcosθ-6ρsinθ+12=0,得x2+y2-4x-6y+12=0,即(x-2)2+(y-3)2=1,此即为曲线C的直角坐标方程.(2)由(1)可设P的坐标为(2+cosα,3+sinα),0≤α<2π,求出|PM|和|PN|后相加,用三角函数的性质求得最大值.本题考查了简单曲线的极坐标方程,属中档题.23.【答案】解:(1)k=4时,函数f(x)=|x+1|+|2-x|-4,不等式f(x)<0化为|x+1|+|2-x|<4,当x<-1时,不等式化为-x-1+2-x<4,解得-<x<-1,当-1≤x≤2时,不等式化为x+1+2-x=3<4恒成立,则-1≤x≤2,当x>2时,不等式化为x+1+x-2<4,解得2<x<,综上所述,不等式f(x)<0的解集为(-,);(2)因为f(x)=|x+1|+|2-x|-k≥|x+1+2-x|-k=3-k,所以f(x)的最小值为3-k;又不等式对x∈R恒成立,所以3-k≥,所以,解得k≤1,所以k的取值范围是(-∞,1].【解析】(1)k=4时,利用分类讨论思想求出不等式f(x)<0的解集,再求它们的并集;(2)利用绝对值不等式的性质求出f(x)的最小值,再把不等式化为3-k≥,求出不等式的解集即可.本题考查了不等式恒成立应用问题,也考查了含有绝对值的不等式解法与应用问题,是中档题.。

2019年广东省深圳市高三第二次调研测试数学【文】试题及答案

2019年广东省深圳市高三第二次调研测试数学【文】试题及答案

高考数学精品复习资料2019.5广东省深圳市20xx届高三4月第二次调研考试数学(文科)一、选择题1.i为虚数单位,复数z=1+i的模为A. 1 22.已知集合M={x|-2<x<1} ,N={x|-1<x<2},则M∩N=A、{x|-2<x<2}B、{x|-1<x<2}C、{x|-1<x<1}D、{x|-2<x<1}3、已知函数的值为4、已知命题p:“学生甲通过了全省美术联考”;q:“学生乙通过了全省美术联考”,则表示A、甲、乙都通过了B、甲、乙都没有通过C、甲通过了,而乙没有通过D、甲没有通过,而乙通过了5、若实数a,b满足a>b,则下列不等式成立的是6.两条异面直线在同一个平面上的正投影不.可能是A.两条相交直线B.两条平行直线C.两个点D.一条直线和直线外一点7、执行如图1所示的程序框图,则输出0的概率为8、在△ABC中,AB=AC=2,BC=,则AB AC=A、B、2C、-D、-29、过点(0,-1)的直线l与两曲线y=lnx和x2=2py均相切,则p的值为A、14B、12C、2D、410.如图2,我们知道,圆环也可看作线段AB绕圆心O旋转一周所形成的平面图形,又圆环的面积22)()(22r R r R r R S +⨯⨯-=-=ππ.所以,圆环的面积等于是以线段r R AB -=为宽,以AB 中点绕圆心O 旋转一周所形成的圆的周长22r R +⨯π为长的矩形面积.请将上述想法拓展到空间,并解决下列问题:若将平面区域d)r 0}()(|),{(222<<≤+-=其中r y d x y x M 绕y 轴旋转一周,则所形成的旋转体的体积是A. d r 22πB. d r 222πC. 22rd πD. 222rd π二、填空题(一)必做题:11、数列{n a }满足12、若角α的终边过点(1,2),则sin (πα+)的值为____13、当k >0时,两直线kx -y =0,2x +ky -2=0与x 轴围成的三角形面积的最大值为___(二)选做题:14.(坐标系与参数方程选做题)极坐标系(,)(02)ρθθπ≤<中,点(1,0)关于直线2sin ρθ=1对称的点的极坐标是 .15.(几何证明选讲选做题)如图3,在梯形ABCD 中,AB ∥DC ,∠DAB =90°,DB ⊥BC ,AH ⊥BD ,垂足为H ,若DC =BC =3,则DH =____ .三、解答题:16.(本小题满分12分)已知函数)6cos(sin )(πωω++=x x x f ,其中R x ∈,ω>0. (1) 当ω=1时,求)3(πf 的值; (2) 当)(x f 的最小正周期为π,求f (x )在区间[0,]4π上取得最大值时x 的值.17.( 本小题满分13分)某企业通过调查问卷(满分50分)的形式对本企业900名员土的工作满意度进行调查, 并随机抽取了其中30名员工(16名女员工,14名男员工)的得分,如下表:(1)根据以上数据,估计该企业得分大于45分的员工人数;(2)现用计算器求得这30名员工的平均得分为40.5分,若规定大于平均得分为‘满意’,否则为“不满意”,请完成下列表格:〔3)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1% 的前提下,认为该企业员工“性别”与“工作是否满意”有关?18.( 本小题满分13分)如图4,在四棱锥P-ABCD 中,底面ABCD 为菱形,PB ⊥平面ABCD.(l )若AC =6,BD =8,PB =3,求三棱锥A 一PBC 的体积;(2)若点E 是DP 的中点,证明:RD ⊥平面ACE .19.( 本小题满分14分)设等差数列}{n a 的公差为d ,n S 是}{n a 中从第12-n 项开始的连续12-n 项的和,即(1)当13,2a d ==时,求4S(2)若1S ,2S ,3S 成等比数列,问:数列}{n S 是否成等比数列?请说明你的理由;(1) 若04151>=d a ,证明:*),14121(981111321N n d S S S S n n ∈+-≤++++ .20.(本小题满分14分)如图5,椭圆E:22221(0)x y a b a b +=>>的离心率为12,F 为右焦点,点A 、B 分别为左、 右顶点,椭圆E 上的点到F 的最短距离为1(l)求椭圆E 的方程;(2)设t ∈R 且t ≠0,过点M(4, t)的直线MA, MB 与椭圆E 分别交于点P ,Q . 求证:点P ,F,Q 共线.20.( 本小题满分14分)已知a 为正常数,点A,B 的坐标分别是)0,(),0,(a a -,直线AM,BM 相交于点M,且它们的斜率之积是21a-. (1) 求懂点M 的轨迹方程,并指出方程所表示的曲线; (2) 当2=a 时,过点)0,1(F 作直线AM l ∥,记l 与(1)中轨迹相交于两点P,Q,动直线AM 与y 轴交与点N,证明AN AM PQ为定值.21.( 本小题满分14分)设f (x )是定义在[a ,b ]上的函数,若存在c (,)a b ∈,使得f (x )在[a ,c ]上单调递减,在[c ,b ]上单调递增,则称f (x )为[a ,b ]上单谷函数,c 为谷点。

2019年深圳市高三年级第二次调研考试——文科数学答案(市教科院)

2019年深圳市高三年级第二次调研考试——文科数学答案(市教科院)

