概率论多维随机变量及其分布函数

合集下载

多维随机变量及其概率分布

多维随机变量及其概率分布

独立性在概率论中的重要性
简化计算
01
独立随机变量的概率计算更加简单,因为可以利用概率的乘法
法则进行计算。
概率模型建立
02
在建立概率模型时,独立性假设可以帮助我们简化模型,并更
好地理解随机现象之间的相互关系。
统计学基础
03
在统计学中,独立性是许多统计方法的基础,如卡方检验、相
关性检验等。
05
多维随机变量的变换与函数
01 02 03
多元统计分析
多维随机变量在多元统计分析中有着广泛的应用,如多元 正态分布、多元t分布和多元卡方分布等。这些分布可以用 来描述和分析多维数据的统计性质,如协方差矩阵、主成 分分析和聚类分析等。
回归分析
在回归分析中,多维随机变量可以用来描述多个自变量和 因变量之间的关系。例如,在多元线性回归模型中,多个 自变量可以作为预测因变量的依据,而因变量则是一个多 维随机变量。
将多维随机变量作为自变量,通过线性函 数关系得到新的多维随机变量。
随机变量的非线性变换与函数
非线性变换
对多维随机变量进行非线性变换,如指数函 数、对数函数等,得到新的多维随机变量。
非线性函数
将多维随机变量作为自变量,通过非线性函 数关系得到新的多维随机变量。
06
多维随机变量的应用实例
在统计学中的应用
02
一维随机变量及其概率分布
离散型随机变量
离散型随机变量的定义
离散型随机变量是在一定范围内取有限个值的随机变量, 通常用大写字母表示,如X。
离散型随机变量的概率分布
离散型随机变量的概率分布可以用概率质量函数(PMF) 表示,它描述了随机变量取每个可能值的概率。
离散型随机变量的期望值和方差

概率论第三章 多维随机变量及其分布

概率论第三章  多维随机变量及其分布

1 3
概率论
y
y x
o
x
概率论
四、课堂练习
设随机变量(X,Y)的概率密度是
f
x,
y
k
6
x
y,
0,
0 x 2,2 y 4, 其它.
(1) 确定常数 k;
(2) 求概率 PX 1,Y 3 .
解 (1) 1 f x, ydxdy
R2
k
2 dx
46
0
2
x
y dy
k
2 dx
46
概率论
同理, Y的分布律为:
P{Y y j} pij ˆ p•j , j 1,2,, i1
分别称pi• (i 1, 2,), 和p• j , (j 1, 2,)为(X, Y)关于 X和关于Y的边缘分布律.
概率论
例1 把一枚均匀硬币抛掷三次,设X为三次 抛掷中正面出现的次数 ,而 Y 为正面出现次数与 反面出现次数之差的绝对值 , 求 (X ,Y) 的分布律 和边缘分布律.
也就是说,对于给定的
不同的 对应
不同的二维正态分布,但它们的边缘分布却都是一样的.
此例表明 由边缘分布一般不能确定联合分布.
概率论
五、小结
1. 在这一讲中,我们与一维情形相对照,介 绍了二维随机变量的边缘分布. 2. 请注意联合分布和边缘分布的关系: 由联合分布可以确定边缘分布; 但由边缘分布一般不能确定联合分布.
随机变量维(X,Y )的概率密度 , 或 称为随机变量 X 和 Y 的联合概 率密度.
概率论
一维随机变量X
连续型
F x x
f tdt
x
X的概率密度函数
f x x R

多维随机变量与分布

多维随机变量与分布

多维随机变量与分布一、引言在概率论与数理统计中,我们经常会遇到多维随机变量及其分布的问题。

多维随机变量是指具有多个分量的随机变量,它们之间可能存在某种关联或者相互依赖的关系。

多维随机变量的分布可以描述每个分量和它们之间的关系,从而帮助我们更好地理解和分析随机现象。

二、多维随机变量的定义与性质1. 多维随机变量的定义多维随机变量由多个分量组成,每个分量都是一个随机变量。

设有n个分量的多维随机变量为(X1, X2, ..., Xn),其中Xi表示第i个分量的随机变量。

2. 多维随机变量的联合分布函数与概率密度函数对于多维随机变量(X1, X2, ..., Xn),我们可以用联合分布函数或联合概率密度函数来描述其分布。

联合分布函数F(x1, x2, ..., xn)定义为:F(x1, x2, ..., xn) = P(X1 ≤ x1, X2 ≤ x2, ..., Xn ≤ xn),其中x1, x2, ..., xn 为任意实数。

如果多维随机变量(X1, X2, ..., Xn)具有联合概率密度函数f(x1, x2, ..., xn),则有:F(x1, x2, ..., x n) = ∫∫...∫f(u1, u2, ..., un)dudv...dw,其中积分区域为u1 ≤ x1, u2 ≤ x2, ..., un ≤ xn。

3. 多维随机变量的边缘分布函数与概率密度函数多维随机变量的边缘分布函数是指将多维随机变量的联合分布函数对除了某个分量之外的所有其他分量积分得到的函数。

边缘分布函数的定义如下:F1(x1) = P(X1 ≤ x1),F2(x2) = P(X2 ≤ x2),..., Fn(xn) = P(Xn ≤ xn)。

同样地,边缘概率密度函数是指将多维随机变量的联合概率密度函数对除了某个分量之外的所有其他分量积分得到的函数。

4. 多维随机变量的独立性与相关性多维随机变量的独立性指的是其中的分量之间没有任何相互依赖的关系。

第四章多维随机变量及其分布

第四章多维随机变量及其分布
20

二维离散型随机变量分布列具有下面的性质: (ⅰ) pij ≥0,i,j= 1,2,…;
(ⅱ)
P
i j
ij
1;


(ⅲ)
P( X xi ) pij pi , i 1,2,;
j 1
P(Y y j ) pij p j , j 1,2,.
概率论与数理统 计
第四章 多维随机变量及其分布
1
第四章

多维随机变量及其分布
4.1 多维随机变量及其分布函数、边缘分布函数
在前一章中,我们所讨论的随机现象只涉及到一个 随机变量,但在很多随机现象中,往往要涉及到多 个随机变量. 例如,向一个目标进行射击,如果只考虑弹着点与 靶心的距离,那么用一个随机变量来描述就可以了; 如果要考虑弹着点的位置,那么就需要两个随机变 量(弹着点的横坐标X与纵坐标Y)来描述.

显然一维随机变量,即为前一章讨论的随机变量.
下面着重讨论二维随机变量的情况,对于多个随机 变量的情况,不难类推.
4


类似于一维随机变量的分布函数,我们定义二维随 机变量的分布函数如下: 定义4.2 设(X,Y)为二维随机变量,x、y为任意实 数,则二元函数 F(x,y)=P(X≤x,Y≤y) 称为(X,Y)的分布函数,或称为X和Y的联合分布函 数. 如果将二维随机变量(X,Y),看成是平面上随机点 的坐标,那么F(x,y)就是二维随机点(X,Y)落在以 (x,y)为顶点的左下方的无穷矩形域内的概率(如图 4.1).
1 1 3 P X 1, Y 1 C 2 2 8 P X 1, Y 3 0
1 3 2
3
1 1 3 P X 2, Y 1 C 2 2 8

3.3-多维随机变量及其分布

3.3-多维随机变量及其分布

f X|Y ( x | y)
f (x, y) fY ( y)
称为随机变量X 在Y y的条件下的条件密度函数.
fY X y
x
f (x, y)
fX x
称为随机变量Y 在 X x的条件下的条件密度函数.
条件密度函数的性质
性质1 对任意的 x,有 fX Y x y 0
性质 2 fX Y x ydx 1 简言之,fX Y x y是密度函数.
和的分布:Z = X + Y 二、连续型分布的情形
设X和Y的联合密度为 f (x,y),求Z=X+Y的密度
Z=X+Y的分布函数是: FZ(z)=P(Z≤z)=P(X+Y ≤ z)
f (x, y)dxdy
D
这里积分区域D={(x, y): x+y ≤z}
是直线x+y =z 左下方的半平面.
FZ (z) f (x, y)dxdy
(3) F (, y) 0, F ( x,) 0 F (,) 0, F (,) 1
(4)关于x或y右连续
(5)对 x1 x2 , y1 y2 ,有
P(x1 X x2, y1 Y y2 )
F ( x2 , y2 ) F ( x1, y2 ) F ( x1, y1 ) F ( x2 , y1) 0
二维随机变量(X,Y) 离散型
X和Y 的联合概率分布列
P(X xi ,Y yj) pij,
i, j =1,2, …
pij 0, i, j 1,2,
pij 1
ij
一维随机变量X 离散型
X的概率分布列
P(Xxk) pk,
k=1,2, …
pk 0, k=1,2, …
pk1

