山东省泰安市宁阳县2016年最新中考数学二模试卷(含答案)

合集下载

(高清版)2016年山东省泰安市中考数学试卷

(高清版)2016年山东省泰安市中考数学试卷

三、解答题(本大题共 5 小题,共 48 分.解答应写出文字说明、证明过程或演算步骤) 在
25.(本小题满分 8 分) 如 图 ,在 平 面 直 角 坐 标 系 中 ,正 方 形 OABC 的 顶 点 O 与 坐 标 原 点 重 合 , 点
C 的 坐 标 为 (0 , 3) ,点 A 在 x 轴 的 负 半 轴 上 ,点 D , M 分 别 在 边 AB , OA 上 ,
形 OMNC 的 面 积 相 等 ,求 点 P 的 坐 标 .

26.(本小题满分 8 分) 某学校是 乒乓球体育传 统项目学校 ,为进一步 推动该项目的 开展,学校 准备到体 育用品店购买 直拍球拍和横 拍球拍若干副 ,并且每买 一副球拍 必 须 要 买 10 个 乒 乓 球 ,乒 乓 球 的 单 价 为 2 元 /个 ,若 购 买 20 副 直 拍 球 拍 和 15 副 横 拍 球 拍 花 费 9 000 元 ; 购 买 10 副 横 拍 球 拍 比 购 买 5 副 直 拍 球

一项是符合题目要求的)
1.计 算(-2)0 9 (-3)的 结 果 是
A. 1
B. 2
2.下 列 计 算 正 确 的 是

A. (a2 )3 a5
C. m3 m2 m6
3.下 列 图 形 :
()
C. 3
D. 4
B. (2a)2 4a2
()
D. a6 a2 a4

任取一个是中心对称图形的概率是

.
(1)求 证 : AC2 CD BC ;
(2)过 E 作 EG AB ,并 延 长 EG 至 点 K ,使 EK EB . ①若 点 H 是 点 D 关 于 AC 的 对 称 点 ,点 F 为 AC 的 中 点 ,求 证 : FH GH ; ②若 B 30 ,求 证 : 四 边 形 AKEC 是 菱 形 .

2016年山东省泰安市泰山区中考数学模拟试卷试题解析

2016年山东省泰安市泰山区中考数学模拟试卷试题解析

2016年山东省泰安市泰山区中考数学模拟试卷试题解析一、选择题(共20小题,每小题3分,满分60分)1.|﹣|的相反数是()A.B.﹣C.3 D.﹣3【考点】绝对值;相反数.【分析】一个负数的绝对值是它的相反数,求一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:∵|﹣|=,∴的相反数是﹣.故选:B.2.下列运算正确的是()A.x3•x2=x5B.(x3)3=x6C.x5+x5=x10D.x6﹣x3=x3【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同底数幂的乘法,幂的乘方与合并同类项的知识求解,即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、x3•x2=x5,故本选项正确;B、(x3)3=x9,故本选项错误;C、x5+x5=2x5,故本选项错误;D、x6﹣x3≠x3,故本选项错误.故选A.3.下列图形中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称的概念和各图形的特点即可求解.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.4.南海是我国的固有领土,2014年在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×109B.0.194×1010 C.19.4×109D.1.94×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将194亿用科学记数法表示为1.94×1010.故选D.5.如图,是由两个相同的圆柱组成的图形,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看立着的圆柱是一个圆,躺着的圆柱是一个矩形,并且矩形位于圆的右侧.故选C.6.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4 B.3C.4.5 D.5【考点】翻折变换(折叠问题);勾股定理的应用.【分析】先求出BC′,再由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在Rt△C′BF中,运用勾股定理BF2+BC′2=C′F2求解.【解答】解:∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在Rt△C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9﹣BF)2,解得,BF=4,故选:A.7.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A. B. C. D.【考点】二次函数的图象;反比例函数的图象.【分析】本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误.故选:B.8.四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”(如图).如果小正方形面积为4,大正方形面积为74,直角三角形中较小的锐角为θ,那么tanθ的值是()A.B.C.D.【考点】勾股定理;锐角三角函数的定义.【分析】由题意知小正方形的边长为2,大正方形的边长为.设直角三角形中较小边长为x,则有(x+2)2+x2=()2,解方程求得x=5,从而求出较长边的长度,再运用正切函数定义求解.【解答】解:由已知条件可知,小正方形的边长为2,大正方形的边长为.设直角三角形中较小边长为x,则有(x+2)2+x2=()2,解得x=5.则较长边的边长为x+2=5+2=7.故tanθ==.故选B.9.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,有以下结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确结论的个数为()A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质.【分析】先证明△AEB≌△AFC得∠EAB=∠FAC即可推出③正确,由△AEM≌△AFN 即可推出①正确,由△CMD≌△BND可以推出②正确,由△ACN≌△ABM可以推出④正确,由此即可得出结论.【解答】解:在△AEB和△AFC中,,∴△AEB≌△AFC,∴∠EAB=∠FAC,EB=CF,AB=AC,∴∠EAM=∠FAN,故③正确,在△AEM和△AFN中,,∴△AEM≌△AFN,∴EM=FN,AM=AN,故①正确,∵AC=AB,∴CM=BN,在△CMD和△BNC中,,∴△CMD≌△BND,∴CD=DN,故②正确,在△ACN和△ABM中,,∴△ACN≌△ABM,故④正确,故①②③④正确,故选D.10.不等式组的整数解()个.A.3 B.4 C.5 D.6【考点】一元一次不等式组的整数解.【分析】先求出每个不等式的解集,在确定不等式组的解集,即可得整数解个数.【解答】解:解不等式﹣2x+1<x+4,得:x>﹣1,解不等式≤1,得:x≤4,∴不等式组的解集为:﹣1<x≤4,则不等式组的整数解有0、1、2、3、4这5个,故选:C.11.方程(k﹣1)x2﹣x+=0有两个实数根,则k的取值范围是()A.k≥1 B.k≤1 C.k>1 D.k<1【考点】根的判别式.【分析】假设k=1,代入方程中检验,发现等式不成立,故k不能为1,可得出此方程为一元二次方程,进而有方程有解,得到根的判别式大于等于0,列出关于k的不等式,求出不等式的解集得到k的范围,且由负数没有平方根得到1﹣k大于0,得出k的范围,综上,得到满足题意的k的范围.【解答】解:当k=1时,原方程不成立,故k≠1,∴方程为一元二次方程,又此方程有两个实数根,∴b2﹣4ac=(﹣)2﹣4×(k﹣1)×=1﹣k﹣(k﹣1)=2﹣2k≥0,解得:k≤1,1﹣k>0,综上k的取值范围是k<1.故选D.12.某校春季运动会比赛中,八年级(1)班和(5)班的竞技实力相当.关于比赛结果,甲同学说:(1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根据题意所列的方程组应为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得等量关系:①(1)班得分×5=(5)班得分×6;②1)班得分=(5)班×2﹣40分,根据等量关系列出方程组即可.【解答】解:设(1)班得x分,(5)班得y分,根据题意得:,故选:D.13.化简÷(1+)的结果是()A.B. C.D.【考点】分式的混合运算.【分析】首先对括号内的式子通分相加,然后把除法转化成乘法,进行约分即可.【解答】解:原式=÷=•=.故选A.14.小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为()A.B.πC.πD.【考点】几何概率.【分析】针扎到内切圆区域的概率就是内切圆的面积与正三角形面积的比.【解答】解:∵如图所示的正三角形,∴∠CAB=60°,设三角形的边长是a,∴AB=a,∵⊙O是内切圆,∴∠OAB=30°,∠OBA=90°,∴BO=tan30°AB=a,则正三角形的面积是a2,而圆的半径是a,面积是a2,因此概率是a2÷a2=.故选C.15.如图,是某工件的三视图,其中圆的半径为10cm,等腰三角形的高为30cm,则此工件的侧面积是()cm2.A.150πB.300πC.50πD.100π【考点】圆锥的计算;由三视图判断几何体.【分析】根据给出的三视图,此工件是一个圆锥,此工件的侧面积展开图是扇形,根据扇形的面积计算.【解答】解:由题意知:展开侧面是一个扇形,扇形所在圆的半径是: =10(cm),扇形的弧长是:20π,∴工件的侧面积是×10×20π=100π(cm2).故选D.16.一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为()A.10海里/小时 B.30海里/小时C.20海里/小时 D.30海里/小时【考点】解直角三角形的应用-方向角问题.【分析】易得△ABC是直角三角形,利用三角函数的知识即可求得答案.【解答】解:∵∠CAB=10°+20°=30°,∠CBA=80°﹣20°=60°,∴∠C=90°,∵AB=20海里,∴AC=AB•cos30°=10(海里),∴救援船航行的速度为:10÷=30(海里/小时).故选D.17.如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为()A.53°B.37°C.47°D.123°【考点】平行四边形的性质.【分析】设EC于AD相交于F点,利用直角三角形两锐角互余即可求出∠EFA的度数,再利用平行四边形的性质:即两对边平行即可得到内错角相等和对顶角相等,即可求出∠BCE的度数.【解答】解:∵在平行四边形ABCD中,过点C的直线CE⊥AB,∴∠E=90°,∵∠EAD=53°,∴∠EFA=90°﹣53°=37°,∴∠DFC=37∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BCE=∠DFC=37°.故选B.18.如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上.若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()A.(,n)B.(m,n)C.(m,)D.()【考点】位似变换;坐标与图形性质.【分析】根据A,B两点坐标以及对应点A′,B′点的坐标得出坐标变化规律,进而得出P′的坐标.【解答】解:∵△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上,即A点坐标为:(4,6),B点坐标为:(6,2),A′点坐标为:(2,3),B′点坐标为:(3,1),().∴线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为:故选D.19.如图,已知AB是⊙O的直径,BC是弦,∠ABC=30°,过圆心O作OD⊥BC交弧BC于点D,连接DC,则∠DCB的度数为()度.A.30 B.45 C.50 D.60【考点】圆心角、弧、弦的关系.【分析】根据已知条件“过圆心O作OD⊥BC交弧BC于点D、,∠ABC=30°”、及直角三角形OBE的两个锐角互余求得∠BOE=60°;然后根据同弧BD所对的圆周角∠DCB是所对的圆心角∠DOB的一半,求得∠DCB的度数.【解答】解:∵OD⊥BC,∠ABC=30°,∴在直角三角形OBE中,∠BOE=60°(直角三角形的两个锐角互余);又∵∠DCB=∠DOB(同弧所对的圆周角是所对的圆心角的一半),∴∠DCB=30°;故选A.20.根据下表中关于二次函数y=ax2+bx+c的自变量x与函数y的对应值,可判x轴()﹣…2B.有两个交点,且它们分别在y轴两侧C.有两个交点,且它们均在y轴同侧D.无交点【考点】抛物线与x轴的交点.【分析】利用二次函数y=ax2+bx+c的自变量x与函数y的对应值.【解答】解:根据表中的二次函数y=ax2+bx+c的自变量x与函数y的对应值,可以发现当x=0,x=2时,y的值都等于﹣<0,又根据二次函数的图象对称性可得:x=1是二次函数y=ax2+bx+c的对称轴,此时y有最小值﹣2,再根据表中的数据,可以判断出y=0时,x<﹣1或x>2,因此判断该二次函数的图象与x轴有两个交点,且它们分别在y轴两侧.故选B.二、填空题(本大题共4个小题,满分12分,只要求填写最后结果,每小题填对得3分)21.计算:(﹣3)2×+(sin45°﹣1)0﹣()﹣1+×= 25 .【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】分别进行乘方、零指数幂、负整数指数幂、二次根式的乘法运算,然后合并求解.【解答】解:原式=3+1﹣3+24=25.故答案为:25.22.如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则= .【考点】等边三角形的性质;全等三角形的判定与性质;含30度角的直角三角形.【分析】首先根据题意推出△CAE≌△BCD,可知∠DCB=∠CAE,因此∠AFG=∠CAF+∠ACF=∠ACF+∠DCB=60°,所以∠FAG=30°,即可推出结论.【解答】解:∵AD=BE,∴CE=BD,∵等边三角形ABC,∴△CAE≌△DCB,∴∠DCB=∠CAE,∴∠AFG=∠CAF+∠ACF=∠ACF+∠DCB=60°,∵AG⊥CD,∴∠FAG=30°,∴FG:AF=.故答案为:.23.如图,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为(+1)cm(结果不取近似值).【考点】轴对称-最短路线问题;正方形的性质.【分析】由于点B与点D关于AC对称,所以如果连接DQ,交AC于点P,那么△PBQ的周长最小,此时△PBQ的周长=BP+PQ+BQ=DQ+BQ.在Rt△CDQ中,由勾股定理先计算出DQ的长度,再得出结果.【解答】解:连接DQ,交AC于点P,连接PB、BD,BD交AC于O.∵四边形ABCD是正方形,∴AC⊥BD,BO=OD,CD=2cm,∴点B与点D关于AC对称,∴BP=DP,∴BP+PQ=DP+PQ=DQ .在Rt △CDQ 中,DQ===cm ,∴△PBQ 的周长的最小值为:BP+PQ+BQ=DQ+BQ=+1(cm ).故答案为:(+1).24.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…那么点A 4n+1(n 为自然数)的坐标为 (2n ,1) (用n 表示).【考点】规律型:点的坐标.【分析】根据图形分别求出n=1、2、3时对应的点A 4n+1的坐标,然后根据变化规律写出即可.【解答】解:由图可知,n=1时,4×1+1=5,点A 5(2,1), n=2时,4×2+1=9,点A 9(4,1), n=3时,4×3+1=13,点A 13(6,1), 所以,点A 4n+1(2n ,1). 故答案为:(2n ,1).三、解答题(本大题共5个小题,共48分.解答应写出文字说明、证明过程或演算步骤)25.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?【考点】分式方程的应用.【分析】首先设李老师每小时走x 千米,则张老师每小时走(x+1)千米,根据关键描述语是:“比李老师早到半小时”可得等量关系为:李老师所用时间﹣张老师所用时间=,再由等量关系列出方程,解方程即可. 【解答】解:设李老师每小时走x 千米,依题意得到的方程:,解得x1=﹣6,x2=5,经检验x1=﹣6,x2=5都是原分式方程的解,但x1=﹣6不合题意舍去.所以张老师每小时走:5+1=6(千米),答:李老师每小时走5千米,张老师每小时走6千米.26.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【考点】全等三角形的判定与性质;直角三角形斜边上的中线;菱形的判定.【分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案;(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中∴△AFE≌△DBE(AAS),∴AF=BD,∴AF=DC.(2)四边形ADCF是菱形,证明:AF∥BC,AF=DC,∴四边形ADCF是平行四边形,∵AC⊥AB,AD是斜边BC的中线,∴AD=BC=DC,∴平行四边形ADCF是菱形.27.已知:A(m,2)是一次函数y=kx+b与反比例函数(x>0)的交点.(1)求m的值;(2)若该一次曲线的图象分别与x、y轴交于E、F两点,且点A恰为E、F的中点,求该直线的解析式;(3)在(x>0)的图象上另取一点B,作BK⊥x轴于K,在(2)的条件下,在线段OF上取一点C,使FO=4CO.试问:在y轴上是否存在点P,使得△PCA和△PBK的面积相等?若存在,求出所有可能的点P的坐标;若不存在,请说明理由.【考点】反比例函数综合题.【分析】(1)把点A的横纵坐标代入反比例函数的解析式即可求得m的值;(2)由A点向两坐标轴作垂线,利用相似三角形的性质求得点E、F的坐标,利用待定系数法求得函数的解析式即可;(3)设出B的坐标,利用CO和FO的关系求得C点的坐标,再利用两三角形面积相等得到有关y的关系式求得y的值即可作为P点的纵坐标.【解答】解:(1)∵A(m,2)是一次函数y=kx+b与反比例函数y=的交点∴2=,∴m=;(2)由(1)得A(,2),∴2=k+b,由题意可知:A是线段EF的中点,且E(﹣,0)F(0,b)则:A(,),∴=2即b=4,∴k=﹣,∴一次函数y=kx+b的解析式为:y=﹣+4;(3)由题意知:B、F坐标分别为(k,),(0,4),又4CO=FO,∴C点坐标为(0,1),设P点坐标为(0,y),则S△PCA=×|y﹣1|;又BK⊥x轴于k,S△PBK=;∵S△PCA =S△PBK,∴|y﹣1|=××k,∴y=﹣1或3.即存在点P且P点坐标为(0,﹣1)或(0,3).28.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的位置关系,并证明你的结论;(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和GC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.【考点】旋转的性质;直角三角形全等的判定;正方形的性质.【分析】(1)观察图形,AE、CG的位置关系可能是垂直,下面着手证明.由于四边形ABCD、DEFG都是正方形,易证得△ADE≌△CDG,则∠1=∠2,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AH⊥CG.(2)题(1)的结论仍然成立,参照(1)题的解题方法,可证△ADE≌△CDG,得∠5=∠4,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由图知∠AEB=∠CEH=90°﹣∠6,即∠7+∠CEH=90°,由此得证.【解答】解:(1)答:AE⊥GC;证明:延长GC交AE于点H,在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG,∴∠1=∠2;∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°﹣(∠1+∠3)=180°﹣90°=90°,∴AE⊥GC.(2)答:成立;证明:延长AE和GC相交于点H,在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°﹣∠3;∴△ADE≌△CDG,∴∠5=∠4;又∵∠5+∠6=90°,∠4+∠7=180°﹣∠DCE=180°﹣90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.29.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时,点P的坐标;②是否存在一点P,使△PCD的面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)先求出A、B、C的坐标,再运用待定系数法就可以直接求出二次函数的解析式;(2)①由(1)的解析式可以求出抛物线的对称轴,分类讨论当∠CEF=90°时,当∠CFE=90°时,根据相似三角形的性质就可以求出P点的坐标;②先运用待定系数法求出直线CD的解析式,设PM与CD的交点为N,根据CD的解析式表示出点N的坐标,再根据S△PCD =S△PCN+S△PDN就可以表示出三角形PCD的面积,运用顶点式就可以求出结论.【解答】解:(1)在Rt△AOB中,OA=1,tan∠BAO==3,∴OB=3OA=3.∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1,∴A、B、C的坐标分别为(1,0),(0,3)(﹣3,0).代入解析式为,解得:.∴抛物线的解析式为y=﹣x2﹣2x+3;(2)①∵抛物线的解析式为y=﹣x2﹣2x+3,∴对称轴l=﹣=﹣1,∴E点的坐标为(﹣1,0).如图,当∠CEF=90°时,△CEF∽△COD.此时点P在对称轴上,即点P为抛物线的顶点,P(﹣1,4);当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于点M,则△EFC∽△EMP.∴,∴MP=3EM.∵P的横坐标为t,∴P(t,﹣t2﹣2t+3).∵P在第二象限,∴PM=﹣t2﹣2t+3,EM=﹣1﹣t,∴﹣t2﹣2t+3=﹣(t﹣1)(t+3),解得:t1=﹣2,t2=﹣3(因为P与C重合,所以舍去),∴t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+3=3.∴P(﹣2,3).∴当△CEF与△COD相似时,P点的坐标为:(﹣1,4)或(﹣2,3);②设直线CD的解析式为y=kx+b,由题意,得,解得:,∴直线CD的解析式为:y=x+1.设PM与CD的交点为N,则点N的坐标为(t, t+1),∴NM=t+1.∴PN=PM﹣NM=﹣t2﹣2t+3﹣(t+1)=﹣t2﹣+2.∵S△PCD =S△PCN+S△PDN,∴S△PCD=PN•CM+PN•OM=PN(CM+OM)=PN•OC=×3(﹣t2﹣+2)=﹣(t+)2+,∴当t=﹣时,S△PCD的最大值为.2016年6月27日。

2016泰安中考数学模拟题(答案)

2016泰安中考数学模拟题(答案)

DC BA 2016年初中学业水平考试模拟题(四)数 学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共8页,满分120分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束后,将本试卷和答题卡一并交回.2.答题注意事项见答题卡,答在本试卷上不得分.第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.14-的绝对值等于 A.14- B.14 C.14± D.42. 下列运算,正确的是A .3+2= 5B .(3-1)2=3-1C .3×2= 6 D53=- 3. 如图,立体图形的主视图是4. 将36.1810-⨯化为小数是A .0.000618B .0.00618C .0.0618D .0.618 5. 下列运算正确的是( )A. 235a a a += B. ()32626aa -=-C. ()()2212121a a a +-=- D. ()322221a a a a -÷=-6. 下列四个图案中,是轴对称图形,但不是中心对称图形的是7. 函数1+=x y 的自变量x 的取值范围是A .x ≥1B .x ≥-1C .x ≤1D .x ≤-18. 学校团委在五四青年节举行“感动校园十大人物”颁奖活动中,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲乙两人恰有一人参加此活动的概率是A.23 B.56 C.16 D.129. 如图,过原点的一条直线与反比例函数y =kx(k<0)的图象分别交于A 、B 两点,若A 点的坐标为(a ,b ),则B 点的坐标为 A .(a ,b ) B .(b ,a ) C .(-b ,-a ) D .(-a ,-b ) 10. 不等式组的解集是A.x ≥1B. -1<x ≤1C.x<-1D.无解11. 如图,在Rt △ABC 中,∠BAC =90°,如果将该三角形绕点A 按 顺时针方向旋转到△AB 1C 1的位置,点B 1恰好落在边BC 的中点处, 那么旋转的角度等于( )A .80°B .65°C .60°D .55° (第11题图) 12. 关于x 的方程 2(6)860a x x --+= 有实数根,则整数a 的最大值是 A. 6 B. 7 C.8 D. 913.某花园内有一块五边形的空地如图所示,为了美化环境,现计划在 五边形各顶点为圆心,2 m 长为半径的扇形区域(阴影部分)种 上花草,那么种上花草的扇形区域总面积是 A.6πm 2B.5πm 2C.4πm 2D.3πm2第13题图A.B.C.D.14.如图,在Rt ABC∆中,90C∠=︒,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A.设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是()第Ⅱ卷(非选择题共78分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在答题卡规定的区域内,在试卷上答题不得分.二、填空题(本大题共5小题,每小题3分,共15分)15.分解因式:316a a-=.16.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=1.5m,CD=4.5m,点P到CD的距离为2.7m,则AB与CD间的距离是m.17.如图,在四边形ABCD中,AB∥CD,∠BCD=90º,AB=25cm,BC=24cm.将该四边形折叠,点A恰好与点D重合,BE为折痕,那么四边形ABCD的面积为cm2.18.关于x的方程12=+xm的解是负数,则m的取值范围是.19.组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为__________.三、解答题(本大题共7小题,共63分)20.(本小题满分7分)先化简,再求值:4212112--÷⎪⎭⎫⎝⎛-+mmm,其中5-=m.21.(本小题满分7分)学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数.(4)根据抽样调查结果,请你估计我市近80000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?22. (本小题满分7分)如图,在平行四边形ABCD中,E F,为BC上两点,且BE CF=,AF DE=.求证:(1)ABF DCE△≌△;(2)四边形ABCD是矩形.23.(本小题满分9分)如图,在⊙O中,AB是直径,AD是弦,∠ADE = 60°,∠C = 30°.⑴判断直线CD是否是⊙O的切线,并说明理由;⑵若CD = 33,求BC的长.(第22题)AB CDE Fx(第23题图)24.(本小题满分9分)为改善生态环境,防止水土流失,某村计划在汉江堤坡种植白杨树,现甲、乙两家林场有相同的白杨树苗可供选择,其具体销售方案如下:设购买白杨树苗x 棵,到两家林场购买所需费用分别为甲y (元)、乙y (元). 则: (1)该村需要购买1500棵白杨树苗,若都在甲林场购买所需费用为 元,若都在乙林场购买所需费用为 元;(2)分别求出甲y 、乙y 与x 之间的函数关系式;(3)如果你是该村的负责人,应该选择到哪家林场购买树苗合算,为什么?25.(本小题满分11分)提出问题:(1)如图1,在正方形ABCD 中,点E ,H 分别在BC ,AB 上.若AE ⊥DH 于点O ,求证:AE=DH . 类比探究:(2)如图2,在正方形ABCD 中,点H ,E ,G ,F 分别在AB ,BC ,CD ,DA 上.若EF ⊥HG 于点O ,探究线段EF 与HG 的数量关系,并说明理由. 综合运用:(3)在(2)问条件下,HF ∥GE ,如图3所示.已知BE=EC =2,OE =2OF ,求图中阴影部分的面积.26. (本小题满分13分)如图,抛物线c bx x y ++-=2与x 轴交于A (-1,0),B (5,0)两点,直线343+-=x y 与y 轴交于点C ,与x 轴交于点D .点P 是x 轴上方的抛物线上一动点,过点P 作PF ⊥x 轴于点F ,交直线CD 于点E .设点P 的横坐标为m .(1)求抛物线的解析式;(2)若EF PE 5=,求m 的值;(3)若点E '是点E 关于直线PC 的对称点,是否存在点P ,使点E '落在y 轴上?若存在,请求.出.相应的点P 的坐标;若不存在,请说明理由..HF EA HAH A BB BEEGFG图1图2图32016年初中学业水平考试模拟题(四)数学参考答案一、选择题:BDBBD ABADB CCAA二、填空题:15.)4)(4(-+a a a ;16.0.9m ; 17.384 ;18.m<2且m 0≠ 19. -9. 三、解答题 20.解:原式=)2(2)1)(1(2122--+÷⎪⎭⎫⎝⎛-+--m m m m m m = )1)(1()2(2·21-+---m m m m m = 12+m …5分 当5-=m 时,原式=2115212-=+-=+m ………………………7分 21. 解:(1)200;(2)2001205030--=(人).画图正确.…………3分(3)C 所占圆心角度数360(125%60%)54=⨯--=°°.…………5分 (4)80000×(25%+60%)=68000∴估计我市初中生中大约有68000名学生学习态度达标.…………7分22. 解:(1)BE CF = ,BF BE EF =+,CE CF EF =+, BF CE ∴=. ······························································································· 1分 四边形ABCD 是平行四边形, AB DC ∴=. ······························································································ 2分 在ABF △和DCE △中,AB DC = ,BF CE =,AF DE =, ABF DCE ∴△≌△. ··················································································· 3分 (2)解法一:ABF DCE △≌△, B C ∴∠=∠. ······························································································ 4分 四边形ABCD 是平行四边形, AB CD ∴∥.180B C ∴∠+∠= .90B C ∴∠=∠= . ······················································································ 6分 ∴四边形ABCD 是矩形.················································································ 7分 解法二:连接AC DB ,. ABF DCE △≌△, AFB DEC ∴∠=∠. AFC DEB ∴∠=∠. ····················································································· 5分 在AFC △和DEB △中,AF DE = ,AFC DEB ∠=∠,CF BE =, AFC DEB ∴△≌△. AC DB ∴=. ······························································································ 6分 四边形ABCD 是平行四边形,∴四边形ABCD 是矩形.················································································ 7分 23. 解:⑴直线CD 是⊙O 的切线,理由如下:连接OD ,∵∠ADE = 60° ∴180ADC ADE ∠=-∠= 18060=-=120°,6030A A D E C ∠=∠-∠=-=300 ………………………3分又∵OA =OD∴30ODA A ∠=∠=∴1201203090ODC ODA ∠=-∠=-=∴CD 是⊙O 的切线………………………………5分 ⑵在ODC Rt ∆中,OC=6cos cos30CD C ==∠,∴OB =OD 12OC ==3 ∴BC =OC -OB =3………………………………9分 24. 解:(1) 5900 6000 ………………………………2分 (2)⎩⎨⎧>+≤≤=)1000(2008.3)10000(4为整数且为整数且甲x x x x x x y⎩⎨⎧>+≤≤=)2000(8006.3)20000(4为整数且为整数且乙x x x x x x y ………………………………4分(3)① 当0≤x ≤1000时,两家林场单价一样,因此到两林场购买所需要费用都一样. ………………………………5分②当1000<x ≤2000时,甲林场有优惠而乙林场无优惠,所以1000<x ≤2000时,到甲林场购买合算………………………………6分 ③当x >2000时,2008.3+=x y 甲,8006.3+=x y 乙 6002.08006.3-2008.3--=++=x x x y y )(乙甲 (ⅰ)当乙甲y y =时,06002.0=-x 解得x =3000 ∴当x =3000时,到两林场购买所需要费用都一样 (ⅱ)当乙甲y y <时,06002.0<-x 解得x <3000 ∴当2000<x <3000时,到甲林场购买合算 (ⅲ)当乙甲y y >时,06002.0>-x 解得x >3000∴当x >3000时,到乙林场购买合算综上所述,当0≤x ≤1000或x =3000时,到两林场购买所需要费用都一样; 当1000<x <3000时,到甲林场购买合算;当x >3000时,到乙林场购买合算. ………………………………9分 25.解:Q E′H A F EH ABBEGF GE(1)证明:如图,在正方形ABCD 中,AD =AB ,∠B =90°∴∠1+∠3=90° ∵AE ⊥DH ,∴∠1+∠2=90° ∴∠2=∠3 ∴△ADH ≌△BAE (AAS)∴AE =DH .………………………………3分(2)过点D 作DH ′∥GH ,过点A 作AE ′∥FE 分别交AB ,BC 于H ′、E ′. ∵AF ∥EE ′,∴四边形AE′EF 是平行四边形,∴EF =AE ′ 同理,HG =DH ′.四边形ORST 为平行四边形.又∵EF ⊥HG ,∴四边形ORST 为矩形,∴∠RST =90° 由(1)可知,同理DH′=AE ′,∴EF=GH . ……………………………………………………………………………………6分(3)延长FH ,CB 交于点P ∵AD ∥BC , ∴∠AFH =∠P ∵HF ∥GE , ∴∠GEC=∠P 又∵∠A =∠C =90° ∴△AFH ∽△CEG ∴122AF HF OF OF CE EG OE OF ==== ∵BE=EC =2, ∴AF =1,∴BQ=AF =1,QE =1. …………………………………………………………9分设OF =x, ∵HF ∥GE, ∴12OH OF OG OE ==,又∵HG=EF ,EF ⊥GH. ∴OH=OF=x ,OG=OE =2x. 在Rt △EFQ 中,222QF QE EF +=,()222413x +=,解得x =…………………………………………………………10分 =S 阴影S △H OF +S △EOG =()2221152222x x x +=252=⎝⎭=8518.………………………………11分 26.解:(1)∵抛物线y =-x 2+bx +c 与x 轴交于A (-1,0),B (5,0)两点,∴2201,055.()⎧=---+⎨=-++⎩b c b c ∴4,5.=⎧⎨=⎩b c ∴抛物线的解析式为y =-x 2+4x +5. …………………………………………………3分 (2)点P 的横坐标为m ,则P (m ,-m 2+4m +5),E (m ,-34m +3),F (m ,0). ∵点P 在x 轴上方,要使PE =5EF ,点P 应在y 轴右侧,∴ 0<m <5. ∴PE =-m 2+4m +5-(-34m +3)=-m 2+194m +2.…………………………………………………4分 分两种情况讨论:①当点E 在点F 上方时,EF =-34m +3. ∵PE =5EF ,∴-m 2+194m +2=5(-34m +3) . (6)分即2m2-17m+26=0,解得m1=2,m2=132(舍去);②当点E在点F下方时,EF=34m-3.∵PE=5EF,∴-m2+194m+2=5(34m-3) .即m2-m-17=0,解得m3=,m4(舍去);∴m的值为2或12.…………………………………………………8分(3)∵E和E′关于直线PC对称,∴∠E′CP=∠ECP;又∵PE∥y轴,∴∠EPC=∠E′CP=∠PCE,∴PE=EC,又∵CE=CE′,∴四边形PECE′为菱形.……………………………10分过点E作EM⊥y轴于点M,∴△CME∽△COD,∴CE=5m4.∵PE=CE,∴-m2+194m+2=54m或-m2+194m+2=-54m,解得m1=-12,m2=4,m3=3,m4=3(舍去)可求得点P的坐标为P1(-12,114),P2(4,5),P3(3,-3) .………………………13分。