2019年深圳市高三第二次调研考试文科数学试题答案及评分参考第Ⅰ卷一.选择题) ()lnh x a x=的凹凸性以及(), ()g x h x均过点()1,1,故可研究()h x在()1,1处的切线即可.二.填空题:13.414.115.2316.2π316【解法1】设A BD'∆的外接圆半径为r,2A DBθ'∠=,其中π(0,)2θ∈.由正弦定理易得市教育学研究院教育科4sin 2sin 2r θθ=,故1cos r θ=解得1cos =2θ,所以A DB '∠2π=2=3θ. 【解法2】设A BD '∆的外接圆半径为r ,2A DB θ'∠=,其中π(0,)2θ∈,并设A B '中点为M ,DM b =,A M a '=,则有222()a b r r +−=,由于224a b +=,由此可得2br =,又因为18.(本小题满分12分)某网店经销某商品,为了解该商品的月销量y (单位:千件)与售价x (单位:元/件)之间的关系,收集了5组数据进行了初步处理,得到如下数表:(1)统计学中用相关系数r 来衡量两个变量之间线性相关关系的强弱,若[0.75,1]r ∈,则市教育学研究院教育科认为相关性很强;若[0.3,0.75)r ∈,则认为相关性一般;若[0,0.25]r ∈,则认为相关性较弱. 请计算相关系数r ,并说明y 与x 之间的线性相关关系的强弱(精确到0.01); (2)求y 关于x 的线性回归方程;(3)根据(2)中的线性回归方程,应将售价x 定为多少,可获取最大的月销售金额?解:(1)由表中数据和附注中的参考数据得,7x =,5y =, ………………………………1分在边长为4的正方形ABCD 中,点E 、F 分别为边AB 、AD 的中点,以CE 和CF 为折痕把△DFC 和△BEC 折起,使点B 、D 重合于点P 位置,连结PA ,得到如图所示的四棱锥P AECF −.(1)在线段PC 上是否存在一点G ,使PA 与平面EFG 平行,若存在,求PGGC的值; 若不存在,请说明理由.市教育科学研究院教育科(2)求点A 到平面PEC 的距离. 解:(1)线段PC 上的点G 满足13PG GC =时,PA 与平面EFG 平行. ………1分 证明如下:连结EF ,EG ,FG ,AC ,记AC 与EF 的交点为O ,连结OG . 在正方形ABCD 中,∵E 、F 分别为边AB 、AD 的中点, ∴13AO OC =, ……………………2分 故13AO PG OC GC ==, ……………………3分 ∴PA // OG . ……………………4分∵PA EFG ⊄平面,OG EFG ⊂平面,∴ //PA EFG 平面 . ……………………6分(2)解法一:在正方形ABCD 中,AB BC ⊥,AD CD ⊥, 翻折后PC PE ⊥,PC PF ⊥, 又PEPF P =,PC ∴⊥平面PEF . ……………………8分记AC 与EF 的交点为O ,连结PO , 可知△OPC 为直角三角形,2OP =,4PC =,32OC =,设P 到直线AC 的距离为h ,4232h =⋅,43h ∴=. ……………………9分,,PC EF AC EF ACPC C ⊥⊥=,∴EF PAC ⊥平面EF AECF ⊂平面,∴ PAC AEC ⊥平面平面 ∵ =PACAEC AC 平面平面∴ △OPC 斜边OC 上的高h 即为三棱锥-P AEC 的高. ……………………10分1114162433239P AEC AEC V S h −∆∴=⋅⋅=⨯⨯⨯⨯=,142PCE S PC PE ∆=⋅⋅=,设点A 到平面PCE 的距离为h ',A BDEFP O市教育科学研究院教育科33A PCE PCE −∆41639h '∴=,解得4=3h '. …………………12分 解法二:在正方形ABCD 中,AB BC ⊥,AD CD ⊥,翻折后PC PE ⊥,PC PF ⊥, 又PEPF P =,PC ∴⊥平面PEF , ……………………8分,,PC EF AC EF ACPC C ⊥⊥=,∴ EF PAC ⊥平面,118=22V V S OE ∴=⋅⋅=⨯⨯又PE PF P =,AC 与EF 的交点为可知△OPC 为直角三角形,易得222421=⋅⋅=ΔPOCS . ……………………9分 ,,PC EF AC EF ACPC C ⊥⊥=,∴EF PAC ⊥平面,3422231=⋅⋅=∴E-POC V ,BCDEFPO市教育学研教育科-3339E PAC E POC −又142PCE S PC PE ∆=⋅⋅=,设点A 到平面PCE 的距离为h , 1433A PCE PCE V S h h −∆∴=⋅⋅=⋅,416h ∴=,解得4=h . …………………12分 (2)法一:不妨设1122(,),(,)A x y B x y ,0(,2)P x −,由(1)可知112PA k x =,即直线PA 的方程为1111()2−=−y y x x x , 即111:2PA l y x x y =−,同理可得221:2PB l y x x y =−,…………………………5分市教育科学研教育科因为切线PA ,PB 均过点0(,2)P x −, 所以0110222222x x y x x y ⎧−=−⎪⎪⎨⎪−=−⎪⎩, ……………6分所以1122(,),(,)x y x y 为方程22x x y −=−的两组解, 所以直线AB 的方程为02x x y −=−,即0:2AB xl y x =+.…………………7分又点P 在直线2y =−,所以1224x x=−,128x x =−, …………………………7分设直线AB 的方程为y kx m =+,联立24x y y kx m⎧=⎨=+⎩,可得2440x kx m −−=,由韦达定理得124x x k +=,1248x x m =−=−,可得2m =,(2,2)P k −,…………………………………………………………8分市教育学研究院教育科所以||AB == …………………9分 又因为点P 到直线AB的距离为2d =, ……………………………10分所以3222127||4(2)22ABP S AB d k ∆=⋅==+=,…11分…………………………5分(2) 证法一:原不等式等价于e 12e 0x x x a ax a−−+−≥. ………………6分 令e 12()e x x g x x a ax a =−−+−,则2(1)(e 1)()x x a x g x ax −−−'=.…………………7分 当1a ≥时,e 1e 1x xa x x −−≥−−,…………………8分市教育学究院教育科令()e 1xh x x =−−,则当0x >时,()e 10xh x '=−>,∴ 当0x >时,()h x 单调递增,即()(0)0h x h >=, ………………………10分∴ 当01x <<时,()0g x '<;当1x =时,()0g x '=;当1x >时,()0g x '>, ∴ ()(1)0g x g ≥=. ………………………11分∴min ()10h x h ==(), …………………11分 ∴()0h x ≥, 即e 1e 20x x x x−−−+≥, 从而,对任意的1a ≥,当0x >时,()(+e)f x x a x ≥. …………………………12分市教育学研究院教育科思路2: 令()21+e ()e xx xx ϕ−=,则(1)(e 3)()e xx x x ϕ−−+−'=.()0 3e 1x x ϕ'>⇒−<<,()0 103e x x x ϕ'<⇒><<−或.∴()x ϕ在(0,3e)−上单调递减,在(3e 1)−,上单调递增,在(1+)∞,上单调递减. …………………………11分②—(i ):若22e 1a ≤<−,则()(0)1e +20h a =−≤. ∵ 2ln(1)0h h a ⎛⎫<= ⎪⎝⎭∴ 当()0,1x ∈时,()=()0g x h x '<;当()1+x ∈∞,时,()=()0g x h x '>. 与①同,不等式成立. …………………………9分市教育学研究院教育科②—(ii ):若21e 1a ≤<−,则()(0)1e +2>0h a =−, ∵ 2ln(1)0h h a ⎛⎫<= ⎪⎝⎭, ∴ 020,ln x a ⎛⎫⎛⎫∃∈⎪ ⎪⎝⎭⎝⎭,使得()00h x =,且当()00,x x ∈时,()=()0g x h x '>;当()01x x ∈,||2||ON OM =,求△2MC N 的面积.解:(1)由2cos ,sin αα=⎧⎨=⎩x y 消去参数α可得1C 的普通方程为2214x y +=,……………1分 把cos x ρθ=,sin y ρθ=代入,得22(cos )(sin )14ρθρθ+=, 市教育学研究院教育科即222244cos 4sin 13sin ρθθθ==++, 所以1C 的极坐标方程为22413sin ρθ=+; ………………………3分把cos x ρθ=,sin y ρθ=代入22(2)4x y −+=,得4cos ρθ=,所以2C 的极坐标方程为4cos ρθ=. ………………………5分(1)当2m =时,求不等式()3f x >的解集;(2)证明:1()3(1)f x m m +≥−.解:(1)当2m =时,1()|2|||2f x x x =−++, ………………………1分 市教育学研究院教育科①当12x ≤−时,原不等式等价于1(2)()32x x −−+>,解得34x <−,……………2分 ②当122x −<<时,原不等式等价于532>,不等式无解, ……………3分 ③当2x ≥时,原不等式等价于()12+32x x ⎛⎫−+> ⎪⎝⎭,解得94x >,………………4分 综上,不等式()3f x >的解集为39(,4; ………………5分 ()f x m ∴≥()f x m ∴+市教育学研究院教育科。

2019年广东省深圳市高三第二次调研考试(二模)文科数学试题

2019年广东省深圳市高三第二次调研考试(二模)文科数学试题

高考数学精品复习资料2019.520xx 年深圳市高三年级第二次调研考试数学(文科) 20xx .5本试卷共6页,21小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损,监考教师分发的考生信息条形码是否正确;之后务必用0.5毫米黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,同时,将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上。

