中考数学几何选择填空压轴题精选配答案
2020年中考数学选择填空压轴题汇编几何综合结论含解析
几何综合结论1. (2020深圳)如图,矩形纸片個8中,AB=6. 5(7=12.将纸片折叠,使点3落在边"的延长线上的点 G 处,折痕为肪 点E 、尸分别在边血和边證上.连接%,交CD 于点、K, FG 交CD 于点、H.给出以下结 论: ① EF1BG ;② GE=GF :③ 冰和2X00的而积相等;④ 当点尸与点Q 重合时,Z/?£F=75° ,其中正确的结论共有( )【解答】解:如图,连接宓设EFG BG 交于点0,•••将纸片折叠,使点〃落在边〃的延长线上的点G 处,B. 2个 C. 3个D. 4个:.EFIBG, BO=GO. BE=EG, BF= FG,故①正确,AD//BC.:・ZEGO= ZFBO、又T ZEOG= ZBOF,:.、BOZ'GOE (ASA\:・BF=EG,:・BF=EG=GF、故②正确,•: BE=EG=BF=FG、・••四边形购沪是菱形,:•乙BEF= ZGEF,当点尸与点Q重介时,则BF=BC=BE=\2,TsinZ 遊「,•••ZM5=30° ,:・ZDEF=W,故④正确,由题意无法证明△宓和△GAZf的而积相等,故③错误:故选:C.2.(2020贵州铜仁)如图,正方形個力的边长为4,点厅在边曲上,BE=\,ZQLW=45°,点尸在射线刖上,且过点尸作“的平行线交BA的延长线于点H, 67■与初相交于点G,连接EC、EG、EF.下列结论:①尸的而积为S②△庇G的周长为&③必=亦+血:其中正确的是()A.①(D ③B. @@C.①②【解答】解:如图,在正方形個8中,AD//BC. AB=BC=AD=49AZZ£W=90° ,HF//AD.AZ J ^=90° ,VZ2£4F=90° - ZMQ45° >AAFH=AHAF.:.AH=HF=\=BE.:.EH=AE^AH=AB- BE ・AH=4 = BC 、:AEHFg'CBE (SAS'、:・EF=EC, ZHEF= ZBCE,•:乙BCE+乙BEC=9$ ,:・HEHZBEC=9y »:.ZFEC=9Q° ,:■ \ CEF 是等腰直角三角形, 在 R 仏CBE 中,BE=1. BC=A. H 刀D.②③ ZB=ZBAD=9Q Q ,:.EC=BE+BC = 17.=i=g =兰:£g云EF・EC 2EC 2\故①正确;过点尸作FQLBC于0,交.AD于P,•••Z 时=90° = ZH= ZHAD.・••四边形北明是矩形,•: AH=HF,.•・矩形册叨是正方形,:.AP=PH=AH=\,同理:四边形测是矩形,:.PQ=AB=\y BQ=AP1、FQ=FP-PQ=z. CQ=BO BQ=3、•: AD〃BC,•••△/TVs △磁,FP _况. 五一&在RtAEAG 中,根据勾股宦理得,EG°V/i^=4,=空 Is t 2旳工空 Is 产云 :・E C 羊D C+B E,故③错误,・•・正确的有①故选:C.:.AG=AP^PG'AEG 的周长为 AG-E&rAEI r 3=8,敬②正确; 25:.DG^BE 1£7•: EC= ( 3:.DG=AD- AG3. (2020黑龙江鹤岗)如图,正方形 馭7?的边长为⑦ 点&在边月万上运动(不与点川3重合),ADAM= 45°,点尸在射线凡『上,且AF ^^BE,仔■与血相交于点G,连接应'、EF 、EG.则下列结论: ① ZECF= 45° :② △近的周长为(1 <3:③ B »D C=E C ;④△轩的而积的最大值是肚其中正确的结论是( )•:BE=BH, Z 翊=90° ,:・AF=EH,⑤当BE 二;a 时,G 是线段初的中点.A.①②③B.②④⑤C.①®®D.①④⑤ 【解答】解:如图1中, 任BC 上截取BH=庞,连接筋•: ZDAM=ZEHB=45° , Z馳?=90° ,:・ZFAE=ZEHC=\35° ,•: BA=BC, BE= BH,:.AE=HC.:仏FAE^HEHC (SAS)、:・EF=EC, ZAEF= ZECH,•:乙EC出乙CEB=90° ,:.AAEF^ACEB=W y•••Z亦*90° ,:•乙ECF= ZEFC='M ,故①正确,如图2中.延长初到/ 使得BE,则厶CBMHCDH ISAS). :・ZECB= ZDCH、:.2LECH= ABCD=W ,:.ZECG=ZGCH=45° ,•: CG=CG、CE=CH.:.HGCE^HGCH (SAS),:・EG=GH,V GH=D&rDH. DH=BE、:・EG=BE+DG.故③错误,'AEG的周长=AE^EG-AG= AE-AH= AD-DH^AE= AE^E&vAD= A&rAD= 2a.故②错误,二屈 设殆F 贝^AE=a-x. AF 阳=—- 十一■ ■£> 2 W.Y ax解得-Y •:.AG=GD.故⑤正确,故选:D.4. (2020黑龙江绥化)如图,在Rt △磁中,G9为斜边初的中线,过点。
中考数学填空题压轴精选(答案详细)1
中考数学填空题压轴精选(答案详细)19.如图,四边形ABCD 中,AB =4,BC =7,CD =2,AD =x ,则x 的取值范围是( ).10.已知正数a 、b 、c 满足a2+c2=16,b2+c2=25,则k =a2+b2的取值范围是_________________.11.如图,在△ABC 中,AB =AC ,D 在AB 上,BD =AB ,则∠A 的取值范围是_________________.12.函数y =2x2+4|x |-1的最小值是____________.13.已知抛物线y =ax2+2ax +4(0<a<3),A (x 1,y 1),B (x 2,y 2)是抛物线上两点,若x 1<x 2,且x 1+x 2=1-a ,则y 1 __________ y 2(填“>”、“<”或“=”)14.如图,△ABC 中,∠A 的平分线交BC 于D ,若AB =6,AC =4,∠A =60°,则AD 的长为___________.A xD B C74215.如图,Rt △ABC =6,BC =8,点D 在交AC 于E ,DF ⊥AD =x ,四边形CEDF 析式为_______________________________________________.16.两个反比例函数y =x k 和y =x 1在第一象限内的图象如图所示,点P 在y =xk 的图象上,PC ⊥x 轴于点C ,交y=x 1的图象于点A ,PD ⊥y 轴于点D ,交y =x 1的图象于点B ,当点P 在y =x k 的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是_________________.(把你认为正确结论的序号E都填上,少填或错填不给分).17.如图,△ABC 中,BC =8,高AD =6,矩形EFGH 的一边EF 在边BC 上,其余两个顶点G 、H 分别在边AC 、AB 上,则矩形EFGH 的面积最大值为___________.18.已知二次函数y =a (a +1)x2-(2a +1)x +1,当a 依次取1,2,…,2010时,函数的图像在x 轴上所截得的线段A 1B 1,A 2B 2,…,A 2010B 2010的长度之和为_____________.19.如图是一个矩形桌子,一小球从P 撞击到Q ,反射到R ,又从R 反射到S ,从S 反射回原处P ,入射角与反射角相等(例如∠PQA =∠RQB 等),已知AB =8,BC =15,DP =3.则小球所走的路径的长为_____________.20.如图,在平行四边形ABCD 中,点E 、F 分别在AB 、AD 上,且AE =31AB ,AF =41AD,连结EF 交对角线AC 于G ,则ACAG =_____________. D B CE F A BCGD E F21.已知m ,n 是关于x 的方程x2-2ax +a +6=0的两实根,则(m -1)2+(n -1)2的最小值为_____________.22.如图,四边形ABCD 和BEFG 均为正方形,则AG :DF :CE =_____________.23.如图,在△ABC 中,∠ABC =60°,点P是△ABC 内的一点,且∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB =________.24.如图,AB 、CD 是⊙O 的两条弦,∠AOB 与∠C 互补,∠COD 与∠A 相等,则∠AOB 的度数是________.25.如图,一个半径为2的圆经过一个半径为2的圆的圆心,则图中阴影部分的面积为_____________. EAP BOC DAB26.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2.作△ABC的高CD,作△CDB的高DC1,作△DC1B的高C1D1,……,如此下去,则得到的所有阴影三角形的面积之和为__________.27.已知抛物线y=x2-(2m+4)x+m2-10与x轴交于A、B两点,C是抛物线顶点,若△ABC为直角三角形,则m=__________.28.已知抛物线y=x2-(2m+4)x+m2-10与x轴交于A、B两点,C是抛物线顶点,若△ABC为等边三角形,则该抛物线的解析式为___________________________.29.已知抛物线y=ax2+(4+3a)x+4与x轴交于A、B3两点,与y轴交于点C.若△ABC为直角三角形,则a =__________.30.如图,在直角三角形ABC中,∠A=90°,点D在斜边BC 上,点E 、F 分别在直角边AB 、AC 上,且BD =5,CD =9,四边形AEDF 是正方形,则阴影部分的面积为__________.31.小颖同学想用“描点法”画二次函数y =ax2+bx +c (a ≠0)的图象,取自变量x 的5个值,分别计算出对应的y 值,如下表:由于粗心,小颖算错了其中的一个y 值,请你指出这个算错的y 值所对应的x =__________.32.等边三角形ABC 的边长为6,将其放置在如图所示的平面直角坐标系中,其中BC 边在x 轴上,BC 边上的高OA 在y 轴上。
填空压轴题(几何篇)-2023年中考数学压轴题专项训练(解析版)
2023年中考数学压轴题专项训练--填空压轴题(几何篇)一、压轴题速练1一.填空题(共40小题)1(2023•龙湾区二模)如图,在△ABC 中,AB =13,BC =14,AC =15,点D 是线段AC 上任意一点,分别过点A 、C 作直线BD 的垂线,垂足为E 、F ,AE =m ,CF =n ,则n +m 的最大值是15,最小值是12.【答案】15,12.【分析】根据S △ABC =S △ABD +S △CBD 即可得到m +n 关于x 的反比例函数关系式.根据垂直线段最短的性质,当BD ⊥AC 时,x 最小,由面积公式可求得;因为AB =13,BC =14,所以当BD =BC =14时,x 最大.从而根据反比例函数的性质求出y 的最大值和最小值.【详解】解:在△ABC 中,AB =13,BC =14,AC =15,AH ⊥BC 于点H ,∴设AH =x ,则CH =14-x ,∴AB 2-AH 2=AC 2-CH 2,即132-x 2=152-(14-x )2,解得x =5,即AH =5,∴BH =AB 2-BH 2=132-52=12,∴S △ABC =12BC •AH =12×14×12=84,由三角形面积公式,得S △ABD =12BD •AE =12xm ,S △CBD =12BD •CF =12xn ,∴m =2S △ABD x ,n =2S △CBDx,∴y =m +n =2S △ABD x +2S △CBD x =2S △ABC x =168x,即y =168x.∵△ABC 中AC 边上的高为2S △ABC AC=16815=565,∴x 的取值范围为565≤x ≤14.∵m +n 随x 的增大而减小,∴当x =565时,y 的最大值为15,当x =14时,y 的最小值为12.故答案为:15,12.【点睛】本题考查三角形的面积,掌握三角形的面积公式,反比例函数的应用是解题的关键.2(2023•湖北模拟)如图,正方形ABCD 的对角线交于点O ,AB =22,现有半径足够大的扇形OEF ,∠EOF =90°,当扇形OEF 绕点O 转动时,扇形OEF 和正方形ABCD 重叠部分的面积为2.【答案】2.【分析】根据四边形ABCD 为正方形,得到∠OAG =∠OBH =45°,OA =OB ,∠AOB =90°;推出△AOG ≌△BOH ,于是得到结论.【详解】解:∵四边形ABCD 为正方形,∴∠OAG =∠OBH =45°,OA =OB ,∠AOB =90°,由题意得:∠GOH =90°,∴∠AOG =∠BOH ;在△AOG 与△BOH 中,∠AOG =∠BOH OA =OB∠OAG =∠OBH ,∴△AOG ≌△BOH (ASA ),∴扇形OEF 和正方形ABCD 重叠部分的面积=S △AOB =14S 正方形ABCD =14×AB 2=14×(22)2=2.故答案为:2.【点睛】本题考查了全等三角形的判定和性质,正方形的性质,熟练掌握全等三角形的判定和性质是解题的关键.3(2023•榆树市二模)如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH 组成,恰好拼成一个大正方形ABCD ,连结EG 并延长交BC于点M .若AB =13,EF =1,则GM 的长为 425 .【答案】425.【分析】由大正方形ABCD 是由四个全等的直角三角形和一个小正方形EFGH 组成,在直角三角形AEB 中使用勾股定理可求出BF =AE =GC =DH =2,过点M 作MN ⊥FC 于点N ,由三角形EFG 为等腰直角三角形可证得三角形GNM 也为等腰直角三角形,设GN =NM =a ,则NC =GC -GN =2-a ,由tan ∠FCB =BF CF =23=NM CN=a 2-a ,可解得a =45.进而可得GM =2MN =425.【详解】解:由图可知∠AEB =90°,EF =1,AB =13,∵大正方形ABCD 是由四个全等的直角三角形和一个小正方形EFGH 组成,故AE =BF =GC =DH ,设AE =x ,则在Rt △AEB 中,有AB 2=AE 2+BE 2,即13=x 2+(1+x )2,解得:x 1=2,x 2=-3(舍去).过点M 作MN ⊥FC 于点N ,如图所示.∵四边形EFGH 为正方形,EG 为对角线,∴△EFG 为等腰直角三角形,∴∠EGF =∠NGM =45°,故△GNM 为等腰直角三角形.设GN =NM =a ,则NC =GC -GN =2-a ,∵tan ∠FCB =BF CF =23=NM CN=a2-a ,解得:a =45,∴GM =2GN =425.故答案为:425.【点睛】本题考查了勾股定理的证明,正方形的性质、勾股定理、锐角三角函数、等腰三角形的性质、正确作出辅助线是解决本题的关键.4(2023•道外区二模)如图,在四边形ABCD 中,AB =BC ,∠A =∠ABC =90°,以CD 为斜边作等腰直角△ECD ,连接BE ,若CD =213,BE =2,则AB =6.【答案】6.【分析】过点E 作EF ⊥AD 交AD 于点F ,延长FE 交BC 于点M ,从而可判定四边形ABMF 是矩形,则有AB =FM ,可得∠DFE =∠CME =90°,再求得∠DEF =∠ECM ,利用AAS 可判定△DEF ≌△ECM ,则有EF =CM ,从而可求得BM =EM ,利用勾股定理求得EM ,CE ,即可求CM ,从而可求解.【详解】解:过点E 作EF ⊥AD 交AD 于点F ,延长FE 交BC 于点M ,如图,∵∠A =∠ABC =90°,∠AFM =90°,∴四边形ABMF 是矩形,∴AB =FM ,∠DFE =∠CME =90°,∵△ECD 是等腰三角形,∴DE =CE ,∠CED =90°,∵∠ECM +∠CEM =90°,∠FED +∠CEM =180°-∠CED =90°,∴∠DEF =∠ECM ,在△DEF 和△ECM 中,∠EFD =∠CME =90°∠DEF =∠ECMDE =EC,∴△DEF ≌△ECM (AAS ),∴EF =CM ,∵EM =FM -EF ,BM =BC -CM ,AB =BC ,∴BM =EM ,∴△BME 是等腰直角三角形,∵CD =213,BE =2,∴CE =26,EM =1,∴BM =1,CM =CE 2-EM 2=5,∴BC =BM +CM =6,∴AB =BC =6.故答案为:6.【点睛】本题主要考查全等三角形的判定与性质,勾股定理,等腰直角三角形,解答的关键是作出适当的辅助线.5(2023•包河区二模)Rt △ABC 中,点D 是斜边AB 的中点.(1)如图1,若DE ⊥BC 与E ,DF ⊥AC 于F ,DE =3,DF =4,则AB =10;(2)如图2,若点P 是CD 的中点,且CP =52,则PA 2+PB 2=62.5.【答案】(1)10:(2)62.5.【分析】(1)首先证明四边形DECF 为矩形,得DE =CF =3,在Rt △DFC 中,由勾股定理得,CD =5,再利用直角三角形斜边上中线的性质可得答案;(2)过点D 作DE ⊥BC ,DF ⊥AC ,垂足分别为点E 、F ,过点P 作PG ⊥BC ,PH ⊥AC ,垂足分别为点G 、H ,则四边形CGPH 为矩形,说明BG =BE +EG =3EG =3CG =3PH ,同理可得AH =3PG ,再利用勾股定理即可.【详解】解:(1)∵DE ⊥BC ,DF ⊥AC ,∴∠DEF =∠DFC =∠ACB =90°,∴四边形DECF 为矩形,∴DE =CF =3,在Rt △DFC 中,由勾股定理得,CD =5,∵点D 是斜边AB 的中点,∴AB =2CD =10,故答案为:10;(2)如图,过点D 作DE ⊥BC ,DF ⊥AC ,垂足分别为点E 、F ,过点P 作PG ⊥BC ,PH ⊥AC ,垂足分别为点G 、H ,则四边形CGPH 为矩形,∴PG =CH ,CG =PH ,∵点D 为Rt △ABC 的斜边AB 的中点,∴CD =BD ,∴BE =CE ,∵点P 为CD 的中点,DE ⊥BC ,PG ⊥BC ,∴点G 为CE 的中点,即CE =2EG =2CG ,∴BE =CE =2EG ,∴BG =BE +EG =3EG =3CG =3PH ,同理可得AH =3PG ,∴PA 2+PB 2=BG 2+PG 2+AH 2+PH 2=(3PH )2+PG 2+(3PG )2+PH 2=10×522=62.5,故答案为:62.5.【点睛】本题主要考查了直角三角形斜边上中线的性质,等腰三角形的性质,勾股定理等知识,熟练掌握勾股定理是解题的关键.6(2023•庐江县三模)如图,四边形ABCD 中,AB =AC =AD ,点M 、N 分别是BC 、CD 的中点,连接MN ,若∠DAM =105°,∠BAN =75°,若AM AN=3+12,则∠ANM =75°.【答案】75.【分析】根据三角形中位线定理和二元一次方程组解答即可.【详解】解:四边形ABCD 中,AB =AC =AD ,点M 、N 分别是BC 、CD 的中点,设∠BAM =∠CAM =α,∠DAN =∠CAN =β,2α+β=75°α+2β=105° ,解得:α+β=60°,即:∠MAN =60°,过N 作NH ⊥AM 于H ,如图:可得:∠ANH =30°,设AH =x ,可得:HN =3x ,AN =2x ,∵AM AN=3+12,∴AM =3+12⋅AN =3+12⋅2x =(3+1)x ,∴MH =3x =NH ,∴∠MNH =45°,∴∠ANM =30°+45°=75°,故答案为:75.【点睛】此题考查三角形中位线定理,关键是根据三角形中位线定理解答.7(2023•中山市二模)如图,△ABC 与△BDE 均为等腰直角三角形,点A ,B ,E 在同一直线上,BD ⊥AE ,垂足为点B ,点C 在BD 上,AB =4,BE =10.将△ABC 沿BE 方向平移,当这两个三角形重叠部分的面积等于△ABC 面积的一半时,△ABC 平移的距离为2-2或5.【答案】2-2或5.【分析】根据平移的性质和等腰直角三角形的性质解答即可.【详解】解:∵△ABC 与△BDE 均为等腰直角三角形,∴AB =BC =4,DB =BE =10,∴△ABC 的面积=12AB •BC =12×4×4=8,当这两个三角形重叠部分的面积等于△ABC 面积的一半时,∴△A 'BE 的面积=12A 'B ⋅BE =12A 'B ⋅A 'B =1,∴A 'B =2,∴AA '=AB -A 'B =2-2,即平移的距离为2-2,当当点B 平移到与点E 重合时,也满足,此时平移的距离为:5,故答案为:2-2或5.