8.1幂的运算(3)

合集下载

沪科版数学七年级下册8.1《幂的运算》教学设计

沪科版数学七年级下册8.1《幂的运算》教学设计

沪科版数学七年级下册8.1《幂的运算》教学设计一. 教材分析《幂的运算》是沪科版数学七年级下册第8.1节的内容,主要介绍了同底数幂的乘除法、幂的乘方与积的乘方、合并同类项等运算规则。

这部分内容是初中学段数学的重要基础,也是后续学习代数式、函数等知识的前提。

教材通过具体的例子引导学生掌握幂的运算规律,培养学生的逻辑思维能力和运算能力。

二. 学情分析七年级的学生已经掌握了整数、分数和小数的四则运算,对于幂的概念和简单的幂运算可能还比较陌生。

因此,在教学过程中,需要通过生动的例子和生活中的实际问题,激发学生的学习兴趣,引导学生理解和掌握幂的运算规律。

同时,七年级学生的抽象思维能力正在发展,需要通过大量的练习和操作活动,来巩固和提高幂的运算能力。

三. 教学目标1.理解幂的运算概念,掌握同底数幂的乘除法、幂的乘方与积的乘方、合并同类项等运算规则。

2.培养学生的逻辑思维能力和运算能力。

3.能够运用幂的运算知识解决生活中的实际问题。

四. 教学重难点1.重点:同底数幂的乘除法、幂的乘方与积的乘方、合并同类项等幂的运算规则。

2.难点:理解幂的运算规律,能够灵活运用幂的运算知识解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,通过设置问题和情境,引导学生探究幂的运算规律。