2016年山东省泰安市中考数学试卷

2016年山东省泰安市中考数学试卷

2016年山东省泰安市中考数学试卷一、(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个,均记零分)1.(3分)(2016•泰安)计算(﹣2)0+9÷(﹣3)的结果是()A.﹣1 B.﹣2 C.﹣3 D.﹣42.(3分)(2016•泰安)下列计算正确的是()A.(a2)3=a5B.(﹣2a)2=﹣4a2C.m3•m2=m6D.a6÷a2=a43.(3分)(2016•泰安)下列图形:任取一个是中心对称图形的概率是()A .B .C .D.14.(3分)(2016•泰安)化简:÷﹣的结果为()A .B .C .D.a5.(3分)(2016•泰安)如图,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为()页脚内容1A.90°B.120° C.135° D.150°6.(3分)(2016•泰安)国家统计局的相关数据显示,2015年我国国民生产总值(GDP)约为67.67万亿元,将这个数据用科学记数法表示为()A.6.767×1013元B.6.767×1012元C.6.767×1012元D.6.767×1014元7.(3分)(2016•泰安)如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2 B.3 C.4 D.68.(3分)(2016•泰安)如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是()A.p B.q C.m D.n9.(3分)(2016•泰安)一元二次方程(x+1)2﹣2(x﹣1)2=7的根的情况是()页脚内容2A.无实数根B.有一正根一负根C.有两个正根D.有两个负根10.(3分)(2016•泰安)如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于()A.12.5°B.15°C.20°D.22.5°11.(3分)(2016•泰安)某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整)选修课A B C D E F人数4060100根据图表提供的信息,下列结论错误的是()页脚内容3A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E、F的人数分别为80,70D.喜欢选修课C的人数最少12.(3分)(2016•泰安)二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()A .B .C .D .13.(3分)(2016•泰安)某机加工车间共有26名工人,现要加工2100个A零件,1200个B零件,已知每人每天加工A零件30个或B零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件)?设安排x人加工A零件,由题意列方程得()A .=B .=C .=D .×30=×20页脚内容414.(3分)(2016•泰安)当x 满足时,方程x2﹣2x﹣5=0的根是()A.1±B .﹣1 C.1﹣D.1+15.(3分)(2016•泰安)在﹣2,﹣1,0,1,2这五个数中任取两数m,n,则二次函数y=(x﹣m)2+n 的顶点在坐标轴上的概率为()A .B .C .D .16.(3分)(2016•泰安)如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在西偏南68°方向上,航行2小时后到达N处,观测灯塔P在西偏南46°方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68°=0.9272,sin46°=0.7193,sin22°=0.3746,sin44°=0.6947)()A.22.48 B.41.68 C.43.16 D.55.6317.(3分)(2016•泰安)如图,△ABC内接于⊙O,AB是⊙O的直径,∠B=30°,CE平分∠ACB交⊙O于E,交AB于点D,连接AE,则S△ADE:S△CDB的值等于()页脚内容5A.1:B.1:C.1:2 D.2:318.(3分)(2016•泰安)如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°19.(3分)(2016•泰安)当1≤x≤4时,mx﹣4<0,则m的取值范围是()A.m>1 B.m<1 C.m>4 D.m<420.(3分)(2016•泰安)如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()页脚内容6A .B .C .D .二、填空题(本大题共4小题,满分12分.只要求填写最后结果,每小题填对得3分,)21.(3分)(2016•泰安)将抛物线y=2(x﹣1)2+2向左平移3个单位,再向下平移4个单位,那么得到的抛物线的表达式为______.22.(3分)(2016•泰安)如图,半径为3的⊙O与Rt△AOB的斜边AB切于点D,交OB于点C,连接CD 交直线OA于点E,若∠B=30°,则线段AE的长为______.23.(3分)(2016•泰安)如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC 于点F,则△BOF的面积为______.页脚内容724.(3分)(2016•泰安)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n﹣1B n顶点B n的横坐标为______.三、解答题(共5小题,满分48分.解答应写出必要的文字说明、证明过程或推演步骤)25.(8分)(2016•泰安)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的负半轴上,点D、M分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过点D和M,反比例函数y=的图象经过点D,与BC的交点为N.(1)求反比例函数和一次函数的表达式;(2)若点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P的坐标.页脚内容826.(8分)(2016•泰安)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.27.(10分)(2016•泰安)如图,在四边形ABCD中,AC平分∠BCD,AC⊥AB,E是BC的中点,AD⊥AE.(1)求证:AC2=CD•BC;(2)过E作EG⊥AB,并延长EG至点K,使EK=EB.①若点H是点D关于AC的对称点,点F为AC的中点,求证:FH⊥GH;②若∠B=30°,求证:四边形AKEC是菱形.页脚内容928.(10分)(2016•泰安)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行与y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.页脚内容1029.(12分)(2016•泰安)(1)已知:△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由;(3)若将(1)中的“若∠A=60°”改为“若∠A=90°”,其它条件不变,则的值是多少?(直接写出结论,不要求写解答过程)页脚内容112016年山东省泰安市中考数学试卷参考答案与试题解析一、(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个,均记零分)1.(3分)(2016•泰安)计算(﹣2)0+9÷(﹣3)的结果是()A.﹣1 B.﹣2 C.﹣3 D.﹣4【分析】根据零指数幂和有理数的除法法则计算即可.【解答】解:原式=1+(﹣3)=﹣2,故选:B.2.(3分)(2016•泰安)下列计算正确的是()A.(a2)3=a5B.(﹣2a)2=﹣4a2C.m3•m2=m6D.a6÷a2=a4【分析】直接利用同底数幂的乘除法运算法则以及结合积的乘方运算法则和幂的乘方运算法则分别化简求出答案.【解答】解:A、(a2)3=a6,故此选项错误;B、(﹣2a)2=4a2,故此选项错误;C、m3•m2=m5,故此选项错误;页脚内容12D、a6÷a2=a4,正确.故选:D.3.(3分)(2016•泰安)下列图形:任取一个是中心对称图形的概率是()A .B .C .D.1【分析】由共有4种等可能的结果,任取一个是中心对称图形的有3种情况,直接利用概率公式求解即可求得答案.【解答】解:∵共有4种等可能的结果,任取一个是中心对称图形的有3种情况,∴任取一个是中心对称图形的概率是:.故选C.4.(3分)(2016•泰安)化简:÷﹣的结果为()A .B .C .D.a页脚内容13【分析】先将分式的分子分母因式分解,同时将除法转化为乘法,再计算分式的乘法,最后计算分式的加法即可.【解答】解:原式=×﹣=﹣=,故选:C.5.(3分)(2016•泰安)如图,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为()A.90°B.120° C.135° D.150°【分析】根据圆锥的底面半径得到圆锥的底面周长,也就是圆锥的侧面展开图的弧长,根据勾股定理得到圆锥的母线长,利用弧长公式可求得圆锥的侧面展开图中扇形的圆心角.【解答】解:∵圆锥的底面半径为3,∴圆锥的底面周长为6π,∵圆锥的高是6,页脚内容14∴圆锥的母线长为=9,设扇形的圆心角为n°,∴=6π,解得n=120.答:圆锥的侧面展开图中扇形的圆心角为120°.故选B.6.(3分)(2016•泰安)国家统计局的相关数据显示,2015年我国国民生产总值(GDP)约为67.67万亿元,将这个数据用科学记数法表示为()A.6.767×1013元B.6.767×1012元C.6.767×1012元D.6.767×1014元【分析】首先把67.67万亿化为676700亿,再用科学记数法表示676700亿,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:67.67万亿元=6.767×1013元,故选:A.7.(3分)(2016•泰安)如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()页脚内容15A.2 B.3 C.4 D.6【分析】由平行四边形的性质和角平分线得出∠F=∠FCB,证出BF=BC=8,同理:DE=CD=6,求出AF=BF ﹣AB=2,AE=AD﹣DE=2,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵∠C平分线为CF,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF﹣AB=2,AE=AD﹣DE=2,∴AE+AF=4;故选:C.页脚内容168.(3分)(2016•泰安)如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是()A.p B.q C.m D.n【分析】根据n+q=0可以得到n、q的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【解答】解:∵n+q=0,∴n和q互为相反数,0在线段NQ的中点处,∴绝对值最大的点P表示的数p,故选A.9.(3分)(2016•泰安)一元二次方程(x+1)2﹣2(x﹣1)2=7的根的情况是()A.无实数根B.有一正根一负根C.有两个正根D.有两个负根【分析】直接去括号,进而合并同类项,求出方程的根即可.【解答】解:∵(x+1)2﹣2(x﹣1)2=7,∴x2+2x+1﹣2(x2﹣2x+1)=7,页脚内容17整理得:﹣x2+6x﹣8=0,则x2﹣6x+8=0,(x﹣4)(x﹣2)=0,解得:x1=4,x2=2,故方程有两个正根.故选:C.10.(3分)(2016•泰安)如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于()A.12.5°B.15°C.20°D.22.5°【分析】根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.【解答】解:连接OB,∵四边形ABCO是平行四边形,页脚内容18∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圆周角定理得∠BAF=∠BOF=15°,故选:B.11.(3分)(2016•泰安)某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整)选修课A B C D E F人数4060100页脚内容19根据图表提供的信息,下列结论错误的是()A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E、F的人数分别为80,70D.喜欢选修课C的人数最少【分析】通过计算得出选项A、B、C正确,选项D错误,即可得出结论.【解答】解:被调查的学生人数为60÷15%=400(人),∴选项A正确;扇形统计图中D 的圆心角为×360°=90°,∵×360°=36°,360°(17.5%+15%+12.5%)=162°,∴扇形统计图中E的圆心角=360°﹣162°﹣90°﹣36°=72°,∴选项B正确;∵400×=80(人),400×17.5%=70(人),页脚内容20∴选项C正确;∵12.5%>10%,∴喜欢选修课A的人数最少,∴选项D错误;故选:D.12.(3分)(2016•泰安)二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()A .B .C .D .【分析】由y=ax2+bx+c的图象判断出a>0,b>0,于是得到一次函数y=ax+b的图象经过一,二,四象限,即可得到结论.【解答】解:∵y=ax2+bx+c的图象的开口向上,∴a>0,页脚内容21∵对称轴在y轴的左侧,∴b>0,∴一次函数y=ax+b的图象经过一,二,三象限.故选A.13.(3分)(2016•泰安)某机加工车间共有26名工人,现要加工2100个A零件,1200个B零件,已知每人每天加工A零件30个或B零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件)?设安排x人加工A零件,由题意列方程得()A .=B .=C .=D .×30=×20【分析】直接利用现要加工2100个A零件,1200个B零件,同时完成两种零件的加工任务,进而得出等式即可.【解答】解:设安排x人加工A零件,由题意列方程得:=.故选:A.14.(3分)(2016•泰安)当x 满足时,方程x2﹣2x﹣5=0的根是()A.1±B .﹣1 C.1﹣D.1+页脚内容22【分析】先求出不等式组的解,再求出方程的解,根据范围即可确定x的值.【解答】解:,解得:2<x<6,∵方程x2﹣2x﹣5=0,∴x=1±,∵2<x<6,∴x=1+.故选D.15.(3分)(2016•泰安)在﹣2,﹣1,0,1,2这五个数中任取两数m,n,则二次函数y=(x﹣m)2+n 的顶点在坐标轴上的概率为()A .B .C .D .【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及坐标轴上的点的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:页脚内容23∵﹣2,﹣1,0,1,2这五个数中任取两数m,n,一共有20种可能,其中取到0的有8种可能,∴顶点在坐标轴上的概率为=.故选A.16.(3分)(2016•泰安)如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在西偏南68°方向上,航行2小时后到达N处,观测灯塔P在西偏南46°方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68°=0.9272,sin46°=0.7193,sin22°=0.3746,sin44°=0.6947)()A.22.48 B.41.68 C.43.16 D.55.63页脚内容24【分析】过点P作PA⊥MN于点A,则若该船继续向南航行至离灯塔距离最近的位置为PA的长度,利用锐角三角函数关系进行求解即可【解答】解:如图,过点P作PA⊥MN于点A,MN=30×2=60(海里),∵∠MNC=90°,∠CPN=46°,∴∠MNP=∠MNC+∠CPN=136°,∵∠BMP=68°,∴∠PMN=90°﹣∠BMP=22°,∴∠MPN=180°﹣∠PMN﹣∠PNM=22°,∴∠PMN=∠MPN,∴MN=PN=60(海里),∵∠CNP=46°,∴∠PNA=44°,页脚内容25∴PA=PN•sin∠PNA=60×0.6947≈41.68(海里)故选:B.17.(3分)(2016•泰安)如图,△ABC内接于⊙O,AB是⊙O的直径,∠B=30°,CE平分∠ACB交⊙O于E,交AB于点D,连接AE,则S△ADE:S△CDB的值等于()A.1:B.1:C.1:2 D.2:3【分析】由AB是⊙O的直径,得到∠ACB=90°,根据已知条件得到,根据三角形的角平分线定理得到=,求出AD=AB,BD=AB,过C作CF⊥AB于F,连接OE,由CE平分∠ACB 交⊙O于E,得到OE⊥AB,求出OE=AB,CF=AB,根据三角形的面积公式即可得到结论.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠B=30°,∴,∵CE平分∠ACB交⊙O于E,∴=,页脚内容26∴AD=AB,BD=AB,过C作CF⊥AB于F,连接OE,∵CE平分∠ACB交⊙O于E,∴=,∴OE⊥AB,∴OE=AB,CF=AB,∴S△ADE:S△CDB=(AD•OE):(BD•CF)=():()=2:3.故选D.18.(3分)(2016•泰安)如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()页脚内容27A.44°B.66°C.88°D.92°【分析】根据等腰三角形的性质得到∠A=∠B,证明△AMK≌△BKN,得到∠AMK=∠BKN,根据三角形的外角的性质求出∠A=∠MKN=44°,根据三角形内角和定理计算即可.【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.19.(3分)(2016•泰安)当1≤x≤4时,mx﹣4<0,则m的取值范围是()A.m>1 B.m<1 C.m>4 D.m<4【分析】设y=mx﹣4,根据题意列出一元一次不等式,解不等式即可.页脚内容28【解答】解:设y=mx﹣4,由题意得,当x=1时,y<0,即m﹣4<0,解得m<4,当x=4时,y<0,即4m﹣4<0,解得,m<1,则m的取值范围是m<1,故选:B.20.(3分)(2016•泰安)如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()A .B .C .D .页脚内容29【分析】由△ABC是正三角形,∠APD=60°,可证得△BPD∽△CAP,然后由相似三角形的对应边成比例,即可求得答案.【解答】解:∵△ABC是正三角形,∴∠B=∠C=60°,∵∠BPD+∠APD=∠C+∠CAP,∠APD=60°,∴∠BPD=∠CAP,∴△BPD∽△CAP,∴BP:AC=BD:PC,∵正△ABC的边长为4,BP=x,BD=y,∴x:4=y:(4﹣x),∴y=﹣x2+x.故选C.二、填空题(本大题共4小题,满分12分.只要求填写最后结果,每小题填对得3分,)21.(3分)(2016•泰安)将抛物线y=2(x﹣1)2+2向左平移3个单位,再向下平移4个单位,那么得到的抛物线的表达式为y=2(x+2)2﹣2.【分析】按照“左加右减,上加下减”的规律求得即可.页脚内容30【解答】解:抛物线y=2(x﹣1)2+2向左平移3个单位,再向下平移4个单位得到y=2(x﹣1+3)2+2﹣4=2(x+2)2﹣2.故得到抛物线的解析式为y=2(x+2)2﹣2.故答案为:y=2(x+2)2﹣2.22.(3分)(2016•泰安)如图,半径为3的⊙O与Rt△AOB的斜边AB切于点D,交OB于点C,连接CD 交直线OA于点E,若∠B=30°,则线段AE 的长为.【解答】解:连接OD,如右图所示,由已知可得,∠BOA=90°,OD=OC=3,∠B=30°,∠ODB=90°,∴BO=2OD=6,∠BOD=60°,∴∠ODC=∠OCD=60°,AO=BO•tan30°=,∵∠COE=90°,OC=3,∴OE=OC•tan60°=,∴AE=OE﹣OA=,页脚内容31故答案为:.23.(3分)(2016•泰安)如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC.于点F,则△BOF 的面积为【解答】解:∵四边形ABCD是矩形,∴∠A=90°,又AB=6,AD=BC=8,∴BD==10,∵EF是BD的垂直平分线,∴OB=OD=5,∠BOF=90°,又∠C=90°,∴△BOF∽△BCD,页脚内容32∴=,即=,解得,BF=,则OF==,则△BOF的面积=×OF×OB=,故答案为:.24.(3分)(2016•泰安)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n﹣1B n顶点B n的横坐标为2n+1﹣2.【分析】先求出B1、B2、B3…的坐标,探究规律后,即可根据规律解决问题.【解答】解:由题意得OA=OA1=2,∴OB1=OA1=2,B1B2=B1A2=4,B2A3=B2B3=8,页脚内容33∴B1(2,0),B2(6,0),B3(14,0)…,2=22﹣2,6=23﹣2,14=24﹣2,…∴B n的横坐标为2n+1﹣2.故答案为2n+1﹣2.三、解答题(共5小题,满分48分.解答应写出必要的文字说明、证明过程或推演步骤)25.(8分)(2016•泰安)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的负半轴上,点D、M分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过点D和M,反比例函数y=的图象经过点D,与BC的交点为N.(1)求反比例函数和一次函数的表达式;(2)若点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P的坐标.页脚内容34【分析】(1)由正方形OABC的顶点C坐标,确定出边长,及四个角为直角,根据AD=2DB,求出AD的长,确定出D坐标,代入反比例解析式求出m的值,再由AM=2MO,确定出MO的长,即M坐标,将M 与D坐标代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;(2)把y=3代入反比例解析式求出x的值,确定出N坐标,得到NC的长,设P(x,y),根据△OPM 的面积与四边形OMNC的面积相等,求出y的值,进而得到x的值,确定出P坐标即可.【解答】解:(1)∵正方形OABC的顶点C(0,3),∴OA=AB=BC=OC=3,∠OAB=∠B=∠BCO=90°,∵AD=2DB,∴AD=AB=2,∴D(﹣3,2),把D坐标代入y=得:m=﹣6,∴反比例解析式为y=﹣,∵AM=2MO,∴MO=OA=1,即M(﹣1,0),把M与D坐标代入y=kx+b 中得:,解得:k=b=﹣1,则直线DM解析式为y=﹣x﹣1;页脚内容35(2)把y=3代入y=﹣得:x=﹣2,∴N(﹣2,3),即NC=2,设P(x,y),∵△OPM的面积与四边形OMNC的面积相等,∴(OM+NC)•OC=OM|y|,即|y|=9,解得:y=±9,当y=9时,x=﹣10,当y=﹣9时,x=8,则P坐标为(﹣10,9)或(8,﹣9).26.(8分)(2016•泰安)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【分析】(1)设直拍球拍每副x元,横拍球每副y元,根据题意列出二元一次方程组,解方程组即可;(2)设购买直拍球拍m副,根据题意列出不等式,解不等式求出m的范围,根据题意列出费用关于m的一次函数,根据一次函数的性质解答即可.页脚内容36【解答】解:(1)设直拍球拍每副x元,横拍球每副y元,由题意得,,解得,,答:直拍球拍每副220元,横拍球每副260元;(2)设购买直拍球拍m副,则购买横拍球(40﹣m)副,由题意得,m≤3(40﹣m),解得,m≤30,设买40副球拍所需的费用为w,则w=(220+20)m+(260+20)(40﹣m)=﹣40m+11200,∵﹣40<0,∴w随m的增大而减小,∴当m=30时,w取最小值,最小值为﹣40×30+11200=10000(元).答:购买直拍球拍30副,则购买横拍球10副时,费用最少.27.(10分)(2016•泰安)如图,在四边形ABCD中,AC平分∠BCD,AC⊥AB,E是BC的中点,AD⊥AE.(1)求证:AC2=CD•BC;页脚内容37(2)过E作EG⊥AB,并延长EG至点K,使EK=EB.①若点H是点D关于AC的对称点,点F为AC的中点,求证:FH⊥GH;②若∠B=30°,求证:四边形AKEC是菱形.【分析】(1)欲证明AC2=CD•BC,只需推知△ACD∽△BCA即可;(2)①连接AH.构建直角△AHC,利用直角三角形斜边上的中线等于斜边的一半、等腰对等角以及等量代换得到:∠FHG=∠CAB=90°,即FH⊥GH;②利用“在直角三角形中,30度角所对的直角边等于斜边的一半”、“直角三角形斜边上的中线等于斜边的一半”推知四边形AKEC的四条边都相等,则四边形AKEC是菱形.【解答】证明:(1)∵AC平分∠BCD,∴∠DCA=∠ACB.又∵AC⊥AB,AD⊥AE,∴∠DAC+∠CAE=90°,∠CAE+∠EAB=90°,∴∠DAC=∠EAB.又∵E是BC的中点,页脚内容38∴AE=BE,∴∠EAB=∠ABC,∴∠DAC=∠ABC,∴△ACD∽△BCA,∴=,∴AC2=CD•BC;(2)①证明:连接AH.∵∠ADC=∠BAC=90°,点H、D关于AC对称,∴AH⊥BC.∵EG⊥AB,AE=BE,∴点G是AB的中点,∴HG=AG,∴∠GAH=GHA.∵点F为AC的中点,∴AF=FH,∴∠HAF=∠FHA,页脚内容39∴∠FHG=∠AHF+∠AHG=∠FAH+∠HAG=∠CAB=90°,∴FH⊥GH;②∵EK⊥AB,AC⊥AB,∴EK∥AC,又∵∠B=30°,∴AC=BC=EB=EC.又EK=EB,∴EK=AC,即AK=KE=EC=CA,∴四边形AKEC是菱形.28.(10分)(2016•泰安)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;页脚内容40(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行与y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.【分析】(1)设出抛物线解析式,用待定系数法求解即可;(2)先求出直线AB解析式,设出点P坐标(x,﹣x2+4x+5),建立函数关系式S四边形APCD=﹣2x2+10x,根据二次函数求出极值;(3)先判断出△HMN≌△AOE,求出M点的横坐标,从而求出点M,N的坐标.【解答】解:(1)设抛物线解析式为y=a(x﹣2)2+9,∵抛物线与y轴交于点A(0,5),∴4a+9=5,∴a=﹣1,页脚内容41y=﹣(x﹣2)2+9=﹣x2+4x+5,(2)当y=0时,﹣x2+4x+5=0,∴x1=﹣1,x2=5,∴E(﹣1,0),B(5,0),设直线AB的解析式为y=mx+n,∵A(0,5),B(5,0),∴m=﹣1,n=5,∴直线AB的解析式为y=﹣x+5;设P(x,﹣x2+4x+5),∴D(x,﹣x+5),∴PD=﹣x2+4x+5+x﹣5=﹣x2+5x,∵AC=4,=×AC×PD=2(﹣x2+5x)=﹣2x2+10x,∴S四边形APCD∴当x=﹣=时,∴S=,四边形APCD最大(3)如图,页脚内容42过M作MH垂直于对称轴,垂足为H,∵MN∥AE,MN=AE,∴△HMN≌△AOE,∴HM=OE=1,∴M点的横坐标为x=3或x=1,当x=1时,M点纵坐标为8,当x=3时,M点纵坐标为8,∴M点的坐标为M1(1,8)或M2(3,8),∵A(0,5),E(﹣1,0),∴直线AE解析式为y=5x+5,∵MN∥AE,页脚内容43∴MN的解析式为y=5x+b,∵点N在抛物线对称轴x=2上,∴N(2,10+b),∵AE2=OA2+0E2=26∵MN=AE∴MN2=AE2,∴MN2=(2﹣1)2+[8﹣(10+b)]2=1+(b+2)2∵M点的坐标为M1(1,8)或M2(3,8),∴点M1,M2关于抛物线对称轴x=2对称,∵点N在抛物线对称轴上,∴M1N=M2N,∴1+(b+2)2=26,∴b=3,或b=﹣7,∴10+b=13或10+b=3∴当M点的坐标为(1,8)时,N点坐标为(2,13),当M点的坐标为(3,8)时,N点坐标为(2,3),页脚内容4429.(12分)(2016•泰安)(1)已知:△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由;(3)若将(1)中的“若∠A=60°”改为“若∠A=90°”,其它条件不变,则的值是多少?(直接写出结论,不要求写解答过程)【分析】(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明△DBE≌△CFD,得出EB=DF,即可得出结论;(2)作DF∥BC交AC的延长线于F,同(1)证出△DBE≌△CFD,得出EB=DF,即可得出结论;(3)作DF∥BC交AC于F,同(1)得:△DBE≌△CFD,得出EB=DF,证出△ADF是等腰直角三角形,得出DF=AD,即可得出结果.【解答】(1)证明:作DF∥BC交AC于F,如图1所示:则∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,∵△ABC是等腰三角形,∠A=60°,页脚内容45∴△ABC是等边三角形,∴∠ABC=∠ACB=60°,∴∠DBE=120°,∠ADF=∠AFD=60°=∠A,∴△ADF是等边三角形,∠DFC=120°,∴AD=DF,∵∠DEC=∠DCE,∴∠FDC=∠DEC,ED=CD,在△DBE和△CFD 中,,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD;(2)解:EB=AD成立;理由如下:作DF∥BC交AC的延长线于F,如图2所示:同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,又∵∠DBE=∠DFC=60°,∴在△DBE和△CFD 中,,页脚内容46∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD;(3)解:=;理由如下:作DF∥BC交AC于F,如图3所示:同(1)得:△DBE≌△CFD(AAS),∴EB=DF,∵△ABC是等腰直角三角形,DF∥BC,∴△ADF是等腰直角三角形,∴DF=AD,∴=,∴=.页脚内容47页脚内容48参与本试卷答题和审题的老师有:1286697702;sd2011;zcx;三界无我;王学峰;wdzyzmsy@;zgm666;gbl210;弯弯的小河;sdwdmahongye;nhx600;sks;星月相随(排名不分先后)菁优网2016年9月21日页脚内容49。

2016年中考数学二模试卷(带答案)

2016年中考数学二模试卷(带答案)

