高中数学解题方法系列:概率的热点题型及其解法

合集下载

高考数学概率与统计题型解析与答题技巧

高考数学概率与统计题型解析与答题技巧

高考数学概率与统计题型解析与答题技巧在高考数学中,概率与统计是一个重要的板块,它不仅考查学生的数学知识和技能,还培养学生的数据分析和推理能力。

对于很多同学来说,这部分内容既有一定的挑战性,又充满了得分的机会。

下面我们就来详细解析高考数学中概率与统计的常见题型以及相应的答题技巧。

一、概率题型1、古典概型古典概型是概率中最基础的题型之一。

它的特点是试验结果有限且等可能。

例如,从装有若干个红球和白球的袋子中摸球,计算摸到某种颜色球的概率。

答题技巧:首先,确定总的基本事件数和所求事件包含的基本事件数。

然后,利用古典概型的概率公式 P(A)=所求事件包含的基本事件数÷总的基本事件数进行计算。

2、几何概型几何概型与古典概型不同,它的试验结果是无限的。

常见的有长度型、面积型、体积型几何概型。

比如,在一个区间内随机取一个数,求满足某个条件的概率。

答题技巧:对于几何概型,关键是要正确确定几何度量。

例如,长度型就计算长度,面积型就计算面积,体积型就计算体积。

然后,按照几何概型的概率公式 P(A)=构成事件 A 的区域长度(面积或体积)÷试验的全部结果所构成的区域长度(面积或体积)进行求解。

3、条件概率条件概率是指在事件 B 发生的条件下,事件 A 发生的概率。

题目中通常会给出一些条件,让我们计算在这些条件下的概率。

答题技巧:利用条件概率公式 P(A|B)= P(AB)÷P(B),先求出 P(AB)和 P(B),再计算条件概率。

4、相互独立事件与互斥事件相互独立事件是指一个事件的发生与否对另一个事件的发生概率没有影响;互斥事件则是指两个事件不能同时发生。

答题技巧:对于相互独立事件,它们同时发生的概率用乘法计算,即 P(AB)= P(A)×P(B);对于互斥事件,它们至少有一个发生的概率用加法计算,即 P(A∪B)= P(A)+ P(B)。