【点睛】此题考查等腰直角三角形的性质,关键是根据等腰直角三角形的面积公式解答.8(2023•新都区模拟)青朱出入图,是魏晋时期数学家刘徽根据“割补术”运用数形关系证明勾股定理的几何证明法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂.开方除之,即弦也.”,若图中DF =1,CF =2,则AE 的长为310 .【答案】310.【分析】由勾股定理求出AF 的长,由△ADF ∽△ECF ,得到AF :FE =DF :FC =1:2,求出FE 的长,即可求出AE 的长.【详解】解∵四边形ABCD 是正方形,∴AD =DC ,∠D =90°,∵DF =1,FC =2,∴AD =DC =DF +FC =3,∴AF =AD 2+DF 2=32+12=10,∵AD ∥BE ,∴△ADF ∽△ECF ,∴AF :FE =DF :FC =1:2,∴FE =2AF =210,∴AE =AF +FE =310.故答案为:310.【点睛】本题考查勾股定理,相似三角形的判定和性质,掌握以上知识点是解题的关键.9(2023•黄埔区一模)△ABC 为等腰直角三角形,AB =AC =6,∠BAC =90°,动点D 在边BC 上运动.以A 为直角顶点,在AD 右侧作等腰直角三角形△ADE (如图).M 为DE 中点,N 为BC 三等分点,CN =13BC ,连接MN ,则线段MN 的最小值为1.【答案】1.【分析】连接CE ,证明△ABD ≌△ACE (SAS ),可得∠ACE =∠B =45°,CE =BD ,证明CE ⊥BD ,得出点E 始终在过点C 垂直于BC 的射线上,当BD =13BC =2时,MN 最小,根据三角形中位线定理可得MN =12CE ,结合已知条件即可得线段MN 的最小值.【详解】解:如图,连接CE ,∵△ABC 、△ADE 为等腰直角三角形,AB =AC =6,∴∠BAC =∠DAE =90°,AD =AE ,∴∠BAD =90°-∠DAC =∠CAE ,在△ABD 和△ACE 中,AB =AC ∠BAD =∠CAE AD =AE ,∴△ABD ≌△ACE (SAS ),∴∠ACE =∠B =45°,CE =BD ,∵∠ACB =∠B =45°,∴∠ECB =45°+45°=90°,∴CE ⊥BD ,因为点D 在BC 上运动,所以点M 在直线上运动,当BD =13BC =2时∵N 为BC 三等分点,CN =13BC ,此时MN ∥CE ,∵M 为DE 中点,∴N 为CD 中点,∴MN =12CE =1,故答案为:1.【点睛】本题考查了全等三角形的判定与性质,三角形中位线定理,等腰直角三角形的性质,解决本题的关键是判断出△ABD ≌△ACE .10(2023•雁塔区校级模拟)如图,菱形ABCD 的边长为5,将一个直角的顶点放置在菱形的中心O 处,此时直角的两边分别交边AD ,CD 于点E ,F ,当OE ⊥AD 时,OE 的长为2,则EF 的长是 412 .【答案】412.【分析】连接AC ,先证OF ∥AD ,再证OF 是△ACD 的中位线,得OF =12AD =52,然后在Rt △EOF 中,由勾股定理即可得出结论.【详解】解:如图,连接AC ,∵四边形ABCD 是菱形,∴OA =OC ,由题意可知,∠EOF =90°,∴OE ⊥OF ,∵OE ⊥AD ,∴OF ∥AD ,∵OA =OC ,∴DF =CF ,∴OF 是△ACD 的中位线,∴OF =12AD =52,在Rt △EOF 中,由勾股定理得:EF =OE 2+OF 2=22+522=412,故答案为:412.【点睛】本题考查了菱形的性质、平行线的判定与性质、三角形中位线定理以及勾股定理等知识,熟练掌握菱形的性质和三角形中位线定理是解题的关键.11(2023•奉贤区二模)如果四边形有一组邻边相等,且一条对角线平分这组邻边的夹角,我们把这样的四边形称为“准菱形”.有一个四边形是“准菱形”,它相等的邻边长为2,这两条边的夹角是90°,那么这个“准菱形”的另外一组邻边的中点间的距离是 2 .【答案】2.【分析】连接BD ,在Rt △ABD 中,由勾股定理得BD =22,再证EF 是△BCD 的中位线,即可得出结论.【详解】解:如图,四边形ABCD 是“准菱形”,且AB =AD ,∠BAD =90°,点E 、F 分别是CD 、BC 的中点,连接BD 、EF ,在Rt △ABD 中,由勾股定理得:BD =AB 2+AD 2=22+22=22,∵点E 、F 分别是CD 、BC 的中点,∴EF 是△BCD 的中位线,∴EF =12BD =2,即这个“准菱形”的另外一组邻边的中点间的距离是2,故答案为:2.【点睛】本题考查了“准菱形”的性质、勾股定理以及三角形中位线定理等知识,熟练掌握“准菱形”的性质和三角形中位线定理是解题的关键.12(2023•吕梁一模)如图,在正方形ABCD 中,点P 在对角线BD 上,点E ,F 分别在边AB 和BC 上,且∠EPF =45°,若CF =2DP =4,AE =12,则AB 的长度为 8+214 .【答案】8+214.【分析】过点P作MN⊥BC交BC于点M,交AD于点N;过点P作JG⊥AB交AB于点G,交DC 于点J;根据四边形ABCD是正方形,BD是对角线,则AD=BC=JG,AB=DC=MN;根据CF =2DP=4,由勾股定理得PJ=PN=2,则CM=MF=2,AG=2;过点E作EH⊥DB交BD于点H,设EH=x,根据勾股定理,EB=2x,根据相似三角形的判定和性质,得△PMF∽△PHE,得MF EH=PMPH,求出x,根据AB=AE+EB解答即可.【详解】解:过点P作MN⊥BC交BC于点M,交AD于点N;过点P作JG⊥AB交AB于点G,交DC于点J,∵四边形ABCD是正方形,BD是对角线,∴AD=BC=JG,AB=DC=MN,∠ADB=45°,∵CF=2DP=4,∴PJ=PN=2,∴CM=MF=2,AG=2,∵AE=12,∴GE=10,∵△PGB是等腰直角三角形,∴PG=GB,过点E作EH⊥DB交BD于点H,设EH=x,∴EH2+HB2=EB2,∴EB=2x,∴PG=GB=10+2x,∴PB=2(10+2x),∴PH=PB-HB=2(10+2x)-x,∵∠EPF=∠FPB+∠EPB=45°,∠MPB=∠MPF+∠FPB=45°,∴∠EPB=∠MPF,∴△PMF∽△PHE,∴MF EH=PM PH,∴2x=10+2x2(10+2x)-x,解得:x=27-22,∴EB=214-4,∴AB=8+214.故答案为:8+214.【点睛】本题考查正方形的性质,相似三角形的知识,解题的关键是掌握正方形的性质,相似三角形的判定和性质,勾股定理.13(2023•蚌埠二模)如图,点E为正方形ABCD的边CD上一点,以点A为圆心,AE长为半径画弧EF,交边BC于点F,已知正方形边长为1.(1)若∠DAE=15°,则DE的长为 2-3 ;(2)△AEF的面积为S的最大值是 12 .【答案】(1)2-3;(2)12.【分析】(1)由已知可证Rt △ADE ≌Rt △ABF (HL ),再利用勾股定理即可得出结论;(2)设DE =x ,表示出S =-12x 2+12,再利用二次函数的性质即可得出结论.【详解】解:(1)∵ABCD 是正方形,∴AD =AB ,∠D =∠B =90°,∵AE =AF ,∴Rt △ADE ≌Rt △ABF (HL ),∴∠DAE =∠BAF =15°,BF =DE ,∴∠EAF =60°,∴△AEF 为等边三角形,设DE =x ,则CE =CF =1-x ,在Rt △ADE 中,AE 2=AD 2+DE 2=1+x 2,在Rt △CFE 中,FE 2=CE 2+CF 2=2(1-x )2,∴1+x 2=2(1-x )2,解得:x =2±3,∵0≤x ≤1,∴x =2-3.故答案为:2-3,(2)设DE =x ,由(1)可知DE =BF =x ,则CE =CF =1-x ,∴S =S △AEF =S 正方形ABCD -S △ADE -S △ABF -S △CEF ,=1-12×1×x -12×1×x -12(1-x )2=-12x 2+12,∵0≤x ≤1,对称轴直线x =0,∴S 随x 增大而减小,∴当x =0时S 有最大值,此时S =12,故答案为:12.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、等边三角形的判定与性质、二次函数的应用,解题的关键是熟练掌握全等三角形的判定与性质、二次函数的性质等知识点.14(2023•兰考县一模)如图,方形ABCD 中,AB =8,点P 为射线BC 上任意一点(与点B 、C 不重合),连接AP ,在AP 的右侧作正方形APGH ,连接AG ,交射线CD 于E ,当ED 长为2时,点BP 的长为 245或403.【答案】245或403.【分析】由题可分两种情况,当交点E 在线段CD 上时,或当交点E 在线段CD 延长线上时,分别将△ADE 绕点A 顺时针旋转90°,可判定全等三角形,用勾股定理求出对应边的长度即可.【详解】解:由题意,分两种情况,如下(1)当交点E 在线段CD 上时,∵四边形ABCD 为正方形,∴将△ADE 绕点A 顺时针旋转90°,如图所示,AD 与AB 重合,且E ',B ,P 三点共线,∵四边形APGH 是正方形,∴∠PAG =45°,∴∠DAE +∠BAP =45°,由旋转可得,∴∠BAE '+∠BAP =45°,∴∠E 'AP =∠EAP =45°,连接EP ,在△E 'AP 和△EAP 中,∵AE '=AE ∠E 'AP =∠EAP AP =AP,∴△E 'AP ≌△EAP (SAS ),∴E 'P =EP ,设BP =x ,∵正方形ABCD 边长AB =8,DE =2,∴CE =8-2=6,PC =8-x ,EP =E 'P =2+x ,在Rt △ECP 中,有勾股定理得:PC 2+CE 2=EP 2,即:(8-x )2+62=(2+x )2,解得:x =245;(2)当交点E 在线段CD 延长线上时,同理旋转△ADE 到△ABE ',如图所示,并可得∠FAE =∠FAE '=45°,同理可证△FAE ≌△FAE ',∴E 'F =EF ,设CF =y ,∵正方形ABCD 边长AB =8,DE =2,∴CE '=8-2=6,E 'F =EF =DF +DE =8-y +2=10-y ,在Rt △E 'CF 中,有勾股定理得:CF 2+E 'C 2=E 'F 2,即:y 2+62=(10-y )2,解得:y =165;在△CPF 和△BPA 中,∵∠CPF =∠BPA ∠FCP =∠ABP =90°,∴△CPF ∽△BPA ,∴CP BP =CF AB ,即BP -8BP =1658,解得:BP =403;综上所述:BP =245或403.故答案为:245或403.【点睛】本题主要考查正方形的性质,利用旋转图形证三角形全等,根据勾股定理和相似图形求出对应线段的长度是解题的关键,本题难点在于利用旋转构造全等三角形.15(2023•本溪一模)由4个形状相同,大小相等的菱形组成如图所示的网格,菱形的顶点称为格点,点A ,B ,C ,D 都在格点上,∠A =60°,则cos ∠CDB 的值为 32 .【答案】32.【分析】根据菱形的性质证明△ECD 、△FCD 都是等边三角形,求得∠BCD =120°,利用等边对等角求得∠CDB =30°,据此即可求解.【详解】解:∵四边形ABCF 、CFDE 都是菱形,∠A =60°,∴△ECD 、△FCD 都是等边三角形,∴∠FCD =∠BCF =60°,CD =CF ,∴∠BCD =120°,BC =CF =CD ,∴∠CDB =12(180°-∠BCD )=30°,∴cos ∠CDB =cos30°=32,故答案为:32.【点睛】本题主要考查菱形的性质、等边三角形的性质与判定、锐角三角函数,熟练掌握相关理论是解答关键.16(2023•沂南县校级一模)如图,矩形ABCD 中,AC 、BD 相交于点O ,过点B 作BF ⊥AC 交CD 于点F ,交AC 与点M ,过点D 作DE ∥BF 交AB 于点E ,交AC 于点N ,连接FN 、EM ,则下列结论:①DN =BM ;②EM ∥FN ;③AE =FC ;④当AO =AD 时,四边形DEBF 是菱形.其中,正确结论的个数是4.【答案】4.【分析】根据矩形的性质得到AB =CD ,AB ∥CD ,∠DAE =∠BCF =90°,OD =OB =OA =OC ,AD =BC ,AD ∥BC ,根据平行线的性质得到DE ⊥AC ,根据垂直的定义得到∠DNA =∠BMC =90°,由全等三角形的性质得到DN =BM ,∠ADE =∠CBF ,故①正确;证△ADE ≌△CBF (ASA ),得出AE =FC ,DE =BF ,故③正确;证四边形NEMF 是平行四边形,得出EM ∥FN ,故②正确;证四边形DEBF 是平行四边形,证出∠ODN =∠ABD ,则DE =BE ,得出四边形DEBF 是菱形;故④正确;即可得出结论.【详解】解:∵四边形ABCD 是矩形,∴AB =CD ,AB ∥CD ,∠DAE =∠BCF =90°,OD =OB =OA =OC ,AD =BC ,AD ∥BC ,∴∠DAN =∠BCM ,∵BF ⊥AC ,DE ∥BF ,∴DE ⊥AC ,∴∠DNA =∠BMC =90°,在△DNA 和△BMC 中,,∴△DNA ≌△BMC (AAS ),∴DN=BM,∠ADE=∠CBF,故①正确;在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=FC,DE=BF,故③正确;∴DE-DN=BF-BM,即NE=MF,∵DE∥BF,∴四边形NEMF是平行四边形,∴EM∥FN,故②正确;∵AB=CD,AE=CF,∴BE=DF,∵BE∥DF,∴四边形DEBF是平行四边形,∵AO=AD,∴AO=AD=OD,∴△AOD是等边三角形,∴∠ADO=∠DAN=60°,∴∠ABD=90°-∠ADO=30°,∵DE⊥AC,∴∠ADN=∠ODN=30°,∴∠ODN=∠ABD,∴DE=BE,∴四边形DEBF是菱形;故④正确;故答案为:4.【点睛】本题考查了矩形的性质、菱形的判定、平行四边形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、等腰三角形的判定等知识;熟练掌握矩形的性质和菱形的判定,证明三角形全等是解题的关键.17(2023•琼海一模)如图,菱形ABCD,AE⊥BC,点E为垂足,点F为AE的中点,连接BF并延长交AD于点G,连接CG,CE=2,CG=211,则DG=2,AG=6,AF= 7 .【答案】2,6,7.【分析】过点G作GH⊥BC,垂足为H,连接EG,证明△AGF≌△EBF,得到AG=BE,则DG= CE=2,然后可得四边形ABEG为平行四边形,设AG=BE=x,则AD=AB=GE=2+x,求出CH=x-2,在Rt△AGE和Rt△GCH中用勾股定理列方程进行求解.【详解】解:如图所示,过点G作GH⊥BC,交BC的延长线于H,连接EG,∵F 是AE 中点,∴AF =EF ,∵四边形ABCD 是菱形,∴AD ∥BC ,∵AE ⊥BC ,∴∠GAF =∠BEF =90°,在△AGF 与△EBF 中,∠GAF =∠BEF AF =EF ∠AFG =∠EFB,∴△AGF ≌△EBF (ASA ),∴AG =BE ,∴DG =CE =2,又∵AG ∥BE ,∴四边形ABEG 为平行四边形,∴GE =AB ,设AG =BE =x ,则AD =AB =GE =2+x ,∵∠GAE =∠AEH =∠H =90°,∴四边形AEHG 是矩形,∴AG =EH ,AE =GH ,∴CH =EH -CE =AG -CE =x -2,在Rt △AGE 和Rt △GCH 中,AE 2=GE 2-AG 2,GH 2=GC 2-CH 2,∴(x +2)2-x 2=(211)2-(x -2)2,解得x =6,即AG =6,∴AE =(6+2)2-62=27,∴AF =12AE =7.故答案为:2,6,7.【点睛】本题考查了菱形的性质、平行四边形的判定和性质、全等三角形的判定和性质、勾股定理等知识,设出线段长,寻找等量关系列出方程是解题的关键.18(2023•镇江一模)如图,在矩形ABCD 中,AB =6,BC=8,△BEF 的顶点E 在对角线AC 上运动,且∠BFE =90°,∠EBF =∠BAC ,连接AF ,则AF 的最小值为 7225 .【答案】7225.【分析】过点B 作BH ⊥AC 于点H ,连接FH .由∠BFE =∠BHE =90°推出E ,B ,F ,H 四点共圆,证明∠AHF =∠ACD =定值,推出点F 在射线HF 上运动,当AF ⊥FH 时,AF 的值最小,求出AH ,sin ∠AHF ,可得结论.【详解】解:过点B 作BH ⊥AC 于点H ,连接FH ,如图,∵∠BFE =∠BHE =90°,∴E ,B ,F ,H 四点共圆,∴∠FHB =∠FEB ,∵∠AHF +∠FHB =90°,∠FBE +FEB =90°∴∠AHF =∠EBF ,∵四边形ABCD 是矩形,∴ABC ∥CD ,∴∠BAC =∠ACD ,∵∠EBF =∠BAC ,∴∠EBF =∠ACD ,∴∠AHF =∠ACD =定值,∴点F 在射线HF 上运动,当AF ⊥FH 时,AF 的值最小,∵四边形ABCD 是矩形,∴AB =CD =6,BC =AD =8,∠D =90°.∴AC =CD 2+AD 2=62+82=10,∴sin ∠AHF =sin ∠ACD =AD AC =810=45,∵S △ACB =12•AB •CB =12•AC •BH ,∴BH =245,∴AH =AB 2-BH 2=62-245 2=185,∴AF 的最小值=AH ⋅sin ∠AHE =185×45=7225.故答案为:7225.【点睛】本题考查了矩形的性质、锐角三角函数的定义、勾股定理、四点共圆、圆周角定理、轨迹、三角形面积以及最小值问题等知识,本题综合性强,熟练掌握矩形的性质,利用垂线段最短解决最值问题是解题的关键.19(2023•泉州模拟)如图,在菱形ABCD 中,∠A =60°,点E 在边AD 上,以BE 为边在菱形ABCD 的内部作等边三角形BEF ,若∠DEF =α,∠EBD =β,则α与β之间的数量关系可用等式表示为α+β=60°.【答案】α+β=60°.【分析】根据菱形的性质得到∠C =∠A =60°,AD =AB =CD =BC ,求得∠ADB =∠CDB =∠DBC=60°,得到BD=BC,根据等边三角形的性质得到BE=BF,∠EBF=60°,根据全等三角形的性质得到∠DBE=∠CBF=β,∠BFC=∠BED=60°+α,根据三角形的内角和定理即可得到结论.【详解】解:在菱形ABCD中,∠A=60°,∴∠C=∠A=60°,AD=AB=CD=BC,∴∠ADB=∠CDB=∠DBC=60°,∴△BCD是等边三角形,∴BD=BC,∵△BEF是等边三角形,∴BE=BF,∠EBF=60°,∴∠DBE=∠CBF,∴△BDE≌△BCF(SAS),∴∠DBE=∠CBF=β,∠BFC=∠BED=60°+α,∵∠BFC+∠C+∠CBF=180°,∴β+60°+α+60°=180°,∴α+β=60°.故答案为:α+β=60°.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,等边三角形的判定和性质,熟练掌握菱形的性质是解题的关键.20(2023•市南区一模)如图,正方形ABCD中,E、F分别为BC、CD边上的点,∠EAF=45°,则下列结论中正确的有①②③.(填序号)①BE+DF=EF;②tan∠AMD=CDDF; ③BM2+DN2=MN2;④若EF=1.5,S△AEF=3,则.S正方形ABCD=4.【答案】①②③.【分析】①将△ADF绕点A顺时针旋转90°使AD与AB重合,得△ABQ,根据正方形的性质及会等三角形的性质可得答案;②根据三角形的外角性质及三角函数可得答案;③在AQ上取一点H,使AH=AN.连接BH,利用全等三角形的性质及勾股定理可得答案;④过点A作AR⊥EF于点R,根据全等三角形的性质、角平分线的性质可得AR=AB,然后由三角形面积公式及正方形的面积公式可得答案.【详解】解:①将△ADF绕点A顺时针旋转90°使AD与AB重合,得△ABQ,∴△ABQ≌△ADF,∴∠QAB=∠DAF,AQ=AF,∠ABQ=∠ADF,BQ=DF,∵四边形ABCD是正方形,∴∠BAD=∠ABC=∠C=90°,AB=BC=CD=AD,∵∠EAB+∠DAF+∠EAF=∠BAD=90°,且∠EAF=45°,∴∠DAF +∠EAB =45°,∴∠QAB +∠EAB =45°,∴∠QAE =∠FAE =45°,∵∠ABQ +∠ABE =90°+90°=180°,∴点Q 、B 、E 共线,在△AEQ 和△AEF 中,AQ =EF∠QAE =∠FAE AE =AE,∴△AEQ ≌△AEF (SAS ),∴EQ =EF ,∵EQ =BE +BQ =BE +DF ,∴EF =BE +DF ,故①正确;②∵∠AND =∠EAF +∠AMD =∠BDC +∠AFD ,∴∠AMD =∠AFD ,∴tan ∠AMD =tan ∠AFD ,在Rt △AFD 中,tan ∠AFD =AD DF ,∴tan ∠AMD =CD DF ,故②正确;③在AQ 上取一点H ,使AH =AN .