2.运用直观教具和多媒体辅助教学,帮助学生形象地理解幂的运算概念。

3.采用分组讨论和合作学习的方式,培养学生的团队协作能力和沟通能力。

4.注重练习和操作活动,提高学生的运算能力和解决问题的能力。

六. 教学准备1.准备相关的教学材料和课件,如PPT、教案、练习题等。

2.准备一些实际问题,用于引导学生运用幂的运算知识解决实际问题。

3.准备一些直观教具,如幂的运算图表、幂的运算模型等。

七. 教学过程1.导入(5分钟)通过设置一个实际问题,如“一个正方形的边长是2,求这个正方形的面积”,引导学生思考如何计算面积。

然后引出幂的运算概念,告诉学生,面积可以表示为边长的平方,即2的平方。

七年级数学8.1幂的运算讲解与例题

七年级数学8.1幂的运算讲解与例题

8.1 幂的运算1.了解幂的运算性质,会利用幂的运算性质进行计算.2.通过幂的运算性质的形成和应用,养成观察、归纳、猜想、论证的能力,提高计算和口算的能力.3.了解和体会“特殊—一般—特殊”的认知规律,体验和学习研究问题的方法,培养思维严谨性,做到步步有据,正确熟练,养成良好的学习习惯.1.同底数幂的乘法(1)同底数幂的意义“同底数幂”顾名思义,是指底数相同的幂.如32与35,(-5)2与(-5)6,(a+b)4与(a+b)3等表示的都是同底数的幂.(2)幂的运算性质1同底数幂相乘,底数不变,指数相加.用字母可以表示为:a m·a n=a m+n(m,n都是正整数).(3)性质的推广运用当三个或三个以上的同底数幂相乘时,也具有这一性质,如:a m·a n·a p=a m+n+p(m,n,p是正整数).(4)在应用同底数幂的乘法的运算性质时,应注意以下几点:①幂的底数a可以是任意的有理数,也可以是单项式或多项式;底数是和、差或其他形式的幂相乘,应把这些和或差看作一个“整体”.②底数必须相同才能使用同底数幂的乘法公式,若底数不同,则不能使用;注意:-a n 与(-a)n不是同底数的幂,不能直接用性质.③不要忽视指数是1的因数或因式.【例1-1】(1)计算x3·x2的结果是______;(2)a4·(-a3)·(-a)3=__________.解析:(1)题中的底数都是x,是两个同底数幂相乘的运算式子,只需运用同底数幂相乘的性质进行运算,即x3·x2=x3+2=x5;(2)应先把底数分别是a,-a的幂化成同底数的幂,才能应用同底数幂的乘法性质,原式=a4·(-a3)·(-a3)=a4·a3·a3=a4+3+3=a10.答案:(1)x5(2)a10正确运用幂的运算性质解题的前提是明确性质的条件和结论.例如同底数幂的乘法,条件是底数相同,且运算是乘法运算,结论是底数不变,指数相加.【例1-2】计算:(1)(x+y)2·(x+y)3;(2)(a-2b)2·(2b-a)3.分析:(1)把(x+y)看作底数,可根据同底数幂的乘法性质来解;(2)题中(a-2b)2可转化为(2b-a)2,或者把(2b-a)3转化为-(a-2b)3,就是两个同底数的幂相乘了.解:(1)原式=(x+y)2+3=(x+y)5;(2)方法一:原式=(2b -a )2·(2b -a )3=(2b -a )5;方法二:原式=(a -2b )2·[-(a -2b )3]=-(a -2b )5.本题应用了整体的数学思想,把(x +y )和(a -2b )看作一个整体,(2)题中的两种解法所得的结果实质是相等的,因为互为相反数的奇次幂仍是互为相反数. 2.幂的乘方(1)幂的乘方的意义:幂的乘方是指几个相同的幂相乘.如(a 5)3是指三个a 5相乘,读作“a 的五次幂的三次方”,即有(a 5)3=a 5·a 5·a 5=a 5+5+5=a 5×3;(a m )n 表示n 个a m 相乘,读作“a 的m 次幂的n 次方”,即有(a m )n =m m m n a a a ⋅⋅⋅L 1442443个=m m m n a a a a a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅L L L L 142431424314243144444424444443个个个个=a mn(m ,n 都是正整数) (2)幂的运算性质2幂的乘方,底数不变,指数相乘.用字母可以表示为:(a m )n =a mn(m ,n 都是正整数).这个性质的最大特点就是将原来的乘方运算降次为乘法运算,即底数不变,指数相乘. (3)性质的推广运用幂的乘方性质可推广为: [(a m )n ]p =a mnp(m ,n ,p 均为正整数).(4)注意(a m )n 与am n的区别 (a m )n 表示n 个a m 相乘,而am n 表示m n 个a 相乘,例如:(52)3=52×3=56,523=58.因此,(a m )n ≠am n .【例2】(1)计算(x 3)2的结果是( ).A .x 5B .x 6C .x 8D .x 9(2)计算3(a 3)3+2(a 4)2·a =__________.解析:(1)根据性质,底数不变,指数相乘,结果应选B ;(2)先根据幂的乘方、同底数幂相乘进行计算,再合并同类项得到结果.3(a 3)3+2(a 4)2·a =3a 3×3+2a 4×2·a =3a 9+2a 8·a =3a 9+2a 9=5a 9.答案:(1)B (2)5a 9防止“指数相乘”变为“指数相加”,同时防止“指数相乘”变为“指数乘方”.如(a 4)2=a 4+2=a 6与(a 2)3=a 23=a 8都是错误的.3.积的乘方(1)积的乘方的意义:积的乘方是指底数是乘积形式的乘方.如(2ab )3,(ab )n等.(2ab )3=(2ab )·(2ab )·(2ab )(乘方意义)=(2×2×2)(a ·a ·a )(b ·b ·b )(乘法交换律、结合律) =23a 3b 3.(ab )n =n ab ab ab ()()()L 1442443个=n a a a (⋅⋅⋅)L 14243个n b b b (⋅⋅⋅⋅)L 14243个=a n b n(n 为正整数).(2)幂的运算性质3积的乘方等于各因式乘方的积.也就是说,先把积中的每一个因式分别乘方,再把所得的结果相乘.用字母可以表示为:(ab )n =a n b n(n 是正整数). (3)性质的推广运用三个或三个以上的乘方也具有这一性质,如(abc )n =a n b n c n(n 是正整数).【例3】计算:(1)(-2x )3;(2)(-xy )2;(3)(xy 2)3·(-x 2y )2;(4)⎝ ⎛⎭⎪⎫-12ab 2c 34.分析:(1)要注意-2x 含有-2,x 两个因数;(2)-xy 含有三个因数:-1,x ,y ;(3)把xy 2看作x 与y 2的积,把-x 2y 看作-1,x 2,y 的积;(4)-12ab 2c 3含有四个因数-12,a ,b 2,c 3,先运用积的乘方性质计算,再运用幂的乘方性质计算.解:(1)(-2x )3=(-2)3·x 3=-8x 3;(2)(-xy )2=(-1)2·x 2·y 2=x 2y 2;(3)(xy 2)3·(-x 2y )2=x 3(y 2)3·(-1)2·(x 2)2y 2=x 3y 6·x 4y 2=x 7y 8;(4)⎝ ⎛⎭⎪⎫-12ab 2c 34=⎝ ⎛⎭⎪⎫-124a 4(b 2)4(c 3)4=116a 4b 8c 12.(1)在计算时,把x 2与y 2分别看成一个数,便于运用积的乘方的运算性质进行计算,这种把某个式子看成一个数或字母的方法的实质是换元法,它可以把复杂问题简单化,它是数学的常用方法.(2)此类题考查积的乘方运算,计算时应特别注意底数含有的因式,每个因式都分别乘方,不要漏掉,尤其要注意系数及系数的符号,对系数是-1的不可忽略.负数的奇次方是一个负数,负数的偶次方是一个正数.4.同底数幂的除法 (1)幂的运算性质4同底数幂相除,底数不变,指数相减.用字母可以表示为:a m ÷a n =a m -n(a ≠0,m ,n 都是正整数,且m >n ).这个性质成立的条件是:同底数幂相除,结论是:底数不变,指数相减.和同底数幂的乘法类似,被除式和除式都是幂的形式且底数一定要相同,商也是一个幂,其底数与被除式和除式的底数相同,商中幂的指数是被除式的指数与除式的指数之差.因为零不能作除数,所以底数a ≠0.(2)性质的推广运用三个或三个以上的同底数幂连续相除时,该性质仍然成立,例如a m ÷a n ÷a p =a m -n -p(a ≠0,m ,n ,p 为正整数,m >n +p ).【例4】计算:(1)(-a )6÷(-a )3;(2)(a +1)4÷(a +1)2;(3)(-x )7÷(-x 3)÷(-x )2. 分析:利用同底数幂的除法性质进行运算时关键要找准底数和指数.(1)中的底数是-a ,(2)中的底数是(a +1),(3)中的底数可以是-x ,也可以是x .解:(1)(-a )6÷(-a )3=(-a )6-3=(-a )3=-a 3;(2)(a +1)4÷(a +1)2=(a +1)4-2=(a +1)2; (3)方法1:(-x )7÷(-x 3)÷(-x )2=(-x )7÷(-x )3÷(-x )2=(-x )7-3-2=(-x )2=x 2. 方法2:(-x )7÷(-x 3)÷(-x )2=(-x 7)÷(-x 3)÷x 2=x 7-3-2=x 2.运用同底数幂除法性质的关键是看底数是否相同,若不相同则不能运用该性质,指数相减是指被除式的指数减去除式的指数;幂的前三个运算性质中字母a ,b 可以表示任何实数,也可以表示单项式和多项式;第四个性质即同底数幂的除法性质中,字母a 只表示不为零的实数,或表示其值不为零的单项式和多项式.注意指数是“1”的情况,如a 5÷a =a 5-1,而不是a 5-0.5.零指数幂与负整数指数幂(1)零指数幂:任何一个不等于零的数的零次幂都等于1.用字母可以表示为:a 0=1(a ≠0).a 0=1的前提是a ≠0,如(x -2)0=1成立的条件是x ≠2.(2)负整数指数幂:任何一个不等于零的数的-p (p 是正整数)次幂,等于这个数的p 次幂的倒数.用字母可以表示为:a -p=1ap (a ≠0,p 是正整数).a -p =1ap 的条件是a ≠0,p 为正整数,而0-2等是无意义的.当a >0时,a p 的值一定为正;当a <0时,a -p 的值视p 的奇偶性而定,如(-2)-3=-18,(-3)-2=19.规定了零指数幂和负整数指数幂的意义后,正整数指数幂的运算性质,就可以推广到整数指数幂了,于是同底数幂除法的性质推广到整数指数幂,即a m ÷a n =a m -n(a ≠0,m ,n 都是整数).如a ÷a 2=a 1-2=a -1=1a;正整数指数幂的某些运算,在负整数指数幂中也能适用.如a -2·a -3=a-2-3=a -5等.【例5】计算:(1)1.6×10-4;(2)(-3)-3;(3)⎝ ⎛⎭⎪⎫-53-2;(4)(π-3.14)0;(5)⎝ ⎛⎭⎪⎫130+⎝ ⎛⎭⎪⎫-13-2+⎝ ⎛⎭⎪⎫-23-1.分析:此题是负整数指数幂和零指数幂的计算,可根据a -p=1ap (p 是正整数,a ≠0)和a 0=1(a ≠0)计算.其中(1)题应先求出10-4的值,再运用乘法性质求出结果.解:(1)1.6×10-4=1.6×1104=1.6×0.000 1=0.000 16.(2)(-3)-3=1-33=-127. (3)⎝ ⎛⎭⎪⎫-53-2=⎝ ⎛⎭⎪⎫-352=925. (4)因为π=3.141 592 6…, 所以π-3.14≠0.故(π-3.14)0=1.(5)原式=1+1⎝ ⎛⎭⎪⎫-132+1⎝ ⎛⎭⎪⎫-231=1+9-32=812.