不按要求填涂的,答案无效。

3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答。

漏涂、错涂、多涂的答案无效。

5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回。

参考公式:若锥体的底面积为S ,高为h ,则锥体的体积为=13V Sh ;若圆锥底面半径为r ,母线长为l ,则圆锥的侧面积为=S πrl .一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,2,3,4,5,6=U ,集合{}1,2,5=A ,C U B {4,5,6}=,则集合=ABA .{ 5 }B . {1,2}C .{1,2,3}D .{3,4,6}2.“(3)0-≤x x ”是“12-≤x ”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.在空间直角坐标系xyz O -中,过点(4,2,3)--M 作直线OM 的垂线l ,则直线l 与平面Oxy 的交点(,,0)P x y 的坐标满足条件 A .42290+-=x y B .42290-+=x y C .42290++=x y D .42290--=x y4.如右图,一个空间几何体的主(正)视图、侧(左)视图都是周长为8、一个内角为60°的菱形及其一条对角线,俯视图是圆及其圆心,那么这个几何体的表面积为 A .5π B .4π C .3πD .2π5.已知离心率为e 的曲线2221-=x y a ,其右焦点与抛物线216=y x 的焦点重合,则e 的值为A .34B C .43D6.若奇函数()f x 在区间(0,)+∞上是增函数,又(3)-f =0,则不等式()0<f x x的解集为A .(3,0)(3,)-+∞B .(3,0)(0,3)-C .(,3)(3,)-∞-+∞D .(,3)(0,3)-∞-7.设数列{}n a 是等差数列,且28n 6,6,=-=a a S 是数列{}n a 的前n 项和,则 A .65<S S B .65=S S C .45<S SD .45=S S8.已知直线2=x 、4=x 与函数4log =y x 图像的交点分别为A 、B ,与函数ln =y x 图像的交点分别为C 、D ,则直线AB 与CD A .相交,且交点在第一象限 B .相交,且交点在第二象限 C .相交,且交点在第四象限 D .相交,且交点在坐标原点9.在右程序框图中,当n ∈N *(n>1)时,函数()n f x 表示函数1n-fx ()的导函数.若输入函数1sin cos =+()f x x x ,则输出的函数()n f x 可化为A -xπ)4 B .-x π)4C +x π)4D .+x π)410.某宾馆有n(n ∈N )*间标准相同的客房,客房的定价将影响入住率.经调查分析,得出每间客房的定价与每天的入住率的大致关系如下表: 每间客房的定价220元200元180元160元第4题图俯视图左视图正视图第9题图每天的住房率 50℅ 60℅ 70℅ 75℅对每间客房,若有客住,则成本为80元;若空闲,则成本为40元.要使此宾馆每天的住房利润最高,则每间客房的定价大致应为 A .220元B .200元C .180元D .160元二、填空题:本大题共5小题,每小题5分,满分20分.本大题分为必做题和选做题两部分.(一)必做题:第11、12、13题为必做题(第13题前一空2分,后一空3分),每道试题考生都必须做答11.已知向量(3,4)=-a ,向量b 与a 方向相反,且,1λ==b a b ,则实数λ= .12.200辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速不低于60km/h 的汽车数量为 辆.13.数列{}n a 的前n 项和是n S ,若数列{}n a 的各项按如下规则排列:1121231234121,,,,,,,,,,,,,,,2334445555-n n nn则15=a ,若存在正整数k ,使10<k S ,110+≥k S ,则=k a .(二)选做题:第14、15题为选做题,考生只能选做一题,两题全答的,只计算第一题的得分.14.(坐标系与参数方程选做题)已知点P 是曲线cos :(sin =⎧⎨=⎩43x θC θy θ为参数,)≤≤0θπ上一点,O 为原点.若直线OP 的倾斜角为4π,则点P 的直角坐标为 .15.(几何证明选讲选做题)如右图,A 、B 是两圆的交点,AC 是小圆的直径,D 和E 分别是CA 和CB 的延长线与大圆的交点,已知10,4==BE AC ,且AD BC =,则DE = .三、解答题:本大题6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知复数i (,)=+∈R z x y x y 在复平面上对应的点为M .(Ⅰ)设集合{}{}4,3,2,0,0,1,2=---=P Q ,从集合P 中随机取一个数作为x ,从集合Q中随机取一个数作为y ,求复数z为纯虚数的概率;第12题图D BEAC第15题图(Ⅱ)设[][]0,3,0,4∈∈x y ,求点M 落在不等式组:23000+-≤⎧⎪≥⎨⎪≥⎩x y x y 所表示的平面区域内的概率.17.(本小题满分12分)如图,已知点(3,4),(2,0),A C 点O 为坐标原点,点B 在第二象限,且3=OB ,记θ∠=AOC .(Ⅰ)求sin2θ的值;(Ⅱ)若科7=AB ,求∆BOC 的面积.18.(本小题满分14分)在直三棱柱111C B A ABC -中,⊥AD 平面1A BC ,其垂足D 落在直线1A B 上. (Ⅰ)求证:B A BC 1⊥;(Ⅱ)若AD 2==BC AB ,P 为AC 的中点,求三棱锥BC A P 1-的体积.19.(本题满分14分) 已知函数3211()(,)32+=-++∈R a f x x x bx a a b ,且其导函数()'f x 的图像过原点.(Ⅰ)当1=a 时,求函数()f x 的图像在3=x 处的切线方程; (Ⅱ)若存在0<x ,使得()9'=-f x ,求a 的最大值; (Ⅲ)当0>a 时,求函数()f x 的零点个数.第17题图第18题图BACDP1B 1A 1C20.(本题满分14分)已知等比数列{}n a 的公比1>q ,且1a 与4a的一等比中项为2a 与3a 的等差中项为6.(I )求数列{}n a 的通项公式;(Ⅱ)设n S 为数列{}n a 的前n 项和,123(1)(N )+*+=+-∈n n n n b S a n ,请比较n b 与1+n b 的大小;(Ⅲ)数列{}n a 中是否存在三项,按原顺序成等差数列?若存在,则求出这三项;若不存在,则加以证明.21.(本小题满分14分)如图,已知椭圆222:1(1)+=>x C y a a的上顶点为A ,右焦点为F ,直线AF 与圆:M 226270+--+=x y x y 相切.(Ⅰ)求椭圆C 的方程;(Ⅱ)若不过点A 的动直线l 与椭圆C 相交于P 、Q 两点,且0,⋅=AP AQ 求证:直线l过定点,并求出该定点N 的坐标.第21题图20xx 年深圳市高三年级第二次调研考试数学(文科)答案及评分标准 说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分数. 一、选择题:本大题每小题5分,满分50分.二、填空题:本大题每小题5分;第13题第一空2分,第二空3分;第14、15两小题中选做一题,如果两题都做,以第14题的得分为最后得分),满分20分. 11.15- . 12.76. 13.56 ,57 . 14.⎪⎭⎫⎝⎛512512,. 15.三、解答题:本大题6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知复数i (,)z x y x y =+∈R 在复平面上对应的点为M .(Ⅰ)设集合{}{}4,3,2,0,0,1,2P Q =---=,从集合P 中随机取一个数作为x ,从集合Q 中随机取一个数作为y ,求复数z 为纯虚数的概率;(Ⅱ)设[][]0,3,0,4x y ∈∈,求点M 落在不等式组:23000x y x y +-≤⎧⎪≥⎨⎪≥⎩所表示的平面区内的概率.解:(1)记 “复数z 为纯虚数”为事件A∵组成复数z 的所有情况共有12个:4,4i,42i --+-+,3,3i,32i --+-+,2,2i,22i --+-+,0,i,2i ,且每种情况出现的可能性相等,属于古典概型. ……2分 其中事件A 包含的基本事件共2个: i,2i.………4分 ∴所求事件的概率为21()126P A ==………………6分B(2)依条件可知,点M 均匀地分布在平面区域03(,)|04x x y y ⎧≤≤⎫⎧⎨⎨⎬≤≤⎩⎩⎭内,属于几何概型. 该平面区域的图形为右图中矩形OABC 围成的区域, 面积为 3412.S =⨯=……8分所求事件构成的平面区域为230(,)00x y x y x y ⎧⎫+-≤⎧⎪⎪⎪≥⎨⎨⎬⎪⎪⎪≥⎩⎩⎭,其图形如下图中的三角 第16题图形OAD (阴影部分)又直线230x y +-=与x 轴、y 轴的交点分别为3(3,0),(0,)2A D ,所以三角形OAD 的面积为11393.224S =⨯⨯=……10分∴所求事件的概率为.S P S ===19341216………………12分17.(本小题满分12分)如图, 已知点(3,4),(2,0),A C 点B 在第二象限,且3OB =,O 为坐标原点,记AOC θ∠=.(Ⅰ)求sin2θ的值;(Ⅱ)若7AB =,求BOC ∆的面积.解:(1)A 点的坐标为(3,4),5OA ∴==43sin ,cos 55θθ∴== ………………3分 24sin 22sin cos 25θθθ==……………6分 (2)(解法一)在OAB ∆中, 5,3,7OA OB AB ===,2225371c o s 2532A OB +-∴∠==-⨯⨯, 第17题图0180A O B <∠<︒,sin AOB ∴∠=314sin sin =sin cos cos sin 525BOC AOB AOB AOB θθθ∠=∠+∠+∠-⨯∴()………10分BOC ∴∆的面积1S sin 2OB OC BOC =⋅⋅∠=………………12分B 1C 1A 1CDPAB(解法二)设(,)B x y ,由3OB =,7AB =得22229(3)(4)49x y x x ⎧+=⎪⎨-+-=⎪⎩, ………8分解得:y =y = 又点B在第二象限,故1210y =. ………10分 BOC ∴∆的面积1S 2OC y =⋅=………12分18.(本小题满分14分)在直三棱柱111C B A ABC -中, AD ⊥平面1A BC ,其垂足D 落在直线1A B 上. (Ⅰ)求证:B A BC 1⊥; (Ⅱ)若AD =2==BC AB ,P 为AC 的中点,求三棱锥BC A P 1-的体积.(Ⅰ)证明:三棱柱 111C B A ABC -为直三棱柱,∴⊥A A 1平面ABC ,又⊂BC 平面ABC ,∴BC A A ⊥1 ------------------------------------------------------2分AD ⊥平面1A BC ,且⊂BC 平面1A BC , ∴BC AD ⊥.又 ⊂1AA 平面AB A 1,⊂AD 平面AB A 1,A AD A A =⋂1,∴BC ⊥平面1A AB ,----------------------------5分 第18题图又⊂B A 1平面BC A 1,∴ B A BC 1⊥-----------------------------------7分(2)在直三棱柱111C B A ABC - 中,⊥A A 1AB .AD ⊥平面1A BC ,其垂足D 落在直线1A B 上,∴B A AD 1⊥.在Rt ABD ∠∆中,AD =AB BC ==2,sin AD ABD AB ∠==,060ABD ∠= 在1Rt ABA ∠∆中,tan AA AB =⋅=0160------------------------9分 由(1)知BC ⊥平面1A AB ,⊂AB 平面AB A 1,从而AB BC ⊥2222121=⨯⨯=⋅=⋅∆BC AB S ABC P 为AC 的中点,121==∆∆ABC BCP S S -----------------------11分 ∴=-BCA P V111111333A BCP BCP V S A A -∆=⋅=⨯⨯=---------------------14分 19.(本题满分14分)已知函数3211()(,)32a f x x x bx a ab +=-++∈R ,且其导函数()f x '的图像过原点. (Ⅰ)当1a =时,求函数()f x 的图像在3x =处的切线方程; (Ⅱ)若存在0x <,使得()9f x '=-,求a 的最大值; (Ⅲ)当0a >时,求函数()f x 的零点个数.解: 3211()32a f x x x bx a +=-++,2()(1)f x x a xb '=-++由(0)0f '=得 0b =,()(1)f x x x a '=--.---------------------2分(Ⅰ) 当1a =时, 321()13f x x x =-+,()(2)f x x x '=-,(3)1f =,(3)3f '=所以函数()f x 的图像在3x =处的切线方程为13(3)y x -=-,即380x y --=--------------------4分(Ⅱ) 存在0x <,使得()(1)9f x x x a '=--=-,991()())6a x x xx --=--=-+-⋅-=,7a ≤-,当且仅当3x =-时,7.a =-所以a 的最大值为7-. 9分 (Ⅲ) 当0a >时,,(),()x f x f x '的变化情况如下表:----------11分()f x 的极大值(0)f a =>,()f x 的极小值3321111(1)(1)3()06624f a a a a a ⎡⎤+=-+=-+-+<⎢⎥⎣⎦又14(2)0,3f a -=--<213()(1)32f x x x a a ⎡⎤=-++⎢⎥⎣⎦,3((1))02f a a +=>.所以函数()f x 在区间()32,0,(0,1),(1,(1))2a a a -+++内各有一个零点, 故函数()f x 共有三个零点。