连接BH ,在△AMH 和△AMN 中,AH =AN∠HAM =∠NAM =45°AM =MN,∴△AMH ≌△AMN (SAS ),∴MH =MN ,同理,△ABH ≌△ADN (SAS ),∴BH =DN ,∠ABH =∠ADN =45°,∴∠HBM =∠ABH +∠ABD =90°,在Rt △BMH 中,MH 2=BH 2+BM 2,∴MN 2=DN 2+BM 2,故③正确;④假设EF ∥BD 时,过点A 作AR ⊥EF 于点R ,∴AR 在正方形对角线上,∴∠RAE =∠BAE ,∴EB =ER ,∵AE =AE ,∴Rt △AEB ≌Rt △AER (HL ),∴∠AEB =∠AEF ,∵AB ⊥BC ,AR ⊥EF ,∴AR=AB,∵S△AEF=12EF•AR,∴3=12×1.5•AR,∴AR=4,=42=16,∴S正方形ABCD故④错误,∴①②③正确,故答案为:①②③.【点睛】此题考查的是正方形的性质、全等三角形的判定与性质、角平分线的性质、勾股定理有解直角三角形,正确作出辅助线是解决此题关键.21(2023•大连一模)学习菱形时,我们从它的边、角和对角线等方面进行研究,可以发现并证明:菱形的每一条对角线平分一组对角.小明参考平行四边形、矩形判定方法的研究过程,得出下面的猜想:①一条对角线平分一组对角的四边形是菱形;②每一条对角线平分一组对角的四边形是菱形;③一条对角线平分一组对角的平行四边形是菱形.其中正确的是②③(填序号,填写一个即可).【答案】见试题解答内容【分析】由菱形的判定以及平行四边形的判定与性质分别对各个猜想进行判断即可.【详解】解:①一条对角线平分一组对角的四边形不一定是菱形,如筝形,故①不正确;②如图1,∵AC平分∠BAD和∠BCD,∴∠BAC=∠DAC,∠BCA=∠DCA,∵∠BAC+∠BCA+∠ABC=180°,∠DAC+∠DCA+∠ADC=180°,∴∠ABC=∠ADC,同理:∠BAD=∠BCD,∴四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA,∴∠BAC=∠BCA,∴AB=BC,∴平行四边形ABCD是菱形,故②正确;③一条对角线平分一组对角的平行四边形是菱形,故③正确;故答案为:②③.【点睛】本题考查了菱形的判定、等腰三角形的判定以及平行四边形的判定与性质,熟练掌握菱形的判定是解题的关键.22(2023•石景山区一模)如图,在菱形ABCD中,点E,F分别在BC,AD上,BE=DF.只需添加一个条件即可证明四边形AECF是矩形,这个条件可以是AE⊥BC(答案不唯一)(写出一个即可).【答案】AE⊥BC(答案不唯一).【分析】证四边形AECF是平行四边形,再证∠AEC=90°,然后由矩形的判定即可得出结论.【详解】解:这个条件可以是AE⊥BC,理由如下:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵BE=DF,∴BC-BE=AD-DF,即CE=AF,∴四边形AECF是平行四边形,又∵AE⊥BC,∴∠AEC=90°,∴平行四边形AECF是矩形,故答案为:AE⊥BC(答案不唯一).【点睛】本题考查了矩形的判定、菱形的性质以及平行四边形的判定与性质等知识,熟练掌握矩形的判定是解题的关键.23(2023•河东区一模)已知,如图,已知菱形ABCD的边长为6,∠ABC=60°,点E,F分别在AB,CB的延长线上,且BE=BF=13AB,G是DF的中点,连接GE,则GE的长是 39 .【答案】39.【分析】如图,延长EG到H,使GH=EG,连接CH,CG,DH,CE,过点F作PF∥DC,根据全等三角形的性质得到EF=HD,∠EFG=∠HDG,根据菱形的性质得到CD=CB,∠ADC=∠ABC= 60°,点A,B,E在同一直线上,根据全等三角形的性质得到CH=CE,∠DCH=∠BCE,根据等腰三角形的性质和含30°角的直角三角形的性质得到结论.【详解】解:如图,延长EG到H,使GH=EG,连接CH,CG,DH,CE,过点F作FP∥DC,过点E 作EQ⊥BC于Q,∵G是线段DF的中点,∴FG=DG,∵∠EGF=∠HGD,∴△GEF≌△GHD(SAS),∴EF=HD,∠EFG=∠HDG,∵∠EBF=∠ABC=60°,BE=BF,∴△BEF是等边三角形,∴∠BEF=60°,∵BE=BF=2,EQ⊥BC,∴∠QEB=30°,∴BQ=1,EQ=3,在Rt△CQE中,由勾股定理得:CE=CQ2+EQ2=72+(3)2=213,∵AB∥CD,CD∥FP,∴AB∥FP∥CD,∠GFP=∠CDG,∴∠AEF+∠EFP=180°,∴∠EFG+∠GFP=120°,∴∠CDH=∠HDG+∠GDC=120°,∵四边形ABCD是菱形,∴CD=CB=6,∠ADC=∠ABC=60°,点A,B,E在同一直线上,∴∠EBC=120°=∠CDH,∵△BEF是等边三角形,∴EF=BE,∴DH=BE,∴△HDC≌△EBC(SAS),∴CH=CE,∠DCH=∠BCE,∴∠DCH+∠HCB=∠BCE+∠HCB=120°,即∠HCE=120°,∵CH=CE,GH=GE,∴CG⊥GE,∠GCE=∠HCG=60°,∴∠GEC=30°,∵cos30°=EGCE=3 2,∴GE=32×213=39.故答案为:39.【点睛】本题主要考查了等边三角形的性质和判定,菱形的性质,全等三角形的判定和性质,解直角三角形,通过添加辅助线构造全等三角形是解题关键.24(2023•合肥模拟)如图,点P在正方形ABCD内,∠BPC=135°,连接PA、PB、PC、PD.(1)若PA=AB,则∠CPD=90°;(2)若PB=2,PC=3,则PD的长为 22 .【答案】(1)90°;(2)22.【分析】(1)根据正方形的性质得到AD=AB,求得PA=AD,设∠APB=α,则∠BAP=180°-2a,根据周角的定义即可得到结论;(2)如图,过C作CQ⊥CP,过P作PQ⊥PB,PQ与CQ相交于Q,连接BQ,推出△PCQ为等腰直角三角形,根据等腰直角三角形的性质得到PQ=32,根据全等三角形的性质得到BQ=PD,根据勾股定理即可得到结论.【详解】解:(1)∵四边形ABCD是正方形,∴AD=AB,∵PA=AB,∴PA=AD,设∠APB=α,则∠BAP=180°-2a,∴∠PAD=2α-90°,∠APD==135°-α,∵∠BPC=135°,∴∠CPD=360°-(135°-α)-a-135°=90°;故答案为:90°;(2)如图,过C作CQ⊥CP,过P作PQ⊥PB,PQ与CQ相交于Q,连接BQ,∵∠BPC=135°,∴∠CPQ=45°,∴△PCQ为等腰直角三角形,∵PC=3,∴PQ=32,∵CD=BC,∠PCD=∠QCB,PC=CQ,∴△DCP≌△BCQ(SAS),∴BQ=PD,在Rt△PBQ中,PB2+PQ2=BQ2,∵PB=2,∴PD=BQ=22.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,等腰三角形的性质,正确地作出辅助线是解题的关键.25(2023•鄞州区一模)如图,Rt△ABC中,∠C=90°,AC=BC=8,作正方形CDEF,其中顶点E在边AB上.(1)若正方形CDEF的边长为26,则线段AE的长是 42-4 ;(2)若点D到AB的距离是2,则正方形CDEF的边长是 25 .【答案】(1)42-4;(2)25.【分析】(1)连接CE,过点E作EH⊥AC于点H,根据正方形的性质,可得CE的长,根据等腰直角三角形的性质可得AH=EH,设AH=EH=x,在Rt△EHC中,根据勾股定理列方程,求出x的值,进一步可得AE的长;(2)过点D作DM⊥AB于点M,连接BD,AF,过点F作FN⊥AB于点N,先证△MDE≌△NEF (AAS),根据全等三角形的性质可得EN=DM,ME=NF,再证△BCD≌△ACF(SAS),根据全等三角形的性质可得BD=AF,∠CAF=∠CBD,然后再证明△BMD≌△FNA(AAS),根据全等三角形的性质可得BM=NF,MD=NA,进一步可得BM=ME,EN=NA=MD,求出ME的长度,根据勾股定理可得DE的长度,即可确定正方形DCFE的边长.【详解】解:(1)连接CE,过点E作EH⊥AC于点H,如图所示:则∠AHE=90°,在正方形CDEF中,CD=DE=26,∠CDE=90°,根据勾股定理,得CE=(26)2+(26)2=43,在Rt△ABC中,∠C=90°,∴∠A=∠B=45°,∴∠AEH=45°,∴AH=EH,设AH=EH=x,∵AC=BC=8,∴CH=8-x,在Rt△EHC中,根据勾股定理,得x2+(8-x)2=(43)2,解得x1=4+22(舍去),x2=4-22,∴AH=EH=4-22,在Rt△AEH中,根据勾股定理,得AE=(4-22)2+(4-22)2=42-4,故答案为:42-4;(2)过点D作DM⊥AB于点M,连接BD,AF,过点F作FN⊥AB于点N,如图所示:则∠DME=∠FNE=90°,∴∠MDE+∠MED=90°,在正方形DCEF中,∠DEF=90°,DE=EF,∴∠MED+∠FEN=90°,∴∠MDE=∠FEN,在△MDE 和△NEF 中,∠DME =∠FNE ∠MDE =∠FEN DE =EF,∴△MDE ≌△NEF (AAS ),∴EN =DM ,ME =NF ,在Rt △ABC 中,BC =AC ,∠ACB =90°,在正方形EDCF 中,∠DCF =90°,CD =CF ,∴∠BCD =∠ACF ,在△BCD 和△ACF 中,BC =AC ∠BCD =∠ACF CD =CF,∴△BCD ≌△ACF (SAS ),∴BD =AF ,∠CAF =∠CBD ,∵∠ABC +∠BAC =90°,∴∠MBD +∠DBC +∠BAC =90°,∴∠MBD +∠CAF +∠BAC =90°,即∠MBD +∠BAF =90°,∵∠MBD +∠MDB =90°,∴∠MDB =∠BAF ,在△BMD 和△FNA 中,∠BMD =∠FNA ∠BDM =∠FAN BD =AF,∴△BMD ≌△FNA (AAS ),∴BM =NF ,MD =NA ,∴BM =ME ,EN =NA =MD ,∵点D 到AB 的距离是2,∴EN =NA =2,在Rt △ABC 中,AC =BC =8,∠ACB =90°,根据勾股定理,得AB =82+82=82,∴BM +ME =82-2-2=62,∴ME =32,在Rt △MDE 中,根据勾股定理,DE =(32)2+(2)2=25,∴正方形CDEF 的边长是25,故答案为:25.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等,添加合适的辅助线构造全等三角形是解题的关键,本题综合性较强,难度较大.26(2023•郓城县校级模拟)如图,在平行四边形ABCD 中,对角线AC 、BD 交于点O .点M 是BC 边的中点,连接AM 、OM ,作CF ∥AM .已知OC 平分∠BCF ,OB 平分∠AOM ,若BD =32,则。
2020年江苏省九年级中考数学压轴题选择、填空、解答题精选精练(含解析)
2020年中考数学压轴题考前冲刺练习6一、选择题1.如图,是半径为1的圆弧,△AOC为等边三角形,D是上的一动点,则四边形AODC 的面积s的取值范围是()A.≤s≤B.<s≤C.≤s≤D.<s<2.如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD和等边△ACE,F 为AB的中点,DE,AB相交于点G,若∠BAC=30,下列结论:①EF⊥AC;②AD=AE;③AD=4AG;④记△ABC的面积为S1,四边形FBCE的面积为S2,则S1:S2=2:3.其中正确的结论的序号是()A.①③B.②④C.①③④D.①②③④3.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第9个图案中共有()和黑子.A.37 B.42 C.73 D.1214.如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于t的函数图象大致为()A.B.C.D.5.若整数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣3有正整数解,则满足条件的a的值之积为()A.28 B.﹣4 C.4 D.﹣26.如图,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE;②S△ODE=S△BDE;③四边形ODBE的面积始终等于;④△BDE周长的最小值为6.上述结论中正确的个数是()A.1 B.2 C.3 D.4二、填空题1.如图,⊙O是△ABC的外接圆,其中AB是⊙O的直径,将△ABC沿AB翻折后得到△ABD,点E在AD延长线上,BE与⊙O相切于点B,分别延长线段AE、CB相交于点F,若BD=3,AE=10,则线段EF的长为.2.已知关于x的方程x2﹣4x+t﹣2=0(t为实数)两非负实数根a,b,则(a2﹣1)(b2﹣1)的最小值是.3.如图,长方形纸片ABCD中,AB=4,将纸片折叠,折痕的一个端点F在边AD上,另一个端点G在边BC上,若顶点B的对应点E落在长方形内部,E到AD的距离为1,BG=5,则AF的长为.第3题第4题4.如图,射线OP过Rt△ABC的边AC、AB的中点M、N,AC=4cm,BC=4cm,OM =3cm.射线OP上有一动点Q从点O出发,沿射线OP以每秒1cm的速度向右移动,以Q为圆心,QM为半径的圆,经过t秒与BC、AB中的一边所在的直线相切,请写出t 的所有可能值(单位:秒)5.如图,点P是⊙O的直径AB的延长线上一点,过点P作直线交⊙O于C、D两点.若AB=6,BP=2,则tan∠P AC•tan∠P AD=.第5题第6题6.如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E,F分别在AC,BC边上运动(点E不与点A,C重合),且保持ED⊥FD,连接DE,DF,EF,在此运动变化的过程中,有下列结论:①AE=CF;②EF最大值为2;③四边形CEDF的面积不随点E位置的改变而发生变化;④点C到线段EF的最大距离为.其中结论正确的有(把所有正确答案的序号都填写在横线上)三、解答题1.如图,已知AC为正方形ABCD的对角线,点P是平面内不与点A,B重合的任意一点,连接AP,将线段AP绕点P顺时针旋转90°得到线段PE,连接AE,BP,CE.(1)求证:△APE∽△ABC;(2)当线段BP与CE相交时,设交点为M,求的值以及∠BMC的度数;(3)若正方形ABCD的边长为3,AP=1,当点P,C,E在同一直线上时,求线段BP 的长.2.如图,在平面直角坐标系xOy中,抛物线y=ax2+x+c与x轴交于A,B两点(点A 在点B的左侧),交y轴于点C,经过B,C两点的直线为y=.(1)求抛物线的函数表达式;(2)点P为抛物线上的动点,过点P作x轴的垂线,交直线BC于点M,连接PC,若△PCM为直角三角形,求点P的坐标;(3)当P满足(2)的条件,且点P在直线BC上方的抛物线上时,如图2,将抛物线沿射线BC方向平移,平移后B,P两点的对应点分别为B′,P′,取AB的中点E,连接EB′,EP′,试探究EB'+EP'是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.3.△ABC内接⊙O,AD⊥BC与D,连接OA.(1)如图1,求证:∠BAO=∠CAD;(2)如图2,作BE⊥AC交CA延长线于E交⊙O于F,延长AD交⊙O于G,连接AF,求证:AD+AF=DG;(3)在第(2)问的条件下,如图3,OA交BC于点T,CA=CT,AD=2AF,AB=4,求DT长.4.如图1,在平面直角坐标系xOy中,三角形ABC如图放置,点C(0,4),点A,B 在x轴上,且OB=4OA,tan∠CBO=.(1)求过点A、C直线解析式;(2)如图2,点M为线段BC上任意一点,点D在OC上,且CD=DM,设M的横坐标为t,△CDM的面积为S,求S与t之间的函数关系式,直接写出t的取值范围;(3)在(2)的条件下,如图3,在OB上取点N,过N作NF⊥DM,垂足为点F,连接CF,AF,∠DCF+∠AFN=60°,NF=BO时,求点D的坐标.5.阅读下列材料,解答下列问题材料一:一个三位以上的自然数,如果该自然数的末三位表示的数与末三位之前的数字表示的数之差是11的倍数,我们称满足此特征的数叫“网红数”,如:65362,362﹣65=297=11×27,称65362是“网红数”.材料二:对任的自然数p均可分解为P=100x+10y+z(x≥0,0≤y≤9,0≤z≤9且x、y,z均为整数)如:5278=52×100+10×7+8,规定:G(P)=.(1)求证:任两个“网红数”之和一定能被11整除;(2)已知:S=300+10b+a,t=1000b+100a+1142(1≤a≤7,0≤b≤5,其a、b均为整数),当s+t为“网红数”时,求G(t)的最大值.6.如图已知:直线y=﹣x+3交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A、B、C(1,0)三点.(1)求抛物线的解析式;(2)若点D的坐标为(﹣1,0),在直线y=﹣x+3上有一点P,使△ABO与△ADP相似,求出点P的坐标;(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使△ADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由.【答案与解析】一、选择题1.【分析】根据题意,得四边形AODC的最小面积即是三角形AOC的面积,最大面积即是当OD⊥OC时四边形的面积.要求三角形AOC的面积,作CD⊥AO于D.根据等边三角形的性质以及直角三角形的性质,求得CD=,得其面积是;要求最大面积,只需再进一步求得三角形DOC的面积,即是,则最大面积是.【解答】解:根据题意,得四边形AODC的面积最小即是三角形AOC的面积,最大面积即是当OD⊥OC时四边形的面积.作CH⊥AO于H,∵△AOC为等边三角形∴CH=∴S△AOC=;当OD⊥OC时面积最大,∴S△OCD=,则最大面积是+=∴四边形AODC的面积s的取值范围是<s≤.故选:B.2.【分析】根据直角三角形的性质和线段垂直平分线的性质,可得①正确;根据等边三角形的性质和直角三角形的斜边与直角边不相等,可得②不正确;根据等边三角形的性质、全等三角形的判定和性质、平行四边形的判定和性质,可得③正确;根据直角三角形的性质、三角形面积、梯形面积公式,可得④正确.【解答】证明:如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD 和等边△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30,下列结论:①EF⊥AC;②AD=AE;③AD=4AG;④记△ABC的面积为S1,四边形FBCE的面积为S2,则S1:S2=2:3.其中正确的结论的序号是(①③④)①连接CF,∵F是Rt△ABC的斜边AB的中点,∴AF=CF=AB,又∵△ACE是等边三角形,∴AE=CE∴EF是线段AC的垂直平分线,∴EF⊥AC故①正确;②∵△ABD和△ACE是等边三角形,∴AD=AB,AC=AE,在Rt△ABC中,AB≠AC,∴AD≠AE,故②不正确;③∵△ABD是等边三角形,F是AB中点,∴DF⊥AB,又∵∠BAC=30,△ACE是等边三角形,∴∠EAC=60,∴∠BAE=90,∴BA⊥AE,∴DF∥AE,又∠DBA=∠ABC=60,∠BFD=∠BCA=90,BD=AB,∴△FBD≌△CBA,∴DF=AE,∴四边形DFEA是平行四边形,∴AG=GF=AF,又AF=AB,AG=AB,又AB=AD,∴AD=4AG.故③正确;④在Rt△ABC中,AC=BC,CH=AC,∴EH=CH=•CB=CB,FH=BC,∴FE=FH+HE=2BC,∵BC⊥AC,EF⊥AC,∴EF∥BC,又FB与CE不平行,∴四边形FBCE是梯形,∴S2=(BC+FE)•CH=BC•CH,S1=BC•AC=BC•CH,∴S1:S2=2:3.∴故④正确,故选:C.3.