多元函数微分学复习题
(整理)多元函数微分习题
第五部分 多元函数微分学[选择题]容易题1—36,中等题37—87,难题88—99。
1.设有直线⎩⎨⎧=+--=+++031020123:z y x z y x L 及平面0224:=-+-z y x π,则直线L ( )(A) 平行于π。
(B) 在上π。
(C) 垂直于π。
(D) 与π斜交。
答:C2.二元函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,),(22y x y x y x xyy x f 在点)0,0(处 ( )(A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C3.设函数),(),,(y x v v y x u u ==由方程组⎩⎨⎧+=+=22v u y v u x 确定,则当v u ≠时,=∂∂x u( ) (A)v u x - (B) v u v -- (C) v u u -- (D) vu y- 答:B4.设),(y x f 是一二元函数,),(00y x 是其定义域内的一点,则下列命题中一定正确的是( )(A) 若),(y x f 在点),(00y x 连续,则),(y x f 在点),(00y x 可导。
(B) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 连续。
(C) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 可微。
(D) 若),(y x f 在点),(00y x 可微,则),(y x f 在点),(00y x 连续。
答:D 5.函数2223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是( )(A) )32,31,31(- (B) )32,31,31(2- (C) )92,91,91(- (D) )92,91,91(2- 答:A6.函数在点处具有两个偏导数是函数存在全微分的()。
《多元函数微分学》word版
第十七章 多元函数微分学一、证明题1. 证明函数⎪⎩⎪⎨⎧=+≠++=0y x 0,0y x ,y x y x y)f(x,2222222 在点(0,0)连续且偏导数存在,但在此点不可微.2. 证明函数⎪⎩⎪⎨⎧=+≠+++=0y x 0,0y x ,y x 1)sin y (x y)f(x,22222222在点(0,0)连续且偏导数存在,但偏导数在点(0,0)不连续,而f 在原点(0,0)可微.3. 证明: 若二元函数f 在点p(x 0,y 0)的某邻域U(p)内的偏导函数f x 与f y 有界,则f 在U(p)内连续.4. 试证在原点(0,0)的充分小邻域内有x y1y x arctg ++≈x+y. 5. 试证:(1) 乘积的相对误差限近似于各因子相对误差限之和;(2) 商的相对误差限近似于分子和分母相对误差限之和.6.设Z=()22y x f y -,其中f 为可微函数,验证 x 1x Z ∂∂+y 1y Z ∂∂=2yZ . 7.设Z=sin y+f(sin x-sin y),其中f 为可微函数,证明:x Z ∂∂ sec x + y Z ∂∂secy=1. 8.设f(x,y)可微,证明:在坐标旋转变换x=u cos θ-v sin θ, y=u sin θ+v cos θ之下.()2x f +()2y f 是一个形式不变量,即若 g(u,v)=f(u cos θ-v sin θ,u sin θ+v cos θ).则必有()2x f +()2y f =()2u g +()2vg .(其中旋转角θ是常数) 9.设f(u)是可微函数,F(x,t)=f(x+2t)+f(3x-2t),试求:F x (0,0)与F g (0,0)10..若函数u=F(x,y,z)满足恒等式F(tx,ty,tZ)=t k (x,y,z)(t>0)则称F(x,y,x)为K 次齐次函数.试证下述关于齐次函数的欧拉定理:可微函数F(x,y,z)为K 次齐次函数的充要条件是:()z ,y ,x x F x +()z ,y ,x yF y +()z ,y ,x ZF x =KF(x,y,z).并证明:Z=xy y x xy 222-+为二次齐次函数.11..设f(x,y,z)具有性质f ()Z t ,y t ,tx m k =f t n (x,y,z)(t>0) 证明: (1) f(x,y,z)=⎪⎭⎫ ⎝⎛m k n x Z ,x y ,1f x ; (2) ()z ,y ,x x f x +()z ,y ,x kyf y +()z ,y ,x m zf z =nf(x,y,z).12.设由行列式表示的函数D(t)=()()()()()()()()()t a t a t a t a t a t a t a t a t a nn n21n 2n 22211n 1211⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅其中()t a ij (i,j=1,2,…,n)的导数都存在,证明()dt t dD =∑=n 1k ()()()()()()()()()t a t a t a t a t a t a t a t a t a nn n21n k n k 21k 1n 1211⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅'⋅⋅⋅''⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 13.证明:(1) grad(u+c)=grad u(c 为常数);(2) graqd(αu+βv)=αgrad u+βgrad v(α,β为常数);(3) grsdu v=u grad v+v grsd u;(4) grad f(u)=f '(u)grad u.14.设f(x,y)可微,L 1与L 2是R 2上的一组线性无关向量,试证明;若()0,≡y x f i λ(i=1,2)则f(x,y)≡常数.15.通过对F(x,y)=sin x cos y 施用中值定理,证明对某∈θ (0,1),有43=6cos 3cos 3πθπθπ6sin 3sin 6πθπθπ-. 16.证明:函数 u=()t a 4b x 22e t a 21--π(a,b 为常数)满足热传导方程:tu ∂∂=222x u a ∂∂ 17.证明:函数u=()()22b y a x ln -+-(a,b 为常数)满足拉普拉斯方程:22x u ∂∂+22y u ∂∂=0. 18.证明:若函数u=f(x,y)满足拉普拉斯方程: 22x u ∂∂+22y u ∂∂=0.则函数V=f(22y x x +,22y x y +)也满足此方程. 19.设函数u=()()y x φ+ϕ,证明:⋅∂∂xu y x u 2∂∂∂=⋅∂∂y u 22x u ∂∂. 20.设f x ,f y 和f yx 在点(x 0,y 0) 的某领域内存在,f yx 在点(x 0,y 0)连续,证明f xy (x 0,y 0)也存在,且f xy (x 0,y 0)= f yx (x 0,y 0),21.设f x ,f y 在点(x 0,y 0)的某邻域内存在且在点(x 0,y 0)可微,则有f xy (x 0,y 0)= f yx (x 0,y 0)二、计算题1.求下列函数的偏导数:(1) Z=x 2y; (2) Z=ycosx; (3) Z=22y x 1+;(4) Z=ln(x+y 2); (5) Z=e xy ; (6) Z=arctgx y ; (7) Z=xye sin(xy); (8) u=zx y Z x y -+; (9) u=(xy)z ; (10) u=z y x .2. 设f(x,y)=x+(y-1)arcsinyx ; 求f x (x,1). 3. 设 ⎪⎩⎪⎨⎧=+≠++=0y x 0,0y x ,y x 1ysin y)f(x,222222考察函数f 在原点(0,0)的偏导数.4. 证明函数Z=22y x +在点(0,0)连续但偏导数不存在.5. 考察函数 ⎪⎩⎪⎨⎧=+≠++=0y x 0,0y x ,y x 1xysin y)f(x,222222在点(0,0)处的可微性.6. 求下列函数在给定点的全微分;(1) Z=x 4+y 4-4x 2y 2在点(0,0),(1,1); (2) Z=22y x x+在点(1,0),(0,1).7. 求下列函数的全微分;(1) Z=ysin(x+y);(2) u=xe yx +e -z +y8. 求曲面Z=arctgx y 在点⎪⎭⎫ ⎝⎛4,1,1π处的切平面方程和法线方程. 9. 求曲面3x 2+y 2-Z 2=27在点(3,1,1)处的切平面方程与法线方程.10. 在曲面Z=xy 上求一点,使这点的切平面平行于平面x+3y+Z+9=0,并写出这切平面方程和法线方程.11. 计算近似值:(1) 1.002×2.0032×3.0043;(2) sin29°×tg46°.12. 设园台上下底的半径分别为R=30cm, r=20cm 高h=40cm. 若R,r,h 分别增加3mm,4mm,2mm.求此园台体积变化的近似值.13. 设二元函数f 在区域D=[a,b]×[c,d]上连续(1) 若在intD 内有f x ≡0,试问f 在D 上有何特性?(2) 若在intD 内有f x =f y ≡0,f 又怎样?(3) 在(1)的讨论中,关于f 在D 上的连续性假设可否省略?长方形区域可否改为任意区域?14. 求曲面Z=4y x 22+与平面y=4的交线在x=2处的切线与OZ 轴的交角. 15. 测得一物体的体积v=4.45cm 3,其绝对误差限为0.01cm 3,又测得重量W=30.80g,其绝对误差限为0.018,求由公式d=vw 算出的比重d 的相对误差限和绝对误差限. 16.求下列复合函数的偏导数或导数: (1) 设Z=arc tg(xy),y=e x ,求xdZ α; (2) 设Z=xy y x 2222e xyy x ++,求x Z ∂∂,y Z ∂∂; (3) 设Z=x 2+xy+y 2,x=t 2,y=t,求dtZ ∂; (4) 设Z=x 2lny,x=v u ,y=3u-2v,求u Z ∂∂,v Z ∂∂; (5) 设u=f(x+y,xy),求x u ∂∂,yu ∂∂; (6) 设u=f ⎪⎪⎭⎫ ⎝⎛Z y ,y x ,求x u ∂∂,y u ∂∂,Z u ∂∂. 17.求函数u=xy 2+z 3-xyz 在点(1,1,2)处沿方向L(其方向角分别为60,°45°,60°)的方向导数.18.求函数u=xyz 在点A(5,1,2)处沿到点B(9,4,14)的方向AB 上的方向导数.19.求函数u=x 2+2y 2+3z 2+xy-4x+2y-4z 在点A(0,0,0)及点B(5,-3,3z )处的梯度以及它们的模.20.设函数u=ln ⎪⎭⎫ ⎝⎛r 1,其中r=()()()222c z 0y a x -+-+- 求u 的梯度;并指出在空间哪些点上成立等式gradu =1.21设函数u=222222by a x c z --,求它在点(a,b,c)的梯度. 22.设r=222z y r ++,试求:(1)grad r; (2)grad r1.23.设u=x 3+y 3+z 3-3xyz,试问在怎样的点集上grad u 分加满足:(1)垂直于Z 轴,(2)平行于Z 轴(3)恒为零向量.24.设f(x,y)可微,L 是R 2上的一个确定向量,倘若处处有f L (x,y)≡0,试问此函数f 有何特征?25.求下列函数的高阶偏导数:(1) Z=x 4+y 4-4x 2y 2,所有二阶偏导数;(2) Z=e x (cos y+x sin y),所有二阶偏导数; (3) Z=xln(xy),y x z 23∂∂∂,23y x z ∂∂∂; (4) u=xyze x+y+z ,r q p z q p zy x u ∂∂∂∂++; (5) Z=f(xy 2,x 2y),所有二阶偏导数; (6) u=f(x 2+y 2+x 2),所有二阶偏导数;(7)Z=f(x+y,xy,yx ),z x , z xx , Z xy . 26.求下列函数在指定点处的泰勒公式:(1) f(x,y)=sin(x 2+y 2)在点(0,0)(到二阶为止);(2) f(x,y)=yx 在点(1,1)(到三阶为止); (3) f(x,y)=ln(1+x+y)在点(0,0);(4) f(x,y)=2x 2―xy ―y 2―6x ―36+5在点(1,-2).27.求下列函数的极值点:(1) Z=3axy ―x 3―y 3 (a>0);(2) Z=x 2+5y 2―6x+10y+6;(3) Z=e 2x (x+y 2+2y).28.