二、统计题型1、抽样方法包括简单随机抽样、分层抽样和系统抽样。

九类常见概率问题求解方法

九类常见概率问题求解方法

九类常见概率问题求解方法在概率论中,有许多常见的问题可以通过一些常用的方法来解决。

以下是九类常见的概率问题及其求解方法:1. 排列组合问题当问题涉及到选择或安排元素的顺序时,我们可以使用排列组合的方法来解决。

排列是指从给定的元素集合中选取一些元素并按照一定的顺序排列,组合是指从给定的元素集合中选取一些元素,不考虑顺序。

排列组合问题可以通过计算阶乘、直接应用排列组合公式或使用递推关系式来求解。

2. 条件概率问题当问题给出了一些额外的条件时,我们可以使用条件概率来解决。

条件概率是指在已知某些条件下,事件发生的概率。

通过应用条件概率公式,我们可以求解出事件在给定条件下的概率。

3. 独立事件问题若多个事件之间的发生不会互相影响,则这些事件是独立事件。

对于独立事件问题,我们可以通过计算每个事件的概率,然后将这些概率相乘来求解整个事件链的概率。

4. 联合概率问题当问题涉及到多个事件同时发生的概率时,我们可以使用联合概率来解决。

联合概率是指多个事件同时发生的概率。

通过计算每个事件的概率,然后将这些概率相乘来求解联合概率。

5. 互斥事件问题互斥事件是指两个事件之间不能同时发生的情况。

当问题涉及到互斥事件的概率时,我们可以通过计算每个事件的概率,然后将这些概率相加来求解整体概率。

6. 逆概率问题当问题给出了事件发生的概率,我们可以使用逆概率来解决。

逆概率是指已知事件发生的概率,求解事件不发生的概率。

通过使用补集的概念,即1减去事件发生的概率,我们可以求解逆概率。

7. 条件逆概率问题当问题给出了事件发生的条件概率,我们可以使用条件逆概率来解决。

条件逆概率是指已知事件发生的条件下,求解事件不发生的概率。

通过使用补集公式和条件概率公式,我们可以求解条件逆概率。

8. 边际概率问题当问题给出了多个事件的联合概率和条件概率时,我们可以使用边际概率来解决。

边际概率是指在多个事件联合发生的情况下,某个单独事件发生的概率。

通过应用边际概率公式和条件概率公式,我们可以求解边际概率。

高中数学概率解题技巧

高中数学概率解题技巧

高中数学概率解题技巧概率在数学中是一个非常重要的概念,也是高中数学中比较难以理解和运用的知识点之一。

在概率的解题过程中,我们需要掌握一些解题技巧,这些技巧可以帮助我们更加高效地解决数学概率问题。

本文将介绍一些高中数学概率解题的技巧,并结合相关例题进行讲解。

一、确定随机事件在解决概率问题之前,我们首先要确定随机事件的范围和样本空间。

样本空间是指所有可能结果的集合,而随机事件是样本空间的一个子集。

确定好随机事件和样本空间之后,我们就可以根据问题所求的概率进行计算。

例题:某班有60名学生,其中30名男生,30名女生。

如果从这60名学生中随机选取一名学生,求选中男生的概率。

解题思路:首先,我们可以确定随机事件为“选中男生”,样本空间为该班所有学生。

根据题目给出的信息,男生和女生的人数相等,所以该班男生的概率为30/60=1/2。

二、计算有序事件的概率有些概率问题中,要求我们计算特定事件按照一定顺序出现的概率。

在计算有序事件的概率时,我们需要注意事件发生的次序,并根据次序进行计算。

例题:A、B、C、D四个人按次序排成一列,请计算A在最后一位的概率。

解题思路:根据题目的要求,我们可以知道总共有4!=24种不同的排列方式。

而在这24种排列方式中,A在最后一位的情况只有一种,所以A在最后一位的概率为1/24。

三、计算无序事件的概率有些概率问题中,要求我们计算特定事件出现的概率,而不考虑其次序。

在计算无序事件的概率时,我们需要使用组合数进行计算。

例题:某班有30名学生,其中10名喜欢足球,20名喜欢篮球。

如果从这30名学生中随机选取两名学生,求两名学生都喜欢足球的概率。

解题思路:首先,我们可以确定随机事件为“两名学生都喜欢足球”,样本空间为从30名学生中选取两名学生的组合数C(30, 2)。

而两名学生都喜欢足球的情况可以看作从10名学生中选取两名学生的组合数C(10, 2)。

所以两名学生都喜欢足球的概率为C(10, 2)/C(30, 2)。

数学高考解题技巧如何灵活运用数学方法解决概率题

数学高考解题技巧如何灵活运用数学方法解决概率题

数学高考解题技巧如何灵活运用数学方法解决概率题概率题在高考数学考试中占据着重要的位置,而解决概率题所运用的数学方法则是考生们需要掌握和灵活运用的技巧之一。

本文将为大家介绍数学高考解题技巧,探讨如何灵活运用数学方法解决概率题。

一、了解概率题的基本概念在解决概率题之前,我们首先需要了解概率的基本概念。

概率是指某一事件发生的可能性,通常用一个介于0和1之间的数值来表示。

常见的概率题包括排列组合、事件的互斥与独立、条件概率等。

二、运用排列组合解决概率题排列组合是解决概率题的重要数学方法之一。

在一些问题中,我们需要计算某一事件的可能性,这时我们可以通过排列组合的方法来求解。

例如,某班有10位学生,其中5位男生和5位女生,要从中随机挑选3位学生,问其中至少有2位男生的概率是多少。

我们可以通过排列组合的方法解决这个问题。

首先我们需要计算在5位男生中选择2位男生的可能性、在5位女生中选择1位女生的可能性,然后将两个可能性相乘,最后再除以总的选择可能性。

三、理解事件的互斥与独立解决概率题在解决概率题的过程中,我们还需要理解事件的互斥与独立。

互斥事件是指两个事件不能同时发生,独立事件是指两个事件的发生与否互不影响。

对于互斥事件,我们可以通过将两个事件的概率相加来求解总的概率。

例如,某班有30名学生,其中10位男生和20位女生,从中随机挑选1名学生,问挑选到女生的概率是多少。

由于男生和女生两个事件是互斥的,所以我们可以直接将挑选到女生的概率计算为女生人数除以总人数。

对于独立事件,我们可以通过将两个事件的概率相乘来求解总的概率。

例如,某班有30名学生,其中15位男生和15位女生。

从中随机挑选2名学生,问两名学生都是男生的概率是多少。

由于两名学生都是男生这两个事件是独立的,所以我们可以将挑选到男生的概率相乘求解。

四、利用条件概率解决概率题条件概率是指在已知某一事件发生的条件下,另外一个事件发生的概率。

在解决概率题时,我们可以用条件概率来解决一些较为复杂的问题。

高中概率题型及解题方法

高中概率题型及解题方法

高中概率题型及解题方法概率是高中数学中重要且有趣的话题。

它涉及到事件发生的可能性,并通过数学方法计算概率值。

在高中学习中,学生经常会遇到各种概率题型。

本文将介绍一些常见的高中概率题型及解题方法。

1. 事件概率计算:在这种类型的题目中,我们需要计算某个特定事件发生的概率。

一般情况下,事件概率等于事件发生的次数除以总的可能次数。

解决这类问题时,关键是确定事件发生的次数和总的可能次数。

2. 独立事件概率计算:当我们面对多个独立事件时,我们可以将每个事件的概率相乘来得到它们同时发生的概率。

例如,投掷一枚硬币和掷一颗骰子是独立事件,我们可以计算得到同时出现正面和点数为3的概率。

3. 互斥事件概率计算:互斥事件是指两个事件不能同时发生的情况。

在这种情况下,我们可以计算每个事件发生的概率并将它们相加。

例如,抽一张扑克牌,获得红桃和黑桃的两个事件就是互斥事件,我们可以计算它们的概率并相加。

4. 条件概率计算:当我们已经知道某个事件发生的条件下,另一个事件发生的概率,我们可以使用条件概率来解决问题。

条件概率等于两个事件同时发生的概率除以已知条件发生的概率。

解题时,我们需要明确给出的条件和需要计算的事件。

5. 排列组合问题:在一些概率问题中,我们需要考虑对象的排列顺序或组合方式。

这涉及到排列和组合的概念。

排列是指对象的顺序,组合是指对象的选择,与顺序无关。

解决这类问题时,我们需要正确地使用排列和组合的公式。

高中概率题型多种多样,每个题目都有其独特的解题方法。

关键是理解概率的基本概念,掌握如何把问题转化为数学语言,并使用适当的公式和计算方法得出正确的答案。

通过反复的练习和理解,我们可以在高中学习中显著提高我们的概率问题解决能力。

高中数学解概率题的常用技巧和注意事项

高中数学解概率题的常用技巧和注意事项

高中数学解概率题的常用技巧和注意事项概率题是高中数学中的一个重要考点,也是让很多学生头疼的难题。

在解概率题时,我们需要掌握一些常用的技巧和注意事项,以提高解题的效率和准确性。

本文将介绍几个常见的概率题类型,并给出相应的解题技巧和注意事项。

一、排列组合型概率题在排列组合型概率题中,常常涉及到从一组元素中选取若干个元素进行排列或组合的情况。

例如:从10个不同的球中任意取3个,求其中有2个红球的概率是多少?解题技巧:1. 确定元素个数和要求的条件:在这个例子中,元素个数为10,要求有2个红球。

2. 计算总的可能性:从10个球中任意取3个的总共可能性为C(10,3)。

3. 计算满足条件的可能性:从10个球中选取2个红球的可能性为C(4,2),再从剩下的6个球中选取1个非红球的可能性为C(6,1)。

4. 计算概率:满足条件的可能性除以总的可能性即为所求的概率。

注意事项:1. 在计算组合数时,要注意使用组合公式C(n,r) = n! / (r!(n-r)!)。

2. 在计算概率时,要将满足条件的可能性除以总的可能性。

二、事件的互斥与独立性在概率题中,有时会涉及到多个事件的互斥或独立性。

例如:从一副扑克牌中任意抽取2张牌,求第一张是红心牌,第二张是黑桃牌的概率是多少?解题技巧:1. 确定事件的互斥与独立性:在这个例子中,第一张是红心牌与第二张是黑桃牌是两个独立的事件。