深圳市2019年高三年级第二次调研考试数学(文科)试题(含答案)

深圳市2019年高三年级第二次调研考试数学(文科)试题(含答案)

2019年深圳市高三第二次调研考试文科数学试题答案及评分参考第Ⅰ卷一.选择题) ()lnh x a x=的凹凸性以及(), ()g x h x均过点()1,1,故可研究()h x在()1,1处的切线即可.二.填空题:13.414.115.2316.2π316【解法1】设A BD'∆的外接圆半径为r,2A DBθ'∠=,其中π(0,)2θ∈.由正弦定理易得市教育学研究院教育科4sin 2sin 2r θθ=,故1cos r θ=解得1cos =2θ,所以A DB '∠2π=2=3θ. 【解法2】设A BD '∆的外接圆半径为r ,2A DB θ'∠=,其中π(0,)2θ∈,并设A B '中点为M ,DM b =,A M a '=,则有222()a b r r +−=,由于224a b +=,由此可得2br =,又因为18.(本小题满分12分)某网店经销某商品,为了解该商品的月销量y (单位:千件)与售价x (单位:元/件)之间的关系,收集了5组数据进行了初步处理,得到如下数表:(1)统计学中用相关系数r 来衡量两个变量之间线性相关关系的强弱,若[0.75,1]r ∈,则市教育学研究院 教育科认为相关性很强;若[0.3,0.75)r ∈,则认为相关性一般;若[0,0.25]r ∈,则认为相关性较弱. 请计算相关系数r ,并说明y 与x 之间的线性相关关系的强弱(精确到0.01);(2)求y 关于x 的线性回归方程;(3)根据(2)中的线性回归方程,应将售价x 定为多少,可获取最大的月销售金额?解:(1)由表中数据和附注中的参考数据得,7x =,5y =, ………………………………1分 在边长为4的正方形ABCD 中,点E 、F 分别为边AB 、AD 的中点,以CE 和CF 为折痕把△DFC 和△BEC 折起,使点B 、D 重合于点P 位置,连结PA ,得到如图所示的四棱锥P AECF −.(1)在线段PC 上是否存在一点G ,使PA 与平面EFG 平行,若存在,求PG GC的值; 若不存在,请说明理由. 市教育科学研究院教育科(2)求点A 到平面PEC 的距离.解:(1)线段PC 上的点G 满足13PG GC =时,PA 与平面EFG 平行. ………1分 证明如下: 连结EF ,EG ,FG ,AC ,记AC 与EF 的交点为O ,连结OG . 在正方形ABCD 中, ∵E 、F 分别为边AB 、AD 的中点, ∴13AO OC =, ……………………2分 故13AO PG OC GC ==, ……………………3分 ∴ PA // OG . ……………………4分 ∵PA EFG ⊄平面,OG EFG ⊂平面, ∴ //PA EFG 平面 . ……………………6分 (2)解法一:在正方形ABCD 中,AB BC ⊥,AD CD ⊥, 翻折后PC PE ⊥,PC PF ⊥, 又PE PF P =,PC ∴⊥平面PEF . ……………………8分 记AC 与EF 的交点为O ,连结PO ,可知△OPC 为直角三角形,2OP =,4PC =,32OC =, 设P 到直线AC 的距离为h ,4232h =⋅,43h ∴=. ……………………9分 ,,PC EF AC EF ACPC C ⊥⊥=, ∴EF PAC ⊥平面 EF AECF ⊂平面,∴ PAC AEC ⊥平面平面∵ =PAC AEC AC 平面平面∴ △OPC 斜边OC 上的高h 即为三棱锥-P AEC 的高. ……………………10分1114162433239P AEC AEC V S h −∆∴=⋅⋅=⨯⨯⨯⨯=, 142PCE S PC PE ∆=⋅⋅=,设点A 到平面PCE 的距离为h ', A B D E FP O 市教育科学研究院教育科33A PCE PCE −∆41639h '∴=,解得4=3h '. …………………12分 解法二:在正方形ABCD 中,AB BC ⊥,AD CD ⊥,翻折后PC PE ⊥,PC PF ⊥, 又PEPF P =,PC ∴⊥平面PEF , ……………………8分,,PC EF AC EF ACPC C ⊥⊥=,∴ EF PAC ⊥平面,118=22V V S OE ∴=⋅⋅=⨯⨯又PE PF P =,AC 与EF 的交点为可知△OPC 为直角三角形,易得222421=⋅⋅=ΔPOCS . ……………………9分 ,,PC EF AC EF ACPC C ⊥⊥=,∴EF PAC ⊥平面,3422231=⋅⋅=∴E-POC V ,BCDEFPO市教育学研教育科-3339E PAC E POC −又142PCE S PC PE ∆=⋅⋅=,设点A 到平面PCE 的距离为h , 1433A PCE PCE V S h h −∆∴=⋅⋅=⋅,416h ∴=,解得4=h . …………………12分 (2)法一:不妨设1122(,),(,)A x y B x y ,0(,2)P x −,由(1)可知112PA k x =,即直线PA 的方程为1111()2−=−y y x x x , 即111:2PA l y x x y =−,同理可得221:2PB l y x x y =−,…………………………5分市教育科学研教育科因为切线PA ,PB 均过点0(,2)P x −, 所以0110222222x x y x x y ⎧−=−⎪⎪⎨⎪−=−⎪⎩, ……………6分所以1122(,),(,)x y x y 为方程22x x y −=−的两组解, 所以直线AB 的方程为02x x y −=−,即0:2AB xl y x =+.…………………7分又点P 在直线2y =−,所以1224x x=−,128x x =−, …………………………7分设直线AB 的方程为y kx m =+,联立24x y y kx m⎧=⎨=+⎩,可得2440x kx m −−=,由韦达定理得124x x k +=,1248x x m =−=−,可得2m =,(2,2)P k −,…………………………………………………………8分市教育学研究院教育科所以||AB == …………………9分 又因为点P 到直线AB的距离为2d =, ……………………………10分所以3222127||4(2)22ABP S AB d k ∆=⋅==+=,…11分…………………………5分(2) 证法一:原不等式等价于e 12e 0x x x a ax a−−+−≥. ………………6分 令e 12()e x x g x x a ax a =−−+−,则2(1)(e 1)()x x a x g x ax −−−'=.…………………7分 当1a ≥时,e 1e 1x xa x x −−≥−−,…………………8分市教育学究院教育科令()e 1xh x x =−−,则当0x >时,()e 10xh x '=−>,∴ 当0x >时,()h x 单调递增,即()(0)0h x h >=, ………………………10分∴ 当01x <<时,()0g x '<;当1x =时,()0g x '=;当1x >时,()0g x '>, ∴ ()(1)0g x g ≥=. ………………………11分∴min ()10h x h ==(), …………………11分 ∴()0h x ≥, 即e 1e 20x x x x−−−+≥, 从而,对任意的1a ≥,当0x >时,()(+e)f x x a x ≥. …………………………12分市教育学研究院教育科思路2: 令()21+e ()e xx xx ϕ−=,则(1)(e 3)()e xx x x ϕ−−+−'=.()0 3e 1x x ϕ'>⇒−<<,()0 103e x x x ϕ'<⇒><<−或.∴()x ϕ在(0,3e)−上单调递减,在(3e 1)−,上单调递增,在(1+)∞,上单调递减. …………………………11分②—(i ):若22e 1a ≤<−,则()(0)1e +20h a =−≤. ∵ 2ln(1)0h h a ⎛⎫<= ⎪⎝⎭∴ 当()0,1x ∈时,()=()0g x h x '<;当()1+x ∈∞,时,()=()0g x h x '>. 与①同,不等式成立. …………………………9分市教育学研究院教育科②—(ii ):若21e 1a ≤<−,则()(0)1e +2>0h a =−, ∵ 2ln(1)0h h a ⎛⎫<= ⎪⎝⎭, ∴ 020,ln x a ⎛⎫⎛⎫∃∈⎪ ⎪⎝⎭⎝⎭,使得()00h x =,且当()00,x x ∈时,()=()0g x h x '>;当()01x x ∈,||2||ON OM =,求△2MC N 的面积.解:(1)由2cos ,sin αα=⎧⎨=⎩x y 消去参数α可得1C 的普通方程为2214x y +=,……………1分 把cos x ρθ=,sin y ρθ=代入,得22(cos )(sin )14ρθρθ+=, 市教育学研究院教育科即222244cos 4sin 13sin ρθθθ==++, 所以1C 的极坐标方程为22413sin ρθ=+; ………………………3分把cos x ρθ=,sin y ρθ=代入22(2)4x y −+=,得4cos ρθ=,所以2C 的极坐标方程为4cos ρθ=. ………………………5分(1)当2m =时,求不等式()3f x >的解集;(2)证明:1()3(1)f x m m +≥−.解:(1)当2m =时,1()|2|||2f x x x =−++, ………………………1分 市教育学研究院教育科①当12x ≤−时,原不等式等价于1(2)()32x x −−+>,解得34x <−,……………2分 ②当122x −<<时,原不等式等价于532>,不等式无解, ……………3分 ③当2x ≥时,原不等式等价于()12+32x x ⎛⎫−+> ⎪⎝⎭,解得94x >,………………4分 综上,不等式()3f x >的解集为39(,4; ………………5分 ()f x m ∴≥()f x m ∴+市教育学研究院教育科。