概率论与数理统计多维随机变量及其分布

概率论与数理统计多维随机变量及其分布

第三章 多维随机变量及其分布在实际应用中, 有些随机现象需要同时用两个或两个以上的随机变量来描述. 例如, 研究某地区学龄前儿童的发育情况时, 就要同时抽查儿童的身高H 、体重W , 这里, H 和W 是定义在同一个样本空间==}{e S {某地区的全部学龄前儿童}上的两个随机变量. 又如, 考察某次射击中弹着点的位置时,就要同时考察弹着点的横坐标X 和纵坐标Y . 在这种情况下,我们不但要研究多个随机变量各自的统计规律,而且还要研究它们之间的统计相依关系,因而还需考察它们的联合取值的统计规律,即多为随机变量的分布. 由于从二维推广到多维一般无实质性的困难, 故我们重点讨论二维随机变量.第一节 多维随机变量的分布内容分布图示★ 二维随机变量★ 二维随机变量的分布函数 ★ 例1 ★ 二维离散型随机变量及其概率分布★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 例6★ 二维连续型随机变量及其概率密度★ 例7 ★ 例8 ★ 例9★ 二维均匀分布 ★ 例10 ★ 二维正态分布 ★ 例11★ 内容小结 ★ 课堂练习 ★ 习题3-1 ★ 返回内容要点:一、 二维随机变量定义1 设随机试验的样本空间为}{e S =, S e ∈为样本点,而)(),(e Y Y e X X ==是定义在S 上的两个随机变量, 称),(Y X 为定义在S 上的二维随机变量或二维随机向量.二、 二维随机变量的分布函数定义2 设),(Y X 是二维随机变量, 对任意实数y x ,, 二元函数},{)}{()}{(),(y Y x X P y Y P x X P y x F ≤≤≤≤=记为称为二维随机变量),(Y X 的分布函数或称为随机变量X 和Y 的联合分布函数.联合分布函数的性质: (1) ,1),(0≤≤y x F 且对任意固定的,y ,0),(=-∞y F 对任意固定的,0),(,=-∞x F x ;1),(,0),(=+∞+∞=-∞-∞F F(2) ),(y x F 关于x 和y 均为单调非减函数, 即对任意固定的,y 当),,(),(,1212y x F y x F x x ≥> 对任意固定的,x 当);,(),(,1212y x F y x F y y ≥>(3) ),(y x F 关于x 和y 均为右连续, 即 ).0,(),(),,0(),(+=+=y x F y x F y x F y x F三、 二维离散型随机变量及其概率分布定义 3 若二维随机变量),(Y X 只取有限个或可数个值, 则称),(Y X 为二维离散型随机变量.结论:),(Y X 为二维离散型随机变量当且仅当Y X ,均为离散型随机变量.若二维离散型随机变量),(Y X 所有可能的取值为),(j i y x ,,2,1, =j i 则称),2,1,(},{ ====j i p y Y x X P ijj i为二维离散型随机变量),(Y X 的概率分布(分布律), 或Y X 与的联合概率分布(分布律). 与一维情形类似,有时也将联合概率分布用表格形式来表示, 并称为联合概率分布表: 注:对离散型随机变量而言, 联合概率分布不仅比联合分布函数更加直观, 而且能够更加方便地确定),(Y X 取值于任何区域D 上的概率,即∑∈=∈Dy x ijj i pD Y X P ),(}),{(,特别地, 由联合概率分布可以确定联合分布函数:.},{),(,∑≤≤=≤≤=yy x x ij j i py Y x X P y x F四、二维连续型随机变量及其概率密度定义 设),(Y X 为二维随机变量,),(y x F 为其分布函数, 若存在一个非负可积的二元函数),(y x f , 使对任意实数),(y x , 有,),(),(⎰⎰∞-∞-=xydsdt t s f y x F则称),(Y X 为二维连续型随机变量, 并称),(y x f 为),(Y X 的概率密度(密度函数), 或Y X ,的联合概率密度(联合密度函数).概率密度函数),(y x f 的性质:;0),()1(≥y x f ;1),(),()2(=+∞+∞=⎰⎰∞∞-∞∞-F dxdy y x f(3) 设D 是xOy 平面上的区域,点),(Y X 落入D 内的概率为⎰⎰=∈Ddxdy y x f D y x P ),(}),{(特别地, 边缘分布函数},{}{)(+∞<≤=≤=Y x X P x X P x F X ,),(),(⎰⎰⎰⎰∞-+∞∞-∞-+∞∞-⎥⎦⎤⎢⎣⎡==x x ds dt t s f dsdt t s f上式表明: X 是连续型随机变量, 且其密度函数为:,),()(⎰+∞∞-=dy y x f x f X同理, Y 是连续型随机变量, 且其密度函数为:⎰+∞∞-=dx y x f y f Y ),()(,分别称)(x f X 和)(y f Y 为),(Y X 关于X 和Y 的边缘密度函数.(4) 若),(y x f 在点),(y x 连续, 则有).,(),(2y x f yx y x F =∂∂∂ 进一步, 根据偏导数的定义, 可推得:当y x ∆∆,很小时, 有,),(},{y x y x f y y Y y x x X x P ∆∆≈∆+≤<∆+≤< 即, ),(Y X 落在区间],(],(y y y x x x ∆+⨯∆+上的概率近似等于.),(y x y x f ∆∆五、二维均匀分布设G 是平面上的有界区域,其面积为A .若二维随机变量),(Y X 具有概率密度函数⎪⎩⎪⎨⎧∈=其它,0),(,1),(Gy x Ay x f 则称),(Y X 在G 上服从均匀分布.六、二维正态分布若二维随机变量),(Y X 具有概率密度⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛----=222221121122)1(21221121),(σμσμσμρσμρρσπσy y x x ey x f其中ρσσμμ,,,,2121均为常数,且1||,0,021<>>ρσσ,则称),(Y X 服从参数为ρσσμμ,,,,2121的二维正态分布.注:二维正态随机变量的两个边缘分布都是一维正态分布,且都不依赖于参数ρ,亦即对给定的2121,,,σσμμ,不同的ρ对应不同的二维正态分布,但它们的边缘分布都是相同的,因此仅由关于X 和关于Y 的边缘分布,一般来说是不能确定二维随机变量),(Y X 的联合分布的.例题选讲:二维随机变量的分布函数例1 (讲义例1) 设二维随机变量),(y x 的分布函数为+∞<<∞-+∞<<∞-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=y x y C x B A y x F ,,3arctan 2arctan ),((1) 试确定常数.,,C B A(2) 求事件}30,2{≤<+∞<<Y X 的概率.二维离散型随机变量及其概率分布例2 (讲义例2) 设随机变量X 在1, 2, 3, 4四个整数中等可能地取一个值,另一个随机变量Y 在1~X 中等可能地取一整数值,试求),(y x 的分布律.例3 (讲义例3) 把一枚均匀硬币抛掷三次, 设X 为三次抛掷中正面出现的次数, 而Y 为正面出现次数与反面出现次数之差的绝对值, 求),(Y X 的概率分布及),(Y X 关于Y X ,的边缘分布.例4 设二维随机变量的联合概率分布为求}0,1{≥≤Y X P 及).0,0(F二维连续型随机变量及其概率密度例5 (讲义例4) ),(Y X 的概率分布由表3—1B 给出,求}0,0{},0,0{≤≤=≠Y X P Y X P |}.||{|},{},0{y X P Y X P XY P ===例6 一整数N 等可能地在10,,3,2,1 十值中取一个值. 设=D )(N D 是能整除N 的正整数的个数,)(N F F =是能整除N 的素数的个数(注意1不是素数). 试写出D 和F 的联合分布律.并求分布律.例7 (讲义例5) 具有概率密度设二维随机变量),(Y X⎪⎩⎪⎨⎧>>=+-.,0,0,0,2),()2(其它y x ey x f y x(1) 求分布函数);,(y x F (2) 求概率}.{X Y P ≤例8 (讲义例6) 设),(Y X 的概率密度是⎩⎨⎧≤≤≤≤-=其它,00,10),2(),(xy x x cy y x f求 (1) c 的值; (2) 两个边缘密度.二维均匀分布例9 设随机变量X 和Y 具有联合概率密度⎩⎨⎧≤≤=其它,0,6),(2xy x y x f求边缘概率密度),(x f X )(y f Y .例10 (讲义例7) 设),(Y X 服从单位圆域122≤+y x 上的均匀分布, 求X 和Y 的边缘概率密度.