2. 计算第一张是红心牌的概率:红心牌有13张,总共有52张牌,所以第一张是红心牌的概率为13/52。

3. 计算第二张是黑桃牌的概率:黑桃牌有13张,总共有51张牌,所以第二张是黑桃牌的概率为13/51。

4. 计算概率:两个事件独立,所以将两个概率相乘即为所求的概率。

注意事项:1. 在判断事件的互斥与独立性时,要根据题目中给出的条件进行分析。

2. 在计算概率时,要注意将独立事件的概率相乘。

三、条件概率与贝叶斯定理在概率题中,有时会涉及到条件概率与贝叶斯定理。

数学中概率题解题技巧与关键知识点

数学中概率题解题技巧与关键知识点

数学中概率题解题技巧与关键知识点在数学中,概率是一个非常重要的概念,它涉及到我们在现实生活中做出决策时对可能结果的估计。

为了解决概率问题,我们需要掌握一些解题技巧和关键知识点。

本文将介绍一些常见的概率题解题技巧,并概述一些关键的数学知识点。

一、条件概率的计算条件概率是指在某个条件下事件发生的可能性。

我们可以通过以下公式计算条件概率:P(A|B) = P(A∩B) / P(B)其中,P(A|B)表示在事件B发生的条件下,事件A发生的概率;P(A∩B)表示事件A和事件B同时发生的概率;P(B)表示事件B发生的概率。

二、独立事件的计算在概率中,独立事件是指两个或多个事件之间相互不影响的事件。

如果事件A和事件B是独立事件,则它们同时发生的概率为它们各自发生的概率的乘积。

P(A∩B) = P(A) * P(B)这个公式可以用于计算多个独立事件同时发生的概率。

三、排列组合的运用在解决概率问题时,排列组合是一个常用的工具。

当我们需要确定一个事件发生的可能性时,我们可以使用排列或组合的方法。

排列是指从一组对象中选择若干个对象,并按照一定的顺序进行排列。

当我们需要确定事件的顺序时,我们可以使用排列的方法计算概率。

组合是指从一组对象中选择若干个对象,并不考虑它们的顺序。

当我们不关心事件的顺序时,我们可以使用组合的方法计算概率。

四、概率分布的理解概率分布是指在一定条件下某个事件发生的可能性分布情况。

概率分布可以用来描述某个事件发生的概率与结果之间的关系。

常见的概率分布包括均匀分布、正态分布和二项分布等。

在解决概率问题时,了解不同的概率分布特点和计算方法是很有帮助的。

五、贝叶斯定理的应用贝叶斯定理是概率论中的一个基本定理,它用于更新先验概率的值,以得到后验概率。

贝叶斯定理可以帮助我们在得到新的信息后,重新评估事件发生的概率。

贝叶斯定理的公式如下:P(A|B) = P(A) * P(B|A) / P(B)其中,P(A)表示事件A发生的先验概率;P(B|A)表示在事件A发生的条件下事件B发生的概率;P(B)表示事件B发生的概率。

高考统计概率题型的解题方法

高考统计概率题型的解题方法

高考统计概率题型的解题方法高考统计概率题型通常涉及到概率、期望和抽样等内容。

解题的方法和思路决定了我们能否高效地解决这些题目。

下面我将介绍一些常用的解题方法,希望对您有所帮助。

一、概率问题的解题方法1.事件的概率计算在解决概率问题时,首先要确定所求事件的概率。

概率可以表示为“事件发生的次数/总的可能次数”。

有以下几种常见情况:-均匀概率问题:即各事件发生的概率相等。

此时,所求事件的概率等于所求事件发生的次数/总的可能次数。

-条件概率问题:即事件A在事件B已经发生的条件下发生的概率。

此时,所求事件的概率等于事件A与事件B同时发生的次数/事件B发生的次数。

-独立事件概率问题:即事件A和事件B相互独立,互不影响。

此时,所求事件的概率等于事件A发生的概率乘以事件B发生的概率。

2.用排列组合解决问题有些概率问题中,可能涉及到多个选择,这时可以使用排列组合的方法来解决。

-排列:表示从n个元素中取出m个元素按照一定顺序排列的数目。

计算排列数的公式为:P(n,m)=n!/(n-m)!-组合:表示从n个元素中取出m个元素,不考虑其排列顺序的情况。

计算组合数的公式为:C(n,m)=n!/(m!(n-m)!)二、期望问题的解题方法1.期望的定义期望是一个随机变量在长期重复试验中出现的平均现象,通常用E 表示。

对于离散型随机变量,其期望可以表示为:E(X)=∑(x*p(x)),其中x为取值,p(x)为该值出现的概率。

对于连续型随机变量,期望可以用积分的形式表示。

2.期望的性质-线性性质:设X,Y为两个随机变量,a,b为常数,则E(aX+bY)=aE(X)+bE(Y)。

-期望的非负性:对于任意的随机变量X,有E(X)>=0。

-期望的加法性质:对于任意的随机变量X,Y,有E(X+Y)=E(X)+E(Y)。

三、抽样问题的解题方法1.抽样方法在抽样问题中,常见的有放回抽样和不放回抽样两种方法。

-放回抽样:即每次抽到一个元素后,将抽到的元素放回到总体中。

高中数学概率与统计题型解答方法

高中数学概率与统计题型解答方法

高中数学概率与统计题型解答方法概率与统计是高中数学中的一门重要课程,它涵盖了许多与概率、统计相关的数学题型。

在掌握基础知识的基础上,采用正确的解答方法,可以更好地应对这些题型。

本文将介绍几种常见的概率与统计题型,以及相应的解答方法。

一、事件概率1.求事件的概率求事件的概率是概率与统计中最基础的题型。

对于一个随机试验,事件A发生的概率可以用下列公式表示:P(A) = 事件A的可能性数 / 总的可能性数2.互斥事件的概率互斥事件是指两个事件不可能同时发生的情况。

假设A和B是两个互斥事件,则它们的概率可以用下列公式表示:P(A∪B) = P(A) + P(B)3.独立事件的概率独立事件是指两个事件的发生与否互不影响的情况。

如果A和B是两个独立事件,则它们的概率可以用下列公式表示:P(A∩B) = P(A) × P(B)二、排列与组合1.排列问题排列是指从若干个不同元素中选取若干个元素按照一定的顺序进行排列。

对于从n个元素中选取k个元素进行排列的问题,可以使用下列公式进行计算:A(n,k) = n! / (n-k)!2.组合问题组合是指从若干个不同元素中选取若干个元素进行组合,不考虑其顺序。