2019年广东省高考数学二模试卷(文科)及答案及解析

2019年广东省高考数学二模试卷(文科)及答案及解析

2019年广东省高考数学二模试卷(文科)一、选择题(本大题共12小题,共60.0分)1.设i为虚数单位,则复数z=i(2-i)的共轭复数=()A. B. C. D.2.已知集合A={x|-1<x<6},集合B={x|x2<4},则A∩(∁R B)=()A. B. C. D.3.在样本的频率直方图中,共有9个小长方形,若中间一个长方形的面积等于其他8个小长方形面积的和的,且样本容量为200,则中间一组的频数为()A. B. C. 40 D. 504.设向量与向量垂直,且=(2,k),=(6,4),则下列下列与向量+共线的是()A. B. C. D.5.设S n为等差数列{a n}的前n项和,若公差d=1,S9-S4=10,则S17=()A. 34B. 36C. 68D. 726.某几何体的三视图如图所示,三个视图都是半径相等的扇形,若该几何体的表面积为,则其体积为()A.B.C.D.7.阿基米德(公元前287年-公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴与短半轴的乘积.若椭圆C的对称轴为坐标轴,焦点在y轴上,且椭圆的离心率为,面积为12π,则椭圆C的方程为()A. B. C. D.8.函数f(x)在(-∞,+∞)单调递增,且为奇函数.已知f(1)=2,f(2)=3,则满足-3<f(x-3)<2的x的取值范围是()A. B. C. D.9.某轮胎公司的质检部要对一批轮胎的宽度(单位:mm)进行质检,若从这批轮胎中随机选取3个,至少有2个轮胎的宽度在195±3内,则称这批轮胎基本合格.已知这批轮胎的宽度分别为195,196,190,194,200,则这批轮胎基本合格的概率为()A. B. C. D.10.函数的部分图象不可能为()A. B.C. D.11.若函数f(x)=x3-ke x在(0,+∞)上单调递减,则k的取值范围为()A. B. C. D.12.已知直线x=2a与双曲线C:(a>0,b>0)的一条渐近线交于点P,双曲线C的左、右焦点分别为F1,F2,且cos∠PF2F1=-,则双曲线C的离心率为()A. B. C. 或 D. 或二、填空题(本大题共4小题,共20.0分)13.若函数f(x)=log2(x+a)的零点为-2,则a=______.14.若x,y满足约束条件,则的最大值为______.15.在四棱锥P-ABCD中,PA与矩形ABCD所在平面垂直,AB=3,AD=,PA=,则直线PC与平面PAD所成角的正切值为______.16.在数列{a n}中,a n+1=2(a n-n+3),a1=-1,若数列{a n-pn+q)为等比数列,其中p,q为常数,则a p+q=______.三、解答题(本大题共7小题,共82.0分)17.在△ABC中,AC=3,C=120°.(1)若AB=7,求BC边的长;(2)若cos A=sin B,求△ABC的面积.18.《最强大脑》是江苏卫视推出的大型科学竞技真人秀节目.节目筹备组透露挑选选手的方式:不但要对选手的空间感知、照相式记忆能力进行考核,而且要让选手经过名校最权威的脑力测试,120分以上才有机会入围.某重点高校准备调查脑力测试成绩是否与性别有关,在该高校随机抽取男、女学生各100名,然后对这200名学生进行脑力测试.规定:分数不小于120分为“入围学生”,分数小于120分为“未入围学生”.已知男生入围24人,女生未入围80人.(1)根据题意,填写下面的2×2列联表,并根据列联表判断是否有90%以上的把握认为脑力测试后是否为“入围学生”与性别有关.(2)用分层抽样的方法从“入围学生”中随机抽取11名学生.(ⅰ)求这11名学生中女生的人数;(ⅱ)若抽取的女生的脑力测试分数各不相同(每个人的分数都是整数),求这11名学生中女生测试分数的平均分的最小值.附:K2=,其中n=a+b+c+d.19.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面A1B1C1,AC⊥AB,AC=AB=4,AA1=6,点E,F分别为CA1与AB的中点.(1)证明:EF∥平面BCC1B1.(2)求三棱锥B1-AEF的体积.20.在平面直角坐标系xOy中,直线y=kx+1与抛物线C:x2=4y交于A,B两点.(1)证明:△AOB为钝角三角形.(2)若直线l与直线AB平行,直线l与抛物线C相切,切点为P,且△PAB的面积为16,求直线l的方程.21.已知函数f(x)=x2-(a+1)x+a ln x.(1)当a=-4时,求f(x)的单调区间;(2)已知a∈(1,2],b∈R,函数g(x)=x3+bx2-(2b+4)x+ln x.若f(x)的极小值点与g(x)的极小值点相等,证明:g(x)的极大值不大于.22.在平面直角坐标系xOy中,以坐标原点O为极点,x轴为正半轴建立极坐标系,已知曲线C的极坐标方程为ρ2-4ρcosθ-6ρsinθ+12=0.(1)求曲线C的直角坐标方程;(2)过曲线C上一动点P分别作极轴、直线ρcosθ=-1的垂线,垂足分别为M,N,求|PM|+|PN|的最大值.23.设函数f(x)=|x+1|+|2-x|-k.(1)当k=4时,求不等式f(x)<0的解集;(2)若不等式对x∈R恒成立,求k的取值范围.答案和解析1.【答案】D【解析】解:∵z=i(2-i)=1+2i,∴.故选:D.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.2.【答案】C【解析】解:B={x|x2<4}={x|-2<x<2},则∁R B={x|x≥2或x≤-2},则A∩(∁R B)={x|2≤x<6},故选:C.求出集合B的等价条件,结合补集交集的定义进行求解即可.本题主要考查集合的基本运算,求出集合的等价条件以及利用交集补集的定义是解决本题的关键.3.【答案】D【解析】解:在样本的频率直方图中,共有9个小长方形,中间一个长方形的面积等于其他8个小长方形面积的和的,且样本容量为200,设其他8组的频率数和为m,则由题意得:m+m=200,解得m=150,∴中间一组的频数为=50.故选:D.设其他8组的频率数和为m,则由题意得:m+m=200,由此能求出中间一组的频数.本题考查频数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.4.【答案】B【解析】解:∵;∴;∴k=-3;∴;∴;∴(-16,-2)与共线.故选:B.根据即可得出,从而得出k=-3,从而可求出,从而可找出与共线的向量.考查向量垂直的充要条件,向量坐标的加法和数量积的运算,共线向量基本定理.5.【答案】C【解析】解:因为数列{a n}是等差数列,且S9-S4=10,所以10=5a1+(36d-6d)=5(a1+6d)=5a7,所以a7=2,所以a9=a7+2d=2+2=4,S17===17a9=17×4=68.故选:C.数列{a n}是等差数列,S9-S4=10=5a1+(36d-6d)=5(a1+6d)=5a7,所以a7=2,所以a9=a7+2d=2+2=4,S17= ==17a9,将a9代入可得S17.本题考查了等差数列的前n项和公式,通项公式,属于基础题.6.【答案】A【解析】解:将三视图还原可知该几何体为球体的,S=3×+=,r=,几何体的体积为:=.故选:A.首先把几何体的三视图进行转换,进一步利用表面积公式的应用求出结果.本题考查的知识要点:三视图和几何体的转换,几何体的体积公式和面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.7.【答案】A【解析】解:由题意可得:,解得a=4,b=3,因为椭圆的焦点坐标在y轴上,所以椭圆方程为:.故选:A.利用已知条件列出方程组,求出a,b,即可得到椭圆方程.本题考查椭圆飞简单性质的应用,考查转化思想以及计算能力.8.【答案】A【解析】解:∵f(x)是奇函数,且(1)=2,f(2)=3,∴f(-2)=-3,则不等式-3<f(x-3)<2等价为f(-2)<f(x-3)<f(1),∵f(x)是增函数,∴-2<x-3<1得1<x<4,即x的取值范围是(1,4),故选:A.根据函数奇偶性和单调性的性质将不等式进行转化求解即可.本题主要考查不等式的求解,结合函数奇偶性和单调性的性质进行转化是解决本题的关键.9.【答案】C【解析】解:某轮胎公司的质检部要对一批轮胎的宽度(单位:mm)进行质检,从这批轮胎中随机选取3个,至少有2个轮胎的宽度在195±3内,则称这批轮胎基本合格.这批轮胎的宽度分别为195,196,190,194,200,基本事件总数n==10,至少有2个轮胎的宽度在195±3内包含的基本事件个数m==7,∴这批轮胎基本合格的概率为p==.故选:C.基本事件总数n==10,至少有2个轮胎的宽度在195±3内包含的基本事件个数m=C=7,由此能求出这批轮胎基本合格的概率.本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.10.【答案】B【解析】解:A.由图象知函数的周期T=2π,则=2π得ω=1,此时f(x)=2sin(x-)=-2cosx为偶函数,对应图象为A,故A图象可能B.由图象知函数的周期T=-(-)==,即=,得ω=±3,当ω=3时,此时f(x)=2sin(3x-),f()=2sin(3×-)=2sin≠-2,即B图象不可能,当ω=-3时,此时f(x)=2sin(-3x+),f()=2sin(-3×+)=-2sin≠-2,即B图象不可能,C.由图象知函数的周期T=4π,则=4π得ω=±,当ω=时,此时f(x)=2sin(x-π)=-2sin x,f(π)=-2sin=-1,即此时C图象不可能,当ω=-时,此时f(x)=2sin(-x-π)=2sin x,f(π)=2sin=-1,即此时C图象可能,D.由图象知函数的周期=-=,即t=π,则=π得ω=2,此时f(x)=2sin(2x-),f()=2sin(2×-)=2sin=2,即D图象可能,综上不可能的图象是B,故选:B.根据三角函数的图象判断周期性性以及对称轴是否对应即可得到结论.本题主要考查三角函数图象的识别和判断,利用周期性求出ω以及利用特殊值进行验证是解决本题的关键.注意本题的ω有可能是复数.11.【答案】C【解析】解:∵函数f(x)=x3-ke x在(0,+∞)上单调递减,∴f′(x)=3x2-ke x≤0在(0,+∞)上恒成立,∴k在(0,+∞)上恒成立,令g(x)=,x>0,则,当0<x<2时,g′(x)>0,此时g(x)单调递增,x>2时,g′(x)<0,g(x)单调递减故当x=2时,g(x)取得最大值g(2)=,则k,故选:C.