只要底数不为零,而指数是零,不管底数多么复杂,其结果都是1.当一个负整数指数幂的底数是分数时,它等于底数倒数的正整数次幂,即⎝ ⎛⎭⎪⎫a b -p =⎝ ⎛⎭⎪⎫b a p .6.用科学记数法表示绝对值较小的数(1)绝对值小于1的数可记成±a ×10-n的形式,其中1≤a <10,n 是正整数,n 等于原数中第一个不等于零的数字前面的零的个数(包括小数点前面的一个零),这种记数方法也是科学记数法.(2)把一个绝对值小于1的数用科学记数法表示分两步:①确定a,1≤a <10,它是将原数小数点向右移动后的结果;②确定n ,n 是正整数,它等于原数化为a 后小数点移动的位数.(3)利用科学记数法表示数,不仅简便,而且更便于比较数的大小,如:2.57×10-5显然大于2.57×10-8,前者是后者的103倍.【例6-1】2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.000 001 56 m ,用科学记数法表示这个数是( ).A .0.156×10-5B .0.156×105C.1.56×10-6 D.1.56×106解析:本题考查科学记数法,将一个数用科学记数法表示为±a×10-n(1≤a<10)的形式,其中a是正整数数位只有一位的数,所以A、B不正确,n是正整数,n等于原数中第一个有效数字前面的零的个数(包括小数点前面的一个零),所以n=6,即0.000 001 56=1.56×10-6.故选C.答案:Cn的值也等于将原数写成科学记数法±a×10-n时,小数点移动的位数.如本题中将0.000 001 56写成科学记数法表示时,a为1.56,即将原数的小数点向右移动了6位,所以n的值是6.【例6-2】已知空气的单位体积质量为 1.24×10-3 g/cm3,1.24×10-3用小数表示为( ).A.0.000 124 B.0.012 4C.-0.001 24 D.0.001 24解析:因为a=1.24,n=3,因此原数是1前面有3个零(包括小数点前面的一个零),即1.24×10-3=0.001 24.答案:D本题可把1.24的小数点向左移动3位得到原数,也可利用负整数指数幂算出10-3的值,再与1.24相乘得到原数.7.幂的混合运算幂的四个运算性质是整式乘(除)法的基础,也是整式乘(除)法的主要依据.进行幂的运算,关键是熟练掌握幂的四个运算性质,深刻理解每个性质的意义,避免互相混淆.幂的混合运算顺序是先乘方,再乘除,最后再加减,有括号的先算括号里面的.因此,运算时,应先细心观察,合理制定运算顺序,先算什么,后算什么,做到心中有数.(1)同底数幂相乘与幂的乘方运算性质混淆,从而导致错误.如:①a3·a2=a6;②(a3)2=a5.解题时应首先分清是哪种运算:若是同底数幂相乘,应将指数相加;若是幂的乘方,应将指数相乘.正解:①a3·a2=a5;②(a3)2=a6.(2)同底数幂相乘与合并同类项混淆,从而导致错误.如:①a3·a3=2a3;②a3+a3=a6.①是同底数幂相乘,应底数不变,指数相加;②是合并同类项,应系数相加作系数,字母和字母的指数不变.正解:①a3·a3=a6;②a3+a3=2a3.【例7-1】下列运算正确的是( ).A.a4+a5=a9B.a3·a3·a3=3a3C.2a4·3a5=6a9D.(-a3)4=a7解析:对于A,两者不是同类项,不能合并;对于B,结果应为a9;对于C,结果是正确的;对于D,(-a3)4=a3×4=a12.故选C.答案:C【例7-2】计算:(-2x2y)3+8(x2)2·(-x)2·(-y)6÷y3.分析:按照运算顺序,先利用积的乘方化简,即(-2x2y)3=-8(x2)3·y3,8(x2)2·(-x)2·(-y)6=8x4·x2·y6,再利用幂的乘方及同底数幂的乘法化简乘方后的结果,最后合并同类项.解:(-2x2y)3+8(x2)2·(-x)2·(-y)6÷y3=-8(x2)3·y3+8x4·x2·y6÷y3=-8x6y3+8x6y3=0.8.幂的运算性质的逆用对于幂的运算性质的正向运用大家一般比较熟练,但有时有些问题需要逆用幂的运算性质,可以使问题化难为易、求解更加简单.(1)逆用同底数幂的乘法性质:a m +n =a m ·a n (m ,n 为正整数).如25=23×22=2×24.当遇到幂的指数是和的形式时,为了计算的需要,往往逆用同底数幂的乘法性质,将幂转化成几个同底数幂的乘法.但是一定要注意,转化后指数的和应等于原指数.(2)逆用幂的乘方性质:a mn =(a m )n =(a n )m (m ,n 均为正整数).逆用幂的乘方性质的方法是:幂的底数不变,将幂的指数分解成两个因数的乘积,再转化成幂的乘方的形式.如x 6=(x 2)3=(x 3)2,至于选择哪一个变形结果,要具体问题具体分析.(3)逆用积的乘方性质: a n b n =(ab )n (n 为正整数).当遇到指数相差不大,且指数比较大时,可以考虑逆用积的乘方性质解题.注意,必须是同指数的幂才能逆用性质,逆用时一定要注意:底数相乘,指数不变.(4)逆用同底数幂的除法性质: a m -n =a m ÷a n (a ≠0,m ,n 为整数).当遇到幂的指数是差的形式时,为了计算的需要,往往逆用同底数幂的除法性质,将幂转化成几个同底数幂的除法.但是一定要注意,转化后指数的差应等于原指数.【例8-1】(1)已知3a =2,3b =6,则33a -2b的值为__________;(2)若m p =15,m 2q =7,m r =-75,则m 3p +4q -2r的值为__________.解析:(1)因为3a =2,3b=6,所以33a -2b =33a ÷32b =(3a )3÷(3b )2=23÷62=29.(2)m 3p +4q -2r =(m p )3·(m 2q )2÷(m r )2=⎝ ⎛⎭⎪⎫153×72÷⎝ ⎛⎭⎪⎫-752=15.答案:(1)29 (2)15【例8-2】(1)计算:⎝ ⎛⎭⎪⎫18 2 011×22 012×24 024;(2)已知10x =2,10y =3,求103x +2y的值.分析:(1)本题的指数较大,按常规方法计算很难,观察式子特点发现:4 024是2 012的两倍,可逆用幂的乘方性质,把24 024化为(22)2 012,这样再与22 012逆用积的乘方性质,此时发现与⎝ ⎛⎭⎪⎫18 2 011底数互为倒数,但指数不相同,因此逆用同底数幂的乘法及逆用积的乘方性质,简化计算;(2)可逆用幂的乘方,把103x +2y化为条件中的形式.解:(1)原式=⎝ ⎛⎭⎪⎫18 2 011×22 012×(22)2 012(逆用幂的乘方)=⎝ ⎛⎭⎪⎫18 2 011×(2×22)2 012(逆用积的乘方) =⎝ ⎛⎭⎪⎫18 2 011×82 012 =⎝ ⎛⎭⎪⎫18 2 011×82 011×8(逆用同底数幂的乘法) =⎝ ⎛⎭⎪⎫18×8 2 011×8(逆用积的乘方) =8.(2)因为103x =(10x )3=23=8,102y =(10y )2=32=9,所以103x +2y =103x ·102y=8×9=72. 9.利用幂的运算性质比较大小 在幂的运算中,经常会遇到比较正整数指数幂的大小问题.对于一些幂的指数较小的问题,可以直接计算出幂进行比较;但当幂的指数较大时,若通过先计算出幂再比较大小,就会很繁琐甚至不可能.这时可利用幂的运算性质比较幂的大小.比较幂的大小,一般有以下几种方法:(1)指数比较法:利用乘方,将比较大小的各个幂的底数化为相同的底数,然后根据指数的大小关系确定出幂的大小.(2)底数比较法:利用乘方,将比较大小的各个幂的指数化为相同的指数,然后根据底数的大小关系确定出幂的大小.(3)作商比较法:当a >0,b >0时,利用“若a b >1,则a >b ;若a b =1,则a =b ;若a b<1,则a <b ”比较.有关幂的大小比较的技巧和方法除灵活运用幂的有关性质外,还应注意策略,如利用特殊值法、放缩法等.【例9】(1)已知a =8131,b =2741,c =961,则a ,b ,c 的大小关系是( ). A .a >b >c B .a >c >b C .a <b <c D .b >c >a(2)350,440,530的大小关系是( ).A .350<440<530B .530<350<440C .530<440<350D .440<530<350(3)已知P =999999,Q =119990,那么P ,Q 的大小关系是( ).A .P >QB .P =QC .P <QD .无法比较解析:(1)因为a =8131=(34)31=3124,b =2741=(33)41=3123,c =961=(32)61=3122,又124>123>122,所以3124>3123>3122,即a >b >c .故选A .(2)因为350=(35)10=24310,440=(44)10=25610,530=(53)10=12510,而125<243<256,所以12510<24310<25610,即530<350<440.故选B .(3)因为P Q =999999×990119=9×119999×990119=99×119999×990119=1,所以P =Q .故选B . 答案:(1)A (2)B (3)B10.幂的运算性质的实际应用利用幂的运算可以解决一些实际问题,所以要熟练掌握好幂的运算性质,能在实际问题中灵活地运用幂的运算性质求解问题.解决此类问题时,必须认真审题,根据题意列出相关的算式,进而利用幂的运算性质进行运算或化简,特别地,当计算的结果是比较大的数时,一般要写成科学记数法的形式.【例10】卫星绕地球运动的速度(即第一宇宙速度)约为7.9×103m/s ,则卫星运行3×102s 所走的路程约是多少?分析:要计算卫星运行3×102s 所走的路程,根据路程等于时间乘以速度可解决问题.本题实际是一道同底数幂的乘法运算问题.解:因为7.9×103×3×102=(7.9×3)×(103×102)=23.7×105=2.37×106,所以卫星运行3×102 s 所走的路程约为2.37×106m . 11.幂的运算中的规律探究题探究发现型题是指命题中缺少一定的题设或未给出明确的结论,需要经过推断、补充并加以总结.它不像传统的解答题或证明题,在条件和结论给出的情景中只需进行由因导果或由果导因的工作,而是必须利用题设大胆猜想、分析、比较、归纳、推理,或由条件去探索不明确的结论;或去探索存在的各种可能性以及发现所形成的客观规律.规律探索题是指在一定条件下,需要探索发现有关数学对象所具有的规律性或不变性的题目,要解答此类问题,首先要仔细阅读,弄清题意,并从阅读过程中找出其规律,然后进一步利用规律进行计算.【例11】(1)观察下列各式:由22×52=4×25=100,(2×5)2=102=100,可得22×52=(2×5)2;由23×53=8×125=1 000,(2×5)3=103=1 000,可得23×53=(2×5)3;….请你再写出两个类似的式子,你从中发现了什么规律?(2)x2表示两个x相乘,(x2)3表示3个__________相乘,因此(x2)3=__________,由此类推得(x m)n=__________.利用你发现的规律计算:①(x3)15;②(x3)6;③[(2a-b)3]8.解:(1)如:34×54=(3×5)4,45×55=(4×5)5,等等.规律:a n·b n=(ab)n,即两数n次幂的积等于这两个数的积的n次幂.(2)x2x2×3=x6x mn①(x3)15=x45;②(x3)6=x18;③[(2a-b)3]8=(2a-b)24.。