二维正态分布例11 (讲义例8) 设二维随机变量),(Y X 的概率密度 )sin sin 1(21),()(2122y x e y x f y x +=+-π试求关于Y X ,的边缘概率密度函数.课堂练习1.将两封信随意地投入3个邮筒, 设X ,Y 分别表示投入第1, 2号邮筒中信的数目, 求X 和Y 的联合概率分布及边缘概率分布.2.设向量),(Y X 的密度函数),(y x f 的密度函数为 ⎩⎨⎧≤≤≤≤=其它,010,10,),(y x kxy y x f求 (1) 参数k 的值;(2)),(Y X 的边缘密度.第二节 条件分布与随机变量的独立性内容分布图示★ 条件分布的概念 ★ 例1 ★ 随机变量的独立性★ 离散型随机变量的条件分布与独立性★ 例2 ★ 例3★ 例4★ 连续型随机变量的条件分布与独立性★ 例5 ★ 例6 ★ 例7 ★ 例8 ★ 例9 ★ 例10 ★ 例11★ 内容小结 ★ 课堂练习 ★ 习题3-2 ★ 返回内容要点:一、 条件分布的概念设X 是一个随机变量, 其分布函数为,},{)(+∞<<-∞≤=x x X P x F X若另外有一事件A 已经发生, 并且A 的发生可能会对事件}{x X ≤发生的概率产生影响, 则对任一给定的实数x , 记,},|{)|(+∞<<-∞≤=x A x X P A x F并称)|(A x F 为在A 发生的条件下, X 的条件分布函数.二、 随机变量的独立性设A 是随机变量Y 所生成的事件: }{y Y A ≤=, 且0}{>≤y Y P , 则有)(),(}{},{)|(y F y x F y Y P y Y x X P y Y x F Y =≤≤≤=≤.一般地, 由于随机变量Y X ,之间存在相互联系,因而一个随机变量的取值可能会影响另一个随机变量的取值统计规律性. 在何种情况下, 随机变量Y X ,之间没有上述影响, 而具有所谓的“独立性”, 我们引入如下定义.定义 设随机变量),(Y X 的联合分布函数为),(y x F , 边缘分布函数为)(x F X ,)(y F Y , 若对任意实数y x ,,有},{}{},{y Y P x X P y Y x X P ≤≤=≤≤即 ),()(),(y F x F y x F Y X =则称随机变量X 和Y 相互独立.关于随机变量的独立性, 有下列两个定理.定理1 随机变量X 与Y 相互独立的充要条件是X 所生成的任何事件与Y 生成的任何事件独立, 即, 对任意实数集B A ,, 有},{}{},{B Y P A X P B Y A X P ∈∈=∈∈定理2 如果随机变量X 与Y 相互独立, 则对任意函数 ),(1x g )(2y g 均有)(),(21Y g X g 相互独立.三、离散型随机变量的条件分布与独立性设),(Y X 是二维离散型随机变量, 其概率分布为,2,1,,},{====j i p y Y x X P ij j i则由条件概率公式, 当0}{>=j y Y P , 有,2,1,}{},{}|{========⋅i p p y Y P y Y x X P y Y x X P jij j j i j i称其为在j y Y =条件下随机变量X 的条件概率分布.对离散型随机变量),(Y X , 其独立性的定义等价于:若对),(Y X 的所有可能取值),,(j i x x 有}{}{},{j i j i y Y P x X P y Y x X P =====即 ,2,1,,==⋅⋅j i p p p j i ij则称X 和Y 相互独立.四、 连续型随机变量的条件密度与独立性定义 设二维连续型随机变量),(Y X 的概率密度为),(y x f ,边缘概率密度为)(),(y f x f Y X , 则对一切使0)(>x f X 的x , 定义在x X =的条件下Y 的条件概率密度为)(),()|(|x f y x f x y f X X Y =. 类似地, 对一切使0)(>y f Y 的y , 定义在y Y =的条件下X 的条件密度函数为)(),()|(|y f y x f y x f Y Y X =. 注: 关于定义表达式内涵的解释. 以)(),()|(|y f y x f y x f Y Y X =为例. 在上式左边乘以dx , 右边乘以dy dxdy /)(即得}{},{)(),()|(|dy y Y y P dy y Y y dx x X x P dy y f dxdy y x f dx y x f Y Y X +≤≤+≤≤+<≤≈=}.|{dy y Y y dx x X x P +<≤+≤≤=换句话说, 对很小的dx 和dy ,dx y x f Y X )|(|表示已知Y 取值于y 和dy y +之间的条件下,X 取值于x 和dx x +之间的条件概率.对二维连续型随机变量),(Y X , 其独立性的定义等价于: 若对任意的y x ,, 有)()(),(y f x f y x f Y X =几乎处处成立, 则称Y X ,相互独立.注: 这里“几乎处处成立”的含义是:在平面上除去面积为0的集合外,处处成立.例题选讲:条件分布的概念例1 (讲义例1) 设X 服从]1,0[上的均匀分布, 求在已知21>X 的条件下X 的条件分布函数.随机变量的独立性例2 (讲义例2) 设X 与Y 的联合概率分布为(1) 求0=Y 时, X 的条件概率分布以及0=X 时, Y 的条件概率分布; (2)判断X 与Y 是否相互独立?例3 (讲义例3) 设随机变量X 与Y 相互独立, 下表列出了二维随机变量),(Y X 联合分布律及关于X 和关于Y 的边缘分布律中的部分数值, 试将其余数值填入表中的空白处.例4 (讲义例4) 一射手进行射击,击中目标的概率为)10(,<<p p , 射击进行到击中目标两次为止. 以X 表示首次击中目标所进行射击次数, 以Y 表示总共进行的射击次数. 试求X 和Y 的联合分布及条件分布.连续型随机变量的条件密度与独立性例5 (讲义例5)设),(Y X 的概率密度为⎪⎩⎪⎨⎧>>=+-其它,00,0,),()(y x xey x f y x ; 问X 和Y 是否独立?例6 设),(Y X 服从单位圆上的均匀分布,概率密度为⎩⎨⎧≤+=.,01,/1),(22其它,y x y x f π 求).|(|x y f X Y例7 (讲义例7)设),;,;,(~),(212221ρσσμμN Y X(1) 求)|(|y x f Y X 和 )|(|x y f X Y .(2) 证明X 与Y 相互独立的充要条件是0=ρ.例8 (讲义例6)甲乙两人约定中午12时30分在某地会面. 如果甲来到的时间在12:15到12:45之间是均匀分布. 乙独立地到达, 而且到达时间在12:00到13:00之间是均匀分布. 试求先到的人等待另一人到达的时间不超过5分钟的概率. 又甲先到的概率是多少?例9 设数X 在区间)1,0(均匀分布,当观察到)10(<<=x x X 时,数Y 在区间)1,(x 上等可能随机地取值.求Y 的概率密度.例10 设店主在每日开门营业时,放在柜台上的货物量为Y ,当日销售量为X 假定一天中不再上柜台上补充货物,于是Y X ≤. 根据历史资料,),(Y X 的概率密度函数为⎩⎨⎧≤≤≤≤=.,0200,0,200/1),(其它时,当y y x y x f即),(Y X 服从直角三角形区域OAB 上的均匀分布, 见图3—2A. 求(1) 给定y Y =条件下,X 的条件分布.(2)假定某日开门时,10=Y 件,求这天顾客买走5≤X 件的概率. 如果20=Y 件呢? 例11 (讲义例8)设随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧<<=-.,0;0,),(其它y x e y x f y (1) 求X 与Y 的边际概率密度, 并判断X 与Y 是否相互独立; (2) 求在y Y =的条件下, X 的条件概率密度;(3) 求概率{}{}.4|21|2/10},12{=≥≤≤≤≤+Y X P Y X P Y X P课堂练习1. 设),(Y X 的分布律如下问βα,为何值时, X 与Y2. 设),(Y X 的概率密度是⎪⎩⎪⎨⎧+∞<<+∞<<=--其它,00,0,),(/y x ye e y xf yy x 求}.|1{y Y X P =>3.设⎩⎨⎧≤≤≤≤=其它,010,10,4),(y x xy y x f ,试判断X 与Y 是否相互独立.第三节 多维随机变量函数的分布在实际应用中,有些随机变量往往是两个或两个以上随机变量的函数. 例如,考虑全国年龄在40岁以上的人群,用X 和Y 分别表示一个人的年龄和体重,Z 表示这个人的血压,并且已知Z 与X ,Y 的函数关系式),(Y X g Z =,现希望通过),(Y X 的分布来确定Z 的分布. 