对于从n个元素中选取k个元素进行组合的问题,可以使用下列公式进行计算:C(n,k) = n! / (k! × (n-k)!)三、概率分布1.离散型随机变量的概率分布离散型随机变量的概率分布可以通过列出其取值以及相应的概率来表示。

当给定每个取值对应的概率后,可以计算出该随机变量的期望值、方差等。

2.连续型随机变量的概率分布连续型随机变量的概率分布可以通过概率密度函数来表示。

在解答问题时,常常需要计算某个取值范围内的概率,可以通过计算概率密度函数下的面积来实现。

四、抽样与推断1.简单随机抽样简单随机抽样是指从总体中随机地选取n个样本进行调查或实验。

在进行统计推断时,可以根据样本数据来估计总体参数。

2.抽样分布抽样分布是指统计量的分布。

高中数学概率与统计的常见题型及解题思路

高中数学概率与统计的常见题型及解题思路

高中数学概率与统计的常见题型及解题思路数学是一门精确的科学,而概率与统计则是数学中的一个重要分支。

在高中阶段,学生将学习到许多与概率与统计相关的常见题型,本文将介绍这些题型以及解题的思路。

一、概率题型1. 事件的概率计算概率计算是概率论的基本概念之一。

当我们面对一个事件时,首先需要明确事件的样本空间以及事件本身的可能性。

以掷硬币为例,样本空间为{正面,反面},而事件“掷出正面”有一半的可能性。

解题时,可以使用计数原理或者几何概型来计算概率。

2. 独立事件的概率计算当两个或多个事件相互独立时,可以使用乘法法则来计算它们同时发生的概率。

例如,从一副扑克牌中同时抽出两张牌,求两张牌都是红心的概率。

解题时,需要考虑每个事件的概率,并将它们相乘。

3. 互斥事件的概率计算互斥事件指的是两个事件不可能同时发生。

当两个事件互斥时,可以使用加法法则来计算它们发生的概率。

例如,从一副扑克牌中抽出一张牌,求该牌是红心或者是黑桃的概率。

解题时,需要考虑每个事件的概率,并将它们相加。

4. 条件概率计算条件概率是在已知一定条件下某个事件发生的概率。

例如,某城市早高峰时段交通事故的概率。

解题时,需要将已知条件与事件的概率结合起来计算。

二、统计题型1. 样本调查与数据分析在统计学中,常常需要进行样本调查以获取数据。

例如,假设我们要调查全校学生的身高分布,可以通过随机抽样的方式获得样本数据,并进行统计分析。

解题时,需要了解样本调查的方法和数据分析的技巧。

2. 统计指标计算常见的统计指标包括平均数、中位数、众数、方差等。

解决统计题目时,需要根据给定的数据计算相应的统计指标。

例如,求一组数据的平均值或者方差。

3. 概率分布计算概率分布是指随机变量取各个值的概率。

在统计学中,常见的概率分布包括二项分布、正态分布等。

解决概率分布相关的题目时,需要了解不同概率分布的特点,并运用相应的公式来计算。

4. 假设检验与置信区间假设检验和置信区间是统计学中的两个重要概念。

概率的题型与解题技巧

概率的题型与解题技巧

件; (1)如果事件A B独立, 那么事件A与A与£及事件二与厂也都是独立事概率的题型与解题技巧1 •随机事件止的概率~L(寸^丨,其中当':•时称为必然事件;当’川时称为不可能事件P(A)=O;2. 等可能事件的概率(古典概率):P(A)=「•。

理解这里m n的意义。

比如:(1)将数字1、2、3、4填入编号为1、2、3、4的四个方格中,每格填一个数字,3则每个方格的标号与所填数字均不相同的概率是________ (答:$);(2)设10件产品中有4件次品,6件正品,求下列事件的概率:①从中任取 2 件都是次品;②从中任取5件恰有2件次品;③从中有放回地任取3件至少有2件次2 10 4410品;④从中依次取5件恰有2件次品。

(答:①二;②二;③;④】-)3、互斥事件:(A B互斥,即事件A、B不可能同时发生)。

计算公式:P(A+B) = P(A)+P(B)。

比如:(1)有A、B两个口袋,A袋中有4个白球和2个黑球,B袋中有3个白球和4个旦黑球,从A、B袋中各取两个球交换后,求A袋中仍装有4个白球的概率。

(答:—);(2)甲、乙两个人轮流射击,先命中者为胜,最多各打5发,已知他们的命中率分别为0.3和0.4,甲先射,则甲获胜的概率是(0.425=0.013,结果保留两位小数)_____ (答:0.51 );(3)有一个公用电话亭,在观察使用这个电话的人的流量时,设在某一时刻,有n个人正在使用电话或等待使用的概率为P (n),且P (n)与时刻t无关,统计得到」•,那么在某一时刻,这个公用电话亭里一个人也没有的32概率P (0)的值是__________________________ (答:厂)4、对立事件:(A、B对立,即事件A、B不可能同时发生,但A、B中必然有一个发生)。

计算公式是:P (A) + P(B) =P(」)=1 —P(A);提醒:(2)如果事件A B相互独立,那么事件A、B至少有一个不发生的概率是1 —P(A B)= 1 —P(A)P(B);(3)如果事件A B相互独立,那么事件A、B至少有一个发生的概率是1 —P (J丁 )= 1 —P(?I)P( J)。