求下列函数在指定范围内的最大值与最小值.(1) Z=22y x -,(){2x y ,x +}4y 2≤; (2) Z=22y x y x +-,(){}1y x y ,x ≤+; (3) Z=sinx+sing -sin(x+y),()(){}π≤+≥2y x ,0x y ,x y ,x29.在已知周长为2P 的一切三角形中,求出面积为最大的三角形.30.在xy 平面上求一点,使它到三直线x=0,y=0,及x+2y -16=0的距离平方和最小.31.已知平面上n 个点的坐标分别是 ()111y ,x A ,()222y ,x A ,…()n n n y ,x A .试求一点,使它与这n 个点距离的平方和最小.32.设 u=222z y x z y x1 1 1求(1)u x +u y +u z ; (2)xu x +yu x +zu z ; (3)u xx +u yy +u zz .33.设f(x,y,z)=Ax 2+By 2+Cz 2+Dxy+Eyz+Fzx,试按h,k,L 的下正整数幂展开f(x+h,y+k,z+L).三、三、考研复习题1. 设f(x,y,z)=x 2y+y 2z+z 2x,证明f x +f y +f z =(x+y+z)2.2. 求函数⎪⎩⎪⎨⎧=+≠++-=0y x 0,0y x ,y x y x y)f(x,22222233在原点的偏导数f x (0,0)与f y (0,0),并考察f(x,y)在(0,0)的可微性.3. 设 1nn1n 21n 12n 2221n21 x x x x x x x x x 11 1u ---=证明: (1)∑==∂∂n1k k 0;x u (2) ∑=-=∂∂n 1k k k u 21)n(n x u x . 4. 设函数f(x,y)具有连续的n 阶偏导数:试证函数g(t)=f (a+ht,b+kt)的n 阶导数 kt)b ht,f(a y k xh dt g(t)d n n n ++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=. 5. 设 22x 求xk z h y g y f x e z d z c y b x a z)y,(x,∂∂+++++++++=ϕϕ. 6. 设 (z)h (z)h (z)h (y)g (y)g (y)g (x)f (x)f (x)f z)y,Φ(x,321321321=求z y x Φ3∂∂∂∂. 7. 设函数u=f(x,y)在R 2上有u xy =0,试求u 关于x,y 的函数式.8. 设f 在点p 0(x 0,y 0)可微,且在p 0给定了n 个向量L i (i=1,2,…n).相邻两个向量之间的夹角为n2π,证明 ∑==n 1i 0Li 0)(p f.9. 设f(x,y)为n 次齐次函数,证明 1)f m (n 1)n(n f y y x x m +--=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂ . 10. 对于函数f(x,y)=sin xy ,试证 my y x x ⎪⎪⎭⎫ ⎝⎛∂∂+∂∂f=0. 欢迎您的下载,资料仅供参考!。
(完整版)多元函数微分学测试题及答案
第8章 测试题1.),(y x f z =在点),(00y x 具有偏导数且在),(00y x 处有极值是 0),(00=y x f x 及0),(00=y x f y 的( )条件.A .充分B .充分必要C .必要D .非充分非必要2.函数(,)z f x y =的偏导数z x∂∂及z y ∂∂在点(,)x y 存在且连续是 (,)f x y 在该点可微分的( )条件.A .充分条件B .必要条件C .充分必要条件D .既非充分也非必要条件3. 设(,)z f x y =的全微分dz xdx ydy =+,则点(0,0) 是( )A 不是(,)f x y 连续点B 不是(,)f x y 的极值点C 是(,)f x y 的极大值点D 是(,)f x y 的极小值点4. 函数22224422,0(,)0,0x y x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在(0,0)处( C )A 连续但不可微B 连续且偏导数存在C 偏导数存在但不可微D 既不连续,偏导数又不存在5.二元函数22((,)(0,0),(,)0,(,)(0,0)⎧+≠⎪=⎨⎪=⎩x y x yf x y x y 在点(0,0)处( A). A .可微,偏导数存在 B .可微,偏导数不存在C .不可微,偏导数存在D .不可微,偏导数不存在6.设),(),,(y x v v v x f z ==其中v f ,具有二阶连续偏导数. 则=∂∂22y z( ). (A)222y v v f y v y v f ∂∂⋅∂∂+∂∂⋅∂∂∂; (B)22y vv f∂∂⋅∂∂;(C)22222)(y v v fy v v f ∂∂⋅∂∂+∂∂∂∂; (D)2222y v v f y v v f ∂∂⋅∂∂+∂∂⋅∂∂.7.二元函数33)(3y x y x z --+=的极值点是( ).(A) (1,2); (B) (1.-2); (C) (-1,2); (D) (-1,-1). 8.已知函数(,)f x y 在点(0,0)的某个邻域内连续,且223(,)(0,0)(,)lim 1()x y f x y xy x y →-=+,则下述四个选项中正确的是( ).A .点(0,0)是(,)f x y 的极大值点B .点(0,0)是(,)f x y 的极小值点C .点(0,0)不是(,)f x y 的极值点D .根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点10.设函数(,)z z x y =由方程z y z x e -+=所确定,求2z y x ∂∂∂ 11.设(,)f u v 是二元可微函数,,y x z f x y ⎛⎫= ⎪⎝⎭,求 z z x y x y ∂∂-∂∂ 12.设222x y z u e ++=,而2sin z x y =,求u x ∂∂11.设(,,)z f x y x y xy =+-,其中f 具有二阶连续偏导数,求 2,z dz x y ∂∂∂.13.求二元函数22(,)(2)ln f x y x y y y =++的极值14.22在椭圆x +4y =4上求一点,使其到直线2360x y +-=的距离最短.第8章测试题答案1.A2.A3.D4.C5.A6.C7.D8.C 8. ()()3(1)z y z y e e ---9. 2122z z x y x y f f x y y x∂∂-=-∂∂ 10.2222(12sin )x y z u xe z y x++∂=+∂11.123123231113223233 ()(),()()dz f f yf dx f f xf dyzf f x y f f x y f xyf x y=+++-+∂=+++-+-+∂∂12.极小值11(0,)f ee-=-13. r h==14. 83(,)55。
第九章多元函数微分法及其应用(复习题)
高等数学A(2)复习题第九章 多元函数微分法及其应用一、填空题1、设函数)ln(),(22y x x y x f --=,其中0>>y x ,则=-+),(y x y x f2、数1412222-++--=y x y x z 的定义域是 .3、设函数f x y x y xy x y (,)=+-+-32231,则一阶偏导数(3,2)y f '= .4、设函数xy e y x z +=2,则=∂∂)2,1(y z . 5、设函数)32ln(),(xy x y x f += ,则偏导数=')0,1(y f . 6、设函数(,,),x z f x y f y =可微,则偏导数z y∂=∂ . 7、设函数)ln(2xy y z =,则=)2,1(y z∂∂ .8、设函数y z (sin x)=,则偏导数yz ∂∂= . 10、设函数2(,)cos()z f x y x y ==,则二元偏导数值(1,)2xx f π= . 11、设2ln ,z u v =而,32,x u v x y y ==-, 则y z ∂∂= 12、设函数y x e z 2-=,而t x sin =,3t y =,则=dt dz . 13、设函数222),(y x y x f +=,则 =+),('),('y x f y x f y x .14、设函数(,)f x y =(1,2)x f '= .15、设函数)32ln(),(x y x y x f += ,则(1,0)y f = . 16、已知方程ln x x y z =确定隐函数(,)z z x y =,则z x∂=∂ . 17、已知由方程0323=+-y xz z 确定隐函数),(y x f z =,则z x ∂=∂ . 18、设函数sin()2xy z =,则全微分=dz .19、设函数z x y x e y =--322,则全微分dz = .20、设函数)ln(2xy z =,则=dz .21设 )sin(xy z =可微, 则全微分=dz .22、设函数 xy e z =,则全微分dz = .23、设函数xy z xe =,则全微分dz = .24、设函数)cos(2y x z =,则=dz .25、极限42lim 00+-→→xy xyy x = .26、极限=→→x xy y x sin lim 20 . 28、0x y →→=_______________.29、(,)(0,1)sin lim x y xy x→=___________. 30、极限42lim00+-→→xy xy y x = . 31、 极限(,)(0,0)sin lim x y xy x→=_____________. 32、极限02sin limx y xy x →→= . 33、极限=-+→→113lim00xy xy y x .34、曲面224z x y =--在点 处的切平面平行于平面220x y z ++=.35、设函数),(y x f z =在点),(00y x 处可微,且0),(00=y x f x ,0),(00=y x f y ,0),(00>y x f xx 0),(00>y x f yy 0),(00=y x f xy 则函数),(y x f 在),(00y x 处必有______________(填极大或极小).36、若函数632),(22+++++=by ax y xy x y x f 在点)1,1(-处取得极值,则常数_____________,==b a37、设函数22),(xy y x y x f +=,则其在点(1,2)处的梯度为 .38、函数22y x z +=在点(1,2)处沿从点A (1,2)到点B (2,2+3)的方向的方向导数等于 .39、函数yxe z 2=在点)0,1(P 处沿从点)0,1(P 到点)1,2(-Q 的方向的方向导数等于 .40、函数x ye z 2=在点(0,1)处沿向量}21,21{-方向的方向导数为 . 41、设函数222),,(z y x z y x f ++=,则梯度)2,2,1(grad -f 为⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽.42、设函数223),(xy y x y x f -=,则其在点(1,2)处的梯度为 _____________.44、 函数22z y xy x =-+在点(1,1)M 处沿向量{}6,8l =r 的方向导数为 45、 函数223u x y xy =+-在点(1,2)M -处沿其梯度方向l 的方向导数M u l ∂∂ .二、解答题1、设y x u arctan =,求y x u x u ∂∂∂∂∂222,.2、求三元函数zy x u =的全微分du3、设函数2z (,), ,x y z z f x y x y ∂∂=∂∂求 .4、设函数ln(z x =+,求x z ∂∂,2z x y ∂∂∂.5、已知函数z =,试求2,z z x x y ∂∂∂∂∂. 6、 设ln(ln )z x y =+,求2z x y∂∂∂. 7、设函数z = ,求y x z x z ∂∂∂∂∂2,. 9、设函数2sin (sin sin )z y x F y x =+-,其中)(u F 可导,试求z z x y∂∂∂∂,. 10、 设函数22(,)z f xy x y =,且(,)f u v 具有二阶连续偏导,求2z x y ∂∂∂. 11、 设函数()2ln z x y =+,求y x z ∂∂∂2。
第八章 多元函数微分练习题
5、已知函数 z f (sin x, y 2 ) ,其中 f (u, v) 有二阶连续偏导数,求 z 、 2 z 。 x xy
