2017年春季学期高一期末考试(数学)试题
【100所名校】江苏省盐城市伍佑中学2017-2018学年高一上学期期末考试数学试题(解析版)
江苏省盐城市伍佑中学2017-2018学年高一上学期期末考试数 学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.第I 卷(非选择题)一、填空题1.函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的最小正周期是________. 2.2.函数()11f x x =+的定义域为_________. 3.若(),0{12,0x x f x x x ≤=->,则12f f⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦_________. 4.若()()1,3,,6a b x ==,且//a b ,则x =___________.5.已知扇形的半径为3cm ,圆心角为2弧度,则扇形的面积为_________ 2cm . 6.lg222110log log 63⎛⎫--= ⎪⎝⎭________.7.已知函数()23log f x x x=-的零点为0x ,若()0,1x k k ∈+,其中k 为整数,则k =_______.8.若函数y =R ,则a 的取值范围为__________. 9.已知函数3sin 2,0,42y x x ππ⎛⎫⎡⎤=+∈ ⎪⎢⎥⎝⎭⎣⎦的单调增区间为[]0,m ,则实数m 的值为________. 10.若方程()271320x m x m -+--=的一个根在区间()01,上,另一根在区间()12,上,则实数m 的取值范围为________.11.已知角α的终边经过点()1,2P -,则()()sin 2cos 2sin sin 2a παπαπα++-=⎛⎫++ ⎪⎝⎭_________.12.如图,在矩形ABCD 中,已知3,2AB AD ==,且1,2BE EC DF FC ==,则AE BF ⋅=__________.13.已知函数()()1,0sin ,{ ,0x f x x g x xlgx x -<==>,则函数()()()h x f x g x =-在区间[]2,4ππ-内的零点个数为___________.14.若函数()()sin 13f x x πϖω⎛⎫=+> ⎪⎝⎭在区间54ππ⎡⎤⎢⎥⎣⎦,上单调递减,则实数ω的取值范围是________.二、解答题15.已知集合错误!未找到引用源。
数学---湖北省荆门市2016-2017学年高一上学期期末考试试题
湖北省荆门市2016—2017学年高一上学期期末质量检测数学试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 2017πcos6的值是( )A.12- B. C.122.函数y = )A. ),0[+∞B. ]0,(-∞C. ),1[+∞D. ),(+∞-∞3.已知集合{1,2,3,4,5,6}U =,{1,2,5}A =,{1,3,4}B =,则()U C A B 的真子集个数为( )A.1B. 2C. 3D. 44. 已知(,2π)πθ∈,)2,1(=a ,)sin ,(cos θθ=b ,若a∥b ,则cos θ的值为( )A.B. C. D. 5.若一圆弧长等于它所在圆的内接正三角形的边长,则该弧所对的圆心角弧度数为( )A.π3 B. C. 2π3D. 2 6. 函数1πtan()23y x =-在一个周期内的图像是( )7. 函数2()(5)log a f x a a x =+-为对数函数,则1()8f 等于( )A. 3B. 3-C. 3log 6-D. 3log 8- 8.函数2π()log 3sin()2f x x x =-零点的个数是( )A. 5B. 4C. 3D. 2 9.将函数πsin()6y x =+图象上各点的横坐标缩短到原来的12倍(纵坐标不变),再向右平移π3个单位,那么所得图象的一条对称轴方程为( ) A .π4x =- B .π2x =- C .π8x = D .π4x =10.已知函数()f x 是定义在R 上的奇函数,当0x <时,1()()3x f x =,1()f x -是()f x 的反函数,那么1(9)f --= ( )A. 2B. 2-C. 3D. 3-11.如图,在ABC △中,BO 为边AC 上的中线,2BG GO = ,设CD ∥AG,若1()5AD AB AC R λλ=+∈,则λ的值为( )A .15B .12C .65D .2 12. 已知函数()f x 定义域为[0,)+∞,当[0,1]x ∈时,()sin πf x x =,当[,1]x n n ∈+时,()()2nf x n f x -=,其中n N ∈,若函数()f x 的图像与直线y b =有且仅有2016个交点,则b 的取值范围是 A. (0,1) B. 1007100611(,)22 C. 2017201611(,)22 D. 1008100711(,)22二、填空题(本大题共4小题,每小题5分,共20分)13.若函数cos y x =在区间[π,]a -上为增函数,则实数a 的取值范围是 . 14.设向量)1,1(-=a,)2,1(-=b ,则(2)a b a +⋅= .15.若223a b ==11a b+= . GDB16.已知函数214,1()3,1ax a x f x x ax x +-<=-⎧⎨⎩≥,若存在R x x ∈21,,21x x ≠,使12()()f x f x =成立,则实数a 的取值范围是 .三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)(I)化简求值:7log 2013log lg25lg47(0.98)-+++-;(II )已知角α的终边上一点P ,求值:ππcos()cos(2π)sin()cos(π)22πsin(π)cos()2αααααα+-+---+-.18.(本题共12分)已知集合{|12}A x x =-<<,{|123}B x m x m =++≤≤ (I )若A B A = ,求实数m 的取值范围; (II )若A B φ≠ ,求实数m 的取值范围.19.(本题共12分)已知向量a 与b 的夹角为2π3,2a =,3b = ,记32m a b =- ,2n a kb =+ (I ) 若m n ⊥,求实数k 的值;(II ) 当43k =-时,求向量m 与n 的夹角θ.20.(本小题满分12分)近几年,由于环境的污染,雾霾越来越严重,某环保公司销售一种PM2.5颗粒物防护口罩深受市民欢迎.已知这种口罩的进价为40元,经销过程中测出年销售量y (万件)与销售单价x (元)存在如图所示的一次函数关系,每年销售这种口罩的总开支z (万元)(不含进价)与年销量y (万件)存在函数关系1042.5z y =+. (I )求y 关于x 的函数关系;(II )写出该公司销售这种口罩年获利W (万元)关于销售单价x (元)的函数关系式 (年获利=年销售总金额-年销售口罩的总进价-年总开支金额);当销售单价x 为何 值时,年获利最大?最大获利是多少?(III )若公司希望该口罩一年的销售获利不低于57.5万元,该公司这种口罩的销售单价应定在什么范围?在此条件下要使口罩的销售量最大,你认为销售单价应定为多少元?21.(本小题满分12分)若()sin()(0y f x A x A ωϕ==+>,0ω>,||)2πϕ<的部分图像如图所示.(I )求函数()y f x =的解析式;(II )将()y f x =图像上所有点向左平行移动(0)θθ>个单位长度,得到()y g x =的图像;若()y g x =图像的一个对称中心为5π(,0)6,求θ的最小值.22.(本小题满分12分)对于函数()f x ,若在定义域内存在实数x ,满足()()f x f x -=-,则称()f x 为“局部奇函数”.(I) 已知二次函数2()23(,)f x ax bx a a b R =+-∈,试判断()f x 是否为“局部奇函数”?并说明理由;(II) 设()21x f x m =+-是定义在[1,2]-上的“局部奇函数”,求实数m 的取值范围; (III) 设12()423x x f x m m +=-⋅+-,若()f x 不是定义域R 上的“局部奇函数”,求实数m 的取值范围.参考答案一、选择题(本大题共12小题,每小题5分,共60分)DBCCB ABCBA CD二、填空题(本大题共4小题,每小题5分,共20分)13. (π,0]- 14. 1 15. 2 16. 203a a >≤或 三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.解 (I)原式=1273log 213log 3lg10071+++ …………………………………………3分=3121222-+++= ………………………………………………5分 (II)由题得tan α= …………………………………………6分 原式=sin cos (cos )(cos )sin sin αααααα-+--- ………………………………………8分222sin cos cos tan 1sin tan αααααα--=== ……………………………………………10分18. 解(I )由A B A = 得B A ⊆, ……………………………1分 当B φ=时,则有123m m +>+,解得2m <-; ……………………………3分当B φ≠时,则有12311232m m m m ++⎧⎪+>-⎨⎪+<⎩≤,解得122m -<<-; ……………………………5分所以实数m 的取值范围为1(,2)(2,)2-∞--- ……………………………………6分 (II )若A B φ≠ ,则有112m -<+<或1232m -<+<, …………………………9分 解得12<<-m …………………………………………11分 所以实数m 的取值范围为)1,2(- …………………………………12分19. 解 (I)由于2πcos 33a b a b ⋅=⋅⋅=- 又因为→→⊥n m ,可得0=⋅→→n m …………4分所以02736=-=⋅→→k n m 得 43k =………………………………………6分(II) m n == 72=⋅n m ,cos ,1m nm n m n⋅<>==⋅, ………………10分因为0πθ≤≤,0θ∴= ………………………………………12分另解:当43k =-时,4222(32)333n a b a b m =-=-= ,所以n m ,同向,0θ∴= ………………………………………12分20. 解 (I)由题可设y kx b =+,由570,390k b k b =+⎧⎨=+⎩得1,1012k b ⎧=-⎪⎨⎪=⎩,11210y x ∴=-+ …………4分(II) (0.112)(40)10(0.112)42.5W x x x =-+---+-220.117642.50.1(85)80x x x =-+-=--+当销售单价为85元时,年获利最大,最大值为80万元…………………………8分 (III)令57.5W ≥,20.117642.557.5x x -+-≥, …………………………9分整理得217070000x x -+≤,解得70100x ≤≤. ……………………………10分 故要使该口罩一年的销售获利不低于57.5万元,单价应在70元到100元之间.…11分 又因为销售单价越低,销售量越大,所以要使销售量最大且获利不低于57.5万元,销售单价应定为70元. ……………………………………………12分 21.解(I )由图知周期11ππ()π1212T =--=,∴2ω=,且2A = …………………2分 ∴()2sin(2)f x x ϕ=+. ……………………3分 把0,1x y ==代入上式得2sin 1ϕ=,即1sin 2ϕ=. 又π2ϕ<,∴π6ϕ=. …………………………………………4分 即π()2sin(2)6f x x =+. ……………………………………6分(II )ππ()2sin[2()]2sin(22)66g x x x θθ=++=++ ………………………………8分由题有5ππ22π()66k k Z θ⋅++=∈ …………………………………10分∴π11π()212k k Z θ=-∈ , ……………………………………11分 因为0θ>,∴θ的最小值为π12. …………………………………12分 22. 解 (I)()()0f x f x -+=,则2260ax a -=得到x =有解,所以()f x 为局部奇函数. …………………………………4分 (II)由题可知22220xx m -++-=有解,12222x xm -=+,……………………6分设12[,4]2xt =∈,117[2,]4t t +∈,所以172224m ---≤≤,所以980m -≤≤. …………8分(III)若()f x 为局部奇函数,则()()0f x f x -+=有解, 得244(2)(22)260x x x x m m --++-++-=,令222xxt -+=≥,从而22()2280F t t mt m =-+-=在[2,)+∞有解. ……………………10分 ①(2)0F ≤,即11m ≤②(2)002F m >∆>⎧⎪⎨⎪⎩≥,即1m ≤,综上1m ≤, …………………………11分 故若()f x不为局部奇函数时1m m <>分。
2017届黑龙江省双鸭山一中高一上学期期末考试数学试题
13.已知向量 a , b 夹角为 45o ,且| a |= 1,| 2a - b |= 10 ,则| b |= ________.
14.已知函数
f
(x)
=
ïì2 cos í
p 3
x(x
£
2000)
则
f
[
f
(2014)]
=
________.
ïî x -100(x > 2000)
15.如图所示,BC = 3CD , O 在线段 CD 上,且 O 不与端点 C 、D 重 合,若 AO = m AB + (1- m) AC ,则实数 m 的取值范围为______.
16.设 f (x) 与 g(x) 是定义在同一区间[a,b] 上的两个函数,若函数 y = f (x) - g(x) 在 x Î[a, b] 上 有两个不同的零点,则称 f (x) 和 g (x) 在[a, b] 上是“关联函数”,区间[a, b] 称为“关联区间”.若 f (x) = x2 - 3x + 4 与 g(x) = 2x + m 在[0,3] 上是“关联函数”,则 m 的取值范围为________.