令f′(x)≤0在(0,+∞)上恒成立得k在(0,+∞)上恒成立,求出右侧函数的最大值即可得出k的范围.本题考查了导数与函数单调性的关系,函数恒成立问题,属于中档题.12.【答案】B【解析】解:双曲线C的左、右焦点分别为F1(-c,0),F2(c,0),cos∠PF2F1=-,可得sin∠PF2F1==,即有直线PF2的斜率为tan∠PF2F1=,由直线x=2a与双曲线C:(a>0,b>0)的一条渐近线y=x交于点P,可得P(2a,2b),可得=,即有4b2=15(4a2-4ac+c2)=4(c2-a2),化为11c2-60ac+64a2=0,由e=可得11e2-60e+64=0,解得e=或e=4,由2a-c>0,可得c<2a,即e<2,可得e=4舍去.故选:B.设出双曲线的焦点,求得一条渐近线方程可得P的坐标,求得直线PF2的斜率,由两点的斜率公式和离心率公式,可得所求值.本题考查双曲线的方程和性质,主要是渐近线方程和离心率的求法,考查方程思想和运算能力,属于中档题.13.【答案】3【解析】解:根据题意,若函数f(x)=log2(x+a)的零点为-2,则f(-2)=log2(a-2)=0,即a-2=1,解可得a=3,故答案为:3根据题意,由函数零点的定义可得f(-2)=log2(a-2)=0,解可得a的值,即可得答案.本题考查函数的零点,关键是掌握函数零点的定义,属于基础题.14.【答案】【解析】解:设z=,则k得几何意义为过原点得直线得斜率,作出不等式组对应得平面区域如图:则由图象可知OA的斜率最大,由,解得A(3,4),则OA得斜率k=,则的最大值为.故答案为:.设z=,作出不等式组对应得平面区域,利用z得几何意义即可得到结论.本题主要考查直线斜率的计算,以及线性规划得应用,根据z的几何意义,利用数形结合是解决本题的关键.15.【答案】【解析】解:∵在四棱锥P-ABCD中,PA与矩形ABCD所在平面垂直,∴CD⊥AD,CD⊥PA,∵AD∩PA=A,∴CD⊥平面PAD,∴∠CPD是直线PC与平面PAD所成角,∵AB=3,AD=,PA=,∴直线PC与平面PAD所成角的正切值:tan∠CPD===.故答案为:.推导出CD⊥AD,CD⊥PA,从而CD⊥平面PAD,进而∠CPD是直线PC与平面PAD所成角,由此能求出直线PC与平面PAD所成角的正切值.本题考查线面角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理推论证能力、运算求解能力,是中档题.16.【答案】-2【解析】解:数列{a n}中,a n+1=2(a n-n+3),a1=-1,若数列{a n-pn+q)为等比数列,则:,所以:a n+1-p(n+1)+q=2(a n-pn+q)解得:p=2,q=2,故:数列{a n-pn+q}是以-1+2-2=-1为首项,2为公比的等比数列.所以:,整理得:.故:a p+q=a4=-8+8-2=-2,故答案为:-2首先求出数列的通项公式,进一步求出结果.本题考查的知识要点:数列的通项公式的求法及应用,主要考察学生的运算能力和转换能力,属于基础题型.17.【答案】解:(1)由余弦定理得AB2=BC2+AC2-2BC×AC×cos C,代入数据整理得BC2+3BC-40=0,解得BC=5(BC=-8舍去).(2)由cos A=sin B及C=120°,得cos(60°-B)=sin B,展开得cos B+sin B-sin B=0,即sin B=cos B,tan B==,所以B=30°.从而A=60°-B=30°,即A=B=30°,所以BC=AC=3.故△ABC的面积为×3×3×sin120°=.【解析】(1)直接利用余弦定理和一元二次方程的解的应用求出结果.(2)利用三角函数关系式的变换和三角形的面积公式的应用求出结果.本题考查的知识要点:三角函数关系式的变换,正弦定理余弦定理和三角形面积的应用,主要考察学生的运算能力和转换能力,属于基础题型.1…(4分)因为K2的观测值k==<2.706,…(6分)所以没有90%以上的把握认为脑力测试后是否为“入围学生”与性别有关…(7分)(2)(ⅰ)这11名学生中,被抽到的女生人数为20×=5…(9分)(ⅱ)因为入围的分数不低于120分,且每个女生的测试分数各不相同,每个人的分数都是整数,所以这11名学生中女生的平均分的最小值为×(120+121+122+123+124)=122…(12分)【解析】(1)由题意填写列联表,计算观测值,对照临界值得出结论;(2)(ⅰ)根据分层抽样原理计算被抽到的女生人数;(ⅱ)由题意计算所求平均分的最小值.本题考查了列联表与独立性检验的应用问题,也考查了分层抽样原理与平均数的计算问题,是基础题.19.【答案】(1)证明:如图,连接BC1.(1分)在三棱柱ABC-A1B1C1中,E为AC1的中点.(2分)又因为F为AB的中点,所以EF∥BC1.(3分)又EF⊄平面BCC1B1,BC1⊂平面BCC1B1,所以EF∥平面BCC1B1.(5分)(或先证面面平行,再证线面平行,也是常见的方法,阅卷时应同样给分.)(2)解:因为AC⊥AB,AA1⊥AC,AA1∩AB=A,所以AC⊥平面ABB1A1,(7分)又AC=4,E为A1C的中点,所以E到平面ABB1A1的距离为:×4=2.(9分)因为△AB1F的面积为:×2×6=6,(10分)所以==×2×6=4.(12分)【解析】(1)连接BC1.证明EF∥BC1,然后证明EF∥平面BCC1B1.(2)说明AC⊥平面ABB1A1,求出E到平面ABB1A1的距离,通过=求解体积即可.本题考查直线与平面平行的判断定理以及性质定理的应用,几何体的体积的求法,考查空间想象能力以及计算能力.20.【答案】(1)证明:设A(x1,y1),B(x2,y2),联立,得x2-4kx-4=0,(1分)则x1x2=-4,(2分)所以y1y 2==1,(3分)从而•=x1x2+y1y2=-3<0,(4分)则∠AOB为钝角,故△AOB为钝角三角形.(5分)(得到x1x2,y1y2的值分别给(1分);若只是得到其中一个,且得到•=-3<0,可以共给(3分)).(2)解:由(1)知,x1+x2=4k,y1+y2=k(x1+x2)+2=4k2+2,(6分)则|AB|=y1+y2+p=4k2+4.(7分)由x2=4y,得y=,y'=,设P(x0,y0),则x0=2k,y0=k2,则点P到直线y=kx+1的距离d==.(9分)从而△PAB的面积S=d|AB|=2(k2+1)=16,(10分)解得k=±,(11分)故直线l的方程为y=±x-3.(12分)【解析】(1)设A(x1,y1),B(x2,y2),联立,得x2-4kx-4=0,利用韦达定理以及向量的数量积证明△AOB为钝角三角形.(2)求出|AB|=y1+y2+p=4k2+4,结合函数的导数,利用斜率关系,求出点P到直线y=kx+1的距离,写出|AB|,利用△PAB的面积,转化求解即可.本题考查直线与抛物线的位置关系的综合应用,函数的导数的应用,考查转化思想以及计算能力.21.【答案】(1)解:当a=-4时,f(x)=x2+3x-4ln x,定义域为(0,+∞).f'(x)=x+3-=.当x>1时,f'(x)>0,f(x)单调递增,则f(x)的单调递增区间为(1,+∞);当0<x<1时,f'(x)<0,f(x)单调递减,则f(x)的单调递减区间为(0,1).(2)证明:f'(x)==,g'(x )=3x2+2bx-(2b +4)+=.令p(x)=3x2+(2b+3)x-1.因为a∈(1,2],所以f(x)的极小值点为a,则g(x)的极小值点为a,所以p(a)=0,即3a2+(2b+3)a-1=0,即b=,此时g(x)的极大值为g(1)=1+b-(2b+4)=-3-b=-3-=a--.因为a∈(1,2],所以a-≤3-=.故g(x)的极大值不大于.【解析】(1)当a=-4时,f(x)=x2+3x-4ln x,定义域为(0,+∞).f'(x)=x+3-=.即可得出单调区间.(2)f'(x)=,g'(x)=3x2+2bx-(2b+4)+=.令p(x)=3x2+(2b+3)x-1.由a∈(1,2],可得f(x)的极小值点为a,则g(x)的极小值点为a,可得p(a)=0,b=,此时g(x)的极大值为g(1)=1+b-(2b+4)代入利用函数的单调性即可得出.本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、转化方法,考查了推理能力与计算能力,属于难题.22.【答案】解:(1)由ρ2-4ρcosθ-6ρsinθ+12=0,得x2+y2-4x-6y+12=0,即(x-2)2+(y-3)2=1,此即为曲线C的直角坐标方程.(2)由(1)可设P的坐标为(2+cosα,3+sinα),0≤α<2π,则|PM|=3+sinα,又直线ρcosθ=-1的直角坐标方程为x=-1,所以|PN|=2+cosα+1=3+cosα,所以|PM|+|PN|=6+sin(α+),故当α=时,|PM|+|PN|取得最大值为6+.【解析】(1)由ρ2-4ρcosθ-6ρsinθ+12=0,得x2+y2-4x-6y+12=0,即(x-2)2+(y-3)2=1,此即为曲线C的直角坐标方程.(2)由(1)可设P的坐标为(2+cosα,3+sinα),0≤α<2π,求出|PM|和|PN|后相加,用三角函数的性质求得最大值.本题考查了简单曲线的极坐标方程,属中档题.23.【答案】解:(1)k=4时,函数f(x)=|x+1|+|2-x|-4,不等式f(x)<0化为|x+1|+|2-x|<4,当x<-1时,不等式化为-x-1+2-x<4,解得-<x<-1,当-1≤x≤2时,不等式化为x+1+2-x=3<4恒成立,则-1≤x≤2,当x>2时,不等式化为x+1+x-2<4,解得2<x<,综上所述,不等式f(x)<0的解集为(-,);(2)因为f(x)=|x+1|+|2-x|-k≥|x+1+2-x|-k=3-k,所以f(x)的最小值为3-k;又不等式对x∈R恒成立,所以3-k≥,所以,解得k≤1,所以k的取值范围是(-∞,1].【解析】(1)k=4时,利用分类讨论思想求出不等式f(x)<0的解集,再求它们的并集;(2)利用绝对值不等式的性质求出f(x)的最小值,再把不等式化为3-k≥,求出不等式的解集即可.本题考查了不等式恒成立应用问题,也考查了含有绝对值的不等式解法与应用问题,是中档题.。