【分析】观察图象得到第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,…,据此规律可得.【解答】解:第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,第7、8图案中黑子有1+2×6+4×6+6×6=73个,第9、10图案中黑子有1+2×6+4×6+6×6+8×6=121个,故选:D.4.【分析】结合点P的运动,将点P的运动路线分成O→A、A→B、B→C三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.【解答】解:设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S==a2•cosα•sinα•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选:A.5.【分析】表示出不等式组的解集,由不等式组无解确定出a的范围,分式方程去分母转化为整式方程,表示出分式方程的解,由分式方程有正整数解确定出a的值,即可求出所求.【解答】解:不等式组整理得:,由不等式组无解,得到3a﹣2≤a+2,解得:a≤2,分式方程去分母得:ax+5=﹣3x+15,即(a+3)x=10,由分式方程有正整数解,得到x=,即a+3=1,2,10,解得:a=﹣2,2,7,综上,满足条件a的为﹣2,2,之积为﹣4,故选:B.6.【分析】连接OB、OC,如图,利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°,再证明∠BOD=∠COE,于是可判断△BOD≌△COE,所以BD=CE,OD=OE,则可对①进行判断;利用S△BOD=S△COE得到四边形ODBE的面积=S△ABC=,则可对③进行判断;作OH⊥DE,如图,则DH=EH,计算出S△ODE=OE2,利用S△ODE随OE的变化而变化和四边形ODBE的面积为定值可对②进行判断;由于△BDE的周长=BC+DE=4+DE=4+OE,根据垂线段最短,当OE⊥BC时,OE最小,△BDE的周长最小,计算出此时OE的长则可对④进行判断.【解答】解:连接OB、OC,如图,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点O是△ABC的中心,∴OB=OC,OB、OC分别平分∠ABC和∠ACB,∴∠ABO=∠OBC=∠OCB=30°∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,∴∠BOD=∠COE,在△BOD和△COE中,∴△BOD≌△COE,∴BD=CE,OD=OE,所以①正确;∴S△BOD=S△COE,∴四边形ODBE的面积=S△OBC=S△ABC=××42=,所以③正确;作OH⊥DE,如图,则DH=EH,∵∠DOE=120°,∴∠ODE=∠OEH=30°,∴OH=OE,HE=OH=OE,∴DE=OE,∴S△ODE=•OE•OE=OE2,即S△ODE随OE的变化而变化,而四边形ODBE的面积为定值,∴S△ODE≠S△BDE;所以②错误;∵BD=CE,∴△BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=4+DE=4+OE,当OE⊥BC时,OE最小,△BDE的周长最小,此时OE=,∴△BDE周长的最小值=4+2=6,所以④正确.故选:C.二、填空题1.【分析】证明△ABD∽△BED,得出=,求出AD=9,DE=1,由勾股定理得出BE==,AB==3,再证△FBE∽△F AB得出比例式,得出BF=3EF,在Rt△ACF中根据AF2=AC2+CF2可得关于EF的一元二次方程,解之可得.【解答】解:∵AB为⊙O的直径,∴∠C=90°,∵将△ABC沿AB翻折后得到△ABD,∴△ABC≌△ABD,∴∠ADB=∠C=90°,AC=AD,BC=BD=3,∵BE与⊙O相切于点B,∴∠ABE=90°,∠DBE=∠BAD,∴△ABD∽△BED,∴=,∴AD×DE=BD2=9,∴AD(AE﹣AD)=9,∴AD(10﹣AD)=9,解得:AD=9或AD=1(舍去),∴AD=9,DE=1,∴BE==,AB==3,∵四边形ACBD内接于⊙O,∴∠FBD=∠F AC,即∠FBE+∠DBE=∠BAE+∠BAC,又∵∠DBE+∠ABD=∠BAE+∠ABD=90°,∴∠DBE=∠BAE,∴∠FBE=∠BAC,又∠BAC=∠BAD,∴∠FBE=∠BAD,∴△FBE∽△F AB,∴===,∴BF=3EF,在Rt△ACF中,∵AF2=AC2+CF2,∴(10+EF)2=92+(3+3EF)2,整理得:4EF2﹣EF﹣5=0,解得:EF=,或EF=﹣1(舍),∴EF=;故答案为:.2.【分析】a,b是关于x的一元二次方程x2﹣4x+t﹣2=0的两个非负实根,根据根与系数的关系,化简(a2﹣1)(b2﹣1)即可求解.【解答】解:∵a,b是关于x的一元二次方程x2﹣4x+t﹣2=0的两个非负实根,∴可得a+b=4,ab=t﹣2≥0,△=16﹣4(t﹣2)≥0.解得:2≤t≤6(a2﹣1)(b2﹣1)=(ab)2﹣(a2+b2)+1=(ab)2﹣(a+b)2+2ab+1,∴(a2﹣1)(b2﹣1),=(t﹣2)2﹣16+2(t﹣2)+1,=(t﹣1)2﹣16,∵2≤t≤6,∴当t=2时,(t﹣1)2取最小值,最小值为1,∴代数式(a2﹣1)(b2﹣1)的最小值是1﹣16=﹣15,故答案为:﹣15.3.【分析】设EH与AD相交于点K,过点E作MN∥CD分别交AD、BC于M、N,然后求出EM、EN,在Rt△ENG中,利用勾股定理列式求出GN,再根据△GEN和△EKM相似,利用相似三角形对应边成比例列式求出EK、KM,再求出KH,然后根据△FKH和△EKM 相似,利用相似三角形对应边成比例列式求解即可.【解答】解:设EH与AD相交于点K,过点E作MN∥CD分别交AD、BC于M、N,∵E到AD的距离为1,∴EM=1,EN=4﹣1=3,在Rt△ENG中,GN===4,∵∠GEN+∠KEM=180°﹣∠GEH=180°﹣90°=90°,∠GEN+∠NGE=180°﹣90°=90°,∴∠KEM=∠NGE,又∵∠ENG=∠KME=90°,∴△GEN∽△EKM,∴==,即==,解得EK=,KM=,∴KH=EH﹣EK=4﹣=,∵∠FKH=∠EKM,∠H=∠EMK=90°,∴△FKH∽△EKM,∴=,即=,解得FH=,∴AF=FH=.故答案为.4.【分析】如图,作OG⊥AB于G,由题意OG=ON=>3,所以⊙Q在AC的左边不可能与AB相切.接下来分三种情形讨论求解即可.【解答】解:如图,作OG⊥AB于G,由题意OG=ON=>3,所以⊙Q在AC 的左边不可能与AB相切.相切有三种可能:当⊙Q与BC相切时,MQ=2,∴|t﹣3|=2,∴t=1或5.当⊙Q与AB相切时,设切点为H,连接QH.易知QN=2QH,∴2﹣(t﹣3)=2(t﹣3),解得t=,综上所述,t=1s或5s或()s时,⊙Q与BC/AB相切.故答案为1s或5s或()s5.【分析】连接BC、BD.因为AB是直径,推出∠ACB=∠ADB=90°,可得tan∠P AC•tan ∠P AD=•=•,利用相似三角形的性质转化即可解决问题;【解答】解:连接BC、BD.∵AB是直径,∴∠ACB=∠ADB=90°,∴tan∠P AC•tan∠P AD=•=•,∵△PCB∽△P AD,∴=,∵△PBD∽△PCA,∴=,∴tan∠P AC•tan∠P AD=•==,故答案为.6.【分析】①作常规辅助线连接CD,由SAS定理可证△CDF和△ADE全等,即可证得AE =CF;②根据AE=CF,设CE=x,用含x的式子表示出CF的长,根据勾股定理,即可表示出EF的长,根据二次函数的增减性,表示出EF的最小值;③由割补法可知四边形CEDF的面积保持不变;④由①可知,DE=EF,可得△DEF是等腰直角三角形,当DF与BC垂直,即DF最小时,FE取最小值2,此时点C到线段EF的最大距离.【解答】解:如图,连接CD.∵在△ABC中,AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵D是AB的中点,∴CD=AD=BD,∠ADC=90°,∠ACD=∠BCD=45°,∴∠1+∠2=90°,∵ED⊥FD,∴∠2+∠3=90°,∴∠1=∠3,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴AE=CF;故①正确;(2)设CE=x,则CF=AE=4﹣x,在Rt△CEF中,,∵2(x﹣2)2+8有最小值,最小值为8,∴EF有最小值,最小值为.故②错误;③由①知,△ADE≌△CDF,∴S四边形EDFC=S△EDC+S△FDC=S△EDC+S△ADE=S△ADC,∴四边形CEDF的面积不随点E位置的改变而发生变化.故③正确;④由①可知,△ADE≌△CDF,∴DE=DF,∴△DEF是等腰直角三角形,∴,当EF∥AB时,∵AE=CF,∴E,F分别是AC,BC的中点,故EF是△ABC的中位线,∴EF取最小值=,∵CE=CF=2,∴此时点C到线段EF的最大距离为.故④正确.故答案为:①③④.三、解答题1.【分析】(1)先求出∠APE=∠ABC=90°,∠P AE=∠PEA=∠ABC=45°,即可得出结论;(2)由(1)知,△APE∽△ABC,得出,再判断出∠P AB=∠EAC,进而判断出△P AB∽△EAC,即可得出结论;(3)先画出图形,利用勾股定理求出CP',再分两种情况,求出CE和CE',借助(2)的结论,即可得出结论.【解答】解:(1)∵AC是正方形ABCD的对角线,∴∠ABC=90°,∠BAC=∠BCA=45°,由旋转知,P A=PE,∠APE=90°=∠ABC,∴∠P AE=∠PEA=45°=∠BAC,∴△APE∽△ABC;(2)在Rt△ABC中,AB=CB,∴AC=AB,由(1)知,△APE∽△ABC,∴,∵∠BAC=∠P AE=45°,∴∠P AB=∠EAC,∴△P AB∽△EAC,∴==,∵△P AB∽△EAC,∴∠ABP=∠ACE,∴∠BCE+∠CBM=∠BCE+∠ABP+∠ABC=∠BCE+∠ACE+∠ABC=∠ACB+∠ABC=45°+90°=135°,∴∠BMC=180°﹣(∠BCE+∠CBM)=45°;(3)如图,在Rt△ABC中,AB=BC=3,∴AC=3,∵点P,C,E在同一条线上,且∠APE=90°,∴CP==,∴CE=CP﹣PE=﹣1或CE'=CP'+P'E=+1,由(2)知,=,∴BP=CE=(﹣1)=或BP'=CE'=;即:BP的长为或.2.【分析】(1)y=,过点B,C,则点B、C的坐标分别为:(3,0)、(0,),则c=,将点B的坐标代入抛物线表达式,即可求解;(2)分∠PCM=90°、∠CPM=90°两种情况,分别求解即可;(3)作点E关于P′B′的对称点E′,将点E′沿P′B′方向平移2个单位得到点E″,连接E、E″交P′B′所在的直线于点B′,点B′沿P′B′方向平移2个单位得到点P′,则点P′、B′为所求,即可求解.【解答】解:(1)y=,过点B,C,则点B、C的坐标分别为:(3,0)、(0,),则c=,将点B的坐标代入抛物线表达式并解得:a=﹣,故抛物线的表达式为:y=﹣x2+x+;(2)①当∠PCM=90°时,由点A、B、C的坐标知,△ABC为直角三角形,故AC⊥BC,当△PCM为直角三角形时,点P与点A重合,∴点P(﹣1,0);②当∠CPM=90°时,则点C、P关于函数对称轴对称,此时点P(2,),故点P的坐标为(﹣1,0)或(2,);(3)存在,理由:点P(2,),设图象沿BC方向向左平移3m个单位,则向上平移m个单位,则平移后点B′、P′的坐标分别为:(3﹣3m,m)、(2﹣3m,m+),点E(1,0),分别过点A、E作直线BC的平行线n、m,过点B′作直线m的对称点B″,则EB′=EB″,当B″、E、P′三点共线时,EB'+EP'=EB″+EP′=B″P′最小;点E是AB的中点,则直线m与直线n、直线m与直线AC等距离,则点B″在直线n 上,直线BC的倾斜角为30°,则直线B′B″的倾斜角为60°,则设直线B′B″的表达式为:y=x+b,将点B′的坐标代入上式并解得:直线B′B″表达式为:y=x+(4m﹣3)…①,设过点A的直线n的表达式为:y=﹣x+b′,将点A的坐标代入上式并解得:直线n的表达式为:y=﹣(x+1)…②,联立①②并解得:x=2﹣3m,故点B″(2﹣3m,m﹣),而P′(2﹣3m,m+),故EB'+EP'的最小值B″P′=2.3.△ABC内接⊙O,AD⊥BC与D,连接OA.(1)如图1,求证:∠BAO=∠CAD;(2)如图2,作BE⊥AC交CA延长线于E交⊙O于F,延长AD交⊙O于G,连接AF,求证:AD+AF=DG;(3)在第(2)问的条件下,如图3,OA交BC于点T,CA=CT,AD=2AF,AB=4,求DT长.【分析】(1)延长AO交圆于点M,连结BM,由∠M+∠BAM=90°,∠C+∠CAD=90°,结论可得证;(2)分别延长DA、BE交于点H,连结BG,可证得△AFM和△BGM是等腰三角形,由等腰三角形的性质可证出结论;(3)连GO并延长GO交AB于点N,连BG,由CA=CT可得∠TAC=∠ATC,证得AG =BG,得出AN长,证出△BAD∽△GAN,由比例线段可求出AD长,BD长,再证明△ADT∽△BDA,得AD2=DT•BD,则DT长可求.【解答】(1)证明:如图1,延长AO交圆于点M,连结BM,∵AM是圆的直径,∴∠ABM=90°,∴∠M+∠BAM=90°,∵AD⊥BC,∴∠C+∠CAD=90°,∵∠M=∠C,∴∠BAO=∠CAD;(2)证明:如图2,分别延长DA、BE交于点H,连结BG,∵AE⊥BE,AD⊥DC,∴∠EAH+∠H=90°,∠DAC+∠C=90°,∵∠DAC=∠EAH,∴∠H=∠C,∵四边形AFBC是圆内接四边形,∴∠EF A=∠C,∴∠EF A=∠H,∴AF=AH,又∵∠C=∠BGH,∴∠H=∠BGH,∵BD⊥GH,∴DG=DM=AD+AH=AD+AF;(3)解:如图3,连GO并延长GO交AB于点N,连BG,∵CT=AC,∴∠TAC=∠ATC,∵∠TAC=∠TAD+∠DAC,∠ATC=∠TBA+∠BAT,∠DAC=∠BAT,∴∠TAD=∠TBA,又∵∠GBC=∠DAC=∠BAO,∴AG=BG,由轴对称性质可知NG⊥AB,∴∠GNA=∠BDA=90°,AN=BN=2,∵∠NAG=∠BAD∴△BAD∽△GAN,∴,∵AD+AF=DG,AD=2AF,∴,∴,设AD=x,则AG=,∴,解得:x=4,即AD=4,∴==8,在△ADT和△BDA中,∠TAD=∠DBA,∠TDA=∠BDA=90°,∴△ADT∽△BDA,∴,∴,∴DT=2.4.【分析】(1)由锐角三角函数可求点A坐标,由待定系数法可求解析式;(2)过点M作MH⊥OC于H,由锐角三角函数可求∴∠BCO=30°,由直角三角形的性质可求CD的长,由三角形面积公式可求解;(3)作FE⊥OB于E,CP⊥EF于P,FK⊥OC于K.则四边形CPEO是矩形,设PC=OE=m.只要证明△PCF∽△EF A,可得,由此构建方程求出m即可解决问题.【解答】解:(1)∵点C(0,4),∴OC=4,∵tan∠CBO==,∴OB=4,∵OB=4OA,∴OA=1,∴点A(﹣1,0)设过点A、C直线解析式为:y=kx+4,∴0=﹣k+4,∴k=4,∴过点A、C直线解析式为:y=4x+4;(2)如图2,过点M作MH⊥OC于H,∵M的横坐标为t,∴MH=t,∵tan∠BCO===,∴∠BCO=30°,∵CD=DM,∴∠DCM=∠CMD=30°,∴∠MDH=60°,且MH⊥OC,∴DH=t,DM=2DH=t=CD,∴△CDM的面积为S=×t×t=t2,(0<t≤4)(3)作FE⊥OB于E,CP⊥EF于P,FK⊥OC于K.则四边形CPEO是矩形,∴CP=OE,CO=PE=4,设PC=OE=m.∵∠DON+∠DFN+∠ODF+∠ONF=360°,∴∠FNO=120°,∴∠FNE=60°,且EF⊥BO,FN=OB=4,∴EF=2,∴PF=2∵∠DCF+∠AFN=60°,∠DCF+∠DFC=60°,∴∠DFC=∠AFN,∴∠CF A=∠DFN=90°,∴∠FCP+∠PFC=90°,∠PFC+∠AFE=90°,∴∠PCF=∠AFE,且∠P=∠AEF=90°,∴△PCF∽△EF A,∴,∴∴m=3或﹣4(舍弃),∴F(3,2),在Rt△DEK中,∵∠DFK=30°,FK=3,∴DK=,∴OD=3,∴D(0,3).5.【分析】(1)设两个“网红数”为,,(n、b表示末三位表示的数,m、a表示末三位之前的数字),则n﹣m=11k,b﹣a=11h,所以+=1001m+1001a+11(k+h)=11(91m+91n+h+k),即可证明;(2)s=3×100+10b+a,t=1000(b+1)+100(a+1)+4×10+2,所以s+t=1000(b+1)+100(a+4)+10(b+4)+a+2;①当1≤a≤5时,s+t=,则﹣(b+1)能被11整除,即101a+9b+441=11×9a+2a+11b﹣2b+40×11+1能被11整除,由已知可得﹣7≤2a﹣2b+1≤11,求出a=5,b=0;②当6≤a≤7时,s+t=,则﹣(b+2)能被11整除,所以101a+9b﹣560=11×9a+2a+11b﹣2b﹣51×11+1能被11整除,可得3≤2a﹣2b+1≤15,求出a=6,b=1或a=7,b=2,分别求出相应的G(t)值即可.【解答】解:(1)设两个“网红数”为,,(n、b表示末三位表示的数,m、a表示末三位之前的数字),∴n﹣m=11k,b﹣a=11h,∵+=1001m+1001a+11(k+h)=11(91m+91n+h+k),∴m、a、k、h都是整数,∴91m+91n+h+k为整数,∴任两个“网红数”之和一定能被11整除;(2)s=3×100+10b+a,t=1000(b+1)+100(a+1)+4×10+2,∴s+t=1000(b+1)+100(a+4)+10(b+4)+a+2,①当1≤a≤5时,s+t=,则﹣(b+1)能被11整除,∴101a+9b+441=11×9a+2a+11b﹣2b+40×11+1能被11整除,∴2a﹣2b+1能被11整除,∵1≤a≤5,0≤b≤5,∴﹣7≤2a﹣2b+1≤11,∴2a﹣2b+1=0或11,∴a=5,b=0,∴t=1642,G(1642)=17.25;②当6≤a≤7时,s+t=,则﹣(b+2)能被11整除,∴101a+9b﹣560=11×9a+2a+11b﹣2b﹣51×11+1能被11整除,∴2a﹣2b+1能被11整除,∵6≤a≤7,0≤b≤5,∴3≤2a﹣2b+1≤15,∴2a﹣2b+1=11,∴a=6,b=1或a=7,b=2,∴t=2742或3842,∴G(2742)=28或G(3842)=39,∴G(t)的最大值39.6.【分析】(1)首先确定A、B、C三点的坐标,然后利用待定系数法求抛物线的解析式;(2)△ABO为等腰直角三角形,若△ADP与之相似,则有两种情形,如答图1所示.利用相似三角形的性质分别求解,避免遗漏;(3)如答图2所示,分别计算△ADE的面积与四边形APCE的面积,得到面积的表达式.利用面积的相等关系得到一元二次方程,将点E是否存在的问题转化为一元二次方程是否有实数根的问题,从而解决问题.需要注意根据(2)中P点的不同位置分别进行计算,在这两种情况下,一元二次方程的判别式均小于0,即所求的E点均不存在.【解答】解:(1)由题意得,A(3,0),B(0,3)∵抛物线经过A、B、C三点,∴把A(3,0),B(0,3),C(1,0)三点分别代入y=ax2+bx+c,得方程组解得:∴抛物线的解析式为y=x2﹣4x+3(2)由题意可得:△ABO为等腰三角形,如答图1所示,若△ABO∽△AP1D,则∴DP1=AD=4,∴P1(﹣1,4)若△ABO∽△ADP2 ,过点P2作P2 M⊥x轴于M,AD=4,∵△ABO为等腰三角形,∴△ADP2是等腰三角形,由三线合一可得:DM=AM=2=P2M,即点M与点C重合,∴P2(1,2)综上所述,点P的坐标为P1(﹣1,4),P2(1,2);(3)不存在.理由:如答图2,设点E(x,y),则S△ADE=①当P1(﹣1,4)时,S四边形AP1CE=S△ACP1+S△ACE==4+|y|∴2|y|=4+|y|,∴|y|=4∵点E在x轴下方,∴y=﹣4,代入得:x2﹣4x+3=﹣4,即x2﹣4x+7=0,∵△=(﹣4)2﹣4×7=﹣12<0∴此方程无解②当P2(1,2)时,S四边形AP2CE=S△ACP2+S△ACE==2+|y|,∴2|y|=2+|y|,∴|y|=2∵点E在x轴下方,∴y=﹣2,代入得:x2﹣4x+3=﹣2,即x2﹣4x+5=0,∵△=(﹣4)2﹣4×5=﹣4<0∴此方程无解综上所述,在x轴下方的抛物线上不存在这样的点E.。