2016年中考数学二模试卷一、选择题:本大题共12小题,每题3分,共36分.1.﹣8的立方根是()A.2 B.2C.﹣D.﹣22.统计显示,2013年底某市各类高中在校学生人数约是11.4万人,将11.4万用科学记数法表示应为()A.11.4×104 B.1.14×104 C.1.14×105 D.0.114×1063.函数中自变量x的取值范围是()A.x≥2 B.x≥﹣2 C.x<2 D.x<﹣24.下列计算正确的是()A.a2+a2=2a4 B.3a2b2÷a2b2=3abC.(﹣a2)2=a4D.(﹣m3)2=m95.抛物线y=﹣6x2可以看作是由抛物线y=﹣6x2+5按下列何种变换得到()A.向上平移5个单位 B.向下平移5个单位C.向左平移5个单位 D.向右平移5个单位6.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为()A.12米B.4米C.5米D.6米7.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB 于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为()A.4﹣π B.4﹣2πC.8+πD.8﹣2π8.按一定规律排列的一列数:,,,…其中第6个数为()A.B.C.D.9.在一次体育达标测试中,九年级(3)班的15名男同学的引体向上成绩如下表所示:成绩(个)8 9 11 12 13 15人数 1 2 3 4 3 2这15名男同学引体向上成绩的中位数和众数分别是()A.12,13 B.12,12 C.11,12 D.3,410.下列四个命题:①对角线互相垂直的平行四边形是正方形;②,则m≥1;③过弦的中点的直线必经过圆心;④圆的切线垂直于经过切点的半径;⑤圆的两条平行弦所夹的弧相等;其中正确的命题有()个.A.1 B.2 C.3 D.411.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4 C.2D.412.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A.4 B.3 C.2 D.1二、填空题:每题3分,共24分.13.计算:(﹣)=.14.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n=.15.=.16.折叠矩形ABCD,使点D落在BC边上的点F处,若折痕AE=5,tan∠EFC=,则BC=.17.如图,Rt△A′BC′是由Rt△ABC绕B点顺时针旋转而得,且点A、B、C′在同一条直线上,在Rt△ABC中,若∠C=90°,BC=2,AB=4,则斜边AB旋转到A′B所扫过的扇形面积为.18.关于x的不等式组的解集为x<3,那么m的取值范围是.19.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E=.20.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H.给出下列结论:①△ABE≌△DCF;②;③DP2=PH•PB;④.其中正确的是.(写出所有正确结论的序号)三、解答题:本大题共6小题,共60分.21.(8分)某校课题研究小组对本校九年级全体同学体育测试情况进行调查,他们随即抽查部分同学体育测试成绩(由高到低分A、B、C、D四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了名同学的体育测试成绩,扇形统计图中B级所占的百分比b=,D级所在小扇形的圆心角的大小为;(2)请直接补全条形统计图;(3)若该校九年级共有600名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)的人数.22.(8分)海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B在海船的北偏西45°方向,求此时灯塔B到C处的距离.23.(12分)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.24.(8分)如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.(1)求证:直线CD为⊙O的切线;(2)若AB=5,BC=4,求线段CD的长.25.(12分)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA匀速移动,当△DEF的顶点D 移动到AC 边上时,△DEF 停止移动,点P 也随之停止移动,DE 与AC 相交于点Q ,连接PQ ,设移动时间为t (s )(0<t <4.5). 解答下列问题:(1)当t 为何值时,点A 在线段PQ 的垂直平分线上?(2)连接PE ,设四边形APEC 的面积为y (cm 2),求y 与t 之间的函数关系式,是否存在某一时刻t ,使面积y 最小?若存在,求出y 的最小值;若不存在,说明理由; (3)是否存在某一时刻t ,使P 、Q 、F 三点在同一条直线上?若存在,求出此时t 的值;若不存在,说明理由.26.(12分)如图所示,抛物线y=ax 2+c (a >0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上,其中A (﹣2,0),B (﹣1,﹣3). (1)求抛物线的解析式;(2)点M 为y 轴上任意一点,当点M 到A ,B 两点的距离之和为最小时,求此时点M 的坐标;(3)在第(2)问的结论下,抛物线上的点P 使S △PAD =4S △ABM 成立,求点P 的坐标.2016年内蒙古包头市昆都仑区中考数学二模试卷参考答案与试题解析一、选择题:本大题共12小题,每题3分,共36分.1.﹣8的立方根是()A.2 B.2C.﹣D.﹣2【考点】立方根.【分析】直接利用立方根的定义分析得出答案.【解答】解:﹣8的立方根是:﹣2.故选:D.【点评】此题主要考查了立方根,正确把握立方根的定义是解题关键.2.统计显示,2013年底某市各类高中在校学生人数约是11.4万人,将11.4万用科学记数法表示应为()A.11.4×104 B.1.14×104 C.1.14×105 D.0.114×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:11.4万=1.14×105,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.函数中自变量x的取值范围是()A.x≥2 B.x≥﹣2 C.x<2 D.x<﹣2【考点】函数自变量的取值范围;二次根式有意义的条件.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.【解答】解:依题意,得x+2≥0,解得x≥﹣2,故选B.【点评】注意二次根式的被开方数是非负数.4.下列计算正确的是()A.a2+a2=2a4 B.3a2b2÷a2b2=3abC.(﹣a2)2=a4D.(﹣m3)2=m9【考点】整式的除法;合并同类项;幂的乘方与积的乘方.【分析】分别利用合并同类项法则以及单项式除以单项式运算法则和积的乘方运算法则化简,进而判断得出答案.【解答】解:A、a2+a2=2a2,故此选项错误;B、3a2b2÷a2b2=3,故此选项错误;C、(﹣a2)2=a4,正确;D、(﹣m3)2=m6,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及单项式除以单项式运算和积的乘方运算等知识,正确掌握相关运算法则是解题关键.5.抛物线y=﹣6x2可以看作是由抛物线y=﹣6x2+5按下列何种变换得到()A.向上平移5个单位 B.向下平移5个单位C.向左平移5个单位 D.向右平移5个单位【考点】二次函数图象与几何变换.【分析】先得到两个抛物线的顶点坐标,然后根据顶点坐标判断平移的方向和单位长度.【解答】解:∵y=﹣6x2+5的顶点坐标为(0,5),而抛物线y=﹣6x2的顶点坐标为(0,0),∴把抛物线y=﹣6x2+5向下平移5个单位可得到抛物线y=﹣6x2.故选B.【点评】本题考查了抛物线的几何变换:抛物线的平移问题可转化为其顶点的平移问题,抛物线的顶点式:y=a(x﹣h)2+k(a≠0),则抛物线的顶点坐标为(h,k).6.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为()A.12米B.4米C.5米D.6米【考点】解直角三角形的应用-坡度坡角问题.【分析】根据迎水坡AB的坡比为1:,可得=1:,即可求得AC的长度,然后根据勾股定理求得AB的长度.【解答】解:Rt△ABC中,BC=6米,=1:,∴AC=BC×=6,∴AB===12.故选A.【点评】此题主要考查解直角三角形的应用,构造直角三角形解直角三角形并且熟练运用勾股定理是解答本题的关键.7.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB 于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为()A.4﹣π B.4﹣2πC.8+πD.8﹣2π【考点】扇形面积的计算;切线的性质.【分析】根据圆周角定理可以求得∠A的度数,即可求得扇形EAF的面积,根据阴影部分的面积=△ABC的面积﹣扇形EAF的面积即可求解.【解答】解:△ABC的面积是:BC•AD=×4×2=4,∠A=2∠EPF=90°.则扇形EAF的面积是:=π.故阴影部分的面积=△ABC的面积﹣扇形EAF的面积=4﹣π.故选A.【点评】本题主要考查了扇形面积的计算,正确求得扇形的圆心角是解题的关键.8.按一定规律排列的一列数:,,,…其中第6个数为()A.B.C.D.【考点】算术平方根.【分析】观察这列数,得到分子和分母的规律,进而得到答案.【解答】解:根据一列数:,,,可知,第n个数分母是n,分子是n2﹣1的算术平方根,据此可知:第六个数是,故选C.【点评】此题考查了数字的变化类,从分子、分母两个方面考虑求解是解题的关键,难点在于观察出分子的变化.9.在一次体育达标测试中,九年级(3)班的15名男同学的引体向上成绩如下表所示:成绩(个)8 9 11 12 13 15人数 1 2 3 4 3 2这15名男同学引体向上成绩的中位数和众数分别是()A.12,13 B.12,12 C.11,12 D.3,4【考点】众数;中位数.【分析】根据中位数与众数的定义,从小到大排列后,中位数是第8个数,众数是出现次数最多的一个,解答即可.【解答】解:第8个数是12,所以中位数为12;12出现的次数最多,出现了4次,所以众数为12,故选B.【点评】本题主要考查众数与中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数.10.下列四个命题:①对角线互相垂直的平行四边形是正方形;②,则m≥1;③过弦的中点的直线必经过圆心;④圆的切线垂直于经过切点的半径;⑤圆的两条平行弦所夹的弧相等;其中正确的命题有()个.A.1 B.2 C.3 D.4【考点】命题与定理.【分析】利用正方形的判定方法、垂径定理及其推理、圆的有关性质等知识分别判断后即可确定正确的选项.【解答】解:①对角线互相垂直的平行四边形是菱形,故错误;②,则m≥1,正确;③过弦的中点的且垂直于弦的直线必经过圆心,故错误;④圆的切线垂直于经过切点的半径,正确;⑤圆的两条平行弦所夹的弧相等,正确,正确的有3个,故选C;【点评】本题考查了命题与定理的知识,解题的关键是了解正方形的判定方法、垂径定理及其推理、圆的有关性质等知识,难度不大.11.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4 C.2D.4【考点】菱形的性质;反比例函数图象上点的坐标特征.【分析】过点A作x轴的垂线,与CB的延长线交于点E,根据A,B两点的纵坐标分别为3,1,可得出横坐标,即可求得AE,BE,再根据勾股定理得出AB,根据菱形的面积公式:底乘高即可得出答案.【解答】解:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S=底×高=2×2=4,菱形ABCD故选D.【点评】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.12.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A.4 B.3 C.2 D.1【考点】二次函数图象与系数的关系.【分析】由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x轴的交点个数得到b2﹣4ac>0,加上a<0,则可对②进行判断;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,两边除以c则可对③进行判断;设A(x1,0),B(x2,0),则OA=﹣x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到x1•x2=,于是OA•OB=﹣,则可对④进行判断.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,而a<0,∴<0,所以②错误;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正确;设A(x1,0),B(x2,0),∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,∴x1•x2=,∴OA•OB=﹣,所以④正确.故选:B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab >0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题:每题3分,共24分.13.计算:(﹣)=﹣.【考点】分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=﹣•=﹣.故答案为:﹣.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.14.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n=1.【考点】概率公式.【分析】根据白球的概率公式列出关于n的方程,求出n的值即可.【解答】解:由题意知:,解得n=1.【点评】用到的知识点为:概率=所求情况数与总情况数之比.15.=5.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】分别根据数的开方法则、0指数幂的运算法则、特殊角的三角函数值及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2﹣4×+1+4=2﹣2+5=5.故答案为:5.【点评】本题考查的是实数的运算,熟知数的开方法则、0指数幂的运算法则、特殊角的三角函数值及绝对值的性质是解答此题的关键.16.折叠矩形ABCD,使点D落在BC边上的点F处,若折痕AE=5,tan∠EFC=,则BC=10.【考点】矩形的性质;翻折变换(折叠问题).【分析】根据tan∠EFC=,设CE=3k,在RT△EFC中可得CF=4k,EF=DE=5k,根据∠BAF=∠EFC,利用三角函数的知识求出AF,然后在RT△AEF中利用勾股定理求出k,继而代入可得出答案.【解答】解:设CE=3k,则CF=4k,由勾股定理得EF=DE==5k,∴DC=AB=8k,∵∠AFB+∠BAF=90°,∠AFB+∠EFC=90°,∴∠BAF=∠EFC,∴tan∠BAF=tan∠EFC=,∴BF=6k,AF=BC=AD=10k,在Rt△AFE中,由勾股定理得AE===5k=5,解得:k=1,∴BC=10×1=10;故答案为:10.【点评】此题考查了翻折变换的性质、矩形的性质、勾股定理;解答本题关键是根据三角函数值,表示出每条线段的长度,然后利用勾股定理进行解答,有一定难度.17.如图,Rt△A′BC′是由Rt△ABC绕B点顺时针旋转而得,且点A、B、C′在同一条直线上,在Rt△ABC中,若∠C=90°,BC=2,AB=4,则斜边AB旋转到A′B所扫过的扇形面积为.【考点】扇形面积的计算.【分析】根据题意可知斜边AB旋转到A'B所扫过的扇形面积为扇形ABA′的面积,根据扇形面积公式计算即可.【解答】解:AB=4,∠ABA′=120°,所以s==π.【点评】主要考查了扇形面积的求算方法.面积公式有两种:(1)、利用圆心角和半径:s=;(2)、利用弧长和半径:s=lr.针对具体的题型选择合适的方法.18.关于x的不等式组的解集为x<3,那么m的取值范围是m≥3.【考点】解一元一次不等式组.【分析】首先解第一个不等式,然后根据不等式组的解集即可确定m的范围.【解答】解:,解①得x<3,∵不等式组的解集是x<3,∴m≥3.故答案是:m≥3.【点评】本题考查了一元一次不等式组的解法,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E=50°.【考点】切线的性质.【分析】连接DF,连接AF交CE于G,由AB是⊙O的直径,且经过弦CD的中点H,得到,由于EF是⊙O的切线,推出∠GFE=∠GFD+∠DFE=∠ACF=65°根据外角的性质和圆周角定理得到∠EFG=∠EGF=65°,于是得到结果.【解答】解:连接DF,连接AF交CE于G,∵AB是⊙O的直径,且经过弦CD的中点H,∴,∵EF是⊙O的切线,∴∠GFE=∠GFD+∠DFE=∠ACF=65°,∵∠FGD=∠FCD+∠CFA,∵∠DFE=∠DCF,∠GFD=∠AFC,∠EFG=∠EGF=65°,∴∠E=180°﹣∠EFG﹣∠EGF=50°,故答案为:50°.方法二:连接OF,易知OF⊥EF,OH⊥EH,故E,F,O,H四点共圆,又∠AOF=2∠ACF=130°,故∠E=180°﹣130°=50°【点评】本题考查了切线的性质,圆周角定理,垂径定理,正确的作出辅助线是解题的关键.20.如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连接BD 、DP ,BD 与CF 相交于点H .给出下列结论: ①△ABE ≌△DCF ;②;③DP 2=PH •PB ;④.其中正确的是 ①③ .(写出所有正确结论的序号)【考点】相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质;正方形的性质.【分析】①根据等边三角形的性质和正方形的性质,得到∠ABE=∠DCF ,∠A=∠ADC ,AB=CD ,证得△ABE ≌△DCF ,①正确;②由于∠FDP=∠PBD ,∠DFP=∠BPC=60°,推出△DFP ∽△BPH ,得到===tan∠DCF=,②错误;③由于∠PDH=∠PCD=30°,∠DPH=∠DPC ,推出△DPH ∽△CPD ,得到=,PB=CD ,等量代换得到DP 2=PH •PB ,③正确;④设正方形ABCD 的边长是3,则PB=BC=AD=3,求得∠EBA=30°,得出AE 、BE 、EP 的长,由S △BED =S ABD ﹣S ABE ,S △EPD =S △BED ,求得=,④错误;即可得出结论.【解答】解:①∵△BPC 是等边三角形, ∴BP=PC=BC ,∠PBC=∠PCB=∠BPC=60°, ∵四边形ABCD 为正方形,∴AB=BC=CD ,∠A=∠ADC=∠BCD=90° ∴∠ABE=∠DCF=30°, 在△ABE 与△CDF 中,,∴△ABE ≌△DCF (ASA ),故①正确;②∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠FCB=∠BPC=60°,∴△DFP∽△BPH,∴===tan∠DCF=,故②错误;③∵∠FDP=15°,∴∠PDH=30°∴∠PDH=∠PCD,∵∠DPH=∠DPC,∴△DPH∽△CDP,∴=,∴DP2=PH•CD,∵PB=CD,∴DP2=PH•PB,故③正确;④设正方形ABCD的边长是3,∵△BPC为正三角形,∴∠PBC=60°,PB=BC=AD=3,∴∠EBA=30°,∴AE=ABtan30°=3×=,BE===2,∴EP=BE﹣BP=2﹣3,S=S ABD﹣S ABE=×3×3﹣×3×=,△BEDS △EPD =S △BED =×=,∴==,故④错误;∴正确的是①③; 故答案为:①③.【点评】本题考查了相似三角形的判定与性质、全等三角形的判定、等边三角形的性质、正方形的性质、三角形面积计算、三角函数等知识;熟练掌握相似三角形的判定与性质、三角形面积计算、三角函数是解决问题的关键.三、解答题:本大题共6小题,共60分.21.某校课题研究小组对本校九年级全体同学体育测试情况进行调查,他们随即抽查部分同学体育测试成绩(由高到低分A 、B 、C 、D 四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了 80 名同学的体育测试成绩,扇形统计图中B 级所占的百分比b= 40% ,D 级所在小扇形的圆心角的大小为 18° ; (2)请直接补全条形统计图;(3)若该校九年级共有600名同学,请估计该校九年级同学体育测试达标(测试成绩C 级以上,含C 级)的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据A 组人数及其百分比可得抽查总人数,将B 级人数除以总人数可得其百分比,用D 等级人数占被抽查人数的比例乘以360°即可;(2)总人数减去A 、B 、D 三等级人数可得C 等级人数,补全条形图即可;(3)用样本中C等级及其以上(即A、B、C三等级)人数占被抽查人数的比例乘以总人数600可得.【解答】解:(1)课题研究小组共抽查学生:20÷25%=80(名),b=×100%=40%,D级所在小扇形的圆心角的大小为×360°=18°;故答案为:80,40%,18.(2)C等级人数为:80﹣20﹣32﹣4=24(名),补全条形统计图如图:(3)600×=570(人),答:估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)的约有570人.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意,从统计图中得到必要的信息是解决问题的关键.22.海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B在海船的北偏西45°方向,求此时灯塔B到C 处的距离.【考点】解直角三角形的应用-方向角问题.【分析】由已知可得△ABC中∠BAC=30°,∠BCA=45°且AC=10海里.要求BC的长,可以过B作BD⊥BC于D,先求出AD和CD的长.转化为运用三角函数解直角三角形.【解答】解:如图,过B点作BD⊥AC于D.∴∠DAB=90°﹣60°=30°,∠DCB=90°﹣45°=45°.设BD=x,在Rt△ABD中,AD==x,在Rt△BDC中,BD=DC=x,BC=,∵AC=5×2=10,∴x+x=10.得x=5(﹣1).∴BC=•5(﹣1)=5(﹣)(海里).答:灯塔B距C处海里.【点评】解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.23.(12分)(2016•包头二模)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.【考点】二次函数的应用;一次函数的应用.【分析】(1)设y=kx+b,则由图象可求得k,b,从而得出y与x之间的函数关系式,并写出x的取值范围100≤x≤180;(2)设公司第一年获利W万元,则可表示出W=﹣(x﹣180)2﹣60≤﹣60,则第一年公司亏损了,当产品售价定为180元/件时,亏损最小,最小亏损为60万元;(3)假设两年共盈利1340万元,则﹣x2+36x﹣1800﹣60=1340,解得x的值,根据100≤x≤180,则x=160时,公司两年共盈利达1340万元.【解答】解:(1)设y=kx+b,则由图象知:,解得k=﹣,b=30,∴y=﹣x+30,100≤x≤180;(2)设公司第一年获利W万元,则W=(x﹣60)y﹣1500=﹣x2+36x﹣3300=﹣(x﹣180)2﹣60≤﹣60,∴第一年公司亏损了,当产品售价定为180元/件时,亏损最小,最小亏损为60万元;(3)若两年共盈利1340万元,因为第一年亏损60万元,第二年盈利的为(x﹣60)y=﹣x2+36x﹣1800,则﹣x2+36x﹣1800﹣60=1340,解得x1=200,x2=160,∵100≤x≤180,∴x=160,∴每件产品的定价定为160元时,公司两年共盈利达1340万元.【点评】本题是一道一次函数的综合题,考查了二次函数的应用,还考查了用待定系数法求一次函数的解析式.24.如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.(1)求证:直线CD为⊙O的切线;(2)若AB=5,BC=4,求线段CD的长.【考点】切线的判定.【分析】(1)利用圆周角定理结合等腰三角形的性质得出∠OCF+∠DCB=90°,即可得出答案;(2)利用圆周角定理得出∠ACB=90°,利用相似三角形的判定与性质得出DC的长.【解答】(1)证明:连接OC,∵∠CEA=∠CBA,∠AEC=∠ODC,∴∠CBA=∠ODC,又∵∠CFD=∠BFO,∴∠DCB=∠BOF,∵CO=BO,∴∠OCF=∠B,∵∠B+∠BOF=90°,∴∠OCF+∠DCB=90°,∴直线CD为⊙O的切线;(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠DCO=∠ACB,又∵∠D=∠B∴△OCD∽△ACB,∵∠ACB=90°,AB=5,BC=4,∴AC=3,∴=,即=,解得;DC=.【点评】此题主要考查了切线的判定以及相似三角形的判定与性质,得出△OCD∽△ACB 是解题关键.25.(12分)(2016•昆都仑区二模)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s 的速度沿BA匀速移动,当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动,DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5).解答下列问题:(1)当t为何值时,点A在线段PQ的垂直平分线上?(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式,是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由;(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.【考点】三角形综合题.【分析】(1)因为点A在线段PQ垂直平分线上,所以得到线段相等,可得CE=CQ,用含t的式子表示出这两个线段即可得解;(2)作PM⊥BC,将四边形的面积表示为S△ABC ﹣S△BPE即可求解;(3)假设存在符合条件的t值,由相似三角形的性质即可求得.【解答】解:(1)∵点A在线段PQ的垂直平分线上,∴AP=AQ;∵∠DEF=45°,∠ACB=90°,∠DEF+∠ACB+∠EQC=180°,∴∠EQC=45°;∴∠DEF=∠EQC;∴CE=CQ;由题意知:CE=t,BP=2t,∴CQ=t;∴AQ=8﹣t;在Rt△ABC中,由勾股定理得:AB=10cm;则AP=10﹣2t;∴10﹣2t=8﹣t;解得:t=2;答:当t=2s时,点A在线段PQ的垂直平分线上;(2)如图1,过P作PM⊥BE,交BE于M,∴∠BMP=90°;在Rt△ABC和Rt△BPM中,sinB=,∴=,∴PM=,∵BC=6cm,CE=t,∴BE=6﹣t,∴y=S△ABC ﹣S△BPE=BC•AC﹣BE•PM=6×8﹣(6﹣t)×t=t2﹣t+24=(t﹣3)2+,∵a=,∴抛物线开口向上;∴当t=3时,y最小=;答:当t=3s时,四边形APEC的面积最小,最小面积为cm2.(3)假设存在某一时刻t,使点P、Q、F三点在同一条直线上;如图2,过P作PN⊥AC,交AC于N∴∠ANP=∠ACB=∠PNQ=90°;∵∠PAN=∠BAC,∴△PAN∽△BAC,∴,∴,∴PN=6﹣tAN=8﹣t,∵NQ=AQ﹣AN,。