高中数学概率问题解决技巧与方法详细解读与举例

高中数学概率问题解决技巧与方法详细解读与举例

高中数学概率问题解决技巧与方法详细解读与举例概率问题在高中数学中占有重要地位,它既是数学的一门重要分支,也是现实生活中常见的实际问题。

掌握概率问题的解决技巧和方法,对于学生来说是非常重要的。

本文将详细解读概率问题的解决技巧,并通过具体的题目举例,说明其考点和应用。

一、概率的基本概念概率是指某个事件发生的可能性大小。

在概率问题中,我们常用“P(A)”表示事件A发生的概率,其取值范围为0到1之间。

当P(A)=0时,表示事件A不可能发生;当P(A)=1时,表示事件A一定会发生。

例如,某班级有30名学生,其中10名男生和20名女生。

现从班级中随机抽取一名学生,求抽到男生的概率。

解析:设事件A为抽到男生,事件B为抽到女生。

由于班级中共有10名男生和20名女生,所以事件A的样本空间为男生的集合,共有10个元素;事件B的样本空间为女生的集合,共有20个元素。

因此,事件A的概率为P(A)=10/30=1/3。

二、概率的加法法则概率的加法法则是指当两个事件A和B互斥(即事件A和事件B不可能同时发生)时,它们的概率之和等于它们的和事件的概率。

例如,某班级有30名学生,其中10名男生和20名女生。

现从班级中随机抽取一名学生,求抽到男生或女生的概率。

解析:设事件A为抽到男生,事件B为抽到女生。

由于男生和女生是互斥的,即事件A和事件B不可能同时发生,所以事件A和事件B的和事件为全体学生,样本空间为班级中所有学生的集合,共有30个元素。

因此,事件A或事件B的概率为P(A∪B)=1。

三、概率的乘法法则概率的乘法法则是指当两个事件A和B独立(即事件A的发生与事件B的发生无关)时,它们的概率之积等于它们的交事件的概率。

例如,某班级有30名学生,其中10名男生和20名女生。

现从班级中随机抽取两名学生,求两名学生都是男生的概率。

解析:设事件A为第一名学生是男生,事件B为第二名学生是男生。

由于两名学生的性别是独立的,即第一名学生是男生与第二名学生是男生的发生无关,所以事件A和事件B的交事件为两名学生都是男生的情况。

概率与统计题型及解题方法

概率与统计题型及解题方法

概率与统计题型及解题方法
概率与统计题型有很多种,以下列举几种常见的题型及解题方法: 1. 概率计算题:给定一组事件,求某个事件发生的概率。

解题
方法:使用概率的定义,将所求事件的样本空间对应的元素个数除以总的样本空间的元素个数。

2. 条件概率题:已知事件B发生的条件下,事件A发生的概率。

解题方法:使用条件概率公式P(A|B) = P(A∩B) / P(B),其中P(A∩B)表示事件A与事件B同时发生的概率,P(B)表示事件B发生的概率。

3. 互斥事件题:两个事件A、B不能同时发生,求它们中至少一个发生的概率。

解题方法:使用互斥事件的概率公式P(A∪B) = P(A) + P(B)。

4. 独立事件题:两个事件A、B发生与否互不影响,求它们同时发生的概率。

解题方法:如果事件A、B是独立事件,那么P(A∩B) = P(A) * P(B)。

5. 随机变量题:给定一个随机变量X,求其概率分布、期望、
方差等。

解题方法:根据随机变量的定义和性质,计算所求的概率或统计量。

6. 正态分布题:给定一个正态分布的随机变量X,求其概率或
统计量。

解题方法:根据正态分布的性质和标准正态分布的表格,计算所求的概率或统计量。

以上只是概率与统计题型的一部分,还有很多其他类型的题目。

解题方法主要是根据题目给出的条件和问题的要求,使用概率的定义、
性质、公式等进行计算和推导。

同时,熟练掌握一些常见的概率分布(如二项分布、泊松分布、指数分布等)和统计量(如均值、方差、协方差等)的计算方法也是解题的关键。

高考数学技巧如何有效地解决概率题

高考数学技巧如何有效地解决概率题

高考数学技巧如何有效地解决概率题在高考数学考试中,概率题是一道难点,也是许多考生头疼的问题。

有效地解决概率题需要一些技巧和方法。

本文将介绍一些高考数学概率题的解决技巧,帮助考生更加高效地完成题目。

1. 熟悉概率的基本概念在解决概率题之前,首先要对概率的基本概念有所了解和掌握。

概率是指某个事件发生的可能性的大小。

掌握基本概念可以帮助我们更好地理解和解决概率题。

2. 分清条件概率和乘法原理条件概率和乘法原理是概率题中常用到的两个重要概念。

条件概率指在已知一些条件的前提下,某一事件发生的概率。

乘法原理指两个或多个事件同时发生的概率等于各个事件发生的概率的乘积。

分清这两个概念可以帮助我们正确地理解问题和运用相应的公式。

3. 利用树形图解题树形图是解决概率问题常用的图解方法。

通过树形图可以清晰地展示事件发生的不同情况和各个事件之间的关系。

将问题转化为树形图可以帮助我们更好地理解和解决概率题。

4. 运用排列组合的知识排列组合是解决概率问题的重要工具。

在某些题目中,我们需要计算某几个事件同时发生的概率,这时可以运用排列组合的知识,求出符合条件的排列或组合的数量,并将其与总的可能性进行比较,从而得出概率的解答。

5. 注意计算器使用的准确性在解决概率题时,我们常常需要进行一些复杂的计算,这时使用计算器可以提高计算的准确性和效率。

然而,在使用计算器计算的过程中,我们应该保证输入的数据准确,并检查计算结果是否符合常识和题意,避免因为计算器使用不当而影响解题结果。

6. 多做概率题,总结归纳概率题是需要多做才能掌握的,通过多做概率题可以熟悉题目的解题思路和方法。

对于做过的概率题,我们可以总结归纳其中的解题技巧和思路,构建起自己的解题思维模式,从而更加有针对性地解决概率题。

以上是解决高考数学概率题的一些有效技巧和方法。

希望考生们能够认真学习和掌握这些技巧,在考试中能够圆满解答概率题目,取得理想的成绩。

祝愿所有参加高考的考生都能取得优异的成绩!。

高中数学概率问题解决技巧与方法详细说明

高中数学概率问题解决技巧与方法详细说明

高中数学概率问题解决技巧与方法详细说明概率是高中数学中的一个重要概念,也是考试中常见的题型。

掌握解决概率问题的技巧和方法,对于高中学生来说至关重要。

本文将详细说明高中数学概率问题的解决技巧和方法,帮助读者更好地应对这类题目。

一、基本概念与公式在解决概率问题之前,我们首先需要了解一些基本概念和公式。

概率是指某一事件发生的可能性,通常用一个介于0和1之间的数表示。

事件的概率可以通过以下公式计算:P(A) = n(A) / n(S)其中,P(A)表示事件A的概率,n(A)表示事件A包含的样本点个数,n(S)表示样本空间中的样本点个数。

二、排列与组合在概率问题中,排列和组合是常见的考点。

排列是指从n个不同元素中取出m 个元素进行排列,计算排列数可以使用以下公式:A(n, m) = n! / (n - m)!其中,n!表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 2 * 1。