2020年中考数学3.几何综合选择填空压轴题(含解析)
几何综合-填空选择压轴题31、如图,E、F,G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=√6,则AB的长为.2、如图,▱ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①EO⊥AC;②S△AOD=4S△OCF;③AC:BD=:7;④FB2=OF•DF.其中正确的结论有(填写所有正确结论的序号)3、如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A′B′C′D′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为.,AC=12,将△ABC绕点C顺时针旋转4、如图,△ABC中,∠ACB=90°,sinA=51390°得到△A'B'C,P为线段A′B'上的动点,以点P为圆心,PA′长为半径作⊙P,当⊙P与△ABC的边相切时,⊙P的半径为.5、如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD上,AE=AF,∠EAF=60°,则CF的长是()A.B.C.﹣1 D.6、已知△ABC中,AB=10,AC=2√7,∠B=30°,则△ABC的面积等于.7、如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是.8、如图,菱形ABCD的顶点B、C在x轴上(B在C的左侧),顶点A、D在x轴上方,对角线BD的长是,点E(﹣2,0)为BC的中点,点P在菱形ABCD的边上运动.当点F(0,6)到EP所在直线的距离取得最大值时,点P恰好落在AB的中点处,则菱形ABCD 的边长等于()A.B.C.D.39、如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ= .10、如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,CD 与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③ B.① C.①②D.②③11、如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为.12、如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m (m≠0)把△ABO分成面积相等的两部分,则m的值为.13、在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为.14、如图,∠AOB=60°,点P是∠AOB内的定点且OP=√3,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.3√62 B.3√32C.6 D.315、如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=√5,∠EAF=45°,则AF的长为.16、如图,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE;②S△ODE =S△BDE;③四边形ODBE的面积始终等于43√3;④△BDE周长的最小值为6.上述结论中正确的个数是()A.1 B.2 C.3 D.417、如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y 关于x的函数图象大致为()A .B .C .D .18、如图,点E 在△DBC 的边DB 上,点A 在△DBC 内部,∠DAE=∠BAC=90°,AD=AE ,AB=AC .给出下列结论:①BD=CE ;②∠ABD+∠ECB=45°;③BD ⊥CE ;④BE 2=2(AD 2+AB 2)﹣CD 2.其中正确的是( )A .①②③④B .②④C .①②③D .①③④19、如图,在平面直角坐标系中,点A 1,A 2,A 3,…和B 1,B 2,B 3,…分别在直线y=15x+b 和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形.如果点A 1(1,1),那么点A 2018的纵坐标是 .20、如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为3:4,∠OCD=90°,∠AOB=60°,若点B的坐标是(6,0),则点C的坐标是.21、如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β22、如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且OA=5,OC=3.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的A 1处,则点C 的对应点C 1的坐标为( )A .(﹣95,125) B .(﹣125,95) C .(﹣165,125) D .(﹣125,165)23、如图.在△ABC 中,∠A=60°,BC=5cm .能够将△ABC 完全覆盖的最小圆形纸片的直径是 cm .24、如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,AE=DF=2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为 .25、如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE、OF,则图中阴影部分的面积是.26、如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()。
中考数学几何压轴题(有关三角形、四边形)的综合专题(含答案解析)
中考数学几何压轴题(有关三角形、四边形)的综合专题1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△,可推证△CEF是三角形,从而求得∠DCE=.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.3、(2019秋•锦江区校级期末)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.4、(2019•镇平县三模)如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为;∠EFC的度数为;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.5、(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.7、(1)如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.9、(2018•大东区一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于时,线段BC的长取得最大值,且最大值为(用含b,c的式子表示)(直接填空).模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.17、在△ABC中,∠BAC=60°,点D、E分别在边AC、AB上,AD=AE,连接CE、BD相交于点F,且∠BEC=∠ADF,连接AF.(1)如图1,连接ED,求证:∠ABD=∠CED;(2)如图2,求证:EF+FD=AF;(3)如图3,取BC的中点G,连接AG交BD于点H,若∠GAC=3∠ABD,BH=7,求△ABH的面积.18、点D,E分别在△ABC的边AC,BD上,BD,CE交于点F,连接AF,∠F AE=∠F AD,FE=FD.(1)如图1,若∠AEF=∠ADF,求证:AE=AD;(2)如图2,若∠AEF≠∠ADF,FB平分∠ABC,求∠BAC的度数;(3)在(2)的条件下,如图3,点G在BE上,∠CFG=∠AFB若AG=6,△ABC的周长为20,求BC长.中考数学几何压轴题(有关三角形、四边形)的综合专题参考答案1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.证明:(1)如图1,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵,∴△BCG≌△CAF(ASA),∴CF=BG;(2)如图2,∵PC∥AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)解法一:如图3,过E作EM⊥AG,交AG于M,∵S△AEG=AG•EM=3,由(2)得:△ACG≌△BCG,∴BG=AG=6,∴×6×EM=3,EM=,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM=2,AM==3,∴M是AG的中点,∴AE=EG=2,∴BE=BG+EG=6+2,在Rt△ECB中,∠EBC=30°,∴CE=BE=3+,∴AC=AE+EC=2+3+=3+3.解法二:同理得:∠CAG=30°,AG=BG=6,如图4,过G作GM⊥AC于M,在Rt△AGM中,GM=3,AM===3,∵∠ACG=45°,∠MGC=90°,∴GM=CM=3,∴AC=AM+CM=3+3.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△ADB,可推证△CEF是等腰直角三角形,从而求得∠DCE=135°.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.解:[问题初探]如图2,过点E作EF⊥BC交直线BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=135°,故答案为:ADB,等腰直角,135;[继续探究]如图3,过点E作EF⊥BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=45°;[拓展延伸]如图4,在△ABC中,∠ABC=90°,AB=BC=,∴∠ACB=45°当点D在射线BC上时,由[问题初探]知,∠BCM=135°,∴∠ACM=∠BCM﹣∠ACB=90°,当点D在线段CB的延长线上时,由[继续探究]知,∠BCE=45°,∴∠ACN=∠ACB+∠BCM=90°,∴点E是过点C垂直于AC的直线上的点,∴当BE⊥MN时,BE最小,∵∠BCE=45°,∴∠CBE=45°=∠BCE,∴BE=CE,∴BE最小=BC=,即:BE的最小值为.3、在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.证明:(1)如图1,过点D作DE⊥AB,∵BD是△ABC的角平分线,DE⊥AB,∠ACB=90°,∴DC=DE,∵∠A=30°,DE⊥AB,∴AD=2DE,∴AD=2DC;(2)如图2,过点M作ME∥BD,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=30°,∵BM平分∠CBD,∴∠CBM=15°=∠DBM,∵ME∥BD,∴∠MEC=∠CBD=30°,∠EMB=∠DBM=∠MBE,∴ME=BE,∵∠MEC=30°,∠C=90°∴CE=MC=,ME=2MC=2=BE,∴BC=+2,∵∠CBD=30°,∠C=90°,∴BC=CD,∴CD=1+,∴DM=,∴△DBM的面积=××(+2)=1+;(3)若点N在CD上时,AD=DG+DN,理由如下:如图3所示:延长ED使得DW=DN,连接NW,∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,∴∠ADE=∠BDE=60°,AD=BD,∵DN=DW,且∠WDN=60°∴△WDN是等边三角形,∴NW=DN,∠W=∠WND=∠BNG=∠BDN=60°,∴∠WNG=∠BND,在△WGN和△DBN中,∴△WGN≌△DBN(SAS),∴BD=WG=DG+DN,∴AD=DG+DN.(3)若点N在AD上时,AD=DG﹣DN,理由如下:如图4,延长BD至H,使得DH=DN,连接HN,由(1)得DA=DB,∠A=30°.∵DE⊥AB于点E.∴∠2=∠3=60°.∴∠4=∠5=60°.∴△NDH是等边三角形.∴NH=ND,∠H=∠6=60°.∴∠H=∠2.∵∠BNG=60°,∴∠BNG+∠7=∠6+∠7.即∠DNG=∠HNB.在△DNG和△HNB中,∴△DNG≌△HNB(ASA).∴DG=HB.∵HB=HD+DB=ND+AD,∴DG=ND+AD.∴AD=DG﹣ND.4、如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为EF=CF;∠EFC的度数为120°;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.解:(1)如图1中,∵DE⊥AB,∴∠BED=90°,∵∠BCD=90°,BF=DF,∴FE=FB=FD=CF,∴∠FBE=∠FEB,∠FBC=∠FCB,∴∠EFC=∠EFD+∠CFD=∠FBE+∠FEB+∠FBC+∠FCB=2(∠FBE+∠FBC)=2∠ABC=120°,故答案为:EF=CF,120°.(2)结论成立.理由:如图2中,取AB的中点M,AD的中点N,连接MC,MF,ED,EN,FN.∵BM=MA,BF=FD,∴MF∥AD,MF=AD,∵AN=ND,∴MF=AN,MF∥AN,∴四边形MFNA是平行四边形,∴NF=AM,∠FMA=∠ANF,在Rt△ADE中,∵AN=ND,∠AED=90°,∴EN=AD=AN=ND,同理CM=AB=AM=MB,在△AEN和△ACM中,∠AEN=∠EAN,∠MCA=∠MAC,∵∠MAC=∠EAN,∴∠AMC=∠ANE,又∵∠FMA=∠ANF,∴∠ENF=∠FMC,在△MFC和△NEF中,,∴△MFC≌△NEF(SAS),∴FE=FC,∠NFE=∠MCF,∵NF∥AB,∴∠NFD=∠ABD,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,△BMC是等边三角形,∠MCB=60°∴∠EFC=∠EFN+∠NFD+∠DFC=∠MCF+∠ABD+∠FBC+∠FCB=∠ABC+∠MCB=60°+60°=120°.(3)如图3中,作EH⊥AB于H.在Rt△ABC中,∵∠BAC=30°,BC=3,∴AB=2BC=6,在Rt△AED中,∠DAE=30°,AD=2,∴DE=AD=1,在Rt△DEH中,∵∠EDH=60°,DE=1,∴EH=ED•sin60°=,DH=ED•cos60°=,在Rt△EHG中,EG==.5、如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.解:(1)BC=2BD,理由:如图2,连接CD,由旋转可得,CP=DP,∠CPD=60°,∴△CDP是等边三角形,∴∠CDP=60°=∠PCD,又∵P是AB的中点,AB=AC,∠A=60°,∴等边三角形ABC中,∠PCB=30°,CP⊥AB,∴∠BCD=30°,即BC平分∠PCD,∴BC垂直平分PD,∴∠BDC=∠BPC=90°,∴Rt△BCD中,BC=2BD.(2)如图3,取BC中点F,连接PF,∵∠A=90°,AB=AC,∴△ABC是等腰直角三角形,∵P是AB的中点,F是BC的中点,∴PF是△ABC的中位线,∴PF∥AC,∴∠PFB=∠ACB=45°,∠BPF=∠A=90°,∴△BPF是等腰直角三角形,∴BF=BP,BP=PF,∵∠DPC=∠BPF=90°,∴∠BPD=∠FPC,又∵PD=PC,∴△BDP≌△FCP,∴BD=CF,∵BC=BF+FC,∴BC=BD+BP.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.【发现问题】解:延长CA到M,作∠MAC的平分线AN,在AN上截取AD=AC,连接CD,即可得到等腰直角△ACD;连接BD、CE,如图1所示:∵△ABE与△ACD都是等腰直角三角形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE,【拓展探究】解:BD=CE;理由如下:∵四边形AEFB与四边形ACGD都是正方形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;【解决问题】解:以AB为边向外作等边三角形ABE,连接CE,如图3所示:则∠BAE=60°,BE=AB=AE=8,∵AD=CD,∠ADC=60°,∴△ACD是等边三角形,∴∠CAD=60°,AC=AD,∴∠CAD+∠BAC=∠BAE+∠BAC,即∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;当C、B、E三点共线时,CE最大=BC+BE=15+8=23,∴BD的最大值为23.7、如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为a+b(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.(1)解:∵点C为线段AB外一动点,且AC=b,AB=a,∴当点C位于BA的延长线上时,线段BC的长取得最大值,且最大值为AC+AB=a+b,(2)①证明:如图2中,∵△ACD与△BCE是等边三角形,∴CD=AC,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴AE=BD.②∵线段AE长的最大值=线段BD的最大值,由(1)知,当线段BD的长取得最大值时,点D在BA的延长线上,∴最大值为AD+AB=3+10=13;(3)如图3中,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP,则△APM是等腰直角三角形,∴MA=MP=2,BP=AN,∴P A=2,∵AB=6,∴线段AN长的最大值=线段BP长的最大值,∴当P在线段BA的延长线时,线段BP取得最大值最大值=AB+AP=6+2.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是∠BAE+∠F AD=∠EAF;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.解:(1)∠BAE+∠F AD=∠EAF.理由:如图1,延长FD到点G,使DG=BE,连接AG,根据SAS可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SSS可判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.故答案为:∠BAE+∠F AD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°﹣∠DAB.证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠F AE=∠F AG,∵∠F AE+∠F AG+∠GAE=360°,∴2∠F AE+(∠GAB+∠BAE)=360°,∴2∠F AE+(∠GAB+∠DAG)=360°,即2∠F AE+∠DAB=360°,∴∠EAF=180°﹣∠DAB.9、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.解:(1)CP=BQ,理由:如图1,连接OQ,由旋转知,PQ=OP,∠OPQ=60°⊅∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(2)CP=BQ,理由:如图2,连接OQ,由旋转知,PQ=OP,∠OPQ=60°∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(3)如图3,在Rt△ABC中,∠A=30°,AC=,∴BC=AC•tan∠A=,过点O作OH⊥BC,∴∠OHB=90°=∠BCA,∴OH∥AB,∵O是AB中点,∴CH=BC=,OH=AC=,∵∠BPQ=45°,∠OHP=90°,∴∠BPQ=∠PQH,∴PH=OH=,∴CP=PH﹣CH=﹣=,连接BQ,同(1)的方法得,BQ=CP=.