山东省泰安市2016年中考数学模拟试卷(二)含答案解析

山东省泰安市2016年中考数学模拟试卷(二)含答案解析

山东省泰安市2016年中考数学模拟试卷(二)(解析版)一、选择题:本大题共20小题,每小题3分,共60分1.如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是()A.点A B.点B C.点C D.点D2.下列运算正确的是()A.3a+3b=6ab B.a3﹣a=a2C.a6÷a3=a2D.(a2)3=a63.2015年1﹣3月,全国网上商品零售额6310亿元,将6310用科学记数法表示应为()A.6.310×103 B.63.10×102 C.0.6310×104D.6.310×1044.下列图形中,既是中心对称图形又是轴对称图形的是()A.B. C.D.5.化简的结果是()A.x+1 B. C.x﹣1 D.6.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①②B.②③C.②④D.③④7.某次比赛中,15名选手的成绩如图所示,则这15名选手成绩的众数和中位数分别是()A.98,95 B.98,98 C.95,98 D.95,958.物理某一实验的电路图如图所示,其中K1,K2,K3为电路开关,L1,L2为能正常发光的灯泡.任意闭合开关K1,K2,K3中的两个,那么能让两盏灯泡同时发光的概率为()A.B.C.D.9.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x、y分钟,列出的方程是()A.B.C.D.10.如图,A,B,P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为()A.2 B.4 C.D.211.如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P为AB边上的一个动点,连接PE,PD,PC,DE.设AP=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段PD B.线段PC C.线段PE D.线段DE12.关于x的不等式组的解集为x<3,那么m的取值范围为()A.m=3 B.m>3 C.m<3 D.m≥313.如图,点M、N分别在矩形ABCD边AD、BC上,将矩形ABCD沿MN翻折后点C恰好与点A重合.若此时=,则△AMD′的面积与△AMN的面积的比为()A.1:3 B.1:4 C.1:6 D.1:914.当a≠0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是()A.B.C.D.15.如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是()A.2﹣B.+1 C.D.﹣116.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()A.()米B.12米C.()米D.10米17.把抛物线y=x2+bx+4的图象向右平移3个单位,再向上平移2个单位,所得到的图象的解析式为y=x2﹣2x+3,则b的值为()A.2 B.4 C.6 D.818.如图,AB是⊙O的直径,C、D是⊙O上两点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于点E,则cos∠E等于()A.B.C.D.119.如图,已知△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则BC的长为()A. B.6 C. D.20.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x 轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2﹣y1=4;④2AB=3AC;其中正确结论是()A.①②B.②③C.③④D.①④二、填空题:本大题共4小题,满分12分,每小题3分21.化简+的结果为.22.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB 上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.23.如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为.24.若x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是=﹣1,﹣1的差倒数为=,现已知x1=﹣,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2015=.三、解答题:本大题共5小题,满分48分25.某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价0.1元.销售量就减少2件.(1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m%,但售价比9月份在(1)的条件下的最高售价减少m%.结果10月份利润达到3388元,求m的值(m>10).26.如图,已知点A(4,0),B(0,4),把一个直角三角尺DEF放在△OAB内,使其斜边FD在线段AB上,三角尺可沿着线段AB上下滑动.其中∠EFD=30°,ED=2,点G 为边FD的中点.(1)求直线AB的解析式;(2)如图1,当点D与点A重合时,求经过点G的反比例函数y=(k≠0)的解析式;(3)在三角尺滑动的过程中,经过点G的反比例函数的图象能否同时经过点F?如果能,求出此时反比例函数的解析式;如果不能,说明理由.27.如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,连接BE、DF,DF交对角线AC于点G,且DE=DG.(1)求证:AE=CG;(2)试判断BE和DF的位置关系,并说明理由.28.△ABC中,AB=AC,取BC的中点D,做DE⊥AC与点E,取DE的中点F,连接BE,AF交于点H.(1)如图1,如果∠BAC=90°,那么∠AHB=°,=;(2)如图2,如果∠BAC=60°,猜想∠AHB的度数和的值,并证明你的结论;(3)如果∠BAC=α,那么=.(用含α表达式表示)29.如图,在平面直角坐标系xOy 中,抛物线y=x 2﹣3x+交y 轴于点E ,C 为抛物线的顶点,直线AD :y=kx+b (k >0)与抛物线相交于A ,D 两点(点D 在点A 的下方).(1)当k=2,b=﹣3时,求A ,D 两点坐标;(2)当b=2﹣3k 时,直线AD 交抛物线的对称轴于点P ,交线段CE 于点F ,求的最小值;(3)当b=0时,若B 是抛物线上点A 的对称点,直线BD 交对称轴于点M ,求证:PC=CM .2016年山东省泰安市中考数学模拟试卷(二)参考答案与试题解析一、选择题:本大题共20小题,每小题3分,共60分1.如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是()A.点A B.点B C.点C D.点D【分析】相反数的定义:符号不同,绝对值相等的两个数叫互为相反数.根据定义,结合数轴进行分析.【解答】解:∵表示2的相反数的点,到原点的距离与2这点到原点的距离相等,并且与2分别位于原点的左右两侧,∴在A,B,C,D这四个点中满足以上条件的是A.故选A.【点评】本题考查了互为相反数的两个数在数轴上的位置特点:分别位于原点的左右两侧,并且到原点的距离相等.2.下列运算正确的是()A.3a+3b=6ab B.a3﹣a=a2C.a6÷a3=a2D.3=a6,故此选项正确;故选:D.【点评】此题主要考查了合并同类项、同底数幂的除法、幂的乘方,关键是掌握各计算法则.3.2015年1﹣3月,全国网上商品零售额6310亿元,将6310用科学记数法表示应为()A.6.310×103 B.63.10×102 C.0.6310×104D.6.310×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将6310用科学记数法表示为6.31×103.故选A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列图形中,既是中心对称图形又是轴对称图形的是()A.B. C.D.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,也不是中心对称图形,故错误;B、不是轴对称图形,是中心对称图形,故错误;C、不是轴对称图形,也不是中心对称图形,故错误;D、是轴对称图形,是中心对称图形,故正确.故选:D.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.化简的结果是()A.x+1 B. C.x﹣1 D.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣===x+1.故选A【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①②B.②③C.②④D.③④【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,分别得到每个几何体的三视图,进而得到答案.【解答】解:正方体主视图、左视图、俯视图都是正方形;圆柱主视图和左视图是长方形,俯视图是圆;圆锥主视图和左视图是三角形、俯视图是带圆心的圆;球主视图、左视图、俯视图都是圆,故选:B.【点评】此题主要考查了简单几何体的三视图,关键是掌握三视图所看的位置.7.某次比赛中,15名选手的成绩如图所示,则这15名选手成绩的众数和中位数分别是()A.98,95 B.98,98 C.95,98 D.95,95【分析】根据众数与中位数的定义分别进行解答即可.【解答】解:由条形统计图给出的数据可得:95出现了6次,出现的次数最多,则众数是95;把这组数据从小到达排列,最中间的数是98,则中位数是98;故选C.【点评】此题考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.8.物理某一实验的电路图如图所示,其中K1,K2,K3为电路开关,L1,L2为能正常发光的灯泡.任意闭合开关K1,K2,K3中的两个,那么能让两盏灯泡同时发光的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让两盏灯泡同时发光的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,能让两盏灯泡同时发光的有2种情况,∴能让两盏灯泡同时发光的概率为:P==.故选A.【点评】本题考查了列表法与树状图法.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比9.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x、y分钟,列出的方程是()A.B.C.D.【分析】根据关键语句“到学校共用时15分钟”可得方程:x+y=15,根据“骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米”可得方程:250x+80y=2900,两个方程组合可得方程组.【解答】解:他骑车和步行的时间分别为x分钟,y分钟,由题意得:,故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组.10.如图,A,B,P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为()A.2 B.4 C.D.2【分析】首先连接OA,OB,由圆周角定理即可求得∠AOB=90°,又由OA=OB=2,利用勾股定理即可求得弦AB的长.【解答】解:连接OA,OB,∵∠APB=45°,∴∠AOB=2∠APB=90°,∵OA=OB=2,∴AB==2.故选D.【点评】此题考查了圆周角定理以及勾股定理.注意准确作出辅助线是解此题的关键.11.如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P为AB边上的一个动点,连接PE,PD,PC,DE.设AP=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段PD B.线段PC C.线段PE D.线段DE【分析】设出等边三角形的边长,根据等边三角形的性质确定各个线段取最小值时,x的范围,结合图象得到答案.【解答】解:设边长AC=a,则0<x<a,根据题意和等边三角形的性质可知,当x=a时,线段PE有最小值;当x=a时,线段PC有最小值;当x=a时,线段PD有最小值;线段DE的长为定值.故选:C.【点评】本题考查的是动点问题的函数图象,灵活运用等边三角形的性质和函数的对称性是解题的关键.12.关于x的不等式组的解集为x<3,那么m的取值范围为()A.m=3 B.m>3 C.m<3 D.m≥3【分析】不等式组中第一个不等式求出解集,根据已知不等式组的解集确定出m的范围即可.【解答】解:不等式组变形得:,由不等式组的解集为x<3,得到m的范围为m≥3,故选D【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.13.如图,点M、N分别在矩形ABCD边AD、BC上,将矩形ABCD沿MN翻折后点C恰好与点A重合.若此时=,则△AMD′的面积与△AMN的面积的比为()A.1:3 B.1:4 C.1:6 D.1:9【分析】由=,可知,易证AN=AM,得到,于是可求出△AMD′的面积与△AMN的面积的比.【解答】解:根据折叠的性质,AN=CN,∠ANM=∠CNM,∵四边形ABCD是矩形,∴AD∥BC,∴∠CNM=∠AMN,∴∠ANM=∠AMN,∴AM=AN,∵=,∴,∴,∴△AMD′的面积:△AMN的面积=1:3.故选:A.【点评】本题主要考查了图形的折叠问题、等高的三角形面积比等于底的比,把△AMD′的面积与△AMN的面积的比转化为边的比,运用等高的三角形面积比等于底的比这一性质是解决问题的关键.14.当a≠0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是()A.B.C.D.【分析】分a>0和a<0两种情况讨论,分析出两函数图象所在象限,再在四个选项中找到正确图象.【解答】解:当a>0时,y=ax+1过一、二、三象限,y=过一、三象限;当a<0时,y=ax+1过一、二、四象限,y=过二、四象限;故选C.【点评】本题考查了一次函数与反比例函数的图象和性质,解题的关键是明确在同一a值的前提下图象能共存.15.如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是()A.2﹣B.+1 C.D.﹣1【分析】取AC的中点O,连接AD、DG、BO、OM,如图,易证△DAG∽△DCF,则有∠DAG=∠DCF,从而可得A、D、C、M四点共圆,根据两点之间线段最短可得BO≤BM+OM,即BM≥BO﹣OM,当M在线段BO与该圆的交点处时,线段BM最小,只需求出BO、OM 的值,就可解决问题.【解答】解:AC的中点O,连接AD、DG、BO、OM,如图.∵△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,∴AD⊥BC,GD⊥EF,DA=DG,DC=DF,∴∠ADG=90°﹣∠CDG=∠FDC,=,∴△DAG∽△DCF,∴∠DAG=∠DCF.∴A、D、C、M四点共圆.根据两点之间线段最短可得:BO≤BM+OM,即BM≥BO﹣OM,当M在线段BO与该圆的交点处时,线段BM最小,此时,BO===,OM=AC=1,则BM=BO﹣OM=﹣1.故选:D.【点评】本题主要考查了等边三角形的性质、等腰三角形的性质、相似三角形的判定与性质、四点共圆的判定、勾股定理、两点之间线段最短等知识,求出动点M的运动轨迹是解决本题的关键.16.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()A.()米B.12米C.()米D.10米【分析】延长AC交BF延长线于D点,则BD即为AB的影长,然后根据物长和影长的比值计算即可.【解答】解:延长AC交BF延长线于D点,则∠CEF=30°,作CF⊥BD于F,在Rt△CEF中,∠CEF=30°,CE=4m,∴CF=2(米),EF=4cos30°=2(米),在Rt△CFD中,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,即CF=2(米),CF:DF=1:2,∴DF=4(米),∴BD=BE+EF+FD=8+2+4=12+2(米)在Rt△ABD中,AB=BD=(12+2)=(+6)米.故选A.【点评】本题考查了解直角三角形的应用以及相似三角形的性质.解决本题的关键是作出辅助线得到AB的影长.17.把抛物线y=x2+bx+4的图象向右平移3个单位,再向上平移2个单位,所得到的图象的解析式为y=x2﹣2x+3,则b的值为()A.2 B.4 C.6 D.8【分析】首先根据点的坐标平移规律是上加下减,左加右减,利用这个规律即可得到所求抛物线的顶点坐标,然后就可以求出抛物线的解析式.【解答】解:∵y=x2﹣2x+3=x2﹣2x+1+2=(x﹣1)2+2,∴顶点坐标为(1,2),∴向左平移3个单位,再向下平移2个单位,得(﹣2,0),则原抛物线y=x2+bx+4的顶点坐标为(﹣2,0),∴原抛物线y=x2+bx+4=(x+2)2=x2+4x+4,∴b=4.故选:B.【点评】此题主要考查了平移规律,首先根据平移规律求出已知抛物线的顶点坐标,然后求出所求抛物线的顶点坐标,最后就可以求出原抛物线的解析式.18.如图,AB是⊙O的直径,C、D是⊙O上两点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于点E,则cos∠E等于()A.B.C.D.1【分析】连接OC,求出∠OCE=90°,求出∠A=∠ACO=30°,根据三角形外角性质求出∠COE=60°,进而可求出∠E的度数,即可求出答案.【解答】解:连接OC,∵EC切⊙O于C,∴∠OCE=90°,∵∠CDB=30°,∴∠A=∠CDB=30°,∵OA=OC,∴∠ACO=∠A=30°,∴∠COE=30°+30°=60°,∴∠E=180°﹣90°﹣60°=30°,∴cos∠E=,故选A.【点评】本题考查了切线性质,三角形的外角性质,圆周角定理,等腰三角形的性质的应用,求出∠E的度数是解题关键.19.如图,已知△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则BC的长为()A. B.6 C. D.【分析】首先过点O作OF⊥BC于F,由垂径定理可得BF=CF=BC,然后由∠BAC=120°,AB=AC,利用等边对等角与三角形内角和定理,即可求得∠C与∠BAC的度数,由BD为⊙O的直径,即可求得∠BAD与∠D的度数,又由AD=6,即可求得BD的长,继而求得BC的长.【解答】解:过点O作OF⊥BC于F,∴BF=CF=BC,∵AB=AC,∠BAC=120°,∴∠C=∠ABC==30°,∵∠C与∠D是对的圆周角,∴∠D=∠C=30°,∵BD为⊙O的直径,∴∠BAD=90°,∴∠ABD=60°,∴∠OBC=∠ABD﹣∠ABC=30°,∵AD=6,∴BD===4,∴OB=BD=2,∴BF=OBcos30°=2×=3,∴BC=6.故选B.【点评】此题考查了圆周角定理、垂径定理、等腰三角形的性质、直角三角形的性质以及特殊角的三角函数值等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想的应用,注意准确作出辅助线.20.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x 轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2﹣y1=4;④2AB=3AC;其中正确结论是()A.①②B.②③C.③④D.①④【分析】根据与y2=(x﹣3)2+1的图象在x轴上方即可得出y2的取值范围;把A(1,3)代入抛物线y1=a(x+2)2﹣3即可得出a的值;由抛物线与y轴的交点求出,y2﹣y1的值;根据两函数的解析式直接得出AB与AC的关系即可.【解答】解:①∵抛物线y2=(x﹣3)2+1开口向上,顶点坐标在x轴的上方,∴无论x取何值,y2的值总是正数,故本小题正确;②把A(1,3)代入,抛物线y1=a(x+2)2﹣3得,3=a(1+2)2﹣3,解得a=,故本小题错误;③由两函数图象可知,抛物线y1=a(x+2)2﹣3解析式为y1=(x+2)2﹣3,当x=0时,y1=(0+2)2﹣3=﹣,y2=(0﹣3)2+1=,故y2﹣y1=+=,故本小题错误;④∵物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),∴y1的对称轴为x=﹣2,y2的对称轴为x=3,∴B(﹣5,3),C(5,3)∴AB=6,AC=4,∴2AB=3AC,故本小题正确.故选D.【点评】本题考查的是二次函数的性质,根据题意利用数形结合进行解答是解答此题的关键.二、填空题:本大题共4小题,满分12分,每小题3分21.化简+的结果为x.【分析】先把两分式化为同分母的分式,再把分母不变,分子相加减即可.【解答】解:原式=﹣==x.故答案为:x.【点评】本题考查的是分式的加减法,即把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.22.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB 上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为3.【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N 与B重合时DN最大,此时根据勾股定理求得DN=DB=6,从而求得EF的最大值为3.【解答】解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大时,EF最大,∵N与B重合时DN最大,此时DN=DB==6,∴EF的最大值为3.故答案为3.【点评】本题考查了三角形中位线定理,勾股定理的应用,熟练掌握定理是解题的关键.23.如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为cm2.【分析】过点C作CD⊥OB,CE⊥OA,则△AOB是等腰直角三角形,由∠ACO=90°,可知△AOC是等腰直角三角形,由HL定理可知Rt△OCE≌Rt△ACE,故可得出S扇形OEC=S扇形AEC ,与弦OC围成的弓形的面积等于与弦AC所围成的弓形面积,S阴影=S△AOB即可得出结论.【解答】解:过点C作CD⊥OB,CE⊥OA,∵OB=OA,∠AOB=90°,∴△AOB是等腰直角三角形,∵OA是直径,∴∠ACO=90°,∴△AOC是等腰直角三角形,∵CE⊥OA,∴OE=AE,OC=AC,在Rt△OCE与Rt△ACE中,∵,∴Rt △OCE ≌Rt △ACE (HL ),∵S 扇形OEC =S 扇形AEC ,∴与弦OC 围成的弓形的面积等于与弦AC 所围成的弓形面积,同理可得,与弦OC 围成的弓形的面积等于与弦BC 所围成的弓形面积,∴S 阴影=S △AOB =×1×1=cm 2.故答案是: cm 2.【点评】本题考查的是扇形面积的计算与等腰直角三角形的判定与性质,根据题意作出辅助线,构造出直角三角形得出S 阴影=S △AOB 是解答此题的关键.24.若x 是不等于1的实数,我们把称为x 的差倒数,如2的差倒数是=﹣1,﹣1的差倒数为=,现已知x 1=﹣,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依此类推,则x 2015= . 【分析】根据已知条件可以先计算出几个x 的值,从而可以发现其中的规律,求出x 2015的值.【解答】解:由已知可得,x 1=﹣,x 2==,x 3==4, x 4==﹣,可知每三个一个循环,2015÷3=671…2,故x2015=.【点评】本题考查实数的性质,解题的关键是发现其中的规律,求出相应的x的值.三、解答题:本大题共5小题,满分48分25.某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价0.1元.销售量就减少2件.(1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m%,但售价比9月份在(1)的条件下的最高售价减少m%.结果10月份利润达到3388元,求m的值(m>10).【分析】(1)设售价应为x元,根据不等关系:该文具店在9月份销售量不低于1100件,列出不等式求解即可;(2)先求出10月份的进价,再根据等量关系:10月份利润达到3388元,列出方程求解即可.【解答】解:(1)设售价应为x元,依题意有1160﹣≥1100,解得x≤15.答:售价应不高于15元.(2)10月份的进价:10(1+20%)=12(元),由题意得:1100(1+m%)[15(1﹣m%)﹣12]=3388,设m%=t,化简得50t2﹣25t+2=0,解得:t1=,t2=,所以m1=40,m2=10,因为m>10,所以m=40.答:m的值为40.【点评】考查了一元一次不等式的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的不等关系和等量关系,列出不等式和方程,再求解.26.如图,已知点A(4,0),B(0,4),把一个直角三角尺DEF放在△OAB内,使其斜边FD在线段AB上,三角尺可沿着线段AB上下滑动.其中∠EFD=30°,ED=2,点G 为边FD的中点.(1)求直线AB的解析式;(2)如图1,当点D与点A重合时,求经过点G的反比例函数y=(k≠0)的解析式;(3)在三角尺滑动的过程中,经过点G的反比例函数的图象能否同时经过点F?如果能,求出此时反比例函数的解析式;如果不能,说明理由.【分析】(1)设直线AB的解析式为y=kx+b,把点A、B的坐标代入,组成方程组,解方程组求出k、b的值即可;(2)由Rt△DEF中,求出EF、DF,在求出点D坐标,得出点F、G坐标,把点G坐标代入反比例函数求出k即可;(3)设F(t,﹣t+4),得出D、G坐标,设过点G和F的反比例函数解析式为y=,用待定系数法求出t、m,即可得出反比例函数解析式.【解答】解:(1)设直线AB的解析式为y=kx+b,∵A(4,0),B(0,4),∴,解得:,∴直线AB的解析式为:y=﹣x+4;(2)∵在Rt△DEF中,∠EFD=30°,ED=2,∴EF=2,DF=4,∵点D与点A重合,∴D(4,0),∴F(2,2),∴G(3,),∵反比例函数y=经过点G,∴k=3,∴反比例函数的解析式为:y=;(3)经过点G的反比例函数的图象能同时经过点F;理由如下:∵点F在直线AB上,∴设F(t,﹣t+4),又∵ED=2,∴D(t+2,﹣t+2),∵点G为边FD的中点.∴G(t+1,﹣t+3),若过点G的反比例函数的图象也经过点F,设解析式为y=,则,整理得:(﹣t+3)(t+1)=(﹣t+4)t,解得:t=,∴m=,∴经过点G的反比例函数的图象能同时经过点F,这个反比例函数解析式为:y=.【点评】本题是反比例函数综合题目,考查了用待定系数法求一次函数的解析式、求反比例函数的解析式、坐标与图形特征、解直角三角形、解方程组等知识;本题难度较大,综合性强,用待定系数法确定一次函数和反比例函数的解析式是解决问题的关键.27.如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,连接BE、DF,DF交对角线AC于点G,且DE=DG.(1)求证:AE=CG;(2)试判断BE和DF的位置关系,并说明理由.【分析】(1)先证∠AED=∠CGD,再证明△ADE≌△CDG,根据全等三角形的对应边相等即可得出结论;(2)先证明△AEB≌△CGD,得出对应角相等∠AEB=∠CGD,得出∠AEB=∠EGF,即可证出平行线.【解答】解:(1)证明:在正方形ABCD中,∵AD=CD,∴∠DAE=∠DCG,∵DE=DG,∴∠DEG=∠DGE,∴∠AED=∠CGD.在△AED和△CGD中,∴△AED≌△CGD(AAS),∴AE=CG.(2)解法一:BE∥DF,理由如下:在正方形ABCD中,AB∥CD,∴∠BAE=∠DCG.在△AEB和△CGD中,∴△AEB≌△CGD(SAS),∴∠AEB=∠CGD.∵∠CGD=∠EGF,∴∠AEB=∠EGF,∴BE∥DF.解法二:BE∥DF,理由如下:在正方形ABCD中,∵AD∥FC,∴=.∵CG=AE,∴AG=CE.又∵在正方形ABCD中,AD=CB,∴=.又∵∠GCF=∠ECB,∴△CGF∽△CEB,∴∠CGF=∠CEB,∴BE∥DF.【点评】本题考查了正方形的性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.28.△ABC中,AB=AC,取BC的中点D,做DE⊥AC与点E,取DE的中点F,连接BE,AF交于点H.(1)如图1,如果∠BAC=90°,那么∠AHB=90°,=;(2)如图2,如果∠BAC=60°,猜想∠AHB的度数和的值,并证明你的结论;(3)如果∠BAC=α,那么tan(°﹣α).(用含α表达式表示)【分析】连接AD,根据等腰三角形的性质可得∠ABC=∠C,∠BAD=∠BAC,AD⊥BC,然后根据同角的余角相等可得∠ADE=∠C.易证△ADB∽△DEC,可得ADCE=BDDE.由此可得ADCE=BC2DF=BCDF,即=,由此可证到△AFD∽△BEC,则有=.在Rt△ADB中根据三角函数的定义可得tan∠ABD=tan(90°﹣∠BAC)==,从而可得=tan(90°﹣∠BAC).由△AFD∽△BEC可得∠DAF=∠CBE,即可得到∠DAF+∠AOH=∠CBE+∠BOD=90°,即可得到∠AHB=90°.利用以上结论即可解决题中的三个问题.【解答】解:连接AD,∵AB=AC,点D是BC的中点,∴∠ABC=∠C,∠BAD=∠DAC=∠BAC,AD⊥BC,∵AD⊥BC,DE⊥AC,∴∠ADE+∠CDE=90°,∠C+∠CDE=90°,∴∠ADE=∠C.又∵∠ADB=∠DEC=90°,∴△ADB∽△DEC,∴=即ADCE=BDDE.∵点D是BC的中点,点F是DE的中点,∴BD=BC,DE=2DF,∴ADCE═BC2DF=BCDF,。

中考数学二模试卷(含解析)101

中考数学二模试卷(含解析)101

山东省泰安市新泰市2016年中考数学二模试卷一、选择题(本大题共20小题,在每小题给出的选项中,只有一个是正确的,请把正确的选项选出来,填在答题卡中,每小题选对得3分,选错、多选或不选均记零分)1.在算式(﹣2)□(﹣3)的□中填上运算符号,使结果最小,运算符号是()A.加号 B.减号 C.乘号 D.除号2.国家卫生和计划生育委员会公布H7N9禽流感病毒直径约为0.00000012米,这一直径用科学记数法表示为()A.1.2×10﹣9米B.1.2×10﹣8米C.12×10﹣8米D.1.2×10﹣7米3.下面的图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4.下列运算正确的是()A.3x2﹣5x3=﹣2x B.6x3÷2x2=3xC.( x3)2=x6D.﹣3(2x﹣4)=﹣6x﹣125.如图是一个三棱柱的立体图形,它的主视图是()A. B. C. D.6.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于E,则sin∠E的值为()A. B. C. D.7.如图,将三角形的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2=()A.55° B.30° C.50° D.60°8.某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()A. B.C. D.9.如图,△DEF经过怎样的平移得到△ABC()A.把△DEF向左平移4个单位,再向下平移2个单位B.把△DEF向右平移4个单位,再向下平移2个单位C.把△DEF向右平移4个单位,再向上平移2个单位D.把△DEF向左平移4个单位,再向上平移2个单位10.关于x的不等式组有四个整数解,则a的取值范围是()A.﹣<a≤﹣B.﹣≤a<﹣C.﹣≤a≤﹣D.﹣<a<﹣11.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A. B. C. D.12.如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm,若水面上升2cm(即EG=2cm),则此时水面宽AB为()A.8cm B.16cm C.8cm D.16cm13.如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则的值为()A. B. C. D.14.某小区20户家庭的日用电量(单位:千瓦时)统计如下:日用电量(单位:千瓦时)4567810户数136541这20户家庭日用电量的众数、中位数分别是()A.6,6.5 B.6,7 C.6,7.5 D.7,7.515.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4km B.2km C.2km D.( +1)km16.如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE 在同一条直线上,开始时点C与点D重合.将△ABC沿直线DE向右平移,直到点A与点E 重合为止.设CD的长为x,若△ABC与正方形DEFG重合部分的面积为y,则y与x的函数图象是()A. B. C. D.17.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A. B. C. D.18.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A. B. C. D.19.如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有()A.5个B.4个C.3个D.2个20.已知Y1,Y2,Y3分别表示二次函数、反比例函数和一次函数的三个函数值,它们的交点分别是A(﹣1,﹣2)、B(2,1)和C(,3),规定M={Y1,Y2,Y3中最小的函数值},则下列结论:①当x<﹣1时,M=Y1;②当﹣1<x<0时,Y2<Y3<Y1;③当0≤x≤2时,M的最大值是1,无最小值;④当x≥2时,M最大值是1,无最小值.其中正确结论的个数为()A.1个B.2个C.3个D.4个二、填空题(本大题共4小题,每小题3分,共12分)21.分解因式:﹣3x3+12x2﹣12x=______.22.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为______.23.如图,同心圆O中,大圆半径OA、OB分别交小圆于D、C,OA⊥OB,若四边形ABCD的面积为50,则图中阴影部分的面积为______.24.如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1都是等腰直角三角形,其中点A1、A2、…、A n在x轴上,点B1、B2、…、B n在直线y=x上,已知OA2=1,则OA2016的长为______.三、解答题(本大题共5小题,满分48分,解答应写出必要的文字说明、证明过程或推演步骤)25.如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A,与y轴交于点C,PB⊥x轴于点B,且AC=BC,S△PBC=4.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.26.(10分)(2015•成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?27.(10分)(2016•新泰市二模)已知:如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG•DF=DB•EF.(2016•新泰市二模)如图,在正方形ABCD与等腰直角三角形BEF中,∠BEF=90°,28.(10分)BE=EF,连接PF,点P是FD的中点,连接PE、PC.(1)如图1,当点E在CB边上时,求证:PE=CE;(2)如图2,当点E在CB的延长线上时,线段PC、CE有怎样的数量关系,写出你的猜想,并给与证明.29.(10分)(2016•新泰市二模)已知:如图,直线y=﹣x+2与x轴交于B点,与y轴交于C点,A点坐标为(﹣1,0).(1)求过A、B、C三点的抛物线的解析式.(2)在直线BC上方的抛物线上有一点D,过D作DE⊥BC于E,作DF∥y轴交BC于F,求△DEF周长的最大值.(3)在满足第②问的条件下,在线段BD上是否存在一点P,使∠DFP=∠DBC.若存在,求出点P的坐标;若不存在,说明理由.2016年山东省泰安市新泰市中考数学二模试卷参考答案与试题解析一、选择题(本大题共20小题,在每小题给出的选项中,只有一个是正确的,请把正确的选项选出来,填在答题卡中,每小题选对得3分,选错、多选或不选均记零分)1.在算式(﹣2)□(﹣3)的□中填上运算符号,使结果最小,运算符号是()A.加号 B.减号 C.乘号 D.除号【考点】有理数的混合运算.【分析】将各个运算符号放入算式中计算得到结果,比较即可.【解答】解:(﹣2)+(﹣3)=﹣5;(﹣2)﹣(﹣3)=﹣2+3=1;(﹣2)×(﹣3)=6;(﹣2)÷(﹣3)=,则在算式(﹣2)□(﹣3)的□中填上运算符号,使结果最小,运算符号是加号,故选A【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.国家卫生和计划生育委员会公布H7N9禽流感病毒直径约为0.00000012米,这一直径用科学记数法表示为()A.1.2×10﹣9米B.1.2×10﹣8米C.12×10﹣8米D.1.2×10﹣7米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000012=1.2×10﹣7.故选D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下面的图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.下列运算正确的是()A.3x2﹣5x3=﹣2x B.6x3÷2x2=3xC.( x3)2=x6D.﹣3(2x﹣4)=﹣6x﹣12【考点】整式的除法;合并同类项;去括号与添括号;幂的乘方与积的乘方.【分析】根据单项式除法法则、单项式与多项式的乘法法则,以及幂的乘方法则即可作出判断.【解答】解:A、不是同类项,不能合并,选项错误;B、正确;C、(x3)2=x6,选项错误;D、﹣3(2x﹣4)=﹣6x+12,选项错误.故选B.【点评】本题考查了单项式的乘法、除法以及幂的乘方,合并同类项法则,正确理解指数的计算是关键.5.如图是一个三棱柱的立体图形,它的主视图是()A. B. C. D.【考点】简单几何体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解;从正面看是矩形,看不见的棱用虚线表示,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,注意看不到的棱用虚线表示.6.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于E,则sin∠E的值为()A. B. C. D.【考点】切线的性质;圆周角定理;特殊角的三角函数值.【分析】首先连接OC,由CE是⊙O切线,可得OC⊥CE,由圆周角定理,可得∠BOC=60°,继而求得∠E的度数,则可求得sin∠E的值.【解答】解:连接OC,∵CE是⊙O切线,∴OC⊥CE,即∠OCE=90°,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∴∠E=90°﹣∠COB=30°,∴sin∠E=.故选A.【点评】此题考查了切线的性质、圆周角定理以及特殊角的三角函数值.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.7.如图,将三角形的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2=()A.55° B.30° C.50° D.60°【考点】平行线的性质.【分析】先根据三角形的外角性质求得∠4的度数,再根据平行线的性质即可求解.【解答】解:由三角形的外角性质可得∠4=∠1+∠3=50°,∵∠2和∠4是两平行线间的内错角,∴∠2=∠4=50°.故选C.【点评】本题综合考查了三角形的外角性质和平行线的性质,得到∠4的度数是解题的关键.8.某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】首先设甲车间每天能加工x个,则乙车间每天能加工1.3x个,由题意可得等量关系:甲车间生产2300件所用的时间+甲乙两车间生产2300件所用的时间=33天,根据等量关系可列出方程.【解答】解:设甲车间每天能加工x个,则乙车间每天能加工1.3x个,根据题意可得:+=33,故选:B.【点评】本题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.9.如图,△DEF经过怎样的平移得到△ABC()A.把△DEF向左平移4个单位,再向下平移2个单位B.把△DEF向右平移4个单位,再向下平移2个单位C.把△DEF向右平移4个单位,再向上平移2个单位D.把△DEF向左平移4个单位,再向上平移2个单位【考点】平移的性质.【分析】根据网格图形的特点,结合图形找出对应点的平移变换规律,然后即可选择答案.【解答】解:根据图形,△DEF向左平移4个单位,向下平移2个单位,即可得到△ABC.故选A.【点评】本题考查了平移变换的性质以及网格图形,准确识别图形是解题的关键.10.关于x的不等式组有四个整数解,则a的取值范围是()A.﹣<a≤﹣B.﹣≤a<﹣C.﹣≤a≤﹣D.﹣<a<﹣【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a的取值范围即可.【解答】解:由(1)得x>8;由(2)得x<2﹣4a;其解集为8<x<2﹣4a,因不等式组有四个整数解,为9,10,11,12,则,解得﹣≤a<﹣.故选B.【点评】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A.B.C.D.【考点】列表法与树状图法;点的坐标.【分析】画出树状图,然后确定出在第二象限的点的个数,再根据概率公式列式进行计算即可得解.【解答】解:根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(﹣1,1)(﹣1,2)共2个,所以,P==.故选B.【点评】本题考查了列表法与树状图法,第二象限点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.12.如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm,若水面上升2cm(即EG=2cm),则此时水面宽AB为()A.8cm B.16cm C.8cm D.16cm【考点】垂径定理的应用.【分析】连接OA、OC.设⊙O的半径是R,则OG=R﹣2,OE=R﹣4.根据垂径定理,得CG=10.在直角三角形OCG中,根据勾股定理求得R的值,再进一步在直角三角形OAE中,根据勾股定理求得AE的长,从而再根据垂径定理即可求得AB的长.【解答】解:如图所示,连接OA、OC.设⊙O的半径是R,则OG=R﹣2,OE=R﹣4.∵OF⊥CD,∴CG=CD=10cm.在直角三角形COG中,根据勾股定理,得R2=102+(R﹣2)2,解,得R=26.在直角三角形AOE中,根据勾股定理,得AE==8cm.根据垂径定理,得AB=16(cm),故选B.【点评】本题考查了勾股定理,垂径定理的应用,能构造直角三角形是解此题的关键,注意:垂直于弦的直径平分弦.13.如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则的值为()A.B.C.D.【考点】矩形的性质;翻折变换(折叠问题).【分析】根据翻折的性质可得∠BAC=∠EAC,再根据矩形的对边平行可得AB∥CD,根据两直线平行,内错角相等可得∠DAC=∠BCA,从而得到∠EAC=∠DAC,设AE与CD相交于F,根据等角对等边的性质可得AF=CF,再求出DF=EF,从而得到△ACF和△EDF相似,根据相似三角形对应边成比例求出=,设DF=3x,FC=5x,在Rt△ADF中,利用勾股定理列式求出AD,再根据矩形的对边相等求出AB,然后代入进行计算即可得解.【解答】解:∵矩形沿直线AC折叠,点B落在点E处,∴∠BAC=∠EAC,AE=AB=CD,∵矩形ABCD的对边AB∥CD,∴∠DCA=∠BAC,∴∠EAC=∠DCA,设AE与CD相交于F,则AF=CF,∴AE﹣AF=CD﹣CF,即DF=EF,∴=,又∵∠AFC=∠EFD,∴△ACF∽△EDF,∴==,设DF=3x,FC=5x,则AF=5x,在Rt△ADF中,AD===4x,又∵AB=CD=DF+FC=3x+5x=8x,∴==.故选A.【点评】本题考查了矩形的性质,平行线的性质,等角对等边的性质,相似三角形的判定与性质,勾股定理的应用,综合性较强,但难度不大,熟记各性质是解题的关键.14.某小区20户家庭的日用电量(单位:千瓦时)统计如下:日用电量(单位:千瓦时)4567810户数136541这20户家庭日用电量的众数、中位数分别是()A.6,6.5 B.6,7 C.6,7.5 D.7,7.5【考点】众数;中位数.【分析】根据众数和中位数的定义求解即可,众数是一组数据中出现次数最多的数;中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:这20户家庭日用电量的众数是6,中位数是(6+7)÷2=6.5,故选A.【点评】本题考查了众数和中位数的定义,解题的关键是牢记定义,此题比较简单,易于掌握.15.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4km B.2km C.2km D.( +1)km【考点】解直角三角形的应用-方向角问题.【分析】过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=2,再由△ABD是等腰直角三角形,得出BD=AD=2,则AB=AD=2.【解答】解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=2.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2,∴AB=AD=2.即该船航行的距离(即AB的长)为2km.故选:C.【点评】本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.16.如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE 在同一条直线上,开始时点C与点D重合.将△ABC沿直线DE向右平移,直到点A与点E 重合为止.设CD的长为x,若△ABC与正方形DEFG重合部分的面积为y,则y与x的函数图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】按照x的取值范围分为当0≤x<2时,当2≤x<4时,分段根据重合部分的图形求面积,得出y是x的二次函数,即可得出结论.【解答】解:分两种情况:①如图1,当0≤x<2时,y=x(2+2﹣x)=﹣x2+2x;②如图2,当2≤x≤4时,y=(4﹣x)2;故选:C.【点评】本题考查了动点问题的函数图象、正方形及等腰直角三角形的性质.关键是根据图形的特点,分段求函数关系式.17.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.【考点】翻折变换(折叠问题).【分析】首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=,ED=AE,从而求得B′D=1,DF=,在Rt△B′DF中,由勾股定理即可求得B′F的长.【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=AC•BC=AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE==,∴DF=EF﹣ED=,∴B′F==.故选:B.【点评】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,根据折叠的性质求得相等的角是本题的关键.18.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】令x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【解答】解:x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.【点评】本题考查了二次函数图象,一次函数的图象,应该熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.19.如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有()A.5个B.4个C.3个D.2个【考点】相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;正方形的性质.【分析】依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形,从而作出判断.【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠DAC=45°.∵在△APE和△AME中,,∴△APE≌△AME,故①正确;∴PE=EM=PM,同理,FP=FN=NP.∵正方形ABCD中AC⊥BD,又∵PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE∴四边形PEOF是矩形.∴PF=OE,∴PE+PF=OA,又∵PE=EM=PM,FP=FN=NP,OA=AC,∴PM+PN=AC,故②正确;∵四边形PEOF是矩形,∴PE=OF,在直角△OPF中,OF2+PF2=PO2,∴PE2+PF2=PO2,故③正确.∵△BNF是等腰直角三角形,而△POF不一定是,故④错误;∵△AMP是等腰直角三角形,当△PMN∽△AMP时,△PMN是等腰直角三角形.∴PM=PN,又∵△AMP和△BPN都是等腰直角三角形,∴AP=BP,即P是AB的中点.故⑤正确.故选:B.【点评】本题是正方形的性质、矩形的判定、勾股定理得综合应用,认识△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形是关键.20.已知Y1,Y2,Y3分别表示二次函数、反比例函数和一次函数的三个函数值,它们的交点分别是A(﹣1,﹣2)、B(2,1)和C(,3),规定M={Y1,Y2,Y3中最小的函数值},则下列结论:①当x<﹣1时,M=Y1;②当﹣1<x<0时,Y2<Y3<Y1;③当0≤x≤2时,M的最大值是1,无最小值;④当x≥2时,M最大值是1,无最小值.其中正确结论的个数为()A.1个B.2个C.3个D.4个【考点】二次函数的性质;一次函数的性质;反比例函数的性质.【分析】首先要明确M={Y1,Y2,Y3中最小的函数值},观察图象可以判断四个选项的正误.【解答】解:一次函数Y3过点A(﹣1,﹣2)、B(2,1),则解析式为:Y3=x﹣1;①当x<﹣1时,Y1,Y2,Y3中最小的函数值为Y1,所以M=Y1,故①正确;②当﹣1<x<0时,Y2<Y3<Y1,故②正确;③当0≤x≤2时,Y1,Y2,Y3中最小的函数值为Y3,M的最小值是﹣1,最大值是1;故③错误;④当x≥2时,Y1,Y2,Y3中最小的函数值为Y1,则M最大值是1,无最小值,故④正确.故选C.【点评】本题综合考查了二次函数、一次函数、反比例函数的性质,同时此类题考查了学生能根据图象求最值问题,这在学生中是一个难点,原则是:在一定范围内,最下边是最小,最上边是最大.二、填空题(本大题共4小题,每小题3分,共12分)21.分解因式:﹣3x3+12x2﹣12x= ﹣3x(x﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式后,利用完全平方公式分解即可.【解答】解:原式=﹣3x(x﹣2)2.故答案为:﹣3x(x﹣2)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为 2 .【考点】根的判别式.【分析】由方程有实数根,可得出b2﹣4ac≥0,代入数据即可得出关于k的一元一次不等式,解不等式即可得k的取值范围,再找出其内的最大偶数即可.【解答】解:由已知得:△=b2﹣4ac=22﹣4(m﹣2)≥0,即12﹣4m≥0,解得:m≤3,∴偶数m的最大值为2.故答案为:2.【点评】本题考查了根的判别式,解题的关键是找出关于m的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出不等式(或不等式)组是关键.23.如图,同心圆O中,大圆半径OA、OB分别交小圆于D、C,OA⊥OB,若四边形ABCD的面积为50,则图中阴影部分的面积为75π.【考点】垂径定理;扇形面积的计算.【分析】由于四边形ABCD的面积=大圆面积的﹣△COD的面积﹣(大圆面积的﹣△AOB 的面积),依此可得(OA2﹣OD2)的值,再根据图中阴影部分的面积为圆环面积的即可求解.【解答】解:四边形ABCD的面积=大圆面积的﹣△COD的面积﹣(大圆面积的﹣△AOB 的面积)=△AOB的面积﹣△COD的面积=OA2﹣OD2=50,则OA2﹣OD2=100,图中阴影部分的面积=π×100×=75π.故答案为:75π【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式,以及得到(OA2﹣OD2)的值是解答此题的关键.24.如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1都是等腰直角三角形,其中点A1、A2、…、A n在x轴上,点B1、B2、…、B n在直线y=x上,已知OA2=1,则OA2016的长为22014.【考点】一次函数图象上点的坐标特征;等腰直角三角形.【分析】根据规律得出OA1=,OA2=1,OA3=2,OA4=4,所以可得OA n=2n﹣2,进而解答即可.【解答】解:因为OA2=1,∴OA1=,OA2=1,OA3=2,OA4=4,由此得出OA n=2n﹣2,所以OA2016=22014,故答案为:22014.【点评】此题考查一次函数图象上点的坐标,关键是根据规律得出OA n=2n﹣2进行解答.三、解答题(本大题共5小题,满分48分,解答应写出必要的文字说明、证明过程或推演步骤)25.如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A,与y轴交于点C,PB⊥x轴于点B,且AC=BC,S△PBC=4.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.【考点】反比例函数与一次函数的交点问题;菱形的判定.【分析】(1)由AC=BC结合CO⊥AB可得出OA=OB,由点P的坐标结合三角形的面积公式可得出OA=OB=4,即得出点A、点P的坐标,由点A、点P的坐标利用待定系数法即可得出一次函数的解析式,由点P的坐标利用待定系数法即可得出反比例函数的解析式;(2)假设存在,过点C作x轴的平行线与双曲线交于点D,令一次函数解析式中x=0找出点C的坐标,将点C的纵坐标代入反比例函数解析式中即可得出点D的坐标,再结合点P、点B的坐标即可得出BP与CD互相垂直平分,由此可证得四边形BCPD为菱形.【解答】解:(1)∵AC=BC,CO⊥AB,∴O为AB的中点,即OA=OB,∵S△PBC=4,即OB×PB=4,∵P(n,2),∴PB=2,∴OA=OB=4,∴P(4,2),B(4,0),A(﹣4,0).将A(﹣4,0)与P(4,2)代入y=kx+b得:,解得:.∴一次函数解析式为y=x+1;将P(4,2)代入反比例解析式得:2=,解得:m=8,∴反比例解析式为y=.(2)假设存在这样的D点,使四边形BCPD为菱形.过点C作x轴的平行线与双曲线交于点D,如图所示.令一次函数y=x+1中x=0,则有y=1,∴点C的坐标为(0,1),∵CD∥x轴,∴设点D坐标为(x,1).将点D(x,1)代入反比例解析式y=中,得:1=,解得:x=8,∴点D的坐标为(8,1),即CD=8.∵P点横坐标为4,∴BP与CD互相垂直平分,∴四边形BCPD为菱形.故反比例函数图象上存在点D,使四边形BCPD为菱形,此时点D的坐标为(8,1).【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式以及菱形的判定定理,解题的关键是:(1)求出点A、点P的坐标;(2)利用“对角线互相垂直平分”证出四边形为菱形.本题属于基础题,难度不大,解决该题型题目时,根据三角形的面积公式找出边的长度,再由边的长度找出点的坐标,最后由点的坐标利用待定系数法求出函数解析式即可.26.(10分)(2015•成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?【考点】分式方程的应用;一元一次不等式的应用.。