A. p
B. p
4
3
C. p 2
D. 3p 4
11.已知 f (x) = log 1 (x2 - ax + 3a) 在区间[2,+¥) 上是减函数,则实数 a 的取值范围是(
)
2
A. (-¥,4]
B. (-¥,4)
C. (-4,4]
D. [ -4,4]
12.已知函数
f
(x)
=1+
cos 2x
-
2 sin 2 (x
2017年上海市春季高考数学试卷(含答案详解)
2017年上海市春季高考数学试卷一.填空题(本大题共12题,满分48分,第1~6题每题4分,第7~12题每题5分)1.设集合A={1,2,3},集合B={3,4},则A∪B= .2.不等式|x﹣1|<3的解集为.3.若复数z满足2﹣1=3+6i(i是虚数单位),则z= .4.若,则= .5.若关于x、y的方程组无解,则实数a= .6.若等差数列{an }的前5项的和为25,则a1+a5= .7.若P、Q是圆x2+y2﹣2x+4y+4=0上的动点,则|PQ|的最大值为.8.已知数列{an}的通项公式为,则= .9.若的二项展开式的各项系数之和为729,则该展开式中常数项的值为.10.设椭圆的左、右焦点分别为F1、F2,点P在该椭圆上,则使得△F1F2P是等腰三角形的点P的个数是.11.设a1、a2、…、a6为1、2、3、4、5、6的一个排列,则满足|a1﹣a2|+|a3﹣a4|+|a5﹣a6|=3的不同排列的个数为.12.设a、b∈R,若函数在区间(1,2)上有两个不同的零点,则f(1)的取值范围为.二.选择题(本大题共4题,每题5分,共20分)13.函数f(x)=(x﹣1)2的单调递增区间是()A.[0,+∞)B.[1,+∞)C.(﹣∞,0] D.(﹣∞,1]14.设a∈R,“a>0”是“”的()条件.A.充分非必要 B.必要非充分C.充要D.既非充分也非必要15.过正方体中心的平面截正方体所得的截面中,不可能的图形是()A.三角形B.长方形C.对角线不相等的菱形 D.六边形16.如图所示,正八边形A1A2A3A4A5A6A7A8的边长为2,若P为该正八边形边上的动点,则的取值范围为()A.B.C D.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=3;(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1C与DD1所成角的大小.18.(12分)设a∈R,函数;(1)求a的值,使得f(x)为奇函数;(2)若对任意x∈R成立,求a的取值范围.19.(12分)某景区欲建造两条圆形观景步道M1、M2(宽度忽略不计),如图所示,已知AB⊥AC,AB=AC=AD=60(单位:米),要求圆M1与AB、AD分别相切于点B、D,圆M2与AC、AD分别相切于点C、D;(1)若∠BAD=60°,求圆M1、M2的半径(结果精确到0.1米)(2)若观景步道M1与M2的造价分别为每米0.8千元与每米0.9千元,如何设计圆M1、M2的大小,使总造价最低?最低总造价是多少?(结果精确到0.1千元)20.(12分)已知双曲线(b>0),直线l:y=kx+m(km≠0),l与Γ交于P、Q两点,P'为P关于y轴的对称点,直线P'Q与y轴交于点N(0,n);(1)若点(2,0)是Γ的一个焦点,求Γ的渐近线方程;(2)若b=1,点P的坐标为(﹣1,0),且,求k的值;(3)若m=2,求n关于b的表达式.21.(12分)已知函数f (x )=log 2;(1)解方程f (x )=1;(2)设x ∈(﹣1,1),a ∈(1,+∞),证明:∈(﹣1,1),且f ()﹣f (x )=﹣f ();(3)设数列{x n }中,x 1∈(﹣1,1),x n+1=(﹣1)n+1,n ∈N *,求x 1的取值范围,使得x 3≥x n 对任意n ∈N *成立.2017年上海市春季高考数学试卷参考答案与试题解析一.填空题(本大题共12题,满分48分,第1~6题每题4分,第7~12题每题5分)1.设集合A={1,2,3},集合B={3,4},则A∪B= {1,2,3,4} .2.不等式|x﹣1|<3的解集为(﹣2,4).3.若复数z满足2﹣1=3+6i(i是虚数单位),则z= 2﹣3i .4.若,则= .5.若关于x、y的方程组无解,则实数a= 6 .6.若等差数列{an }的前5项的和为25,则a1+a5= 10 .7.若P、Q是圆x2+y2﹣2x+4y+4=0上的动点,则|PQ|的最大值为 2 .8.已知数列{an}的通项公式为,则= .9.若的二项展开式的各项系数之和为729,则该展开式中常数项的值为160 .10.设椭圆的左、右焦点分别为F1、F2,点P在该椭圆上,则使得△F1F2P是等腰三角形的点P的个数是 6 .11.设a1、a2、…、a6为1、2、3、4、5、6的一个排列,则满足|a1﹣a2|+|a3﹣a4|+|a5﹣a6|=3的不同排列的个数为48 .12.设a、b∈R,若函数在区间(1,2)上有两个不同的零点,则f(1)的取值范围为(0,1).解:函数在区间(1,2)上有两个不同的零点,即方程x2+bx+a=0在区间(1,2)上两个不相等的实根,⇒⇒,如图画出数对(a,b)所表示的区域,目标函数z=f(1)═a+b+1∴z的最小值为z=a+b+1过点(1,﹣2)时,z的最大值为z=a+b+1过点(4,﹣4)时∴f(1)的取值范围为(0,1)故答案为:(0,1)二.选择题(本大题共4题,每题5分,共20分)13.函数f(x)=(x﹣1)2的单调递增区间是( B )A.[0,+∞)B.[1,+∞)C.(﹣∞,0] D.(﹣∞,1]14.设a∈R,“a>0”是“”的( C )条件.A.充分非必要 B.必要非充分C.充要D.既非充分也非必要15.过正方体中心的平面截正方体所得的截面中,不可能的图形是( A )A.三角形B.长方形C.对角线不相等的菱形 D.六边形16.如图所示,正八边形A1A2A3A4A5A6A7A8的边长为2,若P为该正八边形边上的动点,则的取值范围为( B )A.B.C.D.解:由题意,正八边形A1A2A3A4A5A6A7A8的每一个内角为135°,且,,,.再由正弦函数的单调性及值域可得,当P与A8重合时,最小为==.结合选项可得的取值范围为.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(12分)长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=3;(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1C与DD1所成角的大小.解:(1)∵长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=3,∴四棱锥A1﹣ABCD的体积:====4.(2)∵DD1∥CC1,∴∠A1CC1是异面直线A1C与DD1所成角(或所成角的补角),∵tan∠A1CC1===,∴=.∴异面直线A1C与DD1所成角的大小为;18.(12分)设a∈R,函数;(1)求a的值,使得f(x)为奇函数;(2)若对任意x∈R成立,求a的取值范围.解:(1)由f(x)的定义域为R,且f(x)为奇函数,可得f(0)=0,即有=0,解得a=﹣1.则f(x)=,f(﹣x)===﹣f(x),则a=﹣1满足题意;(2)对任意x∈R成立,即为<恒成立,等价为<,即有2(a﹣1)<a(2x+1),当a=0时,﹣1<0恒成立;当a>0时,<2x+1,由2x+1>1,可得≤1,解得0<a≤2;当a<0时,>2x+1不恒成立.综上可得,a的取值范围是[0,2].19.(12分)某景区欲建造两条圆形观景步道M1、M2(宽度忽略不计),如图所示,已知AB⊥AC,AB=AC=AD=60(单位:米),要求圆M1与AB、AD分别相切于点B、D,圆M2与AC、AD分别相切于点C、D;(1)若∠BAD=60°,求圆M1、M2的半径(结果精确到0.1米)(2)若观景步道M1与M2的造价分别为每米0.8千元与每米0.9千元,如何设计圆M1、M2的大小,使总造价最低?最低总造价是多少?(结果精确到0.1千元)解:(1)M1半径=60tan30°≈34.6,M2半径=60tan15°≈16.1;(2)设∠BAD=2α,则总造价y=0.8•2π•60tanα+0.9•2π•60tan(45°﹣α),设1+tanα=x,则y=12π•(8x+﹣17)≥84π,当且仅当x=,tanα=时,取等号,∴M1半径30,M2半径20,造价42.0千元.20.(12分)已知双曲线(b>0),直线l:y=kx+m(km≠0),l与Γ交于P、Q两点,P'为P关于y轴的对称点,直线P'Q与y轴交于点N(0,n);(1)若点(2,0)是Γ的一个焦点,求Γ的渐近线方程;(2)若b=1,点P的坐标为(﹣1,0),且,求k的值;(3)若m=2,求n关于b的表达式.解:(1)∵双曲线(b>0),点(2,0)是Γ的一个焦点,∴c=2,a=1,∴b2=c2﹣a2=4﹣1=3,∴Γ的标准方程为: =1,Γ的渐近线方程为.(2)∵b=1,∴双曲线Γ为:x2﹣y2=1,P(﹣1,0),P′(1,0),∵=,设Q(x2,y2),则有定比分点坐标公式,得:,解得,∵,∴,∴=.(3)设P (x 1,y 1),Q (x 2,y 2),k PQ =k 0,则,由,得(b 2﹣k 2)x 2﹣4kx ﹣4﹣b 2=0,,,由,得()x 2﹣2k 0nx ﹣n 2﹣b 2=0,﹣x 1+x 2=,﹣x 1x 2=,∴x 1x 2==,即,即=,====,化简,得2n 2+n (4+b 2)+2b 2=0,∴n=﹣2或n=,当n=﹣2,由=,得2b 2=k 2+k 02,由,得,即Q (,),代入x 2﹣=1,化简,得:,解得b 2=4或b 2=kk 0,当b 2=4时,满足n=,当b 2=kk 0时,由2b 2=k 2+k 02,得k=k 0(舍去),综上,得n=.21.(12分)已知函数f (x )=log 2;(1)解方程f (x )=1;(2)设x ∈(﹣1,1),a ∈(1,+∞),证明:∈(﹣1,1),且f ()﹣f (x )=﹣f ();(3)设数列{x n }中,x 1∈(﹣1,1),x n+1=(﹣1)n+1,n ∈N *,求x 1的取值范围,使得x 3≥x n 对任意n ∈N *成立.解:(1)∵f (x )=log 2=1,∴=2,解得;(2)令g (x )=,ax a a x g --+-=21)(∵a ∈(1,+∞),∴g (x )在(﹣1,1)上是增函数,又g (﹣1)=,g (1)==1,∴﹣1<g (x )<1,即∈(﹣1,1).∵f (x )﹣f ()=log 2﹣log 2=log 2﹣log 2=log 2()=log 2,f ()=log 2=log 2.∴f ()=f (x )﹣f (),∴f ()﹣f (x )=﹣f ().(3)∵f (x )的定义域为(﹣1,1),f (﹣x )=log 2=﹣log 2=﹣f (x ),∴f (x )是奇函数.∵x n+1=(﹣1)n+1,∴x n+1=.①当n 为奇数时,f (x n+1)=f ()=f (x n )﹣f ()=f (x n )﹣1,∴f (x n+1)=f (x n )﹣1;②当n 为偶数时,f (x n+1)=f (﹣)=﹣f ()=1﹣f (x n ),∴f (x n+1)=1﹣f (x n ).∴f (x 2)=f (x 1)﹣1,f (x 3)=1﹣f (x 2)=2﹣f (x 1),f (x 4)=f (x 3)﹣1=1﹣f (x 1),f (x 5)=1﹣f (x 4)=f (x 1),f (x 6)=f (x 5)﹣1=f (x 1)﹣1,…∴f (x n )=f (x n+4),n ∈N +. 设12111)(---=-+=x x x x h∴h (x )在(﹣1,1)上是增函数,∴f (x )=log 2=log 2h (x )在(﹣1,1)上是增函数.∵x 3≥x n 对任意n ∈N *成立,∴f (x 3)≥f (x n )恒成立,∴,即,1)≤1,即log2≤1,∴0<≤2,解得:﹣1<x1≤.解得:f(x。
北京市清华附中2017-2018学年第一学期高一期末数学试题(含精品解析)
2017-2018学年北京市清华附中高一(上)期末数学试卷一、选择题(本大题共8小题,共40.0分) 1. 下列各角中,与50°的角终边相同的角是( )A. 40∘B. 140∘C. −130∘D. −310∘ 2. 设向量a⃗ =(0,2),b ⃗ =(√3,1),则a ⃗ ,b ⃗ 的夹角等于( ) A. π3B. π6C. 2π3D. 5π63. 已知角α的终边经过点P (4,-3),则sin(π2+α)的值为( )A. 35B. −35C. 45D. −454. 为了得到函数y =cos (2x -π3)的图象,只需将函数y =cos2x 的图象( )A. 向左平移π6个单位长度 B. 向右平移π6个单位长度 C. 向左平移π3个单位长度D. 向右平移π3个单位长度5. 已知非零向量AB ⃗⃗⃗⃗⃗ 与AC ⃗⃗⃗⃗⃗ 满足AB ⃗⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |=CA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗|AC ⃗⃗⃗⃗⃗ |且AB ⃗⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗⃗ |⋅AC ⃗⃗⃗⃗⃗|AC ⃗⃗⃗⃗⃗ |=12,则△ABC 为( ) A. 三边均不相等的三角形B. 直角三角形C. 等腰非等边三角形D. 等边三角形6. 同时具有性质“①最小正周期为π;②图象关于直线x =π3对称;③在[π6,π3]上是增函数”的一个函数是( )A. y =sin(x 2−π3) B. y =cos(2x +π6) C. y =sin(2x −π6)D. y =cos(2x +2π3)7. 定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且在[1,2]上是减函数,若α,β是锐角三角形的两个内角,则( ) A. f (sinα)>f (cos β) B. f (sinα)<f (cos β) C. f (sin α)>f (sin β) D. f (cosα)<f (cos β)8. 