组合是指从n个不同元素中取出m个元素进行组合,计算组合数可以使用以下公式:C(n, m) = n! / (m! * (n - m)!)三、互斥事件与独立事件在概率问题中,互斥事件和独立事件是另一个重要的概念。

互斥事件指的是两个事件不能同时发生,例如掷骰子出现1和出现6是互斥事件。

计算互斥事件的概率可以使用以下公式:P(A or B) = P(A) + P(B)其中,P(A or B)表示事件A或事件B发生的概率,P(A)和P(B)分别表示事件A和事件B的概率。

独立事件指的是两个事件的发生不会相互影响,例如连续两次抛硬币出现正面是独立事件。

计算独立事件的概率可以使用以下公式:P(A and B) = P(A) * P(B)其中,P(A and B)表示事件A和事件B同时发生的概率,P(A)和P(B)分别表示事件A和事件B的概率。

四、应用实例下面通过一些具体的题目来说明概率问题的解决技巧和方法。

1. 从一副扑克牌中随机抽取一张牌,求抽到红心的概率。

高考数学中的概率题如何解答

高考数学中的概率题如何解答
希望同学们在今后的学习中,能够重视概率这部分内容,不断提高自己的解题能力,为高考打下坚实的基础。加油!
我们通过一个具体的例子来看看。
题目:在一次抽奖活动中,盒子里有10张奖券,其(1)甲抽到一等奖的概率;
(2)在甲抽到一等奖的情况下,乙抽到一等奖的概率。
对于第一问,甲从10张奖券中抽一张,抽到一等奖的概率就是3/10。
对于第二问,在甲抽到一等奖后,剩下9张奖券,其中2张是一等奖,所以乙抽到一等奖的概率就是2/9。
高考数学中的概率题如何解答
在高考数学中,概率题是一个重要的考点,也是不少同学感到头疼的部分。但其实,只要掌握了正确的方法和思路,概率题并没有想象中那么难。接下来,咱们就一起探讨一下高考数学中概率题的解答方法。
首先,我们要清楚概率的基本概念。概率,简单来说,就是某一事件发生的可能性大小。比如抛一枚硬币,正面朝上的概率就是05。在概率的计算中,我们常常会用到排列组合的知识。所以,熟练掌握排列组合的公式和计算方法是解答概率题的基础。
那么,在面对具体的概率题时,我们该怎么做呢?第一步,一定要认真读题,弄清楚题目所描述的事件和条件。很多同学在这一步就出错,没有理解题目意思就盲目做题,结果可想而知。比如,题目说从5个不同颜色的球中取出2个,这是组合问题;如果说取出2个球依次取出,这就是排列问题。
第二步,选择合适的计算方法。如果是等可能事件的概率,我们通常用事件包含的基本事件数除以总的基本事件数。举个例子,一个袋子里有3个红球和2个白球,从中随机取出一个球是红球的概率,这里总的基本事件数是5,红球的基本事件数是3,所以概率就是3/5。
如果涉及到相互独立事件同时发生的概率,就用乘法原理。比如,甲投篮命中的概率是08,乙投篮命中的概率是07,两人投篮相互独立,那么两人都命中的概率就是08×07=056。

高中数学概率问题解决技巧与方法详细说明

高中数学概率问题解决技巧与方法详细说明

高中数学概率问题解决技巧与方法详细说明数学概率是高中数学中的一个重要内容,也是学生们经常会遇到的问题。

在处理概率问题时,我们需要运用一些技巧和方法来解决,以确保能够正确地分析和计算概率。

本文将详细介绍一些高中数学概率问题解决的技巧和方法,帮助读者更好地理解和应用概率概念。

一、概率问题的基本概念回顾在解决概率问题之前,我们首先需要回顾一些基本概念。

概率是指某个事件发生的可能性,通常用一个介于0到1之间的数值来表示。

事件的概率可以通过分为有限样本空间的情况下,事件发生的次数与样本空间中的总次数之比来计算。

二、计算概率的常用方法在解决概率问题时,我们可以运用以下几种常见的计算方法:1. 等可能性原则:当事件的样本空间中的每个样本发生的可能性相等时,我们可以采用等可能性原则。

例如,投掷一个均匀的骰子,每个点数(1-6)出现的可能性相等。

2. 频率法:在实际的观察或实验中,通过统计事件发生的频次来估计事件的概率。

这种方法在大量实验中往往更加准确。

3. 几何法:对于几何问题,我们可以通过计算区域面积或长度比来计算概率。

例如,计算一个点落在某个区域内的概率,可以通过计算该区域的面积与总体面积的比值。

4. 利用条件概率:有时,我们需要计算事件在给定其他条件下发生的概率。

这时可以使用条件概率公式:P(A|B) = P(A∩B)/P(B),其中P(A∩B) 表示事件 A 和 B 同时发生的概率,P(B) 表示事件 B 发生的概率。

5. 利用排列与组合:排列与组合是解决概率问题时常用的技巧。

当事件所涉及的样本空间较大时,我们可以利用排列与组合的原理来简化计算。

例如,在从一副52张的扑克牌中抽取5张牌,我们可以利用组合数来计算不同组合的出现概率。

三、应用概率解决实际问题除了计算概率,概率概念还可以应用于解决一些实际问题,例如:1. 投资理财:概率可以用来估计投资风险和预测投资收益。

投资者可以根据不同资产类别的历史数据和市场趋势,计算出不同事件的概率,并做出相应的投资决策。

高中数学概率问题的解答

高中数学概率问题的解答

高中数学概率问题的解答概率问题是高中数学中的一个重要部分,也是学生们经常遇到的难题之一。

在解答概率问题时,我们需要运用一些基本的概率知识和解题技巧,以便能够准确地计算出概率。

本文将通过具体的题目举例,分析其考点,并给出解题方法和技巧,帮助高中学生和他们的父母更好地理解和解答概率问题。

一、基本概率计算首先,我们来看一个基本的概率计算问题。

例题1:从一副扑克牌中随机抽取一张牌,求抽到黑桃的概率。

解析:这是一个典型的基本概率计算问题。

一副扑克牌共有52张牌,其中有13张黑桃牌。

因此,抽到黑桃的概率为13/52,即1/4。

这个例题的考点是基本概率计算。

解答这类问题时,我们需要确定事件的总数和有利事件的个数,然后计算有利事件的个数与总数的比值即可。

二、复杂概率计算除了基本概率计算外,我们还会遇到一些复杂的概率计算问题。

接下来,我们来看一个例题。

例题2:有两个盒子,盒子A中有2个白球和3个黑球,盒子B中有3个白球和4个黑球。

现在从这两个盒子中随机选择一个盒子,然后从所选的盒子中随机抽取一球,求抽到白球的概率。

解析:这个例题涉及到条件概率的计算。

首先,我们需要确定事件的条件。

设事件A表示从盒子A中选取盒子,事件B表示从所选盒子中抽取白球。

则所求概率为P(B|A)。

根据条件概率公式,P(B|A) = P(A∩B) / P(A)。

其中,P(A∩B)表示事件A与事件B同时发生的概率,P(A)表示事件A发生的概率。

在本题中,P(A)表示从两个盒子中选取盒子A的概率,显然为1/2;P(A∩B)表示从盒子A中选取盒子,并且从所选盒子中抽取白球的概率,即(1/2) * (2/5) = 1/5。