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于线段BA的延长线上时,线段BC的长取得最大值,且最大值为b+c(用含b,c的式子表示)(直接填空)模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为5.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.解:当点C位于线段BA的延长线上时,线段BC的长取得最大值,最大值为b+c,故答案为:线段BA的延长线上;b+c;模型应用:(1)证明:∵△ACD、△BCE都是等边三角形,∴CD=CA=AD,CB=CE,∠ACD=60°,∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE(SAS)∴BD=AE;(2)当点D位于线段BA的延长线上时,线段BD的长取得最大值,最大值为AB+AD=AB+AC=3+2=5,∵AE=BD,∴线段AE长的最大值为5,模型拓展:取AB的中点G,连接OG、CG,在Rt△AOB中,G为AB的中点,∴OG=AB=4,在Rt△CAG中,CG===5,当点O、G、C在同一条直线上时,OC最大,最大值为4+5=9.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BD=CH=2CF.(3)如图3中,同法可证BD=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴==.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴=2.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴(2x+x)2+x2=22,∴x=(负根已经舍弃),∴AB=AC=(2+)•,∴BC=AB=+1.方法二:作EH⊥BC于H,求出BH,CH即可解决问题.(2)证明:如图2中,作CP⊥AC,交AD的延长线于P,GM⊥AC于M.∵BE⊥AP,∴∠AHB=90°,∴∠ABH+∠BAH=90°,∵∠BAH+∠P AC=90°,∴∠ABE=∠P AC,在△ABE和△CAP中,,∴△ABE≌△CAP,∴AE=CP=CF,∠AEB=∠P,在△DCF和△DCP中,,∴△DCF≌△DCP,∴∠DFC=∠P,∴∠GFE=∠GEF,∴GE=GF,∵GM⊥EF,∴FM=ME,∵AE=CF,∴AF=CE,∴AM=CM,在△GAH和△GAM中,,∴△AGH≌△AGM,∴AH=AM=CM=AC(3)解:结论:AG=EF.理由:如图3中,作CM⊥AC交AD的延长线于M,连接PG交AC于点O.由(2)可知△ACM≌△BAE,△CDF≌△CDM,∴∠AEB=∠M=∠GEF,∠M=∠CFD=∠GFE,AE=CM=CF,∴∠GEF=∠GFE,∴GE=GF,∵△EFP是由△EFG翻折得到,∴EG=EP=GF=PF,∴四边形EGFP是菱形,∴PG⊥AC,OE=OF,∵AE=CF,∴AO=OC,∵AB∥OP,∴BP=PC,∵PF∥BE,∴EF=CF=AE,∵PB=PC,AO=OC,∴PO=OG=AB,∴AB=PG,AB∥PG,∴四边形ABPG是平行四边形,∴AG∥BC,∴∠GAO=∠ACB=45°,设EO=OF=a,则OA=OG=3a,AG=3a,∴==,∴AG=EF14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.解:(1)∵E为AC中点,作ED⊥AC交AB于D,∴AD=CD,∵∠ACB=90°,∴BC∥DE,∴AD=BD,∴CD=BD,∴AB=2CD;(2)如图2,连接CH,∵点E是AC的中点,∴AE=CE,∵DE⊥AC,∴CH=AH,∴∠ACH=∠CAH,∵∠ACB=90°,∴∠B+∠BAC=90°,∵CF⊥AB,∴∠BAC+∠ACF=90°,∴∠ACF=∠B,∴∠HCG=∠ACH+∠ACF=∠CAH+∠B,∠AHG=2∠B∴在四边形AHGF中,∠AFG+∠FGH+∠AHG+∠F AH=360°,∴∠FGH=360°﹣(∠AFG+∠AHG+∠F AH)=360°﹣(90°+2∠B+∠CAH+∠BAC)=360°﹣(90°+2∠B+∠CAH+90°﹣∠B)=360°﹣(180°+∠B+∠CAH)=180°﹣(∠B+∠CAH),∵∠CGH=180°﹣∠FGH=∠B+∠CAH=∠HCG,∴CH=GH,∵CH=AH,∴AH=GH;(3)如图3,由(1)知,DE∥BC,∴∠B=∠ADE,在△BFC和△DEA中,,∴△BFC≌△DEA,∴BC=AD,∵AD=BD=CD,∴BC=BD=CD,∴△BCD是等边三角形,∴∠B=60°,在Rt△ABC中,AC=6,∴BC=2,AB=4,∵CF⊥BD,∴DF=,CF=3,∵∠BAC=30°,∴∠ADE=60°,∵∠EDG=90°,∠FDG=30°,在Rt△DFG中,DF=,∴FG=1,DG=2,∴CG=CF﹣FG=2过点H作HN⊥CF,由(2)知,CH=GH,∴NG=CG=1,∴FN=NG+FG=2,过点H作HM⊥AB,∴∠FMH=∠NFM=∠HNF=90°,∴四边形NFMH是矩形,∴HM=FN=2,在Rt△DMH中,∠ADE=60°,HM=2,∴DH=,在Rt△HDG中,根据勾股定理得,HG==.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)(1)证明:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵CD⊥AB,∴∠CDB=90°,∴∠DCB=45°,∵∠ECF=∠DCB+∠1=45°+∠1,∠EFC=∠B+∠2=45°+∠2,∠1=∠2,∴∠ECF=∠EFC,∴CE=EF,∵CD⊥AB,FG⊥AB,∴∠CDE=∠EGF=90°,在△CDE和△EGF中,,∴△CDE≌△EGF(AAS);(2)证明:由(1)得:CE=EF,∠A=∠B,∵CE平分∠ACD,∴∠ACE=∠1,∵∠1=∠2,∴∠ACE=∠2,在△ACE和△BEF中,,∴△ACE≌△BEF(AAS),∴AE=BF;(3)AE=BF,作EH⊥BC与H,如图3所示:设DE=x,根据题意得:BE=DE=x,AD=BD=2x,CD=AD=2x,AE=3x,根据勾股定理得:BC=AC=2x,∵∠ABC=45°,EH⊥BC,∴BH=x,∴CH=BC﹣BH=x,∵EC=EF,∴FH=CH=x,∴BF=x﹣x=x,∴=,∴AE=.16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线。
九年级数学选择、填空压轴题训练(含答案)
答案和解析
1.【答案】C
【解析】
解:∵ 直线 l1:y=-3x+3 交 x 轴于点 A,交 y 轴于点 B,
∴ A(1,0),B(0,3), ∵ 点 A、E 关于 y 轴对称, ∴ E(-1,0).
∵ 直线 l2:y=-3x+9 交 x 轴于点 D,过点 B 作 x 轴的平行线交 l2 于点 C,
∴ BD=2x, ∵ ACBD=4 ,
∴ - y×2x=4 ,
∴ xy=-3, ∵ M 在反比例函数的图象上, ∴ k=xy=-3, 故选(A) 过点 D 作 DE⊥y 轴于点 E,过点 C 作 CF⊥x 轴于点 F,然后求出 OA 与 OB 的长度,即可求出∠ OAB 的正弦值与余弦值,再设 M(x,y),从而可表示出 BD 与 AC 的长度,根据 ACBD=4 列出 即可求出 k 的值. 本题考查反比例函数与一次函数的综合问题,解题的关键是根据∠ OAB 的锐角三角函数值求出 BD、AC,本题属于中等题型. 4.【答案】C
,
表示 a1=a2+a3,则 a1 的最小值为( )
A. 32 B. 36 C. 38 D. 40
5. 如图,直线 y= x-6 分别交 x 轴,y 轴于 A,B,M 是反比例函数 y= (x>0)的图象上位于直线上方的
一点,MC∥ x 轴交 AB 于 C,MD⊥MC 交 AB 于 D,ACBD=4 ,则 k 的值为( )
过 E、B、C 三点,下列判断中:
2. ①a-b+c=0;②2a+b+c=5;③抛物线关于直线 x=1 对称;④抛物线过点(b,c);⑤S 四边形 ABCD=5,
3. 其中正确的个数有( )
A. 5
B. 4
2020年中考数学2几何综合选择填空压轴题(含解析)
几何综合-填空选择压轴题21、矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为.2、如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:3;④S四边形AFOE :S△COD=2:3.其中正确的结论有.(填写所有正确结论的序号)3、如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C D.4、如图,在菱形ABCD中,AC=6√2,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3√3 C.2√6 D.4.55、如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为(结果保留π).6、如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC 为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交C.垂直D.平行、相交或垂直7、如图,正六边形ABCDEF的边长是6+4√3,点O1,O2分别是△ABF,△CDE的内心,则O1O2= .8、已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2√5cm B.4√5cm C.2√5cm或4√5cm D.2√3cm或4√3cm9、正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点A1,A2,A3…和点C 1,C2,C3…分别在直线y=x+1和x轴上,则点Bn的坐标为.10、如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2.11、如图,已知在△ABC中,BC边上的高AD与AC边上的高BE交于点F,且∠BAC=45°,BD=6,CD=4,则△ABC的面积为.12、如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()A.5 B.4 C.3√5 D.2√513、如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为.14、如图,已知▱AOBC 的顶点O (0,0),A (﹣1,2),点B 在x 轴正半轴上按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G ,则点G 的坐标为( )A .(√5﹣1,2)B .(√5,2)C .(3﹣√5,2)D .(√5﹣2,2)15、如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC ,△A ′BC 与△ABC 关于BC 所在直线对称,点D ,E 分别为AC ,BC 的中点,连接DE 并延长交A ′B 所在直线于点F ,连接A ′E .当△A ′EF 为直角三角形时,AB 的长为 .16、如图,在△ABC 中,∠ACB=90°,AC=BC=2,将△ABC 绕AC 的中点D 逆时针旋转90°得到△A'B ′C',其中点B 的运动路径为BB ′̂,则图中阴影部分的面积为 .17、如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()D.2√5A.√5 B.2 C.5218、如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°19、如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积为.20、如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM交BD于点N,FN=√10,则线段BC的长为.21、如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6 B.8 C.10 D.1222、在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为.(结果不取近似值)23、如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.524、如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣13x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.25、如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M 所经过的路线长为()A.√24π B.√22π C.1 D.226、如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为.27、如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴正半轴上,∠AOC=60°,若将菱形OABC绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的坐标为.28、如图,在四边形ABCD中,AB=AD=5,BC=CD且BC>AB,BD=8.给出以下判断:①AC垂直平分BD;②四边形ABCD的面积S=AC•BD;③顺次连接四边形ABCD的四边中点得到的四边形可能是正方形;④当A,B,C,D四点在同一个圆上时,该圆的半径为25;6⑤将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,当BF⊥CD时,点F到直线AB的距离为678.125其中正确的是.(写出所有正确判断的序号)。
初三中考数学选择填空压轴题
中考数学选择填空压轴题一、动点问题1.如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点, 且∠ACD=45°,DF ⊥AB 于点F,EG ⊥AB 于点G,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是( )2.如图,A ,B ,C ,D 为圆O 的四等分点,动点P 从圆心O 出发,沿O —C —D —O 路线作匀速运动,设运动时间为x (s ).∠APB=y(°),右图函数图象表示y 与x 之间函数关系,则点M 的横坐标应为 .3.如图,AB 是⊙O 的直径,且AB=10,弦MN 的长为8,若弦MN 的两端在圆上滑动时, 始终与AB 相交,记点A 、B 到MN 的距离分别为h 1,h 2,则|h 1-h 2| 等于( ) A 、5 B 、6 C 、7 D 、84.如图,已知Rt △ABC 的直角边AC =24,斜边AB =25,一个以点P 为圆心、半径为1的圆在△ABC 内部沿顺时针方向滚动,且运动过程中⊙P 一直保持与△ABC 的边相切,当点P 第一次回到它的初始位置时所经过路径的长度是( ) A.563 B. 25 C. 1123D. 565.在ABC △中,12cm 6cm AB AC BC D ===,,为BC 的中点,动点P 从B 点出发,以每秒1cm 的速度沿B A C →→的方向运动.设运动时间为t ,那么当t = 秒时,过D 、P 两点的直线将ABC △的周长分成两个部分,使其中一部分是另一部分的2倍.6.如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果Q 点从A 点出发,沿图中所示方向按A→B→C→D→A 滑动到A 止,同时点R 从B 点出发,沿图中所示方向按B→C→D→A→B 滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为( )A .2B .4π-C .πD .π1-7.如图,矩形ABCD 中,3AB cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,且2EF BE =,则AFC S =△( )2cm . A .8 B .9 C .8 3 D .9 38.△ABC 是⊙O 的内接三角形,∠BAC=60°,D 是的中点,AD =a,则四边形ABDC 的面积为 .在梯形ABCD中,9.如图,A B CQRM DADCE F G B AB D BP BBBB B90614AD BC ABC AD AB BC ∠====∥,°,,,点M 是线段BC 上一定点,且MC =8.动点P 从C 点出发沿C D A B →→→的路线运动,运动到点B 停止.在点P 的运动过程中,使PMC △为等腰三角形的点P 有 个10.如图在边长为2的正方形ABCD 中,E ,F ,O 分别是AB ,CD ,AD 的中点,以O 为圆心,以OE 为半径画弧是上的一个动点,连结OP ,并延长OP 交线段BC 于点K ,过点P 作⊙O 的切线,分别交射线AB 于点M ,交直线BC 于点G . 若3=BMBG,则BK ﹦ . 二、面积与长度问题1.如图,△ABC 是直角边长为a 的等腰直角三角形,直角边AB 是半圆O 1的直径,半圆O 2过C 点且与半圆O 1相切,则图中阴影部分的面积是( )A .2367a π- B .2365a π- C .2367a D .2365a2.如图,在x 轴上有五个点,它们的横坐标依次为l ,2,3,4,5.分别过这些点作x 轴的垂线与三条直线y=ax ,y=(a+1)x ,y=(a+2)x 相交,其中a>0.则图中阴影部分的面积是( ) A .12.5 B .25 C .12.5a D .25a 3.如图,在反比例函数2y x=(0x >)的图象上,有点1234P P P P ,,,,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为123S S S ,,,则123S S S ++= .4.已知, A 、B 、C 、D 、E 是反比例函数16y x=(x>0)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是 (用含π的代数式表示)5.如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,xyOP 1P 2P 3P 41 234AODBFKE GM C KyxO P 1P 2P 3 P4P 5A 1 A 2 A 3 A 4 A 5ADEPBC ABCDN M过点A 1、A 2、A 3、A 4、A 5分别作x 轴的垂线与反比例函数()20y x x =≠的图象相交于点P 1、P 2、P 3、P 4、P 5,得直角三角形(阴影部分)并设 其面积分别为12345S S S S S 、、、、,则5S 的值为 .6.如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去了7个小正方体),所得到的几何体的表面积是( ) A .78B .72C .54D .487.如图,平行于y 轴的直线l 被抛物线y =2112x +、y =2112x -所截.当直线l 向右平移3个单位时,直线l 被两条抛物线所截得的线段扫过的图形面积为平方单位.8.如图,在Rt ABC △中,9042C AC BC ===∠°,,,分别以AC 、BC 为直径画半圆,则图中阴影部分的面积为 .(结果保留π)9.如图,Rt ABC △中,90ACB ∠=o,30CAB ∠=o,2BC =,O H ,分别为边AB AC , 的中点,将ABC △绕点B 顺时针旋转120o 到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( ) A .77π338- B .47π338+ C .π D .4π33+ 10.如图,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( ) A .23 B .26C .3D .6图,在锐角ABC △中,11.如4245AB BAC =∠=,°,BAC ∠的平分线交于点D M N ,、分别是AD和AB 上的动点,则BCBM MN +的最小值是___________ .12.如图,在矩形ABCD 中,AB =3,AD =4,点P 在AD 上,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE +PF 等于( ) A.75 B.125 C.135 D.145中,E 是BC 边上一点,形ABCD 13.正方以E 为为半径的半圆与以A 为圆圆心、ECAH BO C ADBC E FPA D FCBOEEFD CBA心,AB 为半径的圆弧外切,则sin EAB ∠的值为( )A .43B .34C .45D .3514.在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c 满足关系式 . 15.一张等腰三角形纸片,底边长l5cm ,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( ) A .第4张 B .第5张 C.第6张 D .第7张16.如图,等腰△ABC 中,底边a BC =,︒=∠36A ,ABC ∠的平分线交AC 于D ,BCD ∠的平分线交BD 于E ,设215-=k ,则=DE ( ) A .a k 2B .a k 3C .2k aD .3ka17.如图,直径分别为CD 、CE 的两个半圆相切于点C ,大半圆M 的弦AB 与小半圆N 相切于点F ,且AB ∥CD ,AB=4,设弧CD 、弧CE 的长分别为x 、y ,线段ED 的长为z ,则z (x+y )= .三、多结论问题1.如图,在Rt△ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论:①△AED ≌△AEF ; ②△ABE ∽△ACD ; ③BE DC DE +=; ④222BE DC DE +=其中一定正确的是( ) A .②④ B .①③ C .②③ D .①④2.如图,在等腰Rt△ABC 中,∠C =90o ,AC =8,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD =CE ,连接DE 、DF 、EF 。