若定义[-2018,2018]上的函数f (x )满足:对任意x 1,x 2∈[-2018,2018]有f (x 1+x 2)=f (x 1)+f (x 2)-2017,且当x >0时,有f (x )>2017,设f (x )的最大值、最小值分别为M ,m ,则M +m 的值为( ) A. 0 B. 2018 C. 4034 D. 4036 二、填空题(本大题共6小题,共30.0分)9. 若θ为第四象限的角,且sinθ=−13,则cosθ=______;sin2θ=______.10. 已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =√3,A +C =2B ,则△ABC的面积为______. 11. 已知tan x =2,则cos2x +sin (π+x )cos (π2+x )=______12. 已知α∈(0,π)且sin (α+π6)=13,则cos (α+π6)=______;sinα=______ 13. 如图,在直角梯形ABCD 中,AB //DC ,∠ABC =90°,AB =3,BC =DC =2,若E ,F分别是线段DC 和BC 上的动点,则AC ⃗⃗⃗⃗⃗ ⋅EF⃗⃗⃗⃗⃗ 的取值范围是______. 14. 已知函数f (x )=2sin2x -2sin 2x -a .①若f (x )=0在x ∈R 上有解,则a 的取值范围是______;②若x 1,x 2是函数y =f (x )在[0,π2]内的两个零点,则sin (x 1+x 2)=______ 三、解答题(本大题共6小题,共80.0分) 15. 已知函数f (x )=4sin x cos (x +π6)+1.(1)求f (π12)的值; (2)求f (x )的最小正周期;(3)求f (x )在区间[0,π2]上的最大值和最小值.16. 已知不共线向量a ⃗ ,b ⃗ 满足|a ⃗ |=3,|b ⃗ |=5,(a ⃗ -3b ⃗ )•(2a ⃗ +b ⃗ )=20.(1)求a ⃗ •(a ⃗ -b ⃗ );(2)是否存在实数λ,使λa ⃗ +b ⃗ 与(a ⃗ -2b ⃗ )共线?(3)若(k a⃗ +2b ⃗ )⊥(a ⃗ -k b ⃗ ),求实数k 的值.17. 设锐角三角形的内角A ,B ,C 的对边分别为a 、b 、c ,且sin A -cos C =cos (A -B ).(1)求B 的大小;(2)求cos A +sin C 的取值范围.18. 已知向量a ⃗ =(cosθ,sinθ),b ⃗ =(cosβ,sinβ).(1)若|θ−β|=π3,求|a ⃗ −b ⃗ |的值;(2)若θ+β=π3记f (θ)=a ⃗ ⋅b ⃗ −λ|a ⃗ +b ⃗ |,θ∈[0,π2].当1≤λ≤2时,求f (θ)的最小值.19. 借助计算机(器)作某些分段函数图象时,分段函数的表示有时可以利用函数ℎ(x)={0(x <0)1(x≥0),例如要表示分段函数g (x )={x(x >2)0(x =2)−x(x <2)Z 可以将g (x )表示为g (x )=xh (x -2)+(-x )h (2-x ).(1)设f (x )=(x 2-2x +3)h (x -1)+(1-x 2)h (1-x ),请把函数f (x )写成分段函数的形式; (2)已知G (x )=[(3a -1)x +4a ]h (1-x )+log a x ⋅h (x -1)是R 上的减函数,求a 的取值范围; (3)设F (x )=(x 2+x -a +1)h (x -a )+(x 2-x +a +1)h (a -x ),求函数F (x )的最小值.20. 一个函数f (x ),如果对任意一个三角形,只要它的三边长a ,b ,c 都在f (x )的定义域内,就有f (a ),f (b ),f (c )也是某个三角形的三边长,则称f (x )为“保三角形函数”.(1)判断f 1(x )=x ,f 2(x )=log 2(6+2sin x -cos 2x )中,哪些是“保三角形函数”,哪些不是,并说明理由;(2)若函数g (x )=ln x (x ∈[M ,+∞))是“保三角形函数”,求M 的最小值; (3)若函数h (x )=sin x (x ∈(0,A ))是“保三角形函数”,求A 的最大值.答案和解析1.【答案】D【解析】解:由50°的角终边相同的角的集合为{α|α=50°+k•360°,k∈Z}.取k=-1,可得α=-310°.∴与50°的角终边相同的角是-310°.故选:D.写出与50°的角终边相同的角的集合,取k=-1得答案.本题考查终边相同角的概念,是基础题.2.【答案】A【解析】解:∵=(0,2),=(,1),∴•=||||cos<,>=0×+2×1=2,又||=||=2,∴cos<,>==,又<,>∈[0,π],∴<,>=.故选:A.利用向量的数量积即可求得,的夹角的余弦,继而可求得,的夹角.本题考查向量的数量积表示两个向量的夹角,属于中档题.3.【答案】C【解析】解:∵角α的终边经过点P(4,-3),∴p到原点的距离为5∴sinα=,cosα=∴故选:C.利用任意角函数的定义求出cosα,利用三角函数的诱导公式化简求出值.已知一个角的终边过某一个点时,利用任意角的三角函数的定义求出三角函数值.4.【答案】B【解析】解:函数=cos2(x-),故把函数y=cos2x的图象向右平移个单位长度,可得函数的图象,故选:B.由条件利用函数y=Asin(ωx+φ)的图象变换规率可得结论.本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于中档题.5.【答案】D【解析】解:△ABC中,=,∴=,∴cos<,>=cos<,>,∴B=C,△ABC是等腰三角形;又,∴1×1×cosA=,∴cosA=,A=,∴△ABC是等边三角形.故选:D.根据=得出B=C,得出A=,由此判断△ABC是等边三角形.本题考查了平面向量的数量积运算问题,也考查了三角形形状的判断问题,是基础题.6.【答案】C【解析】解:“①最小正周期是π,可得ω=2,排除选项A;②图象关于直线x=对称,可得:2×+=,cos=-,排除选项B,2×+=,cos=-,排除选项D;对于C,函数y=sin(2x-),最小正周期为π,且2×-=,sin=1,函数图象关于x=对称;x∈[,]时,2x-∈[,],∴y=sin(2x-)是单调增函数,C满足条件.故选:C.根据三角函数的图象与性质,判断满足条件的函数即可.本题考查了三角函数的图象与性质的应用问题,是基础题.7.【答案】A【解析】解:根据题意,定义在R上的偶函数f(x)满足f(x+2)=f(x),则有f(-x)=f(x+2),即函数f(x)的图象关于直线x=1对称,又由函数f(x)在[1,2]上是减函数,则其在[0,1]上是增函数,若α,β是锐角三角形的两个内角,则α+β>,则有α>-β,则有sinα>sin(-β)=cosβ,又由函数f(x)在[0,1]上是增函数,则f(sinα)>f(cosβ);故选:A .根据题意,分析可得f (-x )=f (x+2),即函数f (x )的图象关于直线x=1对称,据此分析可得f (x )在区间[0,1]上是增函数,由α,β是锐角三角形的两个内角便可得出sinα>cosβ,从而根据f (x )在(0,1)上是增函数即可得出f (sinα)>f (cosβ),即可得答案.本题考查函数的奇偶性、周期性与周期性的综合应用,注意分析函数在(0,1)上的单调性. 8.【答案】C【解析】解:令x 1=x 2=0得f (0)=2f (0)-2017,∴f (0)=2017, 令x 1=-x 2得f (0)=f (-x 2)+f (x 2)-2017=2017, ∴f (-x 2)+f (x 2)=4034,令g (x )=f (x )-2017,则g max (x )=M-2017,g min (x )=m-2017, ∵g (-x )+g (x )=f (-x )+f (x )-4034=0, ∴g (x )是奇函数,∴g max (x )+g min (x )=0,即M-2017+m-2017=0, ∴M+m=4034. 故选:C .计算f (0)=2017,构造函数g (x )=f (x )-2017,判断g (x )的奇偶性得出结论.本题考查了奇偶性的判断与性质,考查函数的最值求法,注意运用赋值法,属于中档题.9.【答案】2√23;-4√29【解析】解:∵θ为第四象限的角,且,∴cosθ==,sin2θ=2sinθcosθ=2×(-)×=-.故答案为:,-.由已知利用同角三角函数基本关系式可求cosθ,进而利用二倍角的正弦函数公式可求sin2θ的值.本题主要考查了同角三角函数基本关系式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.10.【答案】√32【解析】解:∵A+C=2B ,A+B+C=π, ∴B=,由余弦定理得cosB===,解得c=2或c=-1(舍). ∴S △ABC =sinB==.故答案为:.利用三角形的内角和解出B ,使用余弦定理解出c ,代入三角形的面积公式计算. 本题考查了余弦定理在解三角形中的应用,三角形的面积公式,属于中档题. 11.【答案】15【解析】解:∵tanx=2,则cos2x+sin (π+x )cos (+x )=cos2x-sinx•(-sinx )=+=+=+=,故答案为:.利用诱导公式,同角三角函数的基本关系,求得cos2x+sin (π+x )cos (+x )的值.本题主要考查诱导公式,同角三角函数的基本关系,属于基础题.12.【答案】−2√23;√3+2√26【解析】解:∵α∈(0,π),∴α+∈(), 又sin (α+)=,∴cos (α+)=; 则sinα=sin[()-]=sin ()cos-cos ()sin==.故答案为:;.直接利用同角三角函数基本关系式求cos(α+);再由sinα=sin[()-],展开两角差的正弦求解.本题考查两角和与差的三角函数,考查同角三角函数基本关系式的应用,是基础题.13.【答案】[-4,6]【解析】解:∵AB//DC,∠ABC=90°,AB=3,BC=DC=2,且E,F分别是线段DC和BC上的动点,∴=λ(0≤λ≤),=μ(-1≤μ≤0),又=+,=+,∴=(+)•(+)=(+)•(λ+μ)=λ+μ=9λ+4μ.∵0≤λ≤,∴0≤9λ≤6①,又-1≤μ≤0,∴-4≤4μ≤0②,①+②得:-4≤9λ+4μ≤6.即的取值范围是[-4,6],故答案为:[-4,6].依题意,设=λ(0≤λ≤),=μ(-1≤μ≤0),由=+,=+,可求得=(+)•(+)=λ+μ=9λ+4μ;再由0≤λ≤,-1≤μ≤0,即可求得-4≤9λ+4μ≤6,从而可得答案.本题考查平面向量数量积的坐标运算,设=λ(0≤λ≤),=μ(-1≤μ≤0),并求得=9λ+4μ是关键,考查平面向量加法的三角形法与共线向量基本定理的应用,考查运算求解能力,属于中档题.14.【答案】[−1−√5,√5−1];2√55【解析】解:f(x)=2sin2x-2sin2x-a=2sin2x-(1-cos2x)-a=2sin2x+cos2x-1-a=-1-a.其中tanθ=①f(x)=0在x∈R上有解,则sin(2x+θ)=a+1有解,∵∴≤a+1.则a的取值范围是[,],故答案为:[,]②∵x1,x2是函数y=f(x)在[0,]内的两个零点,那么x1,x2是关于在[0,]内的对称轴是对称的.由f(x)=-1-a.其中tanθ=其对称轴2x+θ=+kπ,k∈Z.x1,x2是关于在[0,]内的对称轴是对称的.∴对称轴x==∴x1+x2=.则sin(x1+x2)=sin()=cosθ.∵tanθ=,即,∴cosθ=,则sin(x1+x2)=.故答案为:.①利用三角函数的公式化简,f(x)=0在x∈R上有解,转化为两个函数图象有交点问题即可求解;②x1,x2是函数y=f(x)在[0,]内的两个零点,即么x1,x2是关于在[0,]内的对称轴是对称的.即可求解 本题主要考查了三角函数的图象及性质的应用,同角三角函数间的基本关系式,属于中档题. 15.【答案】解:函数f (x )=4sin x (cos x cos π6-sin x sin π6)+1,=2√3sin x cosx-2sin 2x +1,=√3sin2x +cos2x ,=2sin (2x +π6),(1)f (π12)=2sin (2×π12+π6)=2sin π3=√3(2)周期T =2π2=π;(3)由x 在[0,π2]上,∴2x +π6∈[π6,7π6],当2x +π6=7π6,即x =π2,f (x )取得最小值为-1;当2x +π6=π2,即x =π6,f (x )取得最大值为2.【解析】 (1)根据两角和的余弦公式、二倍角公式及辅助角公式将f (x )化简为f (x )=2sin (2x+),即可计算;(2)根据周期公式求解即可;(3)由x 在[0,]上,求解内层函数的范围,结合三角函数的性质可得最值.本题考查三角函数的恒等变换、三角形面积公式、余弦定理以及三角函数图象与性质的综合应用,熟练掌握相关定理及公式是解题的关键,属于中档题16.【答案】解:(1)不共线向量a ⃗ ,b ⃗ 满足|a ⃗ |=3,|b ⃗ |=5,(a ⃗ -3b ⃗ )•(2a ⃗ +b ⃗ )=20.所以:2a ⃗ 2−5a ⃗ ⋅b ⃗ −3b ⃗ 2=20,解得:a⃗ ⋅b ⃗ =775, 所以:a ⃗ •(a ⃗ -b ⃗ )=a ⃗ 2−a ⃗ ⋅b ⃗ =9−775=-325. (2)存在实数λ=12使λa⃗ +b ⃗ 与(a ⃗ -2b ⃗ )共线. 由于:λa ⃗ +b ⃗ =λ(a ⃗ −2b ⃗ ),故:(1-2λ)b ⃗ =0⃗ ,所以:λ=12. (3)若(k a ⃗ +2b ⃗ )⊥(a ⃗ -k b ⃗ ),则:18k −775k 2+2⋅775−50k =0, 整理得:k 2+16077k +2=0,由于△<0,故方程无解.所以不存在实数,使(k a ⃗ +2b ⃗ )⊥(a ⃗ -k b ⃗ ).【解析】(1)直接利用向量的数量积的应用求出结果.(2)利用向量的共线求出λ的值.(3)利用向量垂直的充要条件求出结果.本题考查的知识要点:向量的数量积的应用,向量垂直和共线的充要条件的应用.17.【答案】解:(1)设锐角三角形中,sin A -cos C =cos (A -B ),即sin A +cos (A +B )=cos (A -B ), 即sin A +cos A cos B -sin A sin B =cos A cos B +sin A sin B ,即sin A =2sin A sin B ,∴sin B =12,∴B =π6.