沪科版数学七年级下册8.1幂的运算3.同底数幂的除法第2课时零指数幂和负整数指数幂

沪科版数学七年级下册8.1幂的运算3.同底数幂的除法第2课时零指数幂和负整数指数幂

8.1 幂的运算
重难互动探究
探究问题 会进行零指数幂和负整数指数幂的综合计算
例 计算: [解析] 因为
((--22))2-2=|-2,1பைடு நூலகம்|-+1(|2=0116,-(π20)10-6-12π-1).0=1,12
-1
=2.
解:原式=2-1+1-2=0.
[点评] 实数运算,熟知算术平方根、有理数的乘方、负整
时,无意义.
8.1 幂的运算
学习目标2 会根据负整数指数幂的意义解题 3.计算:(1)3-3;(2)-12-2; (3)18-2015÷82015. 解:(1)3-3=313=217.(2)-12-2=-1212=4. (3)18-2015÷82015=82015÷82015=1.
初中数学课件
金戈铁骑整理制作
8.1 幂的运算
3 同底数幂的除法
第2课时 零指数幂和负整数指数幂
8.1 幂的运算
基础自主学习
学习目标1 会根据零指数幂的意义解题 1.计算:(1)201150=___1___; (2)(π -3.14)0=___1___.
2.当 x___≠__2___时,(x-2)0=1. [归纳] 任何一个不等于零的数的零次幂都等于 1,即__a_0=__1___ (a≠0). [注意] a0 能否等于 1,由底数 a 决定,当 a≠0 时,a0=1;当 a=0
8.1 幂的运算
[归纳]任何一个不等于零的数的-p (p是正整数)次幂,等
于这个数的p次幂的倒数.即_a_-_p=__a1_p_(a≠0,p是正整数). [说明] (1)学习了零指数幂与负整数指数幂后,再计算 am÷an 时,就不必限制 m>n 了. (2)a0 不能理解为 0 个 a 相乘,a-p 不能理解为-p 个 a 相乘.

【七年级】幂的运算―幂的乘方教案

【七年级】幂的运算―幂的乘方教案

【七年级】幂的运算―幂的乘方教案学科:数学年级:七年级审核:内容:沪科版七下8.1幂的运算―幂的乘方课型:新授自学目标:1、了解幂的乘方性质2、能够推论幂的乘方性质的过程,并可以运用这一性质展开排序学习重点:幂的乘方运算自学难点:积极探索幂的乘方性质的过程学习过程:一、自学准备工作1、同底数幂的乘法法则:2、观测思索幂的乘方规律:(文字叙述)(符号描述)规律条件:①②规律结果:①②3、阅读课本第48页例2,完成下面练习:①下面的排序对不对?如果不对,应当怎样废止?()()()()②计算(8)(9)(10)二、合作探究:1、排序:(用两种方法排序);2、计算:(1);(2);(3);(4)(5)(a4)3+m(6)(7)3、若n为正整数,当时,的值为().a.1b.0c.-1d.1或-14、6.成立的条件是().a.n就是正整数b.n就是整数c.n就是奇数d.n就是偶数5、若则=6、未知,,谋的值三、学习:本节课你教给哪些科学知识?哪些地方就是我们必须特别注意的?你除了哪些困惑?四、自我测试:1、排序的结果为().a.b.c.d.2、以下排序恰当的个数就是().①②③④a.1个b.2个c.3个d.4个3、下列各式的括号内应填入的是().a.b.c.d.4、(1)(2)(3)(4)(5)(6)思维拓展:1、以下排序恰当的就是().a.b.cd.2、若,,求的值3、(1)若,谋正整数m的值(2)若,求正整数n的值4、若2x+3y-4=0,谋9x?27y的值5、与的大小关系是。

6、如果等式,则的值。

沪科版数学七年级下册 8.1《幂的运算》 课件 (共16张PPT)

沪科版数学七年级下册 8.1《幂的运算》 课件 (共16张PPT)

相乘时指数才能相加 .
想一想: 当三个或三个以上同底数幂相乘时,是否也
具有这一性质呢? 怎样用公式表示?
如 am·an·ap = am+n+(p m、n、p都是正整数)
课前抽测
1、计算:
(1)x10 ·x
(2)10×102×104
(3) x5 ·x ·x3
(4)y4·y3·y2·y
解: (1)x10 ·x = x10+1= x11
(2) (a2)3 = a2·a2·a2 =a2+2+2 =a6 =a2×3 ; (3) (amm)22=am·am =am+m=a2m ;
n 个am
(4) (am)n=am·am·… ·am (幂的意义)
n 个m
=am+m+ … +m (同底数幂的乘法性质)
=amn (乘法的意义)
幂的乘方法则:
课外作业:同步练习35页。
思维扩展
比较230与320的大小 解:∵230= 23×10 =(23)10
320=32×10 =(32)10 又∵23=8,32=9
而8<9 ∴230<320

若am=3,an=2,求a3m+2n的值.
解: ∵am=3, an=5 ∴a3m+2n=a3m·a2n =(am)3·(an)2 =33×52 =675.
=⑹ [(a3)2]5 = (a3×2)5 =a3×2×5 =a30.
巩固练习:
1. 计算 (y2)3. y2. 2(a2)6. a3 -(a3)4 . a3
解:原式= y6. y2
解:原式= 2a12. a3 –a12. a3
=y8
=a12. a3
= a15.

[数学]-专题8.1 幂的运算【八大题型】(举一反三)(苏科版)(原版)

[数学]-专题8.1 幂的运算【八大题型】(举一反三)(苏科版)(原版)