此类问题就是我们将要讨论的两个随机向量函数的分布问题.在本节中,我们重点讨论两种特殊的函数关系: (i) Y X Z +=;(ii) },m ax{Y X Z =和},m in{Y X Z =,其中X 与Y 相互独立.注:应指出的是,将两个随机变量函数的分布问题推广到n 个随机变量函数的分布问题只是表述和计算的繁杂程度的提高,并没有本质性的差异.内容分布图示★ 引言★ 离散型随机向量的函数的分布★ 例1 ★ 例2★ 例3 ★ 连续型随机向量的函数的分布 ★ 例4 ★ 连续型随机向量函数的联合概率密度 ★ 例5 ★ 和的分布 ★ 例6 ★ 例7 ★ 正态随机变量的线性组合★ 例8 ★ 例9 ★ 例10 ★ 商的分布 ★ 例11 ★ 积的分布 ★ 例12 ★ 最大、最小分布 ★ 例13 ★ 例14★ 内容小结 ★ 课堂练习 ★ 习题3-3 ★ 返回内容要点:一、 离散型随机变量的函数的分布设),(Y X 是二维离散型随机变量, ),(y x g 是一个二元函数, 则),(Y X g 作为),(Y X 的函数是一个随机变量, 如果),(Y X 的概率分布为),2,1,(},{ ====j i p y Y x X P ijj i设),(Y X g Z =的所有可能取值为 ,2,1,=k z k , 则Z 的概率分布为,},{}),({}{),(∑=======kj i z y x g jik k y Y x X P z Y X g P z Z P ,,2,1 =k二、 连续型随机变量的函数的分布设),(Y X 是二维连续型随机向量, 其概率密度函数为),(y x f , 令),(y x g 为一个二元函数, 则),(Y X g 是),(Y X 的函数.可用类似于求一元随机变量函数分布的方法来求),(Y X g Z =的分布.a) 求分布函数),(z F Z.),(}),{(}),({}{)(⎰⎰=∈=≤=≤=ZD Z Z dxdy y x f D Y X P z Y X g P z Z P z F其中, }.),(|),{(z y x g y x D Z ≤=b) 求其概率密度函数)(z f Z , 对几乎所有的z , 有).()(z F z f ZZ '= 定理1 设),(21X X 是具有密度函数),(21x x f 的连续型随机向量.(1) 设),(),,(21222111x x g y x x g y ==是2R 到自身的一一映射, 即存在定义在该变换的值域上的逆变换:);,(),,(21222111y y h x y y h x ==(2) 假设变换和它的逆都是连续的;(3) 假设偏导数)2,1,2,1(==∂∂j i y hi i 存在且连续;(4) 假设逆变换的雅可比行列式0),(2212211121≠∂∂∂∂∂∂∂∂=y h y h y h yh y y J , 即),(21y y J 对于在变换的值域中的),(21y y 是不为0的. 则21,Y Y 具有联合密度)).,(),,((||),(21221121y y h y y h f J y y w =定理2 设Y X ,相互独立,且),,(~211σμN X ).,(~222σμN Y 则Y X Z +=仍然服从正态分布,且).,(~222121σσμμ++N Z更一般地,可以证明:有限个相互独立的正态随机变量的线性组合仍然服从正态分布,即有定理3 若),,,2,1)(,(~2n i N X i i i =σμ且它们相互独立,则对任意不全为零的常数n a a a ,,,21 ,有⎪⎪⎭⎫ ⎝⎛∑∑∑===n i i i n i i i ni i i a a N X a 1211,~σμ.三、 ),m ax(Y X M =及),m in(Y X N =的分布设随机变量Y X ,相互独立,其分布函数分别为)(x F X 和)(y F Y , 由于),m ax(Y X M =不大于z 等价于X 和Y 都不大于z , 故有);()(}{}{},{}{)(z F z F z Y P z X P z Y z X P z M P z F Y X M =≤≤=≤≤=≤=类似地, 可得),m in(Y X N =的分布函数)].(1)][(1[1}{}{1},{1}{1}{)(z F z F z Y P z X P z Y z X P z N P z N P z F Y X N ---=>>-=>>-=>-=≤=例题选讲:离散型随机变量的函数的分布例1 (讲义例1) 设随机变量),(Y X 的概率分布如下表例2 (讲义例2) 设X 和Y 相互独立, ,),(~),,(~21p n b Y p n b X 求Y X Z +=的分布. 例 3 (讲义例3) 若X 和Y 相互独立, 它们分别服从参数为21,λλ的泊松分布, 证明Y X Z +=服从参数为21λλ+的泊松分布.连续型随机变量的函数的分布例 4 (讲义例4) 设随机变量X 与Y 相互独立, 且同服从]1,0[上的均匀分布, 试求||Y X Z -=的分布函数与密度函数.例5 (讲义例5) 设),(21X X 的密度函数为).,(21x x f 令212211,X X Y X X Y -=+=试用f 表示1Y 和2Y 的联合密度函数.和的分布:设X 和Y 的联合密度为),(y x f , 求Y X Z +=的密度.卷积公式: 当X 和Y 独立时, 设),(Y X 关于Y X ,的边缘密度分别为),(),(y f x f Y X 则上述两式化为⎰⎰∞∞-∞∞--=-=dxx z f x f z f dyy f y z f z f Y X Z Y X Z )()()()()()(以上两个公式称为卷积公式.例6 (讲义例6)设X 和Y 是两个相互独立的随机变量. 它们都服从)1,0(N 分布, 其概率密度为.,21)(,,21)(2/2/22∞<<∞-=∞<<∞-=--y e y f x e x f y Y x X ππ .的概率密度求Y X Z +=例7 (讲义例7) 设某种商品一周的需要量是一个随机变量, 其概率密度函数为⎪⎩⎪⎨⎧>=-.,0,0,)(其它时当x xe x f x 如果各周的需要量相互独立, 求两周需要量的概率密度函数.例8 设X 与Y 相互独立, 且均在区间]1,0[上服从均匀分布, 求Y X Z +=的密度函数.例9 (讲义例8) 设21,X X 相互独立且分别服从参数为βαβα,;,21的Γ分布(分别记成212211,),,(~),,(~X X X X βαβαΓΓ的概率密度分别为⎪⎩⎪⎨⎧>=--Γ其它,00,1)(/1)(1111x e xx f x X βαααβ⎪⎩⎪⎨⎧>Γ=--其它,00,)(1)(/12222y e y y f y X βαααβ试证明21X X +服从参数为βαα,21+的Γ分布.商的分布:设二维随机向量),(Y X 的密度函数为),(y x f , 求YXZ =的密度函数.例10 在一简单电路中, 两电阻1R 和2R 串联连接, 设21,R R 相互独立,它们的概率密度均为⎪⎩⎪⎨⎧≤≤-=.,0100,5010)(其它x x x f求总电阻21R R R +=的概率密度.例11 (讲义例9) 设X 与Y 相互独立, 它们都服从参数为λ的指数分布. 求YXZ =的密度函数.积的分布: 设),(21X X 具有密度函数),(21x x f , 则21X X Y =的概率密度为.||1,)(⎰∞∞-⎪⎭⎫ ⎝⎛=dz z z y z f y f Y 例12 (讲义例10) 设二维随机向量),(Y X 在矩形}10,20|),{(≤≤≤≤=y x y x G 上服从均匀分布, 试求边长为X 和Y 的矩形面积S 的密度函数)(s f .例13 (讲义例11) 设随机变量21,X X 相互独立, 并且有相同的几何分布:2,1,,2,1,}{1====-i k pq k X P k i ,p q -=1求),m ax(21X X Y =的分布.例14 (讲义例12)设系统L 由两个相互独立的子系统21,L L 联接而成,联接方式分别为串联、并联、备用(当系统1L 损坏时,系统2L 开始工作),如图3—3—6所示. 设21,L L 的寿命分别为Y X ,, 已知它们的概率密度分别为⎩⎨⎧≤>=-,0,0,0,)(x x e x f x X αα ⎩⎨⎧≤>=-,0,0,0,)(y y e y f y Y ββ 其中0,0>>βα且.βα≠ 试分别就以上三种联接方式写出L 寿命Z 的概率密度.课堂练习1. 已知),(Y X 的分布律为求: (1)Z = (2);XY Z = (3)();2sin ⎪⎭⎫⎝⎛+=Y X Z π(4)},m ax{Y X Z =的分布律.2. 若X 和Y 独立, 具有共同的概率密度⎩⎨⎧≤≤=其它,010,1)(x x f 求Y X Z +=的概率密度.。