因此,所求概率为P(B|A) = P(A∩B) / P(A) = (1/5) / (1/2) = 2/5。

这个例题的考点是条件概率的计算。

解答这类问题时,我们需要确定事件的条件,并运用条件概率公式进行计算。

三、概率问题的应用除了基本概率计算和条件概率计算外,概率问题还有一些实际应用。

高中数学概率题型及解题方法

高中数学概率题型及解题方法

高中数学概率题型及解题方法
高中数学概率那可真是让人又爱又恨啊!概率题型多样得就像一个神秘的百宝箱,你永远不知道打开后会遇到啥惊喜。

比如说古典概型,解题步骤就是先确定基本事件总数和所求事件包含的基本事件数。

咋确定呢?那就要仔细分析题目中的条件啦!注意事项呢,可千万别数错基本事件数,不然就像在森林里迷了路,找不到正确答案喽。

这就好比你去菜市场买菜,得把各种菜的种类和数量数清楚,不然咋知道自己买得对不对呢?
还有独立重复试验概率问题,这种题型就像打地鼠,一次次地重复出现。

解题方法就是记住公式,明确每次试验的概率。

但要小心别把概率弄混了,不然就像炒菜放错了调料,味道全变啦。

概率在实际生活中的应用场景那可多了去了。

比如抽奖,你难道不好奇自己中奖的概率有多大吗?优势就是能让我们更好地理解生活中的不确定性,做出更明智的决策。

就像航海中的指南针,虽然不能保证一帆风顺,但能让我们心中有数。

举个实际案例吧,假如有个抽奖活动,中奖概率为0.1,你抽了三次,求至少中奖一次的概率。

这时候就可以用对立事件的概率来求解。

先求一次都不中奖的概率,再用1 减去这个概率。

算出来的结果会让你对概率有更直观的感受。

高中数学概率题型虽然有时候让人头疼,但只要掌握了方法,就像找到了打开宝藏的钥匙。

它能让我们在数学的世界里畅游,感受数学的魅力。

所以啊,别怕概率,勇敢地去挑战它吧!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学解题方法系列:概率的热点题型及其解法概率主要涉及等可能事件,互斥事件,对立事件,独立事件的概率的求法,对于这部分,我们还应当重视与传统内容的有机结合,在以后的高考中,可能出现概率与数列、函数、不等式等有关内容的结合的综合题,下面就谈一谈概率与数列、函数、不等式等有关知识的交汇处命题的解题策略。

题型一:等可能事件概率、互斥事件概率、相互独立事件概率的综合。

例1:甲、乙两人各射击一次,击中目标的概率分别是32和43.假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响.(Ⅰ)求甲射击4次,至少1次未击中目标的概率;(Ⅱ)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(Ⅲ)假设某人连续2次未击中...目标,则停止射击.问:乙恰好射击5次后,被中止射击的概率是多少?解:(1)设“甲射击4次,至少1次未击中目标”为事件A,则其对立事件A 为“4次均击中目标”,则()()426511381P A P A ⎛⎫=-=-= ⎪⎝⎭(2)设“甲恰好击中目标2次且乙恰好击中目标3次”为事件B,则()22323442131133448P B C C ⎛⎫⎛⎫⎛⎫=∙∙∙∙∙= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)设“乙恰好射击5次后,被中止射击”为事件C,由于乙恰好射击5次后被中止射击,故必然是最后两次未击中目标,第三次击中目标,第一次及第二次至多有一次未击中目标。

故()22123313145444441024P C C ⎡⎤⎛⎫⎛⎫=+∙∙∙∙=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦例2:某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的.(Ⅰ)求3个景区都有部门选择的概率;(Ⅱ)求恰有2个景区有部门选择的概率.解:某单位的4个部门选择3个景区可能出现的结果数为34.由于是任意选择,这些结果出现的可能性都相等.(I)3个景区都有部门选择可能出现的结果数为!324⋅C (从4个部门中任选2个作为1组,另外2个部门各作为1组,共3组,共有624=C 种分法,每组选择不同的景区,共有3!种选法),记“3个景区都有部门选择”为事件A 1,那么事件A 1的概率为P(A 1)=.943!3424=⋅C (II)解法一:分别记“恰有2个景区有部门选择”和“4个部门都选择同一个景区”为事件A 2和A 3,则事件A 3的概率为P(A 3)=271334=,事件A 2的概率为P(A 2)=1-P(A 1)-P(A 3)=.2714271941=--解法二:恰有2个景区有部门选择可能的结果为).!2(32414C C +⋅(先从3个景区任意选定2个,共有323=C 种选法,再让4个部门来选择这2个景区,分两种情况:第一种情况,从4个部门中任取1个作为1组,另外3个部门作为1组,共2组,每组选择2个不同的景区,共有!214⋅C 种不同选法.第二种情况,从4个部门中任选2个部门到1个景区,另外2个部门在另1个景区,共有24C 种不同选法).所以P(A 2)=.27143)!2(342424=+⋅C C 例3:某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都是“合格”则该课程考核“合格”,甲、乙、丙三人在理论考核中合格的概率分别为0.9,0.8,0.7;在实验考核中合格的概率分别为0.8,0.7,0.9,所有考核是否合格相互之间没有影响(Ⅰ)求甲、乙、丙三人在理论考核中至少有两人合格的概率;(Ⅱ)求这三人该课程考核都合格的概率。