专题8.1 幂的运算【八大题型】【苏科版】【题型1 幂的基本运算】 (1)【题型2 幂的运算法则逆用(比较大小)】 (2)【题型3 幂的运算法则逆用(求代数式的值)】 (2)【题型4 幂的运算法则逆用(整体代入)】 (2)【题型5 幂的运算法则逆用(求参)】 (3)【题型6 幂的运算法则逆用(代数式的表示)】 (3)【题型7 幂的运算法则(混合运算)】 (3)【题型8 幂的运算法则(新定义问题)】 (4)【题型1 幂的基本运算】【例1】(2022•谷城县二模)下列各选项中计算正确的是( )A .m 2n ﹣n =n 2B .2(﹣ab 2)3=﹣2a 3b 6C .(﹣m )2m 4=m 8D .x 6y x 2=x 3y 【变式1-1】(2022秋•南陵县期末)(512)2005×(225)2004=( )A .1B .512C .225D .(512)2003 【变式1-2】(2022秋•孝南区月考)计算x 5m +3n +1÷(x n )2•(﹣x m )2的结果是( )A .﹣x 7m +n +1B .x 7m +n +1C .x 7m ﹣n +1D .x 3m +n +1【变式1-3】(2022秋•温江区校级期末)下列等式中正确的个数是( )①a 5+a 5=a 10;②(﹣a )6•(﹣a )3•a =a 10;③﹣a 4•(﹣a )5=a 20;④25+25=26.A.0个B.1个C.2个D.3个【题型2 幂的运算法则逆用(比较大小)】【例2】(2022春•宣城期末)已知a=8131,b=2741,c=961,则a、b、c的大小关系是()A.a>b>c B.b>a>c C.b>c>a D.a>c>b【变式2-1】(2022春•晋州市期中)阅读:已知正整数a,b,c,若对于同底数,不同指数的两个幂a b和a c(a≠1),当b>c时,则有a b>a c;若对于同指数,不同底数的两个幂a b和c b,当a>c时,则有a b>c b,根据上述材料,回答下列问题.(1)比较大小:520420,9612741;(填“>”“<”或“=”)(2)比较233与322的大小;(3)比较312×510与310×512的大小.[注(2),(3)写出比较的具体过程]【变式2-2】(2022秋•滨城区月考)已知a=3231,b=1641,c=821,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.a<b<c D.b>a>c【变式2-3】(2022春•泰兴市校级月考)若a=2555,b=3444,c=4333,d=5222,试比较a、b、c、d的大小.(写出过程)【题型3 幂的运算法则逆用(求代数式的值)】【例3】(2022春•巨野县期中)已知:52n=a,9n=b,则154n=.【变式3-1】(2022秋•西青区期末)若2x=a,16y=b,则22x+4y的值为.【变式3-2】(2022春•萧山区期中)若x m=5,x n=14,则x2m﹣n=()A.52B.40 C.254D.100【变式3-3】(2022春•高新区校级月考)已知32m=a,27n=b.求:(1)34m的值;(2)33n的值;(3)34m﹣6n的值.【题型4 幂的运算法则逆用(整体代入)】【例4】(2022•铁岭模拟)若a+3b﹣2=0,则3a•27b=.【变式4-1】(2022秋•淇滨区校级月考)当3m+2n﹣3=0时,则8m•4n=8.【变式4-2】(2022春•东台市期中)已知a﹣2b﹣3c=2,则2a÷4b×(18)c的值是.【变式4-3】(2022春•昌平区期末)若5x﹣2y﹣2=0,则105x÷102y=.【题型5 幂的运算法则逆用(求参)】【例5】(2022秋•西城区校级期中)若a5•(a y)3=a17,则y=,若3×9m×27m=311,则m的值为.【变式5-1】(2022春•建湖县期中)规定a*b=2a×2b,例如:1*2=21×22=23=8,若2*(x+1)=64,则x的值为.【变式5-2】(2022秋•卫辉市期末)已知2m=4n﹣1,27n=3m﹣1,则n﹣m=.【变式5-3】(2022春•兴化市期中)若(2m)2•23n=84,其中m、n都是自然数,则符合条件m、n的值有____组.【题型6 幂的运算法则逆用(代数式的表示)】【例6】(2022秋•崇川区校级期中)若a 2m+3y=a m+1x=1.(1)请用含x的代数式表示y;(2)如果x=4,求此时y的值.【变式6-1】(2022•高新区校级三模)已知m=89,n=98,试用含m,n的式子表示7272.【变式6-2】(2022•高新区校级三模)(1)若x=2m+1,y=3+4m,用x的代数式表示y.(2)若x=2m+1,y=3+4m,用x的代数式表示y.【变式6-3】(2022春•新泰市期末)若a m=a n(a>0,a≠1,m、n都是正整数),则m=n,利用上面结论解决下面的问题:(1)如果2x•23=32,求x的值;(2)如果2÷8x•16x=25,求x的值;(3)若x=5m﹣2,y=3﹣25m,用含x的代数式表示y.【题型7 幂的运算法则(混合运算)】【例7】(2022春•沭阳县校级月考)计算:(1)(﹣a)2•a3(2)(﹣8)2013•(18)2014(3)x n•x n+1+x2n•x(n是正整数)( 4 )(a2•a3)4.【变式7-1】(2022秋•道外区校级月考)计算:(1)y3•y2•y(2)(x 3)4•x 2(3)( a 4•a 2)3•(﹣a )5(4)(﹣3a 2)3﹣a •a 5+(4a 3)2.【变式7-2】(2022春•太仓市期中)用简便方法计算下列各题(1)(45)2015×(﹣1.25)2016.(2)(318)12×(825)11×(﹣2)3.【变式7-3】(2022春•漳浦县期中)计算(1)(m ﹣n )2•(n ﹣m )3•(n ﹣m )4(2)(b 2n )3(b 3)4n ÷(b 5)n +1(3)(a 2)3﹣a 3•a 3+(2a 3)2;(4)(﹣4a m +1)3÷[2(2a m )2•a ].【题型8 幂的运算法则(新定义问题)】【例8】(2022春•大竹县校级期中)我们知道,同底数幂的乘法法则为a m •a n =a m +n (其中a ≠0,m 、n 为正整数),类似地我们规定关于任意正整数m 、n 的一种新运算:h (m +n )=h (m )•h (n );比如h(2)=3,则h (4)=h (2+2)=3×3=9,若h (2)=k (k ≠0),那么h (2n )•h (2022)的结果是( )A .2k +2021B .2k +2022C .k n +1010D .2022k 【变式8-1】(2022•兰山区二模)一般的,如果a x =N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N .例如:由于23=8,所以3是以2为底8的对数,记作log 28=3;由于a 1=a ,所以1是以a 为底a 的对数,记作log a a =1.对数作为一种运算,有如下的运算性质:如果a >0,且a ≠1,M >0,N >0,那么(1)log a (M •N )=log a M +log a N ;(2)log a M N =log a M ﹣log a N ;(3)log a M n =n log a M .根据上面的运算性质,计算log 2(23×8)﹣log 2165−log 210的结果是 .【变式8-2】(2022春•泰兴市期中)规定两数a ,b 之间的一种运算,记作a ※b :如果a c =b ,那么a ※b =c .例如:因为32=9,所以3※9=2(1)根据上述规定,填空:2※16= , ※136=−2,(2)小明在研究这种运算时发现一个现象:3n ※4n =3※4,小明给出了如下的证明:设3n ※4n =x ,则(3n )x =4n ,即(3x )n =4n所以3x=4,即3※4=x,所以3n※4n=3※4.请你尝试运用这种方法解决下列问题:①证明:6※7+6※9=6※63;②猜想:(x﹣1)n※(y+1)n+(x﹣1)n※(y﹣2)n=※(结果化成最简形式).【变式8-3】(2022秋•南宁期末)规定两数a,b之间的一种运算,记作(a,b),如果a c=b,那么(a,b)=c.我们叫(a,b)为“雅对”.例如:∵23=8,∴(2,8)=3.我们还可以利用“雅对”定义证明等式(3,3)+(3,5)=(3,15)成立.证明如下:设(3,3)=m,(3,5)=n,则3m=3,3n=5.∴3m•3n=3m+n=3×5=15.∴(3,15)=m+n,即(3,3)+(3,5)=(3,15).(1)根据上述规定,填空:(2,4)=;(5,25)=;(3,27)=.(2)计算:(5,2)+(5,7)=,并说明理由.(3)记(3,5)=a,(3,6)=b,(3,30)=c.求证:a+b=c。

幂的运算法则公式14个

幂的运算法则公式14个

幂的运算法则公式14个
幂运算法则公式:同底数幂相乘,底数不变,指数相加,即a m×a n=a(m+n);同底数幂相除,底数不变,指数相减,即a m÷a n=a (m-n)。

幂的运算法则公式
(1)同底数幂的乘法:同底数幂相乘,底数不变,指数相加。

a m×a n=a(m+n)(a≠0,m,n均为正整数,并且m>n)
(2)同底数幂的除法:同底数幂相除,底数不变,指数相减。

a m÷a n=a(m-n)(a≠0,m,n均为正整数,并且m>n)
(3)幂的乘方:幂的乘方,底数不变,指数相乘。

(a^m)^n=a^(mn),(m,n都为正整数)
(4)积的乘方:等于将积的每个因式分别乘方,再把所得的幂相乘。

(ab)^n=a^nb^n,(n为正整数)
(5)零指数:
a0=1 (a≠0)
(6)负整数指数幂
a-p=1/a p(a≠0, p是正整数)
(7)负实数指数幂
a^(-p)=1/(a)^p或(1/a)^p(a≠0,p为正实数)
(8)正整数指数幂
①a m a n=a m+n
②(a m)n=a mn
③a m/a n=a m-n (m大于n,a≠0)
④(ab)n=a n b n
(9)分式的乘方:把分式的分子、分母分别乘方即为乘方结果
(a/b)^n=(a^n)/(b^n),(n为正整数)。