6、设
z
xf
(x2,
xy)
其中
f
(u, v)
的二阶偏导数存在,求
z y
、
2z yx
。
7、设 z f (2x 3y, xy) 其中 f 具有二阶连续偏导数,求 2 z 。 xy
z x
三、计算题
1、设 z f (x2 , x ) ,其中 f 具有二阶连续偏导数,求 z 、 2 z 。
y
x xy
2、已知 z ln x x2 y 2 ,求 z , 2 z 。 x xy
3、求函数 z tan x 的全微分。 y
4、设 z f (x y, xy) ,且具有二阶连续的偏导数,求 z 、 2 z 。 x xy
x1 (
y0
)
A、-1
B、 0
C、 1
D、 2
8、 函数 z ( x y)2 ,则 dz x1, y0 =(
)
A、 2dx 2dy B、 2dx 2dy
C、 2dx 2dy D、 2dx 2dy
二、填空题
1、函数 z x y 的全微分 dz 2、设 u e xy sin x ,则 u
y
xy
17、设 z f (x2 y, y2 x) ,其中 f 具有二阶连续偏导数,求 2 z 。 xy
18、设
z
z(x,
y)
是由方程
z
ln
z
xy
0
确定的二元函数,求
2z x2
19、设 z yf ( y2, xy) ,其中函数 f 具有二阶连续偏导数,求 2z 。 xy
《微积分(下)》第2章多元函数微分学--练习题
第2章 多元函数微分学一、二元函数的极限专题练习:1.求下列二元函数的极限: (1) ()211(,)2,2lim2;y xy x y xy +⎛⎫→- ⎪⎝⎭+ (2)()()2222(,),3limsin ;x y x yxy→∞∞++(3) ()(,)0,1sin lim;x y xy x→ (4)()(,)0,0limx y →2.证明:当()(,)0,0x y →时,()44344(,)x yf x y xy=+的极限不存在。
二、填空题3. 若 22(,)f x y y x y +=-,则 (,)f x y = ;4.函数22(,)ln(1)f x y x y =+-的定义域是D = ; 5. 已知 2(,)x y f x y e = ,则 '(,)x f x y = ; 6. 当 23(,)5f x y x y =,则 '(0,1)x f = ; 7. 若 2xy Z e yx =+,则 Z y∂=∂ ;8. 设 (,)ln()2y f x y x x=+,则 '(1,0)y f =;9. xyZ xe Z ==二元函数全微分d ; 10. arctan()Z xy =设,则dz= .11.1,0xyx y Z e Z====二元函数全微分d三、选择题12.设函数 ln()Z xy =,则Z x∂=∂ ( )A1yBx yC 1xDy x13.设 2sin(),Z xy = 则Z x∂=∂ ( )A 2cos()xy xyB 2cos()xy xy -C 22cos()y xy -D 22cos()y xy14.设 3xy Z =,则Z x∂=∂ ( )A 3xy yB 3ln 3xyC 13xy xy - D3ln 3xyy四、计算与应用题15. (1) 22e x yz +=, 求(0,1),(1,0)xy z z ''; (2) arctan y z x=, 求(1,1),(1,1)xy z z ''--;16.2(,),(,)(,)xy x y f x y e yx f x y f x y ''=+已知求和17.已知 2242(3),x y Z Z Z x y xy+∂∂=+∂∂设求和18.22exyz x y=+,求y xz z '';。
多元函数微分学复习题
多元函数微分学补充题1.已知函数(,)z z x y =满足222z z x y z x y ∂∂+=∂∂,设1111u x v y x z x ϕ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩,对函数(,)u v ϕϕ=,求证0uϕ∂=∂。
2.设(,,)u f x y z =,f 是可微函数,若y x z f f f xyz'''==,证明u 仅为r 的函数,其中r =3.设)(22y x u u +=具有二阶连续偏导数,且满足2222221y x u xu x yu xu +=+∂∂-∂∂+∂∂,试求函数u 的表达式。
4.设一元函数()u f r =当0r <<+∞时有连续的二阶导数,且0)1(=f ,(1)1f '=,又u f =满足0222222=∂∂+∂∂+∂∂zu yu xu ,试求)(r f 的表达式。
5.函数),(y x f 具有二阶连续偏导数,满足02=∂∂∂yx f ,且在极坐标系下可表成(,)()f x y h r =,其中r =),(y x f 。
6.若1)1(,0)0(),(='==f f xyz f u 且)(2223xyz f z y x zy x u '''=∂∂∂∂,求u .7.设函数)(ln 22y x f u +=满足23222222)(y x yu xu +=∂∂+∂∂,试求函数f 的表达式.8.设二元函数(,)||(,)f x y x y x y ϕ=-,其中(,)x y ϕ在点(0,0)的一个邻域内连续。
试证明函数(,)f x y 在(0,0)点处可微的充要条件是(0,0)0ϕ=。
7.已知点)2,1,Q(3),1,0,1(与-P ,在平面122=+-z y x 上求一点M ,使得||||PQ PM +最小.8.过椭圆132322=++y xy x 上任意点作椭圆的切线, 试求诸切线与坐标轴所围三角形面积的最小值.9.从已知ABC ∆的内部的点P 向三边作三条垂线,求使此三条垂线长的乘积为最大的点P 的位置. 10.设函数)(x f 在),1[+∞内有二阶连续导数,1)1(,0)1(='=f f 且)()(2222y x f y x z ++=满足02222=∂∂+∂∂yz xz ,求)(x f 在),1[+∞上的最大值.11.在椭球面122222=++z y x 求一点,使函数222),,(z y x z y x f ++=在该点沿方向j i l-=的方向导数最大.12.设),,(z y x f u =,f 是可微函数,若zf yf xf z y x '='=',证明u 仅为r 的函数, 其中.222z y x r ++=. 13.设向量j i v j i u34,43+=-=,且二元可微函数在点P 处有6-=∂∂puf ,17=∂∂pvf,求pdf.14.设函数),(y x z z =由方程)(2z xyf z y x =++所确定,其中f 可微,试计算yz y xz x ∂∂+∂∂并化简.15.已知函数),(y x z z =满足222z yz yxz x=∂∂+∂∂, 设),(,11,11,v u xzxyv x u ϕϕϕ=-=-==. 求证0=∂∂uϕ.16.设函数),(y x f z =具有二阶连续偏导数,且0≠∂∂yf ,证明对任意常数C ,C y x f =),(为一直线的充分必要条件是0222='''+''''-'''x xy xy y x xxy f f f f f f f . 17.已知锐角ABC ∆,若取点),(y x P ,令||||||),(CP BP AP y x f ++=.证明:在),(y x f 取极值的点0P 处矢量,0A P ,0B P ,0C P 所夹的角相等.18.若可微函数),(y x f 对任意t y x ,,满足),(),(2y x f t ty tx f =,)2,2,1(0-P 是曲面),(y x f z =上的一点,且4)2,1(=-'x f ,求曲面在0P 处的切平面方程.19.可微函数),(y x f 满足),(),(y x tf ty tx f =,)2,2,1(0-P 是曲面),(y x f z =上的一点,且4)2,1(=-'x f ,求曲面z 在0P 处的切平面方程.20.若)(x f ''不变号,且曲线)(x f y =在点)1,1(处的曲率圆为222=+yx 则函数)(x f 在区间)2,1(内(A)有极值点,无零点. (B)无极值点,有零点. (C)有极值点,有零点. (D)无极值点,无零点.21.求两直线⎩⎨⎧=+=⎩⎨⎧+==x z x y L x z x y L 3:,12:21之间的最短距离.22..轴旋转的旋转曲面方程绕111101线z z y x -=-=-求直23.证明:旋转曲面()22yx fz += (f 可微且0≠'f )的法线与旋转轴的相交.24.设直线⎩⎨⎧=--+=++030:z ay x b y x l 在平面π上,而平面π与曲面22y x z +=相切于点)5,2,1(-,求b a ,的值.25设锥面顶点在原点,准线为⎩⎨⎧==+1422x z y ,求锥面方程.26.求直线11111:--==-z y x l 在平面12:=+-z y x π上的投影直线0l 的方程,确定0l 绕Oy 轴旋转一周所成的曲面方程.27.求曲线⎩⎨⎧<==++)|(|:2222a C C y a z y x c 关于平面0:=++z y x π的投影柱面及投影曲线方程.28.求过两球面的交线⎩⎨⎧=-++-=++1)1()1(5:222222z y x z y x L 的正圆柱面方程. 29.由椭球面1222222=++cz by ax 的中心)0,0,0(O 引三条相互垂直的射线,分别交曲面于321,,M M M 三点,设11||r OM=,22||r OM=,33||r OM=. 证明:232221111rrr++222111cba++=.30.已知某柱面的准线为抛物线⎩⎨⎧==,02z x y 且母线的方向数为p n m ,,. 求此柱面方程. 31.求球心在直线124824-=-+=-z y x 上且过点)6,3,2(-与)2,3,6(-的球面方程.-------------------------------------B1设函数(,)u f x y =具有二阶连续偏导数,且满足等式2222241250u u u xx yy∂∂∂++=∂∂∂∂.确定a ,b 的值,使等式在变换x a y ξ=+,x b y η=+下简化为20u ξη∂=∂∂。
多元函数微分学复习题
多元函数微分学复习题多元函数微分学复习题一、偏导数与全微分在多元函数微分学中,偏导数与全微分是非常重要的概念。
偏导数用来描述一个函数在某一点上沿着某个坐标轴方向的变化率,而全微分则是描述函数在某一点上的变化率。
下面我们通过一些具体的例子来复习一下这两个概念。
例1:计算函数 f(x,y) = x^2 + 3xy + y^2 在点 (1,2) 处的偏导数。
解:对于 f(x,y) = x^2 + 3xy + y^2 ,我们分别对 x 和 y 求偏导数。
对于 x 的偏导数,我们将 y 视为常数,即有:∂f/∂x = 2x + 3y对于 y 的偏导数,我们将 x 视为常数,即有:∂f/∂y = 3x + 2y所以,在点 (1,2) 处的偏导数分别为:∂f/∂x = 2(1) + 3(2) = 8∂f/∂y = 3(1) + 2(2) = 7例2:计算函数 f(x,y) = e^x + ln(y) 在点 (1,2) 处的全微分。
解:对于 f(x,y) = e^x + ln(y) ,我们需要先计算其偏导数。
对于 x 的偏导数,我们有:∂f/∂x = e^x对于 y 的偏导数,我们有:∂f/∂y = 1/y所以,在点 (1,2) 处的全微分为:df = ∂f/∂x dx + ∂f/∂y dy= e^x dx + (1/y) dy= e^1 dx + (1/2) dy= e dx + (1/2) dy二、梯度与方向导数梯度和方向导数是多元函数微分学中与偏导数和全微分密切相关的概念。
梯度描述了一个函数在某一点上的变化率最大的方向,而方向导数则描述了函数在某一点上沿着某个给定方向的变化率。
例3:计算函数 f(x,y) = x^2 + y^2 在点 (1,1) 处的梯度和方向导数,以及在方向(1,1) 上的方向导数。
解:对于函数 f(x,y) = x^2 + y^2 ,我们先计算其梯度。
梯度的定义为:grad(f) = (∂f/∂x, ∂f/∂y)= (2x, 2y)所以,在点 (1,1) 处的梯度为:grad(f) = (2(1), 2(1)) = (2, 2)接下来,我们计算函数在点 (1,1) 处沿着方向 (1,1) 的方向导数。
(完整版)多元函数微分学复习题及答案