泰安市宁阳县2016年中考数学二模试卷含答案解析

泰安市宁阳县2016年中考数学二模试卷含答案解析

2016山东省泰安市宁阳县中考数学二模试卷一、选择题(本大题共20小题,每小题3分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求.)1.在|﹣3|,30,3﹣2,这四个数中,最大的数是()A.|﹣3|B.30C.3﹣2D.2.下列运算正确的是()A.(﹣3mn)2=﹣6m2n2B.4x4+2x4+x4=6x4C.(xy)2÷(﹣xy)=﹣xy D.(a﹣b)(﹣a﹣b)=a2﹣b23.H7N9是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为()A.12×10﹣8米B.1.2×10﹣9米C.1.2×10﹣8米D.1.2×10﹣7米4.下列四个图形中,是中心对称而不是轴对称的是()A.B.C.D.5.下列几何体的主视图与其他三个不同的是()A.B.C.D.6.不等式组的所有整数解的积为()A.﹣1 B.1 C.0 D.﹣27.如图,直线a∥b,直线l与a相交于点P,与直线b相交于点Q,PM⊥l于点P,若∠1=39°,则∠2等于()A.61°B.51°C.50°D.60°8.抛物线y=x2+bx+c的图象先向下平移3个单位,再向右平移2个单位,所得图象的函数表达式为y=(x﹣1)2﹣4,则b,c的值为()A.b=2,c=﹣6 B.b=2,c=0 C.b=6,c=8 D.b=6,c=29.五一期间,绿化部门预在县城主要干道旁边种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵,求A、B两种花木的数量分别是多少棵?若设A,B花木各x棵,y棵,则有()A.B.C.D.10.从某校九年级中随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分,5分.将测量的结果制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些学生分数的中位数是()A.1 B.2 C.3 D.411.如图,D为等边三角形ABC内的一点,DA=5,DB=4,DC=3,将线段AD以点A为旋转中心逆时针旋转60°,得到线段AD′,连接DD′,则tan∠DD′C=()A.B.C.D.12.有五张正面分别写有数字﹣3,﹣2,1,2,3的卡片,它们的背面完全相同,现将这五张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为a 的值,然后再从剩余的四张卡片中随机抽取一张,以其正面的数字作为b 的值,则点(a ,b )在第二象限的概率是( ) A .B .C .D .13.如图,在菱形ABCD 中,AB=2,∠BAD=60°,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE +PB 的最小值为( )A .1B .C .2D .14.如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE=AD ,DF=BD ,连接BF 分别交CD ,CE 于H ,G .下列结论:①EC=2DG ;②∠GDH=∠GHD ;③S △CDG =S 四边形DHGE ;④图中有8个等腰三角形.其中正确的共有( )A .1个B .2个C .3个D .4个15.如图,菱形纸片ABCD 中,∠A=60°,折叠菱形纸片ABCD ,使点C 落在DP (P 为AB 中点)所在的直线上,得到经过点D 的折痕DE .则∠DEC 的大小为( )A .78°B .75°C .60°D .45°16.化简÷(1+)的结果是()A.B.C.D.17.如图,AB与⊙O相切于点B,OA=2,∠OAB=30°,弦BC∥OA,则劣弧的长是()A.B.C.D.18.如图,菱形ABCD的对角线AC,BD相交于点O,AC=8,BD=6,以AB为直径作一个半圆,则图中阴影部分的面积为()A.25π﹣6 B.π﹣6 C.π﹣6 D.π﹣619.在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A. B.C.D.20.如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()A.B.C.D.二、填空题(本大题共4个小题,每小题3分,共12分,把答案填在题中的横线上)21.方程﹣=1的解是.22.分解因式:a3b﹣2a2b2+ab3=.23.某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C 处,求该船与港口B之间的距离即BC的长度为.24.如图:Rt△ABC中,∠C=90°,BC=1,AC=2,把边长分别为x1,x2,x3,…x n的n个正方形依次放在△ABC中:第一个正方形CM1P1N1的顶点分别放在Rt△ABC的各边上;第二个正方形M1M2P2N2的顶点分别放在Rt△AP1M1的各边上,…其他正方形依次放入,则第2016个正方形的边长X2016为.三、解答题(本大题共5个小题,共48分,解答应写出文字说明、推理过程或演算步骤)25.如图,已知直线AB与x轴交于点C,与双曲线交于A(3,)、B(﹣5,a)两点.AD⊥x轴于点D,BE∥x轴且与y轴交于点E.(1)求点B的坐标及直线AB的解析式;(2)判断四边形CBED的形状,并说明理由.26.铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11 000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70%)售完,那么超市在这两次苹果销售中共盈利多少元?27.如图.等腰直角三角形ABC中,∠A=90°,P为BC的中点,小明拿着含45°角的透明三角形,使45°角的顶点落在点P,且绕P旋转.(1)如图①:当三角板的两边分别AB、AC交于E、F点时,试说明△BPE∽△CFP.(2)将三角板绕点P旋转到图②,三角板两边分别交BA延长线和边AC于点E,F.连接EF,△BPE与△EFP是否相似?请说明理由.28.如图,在正方形ABCD中,点O是对角线AC,BD的交点,点E在CD上,连接BE,过点C作CF⊥BE于点F,在BE上截取BG=CF,连接OF,OG.(1)求证:△BOG≌△COF;(2)若AB=6,DE=2CE,求OF的长度.29.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)求△PAC为直角三角形时点P的坐标.2016山东省泰安市宁阳县中考数学二模试卷参考答案与试题解析一、选择题(本大题共20小题,每小题3分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求.)1.在|﹣3|,30,3﹣2,这四个数中,最大的数是()A.|﹣3|B.30C.3﹣2D.【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:∵|﹣3|=3,30=1,3﹣2=,3>>1>,∴最大的数是|﹣3|.故选:A.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.下列运算正确的是()A.(﹣3mn)2=﹣6m2n2B.4x4+2x4+x4=6x4C.(xy)2÷(﹣xy)=﹣xy D.(a﹣b)(﹣a﹣b)=a2﹣b2【考点】整式的除法;合并同类项;幂的乘方与积的乘方;平方差公式.【分析】根据积的乘方、合并同类项、整式的乘法、除法,即可解答.【解答】解:A、(﹣3mn)2=9m2n2,故错误;B、4x4+2x4+x4=7x4,故错误;C、正确;D、(a﹣b)(﹣a﹣b)=﹣(a2﹣b2)=b2﹣a2,故错误;故选:C.【点评】本题考查了积的乘方、合并同类项、整式的乘法、除法,解决本题的关键是熟记相关法则.3.H7N9是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为()A.12×10﹣8米B.1.2×10﹣9米C.1.2×10﹣8米D.1.2×10﹣7米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000012米=1.2×10﹣7米,故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.下列四个图形中,是中心对称而不是轴对称的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】按中心对称图形和轴对称图形的定义来判断.【解答】解:A、既是中心对称也是轴对称,所以此选项错误;B、既不是中心对称也不是轴对称,所以此选项错误;C、既是中心对称也是轴对称,所以此选项错误;D、是中心对称而不是轴对称,所以此选项正确;故选D.【点评】本题考查了中心对称图形和轴对称图形的定义,熟练掌握中心对称图形与轴对称图形的定义是本题的关键;判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.5.下列几何体的主视图与其他三个不同的是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的视图是主视图,可得答案.【解答】解:A、从正面看第一层三个小正方形,第二层中间一个小正方形;B、从正面看第一层三个小正方形,第二层中间一个小正方形;C、从正面看第一层三个小正方形,第二层右边一个小正方形、中间一个小正方形;D、从正面看第一层三个小正方形,第二层中间一个小正方形;故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.6.不等式组的所有整数解的积为()A.﹣1 B.1 C.0 D.﹣2【考点】一元一次不等式组的整数解.【分析】先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相乘即可求解.【解答】解:,解不等式①得:x≥﹣,解不等式②得:x≤,则不等式组的解集为﹣≤x≤,整数解为﹣1,0,所以所有整数解的积为0,故选C.【点评】本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式组的公共解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.如图,直线a∥b,直线l与a相交于点P,与直线b相交于点Q,PM⊥l于点P,若∠1=39°,则∠2等于()A.61°B.51°C.50°D.60°【考点】平行线的性质.【分析】根据平行线的性质求得∠1=∠QPA=39°,由于∠2+∠QPA=90°,即可求得∠2的度数.【解答】解:∵AB∥CD,∠1=39°,∴∠1=∠QPA=39°.∵PM⊥l,∴∠2+∠QPA=90°.∴∠2+39°=90°,∴∠2=51°.故选B【点评】本题考查了平行线的性质,熟练掌握平行线的性质是本题的关键.8.抛物线y=x2+bx+c的图象先向下平移3个单位,再向右平移2个单位,所得图象的函数表达式为y=(x﹣1)2﹣4,则b,c的值为()A.b=2,c=﹣6 B.b=2,c=0 C.b=6,c=8 D.b=6,c=2【考点】二次函数图象与几何变换.【分析】利用逆向思考的方式解决问题:把抛物线y=(x﹣1)2﹣4先向上平移3个单位,再向左平移2个单位,求出抛物线顶点平移后对应点的坐标,则利用顶点式写出平移后的抛物线解析式,然后写成一般式即可得到b和c的值.【解答】解:抛物线y=(x﹣1)2﹣4的顶点坐标为(1,﹣4),把(1,﹣4)先向上平移3个单位,再向左平移2个单位所得对应点的坐标为((﹣1,﹣1),所以平移后的抛物线解析式为y=(x+1)2﹣1,即y=x2+2x,所以b=2,c=0.故选B.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.9.五一期间,绿化部门预在县城主要干道旁边种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵,求A、B两种花木的数量分别是多少棵?若设A,B花木各x棵,y棵,则有()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得等量关系:①A,B两种花木共6600棵;②A花木数量=B花木数量×2﹣600棵,根据等量关系列出方程组即可.【解答】解:设A,B花木各x棵,y棵,由题意得:,故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.10.从某校九年级中随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分,5分.将测量的结果制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些学生分数的中位数是()A.1 B.2 C.3 D.4【考点】条形统计图;扇形统计图;中位数.【分析】首先利用扇形图以及条形图求出总人数,进而求得每个小组的人数,然后根据中位数的定义求出这些学生分数的中位数.【解答】解:总人数为6÷10%=60(人),则2分的有60×20%=12(人),4分的有60﹣6﹣12﹣15﹣9=18(人),第30与31个数据都是3分,这些学生分数的中位数是(3+3)÷2=3.故选C.【点评】本题考查了统计图及中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.解题的关键是从统计图中获取正确的信息并求出各个小组的人数.11.如图,D为等边三角形ABC内的一点,DA=5,DB=4,DC=3,将线段AD以点A为旋转中心逆时针旋转60°,得到线段AD′,连接DD′,则tan∠DD′C=()A.B.C.D.【考点】旋转的性质;等边三角形的性质;锐角三角函数的定义.【分析】首先证明把△ABD逆时针旋转60°后,AB与AC重合,AD与AD′重合,再根据勾股定理的逆定理得到△DD′C为直角三角形,进而利用正切的定义即可求出tan∠DD′C的值.【解答】解:∵线段AD以点A为旋转中心逆时针旋转60°得到线段AD′,∴AD=AD′,∠DAD′=60°,∴△ADD′为等边三角形,∴DD′=5,∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∴把△ABD逆时针旋转60°后,AB与AC重合,AD与AD′重合,∴D′C=DB=4,∵DC=3,在△DD′C中,∵32+42=52,∴DC2+D′C2=DD′2,∴△DD′C为直角三角形,∴∠DCD′=90°,∴tan∠DD′C=,故选B.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的判定与性质以及勾股定理的逆定理,证明△DD′C为直角三角形是解题关键.12.有五张正面分别写有数字﹣3,﹣2,1,2,3的卡片,它们的背面完全相同,现将这五张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为a的值,然后再从剩余的四张卡片中随机抽取一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图展示所有20种等可能的结果数,再找出点(a,b)在第二象限的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有20种等可能的结果数,其中点(a,b)在第二象限的结果数为6,所以点(a,b)在第二象限的概率==.故选C.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.13.如图,在菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为()A.1 B.C.2 D.【考点】菱形的性质.【分析】由菱形的性质,找出B点关于AC的对称点D,连接DE,则DE就是PE+PB的最小值,再由勾股定理可求出DE.【解答】解:连接DE、BD,由菱形的对角线互相垂直平分,可得B、D关于AC对称,连接PB.则PD=PB,∴PE+PB=PE+PD=DE,即DE就是PE+PB的最小值,∵∠BAD=60°,AD=AB,∴△ABD是等边三角形,∵AE=BE,∴DE⊥AB(等腰三角形三线合一的性质),在Rt△ADE中,DE=.故选:B.【点评】此题是有关最短路线问题,熟悉菱形的基本性质是解决本题的关键.14.如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE=AD ,DF=BD ,连接BF 分别交CD ,CE 于H ,G .下列结论:①EC=2DG ;②∠GDH=∠GHD ;③S △CDG =S 四边形DHGE ;④图中有8个等腰三角形.其中正确的共有( )A .1个B .2个C .3个D .4个【考点】正方形的性质;三角形内角和定理;等腰三角形的判定与性质;平行四边形的判定与性质.【分析】根据正方形的性质和已知推出四边形DECB 是平行四边形,得到BD=CE ,BD ∥CE ,无法证出G 为CE 的中点;得到BD ∥CE ,推出∠DCG=∠BDC=45°,求出∠BGC=∠GBC ,得到BC=CG=CD ,求出∠CDG=∠DHG ,即可;根据三角形的面积公式推出△CDG 和四边形DHGE 的面积相等;等腰三角形有△ABD ,△CDB ,△BDF ,△CDE ,△BCG ,△DGH ,△EGF ,△DFG ,△CDG .【解答】解:∵正方形ABCD ,DE=AD , ∴AD ∥BC ,DE=BC ,∠EDC=90°, ∴四边形DECB 是平行四边形,∴BD=CE ,BD ∥CE , ∵DE=BC=AD ,∴∠DCE=∠DEC=45°,要使CE=2DG ,只要G 为CE 的中点即可, 但DE=DC ,DF=BD , ∴EF ≠BC ,即△EFG 和△BCG 不全等, ∴G 不是CE 中点,∴①错误; ∵∠ADB=45°,DF=BD , ∴∠F=∠DBH=∠ADB=22.5°, ∴∠DHG=180°﹣90°﹣22.5°=67.5°,∵BD ∥CE ,∴∠DCG=∠BDC=45°,∵∠DHG=67.5°,∴∠HGC=22.5°,∠DEC=45°,∵∠BGC=180°﹣22.5°﹣135°=22.5°=∠GBC , ∴BC=CG=CD ,∴∠CDG=∠CGD=(180°﹣45°)=67.5°=∠DHG ,∴②正确;因为CG=DE=CD ,∠DCE=∠DEC=45,∠HGC=22.5°,∠GDE=90﹣∠CDG=90﹣67.5=22.5°,∴△DEG ≌△CHG ,要使△CDG 和四边形DHGE 的面积相等,只要△DEG 和△CHG 的面积相等即可,根据已知条件△DEG ≌△CHG , ∴③S △CDG =S 四边形DHGE ;正确,等腰三角形有△ABD ,△CDB ,△BDF ,△CDE ,△BCG ,△DGH ,△EGF ,△CDG ,△DGF ∴④错误; 故选B .【点评】本题主要考查对三角形的内角和定理,等腰三角形的性质和判定,正方形的性质,平行四边形的性质和判定等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.15.如图,菱形纸片ABCD 中,∠A=60°,折叠菱形纸片ABCD ,使点C 落在DP (P 为AB 中点)所在的直线上,得到经过点D 的折痕DE .则∠DEC 的大小为( )A.78°B.75°C.60°D.45°【考点】翻折变换(折叠问题);菱形的性质.【分析】连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.【解答】解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故选:B.【点评】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键.16.化简÷(1+)的结果是()A.B.C.D.【考点】分式的混合运算.【分析】首先对括号内的式子通分相加,然后把除法转化成乘法,进行约分即可.【解答】解:原式=÷==.故选A.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.17.如图,AB与⊙O相切于点B,OA=2,∠OAB=30°,弦BC∥OA,则劣弧的长是()A.B.C.D.【考点】弧长的计算;切线的性质.【分析】连接OB,OC,由AB为圆的切线,利用切线的性质得到△AOB为直角三角形,根据30度所对的直角边等于斜边的一半,由OA求出OB的长,且∠AOB=60°,再由BC 与OA平行,利用两直线平行内错角相等得到∠OBC=60°,又OB=OC,得到△BOC为等边三角形,确定出∠BOC=60°,利用弧长公式即可求出劣弧BC的长.【解答】解:连接OB,OC,∵AB为圆O的切线,∴∠ABO=90°,在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧长为=π.故选:B.【点评】此题考查了切线的性质,含30度直角三角形的性质,以及弧长公式,熟练掌握切线的性质是解本题的关键.18.如图,菱形ABCD的对角线AC,BD相交于点O,AC=8,BD=6,以AB为直径作一个半圆,则图中阴影部分的面积为()A.25π﹣6 B.π﹣6 C.π﹣6 D.π﹣6【考点】菱形的性质;勾股定理.【分析】根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式求出AB,然后根据阴影部分的面积等于半圆的面积减去△AOB的面积,列式计算即可得解,【解答】解:∵菱形ABCD中,AC=8,BD=6,∴AC⊥BD且OA=AC=×8=4,OB=BD=×6=3,由勾股定理得,AB===5,∴阴影部分的面积=π()2﹣×4×3=π﹣6.故选:D.【点评】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分的性质,熟记性质并观察出阴影部分的面积的表示是解题的关键.19.在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A. B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】本题主要考查一次函数和二次函数的图象所经过的象限的问题,关键是m的正负的确定,对于二次函数y=ax2+bx+c,当a>0时,开口向上;当a<0时,开口向下.对称轴为x=,与y轴的交点坐标为(0,c).【解答】解:解法一:逐项分析A、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,与图象不符,故A选项错误;B、由函数y=mx+m的图象可知m<0,对称轴为x===<0,则对称轴应在y轴左侧,与图象不符,故B选项错误;C、由函数y=mx+m的图象可知m>0,即函数y=﹣mx2+2x+2开口方向朝下,与图象不符,故C选项错误;D、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x===<0,则对称轴应在y轴左侧,与图象相符,故D选项正确;解法二:系统分析当二次函数开口向下时,﹣m<0,m>0,一次函数图象过一、二、三象限.当二次函数开口向上时,﹣m>0,m<0,对称轴x=<0,这时二次函数图象的对称轴在y轴左侧,一次函数图象过二、三、四象限.故选:D.【点评】主要考查了一次函数和二次函数的图象性质以及分析能力和读图能力,要掌握它们的性质才能灵活解题.20.如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据平行线的性质可得∠EDF=∠B=60°,根据三角形内角和定理即可求得∠F=30°,然后证得△EDB是等边三角形,从而求得ED=DB=2﹣x,再根据直角三角形的性质求得EF,最后根据三角形的面积公式求得y与x函数关系式,根据函数关系式即可判定.【解答】解:∵△ABC是等边三角形,∴∠B=60°,∵DE∥AC,∴∠EDF=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;∵∠ACB=60°,∠EDC=60°,∴△EDB是等边三角形.∴ED=DB=2﹣x,∵∠DEF=90°,∠F=30°,∴EF=ED=(2﹣x).∴y=EDEF=(2﹣x)(2﹣x),即y=(x﹣2)2,(x<2),故选A.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,特殊角的三角函数、三角形的面积等.二、填空题(本大题共4个小题,每小题3分,共12分,把答案填在题中的横线上)21.方程﹣=1的解是x=2.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣2x+2=x2﹣x,解得:x=2,经检验x=2是分式方程的解,故答案为:x=2【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.22.分解因式:a3b﹣2a2b2+ab3=ab(a﹣b)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式ab,再根据完全平方公式进行二次分解即可求得答案.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2.故填:ab(a﹣b)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.23.某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C 处,求该船与港口B之间的距离即BC的长度为(30+10)海里.【考点】解直角三角形的应用-方向角问题.【分析】作AD⊥BC于D,根据题意求出∠ABD=45°,得到AD=BD=30,求出∠C=60°,根据正切的概念求出CD的长,得到答案.【解答】解:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=30,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt△ACD中,∠C=60°,AD=30,则tanC=,∴CD==10,∴BC=BD+CD=30+10,故答案为:(30+10)海里.【点评】本题考查的是解直角三角形的知识的应用,掌握锐角三角函数的概念、选择正确的三角函数是解题的关键.24.如图:Rt△ABC中,∠C=90°,BC=1,AC=2,把边长分别为x1,x2,x3,…x n的n个正方形依次放在△ABC中:第一个正方形CM1P1N1的顶点分别放在Rt△ABC的各边上;第二个正方形M1M2P2N2的顶点分别放在Rt△AP1M1的各边上,…其他正方形依次放入,则第2016个正方形的边长X2016为()2016.【考点】相似三角形的判定与性质;正方形的性质.【分析】由四边形CDEF是正方形,即可得CD=CF=DE=EF=x1,DE∥AC,然后根据平行线分线段成比例定理,即可得,又由BC=1,AC=2,即可求得x1的值,同理求得x2,x3的值;观察规律即可求得第n个正方形的边长x n=()n.【解答】解:如图,∵四边形CM1P1N1是正方形,则CN1=CM1=P1N1=M1P=x1,P1N1∥AC,∴=,即=,∴x1=,同理:x2=()2,x3=()3,…∴x n=()n.∴x2016=()2016.故答案为:()2016.【点评】此题考查了正方形的性质,平行线分线段成比例定理,考查了学生的观察归纳能力.此题难度适中,解题的关键是数形结合思想与方程思想的应用.三、解答题(本大题共5个小题,共48分,解答应写出文字说明、推理过程或演算步骤)25.如图,已知直线AB与x轴交于点C,与双曲线交于A(3,)、B(﹣5,a)两点.AD⊥x轴于点D,BE∥x轴且与y轴交于点E.(1)求点B的坐标及直线AB的解析式;(2)判断四边形CBED的形状,并说明理由.【考点】反比例函数综合题.【分析】(1)根据反比例函数图象上点的坐标特征,将点A代入双曲线方程求得k值,即利用待定系数法求得双曲线方程;然后将B点代入其中,从而求得a值;设直线AB的解析式为y=mx+n,将A、B两点的坐标代入,利用待定系数法解答;(2)由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形.【解答】解:(1)∵双曲线过A(3,),∴k=20.把B(﹣5,a)代入,得a=﹣4.∴点B的坐标是(﹣5,﹣4).设直线AB的解析式为y=mx+n,将A(3,)、B(﹣5,﹣4)代入,得,解得:,∴直线AB的解析式为:;(2)四边形CBED是菱形.理由如下:∵直线AB的解析式为:,∴当y=0时,x=﹣2,∴点C的坐标是(﹣2,0);∵点D在x轴上,AD⊥x轴,A(3,),∴点D的坐标是(3,0),∵BE∥x轴,∴点E的坐标是(0,﹣4).而CD=5,BE=5,且BE∥CD.∴四边形CBED是平行四边形.在Rt△OED中,ED2=OE2+OD2,∴ED====5,∴ED=CD.∴平行四边形CBED是菱形.【点评】本题考查了反比例函数综合题.解答此题时,利用了反比例函数图象上点的坐标特征.26.铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11 000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70%)售完,那么超市在这两次苹果销售中共盈利多少元?。

山东省泰安市中考数学二模考试试卷

山东省泰安市中考数学二模考试试卷

山东省泰安市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)(2016·深圳模拟) 给出四个数0,,π,﹣1,其中最小的是()A . 0B .C . πD . ﹣12. (2分)下列计算:①+=;②2a3•3a2=6a6;③(2x+y)(x-3y)=2x2-5xy-3y2;④(x+y)2=x2+y2 .其中计算错误的个数是()A . 0个B . 1个C . 2个D . 3个3. (2分)将不等式3x-2<1的解集表示在数轴上,正确的是()A .B .C .D .4. (2分)如图所示,该几何体的主视图是()A .B .C .D .5. (2分) (2019九上·张家港期末) 如图,已知等腰△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E,若CD=4 ,CE=8,则⊙O的半径是()A .B . 5C . 6D .6. (2分)(2018·泸县模拟) 二次函数y=﹣x2+6x﹣7,当x取值为t≤x≤t+2时,y最大值=﹣(t﹣3)2+2,则t的取值范围是()A . t=0B . 0≤t≤3C . t≥3D . 以上都不对二、填空题 (共6题;共7分)7. (1分)(2017·广州模拟) 计算|﹣2|+()﹣1×(π﹣)2﹣ =________.8. (1分) (2019七上·琼中期末) 据统计,今年琼中绿橙的产值约为28500000元,数据28500000用科学记数法表示为________.9. (1分)(2019·营口) 在一次青年歌手演唱比赛中,10位评委给某位歌手的打分分别是:9.5,9.8,9.4,9.5,9.6,9.3,9.6,9.4,9.3,9.4,则这组数据的众数是________.10. (1分) (2019九上·沙坪坝期末) 计算:|-1|+()-1=________.11. (2分) (2019七上·如皋期末) 将图1中的正方形剪开得到图2,图2中共有4个正方形,将图2中一个正方形剪开得到图3,图3中共有7个正方形,将图3中一个正方形剪开得到图4,图4中共有10个正方形如此下去,则图2019中共有正方形的个数为________.12. (1分)如图,矩形ABCD中,AB=6,BC=8,E是BC边上的一定点,P是CD边上的一动点(不与点C、D 重合),M,N分别是AE、PE的中点,记MN的长度为a,在点P运动过程中,a不断变化,则a的取值范围是________ .三、解答题 (共11题;共56分)13. (5分) (2019七上·朝阳期中) 先化简,再求值:,其中 .14. (5分) (2017九下·沂源开学考) 解方程:﹣ =1.15. (2分) (2020八上·中山期末) 如图,△AB C中,AE=BE,∠AED=∠ABC。

山东省泰安市宁阳县中考数学二模试卷

山东省泰安市宁阳县中考数学二模试卷
比例函数 y= 的图象在第二象限交于点 C,CE⊥x 轴,垂足为点 E,tan∠ABO= ,OB
=4,OE=2. (1)求反比例函数的解析式; (2)若点 D 是反比例函数图象在第四象限上的点,过点 D 作 DF⊥y 轴,垂足为点 F,连
接 OD、BF.如果 S△BAF=4S△DFO,求点 D 的坐标.
A.1 个
B.2 个
C.3 个
D.4 个
18.(3 分)如图,在 4×4 的正方形方格图形中,小正方形的顶点称为格点,△ABC 的顶点
都在格点上,则图中∠ABC 的余弦值是( )
A.2
B.
C.
D.
19.(3 分)函数 y=k(x﹣k)与 y=kx2,y= (k≠0),在同一坐标系上的图象正确的是
()
A.x4+x2=x6
B.x2•x3=x6
C.(x2)3=x6
D.x2﹣y2=(x﹣y)2
3.(3 分)纳米是一种长度单位,1 纳米=10﹣9 米,已知某种花粉的直径为 3500 纳米,那
么用科学记数法表示该种花粉的直径为( )
A.3.5×103 米
B.3.5×10﹣5 米
C.3.5×10﹣9 米
D.3.5×10﹣6 米
27.(8 分)某服装店用 6000 元购进 A,B 两种新式服装,按标价售出后可获得毛利润 3800 元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.
类型
A型
B型
价格
进价(元/件)
60
100
标价(元/件)
100
160
(1)求这两种服装各购进的件数;
(2)如果 A 种服装按标价的 8 折出售,B 种服装按标价的 7 折出售,那么这批服装全部售