八年级幂的运算知识点

八年级幂的运算知识点

八年级幂的运算知识点在八年级数学中,幂的运算是一个非常重要的知识点。

掌握了幂的运算,可以更好地理解和解决数学题目,为高中数学打下坚实的基础。

那么,幂数学在八年级具体有哪些内容呢?下面就来一一讲解。

一、幂的定义和简单运算幂是指一个数的几次方,比如$a^2$就是a的平方,表示为a×a。

幂具有以下运算法则:1.同底数幂相乘规则:两个数的底数相同,指数相加,即$a^m×a^n=a^{m+n}$。

2.同底数幂相除规则:两个数的底数相同,指数相减,即$\frac{a^m}{a^n}=a^{m-n}$。

3.幂的乘方规则:一个数的幂的幂,底数不变,指数相乘,即$(a^m)^n=a^{m×n}$。

4.负指数的意义:$a^{-n}=\frac{1}{a^n}$,即分母是$a^n$,分子为1的分数。

二、零数幂和整数幂1.零数幂的概念:$0^n=0$(n≠0),因为任意数乘以0都等于0,所以0的n次方都等于0。

2.整数幂的概念:正整数幂是指将正整数作为底数所得到的幂;负整数幂是指将负整数作为底数所得到的幂。

正整数的n次方表示为$a^n$,负整数的n次方表示为$(-a)^n$。

对于负整数,以下四条规律需要注意:(1)奇数次方的负数结果为负数,如$(-5)^3=-125$。

(2)偶数次方的负数结果为正数,如$(-6)^4=1296$。

(3)负数的奇次方与其相反数的奇次方相反,如$(-3)^3=-27$,$3^3=27$,$-3^3=-27$。

(4)负数的偶次方与其相反数的偶次方相等,如$(-2)^4=16$,$2^4=16$。

三、小数幂小数幂是指将小数作为底数的幂,如$0.5^3=0.125$。

小数幂的计算方法与整数幂的计算规律相同。

四、分数幂分数幂是指将分数作为底数的幂,如$(\frac{1}{2})^3=\frac{1}{8}$。

分数幂的计算方法需要使用根式,将分数幂转化为根的形式,如$(\frac{1}{2})^3=\sqrt[3]{\frac{1}{8}}=\frac{1}{\sqrt[3]{8}}=\frac{1 }{2}$。

8.1幂的运算(3)

8.1幂的运算(3)

课题:8.1 幂的运算(3)第三课时 积的乘方主备人:王刚喜 审核人: 杨明 使用时间:2011年3月 日年级 班 姓名:学习目标:1.经历探索积的乘方的运算法则的过程,进一步体会幂的意义. 2.理解积的乘方运算法则,能解决一些实际问题.3. 在探究积的乘方的运算法则的过程中,发展推理能力和有条理的表达能力.学习重点:积的乘方运算法则及其应用.学习难点:正确区别幂的乘方与积的乘方的异同。

一、学前准备【回顾】1、计算下列各式:(1)_______)(66=x (2)_______66=⋅x x (3)_______66=+x x (4)_______53=⋅⋅-x x x (5)_______)()(3=-⋅-x x (6)_______3423=⋅+⋅x x x x(7)_____)(33=x (8)_____)(52=-x (9)_____)(532=⋅a a (10)________)()(4233=⋅-m m (11)_____)(32=n x 2、下列各式正确的是( )(A )835)(a a = (B )632a a a =⋅ (C )532x x x =+(D )422x x x =⋅ 【预习】1.看课本P48—P492.积的乘方性质: 公式(符号语言):二、探究活动【情境导入】1.问题思考:一个正方体的边长是5×102cm ,则它的体积是多少? 2.问题解决: 解:【填一填】观察上表,积的乘方有什么规律? n ab )(=你能否用语言表述上述结论?※ 积的乘方性质 【例题分析】 1、 例1.计算 (1)223)21(z xy - (2)3)32(m n b a -(3)n b a )4(32 (4)2242)(32ab b a -⋅(5)32332)(3)2(b a b a - (6)222)2()3()2(x x x ---+(7)232324)3()(9n m n m -+ (8)422432)(3)3(a ab b a ⋅-⋅例2.已知32=m ,42=n ,求nm 232+。

七下 幂的运算 8.1 同底数幂的乘法 含答案

七下 幂的运算 8.1 同底数幂的乘法 含答案

第八章幂的运算8.1 同底数幂的乘法【知识平台】同底数幂的乘法法则语言叙述:同底数幂相乘,底数不变,指数相加.公式表示:a m·a n=a m+n(m、n都是正整数).【思维点击】运用同底数幂的乘法法则计算时的注意事项1.是否符合法则的条件:①乘法运算;②底数相同.2.看清底数和指数:①如(-2)4与-24底数分别为-2与2;②如m的指数是1.3.正确运算法则计算:①底数不变;②指数相加.【考点浏览】例1 计算:(1)a2·a3;(2)y3·y8·y2;(3)x2·x4+2x3·x3+x5·x;(4)100×103×1 000;(5)(a+b)4·(a+b)5.【解析】(1)a2·a3=a2+3=a5;(2)y3·y8·y2=y=y;(3)x2·x4+2x3·x3+x5·x =x2+4+2x3+3+x5+1=x6+2x6+x6=4x6;(4)100×103×1 000=102×103×103=102+3+3=108;(5)(a+b)4·(a+b)5=(a+b)9.说明当三个或三个以上的同底数幂相乘时,同样可用法则进行;幂的底数既可以是单项式,也可以是多项式.例2计算:(1)x5·(-x)3·(-x)4;(2)-a3·(-a)4·(-a)5;(3)(x-y)3·(y-x)3·(y-x)4;(4)x k+1·x2k-1·x k·x;(5)(-3)100+(-3)99.【解析】(1)x5·(-x)3·(-x)4=-x5·x3·x4=-x12;(2)-a3·(-a)4·(-a)5=a3·a4·a5=a12;(3)(x-y)3·(y-x)3·(y-x)4=-(x-y)3·(x-y)3·(x-y)4=-(x-y)10;(4)x k+1·x2k-1·x k·x =x k+1+2k-1+k+1=x4k+1;(5)(-3)100+(-3)99=3100-399=3×399-399=2×399.说明(1)在幂的乘法中,当底数不同时,要先将它们化成同底数幂再计算;(2)•若指数含有字母,同样可用同底数幂乘法法则;(3)注意与整式的加减法运算的区别,如(5)中,3100-399≠3.【在线检测一】判断下列1~8题各式是否正确,若不正确,请加以改正.1.x2·x2=2x2._________________;2.x2+x3=x5._________________;3.a5+a6=a11.__________________;4.a5·a6=a11.________________;5.a5·b6=(ab)11._______________;6.x·x2·x3=x5.________________;7.2x3+34=5x7.____________;8.x4·x4·x4=3x4.______________;9.计算:a·a2=___________________;10.计算:a·a2·a4=________________;11.计算:m3·m4=________________;12.计算:m3·m4·m5=________________;13.计算:x3·x3=____________;14.计算:2×4×16×32=___________(用底数为2的幂的形式表示);15.计算:(x+y)2·(x+y)3=_____________.16.计算:(a-b)·(a-b)6=_____________.17.计算:x·x5+x2·x4=_____________.18.计算:y4·y2·y+2y·y3·y3=____________.19.若x7·x k=x11,则k=__________.20.若y k·y2k=y6,则k=_________.21.a4·_________=a7.22.b·________=b7.23.x2a·x3=x a·x5,则a=____________.24.若x m=2,x3=5,则x m+3=_________.25.计算:x3·x4·x6=__________; 26.计算a·a5·a7=____________;27.计算:y7·y2+2y·y8-y3·y5+y·y2·y5.28.计算:3×9×27×81(结果用幂的形式表示).29.计算:5×25×125×625(结果用幂的形式表示).30.计算:103×100×10+2×10×10(结果用幂的形式表示).31.计算:(a+b)3·(a+b)4.32.(a-b)·(a-b)3·(a-b)6.33.计算:(m+n)·(m+n)2·(m+n)3·(m+n)4.【在线检测二】1.下列计算正确的是()A.(-a)·(-a)2·(-a)3=-a5B.(-a)·(-a)3·(-a)4=-a8C.(-a)·(-a)2·(-a)4=-a7D.(-a)·(-a)4·a=-a6 2.(-x)2·(-x)3·(-x3)·(-x)2=()A.-x36B.x36C.-x10D.x103.计算:(-a)·(-a)2=_________.4.计算:(-a)2·a3=________.5.计算:(-a)3·(-a4)=________.6.计算:(-x)·(-x)3·(-x)5=_________.7.计算:(x-y)2·(y-x)=________.8.计算:(-2)100+(-2)99=________.计算:9.x2·(-x)6.10.(-x3)+(-x4).11.(-a3)·a3·(-a)4.12.(-k)3·(-k2)·(-k)4·(-k5).13.(x-y)·(y-x)3·(x-y)2.14.(a-b)2·(a-b)3·(b-a)2·(b-a)3.15.(a+b-c)2·(c-a-b)3.16.(x-y-z)·(y-x+z)3·(z-x+y)2.17.-a4·(-a)3+(-a)2·(-a5).18.(-x)4·(-x3)·(-x)+2(-x)2·(-x)5-(-x)·(-x6).19.x m·x m-1.20.y2m+1·y1+m·y3-2m.21.9m-2·(-9)2·9n.22.10m·10n·102.23.x n-1·x2n+1·x 24.x·x m-1+x2·x m-2-3·x3·x m-3.答案:在线检测一1~8.略9.a310.a711.m712.m1213.x614.21215.(x+y)5 16.(a-b)7•17.2x618.3y719.4 20.2 21.a322.b623.224.10 25.x1326.a1327.3y9•28.31029.51030.3×10631.(a+b)732.(a-b)10 33.(m+n)10在线检测二1.C 2.D 3.-a34.a55.a76.-x97.-(x-y)38.2999.x8 10.x711.-a1012.-k1413.-(x-y)614.-(a-b)1015.-(a+b-c)516.-(x-y-z)617.0 18.x8-3x7•19.x2m-120.y m+521.9m+n22.10m+n+223.x3n+124.-x m。