2019年广东省高考数学二模试卷(文科)

2019年广东省高考数学二模试卷(文科)

A.
B.
C.
D.
8.(5 分)(2019•广东二模)函数 f(x)在(﹣∞,+∞)单调递增,且为奇函数.已知 f
(1)=2,f(2)=3,则满足﹣3<f(x﹣3)<2 的 x 的取值范围是( )
A.(1,4)
B.(0,5)
C.(1,5)
D.(0,4)
9.(5 分)(2019•广东二模)某轮胎公司的质检部要对一批轮胎的宽度(单位:mm)进行
(1)若 AB=7,求 BC 边的长;
(2)若 cosA= sinB,求△ABC 的面积.
第3页(共27页)
18.(12 分)(2019•新乡三模)《最强大脑》是江苏卫视推出的大型科学竞技真人秀节目.节 目筹备组透露挑选选手的方式:不但要对选手的空间感知、照相式记忆能力进行考核, 而且要让选手经过名校最权威的脑力测试,120 分以上才有机会入围.某重点高校准备调 查脑力测试成绩是否与性别有关,在该高校随机抽取男、女学生各 100 名,然后对这 200 名学生进行脑力测试.规定:分数不小于 120 分为“入围学生”,分数小于 120 分为“未 入围学生”.已知男生入围 24 人,女生未入围 80 人. (1)根据题意,填写下面的 2×2 列联表,并根据列联表判断是否有 90%以上的把握认 为脑力测试后是否为“入围学生”与性别有关.
故选:B. 【点评】考查向量垂直的充要条件,向量坐标的加法和数量积的运算,共线向量基本定
理.
5.(5 分)(2019•广东二模)设 Sn 为等差数列{an}的前 n 项和,若公差 d=1,S9﹣S4=10,
则 S17=( )A.34B.36C.68D.72
【考点】85:等差数列的前 n 项和. 菁优网版权所有
【分析】设其他 8 组的频率数和为 m,则由题意得:m+ m=200,由此能求出中间一组

2019年最新(统考)广东省高三下学期第二次模拟数学(文)试卷及答案解析

2019年最新(统考)广东省高三下学期第二次模拟数学(文)试卷及答案解析




A. 1
B. 1, 2
C. 2,3
D. 1, 2,3
2.已知 x 、 y R ,i 是虚数单位,若 x yi 与 A. 2 B. 1 C.1
2i 互为共轭复数,则 x y ( 1 i

D .2
3.某同学利用课余时间做了一次社交软件使用习惯调查,得到 2 2 列联表如下: 偏爱微信 30 岁以下 4 偏爱 QQ 8 合计 12
A.9
B.18
C.20
D.35
7.已知向量 AB 2 , CD 1 ,且 AB 2CD 2 3 ,则向量 AB 和 CD 的夹角为 ( ) B. 60 C. 120 D. 150 )
uu u rBiblioteka uuu ruu u r
uuu r
uuu r
uuu r
A. 30
8.在区间 1,0 上任取两实数 x 、 y ,则 y 3x 的概率是( A.
4.已知双曲线 ( A.1 )
x2 y 2 1( a 0 )的一个焦点与抛物线 y 2 8x 的焦点重合,则 a 2 a 3
B.2
C. 13 )
D. 19
5.下列命题中,正确的是( A.命题: “ x 0,


, sin x cos x ”的否定是“ x0 0, , sin x cos x ” 4 4

3
时取得最大值 2,若 f
8 5 ,且 ,则 5 3 6
sin 2 的值为( 3
A.