概率论讲义 第三章 多维随机变量及其分布

概率论讲义 第三章  多维随机变量及其分布

第三章 多维随机变量及其分布在很多随机现象中, 只用一个随机变量来描述往往不够, 而要涉及到多个随机变量. 如炮弹命中点的位置要用一对随机变量(横坐标与纵坐标)来描述, 正弦交流电压要用振幅、频率和相位三个随机变量来描述等等. 要研究这些随机变量之间的联系, 就应当同时考虑若干个随机变量即多维随机变量及其取值规律——多维分布. 本章将介绍有关这方面的内容, 为简明起见, 主要介绍二维情形, 有关内容可以类推到多于二维的情形.第一节 二维随机变量一、二维随机变量的分布函数设E 是一个随机试验, 它的样本空间是S . 设X 、Y 是定义在S 上的随机变量, 则由它们构成的一个向量(X , Y )称为二维随机向量或二维随机变量.一般地, (X , Y )的性质不仅与X 有关, 与Y 有关, 而且还依赖于X 、Y 的相互关系, 因此必须把(X , Y )作为一个整体来研究.首先引入(X , Y )的分布函数的概念.定义 设(X , Y )为二维随机变量, 对于任意实数x 、y , 二元函数F (x , y ) = P {(X ≤ x )∩(Y ≤ y )}= P {X ≤ x , Y ≤ y }称为二维随机变量(X , Y )的分布函数, 或称为随机变量X 和y 的联合分布函数.分布函数F (x , y )表示事件(X ≤ x )与事件(Y ≤ y )同时发生的概率. 如果把(X , Y )看成平面上具有随机坐标(X , Y )的点, 则分布函数F (x , y )在(x , y )处的函数值就是随机点(X , Y )落在平面上的以(x , y )为顶点而位于该点左下方的无限矩形内的概率..由上面的几何解释, 容易得到随机点(X , Y )落在矩形区域{x 1 < X ≤ x 2, y 1 < Y ≤ y 2}的概率为P {x 1 < X ≤ x 2, y 1 < Y ≤ y 2} = F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) (1)与二元函数类似, 二元分布函数F (x , y )也具有如下一些性质: 1︒ F (x , y )是变量x 和y 的单调不减函数, 即当x 1 < x 2时, F (x 1, y ) ≤ F (x 2, y ); 当y 1 < y 2时, F (x , y 1) ≤ F (x , y 2).2︒ 0 ≤ F (x , y ) ≤ 1, 且F (-∞, y ) = 0, F (x , -∞) = 0, F (-∞,-∞) = 0, F (+∞,+∞) = 1. 3︒ F (x , y )关于x 和y 都是右连续的, 即F (x + 0, y ) = F (x , y ), F (x , y + 0) = F (x , y ).4︒ 对任意的(x 1, y 1)、(x 2, y 2), x 1 < x 2, y 1 < y 2, 有F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) ≥ 0.注: 二元分布函数具有性质1︒~ 4︒, 其逆也成立(2︒中0 ≤ F (x , y ) ≤ 1可去), 即若二元实值函数F (x , y )(x ∈ R , y ∈ R )满足1︒~ 4︒, 则F (x , y )必是某二维随机变量的(X , Y )的分布函数. 其中4︒是必不可少的, 即它不能由1︒~ 3︒推出(除去0 ≤ F (x , y ) ≤ 1).二、二维离散型随机变量如果二维随机变量(X , Y )的所有可能取的值是有限对或可列无限多对, 则称(X , Y )是二维离散型随机变量.设二维离散型随机变量(X , Y )所有可能取的值为(x i , y j ) (i , j = 1, 2, 3, …). 记 P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)则由概率定义有 p ij ≥ 0;111=∑∑∞=∞=i j ij p .我们称P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)为二维离散型随机变量(X , Y )的分布律(概率分布)或随机变量X 和Y 的联合分布律, (X , Y )的分布律也可用表格表示. 其分布函数为=),(y x F ∑∑≤≤==x x yy j i i j y Y x X P },{=∑∑≤≤x x yy ij i j p这里∑∑≤≤x x yy i j 表示对一切x i ≤ x , y j ≤ y 的那些指标i 、j 求和.例1 一个口袋中有三个球, 依次标有1、2、2, 从中任取一个, 不放回袋中, 再任取一个. 设每次取球时, 各球被取到的可能性相等, 以X 、Y 分别记第一次和第二次取到的球上标有的数字, 求X 、Y 的联合分布律与分布函数..解: (X , Y )的可能取值为(1, 2)、(2, 1)、(2, 2). P {X = 1, Y = 2}= P {X = 1}P {Y = 2 / X = 1}=312231=⋅.同理, 有 P {X = 2, Y = 1}=31 , P {X = 2, Y = 2}=31.即(X , Y )的分布律如右表所示.当x < 1, 或y < 1时, F {x , y } = 0;当1 ≤ x < 2, 1 ≤ y <2时, F {x , y } = 0;当1 ≤ x < 2, y ≥ 2时, F {x , y } = =+1211p p 31;当x ≥ 2, 1 ≤ y <2时, F {x , y } ==+2111p p 31;当x ≥ 2, y ≥ 2时, F {x , y } = 1.所以, (X , Y )的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>>⎩⎨⎧<≤≥⎩⎨⎧≥<≤⎩⎨⎧<≤<≤<<=.2,2,1,21,22,21,31,21,2111,0),(y x y x y x y x y x y x F 或或或三、二维连续型随机变量设二维随机变量(X , Y )的分布函数为F {x , y }, 若存在非负函数f (x , y ), 使对任意的x 、y 有⎰⎰∞-∞-=y xdudvv u f y x F ),(),(,则称(X , Y )为连续型的二维随机变量, f (x , y )称为二维连续型随机变量(X , Y )的概率密度, 或称随机变量X 、Y 的联合概率密度.概率密度f (x , y )具有以下性质: 1︒ f (x , y ) ≥ 0;2︒1),(),(=+∞+∞=⎰⎰∞+∞-∞+∞-F dxdy y x f3︒ 若f (x , y )在点(x , y )处连续, 则有),(),(2y x f yx y x F =∂∂∂4︒ 设G 是xOy 平面上的一个区域, 则点(X , Y )落在G 内的概率为⎰⎰=∈Gdxdyy x f G Y X P ),(}),{( (2)例2 设二维连续型随机变量(X , Y )的概率密度为⎩⎨⎧>>=+-.,0,0,0,2),()(其它y x Ae y x f y x求: (1) 系数A ; (2) 分布函数F (x , y ); (3) 概率P {(X , Y )∈D }, 其中D : x ≥ 0, y ≥ 0, x + y ≤ 1.解: (1) 由1),(=⎰⎰∞+∞-∞+∞-dxdy y x f ,得21=A .(2) ⎰⎰∞-∞-+-=yxy x dxdy e y x F )(),(=⎪⎩⎪⎨⎧>>⎰⎰+-,,0,0,0,)(其它y x dxdy ey xy x=⎩⎨⎧>>----.,0,0,0),1)(1(其它y x e e y x(3) edxdy eedxdxdy y x f Y X P xyxD21),()},{(1010-===⎰⎰⎰⎰---.例3 设二维连续型随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧≤≤≤≤+=,,0,20,10,3),(2其它y x xy x y x f , 求P {Y ≥ X }.解: P {Y ≥ X }=2417)3(),(2210=+=⎰⎰⎰⎰≤xxy dy xy xdxdxdy y x f .以上关于二维随机变量的讨论, 不难推广到n (n > 2)维随机变量的情形. 一般地, 设E 是一个随机试验, 它的样本空间为S , 设X 1、X 2、…、X n 是定义在S 上的随机变量, 则由它们构成的一个n 维向量(X 1, X 2, …, X n )称为n 维随机向量或n 维随机变量.对任意n 个实数x 1、x 2、…、x n , n 元函数F (x 1, x 2, …, x n ) = P {X 1 ≤ x 1, X 2 ≤ x 2, …, X n ≤ x n }称为n 维随机变量(X 1, X 2, …, X n )的分布函数或随机变量(X 1, X 2, …, X n )的联合分布函数, 它具有与二元分布函数类似的性质.第二节 边 缘 分 布设(X , Y )是二维随机变量, 其分布函数为F (x , y ), 事件{X ≤ x }即为{ X ≤ x , Y < +∞}, 从而由(X , Y )的分布函数可定出X 的分布函数, 记为F X (x ).F X (x ) = P {X ≤ x } = P { X ≤ x , Y < +∞} = F (x , +∞)=),(lim y x F y +∞→.我们称F X (x )为关于X 的边缘分布函数. 类似的可定义关于Y 的边缘分布函数为F Y (y ) = P {Y ≤ y } = P {X < +∞, Y ≤ y }= F (+∞, y ) = ),(lim y x F x +∞→.一、离散型设(X , Y )为二维离散型随机变量, 其分布律为P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …), 则∑∑≤∞==+∞=x x j ijX i p x F x F 1),()(, ∑∑≤∞==+∞=y y i ijY i p y F y F 1),()(.从而X 与Y 的分布律分别为∑∞===1}{j iji p x X P , i = 1, 2, …; ∑∞===1}{i ijj p y Y P , j = 1, 2, …;记=⋅i p ∑∞===1}{j iji p x X P , i = 1, 2, …;=⋅j p ∑∞===1}{i ijj p y Y P , j = 1, 2, ….分别称p i ⋅和p ⋅ j 为(X , Y )关于X 与Y 的边缘分布律.注: 1︒ 边缘分布律具有一维分布律的一般性质. 2︒ 联合分布律唯一决定边缘分布律, 反之不然.例1 一袋中装有3只黑球和2只白球, 分别采用有放回与不放回摸球两种方式. 