中考试题山东省泰安市宁阳县一模试卷

中考试题山东省泰安市宁阳县一模试卷

2016年山东省泰安市宁阳县中考数学一模试卷一、选择题(共20小题,每小题3分,满分60分)1.的相反数是( )A .2B .C .﹣2D .2.下列运算正确的是( )A .﹣(﹣a +b )=a +bB .3a 3﹣3a 2=aC .a +a ﹣1=0D . 3.下列几何体中,俯视图为四边形的是( )A .B .C .D .4.下列四个图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个5.如图,已知AB ∥CD ,BC 平分∠ABE ,∠C=33°,则∠BED 的度数是( )A .16°B .33°C .49°D .66°6.甲型H1N1流感病毒的直径大约是0.000000081米,用科学记数法可表示为( ) A .8.1×10﹣9米 B .8.1×10﹣8米 C .81×10﹣9米 D .0.81×10﹣7米7.如果是方程ax +(a ﹣2)y=0的一组解,则a 的值( )A .1B .2C .﹣1D .﹣28.如图,已知P 是正方形ABCD 对角线BD 上一点,且BP=BC ,则∠ACP 度数是()A .45°B .22.5°C .67.5°D .75°9.下列说法正确的是( )A .数据3,4,4,7,3的众数是4B .数据0,1,2,5,a 的中位数是2C.一组数据的众数和中位数不可能相等D.数据0,5,﹣7,﹣5,7的中位数和平均数都是010.如图,DC是⊙O直径,弦AB⊥CD于点F,连接BC、BD,则下列结论错误的是()A.AF=BF B.OF=CF C.=D.∠DBC=90°11.如图,A(,1),B(1,).将△AOB绕点O旋转150°得到△A′OB′,则此时点A的对应点A′的坐标为()A.(﹣,﹣1)B.(﹣2,0)C.(﹣1,﹣)或(﹣2,0)D.(﹣,﹣1)或(﹣2,0)12.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有()A.1组B.2组C.3组D.4组13.已知a2+a﹣3=0,那么a2(a+4)的值是()A.9 B.﹣12 C.﹣18 D.﹣1514.如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为()A.B.C.D.15.二次函数y=x2﹣(m﹣1)x+4的图象与x轴有且只有一个交点,则m的值为()A.1或﹣3 B.5或﹣3 C.﹣5或3 D.以上都不对16.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分图形的面积为()A.4πB.2πC.πD.17.如图,抛物线y=ax2+bx+c与x轴交于点(﹣1,0),对称轴为x=1,则下列结论中正确的是()A.a>0B.当x>1时,y随x的增大而增大C.c<0D.x=3是一元二次方程ax2+bx+c=0的一个根18.在一个不透明的盒子里有3个分别标有数字5,6,7的小球,它们除数字外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出1个球,那么这两个球上的数字之和为奇数的概率为()A.B.C.D.19.如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A→B→D→C→A的路径运动,回到点A时运动停止.设点P运动的路程长为x,AP长为y,则y关于x的函数图象大致是()A.B.C.D.20.如下数表是由从1开始的连续自然数组成,则自然数2014所在的行数是()A.第45行B.第46行C.第47行D.第48行二、填空题(共4小题,每小题3分,满分12分)21.在一次爱心捐款中,某班有40名学生拿出自己的零花钱,有捐5元、10元、20元、50元的.右图反映了不同捐款的人数比例,那么这个班的学生平均每人捐款______元.22.如图,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”阴影图案的面积为______.23.如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是______.24.如图,以点P(2,0)为圆心,为半径作圆,点M(a,b)是⊙P上的一点,则的最大值是______.三、解答题(共5小题,满分48分)25.暑假的一天,小刚到离家1.2千米的万州体育馆看球赛,进场时,发现门票还放在家中,此时离比赛还有24分钟,于是他立即步行(匀速)回家取票,在家取票用时5分钟,取到票后,他马上骑自行车(匀速)赶往体育馆.已知小刚骑自行车从家赶往体育馆比从体育馆步行回家所用时间少10分钟.骑自行车的速度是步行速度的3倍.(1)小刚步行的速度(单位:米/分钟)是多少?(2)小刚能否在球赛开始前赶到体育馆?请通过计算说明理由.26.如图所示,在梯形ABCD中,AD∥BC,∠BDC=90°,E为BC上一点,∠BDE=∠DBC.(1)求证:DE=EC;(2)若AD=BC,试判断四边形ABED的形状,并说明理由.27.如图,已知双曲线y=经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式;(3)判断AB与CD的位置关系,并说明理由.28.如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,且DG平分△ABC的周长,设BC=a、AC=b,AB=c.(1)求线段BG的长;(2)求证:DG平分∠EDF;(3)连接CG,如图2,若△GBD∽△GDF,求证:BG⊥CG.29.如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6).动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0<t≤5).以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连接CD、QC.(1)求当t为何值时,点Q与点D重合?(2)设△QCD的面积为S,试求S与t之间的函数关系式,并求S的最大值;(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.2016年山东省泰安市宁阳县中考数学一模试卷参考答案与试题解析一、选择题(共20小题,每小题3分,满分60分)1.的相反数是()A.2 B.C.﹣2 D.【考点】相反数;绝对值.【分析】根据相反数的意义,在这个数的前面加上负号,化简即得出.【解答】解:根据相反数的意义,的相反数为,﹣=﹣||=﹣.故选D.2.下列运算正确的是()A.﹣(﹣a+b)=a+b B.3a3﹣3a2=a C.a+a﹣1=0 D.【考点】负整数指数幂;合并同类项;去括号与添括号.【分析】根据去括号、合并同类项、负整数指数幂等知识点进行判断.【解答】解:A、﹣(﹣a+b)=a﹣b,故错误;B、这两个式子不是同类项不能相加减,故错误;C、a+a﹣1=a+≠0,故错误;D、1﹣1=1÷=1×=.故正确,故选D.3.下列几何体中,俯视图为四边形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】找到从上面看所得到的图形为四边形的几何体即可.【解答】解:A、从上面看可得到一个五边形,不符合题意;B、从上面看可得到一个三角形,不符合题意;C、从上面看可得到一个圆,不符合题意;D、从上面看可得到一个四边形,符合题意.故选:D.4.下列四个图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:第一个图形,∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;第二个图形,∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;第三个图形,此图形旋转180°后能与原图形重合,此图形是中心对称图形,也是轴对称图形,故此选项正确;第四个图形,∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:B.5.如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠BED的度数是()A.16°B.33°C.49°D.66°【考点】平行线的性质.【分析】由AB∥CD,∠C=33°可求得∠ABC的度数,又由BC平分∠ABE,即可求得∠ABE 的度数,然后由两直线平行,内错角相等,求得∠BED的度数.【解答】解:∵AB∥CD,∠C=33°,∴∠ABC=∠C=33°,∵BC平分∠ABE,∴∠ABE=2∠ABC=66°,∵AB∥CD,∴∠BED=∠ABE=66°.故选D.6.甲型H1N1流感病毒的直径大约是0.000000081米,用科学记数法可表示为()A.8.1×10﹣9米B.8.1×10﹣8米C.81×10﹣9米D.0.81×10﹣7米【考点】科学记数法—表示较小的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:0.000 000 081=8.1×10﹣8米.故选B.7.如果是方程ax+(a﹣2)y=0的一组解,则a的值()A.1 B.2 C.﹣1 D.﹣2【考点】二元一次方程的解.【分析】将方程的解代入得到关于a的方程,从而可求得a的值.【解答】解:将代入方程ax+(a﹣2)y=0得:﹣3a+a﹣2=0.解得:a=﹣1.故选:C.8.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是()A.45°B.22.5° C.67.5° D.75°【考点】正方形的性质;等腰三角形的性质.【分析】根据正方形的性质可得到∠DBC=∠BCA=45°又知BP=BC,从而可求得∠BCP的度数,从而就可求得∠ACP的度数.【解答】解:∵ABCD是正方形,∴∠DBC=∠BCA=45°,∵BP=BC,∴∠BCP=∠BPC=67.5°,∴∠ACP=∠BCP﹣∠BCA=67.5°﹣45°=22.5°.故选B.9.下列说法正确的是()A.数据3,4,4,7,3的众数是4B.数据0,1,2,5,a的中位数是2C.一组数据的众数和中位数不可能相等D.数据0,5,﹣7,﹣5,7的中位数和平均数都是0【考点】算术平均数;中位数;众数.【分析】运用平均数,中位数,众数的概念采用排除法即可解.【解答】解:A、数据3,4,4,7,3的众数是4和3.故错误;B、数据0,1,2,5,a的中位数因a的大小不确定,故中位数也无法确定.故错误;C、一组数据的众数和中位数会出现相等的情况.故错误;D、数据0,5,﹣7,﹣5,7的中位数和平数数都是0.对.故选D.10.如图,DC是⊙O直径,弦AB⊥CD于点F,连接BC、BD,则下列结论错误的是()A.AF=BF B.OF=CF C.=D.∠DBC=90°【考点】垂径定理;圆周角定理.【分析】分别根据垂径定理及圆周角定理对各选项进行分析即可.【解答】解:∵DC是⊙O直径,弦AB⊥CD于点F,∴AF=BF,=,∠DBC=90°,∴A、C、D正确;∵点F不一定是OC的中点,∴B错误.故选B.11.如图,A(,1),B(1,).将△AOB绕点O旋转150°得到△A′OB′,则此时点A的对应点A′的坐标为()A.(﹣,﹣1)B.(﹣2,0)C.(﹣1,﹣)或(﹣2,0)D.(﹣,﹣1)或(﹣2,0)【考点】坐标与图形变化-旋转.【分析】根据点A、B的坐标求出OA与x轴正半轴夹角为30°,OB与y轴正半轴夹角为30°,从而得到∠AOB=30°,再利用勾股定理求出OA、OB的长度,然后分①顺时针旋转时,点A′与点B关于坐标原点O成中心对称,然后根据关于原点对称的点的横坐标与纵坐标都互为相反数解答;②逆时针旋转时,点A′在x轴负半轴上,然后写出点A′的坐标即可.【解答】解:∵A(,1),B(1,),∴tanα==,∴OA与x轴正半轴夹角为30°,OB与y轴正半轴夹角为30°,∴∠AOB=90°﹣30°﹣30°=30°,根据勾股定理,OA==2,OB==2,①如图1,顺时针旋转时,∵150°+30°=180°,∴点A′、B关于原点O成中心对称,∴点A′(﹣1,﹣);②如图2,逆时针旋转时,∵150°+30°=180°,∴点A′在x轴负半轴上,∴点A′的坐标是(﹣2,0).综上所述,点A′的坐标为(﹣1,﹣)或(﹣2,0).故选C.12.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有()A.1组B.2组C.3组D.4组【考点】相似三角形的应用;解直角三角形的应用.【分析】根据三角形相似可知,要求出AB,只需求出EF即可.所以借助于相似三角形的性质,根据=即可解答.【解答】解:此题比较综合,要多方面考虑,①因为知道∠ACB和BC的长,所以可利用∠ACB的正切来求AB的长;②可利用∠ACB和∠ADB的正切求出AB;③,因为△ABD∽△EFD可利用=,求出AB;④无法求出A,B间距离.故共有3组可以求出A,B间距离.故选C.13.已知a2+a﹣3=0,那么a2(a+4)的值是()A.9 B.﹣12 C.﹣18 D.﹣15【考点】整式的混合运算—化简求值.【分析】由a2+a﹣3=0,变形得到a2=﹣(a﹣3),a2+a=3,先把a2=﹣(a﹣3)代入整式得到a2(a+4)=﹣(a﹣3)(a+4),利用乘法得到原式=﹣(a2+a﹣12),再把a2+a=3代入计算即可.【解答】解:∵a2+a﹣3=0,∴a2=﹣(a﹣3),a2+a=3,a2(a+4)=﹣(a﹣3)(a+4)=﹣(a2+a﹣12)=﹣(3﹣12)=9.故选A.14.如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为()A.B.C.D.【考点】旋转的性质;含30度角的直角三角形;等腰直角三角形.【分析】根据旋转得出∠NCE=75°,求出∠NCO,设OC=a,则CN=2a,根据△CMN也是等腰直角三角形设CM=MN=x,由勾股定理得出x2+x2=(2a)2,求出x=a,得出CD=a,代入求出即可.【解答】解:∵将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,∴∠ECN=75°,∵∠ECD=45°,∴∠NCO=180°﹣75°﹣45°=60°,∵AO⊥OB,∴∠AOB=90°,∴∠ONC=30°,设OC=a,则CN=2a,∵等腰直角三角形DCE旋转到△CMN,∴△CMN也是等腰直角三角形,设CM=MN=x,则由勾股定理得:x2+x2=(2a)2,x=a,即CD=CM=a,∴==,15.二次函数y=x 2﹣(m ﹣1)x +4的图象与x 轴有且只有一个交点,则m 的值为( ) A .1或﹣3 B .5或﹣3 C .﹣5或3 D .以上都不对【考点】抛物线与x 轴的交点.【分析】由二次函数y=x 2﹣(m ﹣1)x +4的图象与x 轴有且只有一个交点,可得△=b 2﹣4ac=[﹣(m ﹣1)]2﹣4×1×4=0,继而求得答案.【解答】解:∵二次函数y=x 2﹣(m ﹣1)x +4的图象与x 轴有且只有一个交点, ∴△=b 2﹣4ac=[﹣(m ﹣1)]2﹣4×1×4=0,∴(m ﹣1)2=16,解得:m ﹣1=±4,∴m 1=5,m 2=﹣3.∴m 的值为5或﹣3.故选B .16.如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB=30°,CD=2,则阴影部分图形的面积为( )A .4πB .2πC .πD .【考点】扇形面积的计算;勾股定理;垂径定理.【分析】根据垂径定理求得CE=ED=,然后由圆周角定理知∠COE=60°,然后通过解直角三角形求得线段OC 、OE 的长度,最后将相关线段的长度代入S 阴影=S 扇形OCB ﹣S △COE +S △BED .【解答】解:如图,假设线段CD 、AB 交于点E ,∵AB 是⊙O 的直径,弦CD ⊥AB ,∴CE=ED=,又∵∠CDB=30°,∴∠COE=2∠CDB=60°,∠OCE=30°,∴OE=CE •cot60°=×=1,OC=2OE=2,∴S 阴影=S 扇形OCB ﹣S △COE +S △BED =﹣OE ×EC +BE •ED=﹣+=.17.如图,抛物线y=ax2+bx+c与x轴交于点(﹣1,0),对称轴为x=1,则下列结论中正确的是()A.a>0B.当x>1时,y随x的增大而增大C.c<0D.x=3是一元二次方程ax2+bx+c=0的一个根【考点】二次函数图象与系数的关系;二次函数的性质;抛物线与x轴的交点.【分析】根据二次函数图象的开口方向向下可得a是负数,与y轴的交点在正半轴可得c是正数,根据二次函数的增减性可得B选项错误,根据抛物线的对称轴结合与x轴的一个交点的坐标可以求出与x轴的另一交点坐标,也就是一元二次方程ax2+bx+c=0的根,从而得解.【解答】解:A、根据图象,二次函数开口方向向下,∴a<0,故本选项错误;B、当x>1时,y随x的增大而减小,故本选项错误;C、根据图象,抛物线与y轴的交点在正半轴,∴c>0,故本选项错误;D、∵抛物线与x轴的一个交点坐标是(﹣1,0),对称轴是x=1,设另一交点为(x,0),﹣1+x=2×1,x=3,∴另一交点坐标是(3,0),∴x=3是一元二次方程ax2+bx+c=0的一个根,故本选项正确.故选D.18.在一个不透明的盒子里有3个分别标有数字5,6,7的小球,它们除数字外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出1个球,那么这两个球上的数字之和为奇数的概率为()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这两个球上的数字之和为奇数的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,这两个球上的数字之和为奇数的有4种情况,∴这两个球上的数字之和为奇数的概率为:=.故选A.19.如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A→B→D→C→A的路径运动,回到点A时运动停止.设点P运动的路程长为x,AP长为y,则y关于x的函数图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意设出点P运动的路程x与点P到点A的距离y的函数关系式,然后对x从0到2a+2a时分别进行分析,并写出分段函数,结合图象得出答案.【解答】解:设动点P按沿折线A→B→D→C→A的路径运动,∵正方形ABCD的边长为a,∴BD=a,①当P点在AB上,即0≤x<a时,y=x,②当P点在BD上,即a≤x<(1+)a时,过P点作PF⊥AB,垂足为F,∵AB+BP=x,AB=a,∴BP=x﹣a,∵AE2+PE2=AP2,∴()2+[a﹣(x﹣a)]2=y2,∴y=,③当P点在DC上,即a(1+)≤x<a(2+)时,同理根据勾股定理可得AP2=AD2+DP2,y=,④当P点在CA上,即当a(2+)≤x≤a(2+2)时,y=a(2+2)﹣x,结合函数解析式可以得出第2,3段函数解析式不同,得出A选项一定错误,根据当a≤x<(1+)a时,P在BE上和ED上时的函数图象对称,故B选项错误,再利用第4段函数为一次函数得出,故C选项一定错误,故只有D符合要求,故选:D.20.如下数表是由从1开始的连续自然数组成,则自然数2014所在的行数是()A.第45行B.第46行C.第47行D.第48行【考点】规律型:数字的变化类.【分析】通过观察可得第n行最后一数为n2,由此估算2014所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2014在第45行.故选:A.二、填空题(共4小题,每小题3分,满分12分)21.在一次爱心捐款中,某班有40名学生拿出自己的零花钱,有捐5元、10元、20元、50元的.右图反映了不同捐款的人数比例,那么这个班的学生平均每人捐款16元.【考点】扇形统计图.【分析】根据扇形统计图中,各种情况所占的比例,利用加权平均数公式即可求解.【解答】解:5×60%+10×10%+20×10%+50×20%=16元.故答案是:16.22.如图,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”阴影图案的面积为2π﹣4.【考点】扇形面积的计算;中心对称图形.﹣S△ABO),依此计算即可求解.【分析】连接AB,则阴影部分面积=2(S扇形AOB【解答】解:﹣S△AOB)=2(﹣×2×2)=2π﹣4.由题意得,阴影部分面积=2(S扇形AOB故答案为:2π﹣4.23.如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是(7,3).【考点】坐标与图形变化-旋转;一次函数的性质.【分析】根据旋转的性质﹣﹣旋转不改变图形的形状和大小解答.【解答】解:直线y=﹣x+4与x轴、y轴分别交于A(3,0)、B(0,4)两点,由图易知点B′的纵坐标为O′A=OA=3,横坐标为OA+O′B′=OA+OB=7.则点B′的坐标是(7,3).故答案为:(7,3).24.如图,以点P(2,0)为圆心,为半径作圆,点M(a,b)是⊙P上的一点,则的最大值是.【考点】切线的性质;坐标与图形性质.【分析】当有最大值时,得出tan∠MOP有最大值,推出当OM与圆相切时,tan∠MOP有最大值,根据解直角三角形得出tan∠MOP=,由勾股定理求出OM,代入求出即可.【解答】解:当有最大值时,即tan∠MOP有最大值,也就是当OM与圆相切时,tan∠MOP有最大值,此时tan∠MOP=,在Rt△OMP中,由勾股定理得:OM===1,则tan∠MOP====,故答案为:.三、解答题(共5小题,满分48分)25.暑假的一天,小刚到离家1.2千米的万州体育馆看球赛,进场时,发现门票还放在家中,此时离比赛还有24分钟,于是他立即步行(匀速)回家取票,在家取票用时5分钟,取到票后,他马上骑自行车(匀速)赶往体育馆.已知小刚骑自行车从家赶往体育馆比从体育馆步行回家所用时间少10分钟.骑自行车的速度是步行速度的3倍.(1)小刚步行的速度(单位:米/分钟)是多少?(2)小刚能否在球赛开始前赶到体育馆?请通过计算说明理由.【考点】分式方程的应用.【分析】(1)设小刚步行的速度为x米/分钟,骑自行车的速度是3x米/分钟,根据小刚骑自行车从家赶往体育馆比从体育馆步行回家所用时间少10分钟列出方程解答即可;(2)根据题意得出来回家取票的总时间进行判断即可.【解答】解:(1)设小刚步行的速度为x米/分钟,骑自行车的速度是3x米/分钟,可得:,解得:x=80,经检验x=80是方程的解,3x=240,答:小刚步行的速度80米/分钟;(2)来回家取票的总时间为:分钟>24分钟,故小刚不能在球赛开始前赶到体育馆.26.如图所示,在梯形ABCD中,AD∥BC,∠BDC=90°,E为BC上一点,∠BDE=∠DBC.(1)求证:DE=EC;(2)若AD=BC,试判断四边形ABED的形状,并说明理由.【考点】梯形;直角三角形的性质;菱形的判定.【分析】(1)由∠BDC=90°,∠BDE=∠DBC,利用等角的余角相等,即可得∠EDC=∠C,又由等角对等边,即可证得DE=EC;(2)易证得AD=BE,AD∥BC,即可得四边形ABED是平行四边形,又由BE=DE,即可得四边形ABED是菱形.【解答】(1)证明:∵∠BDC=90°,∠BDE=∠DBC,∴∠EDC=∠BDC﹣∠BDE=90°﹣∠BDE,又∵∠C=90°﹣∠DBC,∴∠EDC=∠C,∴DE=EC;(2)若AD=BC,则四边形ABED是菱形.证明:∵∠BDE=∠DBC.∴BE=DE,∵DE=EC,∴DE=BE=EC=BC,∵AD=BC,∴AD=BE,∵AD∥BC,∴四边形ABED是平行四边形,∵BE=DE,∴▱ABED是菱形.27.如图,已知双曲线y=经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式;(3)判断AB与CD的位置关系,并说明理由.【考点】反比例函数综合题.【分析】(1)把点D的坐标代入双曲线解析式,进行计算即可得解;(2)先根据点D的坐标求出BD的长度,再根据三角形的面积公式求出点C到BD的距离,然后求出点C的纵坐标,再代入反比例函数解析式求出点C的坐标,然后利用待定系数法求一次函数解析式解答;(3)根据题意求出点A、B的坐标,然后利用待定系数法求出直线AB的解析式,可知与直线CD的解析式k值相等,所以AB、CD平行.【解答】解:(1)∵双曲线y=经过点D(6,1),∴=1,解得k=6;(2)设点C到BD的距离为h,∵点D的坐标为(6,1),DB⊥y轴,∴BD=6,∴S△BCD=×6•h=12,解得h=4,∵点C是双曲线第三象限上的动点,点D的纵坐标为1,∴点C的纵坐标为1﹣4=﹣3,∴=﹣3,解得x=﹣2,∴点C的坐标为(﹣2,﹣3),设直线CD的解析式为y=kx+b,则,解得,所以,直线CD的解析式为y=x﹣2;(3)AB∥CD.理由如下:∵CA⊥x轴,DB⊥y轴,设点C的坐标为(c,),点D的坐标为(6,1),∴点A、B的坐标分别为A(c,0),B(0,1),设直线AB的解析式为y=mx+n,则,解得,所以,直线AB的解析式为y=﹣x+1,设直线CD的解析式为y=ex+f,则,解得,∴直线CD的解析式为y=﹣x+,∵AB、CD的解析式k都等于﹣,∴AB与CD的位置关系是AB∥CD.28.如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,且DG平分△ABC的周长,设BC=a、AC=b,AB=c.(1)求线段BG的长;(2)求证:DG平分∠EDF;(3)连接CG,如图2,若△GBD∽△GDF,求证:BG⊥CG.【考点】相似形综合题.【分析】(1)由DG平分三角形ABC周长,得到三角形BDG周长与四边形ACDG周长相等,再由D为BC中点,得到BD=CD,利用等式的性质得到BG=AC+AG,表示出BG的长即可;(2)由D、F分别为BC、AB的中点,表示出DF与BF,由BG=BF表示出FG,得到DF=FG,利用等边对等角得到一对角相等,再由DE为三角形中位线,得到DE与AB平行,利用两直线平行内错角相等得到一对角相等,等量代换即可得证;(3)由△GBD∽△GDF,且一对公共角相等,得到∠B=∠FDG,由(2)得:∠FGD=∠FDG,等量代换得到∠FGD=∠B,利用等角对等边得到BD=DG,再由BD=DC,等量代换得到BD=DG=DC,得到B、C、G三点以BC为直径的圆周上,利用圆周角定理判断即可得证.【解答】(1)解:∵△BDG与四边形ACDG的周长相等,∴BD+BG+DG=AC+CD+DG+AG,∵D为BC的中点,∴BD=CD,∴BG=AC+AG,∵BG+(AC+AG)=AB+AC,∴BG=(AB+AC)=(b+c);(2)证明:∵D、F分别为BC、AB的中点,∴DF=AC=b,BF=AB=c,∵FG=BG﹣BF=(b+c)﹣c=b,∴DF=FG,∴∠FDG=∠FGD,∵D、E分别为BC、AC的中点,∴DE∥AB,∴∠EDG=∠FGD,∴∠FDG=∠EDG,即DG平分∠EDF;(3)证明:∵△GBD∽△GDF,且∠DFG>∠B,∠BGD=∠DGF(公共角),∴∠B=∠FDG,由(2)得:∠FGD=∠FDG,∴∠FGD=∠B,∴DG=BD,∵BD=CD,∴DG=BD=CD,∴B、C、G三点以BC为直径的圆周上,∴∠BGC=90°,即BC⊥CG.29.如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6).动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0<t≤5).以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连接CD、QC.(1)求当t为何值时,点Q与点D重合?(2)设△QCD的面积为S,试求S与t之间的函数关系式,并求S的最大值;(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.【考点】圆的综合题.【分析】(1)根据点A、B的坐标求出OA、OB,利用勾股定理列式求出AB,根据点Q的速度表示出OQ,然后求出AQ,再根据直径所对的圆周角是直角可得∠ADC=90°,再利用∠BAO的余弦表示出AD,然后列出方程求解即可;(2)利用∠BAO的正弦表示出CD的长,然后分点Q、D重合前与重合后两种情况表示出QD,再利用三角形的面积公式列式整理,然后根据二次函数的最值问题解答;(3)有两个时段内⊙P与线段QC只有一个交点:①运动开始至QC与⊙P相切时(0<t≤);②重合分离后至运动结束(<t≤5).【解答】解:(1)∵A(8,0),B(0,6),∴OA=8,OB=6,∴AB===10,∴cos∠BAO==,sin∠BAO==.∵AC为⊙P的直径,∴△ACD为直角三角形.∴AD=AC•cos∠BAO=2t×=t.当点Q与点D重合时,OQ+AD=OA,即:t+t=8,解得:t=.∴t=(秒)时,点Q与点D重合.(2)在Rt △ACD 中,CD=AC •sin ∠BAO=2t ×=t .①当0<t ≤时,DQ=OA ﹣OQ ﹣AD=8﹣t ﹣t=8﹣t .∴S=DQ •CD=(8﹣t )•t=﹣t 2+t .∵﹣=,0<<,∴当t=时,S 有最大值为;②当<t ≤5时,DQ=OQ +AD ﹣OA=t +t ﹣8=t ﹣8.∴S=DQ •CD=(t ﹣8)•t=t 2﹣t .∵﹣=,<,所以S 随t 的增大而增大,∴当t=5时,S 有最大值为15>. 综上所述,S 的最大值为15.(3)当CQ 与⊙P 相切时,有CQ ⊥AB ,∵∠BAO=∠QAC ,∠AOB=∠ACQ=90°,∴△ACQ ∽△AOB ,∴=,即=,解得t=.所以,⊙P 与线段QC 只有一个交点,t 的取值范围为0<t ≤或<t ≤5.2016年9月20日初中数学试卷金戈铁骑制作。