第八章 多元函数微分法及其应用 复习题及解答一、选择题1. 极限lim x y x yx y→→+00242= (提示:令22y k x =) ( B ) (A) 等于0 (B) 不存在 (C) 等于12 (D) 存在且不等于0或12 2、设函数f x y x y y xxy xy (,)sin sin=+≠=⎧⎨⎪⎩⎪1100,则极限lim (,)x y f x y →→0= ( C )(提示:有界函数与无穷小的乘积仍为无穷小)(A) 不存在 (B) 等于1 (C) 等于0 (D) 等于23、设函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000,则(,)f x y ( A )(提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx =,200(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续.所以,(,)f x y 在整个定义域内处处连续.)(A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续4、函数z f x y =(,)在点(,)x y 00处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件(B)充分而非必要条件(C)充分必要条件 (D)既非充分又非必要条件5、设u y x =arctan ,则∂∂u x = ( B )(A)xx y 22+(B) -+y x y 22 (C) yx y 22+(D)-+xx y 226、设f x y yx(,)arcsin=,则f x '(,)21= ( A ) (A )-14(B )14 (C )-12 (D )127、设yxz arctan=,v u x +=,v u y -=,则=+v u z z ( C )(A )22v u v u -- (B )22v u u v -- (C )22v u v u +- (D )22v u uv +-8、若f x x x x f x x x x (,),(,)'232612=+=+,则f x x y '(,)2= ( D ) (A) x +32(B) x -32(C) 21x + (D) -+21x 9、设z y x =,则()(,)∂∂∂∂z x zy+=21 ( A ) (A) 2 (B) 1+ln2 (C) 0 (D) 110、设z xye xy =-,则z x x x'(,)-= ( D ) (A)-+2122x x e x () (B)2122x x e x ()- (C)--x x e x ()122 (D)-+x x e x ()12211、曲线x t y t z t ===24sin ,cos ,在点(,,)202π处的法平面方程是 (C )(A) 242x z -=-π (B) 224x z -=-π (C) 42y z -=-π (D) 42y z -=π12、曲线45x y y z ==,,在点(,,)824处的切线方程是 (A )(A)842204x z y --=-= (B)x y z +==+122044 (C) x y z -=-=-85244 (D)x y z -=-=351413、曲面x z y x z cos cos +-=ππ22在点ππ2120,,-⎛⎝ ⎫⎭⎪处的切平面方程为 (D )(A )x z -=-π1 (B )x y -=-π1 (C )x y -=π2 (D )x z -=π214、曲面x yz xy z 2236-=在点(,,)321处的法线方程为 (A ) (A )x y z +=--=--58531918 (B )x y z -=-=--3823118(C )83180x y z --= (D )831812x y z +-=15、设函数z x y =-+122,则点 (,)00是函数 z 的 ( B ) (A )极大值点但非最大值点 (B )极大值点且是最大值点 (C )极小值点但非最小值点 (D )极小值点且是最小值点 16、设函数z f x y =(,)具有二阶连续偏导数,在P x y 000(,)处,有2)()(,0)()(,0)(,0)(000000======P f P f P f P f P f P f yx xy yy xx y x ,则( C )(A )点P 0是函数z 的极大值点 (B )点P 0是函数z 的极小值点 (C )点P 0非函数z 的极值点 (D )条件不够,无法判定 17、函数f x y z z (,,)=-2在222421x y z ++=条件下的极大值是 ( C )(A) 1 (B) 0 (C)-1 (D) -2 二、填空题 1、极限limsin()x y xy x→→0π= ⎽⎽⎽⎽⎽⎽⎽ .答:π 2、极限limln()x y x y e x y→→++01222=⎽⎽⎽⎽⎽⎽⎽ .答:ln23、函数z x y =+ln()的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:x y +≥14、函数z xy=arcsin 的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:-≤≤11x ,y ≠0 5、设函数f x y x y xy y x (,)ln =++⎛⎝ ⎫⎭⎪22,则f kx ky (,)= ⎽⎽⎽⎽⎽⎽⎽ .答:k f x y 2⋅(,)6、设函数f x y xy x y (,)=+,则f x y x y (,)+-= ⎽⎽⎽⎽⎽⎽⎽ .答:222x y x-(22()()(,)()()2x y x y x y f x y x y x y x y x+--+-==++-Q )7、设f x y x y x y A x y (,)ln()//=-⋅+<+≥⎧⎨⎩11212222222,要使f x y (,)处处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:-ln28、设f x y x y x y x y Ax y (,)tan()(,)(,)(,)(,)=++≠=⎧⎨⎪⎩⎪22220000,要使f x y (,)在(0,0)处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:1 9、函数221x y z x +=-的间断点是 .答:直线10x -=上的所有点10、函数f x y x y yx (,)cos =-122的间断点为 ⎽⎽⎽⎽⎽⎽⎽ .答:直线y x =±及x =011、设z x y y =-+sin()3,则∂∂z xx y ===21_________ .答:3cos512、设f x y x y (,)=+22,则f y (,)01= _________ .答:113、设u x y z x y z(,,)=⎛⎝ ⎫⎭⎪,则)3,2,1(d u =_________ .答:38316182d d ln d x y z --14、设u x x y =+22,则在极坐标系下,∂∂ur= _________ .答:0 15、设u xy y x =+,则∂∂22u x = _________.答:23yx16、设u x xy =ln ,则∂∂∂2u x y = ___________ .答:1y17、函数y y x =()由12+=x y e y 所确定,则d d y x = ___________ .答:22xye xy - 18、设函数z z x y =(,)由方程xy z x y z 2=++所确定,则∂∂zy= _______ .答:2112xyz xy --19、由方程xyz x y z +++=2222所确定的函数z z x y =(,)在点(1,0,-1)处的全微分d z = _________ .答:d d x y -220、曲线x t y t z t ===23213,,在点(,,)1213处的切线方程是_________.答:x y z -=-=-12221321、曲线x te y e z t e t t t ===232222,,在对应于 t =-1点处的法平面方程是___________. 答:01132=+--e y x 22、曲面xe y e z e ey z x ++=+223321在点(,,)210-处的法线方程为_________ . 答:e ze y x 22212=-+=- 23、曲面arctan y xz 14+=π在点(,,)-210处的切平面方程是_________.答:y z +=2124、设函数z z x y =(,)由方程123552422x xy y x y e z z +--+++=确定,则函数z的驻点是_________ .答:(-1,2) 27、函数z x y x y =----2346122的驻点是_________.答:(1,1)25、若函数f x y x xy y ax by (,)=+++++22236在点 (,)11-处取得极值,则常数a =_________, b =_________.答:a =0,b =426、函数f x y z x (,,)=-22在x y z 22222--=条件下的极大值是_______答:-4 三、计算题1、求下列二元函数的定义域,并绘出定义域的图形.(1) z = (2)ln()z x y =+ (3)1ln()z x y =+ (4)ln(1)z xy =-解:(1)要使函数z =有意义,必须有2210x y --≥,即有221x y +≤.故所求函数的定义域为22{(,)|1}D x y x y =+≤,图形为图3.1(2)要使函数ln()z x y =+有意义,必须有0x y +>.故所有函数的定义域为{}(,)|0D x y x y =+>,图形为图3.2(3)要使函数1ln()z x y =+有意义,必须有ln()0x y +≠,即0x y +>且1x y +≠.故该函数的定义域为{}(,)|01D x y x y x y =+>+≠,,图形为图3.3(4)要使函数ln(1)z xy =-有意义,必须有10xy ->.故该函数的定义域为{(,)|1}D x y xy =>,图形为图3.4图3.1 图3.2图3.3 图3.42、求极限limsin x y y xxy →→+-0211.解:lim sin x y y xxy →→+-0211=⋅++→→lim sin ()x y y x xy xy 00211= 43、求极限lim sin()x y x y x yxy →→-+0023211. 解:原式=lim ()sin()x y x y x y x y xy →→-++0232211=-++⋅→→limsin()x y x y xy xy 002111=-124、求极限lim x y xxye xy→→-+0416 . 解:lim x y xxye xy→→-+00416=++-→→lim ()x y x xye xy xy 00416= -85、设u x y y x =+sin cos ,求 u u x y ,. 解:u y y x x =-sin sinu x y x y =+cos cos6、设z xe ye y x =+-,求z z x y ,. 解:z e ye x y x =--z xe e y y x =+-7、设函数z z x y =(,)由yz zx xy ++=3所确定,试求∂∂∂∂z x zy,(其中x y +≠0). 解一:原式两边对x 求导得yz x x zxz y ∂∂∂∂+++=0,则∂∂z x z y y x =-++同理可得:∂∂z y z x y x =-++ 解二:xy xz F F y z xy y z F F x z x y y x ++-=-=++-=-=∂∂∂∂, 8、求函数z x xy y x y =-++-+23243122的极值.解:由z x y z x y x y=-+==-+-=⎧⎨⎩43403430,得驻点(,)-10074334>=--==yy yxxy xx z z z z D z xx =>40,函数z 在点(,)-10处取极小值z (,)-=-101.9、设z e x y =+32,而x t y t ==cos ,2,求d d z t. 解:d d (sin )()zte t e t x y x y =-+++3223232=-++(sin )3432t t e x y10、设z y xy x =ln(),求∂∂∂∂z x z y,. 解:z y y xy xy x x x =⋅+ln ln 1 z xy xy yy y x x =+-11ln() 11、设u a x a x yz a =->+ln ()0,求d u . 解:∂∂u x a a ax x yz =-+-ln 1,∂∂u y a z a x yz =⋅+ln ,∂∂u zya a x yz =+ln d (ln )d ln (d d )u a a ax x a a z y y z x yz x yz =-+++-+112、求函数z x y e xy =++ln()22的全微分.