(2)cos A +sin C =cos A +sin (π-A -B )=cos A +sin (5π6-A )=cos A +sin (π6+A )=cos A +12cos A +√32sin A =√3sin (A +π3). ∵B =π6,∴A ∈(π3,π2),A +π3∈(2π3,5π6),∴sin (A +π3)∈(12,√32),∴√3sin (A +π3)∈(√32,32), 即cos A +sin C 的取值范围为(√32,32). 【解析】(1)利用诱导公式,两角和差的三角公式,化简所给的式子,求得sinB 的值,可得B 的值. (2)化简要求的式子sin (A+),根据A ∈(,),利用正弦函数的定义域和值域,求得cosA+sinC 的取值范围.本题主要考查诱导公式,两角和差的三角公式,正弦函数的定义域和值域,属于中档题.18.【答案】解:(1)∵向量a ⃗ =(cosθ,sinθ),b ⃗ =(cosβ,sinβ), ∴a ⃗ -b ⃗ =(cosθ-cosβ)+(sinθ-sinβ),∴|a ⃗ -b ⃗ |2=(cosθ-cosβ)2+(sinθ-sinβ)2=2-2cos (θ-β)=2-2cos π3=2-1=1,∴|a ⃗ -b ⃗ |=1;(2)a ⃗ •b ⃗ =cosθcosβ+sinθsinβ=cos (θ-β)=cos (2θ-π3),∴|a ⃗ +b ⃗ |=√2+2cos(θ−β)=2|cos (θ-π6)|=2cos (θ-π6),∴f (θ)=cos (2θ-π3)-2λcos (θ-π6)=2cos 2(θ-π3)-2λcos (θ-π6)-1令t =cos (θ-π6),则t ∈[12,1],∴f (t )=2t 2-2λt -1=2(t -λ2)2-λ24-1, 又1≤λ≤2,12≤λ2≤1,∴t =λ2时,f (t )有最小值-λ24-1, ∴f (θ)的最小值为-λ24-1. 【解析】(1)根据向量的坐标运算和向量的模以及两角和差即可求出答案,(2)根据向量的数量积和二倍角公式化简得到f (θ)=2cos 2(θ-)-2λcos (θ-)-1,令t=cos (θ-),根据二次函数的性质即可求出.本题考查了向量的坐标运算和向量的数量积以及三角函数的化简,以及二次函数的性质,属于中档题.19.【答案】解:(1)当x >1时,x -1>0,1-x <0,可得f (x )=(x 2-2x +3)+0•(1-x 2)=x 2-2x +3; 当x =1时,f (x )=2;当x <1时,x -1<0,1-x >0,可得f (x )=1-x 2.即有f (x )={x 2−2x +3,x >12,x =11−x 2,x <1;(2)G (x )=[(3a -1)x +4a ]h (1-x )+log a x ⋅h (x -1)={log ax,x >1(3a−1)x+4a,x≤1, 由y =G (x )是R 上的减函数,可得{3a −1<03a −1+4a ≥00<a <1,解得17≤a <13;(3)F (x )=(x 2+x -a +1)h (x -a )+(x 2-x +a +1)h (a -x ),当x >a 时,x -a >0,可得F (x )=x 2+x -a +1;若a ≥-12,可得F (x )在x >a 递增,可得F (x )>F (a )=a 2+1;若a <-12,可得F (x )的最小值为F (-12)=34-a ;当x =a 时,可得F (x )=2(a 2+1);当x <a 时,x -a <0,a -x >0,则F (x )=x 2-x +a +1.若a ≥12,可得F (x )在x <a 的最小值为F (12)=a +34;若a <12,可得F (x )在x <a 递减,即有F (x )>F (a )=a 2+1.①当a ≥12时,F (x )在区间(-∞,-12)上单调递减,在区间(-12,a )上单调递增,在区间(a ,+∞)上单调递增,可得F (-12)为最小值,且为14-12+a +1=a +34;②当-12<a <12时,F (x )在区间(-∞,a )上单调递减,在区间(a ,+∞)上单调递增.F (x )的最小值为F (a )=a 2+1;③当a ≤-12时,在区间(-∞,a )上单调递减,在区间(a ,-12)上单调递减,在区间(-12,+∞)上单调递增.所以F (x )的最小值为F (12)=-a +34;综上所述,得当a ≤-12时,F (x )的最小值为-a +34;当a ≥12时,F (x )的最小值为为a +34;当-12<a <12时,F (x )的最小值为F (a )=a 2+1.【解析】(1)分当x >1、当x=1和当x <1时3种情况加以讨论,分别根据S (x )的对应法则代入,可得f (x )相应范围内的表达式,最后综合可得函数f (x )写成分段函数的形式;(2)运用分段函数形式表示G (x ),再由一次函数、对数函数的单调性,可得a 的范围;(3)由题意,讨论x >a ,x=a ,x <a ,求得F (x )的解析式,再结合二次函数的图象与性质,分a≥、-<a <和a≤-的4种情况进行讨论,最后综合可得F (x )的最小值.本题以分段函数和含有字母参数的二次函数为载体,讨论函数的单调性与最小值,着重考查了基本初等函数的图象与性质、函数解析式的求解及常用方法和单调性的综合等知识,属于难题.20.【答案】解:(1)不妨设a ≤c ,b ≤c ,由a +b >c ,可得f 1(a )+f 1(b )>f 1(c ),即有f 1(x )=x 为“保三角形函数”;由6+2sin x -cos 2x =sin 2x +2sin x +5=(sin x +1)2+4∈[4,8],可得f 2(x )∈[2,3],即有2+2>3,可得f 2(x )为“保三角形函数”;(2)函数g (x )=ln x (x ∈[M ,+∞))是“保三角形函数”,可得a ≥M ,b ≥M ,a +b >c ,即有a -1≥M -1;b -1≥M -1,则(a -1)(b -1)≥(M -1)2,即ab ≥a +b -1+(M -1)2>c -1+(M -1)2,只要-1+(M -1)2≥0,解得M ≥2,即M 的最小值为2;(3)A 的最大值是5π6.①当A >5π6时,取a =5π6=b ,c =π2,显然这3个数属于区间(0,A ),且可以作为某个三角形的三边长,但这3个数的正弦值12、12、1显然不能作为任何一个三角形的三边,故此时,h (x )=sin x ,x ∈(0,A )不是保三角形函数.②当A =5π6时,对于任意的三角形的三边长a 、b 、c ∈(0,5π6),若a +b +c ≥2π,则a ≥2π-b -c >2π-5π6-5π6=π3,即a >π3,同理可得b >π3,c >π3,∴a 、b 、c ∈(π3,5π6),∴sin a 、sin b 、sin c ∈(12,1].由此可得sin a +sin b >12+12=1≥sin c ,即sin a +sin b >sin c ,同理可得sin a +sin c >sin b ,sin b +sin c >sin a , 故sin a 、sin b 、sin c 可以作为一个三角形的三边长.若a +b +c <2π,则a+b 2+c 2<π, 当a+b 2≤π2时,由于a +b >c ,∴0<c 2<a+b 2≤π2, ∴0<sin c 2<sin a+b 2≤1. 当a+b 2>c 2时,由于a +b >c ,∴0<c 2<a+b 2<π2, ∴0<sin c 2<sin a+b2<1.综上可得,0<sin c 2<sina+b2≤1. 再由|a -b |<c <5π6,以及y =cos x 在( 0,π)上是减函数,可得cos a−b2=cos |a−b|2>cos c 2>cos 5π12>0,∴sin a +sin b =2sin a+b2cos a−b2>2sin c 2cos c2=sin c , 同理可得sin a +sin c >sin b ,sin b +sin c >sin a ,故sin a 、sin b 、sin c 可以作为一个三角形的三边长.故当A =5π6时,h (x )=sin x ,x ∈(0,A )是保三角形函数,故A 的最大值为5π6.【解析】(1)不妨设a≤c ,b≤c ,由函数的值域,即可得到结论;(2)由对数函数的性质和对数的运算性质,可得M 的最小值;(3)A 的最大值是,讨论①当A >时;②当A=时;结合新定义和三角函数的恒等变换,即可得到最大值.本题考查新定义的理解和运用,考查转化思想和运算能力、推理能力,属于综合题.。
XXX2017-2018学年第一学期期末考试高一数学试卷
XXX2017-2018学年第一学期期末考试高一数学试卷XXX2017-2018学年第一学期期末考试高一年级数学试卷第I卷(选择题共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知向量a=(2,1),b=(λ−1,2),若a+b与a−b共线,则λ=()A.−2B.−1C.1D.2改写:向量a=(2,1),向量b=(λ-1,2),若a+b和a-b共线,则λ=() A。
-2 B。
-1 C。
1 D。
22.已知3sinα+4cosα=2,则1-sinαcosα-cos2α的值是() A。
- B。
C。
-2 D。
2改写:已知3sinα+4cosα=2,求1-sinαcosα-cos2α的值,答案为() A。
- B。
C。
-2 D。
23.已知在△ABC中,AB=AC=1,BC=3,则AB·AC=() A。
1/33 B。
- C。
-2 D。
-改写:在△ABC中,AB=AC=1,BC=3,求XXX的值,答案为() A。
1/33 B。
- C。
-2 D。
-4.在△ABC中,若AB2=AB·AC+BA·BC+CA·CB,则△ABC是() A.锐角三角形B.钝角三角形C.直角三角形D.不确定改写:在△ABC中,如果AB2=AB·AC+BA·BC+CA·CB,则△ABC是() A.锐角三角形B.钝角三角形C.直角三角形D.不确定5.已知△ABC中,内角A,B,C所对边的边长分别为a,b,c,且c=7/11,a+b=22/3,XXX-tanA-tanB=3,则△ABC的面积为() A。
3/33 B。
- C。
3 D。
33/2改写:已知△ABC中,内角A,B,C所对边的边长分别为a,b,c,且c=7/11,a+b=22/3,XXX-tanB=3,求△ABC的面积,答案为() A。
3/33 B。
- C。
2017-2018高一数学上学期期末考试试题及答案
2017-2018学年度第一学期期末考试高一数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分.考试限定用时100分钟.考试结束后,将本试卷和答题纸一并交回.答卷前,考生务必将自己的姓名、座号、考籍号分别填写在试卷和答题纸规定的位置.第Ⅰ卷(选择题 共48分)参考公式:1.锥体的体积公式1,,.3V Sh S h =其中是锥体的底面积是锥体的高 2.球的表面积公式24S R π=,球的体积公式343R V π=,其中R 为球的半径。
一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{0,1,2,3},{1,3}U A ==,则集合U C A = ( )A .{}0B .{}1,2C .{}0,2D .{}0,1,2 2.空间中,垂直于同一直线的两条直线 ( )A .平行B .相交C .异面D .以上均有可能3.已知幂函数()αx x f =的图象经过点错误!,则()4f 的值等于 ( )A .16B 。
错误!C .2D 。
错误!4。
函数()lg(2)f x x =+的定义域为 ( )A 。
(—2,1)B 。
[-2,1]C 。
()+∞-,2 D. (]1,2- 5.动点P 在直线x+y-4=0上,O 为原点,则|OP |的最小值为 ( )AB .CD .26.设m 、n 是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是 ( )A .若m ∥n ,m ∥α,则n ∥αB .若α⊥β,m ∥α,则m ⊥βC .若α⊥β,m ⊥β,则m ∥αD .若m ⊥n ,m ⊥α, n ⊥β,则α⊥βOOO O1 1117.设()x f 是定义在R 上的奇函数,当0≤x 时,()x x x f -=22,则()1f 等于 ( )A .-3B .-1C .1D .3 8.函数y =2-+212x x⎛⎫⎪⎝⎭的值域是 ( )A .RB .错误!C .(2,+∞)D 。
2017-2018学年江苏省常州市高一(上)期末数学试卷(解析版)