2016年泰安中考模拟试题卷(经典试题精选)(一)(2016.4.16)解析

2016年泰安中考模拟试题卷(经典试题精选)(一)(2016.4.16)解析

2016年泰安中考模拟试题卷(2016.4.16 )---------经典试题优选一1.( 2015?东莞)如图,某数学兴趣小组将边长为 3 的正方形铁丝框ABCD 变形为以 A 为圆心, AB 为半径的扇形(忽视铁丝的粗细),则所得扇形DAB 的面积为()A.6B.7C.8D.92.( 2015?东莞)如图,已知正△ ABC的边长为2,E、 F、 G 分别是 AB 、BC 、CA 上的点,且 AE=BF=CG ,设△ EFG 的面积为y,AE 的长为 x,则 y 对于 x 的函数图象大概是()A .B .C.D.3.( 2014?日照)如图,已知△ ABC 的面积是 12, BC=6 ,点 E、 I 分别在边 AB 、AC 上,在 BC 边上挨次做了 n 个全等的小正方形DEFG ,GFMN ,,KHIJ ,则每个小正方形的边长为()A .B.C. D .4.( 2011?常州)已知二次函数,当自变量 x 取 m时对应的值大于0,当自变量 x 分别取 m﹣ 1、 m+1 时对应的函数值为y1、 y2,则 y1、 y2必须知足()A . y1>0、 y2> 0 B. y1< 0、 y2< 0 C. y1< 0、 y2> 0 D. y1>0、 y2< 05.已知二次函数,当自变量 x 取 m 时对应的值大于0,当自变量 x 分别取m﹣2、 m+1 时对应的函数值为y1、 y2,则 y1、 y2 必定知足()A . y2<y1< 0B .y1< y2< 0 C. y1< 0< y2 D .0< y1< y226.( 2012?乐山)二次函数 y=ax+bx+1( a≠0)的图象的极点在第一象限,且过点(﹣ 1,0).设t=a+b+1 ,则 t 值的变化范围是()A . 0<t< 1B .0< t< 2 C. 1< t< 2 D .﹣ 1< t< 17.( 2013?潍坊)为了研究抽烟能否对肺癌有影响,某肿瘤研究所随机地抽查了10000 人,并进行统计剖析.结果显示:在抽烟者中患肺癌的比率是 2.5%,在不抽烟者中患肺癌的比例是 0.5%,抽烟者患肺癌的人数比不抽烟者患肺癌的人数多22 人.假如设这10000 人中,抽烟者患肺癌的人数为x,不抽烟者患肺癌的人数为y,依据题意,下边列出的方程组正确的是()A .B.C.D.8.( 2013?潍坊)一渔船在海岛 A 南偏东 20°方向的 B 处遇险,测得海岛 A 与 B 的距离为 20 海里,渔船将险情报告给位于 A 处的营救船后,沿北偏西 80°方向向海岛 C 凑近,同时,从 A 处出发的营救船沿南偏西 10°方向匀速航行, 20 分钟后,营救船在海岛 C 处恰巧追上渔船,那么营救船航行的速度为()A . 10海里/小时B . 30 海里 /小时C. 20海里/小时D. 30海里/小时9.( 2015 秋 ?石家庄期末)如图,一渔船由西往东航行,在 A 点测得海岛 C 位于北偏东60°的方向,行进20 海里抵达 B 点,此时,测得海岛 C 位于北偏东30°的方向,则海岛 C 到航线 AB 的距离 CD 等于()A.10B.10C.10D.2010.( 2013 秋?温岭市校级期中)如图① ,将量角器与等腰直角△ ABC纸片搁置成轴对称图形,已知∠ ACB=90 °,CD⊥ AB ,垂足为 D,半圆(量角器)的圆心与点 D 重合,测得 CE=5cm ,将量角器沿DC 方向平移2cm,半圆(量角器)恰与△ ABC的边AC、BC相切,如图② ,则 AB 的长为()A.8+3B. 8+6C. 4+6D. 16+611.( 2014?十堰)如图,扇形 OAB 中,∠ AOB=60 °,扇形半径为4,点 C 在上,CD⊥OA,垂足为点 D ,当△OCD 的面积最大时,图中暗影部分的面积为.12.( 2015?莱芜)如图,在扇形 OAB 中,∠AOB=60 °,扇形半径为r,点 C 在上,CD⊥ OA,垂足为 D,当△OCD 的面积最大时,的长为.13.( 2015?东莞)如图,△ ABC三边的中线AD 、 BE、 CF 的公共点为G,若 S△ABC =12,则图中暗影部分的面积是.14.( 2014?莆田)如图搁置的 △ OAB 1, △ B 1A 1B 2, △B 2A 2B 3, 都是边长为 2 的等边三角 形,边 AO 在 y 轴上,点 B 1,B 2,B 3, 都在直线 y=x 上,则 A 2014 的坐标是 .15.( 2013 秋 ?睢宁县校级月考)如图,在菱形 ABCD 中,∠ A=60 °, E , F 分别是 AB , AD的中点,DE ,BF 订交于点 G ,连结 BD ,CG ,有以下结论: ① ∠ BGD=120 °;② BG+DG=CG ;③ △BDF ≌△ CGB ;④ S AB 2.此中正确的结论有(填序号). △ABD=16.( 2012?盐城)一批志愿者构成了一个 “爱心团队 ”,特意到全国各地巡回演出,以召募爱 心基金.第一个月他们就召募到资本 1 万元.跟着影响的扩大,第 n ( n ≥2)个月他们召募到的资本都将会比上个月增添 20%,则当该月所召募到的资本初次达成打破10 万元时,相应的 n 的值为.(参照数据: 1.25≈2.5, 1.2 6≈3.0, 1.2 7≈3.6)17.( 2012?武汉)如图,点 A 在双曲线 y= 的第一象限的那一支上,AB 垂直于 y 轴于点 B ,点 C 在 x 轴正半轴上,且 OC=2AB ,点 E 在线段 AC 上,且 AE=3EC ,点 D 为 OB 的中点,若△ ADE 的面积为 3,则 k 的值为.18.( 2014 秋 ?孝南区月考)当白色小正方形个数 n 等于 1,2,3, 时,由白色小正方形和 黑色小正方形构成的图形分别以下图,则第 n 个图形中白色小正方形的个数是和黑色小正方形的个数是(用 n 表示, n 是正整数).20.( 2014?南京)如图,在 △ ABC 中, D 、 E 分别是 AB 、 AC 的中点,过点 E 作 EF ∥ AB ,交BC 于点F .(1)求证:四边形 DBFE 是平行四边形; (2)当 △ABC 知足什么条件时,四边形DBFE 是菱形?为何?21.( 2012?南充)矩形ABCD 中, AB=2AD ,E 为 AD 的中点, EF ⊥EC 交 AB 于点 F,连接 FC.(1)求证:△ AEF ∽△ DCE ;(2)求 tan∠ ECF 的值.22.( 2015 秋 ?福鼎市期中)如图,在矩形纸片ABCD 中, AB=10 ,AD=8 ;将矩形纸片沿折痕 DF 折叠,使点 C 叠在 AB 边上的点 E处.(1)求证:△ ADE ∽△ BEF ;(2)求 BF 的长;(3)问在边 DC 上能否存在一点P,使得△ FCP 与△ BEF 相像?若存在恳求出此时CP 的长;若不存在请说明原因.24.( 2012?岱岳区二模)如图,一次函数y=﹣x+1 的图象与x 轴、 y 轴分别交于点A、B ,以线段 AB 为边在第一象限内作等边△ ABC.(1)求△ABC 的面积;(2)假如在第二象限内有一点P( a,),请用含 a 的式子表示四边形 ABPO 的面积,并求出当△ ABP 的面积与△ ABC 的面积相等时 a 的值.25.(2014?新泰市校级模拟)在直角梯形 ABCD 中,AB ∥ CD ,∠ ABC=90 °,AB=2BC=2CD ,对角线 AC 与 BD 订交于点 O,线段 OA、 OB 的中点分别为点 E、 F.(1)求证:△ FOE≌△ DOC ;(2)若直线EF 与线段 AD 、BC 分别订交于点G、 H,求的值.26.( 2013?南京)某商场促销方案规定:商场内全部商品按标价的80%销售,同时,当顾客在商场内花费满必定金额后,按下表获取相应的返还金额.花费金额(元) 300﹣ 400 400﹣ 500 500﹣ 600 600﹣ 700 700﹣ 900返还金额(元) 30 60 100 130 150依据上述促销方案,顾客在该商场购物能够获取两重优惠,比如:若购置标价为400 元的商品,则花费金额为 320 元,获取的优惠额为400×( 1﹣ 80%)+30=110 (元).(1)购置一件标价为 1000 元的商品,顾客获取的优惠额是多少?(2)假如顾客购置标价不超出800 元的商品,要使获取的优惠许多于226 元,那么该商品的标价起码为多少元?28.( 2012 春 ?海门市校级期末)如图,不重合的 A (2, n)、B ( n, 2)两点在(x>0)反比率函数的图象上,BC 垂直于 y 轴于点 C.(1)求 n 的值;(2)判断△ ABC 的形状;(3)若存在点P( m, 0),使△ PAB 是直角三角形,求出知足条件的全部m 的值.29.( 2013?菏泽)(1)已知 m 是方程 x 2﹣ x ﹣ 2=0 的一个实数根,求代数式的值.(2)如图,在平面直角坐标系xOy 中,一次函数 y= ﹣ x 的图象与反比率函数 的图象交于 A 、B 两点.① 依据图象求 k 的值; ② 点 P 在 y 轴上,且知足以点 A 、B 、 P 为极点的三角形是直角三角形,试写出点P 全部可能的坐标.30.如图 1,已知直线 y= ﹣ x+m 与反比率函数 y= 的图象在第一象限内交于 A 、B 两点(点A 在点B 的左边),分别与 x 、 y 轴交于点C 、D , AE ⊥ x 轴于 E . (1)若 OE?CE=12,求 k 的值.(2)如图 2,作 BF ⊥ y 轴于 F ,求证: EF ∥ CD . (3)在( 1)( 2)的条件下, EF= ,AB=2,P 是 x 轴正半轴上的一点,且 △ PAB 是以P 为直角极点的等腰直角三角形,求P 点的坐标.19.( 2014?自贡)如图,已知抛物线y=ax 2﹣x+c 与 x 轴订交于 A 、B 两点,并与直线y= x﹣2 交于 B、 C 两点,此中点 C 是直线 y= x﹣ 2 与 y 轴的交点,连结AC .(1)求抛物线的分析式;(2)证明:△ ABC 为直角三角形;(3)△ ABC 内部可否截出头积最大的矩形 DEFG ?(极点 D、 E、 F、 G 在△ ABC 各边上)若能,求出最大面积;若不可以,请说明原因.23.( 2010?荆门)已知:如图一次函数y= x+1 的图象与 x 轴交于点 A ,与 y 轴交于点 B ;二次函数 y=2y= x+1 的图象交于 B 、C 两点,与 x 轴交于 D 、E x +bx+c 的图象与一次函数两点且 D 点坐标为( 1, 0).(1)求二次函数的分析式;(2)求四边形 BDEC 的面积 S;(3)在 x 轴上能否存在点 P,使得△PBC 是以 P 为直角极点的直角三角形?若存在,求出全部的点 P,若不存在,请说明原因.27.( 2013?烟台)如图,在平面直角坐标系中,四边形OABC 是边长为 2 的正方形,二次函数 y=ax 2+bx+c 的图象经过点A ,B ,与 x 轴分别交于点E,F,且点 E 的坐标为(﹣,0),以 0C 为直径作半圆,圆心为D.(1)求二次函数的分析式;(2)求证:直线 BE 是⊙ D 的切线;(3)若直线 BE 与抛物线的对称轴交点为 P,M 是线段 CB 上的一个动点(点 M 与点 B,C不重合),过点 M 作 MN ∥ BE 交 x 轴与点 N,连结 PM , PN,设 CM 的长为 t,△ PMN 的面积为 S,求 S 与 t 的函数关系式,并写出自变量 t 的取值范围. S 能否存在着最大值?若存在,求出最大值;若不存在,请说明原因.2016 年泰安中考模拟试题卷( 2016.4.16 )---------经典试题优选(分析)1.解:∵正方形的边长为3,∴弧 BD 的弧长 =6,∴ S 扇形 DAB ==×6×3=9 .应选 D .查了扇形的面积公式,解题的重点是:熟记扇形的面积公式 S 扇形DAB =.2.解:依据题意,有 AE=BF=CG ,且正三角形 ABC 的边长为 2,故 BE=CF=AG=2 ﹣ x ;故 △ AEG 、 △ BEF 、 △ CFG 三个三角形全等.在△ AEG 中, AE=x ,AG=2 ﹣ x .则 S △AEG = AE ×AG ×sinA= x ( 2﹣ x ); 故 y=S △ABC ﹣ 3S △AEG =﹣ 3× x ( 2﹣ x ) =( 3x 2﹣6x+4 ).故可得其大概图象应近似于抛物线,且抛物线张口方向向上;应选: D .3.解:当成了 1 个正方形时,以下图.过点A 作 AM ⊥BC ,垂足为 M ,交 GH 于点 N .∴∠ AMC=90 °,∵四边形 EFGH 是正方形,∴ GH ∥ BC ,GH=GF , GF ⊥ BC , ∴∠ AGH= ∠ B ,∠ ANH= ∠ AMC=90 °.∵∠ GAH= ∠ BAC ,∴△ AGH ∽△ ABC .∴ AN :AM=GH :BC ,∵△ ABC 的面积为 12, BC 为 6,∴ S △ABC = BC ×AM= ×6×AM=12 ,解得 AM=4 .设 GH=x , BC=6, AM=4 ,∵ GF=NM=GH ,∴ AN=AM ﹣NM=AM ﹣ GH=4 ﹣ x ,∴ =, x= ,同应当 n=2 时, x= ,由此,当为 n 个正方形时 x= ,应选: D .4.解:令 =0,解得: x=,∵当自变量 x 取 m 时对应的值大于0,∴< m <,∵点( m+1, 0)与( m ﹣ 1,0)之间的距离为 2,大于二次函数与 x 轴两交点之间的距离,∴m﹣ 1 的最大值在左边交点之左, m+1 的最小值在右侧交点之右.∴点( m+1, 0)与( m ﹣ 1,0)均在交点以外,∴y 1< 0、 y 2< 0.应选: B .5.已解:∵ x=m 时, y > 0,而抛物线的对称轴为直线x= ﹣ = ,∴ x =m ﹣ 2 时, y < 0; x=m+1 时, y < 0,∵ m ﹣ 2< m ﹣ 1,∴ y 1> y 2 .应选 A .26.(解:∵二次函数 y=ax +bx+1 的极点在第一象限,且经过点(﹣ 1, 0),∴易得: a ﹣ b+1=0 , a <0, b > 0,由 a=b ﹣ 1< 0 获取 b <1,联合上边 b > 0,因此 0<b < 1① ,由 b=a+1> 0 获取 a >﹣ 1,联合上边 a < 0,因此﹣ 1< a < 0② , ∴由 ① +② 得:﹣ 1< a+b <1,在不等式两边同时加 1 得 0< a+b+1< 2,∵ a +b+1=t 代入得 0< t < 2,∴ 0< t < 2.应选: B . 7.解:设抽烟者患肺癌的人数为x ,不抽烟者患肺癌的人数为 y ,依据题意得:.应选: B .8.解:∵∠ CAB=10 °+20°=30 °,∠ CBA=80 °﹣ 20°=60 °,∴∠ C=90 °,∵AB=20 海里,∴ AC=AB ?cos30°=10(海里),∴营救船航行的速度为:10÷=30(海里/小时).应选D.9.解:依据题意可知∠CAD=30 °,∠ CBD=60 °,∵∠ CBD= ∠CAD+ ∠ ACB ,∴∠ CAD=30 °=∠ ACB ,∴ AB=BC=20 海里,在 Rt△ CBD 中,∠ BDC=90 °,∠ DBC=60 °, sin∠ DBC=,∴ sin60°=,∴CD=12 ×sin60°=20 ×=10(海里),应选:C.10.解:如图,设图②中半圆的圆心为 O,与 BC 的切点为 M ,连结OM ,则 OM ⊥ MC ,∴∠ OMC=90 °,依题意知道∠ DCB=45 °,设 AB 为 2x,∵△ ABC 是等腰直角三角形,∴CD=BD=x ,而 CE=5cm ,又将量角器沿 DC 方向平移 2cm,∴半圆的半径为 x﹣ 5, OC=x ﹣ 2,∴sin ∠DCB==,∴=,∴ x=,∴AB=2x=2 ×=16+6 ( cm).应选: D .11.(解:∵ OC=4,点 C 在上, CD ⊥OA ,∴ DC= =∴S△OCD= OD?∴= OD 2 2 4 2 2 2 ?(16﹣ OD ) =﹣OD +4OD =﹣( OD ﹣ 8) +162时△ OCD 的面积最大,∴当 OD =8,即 OD=2∴DC= = =2 ,∴∠ COA=45 °,∴暗影部分的面积 =扇形 AOC 的面积﹣△ OCD 的面积 = ﹣×2 ×2 =2π﹣ 4,12.解:∵ OC=r ,点 C 在上, CD ⊥OA ,∴DC= = ,∴ S△OCD= OD ? ,2 2 2 2)=﹣4 2 2 2 2∴S△OCD = OD ?( r ﹣ OD OD + r OD =﹣( OD ﹣) +2,即 OD= r 时△OCD 的面积最大,∴∠OCD=45 °,∴∠ COA=45 °,∴当OD=∴的长为: = πr ,故答案为: .13.解:∵△ ABC 的三条中线 AD 、 BE ,CF 交于点 G ,∴S△CGE =S △AGE = S △ ACF , S △BGF =S △BGD = S △ BCF,∵S △ACF =S △BCF = S △ ABC = ×12=6 ,∴ S △CGE = S △ACF = ×6=2, S △BGF = S △BCF = ×6=2,∴S暗影=S △CGE +S △BGF =4 .14.解:过 B 1 向 x 轴作垂线 B 1C ,垂足为 C ,由题意可得: A (0, 2),AO ∥ A 1B 1,∠ B 1OC=30°,∴ CO=OB 1cos30°= ,∴B 1 的横坐标为:,则 A 1 的横坐标为:,连结 AA 1,可知全部三角形极点都在直线 AA 1上,∵点 B 1,B 2, B 3, 都在直线 y= x 上, AO=2 ,∴直线 AA 1 的分析式为: y=x+2 ,∴y=×+2=3 ,∴ A 1( , 3),同理可得出: A 2 的横坐标为: 2 ,∴ y=×2 +2=4 ,∴ A 2( 2 ,4),∴A 3(3, 5),A 2014( 2014 ,2016).故答案为:(2014 , 2016 ).15.解: ① 由菱形的性质可得 △ABD 、BDC 是等边三角形, ∠DGB= ∠ GBE+ ∠GEB=30 °+90 °=120°,故 ① 正确;② ∵∠ DCG= ∠ BCG=30 °, DE ⊥ AB ,∴可得 DG= CG (30°角所对直角边等于斜边一半)、BG= CG ,故可得出 BG+DG=CG ,即 ② 正确;③ 第一可得对应边 BG ≠FD ,由于 BG=DG ,DG > FD ,故可得 △ BDF 不全等 △CGB ,即 ③ 错误;④ S △ABD = AB ?DE= AB ?( BE ) = AB ? AB=AB 2,即 ④ 正确.综上可得 ①②④ 正确.故答案为: ①②④ .16.解:第一个月召募到资本1 万元,则第二个月召募到资本1( 1+20% )万元,第三个月召募到资本 1( 1+20%) 2万元, ,第 n 个月召募到资本 1(1+20% ) n ﹣1 万元,由题意得:n ﹣ 1n ﹣1> 10,∵ 1.2 671( 1+20% ) >10, 1.2 ×1.2 =10.8> 10,∴ n ﹣ 1=6+7=13 , n=14, 17.解:连 DC ,如图,∵ AE=3EC , △ADE 的面积为 3,∴△ CDE 的面积为 1,∴△ ADC 的面积为 4,设 A 点坐标为( a , b ),则 AB=a , OC=2AB=2a ,而点 D 为 OB 的中点,∴BD=OD= b ,∵ S 梯形 OBAC =S+S+S ,△ ABD △ADC△ ODC∴ (a+2a ) ×b= a × b+4+ ×2a × b ,∴ ab=,把 A (a , b )代入双曲线y= ,∴ k=ab= .故答案为: .18.解:第 1 个图形:白色正方形1 个,黑色正方形4×1=4 个;第 2 个图形:白色正方形 2 24×2=8 个;=4 个,黑色正方形第 3 个图形:白色正方形3 24×3=12 个; ,=9 个,黑色正方形 第 n 个图形:白色正方形n 2个,黑色正方形 4n 个.故答案为: n 2, 4n .19( 1)证明:∵ D 、 E 分别是 AB 、AC 的中点,∴DE 是 △ ABC 的中位线,∴ DE ∥ BC ,又∵ EF ∥ AB ,∴四边形 DBFE 是平行四边形; (2)解:当 AB=BC 时,四边形 DBFE 是菱形.原因以下:∵ D 是 AB 的中点,∴ BD=AB ,∵ DE 是 △ ABC 的中位线,∴ DE= BC ,∵AB=BC ,∴ BD=DE ,又∵四边形 DBFE 是平行四边形,∴四边形DBFE 是菱形.20.( 1)证明:∵四边形 ABCD 是矩形,∴∠ A= ∠ D=90 °,∴∠ AEF+ ∠ AFE=90 °, ∵ E F ⊥EC ,∴∠ AEF+ ∠ DEC=90 °,∴∠ AFE= ∠DEC ,∴△ AEF ∽△ DCE ;(2)解:∵△ AEF ∽△ DCE ,∴,∵矩形 ABCD 中, AB=2AD ,E 为 AD 的中点,∴ DC=AB=2AD=4AE,∴ tan ∠ ECF==.21.( 1)证明:如图 1,∵ ABCD 是矩形,∴∠ A= ∠ B=∠ C=90 °,∴∠ 1+∠3=90°. ∵折叠,∴∠ DEF= ∠ C ═ 90°,∴∠ 1+∠ 2=90°,∴∠ 2=∠3,∴△ ADE ∽△ BEF ; ( 2)∵折叠,∴ DE=DC=10 , CF=EF .在 Rt △ ADE 中,AE= =6,∴BE=10﹣6=4.∵△ ADE ∽△ BEF ,∴ = ,即= .解得 BF=3 ; (3)如图 2,∵∠ B=∠ C ,BE=4 , BF=3 , CF=BC ﹣ BF=5 .① 当△ CFP ∽△ BEF 时, = ,即 =,解得 CP=;② 当△ CFP ∽△ ② BEF 时=,即 = ,解得 CP=;综上所述,存在点 P ,使 △ FCP 与△ BEF 相像,此时, CP= 或 .22.解:( 1) y= ﹣ x+1 与 x 轴、 y 轴交于 A 、 B 两点,∴ A ( , 0),B ( 0, 1).∵△ AOB 为直角三角形,∴ AB=2 .∴ S △ABC = ×2×sin60°= .(2) S 四边形 ABPO =S △ABO +S △ BOP = ×OA ×OB+ ×OB ×h= × ×1+ ×1×|a|. ∵P 在第二象限,∴ S 四边形 ABPO = ﹣ = ,S △ABP =S ABPO ﹣ S △AOP =( ﹣ )﹣ ×OA × .∴S △ABP =﹣ ﹣ =﹣ =S △ ABC = .∴ a=﹣.23.( 1)证明:∵ EF 是 △ OAB 的中位线,∴ EF ∥ AB ,EF= AB ,而 CD ∥ AB ,CD= AB ,∴ E F=CD ,∠ OEF= ∠OCD ,∠ OFE= ∠ODC ,∴△ FOE ≌△ DOC ;(2)解:∵ AE=OE=OC , EF ∥ CD ,∴△ AEG ∽△ ACD ,∴= = ,即 EG= CD ,同理: FH=CD ,∴ = = .24.解:( 1)标价为 1000 元的商品按 80% 的价钱销售,花费金额为 800 元,花费金额 800 元在 700﹣ 900 之间,返还金额为 150 元,顾客获取的优惠额是: 1000×( 1﹣ 80%)+150=350 (元);答:顾客获取的优惠额是 350 元;(2)设该商品的标价为 x 元.① 当 80%x ≤500,即 x ≤625 时,顾客获取的优惠额不超出 625×( 1﹣ 80%) +60=185 <226;② 当 500< 80%x ≤600,即 625< x ≤750 时,顾客获取的优惠额: ( 1﹣ 80%) x+100 ≥226,解得 x ≥630.即: 630≤x ≤750.③ 当 600< 80%x ≤700,即 750< x ≤875 时,由于顾客购置标价不超出 800 元,因此 750< x ≤800,顾客获取的优惠额: 750×( 1﹣ 80%) +130=280 > 226. 综上, 顾客购置标价不超出 800 元的商品, 要使获取的优惠额许多于 226 元,那么该商品的标价起码为 630 元.答:该商品的标价起码为630 元.25.解:( 1)把 A ( 2, n )代入 y= ( x > 0)得: 2n=n+4,解得: n=4 ;(2) △ ABC 为等腰直角三角形,原由于:过 A 作 AE ⊥ x 轴,交BC 于点D ,由( 1)可知: A ( 2, 4), B ( 4, 2),∵ BC ⊥ y 轴于点C ,∴点 C ( 0,2),∴ C D=BD=AD=DE=2 ,∴△ ACD 与 △ABD 都为等腰直角三角形,∴∠ CAD= ∠ BAD=45 °,即∠ CAB=90 °,∵ AC=AB=2 , ∴△ ABC 为等腰直角三角形;(3)连结 BE ,∵ AD=DE=BD=2 , BD ⊥ AE , ∴△ ABD 与 △ BDE 都为等腰直角三角形,即∠ ABD= ∠ EBD=45 °,∴∠ ABE=90 °,AB=BE=2,则当 P 与 E 重合时, △ PAB 为直角三角形,此时 P 坐标为( 2, 0);延伸 AC 与 x 轴交于点 P ,连结 PB ,此时∠ PAB=90 °, △PAB 为直角三角形,设直线 AC 分析式为 y=kx+b ,将 A 与 C 坐标代入得:,解得: ,∴直线 AC 分析式为 y=x+2 ,令 y=0 ,求得: x= ﹣ 2,即 P (﹣ 2, 0),综上, m 的值为 2 或﹣ 2.26.解:( 1)∵ m 是方程 x 2﹣ x ﹣ 2=0 的根,∴ m 2﹣m ﹣ 2=0 , m 2﹣ 2=m ,∴原式 =( m 2﹣ m )(+1 ) =2×( +1 ) =4;(2) ① 把 x=﹣ 1 代入 y=﹣ x 得: y=1 ,即 A 的坐标是(﹣ 1, 1),∵反比率函数 y= 经过 A 点,∴ k= ﹣ 1×1=﹣ 1;2 2② 若∠ PAB 是直角,则 OP =2OA ,则 P ( 0, 2),若∠ PBA 是直角,则 2 2OP =2OB ,则 P ( 0,﹣ 2),若∠ APB 是直角,则 222),( 0,﹣ ),PA +PB =AB ,则 P ( 0, ∴点 P 的全部可能的坐标是( 0, ),( 0,﹣ ),(0, 2),(0,﹣ 2).27.( 1)解:设 OE=a ,则 A (a ,﹣ a+m ),∵点 A 在反比率函数图象上,∴a (﹣ a+m ) =k ,即 k=﹣ a2+am ,由一次函数分析式可得 C ( 2m , 0),∴ CE=2m ﹣ a ,2 2×12=6. ∴OE . CE=a ( 2m ﹣ a )=﹣ a +2am=12 ,∴ k= (﹣ a +2am ) =( 2)证明:连结 AF 、BE ,过 E 、 F 分别作 FM ⊥ AB , EN ⊥ AB ,∴ FM ∥ EN , ∵AE ⊥ x 轴, BF ⊥y 轴,∴ AE ⊥BF ,S △AEF = AE ?OE= , S △BEF = BF?OF= ,∴ S △AEF =S △BEF ,∴FM=EN ,∴四边形 EFMN 是矩形,∴ EF ∥ CD ;(3)解:由( 2)可知, EF=AD=BC= ,∴ CD=4 ,由直线分析式可得 OD=m ,OC=2m ,∴ OD=4 ,又 EF ∥ CD ,∴ OE=2OF ,∴ O F=1 , 0E=2 ,∴ D F=3 ,∴ AE=DF=3 , ∵AB=2,∴ AP=,∴ EP=1,∴ P ( 3, 0).28.( 1)解:∵直线 y= x ﹣ 2 交 x 轴、 y 轴于 B 、C 两点,∴B ( 4,0), C ( 0,﹣ 2),∵ y=ax 2﹣x+c 过 B 、 C 两点,∴,解得,∴ y= x 2﹣ x ﹣ 2.(2)证明:如图1,连结 AC ,∵ y= x 2﹣ x ﹣ 2 与 x 负半轴交于 A 点,∴ A (﹣ 1, 0), 在 Rt △ AOC 中,∵ AO=1 , OC=2,∴ AC= ,在 Rt △ BOC 中,∵ BO=4 , OC=2 ,∴ BC=2,∵ AB=AO+BO=1+4=5 ,222,∴△ ABC 为直角三角形.∴AB =AC +BC (3)解: △ ABC 内部可截出头积最大的矩形DEFG ,面积为 ,原因以下:① 一点为 C , AB 、 AC 、BC 边上各有一点,如图2,此时 △ AGF ∽△ ACB ∽△ FEB .设 GC=x , AG=﹣ x ,∵ ,∴ ,∴ G F=2﹣2x ,∴S=GC?GF=x ?( 2) =﹣2x2+2x= ﹣ 2[(x ﹣ ) 2﹣ ]=﹣2( x ﹣2时, S 最大,为 .) + ,即当 x=② AB 边上有两点, AC 、BC 边上各有一点,如图 3,此时 △ CDE ∽△ CAB ∽△ GAD ,设 GD=x ,∵ ,∴,∴ AD= x ,∴ CD=CA ﹣ AD=﹣ x ,∵ ,∴,∴ DE=5 ﹣ x ,∴S=GD ?DE=x ?( 5﹣ x ) =﹣ 22﹣1]=﹣ ( x ﹣ 1)x +5x= ﹣ [( x ﹣ 1)2时, S 最大,为 .+ ,即 x=1综上所述, △ ABC 内部可截出头积最大的矩形 DEFG ,面积为 .29 解:( 1)将 B (0, 1),D ( 1, 0)的坐标代入 y=2,x +bx+c ,得: 得分析式 y= x 2﹣ x+1.(2)设 C ( x 0, y 0)( x 0≠0,y 0≠0),则有解得 ,∴ C ( 4, 3)由图可知: S 四边形 BDEC =S △ACE ﹣ S △ ABD ,又由对称轴为 x= 可知 E ( 2, 0),∴S= AE ?y 0﹣ AD ×OB= ×4×3﹣ ×3×1= . (3)设切合条件的点 P 存在,令 P (a , 0):当 P 为直角极点时,如图:过C 作 CF ⊥ x 轴于 F ;∵∠ BPO+ ∠ OBP=90 °,∠ BPO+ ∠ CPF=90°,∴∠ OBP= ∠ FPC ,∴ Rt △ BOP ∽ Rt △ PFC ,∴,即,整理得 a 2﹣ 4a+3=0,解得 a=1 或 a=3;∴所求的点 P 的坐标为( 1, 0)或( 3, 0), 综上所述:知足条件的点 P 共有 2 个.30 解:( 1)由题意,得 A ( 0, 2),B ( 2, 2), E 的坐标为(﹣ , 0),则,解得, ,∴该二次函数的分析式为:y= ﹣ x 2+ x+2 ;(2)如图,过点 D 作 DG ⊥ BE 于点 G .由题意,得ED= +1= ,EC=2+ = , BC=2 ,∴ BE= = .∵∠ BEC= ∠ DEG ,∠ EGD= ∠ECB=90 °,∴△ EGD ∽△ ECB ,∴ = ,∴ DG=1 .∵⊙ D 的半径是 1,且 DG ⊥ BE ,∴ BE 是⊙ D 的切线;( 3)由题意,得 E (﹣ , 0),B ( 2,2).设直线 BE 为 y=kx+h ( k ≠0).则,解得,,∴直线 BE 为:y= x+ .∵直线 BE 与抛物线的对称轴交点为P ,对称轴直线为 x=1,∴点 P 的纵坐标 y= ,即 P ( 1, ).∵ MN ∥BE ,∴∠ MNC= ∠BEC .∵∠ C=∠ C=90 °,∴△ MNC ∽△ BEC ,∴= ,∴ = ,则 CN= t ,∴ DN= t ﹣ 1,∴S= DN ?PD= ( t ﹣1) ? = t ﹣ . S= CN?CM= × t?t= t2. △PND△ MNCS 梯形 PDCM = (PD+CM ) ?CD= ?( +t ) ?1= + t .∵S=S △PND +S 梯形 PDCM ﹣S △MNC =﹣ + t ( 0< t < 2).∵抛物线 S=﹣+t ( 0< t < 2)的张口方向向下,∴S 存在最大值.当 t=1 时, S 最大= .。

模拟测评山东省泰安市中考数学二模试题(含详解)

模拟测评山东省泰安市中考数学二模试题(含详解)