解:∂∂∂∂z x x ye x y e z y y xe x y e xyxyxyxy=+++=+++222222,[]d ()d ()d z x y ex ye x y xe y xyxy xy =+++++12222 四、应用题1、要造一容积为128立方米的长方体敞口水池,已知水池侧壁的单位造价是底部的2倍,问水池的尺寸应如何选择,方能使其造价最低? 解:设水池的长、宽、高分别为x y z ,,米.水池底部的单位造价为a .则水池造价()S xy xz yz a =++44 且 xyz =128令 ()L xy xz yz xyz =+++-44128λ由 ⎪⎪⎩⎪⎪⎨⎧=-==++==++==++=01280440404xyz L xy y x L xz z x L yz z y L z y x λλλλ得 x y z ===82由于实际问题必定存在最小值,因此当水池的长、宽、高分别为8米、8米、2米时,其造价最低.2、某工厂生产两种商品的日产量分别为x 和y (件),总成本函数22128),(y xy x y x C +-=(元).商品的限额为42=+y x ,求最小成本. 解:约束条件为042),(=-+=y x y x ϕ,构造拉格朗日函数22(,,)812(42)F x y x xy y x y λλ=-+++-,解方程组160240420x y F x y F x y F x y λλλ'⎧=-+=⎪'=-++=⎨⎪'=+-=⎩,得唯一驻点)17,25(),(=y x ,由实际情况知,)17,25(),(=y x 就是使总成本最小的点,最小成本为8043)17,25(=C (元).3、某工厂生产两种产品甲和乙,出售单价分别为10元与9元,生产x 单位的产品甲与生产y 单位的产品乙的总费用是)33(01.03240022y xy x y x +++++元, 求取得最大利润时,两种产品的产量各为多少?解:),(y x L 表示获得的总利润,则总利润等于总收益与总费用之差,即有利润目标函数)]33(01.032400[)910(),(22y xy x y x y x y x L +++++-+=)0,0(,400)33(01.06822>>-++-+=y x y xy x y x ,令⎩⎨⎧=+-='=+-='0)6(01.060)6(01.08y x L y x L yx,解得唯一驻点(120,80).又因06.0,01.0,006.0-=''=-=''=<-=''=yy xy xx L C L B L A ,得0105.332>⨯=--B AC .得极大值320)80,120(=L . 根据实际情况,此极大值就是最大值.故生产120单位产品甲与80单位产品乙时所得利润最大320元. 五、证明题 1、设)11(yx e z +-=, 求证z yz y x z x 222=∂∂+∂∂.证明: 因为2)11(1x e xzy x ⋅=∂∂+-, 2)11(1ye y z y x ⋅=∂∂+-, 所以 z e e yz y x z x y x y x 2)11()11(22=+=∂∂+∂∂+-+-2、证明函数nx ey tkn sin 2-=满足关系式22x y k t y ∂∂=∂∂ 证明:因为nx e kn kn nx e ty tkn t kn sin )(sin 2222⋅-=-⋅⋅=∂∂--, nx nex y tkn cos 2-=∂∂, nx e n xy t kn sin 2222--=∂∂, nx e kn xyk t kn sin 2222--=∂∂,所以22x y k t y ∂∂=∂∂.3、设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z y z y x z x +=∂∂+∂∂⋅.证明:y z y x z x ∂∂⋅+∂∂⋅])([])()([yu u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .。
微积分第七章-多元函数微分学习题
总结词
理解偏导数与全微分的关系,掌握二者之间 的转换方法。
详细描述
偏导数是全微分的线性近似,即当 自变量改变量Δx、Δy等趋于0时, 全微分等于偏导数乘以自变量改变 量。因此,在求函数在某一点的切 线斜率时,可以使用偏导数;而在 计算函数在某一点的微小改变量时, 则使用全微分。
03
习题三:方向导数与梯度
THANKS
感谢观看
Delta y]
计算多元函数的梯度
总结词
梯度是多元函数在某点处的方向导数的最大值,表示函数在该点处沿梯度方向变 化最快。
详细描述
梯度的计算公式为:[nabla f(x_0, y_0) = left( frac{partial f}{partial x}(x_0, y_0), frac{partial f}{partial y}(x_0, y_0) right)]梯度向量的长度即为函数在该点 的变化率。
讨论多元函数极值的性质
要点一
总结词
极值的性质包括局部最大值和最小值、鞍点的存在以及多 变量函数的极值与一元函数的极值之间的关系。
要点二
详细描述
在多元函数中,极值具有局部性,即在一个小的区域内, 一个函数可能达到其最大值或最小值。鞍点是函数值在某 方向上增加而在另一方向上减少的点。此外,多变量函数 的极值与一元函数的极值之间存在一些关系,例如,在一 元函数中,可微函数在区间上的最大值和最小值必然在驻 点处取得,但在多元函数中,这一性质不再成立。
利用二阶条件求多元函数的极值
总结词
二阶条件是进一步确定极值点的工具,通过判断二阶偏导数的符号,我们可以确定是否为极值点。
详细描述
在得到临界点后,我们需要进一步判断这些点是否为极值点。这需要检查二阶偏导数的符号。如果所 有二阶偏导数在临界点处都为正,则该点为极小值点;如果所有二阶偏导数在临界点处都为负,则该 点为极大值点;如果既有正又有负,则该点不是极值点。
习题课 多元函数微分学
复习题8(A )1. 设3(1)z y f x =+-,且已知y =1时,z =x 则()f x = ,z = .2. 设322,(,)(0,0)(,)0,(,)(0,0)x x y f x y x y x y ⎧≠⎪=+⎨⎪=⎩,则(0,0)x f = , (0,0)y f = .3. 设arctanx yz x y+=-,,则d z = . 4. 设()()y x u yf xg x y =+,其中f ,g 具有二阶连续偏导数,则222u u x y x y x∂∂+=∂∂∂ . 5. 若函数z =f (x ,y )在点(x 0,y 0)处的偏导数存在,则在该点处函数(,)z f x y = ( ) A 有极限 B 连续C 可微D 以上三项都不成立6. 偏导数f x (x 0,y 0),f y (x 0,y 0)存在是函数z =f (x ,y )在点(x 0,y 0)连续的( ) A 充分条件 B 必要条件C 充要条件D 即非充分也非必要条件7. 设函数f (x ,y )=1-x 2+y 2,则下列结论正确的是( )A 点(0,0)是f (x ,y )的极小值点B 点(0,0)是f (x ,y )的极大值点C 点(0,0)不是f (x ,y )的驻点D f (0,0)不是f (x ,y )的极值 8. 求下列极限:(1) 22(,)(0,0)1lim ()sin x y x y x y →+; (2) (,)(0, 0)11lim x y xy →+-. 9. 设u =e 3x -y ,而x 2+y =t 2,x -y =t +2,求0d d t u t =.10. 设z =f (x ,y )由方程xy +yz +xz =1所确定,求222,,.z z z x x y x ∂∂∂∂∂∂∂ 11. 设f (u ,v )具有二阶连续偏导数,且满足22221f f u v∂∂+=∂∂,又221(,)[,()]2g x y f x y x y =-,试证222222g gx y x y∂∂+=+∂∂. 12. 求函数f (x ,y )=x 2(2+y 2)+y ln y 的极值.13. 设商品A 及B 的收益函数分别为:22121624 , R 20410R x x xy y xy y =-+=+-,总成本函数为2888C x y =-+,,x y 为商品A 及B 的价格,试问价格取何值时可以使总利润最大?14. 某同学现有400元钱,他决定用来购买x 张计算机磁盘和y 盒录音磁带。
第八章(理工)多元函数的微分学
4、过曲面 z − e + 2 xy = 3 上点 (1, 2, 0) 处的切平面方程为 解析:切点的方向向量为 n = (2 y , 2 x,1 − e ) ⇒ n
z
G
G
(1,2,0)
= (4, 2, 0) = (2,1, 0) ,则有点向式 2( x −1) + ( y − 2) = 0
⇒ 2x + y − 4 = 0
∂2 z ∂ 2 w ∂u ∂ 2 w ∂v ∂ 2 w ∂u ∂ 2 w ∂v ∂2w ∂2w ∂2w 2 = − − − − = − − − ∂x 2 ∂u 2 ∂x ∂u∂v ∂x ∂u∂v ∂x ∂v 2 ∂x ∂u 2 ∂u∂v ∂v 2 ∂2 z ∂ 2 w ∂u ∂ 2 w ∂v ∂ 2 w ∂u ∂ 2 w ∂v ∂2w ∂2w ∂2w ∂2w ∂2w ∂2w ∂2w 2 = − − + + = − + + − = − + − ∂y 2 ∂u 2 ∂y ∂u∂v ∂y ∂u∂v ∂y ∂v 2 ∂y ∂u 2 ∂u∂v ∂u∂v ∂v 2 ∂u 2 ∂u∂v ∂v 2 ∂2 z ∂ 2 w ∂u ∂ 2 w ∂v ∂ 2 w ∂u ∂ 2 w ∂v ∂2w ∂2w ∂2w ∂2w ∂2w ∂2w = 1− 2 − + + = 1− 2 − + + = 1− 2 + 2 ∂x∂y ∂u ∂x ∂u∂v ∂x ∂u∂v ∂x ∂v 2 ∂x ∂u ∂u∂v ∂u∂v ∂v 2 ∂u ∂v ∂2 z ∂2 z ∂2 z ∂2w ∂2w ∂2w ∂2w ∂2w ∂2w ∂2w ∂2w ∂2w +2 + = − 2 −2 − + 2(1 − 2 + 2 ) − 2 +2 − =− 4 2 + 2 ∂x 2 ∂x∂y ∂y 2 ∂u ∂u∂v ∂v 2 ∂u ∂v ∂u ∂u∂v ∂v 2 ∂u
专升本高等数学(二)-多元函数微分学
专升本高等数学(二)-多元函数微分学(总分:100.00,做题时间:90分钟)一、{{B}}选择题{{/B}}(总题数:10,分数:20.00)1.∙ A.{(x,y)|x2+y2≤4}∙ B.{(x,y)|x2+y2≤4且x≠0}∙ C.{(x,y)|0<x2+y2≤4}∙ D.{(x,y)|x2+y2≤4且y≠0}(分数:2.00)A.B.C. √D.解析:[解析] 解不等式组[*]得0<x2+y2≤4.2.函数z=ln(x2+y2______∙ A.{(x,y)| 0<x2+y2≤2}∙ B.{(x,y)|0≤x2+y2≤2)∙ C.{(x,y)| 0<x2+y2<2}∙ D.{(x,y)|0≤x2+y2<2}(分数:2.00)A. √B.C.D.解析:[解析] 解不等式组[*]得0<x2+y2≤2.3.设f(x,y)=,则=______ A. B. C. D(分数:2.00)A.B.C. √D.解析:[解析] [*]4.设f(x-y, lnx)=,则f(x,y)=A. B. C D.xe x(分数:2.00)A. √B.C.D.解析:[解析] [*] 作变量代换,令[*]解得[*]代入给定函数表达式,则有[*],即[*].5.二元函数z=(1+3x)2y______∙ A.2y(1+3x)2y-1∙ B.6y(1+3x)2y-1∙ C.(1+3x)2y ln(1+3x)∙ D.6y(1+3x)2y(分数:2.00)A.B. √C.D.解析:[解析] [*]=2y(1+3x)2y-1·3=6y(1+3x)2y-1.6.已知f(xy,x-y)=x2+y2______∙ A.2+2y∙ B.2-2y∙ C.2x+2y∙ D.2x-2y(分数:2.00)A. √B.C.D.解析:[解析] 作变量代换,令u=xy,v=x-y,由于f(xy,x-y)=x2+y2=(x-y)2+2xy,即f(u,v)=2u+v2,所以[*][*].7.设z=(lny)xy______∙ A.xy(lny)xy-1∙ B.(lny)xy lnlny∙ C.y(lny)xy lnlny∙ D.x(Iny)xy lnlny(分数:2.00)A.B.C. √D.解析:[解析] [*]=(lny)xy ln(lny)·y=y(lny)xy lnlny.8.z=3xy______∙ A.y·3xy∙ B.3xy ln3∙ C.xy3xy-1∙ D.y·3xy ln3(分数:2.00)A.B.C.D. √解析:[解析] [*].9.