若设⎩⎨⎧=;,0,,1第一次摸出黑球第一次摸出白球X⎩⎨⎧=.,0,,1第二次摸出黑球第二次摸出白球Y求(X , Y )的联合分布律及关于X 与Y 的边缘分布律.解: 有放回 不放回边缘分布律经常写在联合分布律的边缘, 这就是为什么称为边缘分布律的缘由.二、连续型设二维连续型随机变量(X , Y )的概率密度为f (x , y ), 由⎰⎰∞-∞+∞-=+∞=xX dxdy y x f x F x F ]),([),()(;⎰⎰∞-∞+∞-=+∞=yY dydx y x f y F y F ]),([),()(.知X 与Y 都是连续型随机变量. 它们的概率密度分别为⎰∞+∞-=dy y x f x f X ),()(;⎰∞+∞-=dxy x f y f Y ),()(.称f X (x )与f Y (y )分别为(X , Y )关于X 与Y 的边缘概率密度.例2 设D 是平面上的有界区域, 其面积为A , 若二维随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧∈=,,0,),(,1),(其它D y x Ay x f则称(X , Y )在D 上服从均匀分布.现(X , Y )在以原点为中心、1为半径的圆域上服从均匀分布, 求边缘概率密度.解: 由1),(=⎰⎰∞+∞-∞+∞-dxdy y x f , 得A = π.当|x | < 1时, ⎰∞+∞-=dy y x f x f X ),()(21112122xdy xx-==⎰---ππ; 当|x | ≥ 1时, f X (x ) = 0, 即⎪⎩⎪⎨⎧≥<-=.1,0,1,12)(2x x x x f Xπ同理可得,⎪⎩⎪⎨⎧≥<-=.1,0,1,12)(2y y y y f Y π例3 设二维随机变量(X , Y )的概率密度为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡-+------⋅-=2222212121212221)())((2)()1(21exp 121),(σμσσμμρσμρρσπσy y x x y x f ⎪⎪⎭⎫⎝⎛+∞<<∞-+∞<<∞-y x . 其中μ1、μ2、σ1、σ2、ρ 都是常数, 且σ1 > 0, σ2 > 0, -1 < ρ < 1. 我们称(X , Y )为服从参数为μ1、μ2、σ1、σ2、ρ的二维正态分布, 试求二维正态随机变量的边缘概率密度.解: 令m = ⎥⎦⎤⎢⎣⎡-+----222221212121)())((2)(σμσσμμρσμy y x x2121212122121221212222)()()())((2)(σμσμρσμρσσμμρσμ-+---+----=x x x y x y2121221122)()1(σμρσμρσμ--+⎥⎦⎤⎢⎣⎡---=x x y .所以, ⎰∞+∞-=dyy x f x f X ),()(=⎰∞+∞----dyem )1(22212121ρρσπσ⎰∞+∞-⎥⎦⎤⎢⎣⎡--------=dy eex y x 2112222121)1(212)(221121σμρσμρσμρσπσ.令⎪⎪⎭⎫⎝⎛----=1122211σμρσμρx y t , 则dt dy 221σρ⋅-=, 从而,22222)1(211212211222ρσπσρσμρσμρ-=⋅-=⎰⎰∞+∞--∞+∞-⎥⎦⎤⎢⎣⎡-----dt edy etx y .所以, 21212)(121)(σμσπ--=x X ex f (+∞<<-∞x ). 同理可得, 22222)(221)(σμσπ--=y Y ey f (+∞<<-∞y ).表明, ),(~211σμN X , ),(~222σμN Y .此例说明, 二维正态随机变量(X , Y )中的X 、Y 都服从正态分布, 并且与参数ρ 无关. 所以对于确定的μ1、μ2、σ1、σ2而取不同的ρ, 对应了不同的二维正态分布, 但是其中每个随机变量都分别服从相同的正态分布. 因此, 仅由关于X 和Y 的边缘概率密度(分布), 一般不能确定X 和Y 的联合概率密度(分布).第四节 相互独立的随机变量我们知道, 两事件A 、B 相互独立的充要条件是 P (AB ) = P (A )P (B ) 由此我们引进随机变量相互独立的定义. 定义 设F (x , y )及F X (x )、F Y (y )分别是二维随机变量(X , Y )的分布函数及边缘分布函数, 若对于所有的x 、y , 有 P {X ≤ x , Y ≤ y } = P {X ≤ x } P {Y ≤ y }, 即F (x , y ) = F X (x )F Y (y ) (1) 则称随机变量X 和Y 是相互独立的.可见, 在随机变量X 和Y 相互独立的情况下, 由关于X 和Y 的边缘分布函数就唯一地确定(X , Y )的联合分布函数, 而且还可推得}{},{}/{x X P x X y Y P x X y Y P ==≤==≤}{},{limx x X x P x x X x y Y P x ∆+≤≤∆+≤≤≤=→∆),(),(),(),(lim+∞-+∞∆+-∆+=→∆x F x x F y x F y x x F x)()()()()()()()(lim+∞-+∞∆+-∆+=→∆Y X Y X Y X Y X x F x F F x x F y F x F y F x x F )()()()]()([limx F x x F y F x F x x F X X Y X X x -∆+-∆+=→∆= F Y (y ) = P {Y ≤ y }.这就是说在X 和Y 相互独立的情况下条件分布与边缘分布相同, 即条件分布化成了无条件分布.一、离散型设二维离散型随机变量(X , Y )的联合分布律为 P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …), (X , Y )关于X 和关于Y 的边缘分布律分别为=⋅i p ∑∞===1}{j iji p x X P , i = 1, 2, …;=⋅j p ∑∞===1}{i ijj p y Y P , j = 1, 2, ….则X 和Y 相互独立的充要条件是P {X = x i , Y = y j } = P {X = x i } P {Y = y j }, 即p ij =⋅i p j p ⋅ (2)例1 设(X , Y )的联合分布律为证明: X 和Y 相互独立.二、连续型设二维连续型随机变量(X , Y )的联合概率密度为f (x , y ), 关于X 和Y 的边缘概率密度为f X (x )和f Y (y ), 则X 和Y 相互独立的充要条件是等式 f (x , y ) = f X (x ) f Y (y ) (3) 几乎处处成立.例3 设(X , Y )服从二维正态分布, 即其联合概率密度为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡-+------⋅-=2222212121212221)())((2)()1(21exp 121),(σμσσμμρσμρρσπσy y x x y x f ⎪⎪⎭⎫⎝⎛+∞<<∞-+∞<<∞-y x . 证明: X 和Y 相互独立的充要条件是ρ = 0. 例4 若(X , Y )的联合概率密度为⎩⎨⎧≥≥=+-,,0,0,0,),()(其它y x e y x f y x则X 和Y 相互独立. 证: 显然⎩⎨⎧≥=-,,0,0,)(其它x e x f x X⎩⎨⎧≥=-,,0,0,)(其它y e y f y Y 故有f (x , y ) = f X (x ) f Y (y ). 从而X 和Y 相互独立.例5 设X 与Y 是两个相互独立的随机变量, X 在[0, 0.2]上服从均匀分布, Y 的概率密度为⎩⎨⎧≥=-,,0,0,5)(5其它y e x f y Y试求: (1) X 与Y 的联合概率密度;(2) P {Y ≤ X }.解: (1) 由已知条件, 得⎩⎨⎧≤≤=,,0,2.00,5)(其它x x f X 从而得X 与Y 的联合概率密度为⎩⎨⎧≥≤≤=-.,00,2.00,25),(5其它y x e y x f y(2) P {Y ≤ X }= P {Y - X }⎰⎰≥-=),(y x dxdyy x f ,积分区域如图, 化成二次积分后得⎰⎰≈=⎥⎦⎤⎢⎣⎡=≤-2.0013679.0),(}{e dx dy y x f X Y P x .以上关于二维随机变量的一些概念, 很容易推广到n 维随机变量的情形.设n 维随机变量(X 1, X 2, …, X n )的联合分布函数为F (x 1, x 2, …, x n ), 若存在非负函数f (x 1, x 2, …, x n ), 使得对于任意实数x 1、x 2、…、x n , 有F (x 1, x 2, …, x n ) =⎰⎰⎰∞-∞-∞--n n x x x nn dx dx dx x x x f 112121),,,(,则称f (x 1, x 2, …, x n )为n 维随机变量(X 1, X 2, …, X n )的联合概率密度.称),,,()(111+∞+∞= x F x F X , ),,,,(),(2121,21+∞+∞= x x F x x F X X , …为关于X 1, (X 1, X 2), …的边缘分布函数, ⎰⎰⎰∞+∞-∞+∞-∞+∞-=n n X dx dx dx x x x f x f32211),,,()(1,⎰⎰⎰∞+∞-∞+∞-∞+∞-=nn X Xdx dx dx x x x f x x f432121,),,,(),(21, …为关于X 1, (X 1, X 2), …的边缘概率密度.若对于所有的x 1、x 2、…、x n , 有F (x 1, x 2, …, x n ))()()(2121n X X X x F x F x F n=, 则称X 1, X 2, …, X n 是相互独立的, 对离散型即连续型随机变量, 也有类似的结论. 若对于所有的x 1、x 2、…、x m ; y 1、y 2、…、y n , 有F (x 1, x 2, …, x m ; y 1, y 2, …, y n ) = F 1 (x 1, x 2, …, x m ) F 2 (y 1, y 2, …, y n )其中F 1、F 2和F 依次为(X 1, X 2, …, X m )、(Y 1, Y 2, …, Y n )和(X 1, X 2, …, X m ; Y 1, Y 2, …, Y n )的分布函数, 则称随机变量(X 1, X 2, …, X m )和(Y 1, Y 2, …, Y n )是相互独立的.定理 设随机变量(X 1, X 2, …, X m )和(Y 1, Y 2, …, Y n )相互独立, 则X i (i = 1, 2, …, m )与Y j (j = 1, 2, …, n )相互独立. 又若h 、g 是连续函数, 则h (X 1, X 2, …, X m )和g (Y 1, Y 2, …, Y n )也相互独立.。