2020年中考数学4.几何综合选择填空压轴题(含解析)
几何综合-填空选择压轴题41、如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB的中点,连结MD,ME.若∠EMD=90°,则cosB的值为.2、如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.√6cm C.2.5cm D.√5cm3、定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……△An﹣1Bn﹣1Cn﹣1经γ(n,180°)变换后得△AnBnCn,则点A1的坐标是,点A2018的坐标是.4、我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A.20 B.24 C.994D.5325、如图,直线y=﹣√33x+4与x轴、y轴分别交于A,B两点,C是OB的中点,D 是AB上一点,四边形OEDC是菱形,则△OAE的面积为.6、小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为49√3cm2,则该圆的半径为cm.27、如图,在矩形ABCD中,AB=4,AD=2,点E在CD上,DE=1,点F是边AB上一动点,以EF为斜边作Rt△EFP.若点P在矩形ABCD的边上,且这样的直角三角形恰好有两个,则AF的值是.8、如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.√15 B.2√5 C.2√15 D.89、如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE 的值是()A.√24 B.14C.13D.√2310、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.32B.43C.53D.8511、如图,在正方形ABCD中,AD=2√3,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为.12、如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A.9+25√34 B.9+25√32C.18+25√3 D.18+25√3213、如图,点O 是▱ABCD 的对称中心,AD >AB ,E 、F 是AB 边上的点,且EF=12AB ;G 、H 是BC 边上的点,且GH=13BC ,若S 1,S 2分别表示△EOF 和△GOH 的面积,则S 1与S 2之间的等量关系是 .14、如图,已知∠POQ=30°,点A 、B 在射线OQ 上(点A 在点O 、B 之间),半径长为2的⊙A 与直线OP 相切,半径长为3的⊙B 与⊙A 相交,那么OB 的取值范围是( )A .5<OB <9 B .4<OB <9C .3<OB <7D .2<OB <715、如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若DE=2,CE=3,则矩形的对角线AC 的长为 .16、如图,在菱形ABCD中,tanA=43,M,N分别在边AD,BC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当EF⊥AD时,BNCN的值为.17、如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.32B.2 C.52D.318、如图,E,F是平行四边形ABCD对角线AC上两点,AE=CF=14AC.连接DE,DF并延长,分别交AB,BC于点G,H,连接GH,则S△ADGS△BGH的值为()A.12B.23C.34D.119、如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,2√3).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为.20、如图,Rt△ABC中,∠C=90°,AC=2,BC=5,点D是BC边上一点且CD=1,点P是线段DB上一动点,连接AP,以AP为斜边在AP的下方作等腰Rt△AOP.当P从点D出发运动至点B停止时,点O的运动路径长为.21、如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r 1:r2= .22、对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O 折叠菱形,使B,B′两点重合,MN是折痕.若B'M=1,则CN的长为()A.7 B.6 C.5 D.423、如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行小时即可到达.(结果保留根号)24、如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=√3x于点B 1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则A2019B2018̂的长是.25、如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP 的长为.26、如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为.27、如图,在△ABC中,已知AC=3,BC=4,点D为边AB的中点,连结CD,过点A作AE⊥CD于点E,将△ACE沿直线AC翻折到△ACE′的位置.若CE′∥AB,则CE′=.。
中考数学几何选择填空压轴题四边形难题(含答案))
1、 《求长度》 (答案)1、(容易)如图1的矩形ABCD 中,有一点E 在AD 上,今以BE 为折线将A 点往右折,如图2所示,再作过A 点且与CD 垂直的直线,交CD 于F 点,如图3所示,若AB= 36,BC=13,∠BEA=60°,则图3中AF 的长度为 4【解】作AH ⊥BC 于H2、(难)如图,矩形ABCD 与菱形EFGH 的对角线均交于点O ,且EG ∥BC ,将矩形折叠,使点C 与点O 重合,折痕MN 恰好过点G 若AB=6,EF=2,∠H=120°,则DN 的长为36-【解】长EG 交DC 于P 点,连接GC 、FH ;如图所示: 则CP=DP=21CD=26,△GCP 为直角三角形,∵四边形EFGH 是菱形,∠EHG=120°,∴GH=EF=2,∠OHG=60°,EG ⊥FH ,∴OG=GH•sin60°=2×23=3,由折叠的性质得:CG=OG=3,OM=CM ,∠MOG=∠MCG ,∴PG==26,∵OG ∥CM ,∴∠MOG+∠OMC=180°,∴∠MCG+∠OMC=180°,∴OM ∥CG ,∴四边形OGCM 为平行四边形,∵OM=CM ,∴四边形OGCM 为菱形,∴CM=OG=3,根据题意得:PG 是梯形MCDN 的中位线,∴DN+CM=2PG=6,∴DN=36-3、(中等)如图,△ABC 的周长为19,点D ,E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M ,若BC=7,则MN 的长度为25【解】△BNA ≅△BNE∴BA=BE ,∴△BAE 是等腰三角形,同理△CAD 是等腰三角形,∴点N 是AE 中点,点M 是AD 中点(三线合一),∴MN 是△ADE 的中位线, ∵BE+CD=AB+AC=19-BC=19-7=12,∴DE=BE+CD-BC=5,∴MN=21DE=25.4、(难度)如图,在菱形ABCD 中,∠ABC=120°,将菱形折叠,使点A 恰好落在对角线BD 上的点G 处(不与B 、D 重合),折痕为EF ,若DG=2,BG=6,则BE 的长为______2.8【解】作EH ⊥BD ,设BE=x在Rt △EHG 中,EG 2=EH 2+GH 2,即(8-x )2=(23x )2+(6-21x )2,解得,x =2.8,即BE=2.8, 故答案为:2.85、如图,▱ABCD 中,AB=7,BC=3,连接AC ,分别以点A 和点C 为圆心,大于21AC 的长为半径作弧, 两弧相交于点M ,N ,作直线MN ,交CD 于点E ,连接AE ,则△AED 的周长是_____ 10.6、(容易)如图,ABCD 的对角线相交于点O ,且AD CD ,过点O 作OM AC ,交AD 于点M .如果CDM 的周长为8,那么ABCD 的周长是_ 16【解】∵四边形ABCD 是平行四边形,∴OA=OC ,∵OM ⊥AC ,∴AM=CM ,∵△CDM 的周长为8, ∴CM+DM+CD=AM+DM+CD=AD+CD=8,∴平行四边形ABCD 的周长是:2×8=16.7、(中等)如图,正方形ABCD 的边长为12,点E 在边AB 上,BE=8,过点E 作EF ∥BC ,分别交BD 、CD 于G 、F 两点.若点P 、Q 分别为DG 、CE 的中点,则PQ 的长为_____ 1328、(难度)如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,AB=OB ,点E 、点F 分别是OA 、OD 的中点,连接EF ,∠CEF=45°,EM ⊥BC 于点M ,EM 交BD 于点N ,FN=,则线段BC 的长为_____249、(难度)如图,平行四边形ABCD 中,AM ⊥BC 于M ,AN ⊥CD 于N ,已知AB =10,BM =6,MC =3,则MN 的长为___________5734【方法】将目标量置入直角三角形中10、(容易)如上图,在矩形ABCD 中,AB =6,BC =8,点E 是BC 中点,点F 是边CD 上的任意一点,当△AEF 的周长最小时,则DF 的长为 4【解】以CD 为对称轴作对称变换11、如图,在矩形ABCD 中,E 是BC 边上的点,连接AE 、DE ,将△DEC 沿线段DE 翻折,点C 恰好落在线段AE 上的点F 处.若AB =6,BE : EC =4 : 1,则线段DE 的长为 ____102_______.【方法】AD = AE=10;勾股定理12、如图,矩形ABCD 中,AB =8,BC =4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是 [5【解】连接EF 交AC 于O ,∵四边形EGFH 是菱形,∴EF ⊥AC ,OE =OF , ∵四边形ABCD 是矩形,∴∠B =∠D =90°,AB ∥CD ,∴∠ACD =∠CAB , 在△CFO 与△AOE 中,,∴△CFO ≌△AOE ,∴AO =CO ,A BDCM NAE BDC F∵AC ==4,∴AO =21AC =2,∵∠CAB =∠CAB ,∠AOE =∠B =90°,∴△AOE ∽△ABC ,∴,∴,∴AE =5.13、(难度)如图,矩形ABCD 中,AB =2,AD =2.点E 是BC 边上的一个动点,连接AE ,过点D 作DF ⊥AE 于点F .当△CDF 是等腰三角形时,BE 的长为 1、2、22-【解】①CF =CD 时,过点C 作CM ⊥DF ,垂足为点M ,则CM ∥AE ,DM =MF ,延长CM 交AD 于点G ,∴AG =GD =1,∴CE =1, ∵CG ∥AE ,AD ∥BC ,∴四边形AGCE 是平行四边形,∴CE =AG =1,∴BE =1 ∴当BE =1时,△CDF 是等腰三角形;②DF =DC 时,则DC =DF =2,∵DF ⊥AE ,AD =2,∴∠DAE =45°,则BE =2, ∴当BE =2时,△CDF 是等腰三角形;③FD =FC 时,则点F 在CD 的垂直平分线上,故F 为AE 中点. ∵AB =2,BE =x ,∴AE =,AF =,∵△ADF ∽△EAB ,∴=,,x 2﹣4x +2=0,解得:x =2±2,∴当BE =22-时,△CDF 是等腰三角形.综上,当BE =1、2、22-时,△CDF 是等腰三角形.14、如图,边长为1的菱形ABCD 中,∠DAB=60度.连接对角线AC ,以AC 为边作第二个菱形ACC 1D 1,使∠D 1AC=60°;连接AC 1,再以AC 1为边作第三个菱形AC 1C 2D 2,使∠D 2AC 1=60°;…,按此规律所作的第n 个菱形的边长为 1)3(-n .解:连接DB ,∵四边形ABCD 是菱形,∴AD=AB .AC ⊥DB , ∵∠DAB=60°,∴△ADB 是等边三角形,∴DB=AD=1,∴BM=21, ∴AM==23,∴AC=3,同理AC 1=3AC=(3)2,AC 2=3AC 1=33=(3)3, 按此规律所作的第n 个菱形的边长为1)3(-n15、如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCEF ,设正方形的中心为O ,连接AO ,如果AB=4,AO=26,那么AC 的长等于 16 .【解】如图,过O 点作OG 垂直AC ,G 点是垂足.∵∠BAC=∠BOC=90°,∴ABCO 四点共圆,∴∠OAG=∠OBC=45° ∴△AGO 是等腰直角三角形,∴2AG 2=2GO 2=AO 2=2)26(=72, ∴OG=AG=6,∵∠BAH=∠OGH=90°,∠AHB=∠OHG ,∴△ABH ∽△GOH ,∴AB/OG=AH/(AG ﹣AH ),∵AB=4,OG=AG=6,∴AH=2.4 在直角△OHC 中,∵HG=AG ﹣AH=6﹣2.4=3.6,OG 又是斜边HC 上的高, ∴OG 2=HG×GC ,而OG=6,GH=3.6,∴GC=10.∴AC=AG+GC=6+10=16. 故AC 边的长是16.16、如图,在梯形ABCD 中,AD ∥BC ,∠B=90°,AD=2,BC=5,E 为DC 中点,tanC=34.则AE 的长度为265【解】过点E 作BC 的垂线交BC 于点F ,交AD 的延长线于点M , 在梯形ABCD 中,AD ∥BC ,E 是DC 的中点,∴∠M=∠MFC ,DE=CE ;在△MDE 和△FCE 中,∠M=∠MFC ,∠DEM=∠CEF ,DE=CE ;∴△MDE ≌△FCE ,∴EF=ME ,DM=CF . ∵AD=2,BC=5,∴DM=CF=23, 在Rt △FCE 中,tanC=CFEF =34,∴EF=ME=2,在Rt △AME 中,AE=265)232(222=++ 17、如图,平行四边形ABCD 中,AE 平分∠BAD 交BC 边于E ,EF ⊥AE 交CD 边于F ,延长BA 到点G ,使AG = CF ,连接GF .若BC = 7,DF = 3,tan ∠AEB =3 ,则GF 的长为 23【解】连接AC ,羊场AE 与DC 延长线交于一点H18、(容易)如图,梯形ABCD 中,AD ∥BC ,AB = 3,BC=4,连结BD ,∠BAD 的平分线交BD 于 点E ,且AE ∥CD ,则AD 的长为1DG ABCDEMABC DEF【解】构造平行四边形。
中考数学28道压轴题含答案解析
中考数学选填压轴题练习一.根的判别式(共1小题)1.(2023•广州)已知关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,则的化简结果是()A.﹣1B.1C.﹣1﹣2k D.2k﹣3【分析】首先根据关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,得判别式Δ=[﹣(2k﹣2)]2﹣4×1×(k2﹣1)≥0,由此可得k≤1,据此可对进行化简.【解答】解:∵关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,∴判别式Δ=[﹣(2k﹣2)]2﹣4×1×(k2﹣1)≥0,整理得:﹣8k+8≥0,∴k≤1,∴k﹣1≤0,2﹣k>0,∴=﹣(k﹣1)﹣(2﹣k)=﹣1.故选:A.二.函数的图象(共1小题)2.(2023•温州)【素材1】某景区游览路线及方向如图1所示,①④⑥各路段路程相等,⑤⑦⑧各路段路程相等,②③两路段路程相等.【素材2】设游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟;小州游路线①②⑧,他离入口的路程s与时间t的关系(部分数据)如图2所示,在2100米处,他到出口还要走10分钟.【问题】路线①③⑥⑦⑧各路段路程之和为()A.4200米B.4800米C.5200米D.5400米【分析】设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米,由题意及图象可知,然后根据“游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟”可进行求解.【解答】解:由图象可知:小州游玩行走的时间为75+10﹣40=45(分钟),小温游玩行走的时间为205﹣100=105(分钟),设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米由图象可得:,解得:x+y+z=2700,∴游玩行走的速度为:(2700﹣2100)÷10=60 (米/分),由于游玩行走速度恒定,则小温游路线①④⑤⑥⑦⑧的路程为:3x+3y=105×60=6300,∴x+y=2100,∴路线①③⑥⑦⑧各路段路程之和为:2x+2y+z=x+y+z+x+y=2700+2100=4800(米).故选:B.三.动点问题的函数图象(共1小题)3.(2023•河南)如图1,点P从等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为,图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为()A.6B.3C.D.【分析】如图,令点P从顶点A出发,沿直线运动到三角形内部一点O,再从点O沿直线运动到顶点B,结合图象可知,当点P在AO上运动时,PB=PC,AO=,易知∠BAO=∠CAO=30°,当点P在OB上运动时,可知点P到达点B时的路程为,可知AO=OB=,过点O作OD⊥AB,解直角三角形可得AD=AO•cos30°,进而得出等边三角形ABC的边长.