设z=sin(xy2)______∙ A.xycos(xy2)∙ B.-xycos(xy2)∙ C.-y2cos(xy2)∙ D.y2cos(xy2)(分数:2.00)A.B.C.D. √解析:[解析] [*].10.设,则等于______ A. B. C. D (分数:2.00)A.B.C.D. √解析:[解析] [*].二、{{B}}填空题{{/B}}(总题数:10,分数:20.00)11. 1.(分数:2.00)填空项1:__________________ (正确答案:1<x2+y2≤2)解析:解不等式组[*]得1<x2+y2≤2.12.______.(分数:2.00)填空项1:__________________ (正确答案:y≥x, x2+y2<1且x2+y2≠0)解析:解不等式组[*]得[*]即y≥x, x2+y2<1且x2+y2≠013.设f(x,y)=,则.(分数:2.00)填空项1:__________________ (正确答案:[*])解析:[*]14.f(x,y)= 1.(分数:2.00)填空项1:__________________ (正确答案:x2y)解析:因为[*],所以f(x,y)=x2y.15.设z=e x2y.(分数:2.00)填空项1:__________________ (正确答案:2xye x2y)解析:[*]=e x2y·[*]=2xye x2y.16.设z=ln(xy+lny).(分数:2.00)填空项1:__________________ (正确答案:[*])解析:[*]17.设,则.(分数:2.00)填空项1:__________________ (正确答案:0)解析:[*]18.设,则.(分数:2.00)填空项1:__________________ (正确答案:[*])解析:[*]19.设,则.(分数:2.00)填空项1:__________________ (正确答案:-e)解析:[*]20.设z=cos(x2+y2).(分数:2.00)填空项1:__________________ (正确答案:-2xsin(x2+y2))解析:[*]三、{{B}}解答题{{/B}}(总题数:5,分数:60.00)求下列函数的偏导数.(分数:12.00)(1).设z=,求, 3.00)__________________________________________________________________________________________ 正确答案:([*])解析:(2).设,求, 3.00)__________________________________________________________________________________________ 正确答案:([*])解析:(3).设z=tan(xy2+x3y),求, 3.00)__________________________________________________________________________________________ 正确答案:([*]=sec2(xy2+x3y)·(y2+3x2y),[*]=sec2(xy2+x3y)·(2xy+x3).)解析:(4).设,求, 3.00)__________________________________________________________________________________________ 正确答案:([*])解析:求全微分.(分数:12.00)(1).设z=e x2+y2,求dz.(分数:3.00)__________________________________________________________________________________________ 正确答案:([*]=e x2+y2·2x, [*]=e x2+y2·2y.dz=[*]=2xe x2+y2dx+2ye x2+y2dy=2e x2+y2(xdx+ydy).)解析:(2).设z=arctan(xy),求dz.(分数:3.00)__________________________________________________________________________________________ 正确答案:([*])解析:(3).设z=e y(x2+y2),求dz.(分数:3.00)__________________________________________________________________________________________ 正确答案:(z=e y(x2+y2)=e x2y+y3,[*]=e x2y+y3·(2xy), [*]=e x2y+y3·(x2+3y2).[*]=e y(x2+y2)[2xydx+(x2+3y2)dy].)解析:(4).设z=xe-xy+sin(xy),求dz.(分数:3.00)__________________________________________________________________________________________ 正确答案:([*]=e-xy-xye-xy+ycos(xy), [*]=-x2e-xy+xcos(xy),[*]=[(1-xy)e-xy+ycos(xy)]dx+[-x2e-xy+xcos(xy)]dy.)解析:求由方程所确定的隐函数的偏导数或全微分.(分数:9.00)(1).设z=f(x,y)是由方程xz=y+e z(分数:3.00)__________________________________________________________________________________________ 正确答案:(解法Ⅰ(公式法)令F(x,y,z)=xz-y-e z,则[*]解法Ⅱ等式两边分别对x求偏导数,得[*],经整理,得[*])解析:(2).设z=f(x,y)是由方程e-xy-2z+e z=0所确定的隐函数,求dz.(分数:3.00)__________________________________________________________________________________________ 正确答案:(解法Ⅰ(公式法)令F(x,y,z)=e-xy-2z+e z,分别求出三元函数F(x,y,z)对x,Y,z的导数,对其中一个变量求导时,其他两个变量视为常数.[*]解法Ⅱ(直接微分法)方程两边同时求微分,有e-xy(-ydx-xdy)-2dz+e z dz=0,经整理,得[*])解析:(3).设z=(x,y)是由方程x2+z2=2ye z所确定的隐函数,求dz.(分数:3.00)__________________________________________________________________________________________ 正确答案:(解法Ⅰ(公式法)令F(x,y,z)=x2+z2-2ye z,[*][*]解法Ⅱ(直接微分法)方程两边同时求微分,有2xdx+2zdz=2e z dy+2ye z dz,经整理,得[*])解析:求二阶偏导数.(分数:12.00)(1).设z=x lny, 3.00)__________________________________________________________________________________________ 正确答案:([*])解析:(2).设z=sin(x2-y2) 3.00)__________________________________________________________________________________________ 正确答案:([*]=2xcos(x2-y2),[*]=2cos(x2-y2)-4x2sin(x2-y2).)解析:(3).设z=2cos2,求 3.00)__________________________________________________________________________________________ 正确答案:([*] [*]=-cos(2x-y).)解析:(4).设z=ln(x-y2) 3.00)__________________________________________________________________________________________ 正确答案:([*])解析:求下列二元函数的极值.(分数:15.00)(1).求函数f(x,y)=x2-6x+y2的极值.(分数:3.00)__________________________________________________________________________________________ 正确答案:(解方程组[*] 得驻点(3,0),计算[*]B2-AC=-4<0,A=2>0,所以f(3,0)=-9为极小值.)解析:(2).求函数f(x,y)=x3-y3+3x2+3y2-9x的极值.(分数:3.00)__________________________________________________________________________________________ 正确答案:([*] 得驻点(1,0),(1,2),(-3,0),(-3,2),故f"xx(x,y)=6x+6,f"xy(x,y)=0,f"yy(x,y)=-6y+6,对于驻点(1,0),A=f"xx(1,0)=12,B=f"xy(1,0)=0,C=f"yy(1,0)=6.B2-AC=02-12×6=-72<0,所以驻点(1,0)是极小值点,极小值f(1,0)=-5.对于驻点(1,2),A=f"xx(1,2)=12,B=f"xy(1,2)=0,C=f"yy(1,2)=-6,B2-AC=02-12×(-6)=72>0,所以驻点(1,2)不是极值点.对于驻点(-3,0),A=f"xx(-3,0)=-12,B=f"xy(-3,0)=0,C=f"yy(-3,0)=6,B2-AC=02-(-12)×6=72>0,所以驻点(-3,0)不是极值点.对于驻点(-3,2),A=f"xx(-3,2)=-12,B=f"xy(-3,2)=0,C=f"yy(-3,2)=-6,B2-AC=02-(-12)×(-6)=-72<0,所以驻点(-3,2)是极大值点.极大值f(-3,2)=31.)解析:(3).求函数f(x,y)=xy在约束条件x+y=1的极值.(分数:3.00)__________________________________________________________________________________________ 正确答案:(构造拉格朗日函数F(x,y,λ)=xy+λ(x+y-1),求出F的所有一阶偏导数并令其等于零,得联立方程组 [*] 所以极值点为[*],函数的极值为[*].)解析:(4).从斜边长为a的一切直角三角形中,求有最大周长的直角三角形.(分数:3.00)__________________________________________________________________________________________ 正确答案:(设直角三角形的两条直角边的长分为x,y,则求周长函数为S=x+y+a在满足约束条件x2+y2=a2下的最大值点.F(x,y,λ)=(x+y+a)+λ(x2+y2-a2),[*]解得[*],此时只有惟一的驻点,根据实际问题必有所求,即当直角三角形为等腰直角三角形,即两直角边的边长各为[*]时,周长最大,且最大周长为[*])解析:(5). 3.00)__________________________________________________________________________________________ 正确答案:(设长、宽、高分为x,y,z,长方体的体积为V=xyz,对角线的长应满足关系式d2=x2+y2+z2,本题为求体积函数V=xyz在约束条件d2=x2+y2+z2下的极大值.作拉格朗F{函数F(x,y,λ)=xyz+λ(x2+y2+z2-d2),[*]解得[*],此时只有惟一的驻点,根据实际问题必有最大值,即当长、宽、高各为2时,体积最大,且最大体积V=8.)解析:。
7多元函数微分学
(94,下,期末)
6. 设 z = tan y2 ,则 dz = sec2 y2 ( 2 y dy − ( y )2 dx) 。
x
xx
x
(93,下,期末)
7.