(结果保留三位小数)解:记“甲理论考核合格”为事件1A ;“乙理论考核合格”为事件2A ;“丙理论考核合格”为事件3A ;记i A 为i A 的对立事件,1,2,3i =;记“甲实验考核合格”为事件1B ;“乙实验考核合格”为事件2B ;“丙实验考核合格”为事件3B ;(Ⅰ)记“理论考核中至少有两人合格”为事件C ,记C 为C 的对立事件解法1:()()123123123123P C P A A A A A A A A A A A A =+++()()()()123123123123P A A A P A A P A A A P A A A =+++0.90.80.30.90.20.70.10.80.70.90.80.7=⨯⨯+⨯⨯+⨯⨯+⨯⨯0.902=解法2:()()1P C P C =-()1231231231231P A A A A A A A A A A A A =-+++()()()()1231231231231P A A A P A A A P A A A P A A A ⎡⎤=-+++⎣⎦()10.10.20.30.90.20.30.10.80.30.10.20.7=-⨯⨯+⨯⨯+⨯⨯+⨯⨯10.098=-0.902=所以,理论考核中至少有两人合格的概率为0.902(Ⅱ)记“三人该课程考核都合格”为事件D()()()()112233P D P A B A B A B =⋅⋅⋅⋅⋅⎡⎤⎣⎦()()()112233P A B P A B P A B =⋅⋅⋅⋅⋅()()()()()()112233P A P B P A P B P A P B =⋅⋅⋅⋅⋅0.90.80.80.80.70.9=⨯⨯⨯⨯⨯0.254016=0.254≈所以,这三人该课程考核都合格的概率为0.254题型二:概率与排列组合、等差数列、等比数列的综合。

例4:将1,2,3,…,9,这9个数平均分成三组,则每组的三个数都成等差数列的概率为()A 、156B 、170C 、1336D 、1420解析:共有339633280C C A ∙=种分组的方法,三组的平均值可能是456,357,258,348,267,且各有一种分组的方法,所求的概率为5128056=,故选A 例5:从原点出发的某质点M ,按照向量(1,0)=a 移动的概率为53,按照向量(2,0)=b 移动的概率为52,设可到达点)0,(n 的概率为n P .(Ⅰ)求概率1P 、2P ;(Ⅱ)求2+n P 与n P 、1+n P 的关系并证明数列{}12++-n n P P 是等比数列;(Ⅲ)求n P .解(Ⅰ)M 点到达点)0,1(的概率为531=P ;M 点到达点)0,2(的事件由两个互斥事件组成:①A=“M 点先按向量)0,1(=a 到达点)0,1(,再按向量(1,0)=a 到达点)0,2(”,此时253()(=A P ;②B=“M 点先按向量(2,0)=b 移动直接到达点)0,2(”,此时52)(=B P 。

=2P +)(A P =)(B P 2)53(52+2519=(Ⅱ)M 点到达点)0,2(+n 的事件由两个互斥事件组成:①=+2n A “从点)0,1(+n 按向量(1,0)=a 移动到达点)0,2(+n ”,此时1253)(++=n n P A P ;②=+2n B “从点)0,(n 按向量)0,2(=b 移动到达点)0,2(+n ”,此时n n P B P 52)(2=+。

n n n P P P 525312+=∴++,即=-++12n n P P )(521n n P P --+∴数列{}12++-n n P P 是以25412=-P P 为首项,公比为52-的等比数列。

(Ⅲ)由(Ⅱ)可知=-++12n n P P n n )52()52(2542-=--=-+n n P P 1152(--n =--1n n P P 252(--n ……=-12P P 2)52(-n n P P 52()52()52(321-++-+-=-111)52(7272])52(1[72521]52(1[52----+-=---=+---=n n n 11)52(723511)52(727253---+=-+-=∴n n n P 例6:设事件A 发生的概率为p ,若在A 发生的条件下发生B 的概率为'p ,则事件,A B 同时发生的概率为'p p ∙根据这一事实解答下列问题:一种掷硬币走跳棋的游戏:棋盘上有第0,1,2,3…,100,共101站,一枚棋子开始在第0站(即01p =)由棋手每掷一次硬币,棋子向前跳动一次,若出现正面,则棋子向前跳动一站,若出现反面则向前跳动两站;直到棋子跳到第99站(获胜)或第100站(失败)时,游戏结束。

已知硬币出现正、反两面的概率相等,设棋子在跳跃的过程中经过第n 站的概率为n p 。

(1)求123,,P P P (2)(2)设1(1100)n n n a P P n -=-≤≤,求证数列{n a }是等比数列。

(3)求玩游戏获胜的概率。

解析:(1)012311113113151,,,2222422428P P P P =∴==⨯+==+⨯= (2)棋子跳到第n 站,必须是从第1n -站或第2n -站跳来的(2100)n ≤≤,所以12112111,()222n n n n n n n P P P P P P P -----=+∴-=--,11(2100),2n n a a n -∴=-≤≤且11012a P P =-=-,故{n a }是以公比为12-,首项为12-的等比数列。

(30由(2)知1239910219998()()()a a a a P P P P P P ++++=-+-++- =2999910011121()()())22232P -+-++-⇒=- ,所以获胜的概率为9910021(132P =-例7:质点A 位于数轴0x =处,质点B 位于2x =处。

这两个质点每隔1秒就向左或向右移动1个单位,设向左移动的概率为13,向右移动的概率为23。

(Ⅰ)求3秒后,质点A 位于点1x =处的概率;(Ⅱ)求2秒后,质点,A B 同时在点2x =处的概率;(Ⅲ)假若质点C 在0,1x x ==两处之间移动,并满足:当质点C 在0x =处时,1秒后必移到1x =处;当质点C 在1x =处,1秒后分别以12的概率停留在1x =处或移动到0x =处,今质点C 在1x =处,求8秒后质点C 在1x =处的概率。

解析:(1)3秒后,质点A 到1x =处,必须经过两次向右,一次向左移动;223214((339P C ∴==(2)2秒后,质点,A B 同时在点2x =处,必须质点A 两次向右,且质点B 一次向左,一次向右;故12222116333381P C =⨯⨯⨯⨯=(3)设第n 秒后,质点C 在1x =处的概率为n x ,质点C 在0x =处的概率为n y 依题意知:112n n n x x y +=+,由1,n n x y +=得11111,32(32)()22n n n n x x x x ++=-∴-=--所以{32n x -}是首项为111323222x -=⨯-=-,公比为12-的等比数列。

相关文档
最新文档