2017-2018学年江苏省常州市高一(上)期末数学试卷一、填空题(本大题共14小题,共56.0分)1.已知集合A={1,2},集合B={a,1-a2},若A∩B={2},则实数a的值为______.2.若<<,则点P(tanθ,sinθ)位于第______象限.3.若点P是线段AB上靠近A的三等分点,则=______.4.已知函数,则f(-2)=______.5.函数的值域为______.6.弧长为3π,圆心角为π的扇形的面积为______.7.若函数f(x)=2x+x-2的零点在区间(k,k+1)(k∈Z)中,则k的值为______.8.已知幂函数y=xα的图象经过点(2,),则的值为______.9.已知向量=(sinθ,cosθ),=(2,-1),若 ∥,则tan2θ=______.10.若,,则sin(α+β)=______.11.已知是定义在(-∞,+∞)上的减函数,则实数a的取值范围是______.12.已知f(x)是定义在R上的偶函数,且在(-∞,0]上单调递减,若f(1)=0,则不等式f(ln x)<0的解集为______.13.在△ABC中,已知B=,=2,则的取值范围是______.14.已知当x∈(0,1)时,函数y=(mx-1)2的图象与y=x+m的图象有且只有一个交点,则实数m的取值范围是______.二、解答题(本大题共6小题,共64.0分)15.已知向量=(3,-4),=(4,3).(1)求的值;(2)若(2+)⊥(+k),求实数k的值.16.已知函数∈的定义域为集合A,函数g(x)=2x+1的值域为集合B.(1)当a=3时,求A∪B;(2)若A∩B=∅,求实数a的取值范围.17.已知,且α为第四象限角,求下列各式的值.(1);(2).18.设函数,其中0<ω<3,.(1)求函数f(x)的最小正周期及单调增区间;(2)将函数f(x)的图象上各点的横坐标变为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数g(x)的图象,求g(x)在(,)上的值域.19.如图,某校生物兴趣小组计划利用学校角落处一块空地围出一个周长为10米的直角三角形ABC作为试验地,设∠ABC=θ,△ABC的面积为S.(1)求S关于θ的函数关系式;(2)当θ为何值时,试验地的面积最大?求出该面积的最大值.20.已知m∈R,函数.(1)若函数g(x)=f(x)+lg x2有且仅有一个零点,求实数m的值;(2)设m>0,任取x1,x2∈[t,t+2],若不等式|f(x1)-f(x2)|≤1对任意t∈[,1]恒成立,求m的取值范围.答案和解析1.【答案】2【解析】解:∵A∩B={2},∴a=2或1-a2=2,解得a=2,a=2时,B={2,-3},满足题意.故答案为:2.由A∩B={2},得方程a=2或1-a2=2,解得a=2,需验证a=2.本题考查集合间的基本运算,本题转化成对应的方程是关键.2.【答案】二【解析】解:∵,∴tanθ<0,sinθ>0,故点P(tanθ,sinθ)位于第二象限,故答案为:二.tanθ<0,sinθ>0,故点P(tanθ,sinθ)位于第二象限.本题考查三角函数值的符号,考查象限角的概念及应用,属于基础题.3.【答案】【解析】解:如图,P是线段AB上靠近A的三等分点,则:.故答案为:.可根据条件画出图形,根据条件及图形即可得出.考查线段三等分点的概念,以及向量数乘的几何意义.4.【答案】3【解析】解:∵函数,∴f(-2)=f(0)=f(2)=22-1=3.故答案为:3.推导出f(-2)=f(0)=f(2),由此能求出结果.本题考查函数值的求法,考查函数性质等基础知识,考查运算与求解能力,是基础题.5.【答案】[0,1]【解析】解:因为0≤sin2x≤1,所以1≤sin2x+1≤2,又根据y=log2x为递增函数,得0≤log2(sin2x+1)≤1,故答案为:[0,1].因为0≤sin2x≤1,所以1≤sin2x+1≤2,再根据对数函数为增函数可得f(x)的值域为[0,1].本题考查了对数函数的值域与最值,属中档题.6.【答案】6π【解析】解:设扇形的半径是r,根据题意,得:=3π,解,得r=4.则扇形面积是=6π.故答案为:6π.根据扇形面积公式,则必须知道扇形所在圆的半径,设其半径是r,则其弧长是,再根据弧长是3π,列方程求解.此题考查了扇形的面积公式以及弧长公式,求出扇形的半径是解题关键.7.【答案】0【解析】解:函数f(x)=2x+x-2,可得f(x)在R上递增,由f(0)=1+0-2=-1<0,f(1)=2+1-2=1>0,可得f(x)在(0,1)内存在零点,则k=0.故答案为:0.判断f(x)在R上递增,计算f(0),f(1)的符号,由函数零点存在定理即可得到所求值.本题考查函数零点存在定理的运用,考查运算能力和推理能力,属于基础题.8.【答案】【解析】解:幂函数y=xα的图象经过点(2,),∴2α=,∴α=,∴=cos(-)=cos=.故答案为:.根据幂函数y=xα的图象过点(2,),求出α的值,再计算的值.本题考查了幂函数的图象与性质的应用问题,是基础题.9.【答案】【解析】解:∵;∴-sinθ-2cosθ=0;∴tanθ=-2;∴.故答案为:.根据即可得出-sinθ-2cosθ=0,从而得出tanθ=-2,根据二倍角的正切公式即可求出tan2θ的值.考查向量平行时的坐标关系,以及二倍角的正切公式.10.【答案】【解析】解:若,,则4sin2α+9cos2β-12sinαcosβ=①,4cos2α+9sin2β-12cosαsinβ=②,①+②可得4+9-12sin(α+β)=,求得sin(α+β)=,故答案为:.由条件利用同角三角函数的基本关系,两角和差的正弦公式,求得sin(α+β)的值.本题主要考查同角三角函数的基本关系,两角和差的正弦公式的应用,属于中档题.11.【答案】[,)【解析】解:∵f(x)是定义在R上的减函数;∴;解得;∴实数a的取值范围是.故答案为:.分段函数f(x)是R上的减函数,从而得出每段函数都是减函数,并且左段函数的右端点大于右段函数的左端点,即得出,解出a的范围即可.考查减函数的定义,分段函数、一次函数和对数函数的单调性.12.【答案】(,e)【解析】解:根据题意,f(x)是定义在R上的偶函数,且在(-∞,0]上单调递减,则f(x)在[0,+∞)上递增,又由f(1)=0,则f(lnx)<0⇒f(|lnx|)<f(1)⇒|lnx|<1⇒-1<lnx<1,解可得:<x<e,即不等式的解集为(,e),故答案为:(,e).根据题意,分析可得f(x)在[0,+∞)上递增,结合函数的特殊值分析可得f(lnx)<0⇒f(|lnx|)<f(1)⇒|lnx|<1⇒-1<lnx<1,解可得x的值,即可得答案.本题考查抽象函数的应用,涉及函数的奇偶性与单调性的综合应用,属于基础题.13.【答案】[-,)【解析】解:由=2,可得BC=a=2,以B为原点,以BA所在的直线为x轴,建立直角坐标系∵B=,且BC=2,∴C(1,),设A(x,0),则=(-x,0)•(1-x,)=x2-x=,即取值范围是[-,+∞).故答案为:[-,+∞)由=2,可得BC=a=2,以B为原点,以BA所在的直线为x轴,建立直角坐标系,由已知结合三角函数的定义可表示C(1,),然后设A(x,0),代入利用,结合向量数量积的坐标表示及二次函数的性质可求.本题主要考查了平面向量数量积的运算,解题的关键是坐标系的建立.14.【答案】(0,1]∪[3,+∞)【解析】解:根据题意,由于m为正数,y=(mx-1)2为二次函数,在区间(0,)为减函数,(,+∞)为增函数,函数y=x+m为增函数,分2种情况讨论:①、当0<m≤1时,有≥1,在区间[0,1]上,y=(mx-1)2为减函数,且其值域为[(m-1)2,1],函数y=x+m为增函数,其值域为[m,1+m],此时两个函数的图象有1个交点,符合题意;②、当m>1时,有<1,y=(mx-1)2在区间(0,)为减函数,(,1)为增函数,函数y=x+m为增函数,其值域为[m,1+m],若两个函数的图象有1个交点,则有(m-1)2≥1+m,解可得m≤0或m≥3,又由m为正数,则m≥3;综合可得:m的取值范围是(0,1]∪[3,+∞);故答案为:(0,1]∪[3,+∞).根据题意,由二次函数的性质分析可得:y=(mx-1)2为二次函数,在区间(0,)为减函数,(,+∞)为增函数,分2种情况讨论:①、当0<m≤1时,有≥1,②、当m>1时,有<1,结合图象分析两个函数的单调性与值域,可得m的取值范围,综合可得答案.本题考查函数图象的交点问题,涉及函数单调性的应用,关键是确定实数m的分类讨论.15.【答案】解:(1),;∴;(2),,,;∵⊥;∴;解得k=-2.【解析】(1)可求出,从而可求出的值;(2)可求出,根据即可得出,进行数量积的坐标运算即可求出k的值.考查向量坐标的减法和数量积运算,向量垂直的充要条件,根据向量坐标可求向量长度.16.【答案】解:∵ ,∴0<x<a,∴A=(0,a)∵2x>0,∴2x+1>1,∴B=(1,+∞)(1)当a=3时,A=(0,3),A∪B=(0,+∞);(2)A≠∅时,,∴0<a≤1,综上可知:实数a的取值范围为(0,1].【解析】(1)确定出A与B,利用并集定义可求A∪B;(2)根据当A≠∅得a的范围即可.本题考查了集合间的基本运算及应用,集合中的参数问题,考查了函数定义域和值域的求法,难度中档.17.【答案】解:(1)∵,∴cos,∵α为第四象限角,∴sinα=,则tan,∴tan()=;(2)==.【解析】(1)由已知利用诱导公式及同角三角函数基本关系式化简求值;(2)化弦为切求解.本题考查三角函数的化简求值,考查诱导公式及同角三角函数基本关系式的应用,是基础题.18.【答案】解:(1)∵函数=sinωx-cosωx-cosωx=sinωx-cosωx=sin(ωx-),其中0<ω<3.∵=sin(-),∴-=kπ,k∈Z,∴ω=2,f(x)=sin(2x-).令2kπ-≤2x-≤2kπ+,求得kπ-≤x≤kπ+,故函数f(x)的增区间为[kπ-,kπ+],k∈Z.(2)将函数f(x)的图象上各点的横坐标变为原来的2倍(纵坐标不变),可得y=sin(x-)的图象;再将得到的图象向左平移个单位,得到函数g(x)=sin(x+-)=sin(x-)的图象,在(,)上,x-∈(-,),故当x-=时,函数g(x)取得最大值为,当x-=-时,函数g(x)=-,故g(x)的值域为(-,].【解析】(1)利用三角恒等变换化简f(x)的解析式,再根据正弦函数的周期性和单调性,得出结论.(2)利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数的定义域和值域,求得g(x)在(,)上的值域.本题主要考查三角恒等变换,正弦函数的周期性和单调性,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的定义域和值域,属于中档题.19.【答案】解:(1)设BC=L,则AB=L cosθ,AC=L sinθ,∴L+L sinθ+L cosθ=10,则L=,∴S==,θ∈(0,);(2)设sinθ+cosθ=t,则t=∈(1,],sin.∴S=.∵当t∈(1,]时,S为增函数,∴当t=,即时,.答:当时,试验地的面积最大,为平方米.【解析】(1)设BC=L,则AB=Lcosθ,AC=Lsinθ,由周长列式求得L,然后由三角形面积公式可得S关于θ的函数关系式;(2)设sinθ+cosθ=t,则t=∈(1,],sin,把面积转化为含有t的函数式,利用分离常数法求最值.本题考查函数解析式的求解及常用方法,训练了利用换元法求三角函数的最值,是中档题.20.【答案】解:(1)g(x)=lg(m+)+lg x2=lg(mx2+2x),由g(x)=0,可得mx2+2x=1有且只有一个解,当m=0时,x=成立;当m≠0时,△=4+4m=0,即m=-1,x=1成立.综上可得m=0或-1;(2)当x>0,设u=m+,可得函数u在x>0递减,由m>0,可得u>0,y=lg u递增,即f(x)在(0,+∞)递减,任取x1,x2∈[t,t+2],若不等式|f(x1)-f(x2)|≤1对任意t∈[,1]恒成立,可得f(t)-f(t+2)=lg(m+)-lg(m+)≤1对任意t∈[,1]恒成立,即m+≤10(m+)对任意t∈[,1]恒成立,整理可得9mt2+18(m+1)t-4≥0对任意t∈[,1]恒成立,由m>0可得y=9mt2+18(m+1)t-4在t∈[,1]递增,可得当t=时,y的最小值为9m•+18(m+1)•-4≥0,解得m≥.【解析】(1)由对数的运算性质和方程解法,讨论m是否为0,结合二次函数的判别式即可得到所求值;(2)由题意可得m>0,x>0,f(x)递减,由题意可得m+≤10(m+)对任意t∈[,1]恒成立,整理可得9mt2+18(m+1)t-4≥0对任意t∈[,1]恒成立,运用二次函数的单调性,解不等式即可得到所求范围.本题考查函数的零点个数问题,注意运用分类讨论思想和方程思想,考查不等式恒成立问题解法,注意运用复合函数的单调性,以及转化思想,考查化简运算能力和推理能力,属于中档题.。
安徽省安庆市第一中学2016-2017学年高一数学上学期期末考试试题
安庆一中2016~2017学年高一年级第一学期期末测试数学试卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知锐角α终边上一点A 的坐标为(2sin3,-2cos3),则角α的弧度数为 ( )A .3B .π-3C . 3-2π D .2π-3 2.将函数y =sin(x -π3)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图象向左平移π3个单位,得到图象的解析式是( )A .y =sin(2x +π3)B .y =sin(12x -π2)C .y =sin(12x -π6)D .y =sin(2x -π6)3.函数y =x +sin|x |,x ∈[-π, π]的大致图象是( )4.已知扇形的面积为2,扇形圆心角的弧度是4,则扇形的周长为( ) A.6 B. 12 5.已知当6x π=时,函数sin cos y x a x =+取最大值,则函数sin cos y a x x =-图象的一条对称轴为 ( ) A .3x π=-B .3x π=C .6x π=-D .6x π=6.函数f (x )=tan(2x -π3)的单调递增区间是 ( )A .[k π2-π12,k π2+5π12](k ∈Z ) B .(k π2-π12,k π2+5π12)(k ∈Z )C .(k π+π6,k π+2π3)(k ∈Z )D .[k π-π12,k π+5π12](k ∈Z )7.化简=-+)4tan()4(sin 42cos 2απαπα( )A.αcosB.αsinC.1D.21 8.已知cos α=13,cos(α+β)=-13,且α,β∈⎝ ⎛⎭⎪⎫0,π2,则cos(α-β)的值等于( )A .-12B.12 C .-13D.23279.已知△ABC 的三个顶点A 、B 、C 及平面内一点P 满足PA PB PC AB ++=,则点P 与△ABC 的关系是 ( )A. P 在△ABC 的内部B. P 在△ABC 的外部C. P 是AB 边上的一个三等分点D. P 是AC 边上的一个三等分点10.若偶函数()f x 在区间[]1,0-上是减函数,,αβ是锐角三角形的两个内角,且αβ≠,则下列不等式中正确的是 ( )A .(cos )(cos )f f αβ> B.(sin )(cos )f f αβ< C.(cos )(sin )f f αβ< D.(sin )(sin )f f αβ>11.设D 为△ABC 的边AB 的中点,P 为△ABC 内一点,且满足25AP AD BC =+,则APD ABC S S =△△( ) A.35 B. 25 C. 15 D. 31012.如图,在OAB ∆中,点P 是线段OB 及AB 、AO 的延长线所围成的阴影区域内(含边界)的任意一点,且OP xOA yOB =+,则在直角坐标平面上,实数对(),x y 所表示的区域在直线3y x -=的右下侧部分的面积是( ) A .72B .92C .4D .不能求二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)13.已知D 为三角形ABC 边BC 的中点,点P 满足PA →+BP →+CP →=0,AP →=λPD →,则实数λ的值为________. 14.sin 250°1+sin10°=________.15.已知函数f (x )=sin(ωx +φ+π6)(ω>0,0<φ≤π2)的部分图象如图所示,则φ的值为________.16.设、为平面向量,若存在不全为零的实数λ,μ使得λ+μ=0,则称、线性相关,下面的命题中,、、均为已知平面M 上的向量. ①若 =2,则、线性相关;②若、为非零向量,且 ⊥,则、 线性相关; ③若、 线性相关,、 线性相关,则、 线性相关; ④向量、 线性相关的充要条件是、 共线.上述命题中正确的是 (写出所有正确命题的编号)三、解答题(本大题共6小题,17题每小题10分,18-22题每小题12分,共70分,解答应写出文字说明、证明过程或演算步骤)17.设D 、E 、F 分别是ABC ∆的边BC 、CA 、AB 上的点,且AB AF 21=BC BD 31=,CA CE 41=,若记=,=,试用,表示、、。