12 25
B.
12 25
C.
24 25
D.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学精品复习资料2019.5绝密★启用前 试卷类型:A20xx 年深圳市高三年级第二次调研考试数学(文科)20xx .5本试卷共6页,21小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损,监考教师分发的考生信息条形码是否正确;之后务必用0.5毫米黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,同时,将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上。

不按要求填涂的,答案无效。

3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答。

漏涂、错涂、多涂的答案无效。

5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回。

参考公式:柱体的体积公式V Sh =,其中S 是柱体的底面积,h 是柱体的高. 样本数据1x ,2x ,,n x 的方差2211()n k k S x x n ==-∑,其中11n k k x x n ==∑.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.{}1234U =若,,,,{}12M =,,{}23N =,,则 U MN =()ðA .{}2B .{}4C .{}1 23,,D .{}1,2,42.设i 是虚数单位,则复数2i 1i +-()()在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.命题:“若21x <,则11x -<<”的逆否命题是A .若21x ≥,则1x ≥,或1x ≤-B .若11x -<<,则21x <C .若1x >,或1x <-,则21x >D .若1x ≥,或1x ≤-,则21x ≥4.已知等差数列{}n a 中,6104202a a a +==,,则12a 的值是A .18B .20C .26D .285.在ABC ∆中,若sin :sin :sin 4A B C =ABC ∆是A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形6.若函数y f x =()的图象如左下图所示,则函数1y f x =-+()的图象大致为7.若实数x y ,满足10x y x y ≤⎧⎪≥⎨-≥⎪⎩,则x y +的取值范围是 A .20-[,] B .01[,] C .12[,] D .02[,]8.两个完全相同的长方体的长、宽、高分别为5cm ,4cm ,3cm ,把它们重叠在一起组成一个对角线最长的新长方体,则该最长对角线的长度是 AB.C.D.9.如图,在OAB ∆中,P 为线段AB 上的一点,OP xOA yOB =+, 且2BP PA =,则A .2133x y ==,B .1233x y ==,C .1344x y ==,D .3144x y ==,10.若曲线21:20C y px p =>()的焦点F 恰好是曲线22222:100x y C a b a b-=>>(,)的右焦点,A BCDD. C.B.A. (xf y =y f x =()且1C 与2C 交点的连线过点F ,则曲线2C 的离心率为 A1B1CD.12二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.上海世博会深圳馆1号作品《大芬丽莎》是由大芬村507名画师集体创作的999幅油画组合而成的世界名画《蒙娜丽莎》,因其诞生于大芬村,因此被命名为《大芬丽莎》.根据下图所示的频率分布直方图,估计这507个画师中年龄在[)30 35,岁的人数约为 人(精确到整数).12.如图所示的程序框图输出的结果是 .13.已知3x >,则函数23y x x =+-的最小值为 . (二)选做题(14、15题,考生只能从中选做一题,如两题都做,只按第14题计分) 14.(坐标系与参数方程选做题)极坐标方程分别为4cos ρθ=和8sin ρθ=-的两个圆的圆心距为 . 15.(几何证明选讲选做题)已知圆的直径10AB =,C 为圆上一点,过C 作CD AB ⊥于D (AD BD <),若4CD =,(第11题图)(第12题图)则AC 的长为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知向量m (sin cos )x x =-,,n (cos sin )θθ=-,,其中0πθ<<.函数f x =()m n ⋅在πx =处取最小值.(Ⅰ)求θ的值;(Ⅱ)设A ,B ,C 为ABC ∆的三个内角,若sin 2sin B A =,12f C =(),求A .17.(本小题满分13分)汽车是碳排放量比较大的行业之一.欧盟规定,从20xx 年开始,将对2CO 排放量超过130g/km 的M1型新车进行惩罚.某检测单位对甲、乙两类M1型品牌车各抽取5辆进行2CO 排放量检测,记录如下(单位:g/km ).经测算发现,乙品牌车2CO 排放量的平均值为120x =乙g/km .(Ⅰ)从被检测的5辆甲类品牌车中任取2辆,则至少有一辆不符合2CO 排放量的概率是多少?(Ⅱ)若90130x <<,试比较甲、乙两类品牌车2CO 排放量的稳定性.18.(本小题满分14分)一个三棱柱111ABC A B C -直观图和三视图如图所示(主视图、俯视图都是矩形,左视图是直角三角形),设E 、F 分别为1AA 和11B C 的中点.(Ⅰ)求几何体11E B C CB -的体积; (Ⅱ)证明:1//A F 平面1EBC ; (Ⅲ)证明:平面EBC ⊥平面11EB C .19.(本小题满分13分)已知函数29()(3)e 4x fx x x =-+,其中e 是自然对数的底数.(Ⅰ)求函数f x ()的图象在0x =处的切线方程; (Ⅱ)求函数f x ()在区间[]1 2-,上的最大值与最小值.主视图20.(本小题满分14分)已知圆22:50C x t y t ++=>()()和椭圆2222:1x y E a b+=0a b >>()的一个公共点为02B (,).F 为椭圆E 的右焦点,直线BF 与圆C 相切于点B .(Ⅰ)求t 值和椭圆E 的方程;(Ⅱ)圆C 上是否存在点M ,使M BF ∆为等腰三角形?若存在,求出点M 的坐标.21.(本小题满分14分)已知数列{}n a 满足:1221,222,2n n n na n a n a n +⎧+⎪⎪=⎨⎪+⎪⎩为正奇数为正偶数. (Ⅰ)问数列{}n a 是否为等差数列或等比数列?说明理由; (Ⅱ)求证:数列22n n a ⎧⎫⎨⎬⎩⎭是等差数列,并求数列{}2n a 的通项公式;(Ⅲ)设21n n b a -=,求数列{}n b 的前n 项和n S .20xx 年深圳市高三年级第二次调研考试数学(文科)参考答案及评分标准说明:1、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2、对于计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3、解答右端所注分数,表示考生正确做到这一步应得的累加分数.4、只给整数分数,选择题和填空题不给中间分数. 一、选择题:本大题共10小题,每小题5分,共50分.二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.177; 12.54;(如写45A = 不扣分) 13.223+; (二)选做题(14、15题,考生只能从中选做一题)14.52; 15.54三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 解:(Ⅰ)()f x =m n ⋅sin cos cos sin x x θθ=+)sin(θ+=x ……………………………2分又 函数()f x 在πx =处取最小值,1)sin(-=+∴θπ , 即s i n 1θ=- ……………………………3分又0πθ<<,π2θ∴=…………………………5分 π()sin()cos 2f x x x ∴=+= ………………………………6 分 (Ⅱ)法一:∵21)(=C f ,21cos =∴C 0πC <<, π3C ∴=. ………………………………8 分πA B C ++=,∴ 2π3B A =-………………………………9分 代入A B sin 2sin =中,2πsin()2sin 3A A ∴-=, 2π2πsincos cos sin 2sin 33A A A ∴-=, 33t a n =∴A , ……………10分0πA <<,π6A ∴=. …………………12分 (Ⅱ)法二:∵21)(=C f ,21cos =∴C0πC <<,π3C ∴=. ………………………………8 分AB sin 2sin = ,由正弦定理有a b 2=. ……………………………9分又由余弦定理得222222π2cos 422cos33c a b ab C a a a a a =+-=+-⋅⋅= 222b c a =+∴,π2B ∴=……………………………11分πA B C ++=,π6A ∴=. ……………………………12分 17.(本小题满分13分)解:(Ⅰ)从被检测的5辆甲类品牌车中任取2辆,共有10种不同的2CO 排放量结果: 110,80;120,80;140,80;150,80;120,110;140,110;150,110;140,120;150,120;150,140 …………………3分设“至少有一辆不符合2CO 排放量”为事件A ,则事件A 包含以下7种不同的结果:140,80;150,80;140,110;150,110;140,120;150,120;150,140 ……………………………5分所以,7.0107)(==A P ……………………………6分 答:至少有一辆不符合2CO 排放量的概率为7.0 ……………………………7分(Ⅱ)由题可知,120==乙甲x x ,220=+y x …………………………7分()22580120S =-+甲()+-2120110()+-2120120()+-2120140()30001201502=-25S =乙()+-2120100()+-2120120()+-2120x ()+-2120y ()2120160-+=2000()+-2120x ()2120-y…………………………8分220,x y +=∴25S =乙+2000()+-2120x ()2100-x , 令t x =-120,13090<<x ,1030<<-∴t ,25S ∴=乙+2000+2t ()220+t ,2255S S ∴-=乙甲22406002(30)(10)0t t t t +-=+-< …………………………12分120==乙甲x x ,22<S S 乙甲,∴乙类品牌车碳排放量的稳定性好。

相关文档
最新文档