考研概率统计--多维随机变量及其分布笔记

考研概率统计--多维随机变量及其分布笔记
Note:若G为非非矩形,推nothing
若G为矩形,服从均匀;推:X服从均匀,Y服从均匀,X,Y独立立
2)二二维正态分布(the special one)
1.定义;
Note:1.淡化公式,强调性质
2.规律律:e的-x2,e的-y2,e的-xy
2.性质:
(1)联合可以推边缘;边缘不不能推联合
(2)(aX+bY,cX+dY)服从二二维正态分布(利利用用卷积公式证明)(只要求 5个参数即可)(联合的线性仍然正态)
(3)aX+bY服从正态(只要求2个参数)(二二维推一一维线性依然是正态的)
(4)X和Y相互独立立互推p=0(独立立性仅有数字特征决定)
四 二二维随机变量量函数的分布
1.二二维离散型:已知联合概率分布律律,求Z=g(X,Y)
第三章 多维随机变量量及其分布
知识点:一一 二二维随机变量量及其分布函数 二二 二二维离散型随机变量量 三 二二维连续型随机变量量 四 二二维随 机变量量函数的分布
一一 ห้องสมุดไป่ตู้二维随机变量量及其分布函数
1.二二维随机变量量就是一一个(X,Y)向量量
2.二二维随机变量量的联合分布函数
1)X,Y取积;
2)在离散型上的体现(1.出现0,一一定不不独立立;2.行行行或列列成比比例例)
三 二二维连续型随机变量量(积分积出来的就是连续的)
1.定义:概率密度积分(二二重积分)
2.联合概率密度
1)性质:1.非非负性;2.规范性
2)应用用:求P,就是求二二重积分
在f(x,y)的连续点上,分布求二二阶倒数就是概率密度
方方法:枚举,合并(相同量量合并)
Note:当然还有二二维

多维随机变量及分布[概率与统计

多维随机变量及分布[概率与统计
独立性检验的应用
独立性检验在多元统计分析中具有广泛的应用,例如在因子分析、主成分分析和聚类分析等领域。通过 独立性检验,我们可以更好地理解数据之间的关系和结构,从而更好地进行数据分析和建模。
06 多维随机变量的应用
在统计学中的应用
01
多元统计分析
多维随机变量在多元统计分析中有着广泛的应用,如多元回归分析、主
标准化变换
标准化变换
标准化变换是一种常用的数据预处理技术,它通过对数据进行缩放和平移,使得数据满足一定的特性或满足某种 规范。在多维随机变量的背景下,标准化变换通常是指对每个维度进行缩放和平移,使得所有维度都具有零均值 和单位方差。
标准化变换的作用
标准化变换的作用在于使得不同维度的数据具有可比性,并且使得数据的分布更加接近正态分布。此外,标准化 变换还可以消除量纲和单位对数据分析的影响,使得分析结果更加可靠和稳定。
多维指数分布
定义
多维指数分布是所有维度都服从指数分布的多维随机变量的概率 分布。
特征
具有指数概率密度函数,各维度之间相互独立。
应用
在排队论、可靠性工程等领域有应用。
04 多维随机变量的期望与方 差
期望的定义与性质
定义
01
多维随机变量的期望值是所有可能结果的加权平均,其中权重
为每个结果的概率。
性质
独立性检验
独立性检验
独立性检验是统计学中用于检验两个或多个随机变量是否相互独立的一种方法。在多维随机变量的背景下,独立性检 验通常用于判断各个维度之间是否存在相关性或依赖关系。
独立性检验的方法
独立性检验的方法有很多种,其中常用的有卡方检验、斯皮尔曼秩相关系数和皮尔逊相关系数等。这些方法可以帮助 我们判断两个或多个随机变量是否相互独立,或者是否存在某种依赖关系。

概率论与数理统计课件:多维随机变量及其分布

概率论与数理统计课件:多维随机变量及其分布

多维随机变量及其分布
首页 返回 退出2
在实际问题中, 试验结果有时需要同时用两个或两
个以上的随机变量来描述.
如, 炮弹的弹着点的位置, (X, Y)是一个二维随
机变量.
又如,研究天气变化状况,令X, Y, Z分别表示
温度、湿度、风速,则(X, Y, Z)是一个三维随机变量.
研究多维随机变量有必要将多个变量作为一个整
二元函数
F ( x , y ) P{( X x ) (Y y )} P ( X x , Y y )
称为随机变量(X,Y)的联合分布函数。
一维随机变量X的联合分布
函数F ( x ) P ( X x ).
多维随机变量及其分布
首页 返回 退出
F(x,y)=P(X≤x,Y≤y)
y
F ( , y ) 0,
o
F ( x , ) 0,
F ( , ) 0, F ( , ) 1;
4 F ( x , y )关于x和y分别右连续;
x1
F ( x1 , y ) F ( x2 , y )
5 对于任意x1 x2 , y1 y2 , 有矩形公式




X
性质: 1 pij 0, i , j 1, 2, ;
2


p
i 1 j 1
多维随机变量及其分布
ij
1.
首页 返回 退出
例1 从1,2,3,4中任取一个数记为X、再从1,2, ⋯ ,
中任取一个数记为Y,求 ( X, Y ) 的联合分布律及P
( X=2Y ).
解:
可以证明,f(x,y)满足联合密度的性质。

多维随机变量及其分布

多维随机变量及其分布

多维随机变量的期望和方差
总结词
期望和方差是多维随机变量的重要统计量,用于描述随机变量的中心趋势和离散程度。
详细描述
期望值是随机变量所有可能取值的加权平均,反映了随机变量的中心趋势。方差则是描 述随机变量取值分散程度的量,即离散程度。在多维随机变量中,期望值是一个向量,
方差是一个矩阵。
多维随机变量的协方差和相关系数
定义
连续型随机变量是在一定范围内 可以取任何值的随机变量,通常 用X表示。
例子
人的身高、体重、时间等。
概率分布
连续型随机变量的概率分布可以 用概率密度函数(PDF)表示, 即f(x)表示随机变量取某个值的概 率密度。
随机变量的期望和方差
期望
期望是随机变量取值的平均值,用E(X)表示。对于离散型随机变量,E(X)=∑xp(x); 对于连续型随机变量,E(X)=∫xf(x)dx。
复杂度并提高模型的泛化能力。
Part
07
总结与展望
总结多维随机变量及其分布的主要内容
定义与性质
多维随机变量是多个随机变量的组合,具有多维度的特性 。其定义基于概率空间,每个维度都有独立的概率分布。
联合概率分布
多维随机变量的联合概率分布描述了所有维度同时发生的 概率。通过联合概率分布,可以计算各种联合事件的概率 。
总结词
独立性是多维随机变量的一个重要性质,表示多个随机变量之间没有相互依赖关系。
详细描述
在多维随机变量中,如果多个随机变量之间相互独立,那么一个随机变量的取值不会影响到另一个随 机变量的取值。独立性的判断对于概率论和统计学中的许多问题至关重要,如联合概率分布、条件概 率和贝叶斯推断等。
Part
06
边缘概率分布

概率论与数理统计图文课件最新版-第3章-多维随机变量及其分布

概率论与数理统计图文课件最新版-第3章-多维随机变量及其分布

比如:
概率统计
比如:
1 x y 0
F( x, y) 0 x y 0
对这二元函数来验证第4条性质。
现找 4 个点如下:
( x2 , y2 ) (1, 1); ( x1, y2 ) (1, 1)
( x2 , y1 ) (1, 1); ( x1, y1 ) (1, 1)
F(1,1) F(1,1) F(1, 1) F(1, 1)
0
x 0, y 0 其它
求: (1) 分布函数 F( x, y)
(2) ( X ,Y )落在G内的概率
其中 G: x y 1 及 x 轴、y 轴所围区域
解: (1) Q
x
F(x, y)
y
f ( x, y)dxdy
当 x 0, y 0 时
xy
F( x, y)
0 dx 0
2,4,8,10,14,16,20这7个 数不能被3整除,但能
被2整除
6,12,18这3个数能被2 整除,又能被3整除
不难验证:
1 1
7473
pi j 0, 0 0 pi j 21 21 21 21 1
概率统计
故 得: (X,Y) 的 联合分布 律为:
XY
0 1
01
7
4
21 21
7
P( x1 X x2 , y1 Y y2 )
F ( x2 , y2 ) F ( x2 , y1 ) F ( x1, y1 ) F ( x1, y2 )
如图:
y
y2 L
y1 L M
M
x
0 x1
x2
概率统计
2. 二维随机变量分布函数 F(x,y) 的性质
性质1 F(x,y) 分别对 x 和 y 单调非减, 即:

多维随机变量及其概率分布

多维随机变量及其概率分布

x y 0 x y 0
令:x1 1, x2 1, y1 1, y2 1,
F x2, y2 F x2, y1 F x1, y2 F x1, y1
P1 X 1, 1 Y 1 F 1,1 F 1, 1 F 1,1 F 1, 1
111 0 1 0
F
x,
y
0, 1,
f
x,
ydy
x2 0
0,
3dy
3y x2 3 x2 02 0
3x2, 0 x 1 其他
fY y