设u =
cos y
xe x ,则 du
(1, π ) 2
= (1+ π )dx − dy 。 2
(99,下,期中)
【解】 u 关于变量 x, y 求全微分,然后将 x = 1, y = π 代入其中。 2
(A)12
1
(B)
13
12
(C)
13
12
(D)
169
[ C ](94,下,期末)
【解】 曲线上任一点 (x, y, z) 处的切线的方向向量
G
a = {2x, 2y, 0}×{0, 2y, 2z} = {4yz, −4xz, 4xy}
G
G
于是 a (1,3,4) = 4{12, −4, 3} 。故法平面 S0 的法向量可取为 n = {12, −4,3} ,
(x0 , y0 ) 处可微
— 148 —
(C)若 f (x, y) 在点 (x0 , y0 ) 处可微,则 fx (x, y), f y (x, y) 在点 (x0 , y0 ) 处连续
(D)若 f (x, y) 在点 (x0 , y0 ) 处可微,则 fx (x0 , y0 ), f y (x0 , y0 ) 存在,并且 f (x, y) 在点
(A) lim f (x, y) 必不存在 x → x0 y→ y0
(B) f (x0 , y0 ) 必不存在
(C) f (x, y) 在点 (x0 , y0 ) 必不可微
(D) fx (x0 , y0 ), f y (x0 , y0 ) 必不存在
多元微分学复习题答案.doc
―z =击5?的定义域是({(x, y)| / < 4x,0 < X2 + / <1}).函数g =润+),. 2]OXA 5.函数z = -x/y2在点(2 , 1 )处对x的偏导数为(;OX_ 17 (2J))广=-1(2,1))•成).(1,2)4dz = 48c/x+i08dy(A)]血,(*。
+&',。
+匀)-/(*。
'“。
)A O (B)Hm/(*。
+&40+颂)一/(*。
"。
)Ax(C)/(—+&,,.)-六*.,))Ax (D)hm/(毛)'月 + 颂)一,(%丸)Ax多元微分学复习题答案一、填空题7 = In X——的定义域是({3y)|x>0,0 V]2 +,2 < [}) yji-x2 - y22.设二元函数/。
,了)=旦】,则f(x-y,x+y)=(-21—).x y JT _)广2 23.设函数/(x+j) = xj,则f(x,y)=(* 一)').44.设函数z = e'+,,则翌=(;=2/+、(1 + 2/)).dx志~6.函数z = 2xy2-x/y2在点(1 , 2)处对),的偏导数为X= (4xy + 2~)(i,2) y7.二元函数z=x2y3在点(3, 2)处的全微分是(8.函数z = %2+5y2 -6x + 10y+ 6 的驻点是(三、选择题:I.以下极限中,(c )表示阳2.以下结论中正确的是(C )(A)f(x,y)在点(%了。
)处一阶偏导数存在,则f(x,y)在点(乩,光)连续;(B)f(x,y)在点(%坊)处一阶偏导数存在,则f(X,y)在点(工0,光)可微;(C )f(x,y)在点(Do)时微,则f(X, y)在点(x0o T0)处一阶偏导数存在;(A)若|(S =。
,的(》0,光)=0(A)点(0 , 0 )是该函数的一个驻点;sin-2/-2r(2sin4r-6r)(D ) f (x ,y )在点(m )连续,则f (x,y )在点(X 。
多元函数微分学练习题及答案
六、设 z (u, x, y), u xe y,其中 f 具有连续的二阶偏导 数,求 2 z . xy
练习题答案
一、1、C(C 为常数); 2、(A)1 x 2 y 2 4; 3、 x (1 y)2 y
4、1; 5、必要条件,但不是充分条件; 6、可微;
7、 2 f (v )2 f 2v ; v 2 y v y 2
则 ab3c27abc5 a0,b0,c0
5
四、1、
zx(lyn )xln y1,
zy
ln x y
xln y
2、u x f 1 y 2 . f ( y x zx ) y f 3 ,z u yx2 f(x z xy y )f3 z
.
3、fx(x,y)(x22xyy32)2,x2
练习题 一. 填空:
1、设在区域D上函数 f 存在偏导数,且 fx fy 0
则在D上,f( x,y) ( )
2 、 二 元 函 数 z ln 4 arcsin 1 的 定 义 域 是
x2 y2
x2 y2
( ).
3、设 f ( xy, x ) ( x y)2,则 f ( x, y) ( ). y
4、lim( x 2 y )2 x2 y2 ( ). x0 y0
5、函数 f ( x, y)在点( x0 , y0 )处连续,且两个偏导数 f x ( x0 , y0 ), f y ( x0 , y0 )存在是 f ( x, y)在该点可微
的( ).
6、设
f
( x,
y)
( x 2
8、
9 2
a
3
;
9、(1,2);10、 1 ; 8
高等数学题库第08章(多元函数微分学).
- 1 -第八章多元函数微积分习题一一、填空题1. 设f(x,y)=x-3y. ,则f(2,-1)=_______,f(-1,2)=________x2+y2_______. 2. 已知f(x,y)=2x2+y2+1,则f(x,2x)=__________二、求下列函数的定义域并作出定义域的图形 1.z=3. z=y-x 2. z=-x+-y 4-x2-y24. z=log2xy习题二一、是非题1. 设z=x+lny,则2∂z1=2x+ ()∂xy2. 若函数z=f(x,y)在P(x0,y0)处的两个偏导数fx(x0,y0)与fy(x0,y0)均存在,则该函数在P点处一定连续()3. 函数z=f(x,y)在P(x0,y0)处一定有fxy(x0,y0)=fyx(x0,y0) ()xy⎧,x2+y2≠0⎪4. 函数f(x,y)=⎨x2+y2在点(0,0)处有fx(0,0)=0及⎪0,x2+y2=0⎩fy(0,0)=0 ()5. 函数z=x2+y2在点(0,0)处连续,但该函数在点(0,0)处的两个偏导数zx(0,0),zy(0,0)均不存在。
()二、填空题- 2 -1. 设z=lnx∂z∂z,则=___________;∂x∂yy2x=2y=1=___________;2. 设f(x,y)在点(a,b)处的偏导数fx(a,b)和fy(a,b)均存在,则limh→0f(a+h,b)-f(a,b-2h)=_________.h2xy+sin(xy);x2+ey三、求下列函数的偏导数:1. z=x3y-y3x+1;2. z=3. z=(1+xy)y;4. z=lntanx; y5. u=xy2+yz2+zx2∂2z∂2z∂2z四、求下列函数的2,和:∂x∂y2∂x∂y3241. z=x+3xy+y+2;2. z=xy五、计算下列各题1. 设f(x,y)=e-sinx(x+2y),求fx(0,1),fy(0,1);∂2z2. 设f(x,y)=xln(x+y),求2∂x六、设z=ln(x+y),证明:x1313∂2z,2x=1∂yy=2∂2z,x=1∂x∂yy=2.x=1y=2∂z∂z1+y=. ∂x∂y3习题三一、填空题2xy_____. 1.z=xy+e在点(x,y)处的dz=__________ 2.z=xx+y_____. 在点(0,1)处的dz=__________- 3 -3.设z=f(x,y)在点(x0,y0)处的全增量为∆z,全微分为dz,则f(x,y)在点(x0,y0) 处的全增量与全微分的关系式是__________________.二、选择题1.在点P处函数f(x,y)的全微分df存在的充分条件为()A、f的全部二阶偏导数均存在B、f连续C、f的全部一阶偏导数均连续D、f连续且fx,fy均存在2.使得df=∆f的函数f为()A、ax+by+c(a,b,c为常数)B、sin(xy)C、e+eD、x2+y22三、设z=xy,当∆x=0.1,∆y=0.2时,在(1,2)点处,求∆z和dz。
多元函数微分学题目+简析
暑期培训(多元函数微分学)一、多元函数的偏导数1. f(x,y)可微,f(0,0)=0, m f x =)0,0(/,n f y =)0,0(/,)),(,()(t t f t f t =ϕ,求)0(/ϕ。
知识点:抽象的复合函数求偏导关键:理清函数结构 答案:2m mn n ++ 难度:易2. z=z(x,y)由f(y-x, yz)=0所确定,f 对各变量的二阶偏导函数连续,求xz∂∂,22x z ∂∂。
知识点:抽象的复合函数、隐函数求偏导关键:理清函数结构答案://///11122/2,(,),(,);f zf f y x yz f f y x yz x yf ∂==-=-∂()()()22//////////2122211121232/22.f f f f f f f zx y f--+∂=∂难度:易 3.(,)z f x y z xyz =++,求,,.z x yx y z∂∂∂∂∂∂知识点:抽象的复合函数求偏导关键:3个变量,1个方程在一定条件下可确定一个2元函数,该2元函数的因变量可以是z ,也可以是x 或者.y答案://////121212//////1212121;;.1f yzf f xzf f xyf zx y x f xyf y f yzf z f xzf ++--∂∂∂==-=∂--∂+∂+ 难度:易4. z=f(x,y)在(0,1)的某邻域内可微,且22),(321)1,(y x O y x y x f +=+++=+ρρ,一元函数y(x)由f(x,y)=1所确定,求)0(/y知识点:多元函数全微分的定义 关键:找到两个已知条件:“z=f(x,y)在(0,1)的某邻域内可微”与“(,1)123(),f x y x y O ρρ+=+++=之间的联系,从而从已知条件中发现求)0(/y 所需要的东西。
答案:23- 难度:中 5.3(),(),,uu f xyz F t t xyz x y z∂===∂∂∂求().F t知识点:3元的抽象的复合函数求偏导 关键:理清函数结构+耐心 答案:///2(3)()3()().f t tf t t f t ++难度:易6. 2(1,1)(,),.u uu e xy u u x y x y ∂+==∂∂确定了求知识点:隐函数求偏导关键:求出2u x y∂∂∂的表达式,明确(,)(1,1)x y =时?u =答案:///2(3)()3()().f t tf t t f t ++难度:易7. ,ln )1()(x y x x y xf z -+=f 二阶可微,求-∂∂222x z x 222y z y ∂∂. 知识点:抽象的复合函数求偏导关键:处理好()y f x答案:(1).x y + 难度:易 8.2222(),x y z xyf z f++=可微,求.z z xy x y∂∂+∂∂ 知识点:抽象的复合函数求偏导 关键:理清函数结构、处理好2()f z答案:/2.1()zxyf z - 难度:易9. (,,)u v w ϕ有二阶连续偏导数,(,)z z x y =由(,,)0bz cy cx az ay bx ϕ---=所确定,求.z za b x y∂∂+∂∂知识点:抽象的复合函数求偏导 关键:等号左边的ϕ有3个中间变量;(,)z z x y =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多元函数微分学补充题1.已知函数(,)z z x y =满足222z z xy z x y ∂∂+=∂∂,设1111u x v y x z x ϕ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩,对函数(,)u v ϕϕ=, 求证0uϕ∂=∂。