沪科版七年级数学下册8.1幂的运算8.1.1同底数幂的乘法优秀教学案例

沪科版七年级数学下册8.1幂的运算8.1.1同底数幂的乘法优秀教学案例
3.创设互动环节,让学生分享自己在生活中遇到的同底数幂乘法问题,增加学生之间的交流和合作。
(二)问题导向
1.设计具有启发性的问题,引导学生思考同底数幂乘法的规律,如“为什么同底数幂相乘时,指数要相加?”
2.鼓励学生提出问题,培养学生的疑问意识和批判性思维,引导学生主动探索同底数幂乘法的本质。
3.创设问题情境,让学生运用同底数幂的乘法知识解决实际问题,提高学生的应用能力。
3.鼓励学生分享自己的思路和方法,培养学生的团队合作能力和沟通能力。
(四)总结归纳
1.引导学生进行自我反思,总结自己在学习同底数幂乘法过程中的优点和不足,明确下一步的学习目标。
2.组织学生进行同伴评价,鼓励学生相互鼓励和肯定,培养学生的积极心态。
3.教师对学生的学习过程和结果进行评价,关注学生的思维过程和解决问题的能力,给予及时的反馈和指导。
2.组织学生进行同伴评价,鼓励学生相互鼓励和肯定,培养学生的积极心态。
3.教师对学生的学习过程和结果进行评价,关注学生的思维过程和解决问题的能力,给予及时的反馈和指导。
四、教学内容与过程
(一)导入新课
1.利用生活实例引入同底数幂的乘法,例如计算一个正方体的体积,引导学生感受同底数幂乘法在实际生活中的应用。
2.通过多媒体展示同底数幂乘法的实际应用场景,如物理中的浮力计算、化学中的浓度计算等,让学生了解同底数幂乘法的重要性。
3.创设互动环节,让学生分享自己在生活中遇到的同底数幂乘法问题,增加学生之间的交流和合作。
(二)讲授新知
1.引导学生复习已学过的幂的定义和性质,为学生提供知识基础。
2.讲解同底数幂的乘法概念和运算法则,通过示例演示同底数幂相乘的规律。
3.小组合作学习:将学生分成小组,鼓励学生之间进行讨论和合作,共同探讨同底数幂乘法的规律。这种小组合作学习方式能够培养学生的团队合作能力和沟通能力,提高学生的学习效果。

七年级数学下册 8.1 同底数幂的乘法 怎样理解“同底数幂相乘,底数不变,指数相加”素材 (新版)苏科版

七年级数学下册 8.1 同底数幂的乘法 怎样理解“同底数幂相乘,底数不变,指数相加”素材 (新版)苏科版

怎样理解“同底数幂相乘,底数不变,指数相加”?
幂的运算性质的表达式是a m·a n =a m+n(m,n均为正整数)
(1)左边两个幂的底数相同,而且是相乘的关系;右边所得到的一个幂,底数仍不变,指数相加。

可见,这一性质由乘法运算降为加法运算(指数相加)。

对于这一性质,不仅要记住结论,更重要的是掌握结论导出过程。

因为这个推导过程体现了“由特殊到一般的数学思想方法”。

掌握这一方法对于学好数学(当然也包括其他学科)是非常重要的。

(2)公式中的字母a既可以表示数,也可以表示单项式,还可表示多项式。

(3)当三个或三个以上同底数幂相乘时,法则仍成立,即a m·a n·a p=a m+n+p(m,n,p 都是正整数)。

(4)只有“同底数”的幂相乘才能用这个法则。

千万不要出现类似下面的错误:a2·(-a)3=a5。

这里出错的原因是因为这两个底数不同,一个是a,一个是-a,而强用了法则。

(5)注意可逆用公式a m+n=a m·a n(m,n都是正整数)。

沪科版七年级下册数学幂的运算第3课时课件

沪科版七年级下册数学幂的运算第3课时课件

15
-
2 3
12

解:原式=﹣215 312 315 212
﹣ 8 ; 27
(3)( (--xx22
y)7 y)4
;
(4)a2m1 a(m m是正整数).
解:原式=﹣xx184yy47 ﹣x6 y3;
解:原式=
a
m
am am
a
am1.
2.下面的计算对不对?如果不对,请改正.
(1)a5 a a5;
第8章 整式乘法与因式分解
8.1 幂的运算 第3课时
学习目标
1.经历同底数幂的除法法则的探索过程,理解同底 数幂的除法法则;
2.会用同底数幂的除法法则进行计算.(重点、难点)
回顾与思考 问题:幂的组成及同底数幂的乘法法则是什么?

an
指数
底数 同底数幂的乘法法则: 同底数幂相乘,底数不变,指数相加. 即aman=am+n(m,n都是正整数)
典例精析
例1 计算:
(1)x8 ; x5
解:(1)x8 =x85 x3; x5
(2)((xxyy))52 ;
(2)((xxyy))52 (xy)52 (xy)3 x3 y3;
(3)( (--xx) )94 ;
(4)xx2n33(n为正整数).
例2 计算:
(1)(x 1)3 (x 1)2; (2) 2x 2 y3 xy 2.
情境导入
一种液体每升含有1012个有害细菌,为了实验某 种杀菌剂的效果,科学家们进行了实验,发现1滴杀 菌剂可以杀死109个此种细菌.要将1升液体中的有害 细菌全部杀死,需要这种杀菌剂多少滴?
(1)怎样列式? 1012÷109
(2)视察这个算式,它有何特点?

沪科版初中数学七年级下第8章8.1幂的运算-同底数幂的乘法

沪科版初中数学七年级下第8章8.1幂的运算-同底数幂的乘法
3 15
师生互动
设计意图 学生知识储存的
适当的复习,可
学生在探索这个 问题的过程中, 体会同底数幂运 算的必要性,激
=2.57×3.6×1015×103
考。
2
1、 教师提问: 谁能用式子说明 乘方的意义? 学生回顾: 三、探究思考 a·a·„„·a=a
n个a
n
温故而知新
问题与情景 幻灯 3、 1、完成下表: 运算 算式 过程
问题与情景 一、 复习 时间较长,进行 多媒体展示问题 生回答,师复述。 提问:底数、指数、 起到以旧引新的 幂、乘方等概念。 效果。 二、创设情境 幻灯 2、 展示问题: 我 教师活动:给出问题 国首台千万亿次超级 学生活动:写出算式 计算机系统“天河一 2.57×1015×3.6×103 号”计算机每秒可进 行 2.57×10 次运算, 师述:解决这个问题需要研究 发 学 生 积 极 思 问 它 工 作 1h(3.6 × 同底数幂的乘法。 10 s)可进行多少次运 算?
1 2 1 2
( )8; =( )5+8=( )13; (2) (-2)2× (-2)7; (3)a2·a3·a6; 幻灯 6 (4) ( -y)3·y4; (2) (-2)2×(-2)7 =(-2)2+7=(-2)9; 4、 师引导生逐层或类比计算第 (3)小题: (3) a2· a3· a6=a2+3· a6=a5· a6=a11; 或 a2·a3·a6= a2+3+6= a11;
2 ×2
2 3
师生互动 学生板演:
设计意图
教师提问:观察上表,发现同 让 学 生 自 主 探 底数幂相乘有什么规律? 索、交流,在操
结 果
25
师生共同总结:这几道题的共 作中获得运算性 同特点是同底数幂相乘,计算 质,从而构建新 的结果底数不变指数是原来两 的知识体系。 个指数的和。 两学生板演: am·an =(a·a·„a)

七年级数学下册8-1幂的运算3同底数幂的除法第3课时整数次幂的运算法则作业课件新版沪科版

七年级数学下册8-1幂的运算3同底数幂的除法第3课时整数次幂的运算法则作业课件新版沪科版




▲2=
-1+2=4-1+2=5.