0
x<0, y<0 o

e -(x+y) x
x>0, y<0

0
0
Fx, y x y f u, vdudv
x y f u, vdudv 00
x 0, y 0
x y uvdudv x y u vdudv
00
00
x udu y vdv x u d u y v d v
+( x2 , y2 )
Fx2, y2 Fx2, y1
D
Fx1, y2 Fx1, y1
-( x2 , y1 )
x
x2
y
-( x1 , y2 ) y2
D= +( x2 , y2 )
F x2, y2
(2)
(1)
D
Fx2, y1 Fx1, y2
y1 +( x1 , y1 )
(4)
(3)
x1
y
X与Y 的联合分布函数 或
( X , Y )的分布函数
FY y PY y PX ,Y y lim Fx, y
x
二维随机变量( X , Y ) 关于X 的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、二维离散型随机变量
1. 定义
若二维随机变量 ( X, Y ) 所取的可能值是有限对或无 限可列多对,则称 ( X, Y ) 为二维离散型随机变量.
2. 二维离散型随机变量的分布律
设二维离散型随机变量 ( X ,Y ) , X 的取值为 x1, x2, , xi, Y 的取值为 y1, y2, , y j, i , j 1, 2,,
X (e )
e

Y (e )
上页
下页
返回
注意事项
(1) 向量 (X, Y)是一个整体, 其性质不仅与 X 、Y 有关, 而且还依赖于这两个随机变量的相互关系.
(2) 向量 (X, Y)从几何上看可以作为一个平面上随机点.
2.实例
实例1 炮弹的弹着点的位置 ( X, Y ) 就是一个二维随机变量. 实例2 考查某一地 区学前儿 童的发育情况 , 则儿童的身高 H 和体重 W 就构成二维随机变 量 ( H, W ).
(2)分布函数的几何意义
F ( x , y ) 的函数值就是 随机点落在如图所示 区域内的概率.
y
( x, y)
X x ,Y y
o
上页
下页
x
返回
(3) 分布函数的性质
1o F ( x , y ) 是变量 x 和 y 的不减函数,即对于任 意固定的 y , 当 x2 x1 时 F ( x2 , y ) F ( x1 , y ),
Y X 1 2 3 4 1.5 0.1 0 0.05 0.15 2.5 0.05 0.15 0.05 0 3.5 0.1 0.2 0.05 0.1
求P{| X Y | 0.5}.
解 满足 | X Y | 0.5的( X ,Y )取值为
(1,1.5);(2,1.5);(2, 2.5);(3, 2.5);(3,3.5);(4,3.5);
4o 对于任意 ( x1 , y1 ),( x2 , y2 ), x1 x2 , y1 y2 , 有 F ( x2 , y2 ) F ( x2 , y1 ) F ( x1 , y1 ) F ( x1 , y2 ) 0.

P{ x1 X x2 , y1 Y y2 } P{ X x2 , y1 Y y2 } P{ X x1 , y1 Y y2 } P{ X x2 ,Y y2 } P{ X x2 ,Y y1 } P{ X x1 ,Y y2 } P{ X x1 ,Y y1 } 0,
y
lim F ( x , y ) 0, 对于任意固定的 y , F ( , y ) x
对于任意固定的x , F ( x,) lim F ( x, y ) 0,
y
上页
下页
返回
3o F ( x , y ) F ( x 0, y ), F ( x , y ) F ( x , y 0), 即 F ( x , y ) 关于 x 右连续, 关于 y 也右连续.
F ( x, y)
x i x, y j y

pij
一般不好写出!
上页
下页
返回
1 2 解 ( X, Y ) 的可能取值为 (1,2), ( 2,1), ( 2,2).
1 2 1 P{ X 1,Y 2} , 3 2 3 2 1 1 P{ X 2,Y 1} , 3 2 3 2 1 1 P{ X 2,Y 2} . 3 2 3 p11 0,
综合之所求分布律为
X
Y
0
1
3 14
2
1 28
0
1 2
3 28
9 28
3 14
0
0
0
上页
下页 返回
3 28
4. 二维离散型随机变量的联合分布函数
设( X ,Y )二维离散型随机变量 , 其( 联合)分布律为
pij P X xi, Y y j i,j 1, 2,
则( X ,Y )的联合分布函数为
上页
13 13
下页 返回
1 p12 p21 p22 , 3
下面求分布函数.
(1)当 x 1 或 y 1 时,
y
( 2, 2 )
( 2,1)
F ( x , y ) P{ X x ,Y y } 2(1,2)
0;
(2)当1 x 2,1 y 2时,
F ( x , y ) p11 0;

P{ X xi , Y y j } pij , i , j 1, 2,,
称此为二维离散型随机 变量 ( X ,Y ) 的分布律, 或随机变量 X 和 Y 的联合分布律.
上页
下页 返回
二维随机变量 ( X,Y ) 的联合分布律也可表示为
Y
X
y1
y2
yj
x1 x2 xi
p11
p12
u x v y
则称 ( X ,Y ) 是连续型的二维随机变 量, 函数 f ( x , y )称为二维随机变量( X ,Y ) 的概率密度, 或称为随机变量 X 和 Y 的联合概率密度.
解 ( X, Y ) 所取的可能值是 ( 0,0), ( 0,1), (1,0 ), (1,1), ( 0,2), ( 2,0).
0 0 2 C3 C2 C3 3 P{ X 0,Y 0} , C 82 28
抽取两支都是绿笔
抽取一支绿笔,一支红笔
0 1 1 C3 C 2C 3 3 P{ X 0,Y 1} , 2 14 C8
对于任意固定的 x ,当y2 y1时F ( x , y2 ) F ( x , y1 ).
2o 0 F ( x, y ) 1,
y
且有
F ( ,) x lim F ( x , y ) 0, F ( ,) x lim F ( x , y ) 1 .
F x2, y2 F x2, y1 F x1, y2 F x1, y1
y y2
(x1 , y2) (X, Y ) (x1 , y1)
(x2 , y2) (x2 , y1)
y1 o
x1
x2
x
上页
下页 返回
4. n 维随机变量 (1) 定义 设 E 是一个随机试验, {e}是其样本空间,
§3.1 二维随机变量
一、二维随机变量及其分布函数 二、二维离散型随机变量 三、二维连续型随机变量 四、两个常用的分布
一、二维随机变量及其分布函数
1. 定义
若 E 是一个随机试验,它的样本空间是Ω={e},
设 X=X(e) 和 Y=Y(e) 是定义在 Ω 上的随机变量。 由它们构成的一个向量 (X, Y) ,叫做二维随机向量, 或二维随机变量。 图示
故 F ( x2 , y2 ) F ( x2 , y1 ) F ( x1 , y1 ) F ( x1 , y2 ) 0.
可以证明 某一二元函数是二维随机变量分布函数 该函数具有以上四条性质。
上页
下页 返回
(4) 一个重要的公式
设:x1 x2,y1 y2,
则 Px1 X x2, y1 X y2
p1 j
p21

p22

p2 j
Hale Waihona Puke pi1pi 2

pij
3. 联合分布律的性质
(1). pij P X xi, Y y j 0;

(2). pij 1.
i 1 j 1
上页
下页
返回
例1 设随机变量 X 在 1,2,3,4 四个整数中等可能地取 值, 另一个随机变量Y 在 1 ~ X 中等可能地取一整数值 . 试求 ( X ,Y ) 的分布律. 解 { X i ,Y j } 的取值情况是: i 1,2,3,4,
i 1,2,3,4,
j i.
Y X
1
2
3
4
1 2
1 4
1 8
1 12 1 16
0
1 8
1 12
0
0
0
0
0
3
4
1 12
1 16
1 16
1 16
上页
下页 返回
例2 从一个装有3支蓝色、2支红色、3支绿色圆珠笔 的盒子里, 随机抽取两支, 若 X、Y 分别表示抽出 的蓝笔数和红笔数,求 ( X, Y ) 的分布律.
X i X i e
e i 1, 2,
, X n e
, n
是该样本空间上的 n个随机变量.
则称 X 1, X 2, , X n
X1 e, X 2 e,
e
或 n 维随机向量. 为样本空间上的 n 维随机变量. (2) n维随机变量的联合分布函数 设 X1, X 2, , X n 是一个n维随机变量,则对于任 意一 n 维实数组 x1, x2, , xn , F x1, x2, , xn PX 1 x1, X 2 x2, , X n xn 我们称此函数为 n维随机变量 X 1, X 2, , X n 上页 下页 返回 为联合分布函数.
1 1 0 3 C3 C 2C 3 P{ X 1,Y 1} , 2 14 C8
抽取一支蓝笔,一支红笔
上页
下页
返回
0 2 0 1 C3 C2 C3 P{ X 0,Y 2} , 2 28 C8 1 0 1 9 C3 C2 C3 P{ X 1,Y 0} , 2 28 C8 2 0 0 C C3 3 P{ X 2,Y 0} 3 C 2 , 2 28 C8
上页
相关文档
最新文档