山东省泰安市中考数学二模试题 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式中,不是代数式的是( )A .5ab 2B .2x +1=7C .0D .4a ﹣b 2、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )A .45︒B .135︒C .75︒D .165︒ 3、利用如图①所示的长为a 、宽为b 的长方形卡片4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )·线○封○密○外A .22()4()a b ab a b -+=+B .22()()a b a b a b -+=-C .222()2a b a ab b +=++D .222()2a b a ab b ---+4、用下列几组边长构成的三角形中哪一组不是直角三角形( )A .8,15,17B .6,8,10CD .1,5、如图,下列条件中不能判定AB CD ∥的是( )A .12∠=∠B .34∠=∠C .35180∠+∠=︒D .15∠=∠6、下列计算中,正确的是( )A .a 2+a 3=a 5B .a •a =2aC .a •3a 2=3a 3D .2a 3﹣a =2a 27、下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .8、如图所示,在长方形ABCD 中,AB a ,BC b =,且a b >,将长方形ABCD 绕边AB 所在的直线旋转一周形成圆柱甲,再将长方形ABCD 绕边BC 所在直线旋转一周形成圆柱乙,记两个圆柱的侧面积分別为甲S 、乙S .下列结论中正确的是( )A .S S >甲乙 B .甲乙S S < C .S S =甲乙 D .不确定 9、如图,在平面直角坐标系xOy 中,已知点A (1,0),B (3,0),C 为平面内的动点,且满足∠ACB =90°,D 为直线y =x 上的动点,则线段CD 长的最小值为( ) A .1 B .2 C1 D1 10、如图,有三块菜地△ACD 、△ABD 、△BDE 分别种植三种蔬菜,点D 为AE 与BC 的交点,AD 平分∠BAC ,AD =DE ,AB =3AC ,菜地△BDE 的面积为96,则菜地△ACD 的面积是( )A .24B .27C .32D .36 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、某树主干长出x 根枝干,每个枝干又长出x 根小分支,若主干、枝干和小分支总数共133根,则主干长出枝干的根数x 为______. 2、观察下列图形,它们是按一定规律排列的,按此规律,第2022个图形中“○”的个数为______. ·线○封○密○外3、两个人玩“石头、剪刀、布”游戏,在保证游戏公平的情况下,随机出手一次,两人手势不相同的概率是___________.4、二次函数y=(m﹣1)x2+x+m2﹣1的图象经过原点,则m的值为_____.5、如图,过ABC的重心G作ED AB∥分别交边AC、BC于点E、D,联结AD,如果AD平分BAC∠,AB=,那么EC=______.6三、解答题(5小题,每小题10分,共计50分)1、【数学概念】如图1,A、B为数轴上不重合的两个点,P为数轴上任意一点,我们比较线段PA和PB的长度,将较短线段的长度定义为点P到线段AB的“靠近距离”.特别地,若线段PA和PB的长度相等,则将线段PA或PB的长度定义为点P到线段AB的“靠近距离”.如图①,点A表示的数是-4,点B表示的数是2.(1)【概念理解】若点P表示的数是-2,则点P到线段AB的“靠近距离”为______;(2)【概念理解】若点P 表示的数是m ,点P 到线段AB 的“靠近距离”为3,则m 的值为______(写出所有结果); (3)【概念应用】如图②,在数轴上,点P 表示的数是-6,点A 表示的数是-3,点B 表示的数是2.点P 以每秒2个单位长度的速度沿数轴向右运动,同时点B 以每秒1个单位长度的速度沿数轴向右运动.设运动的时间为t 秒,当点P 到线段AB 的“靠近距离”为2时,求t 的值. 2、如图,在平面直角坐标系中,()2,4A ,()3,1B ,()2,1C --. (1)在图中作出ABC ∆关于x 轴的对称图形111A B C ∆,并直接写出点1C 的坐标; (2)求ABC ∆的面积; (3)点(),2P a a -与点Q 关于x 轴对称,若8PQ =,直接写出点P 的坐标. 3、在平面直角坐标系xOy 中,对于线段AB 和点C ,若△ABC 是以AB 为一条直角边,且满足AC >AB 的直角三角形,则称点C 为线段AB 的“关联点”,已知点A 的坐标为(0,1). ·线○封○密○外(1)若B (2,1),则点D (3,1),E (2,0),F (0,-3),G (-1,-2)中,是AB 关联点的有_______;(2)若点B (-1,0),点P 在直线y =2x -3上,且点P 为线段AB 的关联点,求点P 的坐标;(3)若点B (b ,0)为x 轴上一动点,在直线y =2x +2上存在两个AB 的关联点,求b 的取值范围.4、将两块完全相同的且含60︒角的直角三角板ABC 和AFE 按如图所示位置放置,现将Rt AEF 绕A 点按逆时针方向旋转()090αα︒<<︒.如图,AE 与BC 交于点M ,AC 与EF 交于点N ,BC 与EF 交于点P .(1)在旋转过程中,连接,AP CE ,求证:AP 所在的直线是线段CE 的垂直平分线.(2)在旋转过程中,CPN 是否能成为直角三角形?若能,直接写出旋转角α的度数;若不能,说明理由.5、对于平面直角坐标系xOy 中的线段AB ,给出如下定义:线段AB 上所有的点到x 轴的距离的最大值叫线段AB 的界值,记作AB W .如图,线段AB 上所有的点到x 轴的最大距离是3,则线段AB 的界值3AB W =.(1)若A (-1,-2),B (2,0),线段AB 的界值AB W =__________,线段AB 关于直线2y =对称后得到线段CD ,线段CD 的界值CD W 为__________; (2)若E (-1,m ),F (2,m +2),线段EF 关于直线2y =对称后得到线段GH ; ①当0m <时,用含m 的式子表示GH W ; ②当3GH W =时,m 的值为__________; ③当35GH W ≤≤时,直接写出m 的取值范围.-参考答案- 一、单选题1、B 【解析】 【分析】 根据代数式的定义即可判定. 【详解】 A. 5ab 2是代数式; B. 2x +1=7是方程,故错误; ·线○封○密·○外C. 0是代数式;D. 4a﹣b是代数式;故选B.【点睛】此题主要考查代数式的判断,解题的关键是熟知:代数式的定义:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.单独的一个数或一个字母也是代数式.2、D【解析】【分析】根据题意得出∠1=15°,再求∠1补角即可.【详解】由图形可得1453015∠=︒-︒=︒∴∠1补角的度数为18015165︒-︒=︒故选:D.【点睛】本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.3、A【解析】【分析】整个图形为一个正方形,找到边长,表示出面积;也可用1个小正方形的面积加上4个矩形的面积表示,然后让这两个面积相等即可.【详解】∵大正方形边长为:()a b +,面积为:()2a b +; 1个小正方形的面积加上4个矩形的面积和为:()24a b ab -+; ∴()()2222424a b ab a ab b ab a b -+=-++=+. 故选:A . 【点睛】 此题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键. 4、C 【解析】 【分析】 由题意根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形进行分析即可. 【详解】 解:A 、∵82+152=172,∴此三角形为直角三角形,故选项错误; B 、∵2226810+=,∴此三角形是直角三角形,故选项错误; C、∵2222+≠,∴此三角形不是直角三角形,故选项正确; D、∵22212+=,∴此三角形为直角三角形,故选项错误. 故选:C .【点睛】 本题考查勾股定理的逆定理,注意掌握在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系. 5、A ·线○封○密○外【解析】【分析】根据平行线的判定逐个判断即可.【详解】解:A、∵∠1=∠2,∠1+∠3=∠2+∠5=180°,∴∠3=∠5,因为”同旁内角互补,两直线平行“,所以本选项不能判断AB∥CD;B、∵∠3=∠4,∴AB∥CD,故本选项能判定AB∥CD;∠+∠=︒,C、∵35180∴AB∥CD,故本选项能判定AB∥CD;D、∵∠1=∠5,∴AB∥CD,故本选项能判定AB∥CD;故选:A.【点睛】本题考查了平行线的判定,能灵活运用平行线的判定进行推理是解此题的关键,平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.6、C【解析】【分析】根据整式的加减及幂的运算法则即可依次判断.【详解】A. a 2+a 3不能计算,故错误;B. a •a =a 2,故错误;C. a •3a 2=3a 3,正确;D. 2a 3﹣a =2a 2不能计算,故错误; 故选C . 【点睛】 此题主要考查幂的运算即整式的加减,解题的关键是熟知其运算法则. 7、C 【解析】 【分析】 根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解. 【详解】 解: A 、不是中心对称图形,是轴对称图形,故此选项错误; B 、是中心对称图形,不是轴对称图形,故此选项错误; C 、是中心对称图形,也是轴对称图形,故此选项正确; D 、不是中心对称图形,是轴对称图形,故此选项错误; 故选:C . 【点睛】 ·线○封○密○外本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、C【解析】【分析】根据公式,得甲S =2AD AB π••,乙S =2AB AD π••,判断选择即可.【详解】∵甲S =2AD AB π••,乙S =2AB AD π••,∴甲S =乙S .故选C .【点睛】本题考查了圆柱体的形成及其侧面积的计算,正确理解侧面积的计算公式是解题的关键.9、C【解析】【分析】取AB 的中点E ,过点E 作直线y =x 的垂线,垂足为D ,求出DE 长即可求出答案.【详解】解:取AB 的中点E ,过点E 作直线y =x 的垂线,垂足为D ,∵点A (1,0),B (3,0),∴OA =1,OB =3,∴OE =2,∴ED∵∠ACB =90°, ∴点C 在以AB 为直径的圆上, ∴线段CD−1. 故选:C . 【点睛】 本题考查了垂线段最短,一次函数图象上点的坐标特征,圆周角定理等知识,确定C ,D 两点的位置是解题的关键. 10、C 【解析】 【分析】 利用三角形的中线平分三角形的面积求得S △ABD =S △BDE =96,利用角平分线的性质得到△ACD 与△ABD 的高相等,进一步求解即可. 【详解】 解:∵AD =DE ,S △BDE =96, ∴S △ABD =S △BDE =96, 过点D 作DG ⊥AC 于点G ,过点D 作DF ⊥AB 于点F , ·线○封○密○外∵AD 平分∠BAC ,∴DG=DF ,∴△ACD 与△ABD 的高相等,又∵AB =3AC ,∴S △ACD =13S △ABD =196323⨯=.故选:C .【点睛】本题考查了角平分线的性质,三角形中线的性质,解题的关键是灵活运用所学知识解决问题.二、填空题1、11【解析】【分析】某树主干长出x 根枝干,每个枝干又长出x 根小分支,则小分支有2x 根,可得主干、枝干和小分支总数为()21x x ++根,再列方程解方程,从而可得答案. 【详解】解:某树主干长出x 根枝干,每个枝干又长出x 根小分支,则21133,x x21320,x x12110,x x 解得:1212,11,x x经检验:12x =-不符合题意;取11,x = 答:主干长出枝干的根数x 为11. 故答案为:11. 【点睛】 本题考查的是一元二次方程的应用,理解题意,用含x 的代数式表示主干、枝干和小分支总数是解本题的关键. 2、6067 【解析】 【分析】 设第n 个图形共有an 个○(n 为正整数),观察图形,根据各图形中○个数的变化可找出变化规律“an =3n +1(n 为正整数)”,依此规律即可得出结论. 【详解】 解:设第n 个图形共有an 个○(n 为正整数). 观察图形,可知:a 1=4=3+1=3×1+1,a 2=7=6+1=3×2+1,a 3=10=9+1=3×3+1,a 4=13=12+1=3×4+1,…, ∴an =3n +1(n 为正整数), ∴a 2022=3×2022+1=6067. 故答案为6067. 【点睛】 ·线○封○密·○外本题考查了规律型:图形的变化类,根据各图形中○个数的变化找出变化规律“an=3n+1(n为正整数)”是解题的关键.3、2 3【解析】【分析】画出树状图分析,找出可能出现的情况,再计算即可.【详解】解:画树形图如下:从树形图可以看出,所有可能出现的结果共有9种,两人手势不相同有6种,所以两人手势不相同的概率=62 93 ,故答案为:23.【点睛】本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.4、-1【解析】【分析】将原点坐标(0,0)代入二次函数解析式,列方程求m即可.【详解】解:∵点(0,0)在抛物线y=(m﹣1)x2+x+m2﹣1上,∴m 2﹣1=0,解得m 1=1或m 2=﹣1,∵m =1不合题意,∴m =1,故答案为:﹣1.【点睛】 本题考查利用待定系数法求解二次函数解析式,能够熟练掌握待定系数法是解决本题的关键. 5、8 【解析】 【分析】 由重心的性质可以证明23DE AB =,再由AD 平分BAC ∠和ED AB ∥可得DE =AE ,最后根据ED AB ∥得到23DE EC AB AC ==即可求出EC . 【详解】 连接CG 并延长与AB 交于H , ∵G 是ABC 的重心 ∴2CG GH = ∴23CG CH = ∵ED AB ∥ ·线○封○密·○外∴23CG ECCH AC==,ADE BAD∠=∠,ECD ACB△△∴23 EC DE AC AB==∴243DE AB==∵AD平分BAC∠∴EAD BAD ∠=∠∴EAD ADE∠=∠∴4DE AE==∴23EC ECAC EC AE==+,∴8EC=【点睛】本题考查三角形的重心的性质、相似三角形的性质与判定、平行线分线段成比例,解题的关键是利用好平行线得到多个结论.三、解答题1、 (1)2;(2)-7或-1或5;(3)t的值为12或52或6或10.【解析】【分析】(1)由“靠近距离”的定义,可得答案;(2)点P到线段AB的“靠近距离”为3时,有三种情况:①当点P在点A左侧时;②当点P在点A 和点B之间时;③当点P在点B右侧时;(3)分四种情况进行讨论:①当点P 在点A 左侧,PA <PB ;②当点P 在点A 右侧,PA <PB ;③当点P 在点B 左侧,PB <PA ;④当点P 在点B 右侧,PB <PA ,根据点P 到线段AB 的“靠近距离”为2列出方程,解方程即可. (1) 解:∵PA =-2-(-4)=2,PB =2-(-2)=4,PA <PB ∴点P 到线段AB 的“靠近距离”为:2 故答案为:2; (2) ∵点A 表示的数为-4,点B 表示的数为2, ∴点P 到线段AB 的“靠近距离”为3时,有三种情况: ①当点P 在点A 左侧时,PA <PB , ∵点A 到线段AB 的“靠近距离”为3, ∴-4-m =3 ∴m =-7; ②当点P 在点A 和点B 之间时, ∵PA =m +4,PB =2-m , 如果m +4=3,那么m =-1,此时2-m =3,符合题意; ∴m =-1; ③当点P 在点B 右侧时,PB <PA , ∵点P 到线段AB 的“靠近距离”为3, ∴m -2=3, ∴m =5,符合题意; 综上,所求m 的值为-7或-1或5.·线○封○密·○外故答案为-7或-1或5;(3)分四种情况进行讨论:①当点P在点A左侧,PA<PB,∴-3-(-6+2t)=2,∴t=12;②当点P在点A右侧,PA<PB,∴(-6+2t)-(-3)=2,∴t=52;③当点P在点B左侧,PB<PA,10∴2+t-(-6+2t)=2,∴t=6;④当点P在点B右侧,PB<PA,∴(-6+2t)-(2+t)=2,∴t=10;综上,所求t的值为12或52或6或10.【点睛】本题考查了新定义,一元一次方程的应用,数轴上两点间的距离,理解点到线段的“靠近距离”的定义,进行分类讨论是解题的关键.2、 (1)见详解;(−2,1);(2)8.5;(3)P(5,3)或(−1,−3).【解析】【分析】(1)画出△A1B1C1,据图直接写出C1坐标;(2)先求出△ABC外接矩形CDEF面积,用之减去三个直角三角形的面积,得△ABC的面积;(3)先根据P,Q关于x轴对称,得到Q的坐标,再构建方程求解即可.(1)解:如图1△A1B1C1就是求作的与△ABC关于x轴对称的三角形,点C1的坐标(−2,1);(2)解:如图2由图知矩形CDEF的面积:5×5=25△ADC的面积:12×4×5=10△ABE的面积:12×1×3=32·线○封○密○外△CBF 的面积:12×5×2=5所以△ABC 的面积为:25-10-32-5=8.5.(3)解:∵点P (a ,a −2)与点Q 关于x 轴对称,∴Q (a ,2−a ),∵PQ =6,∴|(a -2)-(2-a )|=6,解得:a =5或a =-1,∴P(5,3)或(−1,−3).【点睛】本题考查了作图−轴对称变换,三角形的面积等知识,解题的关键是理解题意,掌握关于坐标轴对称的两点的坐标特征,属于中考常考题型.3、 (1)点E ,点F ;(2)(4133-,)或(2533-,); (3)b 的取值范围1<b <2或2<b <3.【解析】【分析】(1)根据以点B 为直角顶点,点B 与点E 横坐标相同,点E 在过点B 与AB 垂直的直线上,△ABE 为直角三角形,且AE 大于AB ;以点A 为直角顶点,点A 与点F 横坐标相同,△AFB 为直角三角形,BF 大于AB 即可; (2)根据点A (0,1)点B (-1,0),OA =OB ,∠AOB =90°,得出△AOB 为等腰直角三角形,可得∠ABO =∠BAO =45°,以点A 为直角顶点,过点A ,与AB 垂直的直线交x 轴于S ,利用待定系数法求出AS 解析式为1y x =-+,联立方程组123y x y x =-+⎧⎨=-⎩,以点B 为直角顶点,过点B ,与AB 垂直的直线交y 轴·线○于R ,∠OBR =90°-∠ABO =45°,可得△OBR 为等腰直角三角形,OR =OB =1,点R (0,-1),利用平移的性质可求BR 解析式为1y x =--,联立方程组123y x y x =--⎧⎨=-⎩,解方程组即可; (3)过点A 与AB 垂直的直线交直线y =2x +2于U ,把△AOB 绕点A 顺时针旋转90°,得△AO′U,AO′=AO =1,O′U =OB =b ,根据点U (-1,b -1)在直线22y x =+上,得出方程()1212b -=⨯-+,求出b 的值,当过点A 的直线与直线22y x =+平行时没有 “关联点”,OB =OW =b =2,得出在1<b <2时,直线22y x =+上存在两个AB 的“关联点”,当b >2时,根据旋转性质将△AOB 绕点A 逆时针旋转90°得到△AO′U ,得出AO′=AO =1,O′U =OB =b ,根据点U (1,1+b )在直线22y x =+上,列方程1212b +=⨯+,得出3b =即可.(1)解:点D 与AB 纵坐标相同,在直线AB 上,不能构成直角三角形,以点B 为直角顶点,点B 与点E 横坐标相同,点E 在过点B 与AB 垂直的直线上,∴△ABE 为直角三角形,且AE 大于AB ;以点A 为直角顶点,点A 与点F 横坐标相同,△AFB 为直角三角形,AF=4>AB =2,∴点E 与点F 是AB 关联点,点G 不在A 、B 两点垂直的直线上,故不能构成直角三角形,故答案为点E ,点F ;(2)解:∵点A (0,1)点B (-1,0),OA =OB ,∠AOB =90°,∴△AOB 为等腰直角三角形,AB ∴∠ABO =∠BAO =45°,以点A 为直角顶点,过点A ,与AB 垂直的直线交x 轴于S ,∴∠OAS =90°-∠BAO =45°,∴△AOS 为等腰直角三角形,∴OS =OA =1,点S (1,0),设AS 解析式为y kx b =+代入坐标得:10b k b =⎧⎨+=⎩, 解得11b k =⎧⎨=-⎩,AS 解析式为1y x =-+,∴123y x y x =-+⎧⎨=-⎩, 解得4313x y ⎧=⎪⎪⎨⎪=-⎪⎩, 点P (4133-,), AP=AP >AB 以点B 为直角顶点,过点B ,与AB 垂直的直线交y 轴于R , ∴∠OBR =90°-∠ABO =45°, ∴△OBR 为等腰直角三角形,∴OR =OB =1,点R (0,-1), 过点R 与AS 平行的直线为AS 直线向下平移2个单位, 则BR 解析式为1y x =--, ∴123y x y x =--⎧⎨=-⎩, 解得2353x y ⎧=⎪⎪⎨⎪=-⎪⎩, 点P 1(2533-,), AP 1·线○封○密○外∴点P 为线段AB 的关联点,点P 的坐标为(4133-,)或(2533-,);(3)解:过点A 与AB 垂直的直线交直线y =2x +2于U ,把△AOB 绕点A 顺时针旋转90°,得△AO′U,∴AO′=AO =1,O′U =OB =b ,点U (-1,b -1)在直线22y x =+上,∴()1212b -=⨯-+∴1b =,∴当b >1时存在两个“关联点”,当b <1时,UA <AB ,不满足定义,没有两个“关联点”当过点A 的直线与直线22y x =+平行时没有 “关联点” 22y x =+与x 轴交点X (-1,0),与y 轴交点W (0,2) ∵OA =OX =1,∠XOW =∠AOB =90°,AB ⊥XW , ∴△OXW 顺时针旋转90°,得到△OAB , ∴OB =OW =2, ∴在1<b <2时,直线22y x =+上存在两个AB 的“关联点”,当b >2时,将△AOB 绕点A 逆时针旋转90°得到△AO′U , ∴AO′=AO =1,O′U =OB =b , 点U (1,1+b )在直线22y x =+上, ∴1212b +=⨯+ ·线○封○密·○外∴解得3b =∴当2<b <3时, 直线22y x =+上存在两个AB 的“关联点”,当b >3时,UA <AB ,不满足定义,没有两个“关联点”综合得,b 的取值范围1<b <2或2<b <3.【点睛】本题考查新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC >AB ,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,掌握新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC >AB ,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,是解题关键.4、 (1)见解析;(2)CPN 能成为直角三角形,α=30°或60°【解析】【分析】(1)由全等三角形的性质可得∠AEF =∠ACB ,AE=AC ,根据等腰三角形的判定与性质证明∠PEC =∠PCE ,PE=PC ,然后根据线段垂直平分线的判定定理即可证得结论;(2)分∠CPN =90°和∠CNP =90°,利用旋转的性质和三角形的内角和定理求解即可. (1)证明:∵两块是完全相同的且含60︒角的直角三角板ABC 和AFE ,∴AE=AC ,∠AEF =∠ACB =30°,∠F =60°,∴∠AEC =∠ACE ,∴∠AEC -∠AEF =∠ACE -∠ACB ,∴∠PEC =∠PCE ,∴PE=PC ,又AE=AC , ∴AP 所在的直线是线段CE 的垂直平分线.(2) 解:在旋转过程中,CPN 能成为直角三角形, 由旋转的性质得:∠FAC = α, 当∠CNP =90°时,∠FNA =90°,又∠F =60°, ∴α=∠FAC =180°-∠FNA -∠F =180°-90°-60°=30°; 当∠CPN =90°时,∵∠NCP =30°, ∴∠PNC =180°-90°-30°=60°,即∠FNA =60°, ∵∠F =60°, ∴α=∠FAC =180°-∠FNA -∠F =180°-60°-60°=60°, 综上,旋转角α的的度数为30°或60°. ·线○封○密·○外【点睛】本题考查直角三角板的度数、全等三角形的性质、等腰三角形的判定与性质、线段垂直平分线的判定、旋转性质、对顶角相等、三角形的内角和定理,熟练掌握相关知识的联系与运用是解答的关键.5、 (1)2,6(2)①GH W =4-m ;1,5;11m -≤≤,57m ≤≤【解析】【分析】(1)由对称的性质求得C 、D 点的坐标即可知6CD W =.(2)由对称的性质求得G 点坐标为(-1,4-m ),H 点坐标为(2,2-m )①因为0m <,故4-m >2-m >0,则GH W =4-m ②需分类讨论4m -和2m -的值大小,且需要将所求m 值进行验证. ③需分类讨论,当42m m ->-,则345m ≤-≤且23m -≤,当42m m -<-,则325m ≤-≤且43m -≤,再取公共部分即可.(1)线段AB 上所有的点到x 轴的最大距离是2,则线段AB 的界值2AB W =线段AB 关于直线2y =对称后得到线段CD ,C 点坐标为(-1,6),D 点坐标为(2,4),线段CD 上所有的点到x 轴的最大距离是6,则线段CD 的界值6CD W =(2)设G 点纵坐标为a ,H 点纵坐标为b 由题意有22a m +=,222b m ++= 解得a =4-m ,b =2-m故G 点坐标为(-1,4-m ),H 点坐标为(2,2-m )①当0m <,4-m >2-m >0故GH W =4-m ②若42m m ->-,则43m -=即m =1或m =7当m =1时,43m -=,21m -=,符合题意当m =7时,43m -=,25m -=,42m m -<-,不符合题意,故舍去. 若42m m -<-,则23m -= 即m =-1或m =5 当m =-1时,45m -=,23m -=,42m m ->-,不符合题意,故舍去 当m =5时,41m -=,23m -=,符合题意. 则3GH W =时,m 的值为1或5. ③当42m m ->-,则345m ≤-≤且23m -≤ 故有34m ≤-, 解得1m ,7m ≥ 45m -≤,解得19m -≤≤ 故11m -≤≤,79m ≤≤ 23m -≤ 解得15m -≤≤ 故11m -≤≤ 当42m m -<-,则325m ≤-≤且43m -≤ 故有32m ≤-,·线○封○密○外解得1m ≤-,5m ≥25m -≤,解得37m -≤≤故31m -≤≤-,57m ≤≤43m -≤解得17m ≤≤故57m ≤≤综上所述,当35GH W ≤≤时, m 的取值范围为11m -≤≤和57m ≤≤.【点睛】本题考查了坐标轴中对称变化和含绝对值的不等式,本题不但要分类讨论4-m 和2-m 的大小关系,还有去绝对值的情况是解题的关键.x a ≤的解集为a x a -≤≤,x a ≥的解集为x a ≤-,x a ≥.。

山东省泰安市中考数学二模考试试卷

山东省泰安市中考数学二模考试试卷

山东省泰安市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列各对数是互为倒数的是()A . +1和-1B . 和-1C . -4和-0.25D . -2和2. (2分) (2019七上·文昌期末) 从左面看如图中的几何体,得到的平面图形正确的是A .B .C .D .3. (2分)参加成都市今年初三毕业会考的学生约为13万人,将13万用科学记数法表示应为()A . 1.3×105B . 13×104C . 0.13×105D . 0.13×1064. (2分) (2017九下·萧山开学考) 掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数是奇数的概率为()。

A .B .C .D .5. (2分)四边相等的四边形是()A . 菱形B . 矩形C . 正方形D . 梯形6. (2分)已知关于x的一元二次方程﹣ax+a2+=0,则这个方程根的情况是()A . 无实数根B . 有两个相等的实数根C . 有两个不相等的实数根D . 根的情况不确定7. (2分) (2017八上·独山期中) 如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A . 40°B . 30°C . 20°D . 10°8. (2分) (2018九上·诸暨月考) 如图所示,AB∥CD,∠E=37°,∠C=20°,则∠EAB的度数为()A . 57°B . 60°C . 63°D . 123°9. (2分)(2017·宁波模拟) 如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A . π﹣2B .C . π﹣4D .10. (2分)(2016·宝安模拟) 如图,在平面直角坐标系上,△ABC的顶点A和C分别在x轴、y轴的正半轴上,且AB∥y轴,点B(1,3),将△ABC以点B为旋转中心顺时针方向旋转90°得到△DBE,恰好有一反比例函数y= 图像恰好过点D,则k的值为()A . 6B . ﹣6C . 9D . ﹣9二、填空题 (共18题;共62分)11. (1分) (2017七下·门头沟期末) 因式分解: ________12. (1分)如图,△ABC中,AB=AC,AD⊥BC于D,AE=EC,AD=18,BE=15,则△ABC的面积是________13. (1分)已知菱形ABCD的面积为24cm2 ,若对角线AC=6cm,则这个菱形的边长为________ cm.14. (1分)如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF=________.15. (5分)(2016·张家界) 计算:.16. (5分)(2018·南宁) 解分式方程:﹣1= .17. (2分)从﹣3,﹣2,﹣1,0,1,2,3这七个数中,随机取出一个数,记为a,那么a使关于x的方程有整数解,且使关于x的不等式组有解的概率为________18. (5分)(2017·本溪模拟) 如图,某中学在教学楼前新建了一座雕塑AB,为了测量雕塑的高度,小明在二楼找到一点C,利用三角尺测得雕塑顶端点A的仰角∠QCA为45°,底部点B的俯角∠QCB为30°,小华在五楼找到一点D,利用三角尺测得点A的俯角∠PDA为60°,若AD为8m,则雕塑AB的高度为多少?(结果精确到0.1m,参考数据:≈1.73).19. (2分) (2019八下·武昌期中) 如图,平面直角坐标系中,直线AB:y=-2x+8交y轴于点A,交x轴于点B,以AB为底作等腰三角形△ABC的顶点C恰好落在y轴上,连接BC,直线x=2交AB于点D,交BC于点E,交x轴于点G,连接CD.(1)求证:∠OCB=2∠CBA;(2)求点C的坐标和直线BC的解析式;(3)求△DEB的面积;(4)在x轴上存在一点P使PD-PC最长,请直接写出点P的坐标.20. (2分) (2017八下·江都期中) 在边长为1的菱形ABCD中,动点M从点A出发,沿A→B→C向终点C 运动,连接DM交AC于点N.(1)如图1,当点M在AB边上时,连接BN.求证:△ABN≌△ADN;(2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(1≤x≤2)试问:x为何值时,△ADN为等腰三角形.21. (1分)若关于x,y的多项式x2+ax﹣y+6和bx2﹣3x+6y﹣3的差的值与字母x的取值无关,a=________,b=________.22. (1分) (2016九上·淅川期末) 如图,在△ABC中D、E两点分别在BC、AC边上,若BD=CD,∠B=∠CDE,DE=2,则AB的长度是________.23. (1分)(2016·齐齐哈尔) 如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为________.24. (1分)(2017·平塘模拟) 如图,在△ABC中,DE∥BC,AH⊥BC于点H,与DE交于点G.若,则 =________.25. (1分) (2016九上·永登期中) 已知四边形ABCD是菱形,△AEF是正三角形,E、F分别在BC、CD上,且EF=CD,则∠BAD=________.26. (15分)己知y=(m+1) +m是关于x的二次函数,且当x>0时,y随x的增大而减小.求:(1) m的值.(2)求函数的最值.27. (2分)(2017·东城模拟) 如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DF.(1)求证:DF是⊙O的切线;(2)若DB平分∠ADC,AB=a,AD:DE=4:1,写出求DE长的思路.28. (15分) (2014·台州) 某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共18题;共62分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、19-2、19-3、19-4、20-1、20-2、21-1、22-1、23-1、24-1、25-1、26-1、26-2、27-1、27-2、28-1、28-2、28-3、。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016山东省泰安市宁阳县中考数学二模试卷
一、选择题(本大题共20小题,每小题3分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求.)
1.在|﹣3|,30,3﹣2,这四个数中,最大的数是()
A.|﹣3|B.30C.3﹣2D.
2.下列运算正确的是()
A.(﹣3mn)2=﹣6m2n2B.4x4+2x4+x4=6x4
C.(xy)2÷(﹣xy)=﹣xy D.(a﹣b)(﹣a﹣b)=a2﹣b2
3.H7N9是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为()
A.12×10﹣8米B.1.2×10﹣9米C.1.2×10﹣8米D.1.2×10﹣7米
4.下列四个图形中,是中心对称而不是轴对称的是()
A.B.C.D.
5.下列几何体的主视图与其他三个不同的是()
A.B.C.D.
6.不等式组的所有整数解的积为()
A.﹣1B.1C.0D.﹣2
7.如图,直线a∥b,直线l与a相交于点P,与直线b相交于点Q,PM⊥l于点P,若∠1=39°,则∠2等于()
A.61°B.51°C.50°D.60°
8.抛物线y=x2+bx+c的图象先向下平移3个单位,再向右平移2个单位,所得图象的函数表达式为y=(x﹣1)2﹣4,则b,c的值为()
A.b=2,c=﹣6B.b=2,c=0C.b=6,c=8D.b=6,c=2
9.五一期间,绿化部门预在县城主要干道旁边种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵,求A、B两种花木的数量分别是多少棵?若设A,B花木各x棵,y棵,则有()
A.B.
C.D.
10.从某校九年级中随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分,5分.将测量的结果制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些学生分数的中位数是()
A.1B.2C.3D.4
11.如图,D为等边三角形ABC内的一点,DA=5,DB=4,DC=3,将线段AD以点A为旋转中心逆时针旋转60°,得到线段AD′,连接DD′,则tan∠DD′C=()
A.B.C.D.
12.有五张正面分别写有数字﹣3,﹣2,1,2,3的卡片,它们的背面完全相同,现将这五张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为a的值,然后再从剩余的四张卡片中随机抽取一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率是()
A.B.C.D.。

相关文档
最新文档