河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案
河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若$\{1,2\}\subset A\subset\{1,2,3,4,5\}$,则满足条件的集合$A$的个数是()A。
6B。
8C。
7D。
92.设$a,b\in\mathbb{R}$,集合$A=\{1,a+b,a\},B=\{0,\frac{b}{a},b\}$,若$A=B$,则$b-a=$()A。
2B。
$-1$C。
1D。
$-2$3.下列各组函数中$f(x)$与$g(x)$的图象相同的是()A。
$f(x)=x,g(x)=|x|$B。
$f(x)=x^2,g(x)=\begin{cases}x,&(x\geq 0)\\-x,&(x<0)\end{cases}$C。
$f(x)=1,g(x)=x$D。
$f(x)=x,g(x)=\begin{cases}x,&(x\geq0)\\0,&(x<0)\end{cases}$4.下列函数中,既是偶函数又在$(-\infty,0)$内为增函数的是()A。
$y=-\frac{1}{2}$B。
$y=x^2$C。
$y=x+1$D。
$y=\log_3(-x)^2$5.三个数$a=0.32,b=\log_2 0.3,c=2^0.3$之间的大小关系为()A。
$a<c<b$B。
$a<b<c$C。
$b<a<c$D。
$b<c<a$6.下列叙述中错误的是()A。
若点$P\in\alpha,P\in\beta$且$\alpha\cap\beta=l$,则$P\in l$B。
三点$A,B,C$能确定一个平面C。
若直线$a\parallel b$,则直线$a$与$b$能够确定一个平面D。
若点$A\in l,B\in l$且$A\in\alpha,B\in\alpha$,则$l\subset\alpha$7.方程$\log_3 x+x=3$的解所在区间是()A。
2017-2018学年高一下学期期末考试数学试题(A卷)
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 以下程序中,输出时的值是输入时的值的()A. 1倍B. 2倍C. 3倍D. 4倍【答案】D【解析】令初始值A=a,则A=2(a+a)=4a.故选D.2. 已知数列是等比数列,,且,,成等差数列,则()A. 7B. 12C. 14D. 64【答案】C【解析】分析:先根据条件解出公比,再根据等比数列通项公式求结果.详解:因为,,成等差数列,所以所以,选C.点睛:本题考查等比数列与等差数列基本量,考查基本求解能力.3. 将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为()A. 0795B. 0780C. 0810D. 0815【答案】A【解析】分析:先确定间距,再根据等差数列通项公式求结果.详解:因为系统抽样的方法抽签,所以间距为所以抽取的第40个数为选A.点睛:本题考查系统抽样概念,考查基本求解能力.4. 已知动点满足,则的最大值是()A. 50B. 60C. 70D. 90【答案】D【解析】分析:先作可行域,根据图像确定目标函数所代表直线取最大值时得最优解.详解:作可行域,根据图像知直线过点A(10,20)时取最大值90,选D,点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.5. 若干个人站成一排,其中为互斥事件的是()A. “甲站排头”与“乙站排头”B. “甲站排头”与“乙不站排头”C. “甲站排头”与“乙站排尾”D. “甲不站排头”与“乙不站排尾”【答案】A【解析】试题分析:事件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中不会同时发生。
江苏省天一中学2016-2017学年高一上学期期末考试数学试题含答案
江苏省天一中学2016年秋学期期末考试高一数学命题人 王薇 审阅人 吴珍全注意事项及答题要求:1.本试卷包含填空题(第1题——第14题,共14题)和解答题(第15题——第20题,共6题)两部分,本次考试时间为120分钟,满分160分.考试结束后,请将答题纸交回.2。
答题前,请务必将自己的班级、姓名、学号用黑色笔写在答题纸上密封线内的相应位置。
3.答题时请用黑色笔在答题纸上作答,在试卷或草稿纸上作答一律无效.一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题纸相应位置上.........1. 已知集合{}0,1,2,3,4,5A =,{}1,0,1,6B =-,且A B =▲ .2. 函数1()lg(1)f x x x =++的定义域是▲ .3。
cos 24cos36cos66cos54-= ▲ .4。
已知向量a 、b满足||1,||2a b == ,它们的夹角为60°,那么a b +=▲ . 5. 幂函数()f x 图像过点1(2,)4,则()f x = ▲ . 6。
函数212sin y x =-的最小正周期是 ▲ . 7。
方程2lg =+x x 的根()1,0+∈k k x 其中Z k ∈,则k = ▲ .8. 设定义域为R 的偶函数()f x 满足:对任意的12,(0,)x x ∈+∞,1212()[()()]0x x f x f x -->,则()f π-▲ (3.14)f . (填“>”、“<”或“=")9。
将函数sin y x =的图像上每个点的横坐标变为原来的12倍(纵坐标不变),再将得到的图像向左平移12π个单位长度,所得图像的函数解析式为 ▲ .10. 函数[)()sin()(0,0,0,2)f x A x A ωϕωϕπ=+>>∈的图象如图所示,则ϕ= ▲ . 11.如图,在ABC △中,12021BAC AB AC ∠===°,,,D是边BC上一点,2DC BD =,则AD BC ⋅= ▲ .12。
高一数学上学期期末考试试题(含解析)-人教版高一全册数学试题
某某省实验中学2017-2018学年高一数学上学期期末考试试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】A【解析】则故选2. 直线的倾斜角是()A. B. C. D.【答案】C【解析】直线的斜率为直线的倾斜角为:,可得:故选3. 计算,其结果是()A. B. C. D.【答案】B【解析】原式故选4. 已知四面体中,,分别是,的中点,若,,,则与所成角的度数为()A. B. C. D.【答案】D【解析】如图,取的中点,连接,,则,(或补角)是与所成的角,,,,,而故选5. 直线在轴上的截距是()A. B. C. D.【答案】B【解析】直线在轴上的截距就是在直线方程中,令自变量,直线在轴上的截距为故选6. 已知,是两个不同的平面,给出下列四个条件:①存在一条直线,使得,;②存在两条平行直线,,使得,,,;③存在两条异面直线,,使得,,,;④存在一个平面,使得,.其中可以推出的条件个数是()A. 1B. 2C. 3D. 4【答案】B【解析】当,不平行时,不存在直线与,都垂直,,,故正确;存在两条平行直线,,,,,,则,相交或平行,所以不正确;存在一个平面,使得,,则,相交或平行,所以不正确;故选7. 已知梯形是直角梯形,按照斜二测画法画出它的直观图(如图所示),其中,,,则直角梯形边的长度是()A. B. C. D.【答案】B【解析】根据斜二测画法,原来的高变成了方向的线段,且长度是原高的一半,原高为而横向长度不变,且梯形是直角梯形,故选8. 经过点的直线到,两点的距离相等,则直线的方程为()A. B.C. 或D. 都不对【答案】C【解析】当直线的斜率不存在时,直线显然满足题意;当直线的斜率存在时,设直线的斜率为则直线为,即由到直线的距离等于到直线的距离得:,化简得:或(无解),解得直线的方程为综上,直线的方程为或故选9. 已知函数的图象与函数(,)的图象交于点,如果,那么的取值X围是()A. B. C. D.【答案】D【解析】由已知中两函数的图象交于点,由指数函数的性质可知,若,则,即,由于,所以且,解得,故选D.点睛:本题考查了指数函数与对数函数的应用,其中解答中涉及到指数函数的图象与性质、对数函数的图象与性质,以及不等式关系式得求解等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,本题的解答中熟记指数函数与对数函数的图象与性质,构造关于的不等式是解答的关键,试题比较基础,属于基础题.10. 矩形中,,,沿将矩形折成一个直二面角,则四面体的外接球的体积是()A. B. C. D.【答案】B【解析】由题意知,球心到四个顶点的距离相等,球心在对角线上,且其半径为长度的一半为故选11. 若关于的方程在区间上有解,则实数的取值X围是()A. B. C. D.【答案】A【解析】由题意可得:函数在区间上的值域为实数的取值X围是故选点睛:本小题考查的是学生对函数最值的应用的知识点的掌握。
安徽省六安市第一中学2017-2018学年高一上学期期末考试数学试题 Word版含答案
六安一中2017-2018学年高一年级第一学期期末考试数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线023:=+-y x l 的倾斜角为( )A .30°B .60°C .120°D .150°2.空间直角坐标系中,已知点()()5433,2,1,,、B A ,则线段AB 的中点坐标为( ) A .()432,,B .()431,,C .()532,,D .()542,, 3.一个三棱锥的正视图和俯视图如图所示,则该三棱锥的俯视图可能为( )4.下列四个命题:①三点确定一个平面;②一条直线和一个点确定一个平面;③若四点不共面,则每三点一定不共线;④三条平行直线确定三个平面.其中正确的有( )A .1个B .2个 C.3个 D .4个5.已知圆086221=+-+y y x C :,圆078:222=+-+x y x C ,则两圆21C C 、的位置关系为( )A .相离B .相外切 C.相交 D .相内切6.设入射光线沿直线y=2x+1射向直线12+=x y ,则被x y =反射后,反射光线所在的直线方程是( ) A .032=++y x B .012=y+x 一 C.0123=y-x+ D .012=y-x- 7.直三棱柱111C B A ABC -中,若190AA AC AB BAC ==︒=∠,则异面直线1BA 与C B 1所成角的余弦值为( )A .0B .21 C.22 D .23 8.已知βα,是两相异平面,n m ,是两相异直线,则下列错误的是( )A .若βα⊂⊥m m ,,则βα⊥B .若α//m ,n =⋂βα,则n m //C.若n m //,α⊥m ,则α⊥n D .若α⊥m ,β⊥n ,n m //,则βα//9.若P 是圆1322=)+(y-C:x 上动点,则点P 到直线1y=kx-距离的最大值( )A .3B .4 C. 5 D .610.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积可能等于( )A .21 B .212- C.2 D .2 11.直线03=++m y x 与圆06422=--+x y x 相交于B A 、两点,若2|AB|≥,则m 的取值范围是( )A .[]8,8-B .[]4,4- C.[]4,8- D .[]8,4-12.已知点B A 、的坐标分别为(2,0)、(-2,0),直线BM AM ,相交于点M ,且直线BM 的斜率与直线AM 的斜率的差是1,则点M 的轨迹方程为( )A .)2(42±≠=x x yB .)2(142±≠-=x x y C. )2(142±≠+=x x y D .)2(42≠-=x x y 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知圆,圆,则两圆公切线的方程为 . 14. 已知点),(y x P 为圆122=+y x 上的动点,则y x 42-的最小值为 .15.如图,二面角βα--l 的大小是30°,线段α⊂AB ,AB l B ,∈与l 所成的角为45°,则AB 与平面β所成角的正弦值是 .16.如图,在平面直角坐标系xOy 中,圆36)1(:22=++y x A ,点)0,1(B ,点D 是圆A 上的动点,线段BD 的垂直平分线交线段AD 于点F ,设a b 、分别为点D F 、的横坐标,定义函数()a f b =,给出下列结论:①()11=f ;②()a f 是偶函数;③()a f 在定义域上是增函数;④()a f 图象的两个端点关于圆心A 对称;⑤动点F 到两定点B A 、的距离和是定值.其中正确的是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知两条直线012)1(:1=++-y x a l ,03:2=++ay x l .(1)若21//l l ,求实数a 的值;(2)若22l l ⊥,求实数a 的值.18.如图所示,PA 是圆柱的母线,AB 是圆柱底面圆的直径,C 是底面圆周上异于B A ,的任意一点,2==AB PA .(1)求证:PC BC ⊥;(2)求三棱锥ABC P -体积的最大值,并写出此时三棱锥ABC P -外接球的表面积.19. 已知方程)(0124622R m my mx y x ∈=+-++(1) 若此方程表示圆,求m 的取值范围;(2)若此方程表示圆C ,且点()2,2-A 在圆C 上,求过点()1,1P 的圆C 的切线方程。