2.设(,,)u f x y z =,f 是可微函数,若y x z f f f x y z'''==,证明u 仅为r 的函数,其中r =3.设)(22y x u u +=具有二阶连续偏导数,且满足2222221y x u x ux yu x u +=+∂∂-∂∂+∂∂,试求函数u 的表达式。
4.设一元函数()u f r =当0r <<+∞时有连续的二阶导数,且0)1(=f ,(1)1f '=,又u f =满足0222222=∂∂+∂∂+∂∂zuy u x u ,试求)(r f 的表达式。
5.函数),(y x f 具有二阶连续偏导数,满足02=∂∂∂yx f,且在极坐标系下可表成(,)()f x y h r =,其中r =),(y x f 。
6.若1)1(,0)0(),(='==f f xyz f u 且)(2223xyz f z y x zy x u'''=∂∂∂∂,求u . 7.设函数)(ln 22y x f u +=满足23222222)(y x yu x u +=∂∂+∂∂,试求函数f 的表达式.8.设二元函数(,)||(,)f x y x y x y ϕ=-,其中(,)x y ϕ在点(0,0)的一个邻域内连续。
试证明函数(,)f x y 在(0,0)点处可微的充要条件是(0,0)0ϕ=。
9.已知点)2,1,Q(3),1,0,1(与-P ,在平面122=+-z y x 上求一点M ,使得||||PQ PM +最小.10.过椭圆132322=++y xy x 上任意点作椭圆的切线, 试求诸切线与坐标轴所围三角形面积的最小值.11.从已知ABC ∆的内部的点P 向三边作三条垂线,求使此三条垂线长的乘积为最大的点P 的位置.12.设函数)(x f 在),1[+∞内有二阶连续导数,1)1(,0)1(='=f f 且)()(2222y x f y x z ++=满足02222=∂∂+∂∂yzx z ,求)(x f 在),1[+∞上的最大值.13.在椭球面122222=++z y x 求一点,使函数222),,(z y x z y x f ++=在该点沿方向j i l-=的方向导数最大.14.设向量j i v j i u34,43+=-=,且二元可微函数在点P 处有6-=∂∂puf ,17=∂∂pvf,求p df .15.设函数),(y x z z =由方程)(2z xyf z y x =++所确定,其中f 可微,试计算yzy x z x∂∂+∂∂并化简. 16.设函数),(y x f z =具有二阶连续偏导数,且0≠∂∂yf,证明对任意常数C , C y x f =),(为一直线的充分必要条件是0222='''+''''-'''x xy xy y x xxy f f f f f f f . 证: 因为C y x f =),(为一直线的充分必要条件为:由C y x f =),(所确定的隐函数)(x y y =为线性函数,即022=dxyd .必要性:因为C y x f =),(为一直线时,y f x f ∂∂∂∂,均为常数,故022222=∂∂∂=∂∂=∂∂y x f yf x f ,从而等式成立. 充分性: 因为0≠∂∂y f ,在C y x f =),(两边对x 求导,有 ,0='+'dxdyf f y x 两边再对x 求导:,0)()(22='+''+''+''+''dxy d f dx dy dx dy f f dx dy f f y yy yx xy xx又y x f f dx dy''-=,代入上式,有 ,0)()(22222='+''''+''''-''dxyd f f f f f f f f y y yy x y xyx xx由条件0)(2)(22='''+''''-'''x yy xy y x xxy f f f f f f f 得022=dxyd ,所以C y x f =),(为一直线.17.已知锐角ABC ∆,若取点),(y x P ,令||||||),(CP BP AP y x f ++=.证明:在),(y x f 取极值的点0P 处矢量0P 0B P 0C P 所夹的角相等.18.若可微函数),(y x f 对任意t y x ,,满足),(),(2y x f t ty tx f =,)2,2,1(0-P 是曲面),(y x f z =上的一点,且4)2,1(=-'x f ,求曲面在0P 处的切平面方程.19.可微函数),(y x f 满足),(),(y x tf ty tx f =,)2,2,1(0-P 是曲面),(y x f z =上的一点,且4)2,1(=-'x f ,求曲面z 在0P 处的切平面方程.20.若)(x f ''不变号,且曲线)(x f y =在点)1,1(处的曲率圆为222=+y x 则函数)(x f在区间)2,1(内(A)有极值点,无零点. (B)无极值点,有零点. (C)有极值点,有零点. (D)无极值点,无零点. 21.求两直线⎩⎨⎧=+=⎩⎨⎧+==xz x y L x z xy L 3:,12:21之间的最短距离. 22..轴旋转的旋转曲面方程绕111101线z z y x -=-=-求直 23.证明:旋转曲面()22y xf z += (f 可微且0≠'f )的法线与旋转轴的相交.24.设直线⎩⎨⎧=--+=++030:z ay x b y x l 在平面π上,而平面π与曲面22y x z +=相切于点)5,2,1(-,求b a ,的值.25设锥面顶点在原点,准线为⎩⎨⎧==+1422x z y ,求锥面方程.26.求直线11111:--==-z y x l 在平面12:=+-z y x π上的投影直线0l 的方程,确定0l 绕Oy 轴旋转一周所成的曲面方程.27.求曲线⎩⎨⎧<==++)|(|:2222a C C y a z y x c 关于平面0:=++z y x π的投影柱面及投影曲线方程.28.求过两球面的交线⎩⎨⎧=-++-=++1)1()1(5:222222z y x z y x L 的正圆柱面方程. 解: ⎩⎨⎧=+=++35:222z x z y x L ,两球心的连线方程⎩⎨⎧==⇒==0101y z x zy x ,L 的圆心坐标33(,0,)22O ,在L 上任取一点)1,0,2(0M ,圆L 的半径22||0==OM R 。
过L 的圆心O 与3=+z x 垂直的直线方程的方向矢量{}1,0,1=S设),,(z y x M 为正圆柱面上任意一点,则22||||=⨯S S OM{}1)(2||,,22=-+=⨯⇒-=⨯z x y S y z x y S所以正圆柱面方程为1)(222=-+z x y .29.由椭球面1222222=++cz b y a x 的中心)0,0,0(O 引三条相互垂直的射线,分别交曲面于321,,M M M 三点,设11||r OM =,22||r OM =,33||r OM =. 证明:232221111r r r ++ 222111cb a ++=. 证 由条件可设{cos ,cos ,cos }i i i i i OM r αβγ=,1,2,3i =。
以i OM 为新的坐标轴,原点不变,则111112221133311cos cos cos cos cos cos cos cos cos x x x y y A y z z z αβγαβγαβγ⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎪ ⎪==⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 其中A 为正交矩阵,从而TAA E =,故222222123123cos cos cos cos cos cos αααβββ++=++222123cos cos cos 1γγγ=++=将i M 的坐标代入椭球面方程:222222222cos cos cos 1i i i i i ir r r a b cαβγ++=, 由此推出 2222222222cos cos cos 1i i i i i ii r r r r a b cαβγ=++,相加可得结论。
30.已知某柱面的准线为抛物线⎩⎨⎧==,02z x y 且母线的方向数为p n m ,,. 求此柱面方程.31.求球心在直线124824-=-+=-z y x 上且过点)6,3,2(-与)2,3,6(-的球面方程. -------------------------------------B1设函数(,)u f x y =具有二阶连续偏导数,且满足等式2222241250u u ux x y y ∂∂∂++=∂∂∂∂.确定a ,b 的值,使等式在变换x a y ξ=+,x by η=+下简化为20uξη∂=∂∂。
B2设)(xy f u =满足22)12(222y x e y x yx u+=∂∂∂,求)(xy f u =,其中)(t f 当0≠t 时有二阶连续导数。
B3设半径为)2(<a 的球面∑的球心在定球面1222=++z y x 上。
问当a 取何值时,球面∑在定球面内部的那部分面积最大。
B4将周长为P 2的矩形绕它的一边旋转构成一圆柱体,问矩形的边长各为多少时圆柱体的体积最大.B5求在已知底半径为R ,高为H 的直圆锥内嵌入的最大体积的直角平行六面体及其体积。
B6 求直线t z y t x 2,1,===绕x 轴旋转的曲面方程(直角坐标形式)。
B7设),(y x f 是定义在122≤+y x 上且具有连续的偏导数的实函数,且|(,)|1f x y ≤。
证明在单位圆内存在一点),(00y x ,使得16)],([)],([22≤'+'y x f y x f y x . B8设()u ϕ为可微函数,证明由方程 222()ax by cz x y z ϕ++=++ (*)所确定的函数(,)z z x y =满足方程()()x y cy bz z az cx z bx ay -+-=-,其中a 、b 、c 为常数,并说明曲面(*)的几何特点。