易错点 忽视零次幂和负整数次幂同时成立的条件而出错
7.若(2x+4)0+2(9-3x)-7有意义,求x满足的条件.
【解】由题意得2x+4≠0,且9-3x≠0,
即x≠-2且x≠3.
利用整数次幂的运算性质计算
8.计算:

3) -
−−
−−
即M=
.所以原式=
.


(2)1+3-1+3-2+…+3-n(n为大于1的正整数).
【解】设N=1+3-1+3-2+…+3-n,①
则3N=3+1+3-1+…+3-n+1,②


②-①得2N=3-3-n,即N=

−−
所以原式=
.

.
(1)根据实际问题列出带有整数次幂的式子.(2)根据整数次幂
的运算性质进行运算.(3)得出实际问题的答案.
知识点1 整数次幂的运算法则
1.[2023·营口]下列计算结果正确的是(
B )
A.a3·a3=2a3
B.8a2-5a2=3a2
C.a8÷a2=a4
D.(-3a2)3=-9a6
2.[2023·徐州]下列运算正确的是(
B )
A.a2·a3=a6
B.a4÷a2=a2
C.(a3)2=a5
D.2a2+3a2=5a4
3.[2022·聊城]下列运算正确的是(
A.(-3xy)2=3x2y2
B.3x2+4x2=7x4
C.t(3t2-t+1)=3t3-t2+1
D.(-a3)4÷(-a4)3=-1
D )
知识点2 整数次幂的运算应用

幂的运算6个公式

幂的运算6个公式

幂的运算6个公式幂运算是数学中常见的运算方式之一,它在代数学、几何学、物理学等领域有着广泛的应用。

本文将介绍六个与幂运算相关的公式,分别是幂的乘法法则、幂的除法法则、幂的乘方法则、幂的负指数法则、幂的零指数法则以及幂的平方根法则。

一、幂的乘法法则幂的乘法法则是指,当两个具有相同底数的幂相乘时,其指数相加。

例如,对于任意的实数a和正整数m、n,有以下公式:a^m * a^n = a^(m+n)其中,a为底数,m、n为指数。

二、幂的除法法则幂的除法法则是指,当两个具有相同底数的幂相除时,其指数相减。

例如,对于任意的实数a和正整数m、n(其中n不等于0),有以下公式:a^m / a^n = a^(m-n)其中,a为底数,m、n为指数。

三、幂的乘方法则幂的乘方法则是指,当一个幂的指数再次进行幂运算时,其指数相乘。

例如,对于任意的实数a和正整数m、n,有以下公式:(a^m)^n = a^(m*n)其中,a为底数,m、n为指数。

四、幂的负指数法则幂的负指数法则是指,当一个幂的指数为负数时,可以将其转化为倒数的幂,且指数的绝对值不变。

例如,对于任意的实数a和正整数m,有以下公式:a^(-m) = 1 / a^m其中,a为底数,m为指数。

五、幂的零指数法则幂的零指数法则是指,任何数的零次幂都等于1。

例如,对于任意的实数a,有以下公式:a^0 = 1其中,a为底数。

六、幂的平方根法则幂的平方根法则是指,一个数的平方根可以表示为该数的幂的分数形式,其中分子为1,分母为2。

例如,对于任意的实数a,有以下公式:√a = a^(1/2)其中,a为底数。

幂运算涉及了多个公式,包括幂的乘法法则、幂的除法法则、幂的乘方法则、幂的负指数法则、幂的零指数法则以及幂的平方根法则。

这些公式在数学中具有重要的意义,可以帮助我们简化运算、推导结论,并在实际问题中得到应用。

通过深入理解和灵活运用这些公式,我们可以更好地解决各种数学问题,提高数学能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

am · an = am+n
幂的乘方:
(am)n = amn
积的乘方:
( a b) a b
n
n
n
六、小结
学习了这节课,同学们有哪些收获?
(1)本节课学习了积的乘方的运算性质: 积的乘方等于各因式乘方的积. (2)运用积的乘方的注意事项: 注意符号的确定和逆向运用.
七、布置作业:
课堂作业: 习题8.1 第3、8(3)(4)题

ab) ab(
n
n
n
1 2005 2 ( ) () 2 1 1 1 2005 2005 ( ) (2 3 10) ( ) 10 9 2
2006 2005
1 3 2 ( ) ( 2
3
) ()
3
针对训练
计算:
n n n 逆用公式(ab) a b
----积的乘方
一、复习回顾
1.同底数幂相乘的运算性质?
同底数幂相乘,底数不变,指数相加.
n am an m a 一般形式: (m ,n为正整数)
2.幂的乘方的运算性质? 幂的乘方,底数不变,指数相乘. 一般形式:
(a ) a
m n
mn
(m,n为正整数)
3.计算: (2×3)2=(2×3)(2×3) =6×6=36 22×32 =4×9 =36
2.填空:
( 1) a3 · a4· a+(a2)4+(-2a4)2 ;
(2) 2(x3)2 · x3-(3x3)3+(5x)2 · x7
3.计算:
(1)a (ab)
2 3
3 4
(2)( xy) ( x z ) (3) 2a
2 4

a a
4
4
(4)
4 3 (-3×10 )
n n n 逆用公式(ab) a b
(2) (-5ab)2
;
(4) (-3ab2c3)2 .
4 3 V r 例4:球的体积公式是 ( r为 3
球的半径),已知地球半径约为 6.4×103km,求地球的体积( 取 3.14).
四、课堂练习
1.下面的计算对不对?如果不对, 应怎样改正? (1)(ab2)2=ab4; (2)(3cd)3=9c3d3; (3)(-3a3)2=-9a6; (4) (a3+b2)3 = a9+b6 .

ab) ab(
nLeabharlann nn2004 2003 1 2 2 5 3 (1) (2 ) 4 (2) 2 4 13 5
(3)0.125
15
2 5 15 3(4) 0 5 2 0 125 (2 )
三种幂的运算:
温馨提示: 同底数幂的乘法:
家庭作业:同步作业
22×32
=
(2×3)2
你能发 现什么?
(ab)2与a2b2是否相等?
二、合作探究
1.思考下面两道题:
(1) 这两道题有什么 特点?
(ab)
3
(2)
(ab)
4
底数为两个因式相乘积的形式.
这种形式为 积的乘方
我们学过的幂的运算性质适用吗?
(ab) (ab) (ab) (ab) (乘方的意义)
n n n (ab) =a b
.
幂的运算性质3: (积的乘方法则) (ab)n=an bn .(n是正整数) 积的乘方,等于因式乘方的积. 拓展:
当三个或三个以上因式的积乘方时, 也具有这 一性质.
(abc)n=anbncn. (n是正整数)
三、例题学习
例3:计算:
(1)(2x)4 ; (3) (-xy2)3 ;
(aaa) (bbb)(乘法交换律、结合律)
同理:
4
3
a b
3 3
(同底数幂相乘的法则)
(ab) (ab) (ab) (ab) (ab) (aaaa) (bbbb)
a b
4 4
思考:积的乘方 (ab)n =?
2.公式证明
n个 (ab)n =(ab)· (ab)· · · · · (ab) (乘方的意义) n个 n个 =(a· a· · · · · a)· (b· b· · · · · b) (单项式的乘法法则) =anbn (乘方的意义). 即
相关文档
最新文档