江西省南昌市实验中学2016-2017学年高一数学上学期期末考试试题
2016-2017学年度上学期高一数学期末考试试卷说明:1、本卷共有3大题,22小题。
满卷150分,考试时间120分钟。
2、为试题卷和答题卷,答案要求写在答题卷上,不得在试卷上作答,否则不给分。
一、选择题:(本大题共12小题,每小题5分,共60分。
每小题给出的四个选项中,只有一项是符合题目要求的)1、sin ⎝ ⎛⎭⎪⎫-196π的值等于( ).A .12 B.12 C .32 D .-322、已知角α的终边经过点P (4-,3),则α+αcos sin 2的值是( ) A .1- B .52或52- C .1或52- D .52 3、已知)0,2(π-∈x ,53sin -=x ,则tan2x=( ) ( )A .247 B. 247- C. 724 D . 724-4、函数2cos 1y x =+的定义域是 ( )A .2,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦B .2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦C .22,2()33k k k Z ππππ++∈⎡⎤⎢⎥⎣⎦D .222,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦5、下列函数中,最小正周期为π,且图象关于直线3π=x 对称的是( )A .)32sin(π-=x y B .)62sin(π-=x yC .)62sin(π+=x yD .)62sin(π+=x y6、函数y =2tan ⎝ ⎛⎭⎪⎫3x -π4的一个对称中心是( ).A .⎝ ⎛⎭⎪⎫π3,0B .⎝ ⎛⎭⎪⎫π6,0C .⎝ ⎛⎭⎪⎫-π4,0D .⎝ ⎛⎭⎪⎫-π2,0 7、 已知αααααtan ,5cos 5sin 3cos 2sin 那么-=+-的值为 ( )A .-2B .2C .1623 D .-1623 8、若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍个图象沿x 轴向左平移2π个单位,沿y 轴向下平移1个单位,得到函数y=21sinx 的图象则y=f(x)是 ( ) A .y=1)22sin(21++πx B.y=1)22sin(21+-πxC.y=1)42sin(21++πx D . 1)42sin(21+-πx9、已知sin(4π+α)=23,则sin(43π-α)值为( )A.21 B. —21C. 23 D . —2310、如图所示是y =A sin(ωx +φ)(A >0,ω>0)的图象的一段,它的一个解析式为( ). A .y =23sin ⎝ ⎛⎭⎪⎫2x +π3 B .y =23sin ⎝ ⎛⎭⎪⎫x 2+π4C .y =23sin ⎝ ⎛⎭⎪⎫x -π3D .y =23sin ⎝⎛⎭⎪⎫2x +23π11、已知函数y =⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫2x -π6,以下说法正确的是( ). A .周期为π4 B .函数图象的一条对称轴为直线x =π3C .偶函数D .函数在⎣⎢⎡⎦⎥⎤2π3,5π6上为减函数12、已知α是三角形的一个内角且32cos sin =α+α,则此三角形是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 二、填空题:(本大题4小题,每小题5分,共20分. 把正确答案填在题中横线上) 13、若角α的终边经过点)2,1(-P ,则αtan 的值为 14、292925sincos()tan()634πππ+-+-= 15、已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为16、关于函数()cos223sin cos f x x x x =-,下列命题: ①若存在1x ,2x 有12x x π-=时,()()12f x f x =成立; ②()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上是单调递增; ③函数()f x 的图像关于点,012π⎛⎫⎪⎝⎭成中心对称图像; ④将函数()f x 的图像向左平移512π个单位后将与2sin 2y x =的图像重合. 其中正确的命题序号三、解答题(本大题共6小题,共70.解答应写出文字说明、证明过程或演算步骤) 17、(本题满分10分,每小题5分) (1)化简:sin()cos(3)tan()tan(2)tan(4)sin(5)a παπααπαππαπ------+(2)化简:)sin()360cos()810tan()450tan(1)900tan()540sin(00000x x x x x x --⋅--⋅--18、(本小题满分12)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值.19、(本小题满分12)如图,在平面直角坐标系xOy 中,以Ox 轴为始边做两个锐角βα,,它们的终边分别与单位圆相交于A 、B 两点,已知A 、B 的横坐标分别为5310,510. (1)求tan()αβ-的值; (2)求αβ+的值.20、(本小题满分12)已知1tan tan αα,是关于x 的方程2230x kx k -+-=的两个 实根,且παπ273<<,求ααsin cos +的值21、(本小题满分12分)已知函数223sin 2sin sin()3sin ().22y x x x x ππ=+-+- (1)若1tan 2x =,求y 的值; (2)若 0,2x π⎡⎤∈⎢⎥⎣⎦,y 求的值域.22、(本小题满分12分)已知函数213()cos sin cos 1,22f x x x x x R =++∈. (1)求函数()f x 的最小正周期; (2)求函数()f x 在[,]124ππ上的最大值和最小值,并求函数取得最大值和最小值时的自变量x 的值2016-2017学年度上学期高一数学期末考试一、选择题:1-6 ADDDBC 7-12 DBCDBC 二、填空题:13、-2 14、0 15、 1514-16、①③ 三、解答题(本大题共6小题,共70.解答应写出文字说明、证明过程或演算步骤) 17、(1)sin (cos )(tan )tan (tan )(sin )cos tan sin ααααααααα--=--== (2)2sin cos (tan )(tan )sin tan cos sin x xx x xx xα=--== 18、2sin()4sin 2cos 212cos )22sin cos 2cos 2(sin cos )4cos (sin cos )a a a a a a a a a a πααα++++=++=+ 24cos a=当α为第二象限角,且sin α=,415时,sin cos 0a a +≠,1cos 4a =- 所以sin()4sin 2cos 21πααα+++24cos a==-—219、(1)由条件得25310cos ,cos αβ==,51011tan ,tan 2311tan tan 123tan()111tan tan 7123αβαβαβαβαβαβ∴=∴==---===++⨯角是锐角,sin(2)11tan tan 23tan()1111tan tan 123,04αβαβαβαβαβππαβ+++===--⨯<+<∴+=又角是锐角, 2021tan 31tan 27321tan 0,0tan 1tan 20(2)tan 1tan 1tan sin cos 2sin cos k k k k ααπαπαααααααααα=-=∴=±<<∴>>∴+==>=-∴==∴===-∴+=由已知得:又舍去21、(1)223sin 2sin sin()3sin ().22y x x x x ππ=+-+- =2222sin 2sin cos 3cos sin cos x x x x x x +++=22tan 2tan 31tan x x x +++=175(2)y =1cos 21cos 2sin 2322x xx -+++⋅=sin 2cos 22)24x x x π++=++,50,,2,2444x x ππππ⎡⎤∈∴≤+≤⎢⎥⎣⎦sin(2)1,1224x y π∴-≤+≤∴≤≤+ 故函数的值域为1,2⎡+⎣.2221()cos cos 12215cos 2sin 244415sin(2)264f x x x x x x θπ=++=++=++(1)2()2f x T ππ==的最小正周期 (2)max min 2,2,1246331572,62624422263631245()4x x x x f x x x f x ππππππππππππππ⎡⎤⎡⎤∈∴+∈⎢⎥⎢⎥⎣⎦⎣⎦∴+==+=+=+===+当即时,(x)=当或时,即或x=时。
2016-2017学年辽宁省高一上学期期末考试数学试题word版含答案
2016-2017学年辽宁省高一上学期期末考试数学试题一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是满足题目要求的.1.每年的12月是长安一中的体育文化活动月,已知集合A={参加比赛的运动员},集合B={参加比赛的男运动员},集合C={参加比赛的女运动员},则下列关系正确的是( ) A .A B ⊆ B .B C ⊆ C .A C B C = D .A B C = 2.下列函数中,既是偶函数又在区间(,0)-∞上单调递增的是( ) A.21()f x x=B.2()1f x x =+C.3()f x x =D.()2xf x -= 3.根据表格中的数据,可以判定方程e x﹣x ﹣2=0的一个根所在的区间为( )x ﹣1 0 1 23 e x﹣x ﹣2﹣0.63﹣1﹣0.283.3915.09A .(﹣1,0)B .(0,1)C .(1,2)D .(2,3) 4.设10.522,3,log 3,a b c -===则a b c ,,的大小关系是( )A. a c b <<B. a b c <<C.b a c <<D.b c a <<5.已知函数3,1()(1),1x x f x f x x ⎧<=⎨-≥⎩,则3(log 10)f =( )A .1021B .1027C .109D .1036.若()()1,2,,,3,2Am B m ,则AB 的最小值为( ).A.32 B.12C.2D. 627.垂直于直线1y x =+且与圆224x y +=相切于第一象限的直线方程是( ). A.220x y ++= B. 20x y ++= C.220x y +-= D. 20x y +-=8.已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列命题是真命题的是( ) A .,,//,////m n m n ααββαβ⊂⊂⇒ B . //,,//m n m n αβαβ⊂⊂⇒C . ,//m m n n αα⊥⊥⇒D . //,m n n m αα⊥⇒⊥9. 若函数log a y x =(0a >,且1a ≠)的图象如下图所示,则下列函数图象正确的是( )10.已知定义域在(1,1)-上的奇函数)(x f 是减函数,且2(3)(9)0f a f a -+-<,则a 的取值范围是( )A .(22,3)B .(3,10)C .(22,4)D .(-2,3)11.球O 的内接正四棱柱的高等于球的半径,正四棱柱的体积为1V ;球O 的外切正方体体积为2V ,则12V V =( ) A .163B .83 C .43 D .23 12.已知函数21()(0)2x f x x e x =+-<与()()2ln g x x x a =++的图象上存在关于y 轴对称的点,则a 的取值范围是( ) A .1,e ⎛⎫-∞ ⎪⎝⎭ B .1,e e ⎛⎫- ⎪⎝⎭ C .1,e e ⎛⎫- ⎪⎝⎭D .(),e -∞ 二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上. 13. 直线31y x =+被圆228210x y x y +--+=所截得的弦长等于__________.14.已知某几何体的三视图如右图所示,则该几何体的外接球的表面积为__________.15.已知函数()f x 是(,)-∞+∞上的奇函数,且()f x 的图象关于直线1x =对称,当[1,0]x ∈-时,()f x x =-,则(2016)(2017)f f += .16.设)(x f 是定义在R 上的奇函数,且当2)(,0x x f x =≥时,若对任意的]2,[+∈t t x ,不等式)(2)(x f t x f ≥+恒成立,则实数t 的取值范围是 .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(注意:在试题卷上.....作答无效....) 17.(本小题12分).已知集合2{|320}A x ax x a =-+=∈R ,, (1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并把这个元素写出来; (3)若A 中至多只有一个元素,求a 的取值范围.18. (本小题12分)大家拿超市某种商品每件成本10元,若售价为25元,则每天能卖出30件,经调查,如果降低价格,销售量可以增加,且每天多卖出的商品件数t 与商品单价的降低值x (单位:元,015x ≤≤)成正比,当售价为23元时,每天能卖出42件. (1)将每天的商品销售利润y 表示成x 的函数; (2)如何定价才能使每天的商品销售利润最大?19.(本小题10分)求值: (1)()4130.753350.064[(2)]169---⎛⎫--+-+ ⎪⎝⎭; (2)设3418x y ==,求212x y+的值.20. (本小题12分)如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E 是PC 的中点.求证:(1)PA //平面BDE ;(2)平面PAC ⊥平面BDE .21. (本小题12分)已知函数()(0)af x x a x=+> (1)判断函数的奇偶性,并加以证明;(2)用函数单调性定义证明()f x 在(0,)a 上是减函数;(3)函数()f x 在(,0)a -上是单调增函数还是单调减函数?(只写出答案,不要求写证明过程).22.(本小题12分)在平面直角坐标系xOy 中,已知圆M 过坐标原点O 且圆心在曲线xy 3=上. (Ⅰ)若圆M 分别与x 轴、y 轴交于点A 、B (不同于原点O ),求证:AOB ∆的面积为定值;(Ⅱ)设直线433:+-=x y l 与圆M 交于不同的两点C D 、,且||||OD OC =,求圆M 的方程; (Ⅲ)设直线3=y 与(Ⅱ)中所求圆M 交于点E 、F , P 为直线5=x 上的动点,直线PE ,PF 与圆M 的另一个交点分别为G ,H ,求证:直线GH 过定点.PEDABCO2016-2017学年辽宁省高一上学期期末考试数学试题参考答案及评分标准一、选择题:本大题共14小题,每小题5分,共70分,在每小题给出的四个选项中,只有一项是满足题目要求的.题号 1 2 3 4 56 7 8 9 10 11 12 答案CABCDDCDBAAD二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上. 13. 4 14. 9π 15. -1 16. [+∞,2)三、解答题:本大题共5小题,共60分。
湖南省长沙市长郡中学2017-2018学年高一上学期期末考试数学试题
湖南省长沙市长郡中学2017-2018学年高一上学期期末考试数学试题长郡中学2017-2018学年度高一第一学期期末考试数学一、选择题:1.设集合$A=\{1,3\}$,集合$B=\{1,2,4,5\}$,则集合$A\cup B=$()。
A。
$\{1,3,1,2,4,5\}$B。
$\{1\}$C。
$\{1,2,3,4,5\}$D。
$\{2,3,4,5\}$2.已知$\tan\alpha=-3$,$\frac{\pi}{2}<\alpha<\pi$,则$\sin\alpha$的值为()。
A。
$\frac{1}{2}$B。
$-\frac{3}{2}$C。
$-\frac{1}{2}$D。
$-\frac{\sqrt{3}}{2}$3.已知$a=4$,$b=3$,且$\vec{a}$与$\vec{b}$不共线,若向量$\vec{a}+k\vec{b}$与$\vec{a}-k\vec{b}$互相垂直,则$k$的值为()。
A。
$\pm\frac{4}{3}$B。
$\pm\frac{3}{4}$C。
$\pm\frac{2\sqrt{3}}{3}$D。
$\pm2$4.如果奇函数$f(x)$在区间$[2,8]$上是减函数且最小值为6,则$f(x)$在区间$[-8,-2]$上是()。
A。
增函数且最小值为-6B。
增函数且最大值为-6C。
减函数且最小值为-6D。
减函数且最大值为-65.方程$2x+3x-7=0$的解所在的区间为()。
A。
$(-1,0)$B。
$(0,1)$C。
$(1,2)$D。
$(2,3)$6.$\triangle ABC$中,内角$A,B,C$所对的边分别是$a,b,c$,若$a^2-c^2+b^2=ab$,则$\angle C=$()。
A。
$30^\circ$B。
$60^\circ$C。
$120^\circ$D。
$60^\circ$或$120^\circ$7.$\triangle ABC$中,内角$A,B,C$所对边的长分别为$a,b,c$,若$\frac{\cos A}{\cos B}=\frac{b}{a}$,则$\triangle ABC$为()。
江西省南昌市第二中学2016-2017学年高一上学期期末考试数学试题含答案
南昌二中2016—2017学年度上学期期末考试高一数学试卷命题人:罗 辉 审题人:谭 佳一、选择题(每小题5分,共60分)1.向量概念下列命题中正确的是( )A 。
若两个向量相等,则它们的起点和终点分别重合 B. 模相等的两个平行向量是相等向量 C 。
若a 和b 都是单位向量,则a =bD 。
两个相等向量的模相等2.若点22sin ,cos 33ππ⎛⎫ ⎪⎝⎭在角α的终边上,则sin α的值为( )A.12-B 。
3 C. 12D 。
33.若cos 2sin 5αα+=-tan α等于( )A.12B 。
2 C.12-D.2-4.在ABC ∆中,若点D 满足2BD DC =,则AD =( )A .1233AC AB+ B .5233AB AC-C .2133AC AB-D .2133AC AB+5.已知函数()sin()(0)3f x x πωω=+>,若()()63f f ππ=且()f x 在区间(,)63ππ上有最小值,无最大值,则ω的值为( )A .23B .53C .143D .3836.定义在R 上的函数()f x 满足)()3(x f x f -=+,当31x -≤<-时,2()(2)f x x =-+,当13x -≤<时,()f x x =.则)2013()3()2()1(f f f f +++=( )A .338B .337C .1678D .20137.设a b c ,,分别是方程11222112=log ,()log ,()log ,22x x x x x x ==,的实数根,则有( )A.a b c <<B.c b a <<C.b a c <<D.c a b << 8.函数x x g 2log )(=)21(>x ,关于x 的方程2()()230g x m g x m +++=恰有三个不同实数解,则实数m 的取值范围为( ) A.(,4(4)-∞-⋃++∞ B.(4-+C .34(,)23--D .34,23⎛⎤-- ⎥⎝⎦9.设()cos22f x x x =,把()y f x =的图像向左平移(0)ϕϕ>个单位后,恰好得到函数()cos22g x x x =-的图象,则ϕ的值可以为( ) A .6πB .3πC .23πD .56π10.若cos 2sin 4απα=⎛⎫- ⎪⎝⎭,则cos sin αα+的值为().A .-2B .12C .-12D.211.已知函数()2log ,02sin(), 2104x x f x x x π⎧<<⎪=⎨≤≤⎪⎩,若存在实数1234,,,x x x x 满足()()()1234()f x f x f x f x ===,且1234x x x x <<<,则3412(1)(1)x x x x -⋅-⋅的取值范围( )A.(20,32)B.(9,21) C 。
南昌交通学院《高等数学》2016-2017学年第一学期期末试题
南昌交通学院2016-2017学年第一学期高等数学 期末考试试卷(A 卷)(闭卷120分钟)姓名 学号 专业 年级 ____重修标记 □ 考场一、 选择题(本题满分 40分,每小题 4 分, 答案必须填在下面表格中对应的题号下)1.若,lim ,lim n n n n n n x y x a y b →∞→∞>==,则,a b 的关系是( ) (A )a b > (B ) a b < (C )a b = (D ) 无法确定 2.设常数0>k 函数()ln =-+xf x x k e在(0,)+∞内零点个数为( ) (A) 0 (B) 1 (C) 2 (D) 3 3.不定积分ln(tan )d cos sin x x x x ⎰= ( )(A )21(ln tan )2x +C (B )21(ln tan )4x C + (C )1ln tan 2x C +(D )1ln tan 4x C + 4. 函数sin x x 在0x =点泰勒展开的第三项为( ) (A )35!x (B )45!x (C ) 55!x(D ) 65!x5.2,(0)()(1),(0)axe xf x b x x ⎧≤⎪=⎨->⎪⎩ 处处可导,则( ) (A )1a b == (B )2,1a b =-=- (C )1,0a b == (D )0,1a b ==6.设函数(),(0)()(0),(0)f x x F x x f x ⎧≠⎪=⎨⎪=⎩,其中()f x 在0x =点处可导,(0)0f '≠,(0)0f =,则0x =是函数()F x 的( )( A) 连续点 (B) 第一类间断点 (C) 第二类间断点 (D) 无法确定 7.二阶齐次常微分方程250y y y '''-+=的通解是( ) (A )12cos sin C x C x + (B )12cos2sin 2C x C x +(C )12(cos2sin 2)x C x C x e + (D ) 212(cos sin )xC x C x e +8.()ln(sin )f x x =,则罗尔定理成立的区间是( )(A )[,]63ππ(B )[,]62ππ (C ) 2[,]63ππ (D ) 5[,]66ππ9. 2()()lim 1()x a f x f a x a →-=--,则()f x 在点x a =处( ) (A )取得极大值 (B )取得极小值点 (C )是驻点,不是极值点 (D )不是驻点 10.反常积分221d ln x x x+∞⎰=( ) (A )ln 2 (B )ln4 (C )1ln 2(D )发散 二、简单计算题(本题满分 40分,每小题 8分)1. ln(tan )cos 2sin t x ty t ⎧=+⎪⎨⎪=⎩,求22d d ,d d y y x x2 计算230lim(cos2)x x x →. 3 计算定积分1arctan d x x x ⎰.4隐函数()y y x =由方程220d cos d 0y t xe t t t -+=⎰⎰确定,求d d y x5. 求星形线33cos (0t 2,0)sin x a ta y a tπ⎧=⎪≤≤>⎨=⎪⎩的长度.三、计算题(本题满分 10)求微分方程2331y y y x '''--=+的通解.四、计算题(本题满分 10)曲线2,y x y ==围成的平面区域为D ,(1)求D 的面积S ;(2)求D 绕x 轴旋转所得旋转体的体积V 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年春季学期高一期末考试(数学)试题
(总分:150分 时间:120分钟)
一、 选择题:本题共12小题,每题5分,共60分。
在每题给出的四个选项中,只有
一项是符合题目要求的。
1、()750-
sin 的值为( )
1.
2A
B 1.2
C -
.D 2、(4,3),AC BC =--=
已知点A(0,1),B(3,2),向量则向量( ) .A(-7,-4) B.(7,4) C.(-1,4) D.(1,4)
3、{}
{}2|6240x x x x x -⋂--<0,B=|>,则A B=已知集合A= ( ) .(2,2
)A - .(2,3)B .(2,4)C .(4,3)D - 4
、ABC a ∆=在
中,已知45,B=b A = 则( )
A.60 .120B .60120C 或 .30D
5
、3,30,=b C ABC a ==∆ 则c 在中,已知( )
A.3
B
C
3
6、{}5101510,30=n n S a S ==已知为等差数列的前n 项和,S ,则S ( )
A.50 .60B .70C .90D
7、{}12455,40,n a a a q a a +=+==则公比已知数列
是等比数列,( ) 1.2A .2B 1.8
C .8
D 8、()()()sin 2,sin 23f x x g x x f x π⎛⎫==+
⎪⎝⎭
已知为了得到的图象,只需把的图象( ) .3A π向左平移
个单位长度 .6B π向左平移个单位长度 .3C π
向右平移个单位长度 6
π
D.向右平移个单位长度 9、141,x y x y
x y +=+则的最小值为已知正数,且满足( ) .4A .5B .6C .9D
10、下列说法正确的是( )
.,A a b c d a c b d >>->-若则, .0,0B a b c d a c b
d >><<<若则, 2211.C a b a b <>若,则 11.D a b
a b <若<<0,则 11、cos cos ,ABC a A b B ABC ∆=∆在中,若则的形状为( )
.A 等腰三角形 .B 直角三角形 .C 等腰直角三角形 .D 等腰三角形或直角三角形 12、{}1411780,0,0,n n a n S a a a a a >+><的前项的和为,且则满足设等差数列 n S >0的最大自然数n 的值( )
A.7
B.8
C.14
D.15
二、填空题:本题共4小题,每小题5分。
13、1
()(0)2
y x x x <<函数=1-2的最大值为 .
14、设x ,y 满足约束条件13,10,x x y ≤≤⎧⎨-≤-≤⎩则2z x y =+的最大值为______. 15、)24
0,ππθθθ=∈),tan =2,则cos(+已知( . 16、{}{}112,n n n n n a a a n a a +=+-已知数列满足且=2,则数列的通项公式为
三、解答题:解答应写出文字说明,证明过程或演算步骤。
17、(10分)2320.4
x mx mx m -+
>对于一切实数都满足不等式求实数的取值范围。
18、(12分)(1)(1,2),(,1),22a b m a b a b m =-=+- 若向量与平行,求的值已知
(2),60(1)a b c ta t b =+- 已知两个单位向量的夹角为,,
0,b c ⋅= 若 t 求的值。
19、(12分)3π
∆在ABC 中,角A,B,C 的对边分别为a,b,c,已知c=2,C= (1),.4a A π
=求若
,a b ∆(2)若ABC
20、(12分)()2sin (sin cos )x x x x f =+已知函数
(1)()x f 的最小正周期求;
(2)()x f 的单调递增区间求。
21、(12分){}4810,36n n a n S S S ==的前项的和为且已知等差数列
(1){}n a 的通项公式;求数列
(2)1
1,n n n a a +=
设b {}.n n b 的前n 项和T 求数列
22、(12分){}1110,2,n n n n S a n a a a S n N a *≠-=⋅∈设的前项的和,已知数列. (1)求1a ;
(2){}n a 的通项公式求数列;
(3){}n na n 的前项的和求数列。