【解答】解:如图,令点P从顶点A出发,沿直线运动到三角形内部一点O,再从点O沿直线运动到顶点B,\结合图象可知,当点P在AO上运动时,,∴PB=PC,,又∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∴△APB≌△APC(SSS),∴∠BAO=∠CAO=30°,当点P在OB上运动时,可知点P到达点B时的路程为,∴OB=,即AO=OB=,∴∠BAO=∠ABO=30°,过点O作OD⊥AB,垂足为D,∴AD=BD,则AD=AO•cos30°=3,∴AB=AD+BD=6,即等边三角形ABC的边长为6.故选:A.四.反比例函数系数k的几何意义(共1小题)4.(2023•宁波)如图,点A,B分别在函数y=(a>0)图象的两支上(A在第一象限),连结AB交x 轴于点C.点D,E在函数y=(b<0,x<0)图象上,AE∥x轴,BD∥y轴,连结DE,BE.若AC =2BC,△ABE的面积为9,四边形ABDE的面积为14,则a﹣b的值为12,a的值为9.【分析】依据题意,设A(m,),再由AE∥x轴,BD∥y轴,AC=2BC,可得B(﹣2m,﹣),D (﹣2m,﹣),E(,),再结合△ABE的面积为9,四边形ABDE的面积为14,即可得解.【解答】解:设A(m,),∵AE∥x轴,且点E在函数y=上,∴E(,).∵AC=2BC,且点B在函数y=上,∴B(﹣2m,﹣).∵BD∥y轴,点D在函数y=上,∴D(﹣2m,﹣).∵△ABE的面积为9,∴S△ABE=AE×(+)=(m﹣)(+)=m••==9.∴a﹣b=12.∵△ABE的面积为9,四边形ABDE的面积为14,∴S△BDE=DB•(+2m)=(﹣+)()m=(a﹣b)••()•m=3()=5.∴a=﹣3b.又a﹣b=12.∴a=9.故答案为:12,9.五.反比例函数图象上点的坐标特征(共2小题)5.(2023•德州)如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(6,3),D是OA的中点,AC,BD交于点E,函数的图象过点B.E.且经过平移后可得到一个反比例函数的图象,则该反比例函数的解析式()A.y=﹣B.C.D.【分析】先根据函数图象经过点B和点E,求出a和b,再由所得函数解析式即可解决问题.【解答】解:由题知,A(6,0),B(6,3),C(0,3),令直线AC的函数表达式为y1=k1x+b1,则,解得,所以.又因为点D为OA的中点,所以D(3,0),同理可得,直线BD的函数解析式为y2=x﹣3,由得,x=4,则y=4﹣3=1,所以点E坐标为(4,1).将B,E两点坐标代入函数解析式得,,解得.所以,则,将此函数图象向左平移3个单位长度,再向下平移4个单位长度,所得图象的函数解析式为:.故选:D.6.如图,O是坐标原点,Rt△OAB的直角顶点A在x轴的正半轴上,AB=2,∠AOB=30°,反比例函数y=(k>0)的图象经过斜边OB的中点C.(1)k=;(2)D为该反比例函数图象上的一点,若DB∥AC,则OB2﹣BD2的值为4.【分析】(1)根据直角三角形的性质,求出A、B两点坐标,作出辅助线,证得△OPC≌△APC(HL),利用勾股定理及待定系数法求函数解析式即可解答.(2)求出AC、BD的解析式,再联立方程组,求得点D的坐标,分两种情况讨论即可求解.【解答】解:(1)在Rt△OAB中,AB=2,∠AOB=30°,∴,∴,∵C是OB的中点,∴OC=BC=AC=2,如图,过点C作CP⊥OA于P,∴△OPC≌△APC(HL),∴,在Rt△OPC中,PC=,∴C(,1).∵反比例函数y=(k>0)的图象经过斜边OB的中点C,∴,解得k=.故答案为:.(2)设直线AC的解析式为y=k1x+b(k≠0),则,解得,∴AC的解析式为y=﹣x+2,∵AC∥BD,∴直线BD的解析式为y=﹣x+4,∵点D既在反比例函数图象上,又在直线BD上,∴联立得,解得,,当D的坐标为(2+3,)时,BD2==9+3=12,∴OB2﹣BD2=16﹣12=4;当D的坐标为(2﹣3,)时,BD2=+=9+3=12,∴OB2﹣BD2=16﹣12=4;综上,OB2﹣BD2=4.故答案为:4.六.反比例函数与一次函数的交点问题(共1小题)7.(2023•湖州)已知在平面直角坐标系中,正比例函数y=k1x(k1>0)的图象与反比例函数(k2>0)的图象的两个交点中,有一个交点的横坐标为1,点A(t,p)和点B(t+2,q)在函数y=k1x的图象上(t≠0且t≠﹣2),点C(t,m)和点D(t+2,n)在函数的图象上.当p﹣m与q﹣n的积为负数时,t的取值范围是()A.或B.或C.﹣3<t<﹣2或﹣1<t<0D.﹣3<t<﹣2或0<t<1【分析】将交点的横坐标1代入两个函数,令二者函数值相等,得k1=k2.令k1=k2=k,代入两个函数表达式,并分别将点A、B的坐标和点C、D的坐标代入对应函数,进而分别求出p﹣m与q﹣n的表达式,代入解不等式(p﹣m)(q﹣n)<0并求出t的取值范围即可.【解答】解:∵y=k1x(k1>0)的图象与反比例函数(k2>0)的图象的两个交点中,有一个交点的横坐标为1,∴k1=k2.令k1=k2=k(k>0),则y=k1x=kx,=.将点A(t,p)和点B(t+2,q)代入y=kx,得;将点C(t,m)和点D(t+2,n)代入y=,得.∴p﹣m=kt﹣=k(t﹣),q﹣n=k(t+2)﹣=k(t+2﹣),∴(p﹣m)(q﹣n)=k2(t﹣)(t+2﹣)<0,∴(t﹣)(t+2﹣)<0.∵(t﹣)(t+2﹣)=•=<0,∴<0,∴t(t﹣1)(t+2)(t+3)<0.①当t<﹣3时,t(t﹣1)(t+2)(t+3)>0,∴t<﹣3不符合要求,应舍去.②当﹣3<t<﹣2时,t(t﹣1)(t+2)(t+3)<0,∴﹣3<t<﹣2符合要求.③当﹣2<t<0时,t(t﹣1)(t+2)(t+3)>0,∴﹣2<t<0不符合要求,应舍去.④当0<t<1时,t(t﹣1)(t+2)(t+3)<0,∴0<t<1符合要求.⑤当t>1时,t(t﹣1)(t+2)(t+3)>0,∴t>1不符合要求,应舍去.综上,t的取值范围是﹣3<t<﹣2或0<t<1.故选:D.七.二次函数图象与系数的关系(共3小题)8.(2023•乐至县)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,且过点(1,0).现有以下结论:①abc<0;②5a+c=0;③对于任意实数m,都有2b+bm≤4a﹣am2;④若点A(x1,y1)、B(x2,y2)是图象上任意两点,且|x1+2|<|x2+2|,则y1<y2,其中正确的结论是()A.①②B.②③④C.①②④D.①②③④【分析】根据题意和函数图象,利用二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图象可得,a>0,b>0,c<0,∴abc<0,故①正确,∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,且过点(1,0).∴﹣=﹣2,a+b+c=0,∴b=4a,∴a+b+c=a+4a+c=0,故5a+c=0,故②正确,∵当x=﹣2时,y=4a﹣2b+c取得最小值,∴am2+bm+c≥4a﹣2b+c,即2b+bm≥4a﹣am2(m为任意实数),故③错误,∵抛物线开口向上,对称轴为直线x=﹣2,若点A(x1,y1)、B(x2,y2)是图象上任意两点,且|x1+2|<|x2+2|,∴y1<y2,故④正确;故选:C.9.(2023•丹东)抛物线y=ax2+bx+c(a≠0)与x轴的一个交点为A(﹣3,0),与y轴交于点C,点D是抛物线的顶点,对称轴为直线x=﹣1,其部分图象如图所示,则以下4个结论:①abc>0;②E(x1,y1),F(x2,y2)是抛物线y=ax2+bx(a≠0)上的两个点,若x1<x2,且x1+x2<﹣2,则y1<y2;③在x轴上有一动点P,当PC+PD的值最小时,则点P的坐标为;④若关于x的方程ax2+b(x﹣2)+c =﹣4(a≠0)无实数根,则b的取值范围是b<1.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据所给函数图象可得出a,b,c的正负,再结合抛物线的对称性和增减性即可解决问题.【解答】解:根据所给函数图象可知,a>0,b>0,c<0,所以abc<0,故①错误.因为抛物线y=ax2+bx的图象可由抛物线y=ax2+bx+c的图象沿y轴向上平移|c|个单位长度得到,所以抛物线y=ax2+bx的增减性与抛物线y=ax2+bx+c的增减性一致.则当x<﹣1时,y随x的增大而减小,又x1<x2,且x1+x2<﹣2,若x2<﹣1,则E,F两点都在对称轴的左侧,此时y1>y2.故②错误.作点C关于x轴的对称点C′,连接C′D与x轴交于点P,连接PC,此时PC+PD的值最小.将A(﹣3,0)代入二次函数解析式得,9a﹣3b+c=0,又,即b=2a,所以9a﹣6a+c=0,则c=﹣3a.又抛物线与y轴的交点坐标为C(0,c),则点C坐标为(0,﹣3a),所以点C′坐标为(0,3a).又当x=﹣1时,y=﹣4a,即D(﹣1,﹣4a).设直线C′D的函数表达式为y=kx+3a,将点D坐标代入得,﹣k+3a=﹣4a,则k=7a,所以直线C′D的函数表达式为y=7ax+3a.将y=0代入得,x=.所以点P的坐标为(,0).故③正确.将方程ax2+b(x﹣2)+c=﹣4整理得,ax2+bx+c=2b﹣4,因为方程没有实数根,所以抛物线y=ax2+bx+c与直线y=2b﹣4没有公共点,所以2b﹣4<﹣4a,则2b﹣4<﹣2b,解得b<1,又b>0,所以0<b<1.故④错误.所以正确的有③.故选:A.10.(2023•河北)已知二次函数y=﹣x2+m2x和y=x2﹣m2(m是常数)的图象与x轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.m2C.4D.2m2【分析】求出三个交点的坐标,再构建方程求解.【解答】解:令y=0,则﹣x2+m2x=0和x2﹣m2=0,∴x=0或x=m2或x=﹣m或x=m,∵这四个交点中每相邻两点间的距离都相等,若m>0,则m2=2m,∴m=2,若m<0时,则m2=﹣2m,∴m=﹣2.∵抛物线y=x2﹣m2的对称轴为直线x=0,抛物线y=﹣x2+m2x的对称轴为直线x=,∴这两个函数图象对称轴之间的距离==2.故选:A.八.二次函数图象上点的坐标特征(共1小题)11.(2023•广东)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac 的值为()A.﹣1B.﹣2C.﹣3D.﹣4【分析】过A作AH⊥x轴于H,根据正方形的性质得到∠AOB=45°,得到AH=OH,利用待定系数法求得a、c的值,即可求得结论.【解答】解:过A作AH⊥x轴于H,∵四边形ABCO是正方形,∴∠AOB=45°,∴∠AOH=45°,∴AH=OH,设A(m,m),则B(0,2m),∴,解得am=﹣1,m=,∴ac的值为﹣2,故选:B.九.二次函数与不等式(组)(共1小题)12.(2023•西宁)直线y1=ax+b和抛物线(a,b是常数,且a≠0)在同一平面直角坐标系中,直线y1=ax+b经过点(﹣4,0).下列结论:①抛物线的对称轴是直线x=﹣2;②抛物线与x轴一定有两个交点;③关于x的方程ax2+bx=ax+b有两个根x1=﹣4,x2=1;④若a >0,当x<﹣4或x>1时,y1>y2.其中正确的结论是()A.①②③④B.①②③C.②③D.①④【分析】根据直线y1=ax+b经过点(﹣4,0).得到b=4a,于是得到=ax2+4ax,求得抛物线的对称轴是直线x=﹣﹣=2;故①正确;根据Δ=16a2>0,得到抛物线与x轴一定有两个交点,故②正确;把b=4a,代入ax2+bx=ax+b得到x2+3x﹣4=0,求得x1=﹣4,x2=1;故③正确;根据a>0,得到抛物线的开口向上,直线y1=ax+b和抛物线交点横坐标为﹣4,1,于是得到结论.【解答】解:∵直线y1=ax+b经过点(﹣4,0).∴﹣4a+b=0,∴b=4a,∴=ax2+4ax,∴抛物线的对称轴是直线x=﹣﹣=2;故①正确;∵=ax2+4ax,∴Δ=16a2>0,∴抛物线与x轴一定有两个交点,故②正确;∵b=4a,∴方程ax2+bx=ax+b为ax2+4ax=ax+4a得,整理得x2+3x﹣4=0,解得x1=﹣4,x2=1;故③正确;∵a>0,抛物线的开口向上,直线y1=ax+b和抛物线交点横坐标为﹣4,1,∴当x<﹣4或x>1时,y1<y2.故④错误,故选:B.一十.三角形中位线定理(共1小题)13.(2023•广州)如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点M是边AC上一动点,点D,E分别是AB,MB的中点,当AM=2.4时,DE的长是 1.2.若点N在边BC上,且CN=AM,点F,G分别是MN,AN的中点,当AM>2.4时,四边形DEFG面积S的取值范围是3≤S≤4.【分析】依据题意,根据三角形中位线定理可得DE=AM=1.2;设AM=x,从而DE=x,由DE∥AM,且DE=AM,又FG∥AM,FG=AM,进而DE∥FG,DE=FG,从而四边形DEFG是平行四边形,结合题意可得DE边上的高为(4﹣x),故四边形DEFG面积S=4x﹣x2,进而利用二次函数的性质可得S的取值范围.【解答】解:由题意,点D,E分别是AB,MB的中点,∴DE是三角形ABM的中位线.∴DE=AM=1.2.如图,设AM=x,∴DE=AM=x.由题意得,DE∥AM,且DE=AM,又FG∥AM,FG=AM,∴DE∥FG,DE=FG.∴四边形DEFG是平行四边形.由题意,GF到AC的距离是x,BC==8,∴DE边上的高为(4﹣x).∴四边形DEFG面积S=2x﹣x2,=﹣(x﹣4)2+4.∵2.4<x≤6,∴3≤S≤4.故答案为:1.2;3≤S≤4.一十一.矩形的性质(共2小题)14.(2023•宁波)如图,以钝角三角形ABC的最长边BC为边向外作矩形BCDE,连结AE,AD,设△AED,△ABE,△ACD的面积分别为S,S1,S2,若要求出S﹣S1﹣S2的值,只需知道()A.△ABE的面积B.△ACD的面积C.△ABC的面积D.矩形BCDE的面积【分析】作AG⊥ED于点G,交BC于点F,可证明四边形BFGE是矩形,AF⊥BC,可推导出S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,所以只需知道S△ABC,就可求出S﹣S1﹣S2的值,于是得到问题的答案.【解答】解:作AG⊥ED于点G,交BC于点F,∵四边形BCDE是矩形,∴∠FBE=∠BEG=∠FGE=90°,BC∥ED,BC=ED,BE=CD,∴四边形BFGE是矩形,∠AFB=∠FGE=90°,∴FG=BE=CD,AF⊥BC,∴S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,∴只需知道S△ABC,就可求出S﹣S1﹣S2的值,故选:C.15.(2023•河南)矩形ABCD中,M为对角线BD的中点,点N在边AD上,且AN=AB=1.当以点D,M,N为顶点的三角形是直角三角形时,AD的长为2或1+.【分析】以点D,M,N为顶点的三角形是直角三角形时,分两种情况:如图1,当∠MND=90°时,如图2,当∠NMD=90°时,根据矩形的性质和等腰直角三角形的性质即可得到结论.【解答】解:以点D,M,N为顶点的三角形是直角三角形时,分两种情况:①如图1,当∠MND=90°时,则MN⊥AD,∵四边形ABCD是矩形,∴∠A=90°,∴MN∥AB,∵M为对角线BD的中点,∴AN=DN,∵AN=AB=1,∴AD=2AN=2;如图2,当∠NMD=90°时,则MN⊥BD,∵M为对角线BD的中点,∴BM=DM,∴MN垂直平分BD,∴BN=DN,∵∠A=90°,AB=AN=1,∴BN=AB=,∴AD=AN+DN=1+,综上所述,AD的长为2或1+.故答案为:2或1+.一十二.正方形的性质(共2小题)16.如图,在边长为4的正方形ABCD中,点G是BC上的一点,且BG=3GC,DE⊥AG于点E,BF∥DE,且交AG于点F,则tan∠EDF的值为()A.B.C.D.【分析】由正方形ABCD的边长为4及BG=3CG,可求出BG的长,进而求出AG的长,证△ADE∽△GAB,利用相似三角形对应边成比例可求得AE、DE的长,证△ABF≌△DAE,得AF=DE,根据线段的和差求得EF的长即可.【解答】解:∵四边形ABCD是正方形,AB=4,∴BC=CD=DA=AB=4,∠BAD=∠ABC=90°,AD∥BC,∴∠DAE=∠AGB,∵BG=3CG,∴BG=3,∴在Rt△ABG中,AB2+BG2=AG2,∴AG=,∵DE⊥AG,∴∠DEA=∠DEF=∠ABC=90°,∴△ADE∽△GAB,∴AD:GA=AE:GB=DE:AB,∴4:5=AE:3=DE:4,∴AE=,DE=,又∵BF∥DE,∴∠AFB=∠DEF=90°,又∵AB=AD,∠DAE=∠ABF(同角的余角相等),∴△ABF≌△DAE,∴AF=DE=,∴EF=AF﹣AE=,∴tan∠EDF=,故选:A.17.(2023•湖州)如图,标号为①,②,③,④的四个直角三角形和标号为⑤的正方形恰好拼成对角互补的四边形ABCD,相邻图形之间互不重叠也无缝隙,①和②分别是等腰Rt△ABE和等腰Rt△BCF,③和④分别是Rt△CDG和Rt△DAH,⑤是正方形EFGH,直角顶点E,F,G,H分别在边BF,CG,DH,AE上.(1)若EF=3cm,AE+FC=11cm,则BE的长是4cm.(2)若,则tan∠DAH的值是3.【分析】(1)将AE和FC用BE表示出来,再代入AE+FC=11cm,即可求出BE的长;(2)由已知条件可以证明∠DAH=∠CDG,从而得到tan∠DAH=tan∠CDG,设AH=x,DG=5k,GH =4k,用x和k的式子表示出CG,再利用tan∠DAH=tan∠CDG列方程,解出x,从而求出tan∠DAH 的值.【解答】解:(1)∵Rt△ABE和Rt△BCF都是等腰直角三角形,∴AE=BE,BF=CF,∵AE+FC=11cm,∴BE+BF=11cm,即BE+BE+EF=11cm,即2BE+EF=11cm,∵EF=3cm,∴2BE+3cm=11cm,∴BE=4cm,故答案为:4;(2)设AH=x,∵,∴可设DG=5k,GH=4k,∵四边形EFGH是正方形,∴HE=EF=FG=GH=4k,∵Rt△ABE和Rt△BCF都是等腰直角三角形,∴AE=BE,BF=CF,∠ABE=∠CBF=45°,∴CG=CF+GF=BF+4k=BE+8k=AH+12k=x+12k,∠ABC=∠ABE+∠CBF=45°+45°=90°,∵四边形ABCD对角互补,∴∠ADC=90°,∴∠ADH+∠CDG=90°,∵四边形EFGH是正方形,∴∠AHD=∠CGD=90°,∴∠ADH+∠DAH=90°,∴∠DAH=∠CDG,∴tan∠DAH=tan∠CDG,∴,即,整理得:x2+12kx﹣45k2=0,解得x1=3k,x2=﹣15k(舍去),∴tan∠DAH===3.故答案为:3.一十三.正多边形和圆(共1小题)18.(2023•河北)将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l上.两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l平行,有两边分别经过两侧正六边形的一个顶点.则图2中:(1)∠α=30度;(2)中间正六边形的中心到直线l的距离为2(结果保留根号).【分析】(1)作图后,结合正多边形的外角的求法即可得到结论;(2)把问题转化为图形问题,首先作出图形,标出相应的字母,把正六边形的中心到直线l的距离转化为求ON=OM+BE,再根据正六边形的性质以及三角函数的定义,分别求出OM,BE即可.【解答】解:(1)作图如图所示,∵多边形是正六边形,∴∠ACB=60°,∵BC∥直线l,∴∠ABC=90°,∴α=30°;故答案为:30°;(2)取中间正六边形的中心为O,作图如图所示,由题意得,AG∥BF,AB∥GF,BF⊥AB,∴四边形ABFG为矩形,∴AB=GF,∵∠BAC=∠FGH,∠ABC=∠GFH=90°,∴△ABC≌△GFH(SAS),∴BC=FH,在Rt△PDE中,DE=1,PE=,由图1知AG=BF=2PE=2,OM=PE=,∵,∴,∴,∵,∴,∴.∴中间正六边形的中心到直线l的距离为2,故答案为:2.一十四.扇形面积的计算(共1小题)19.(2023•温州)图1是4×4方格绘成的七巧板图案,每个小方格的边长为,现将它剪拼成一个“房子”造型(如图2),过左侧的三个端点作圆,并在圆内右侧部分留出矩形CDEF作为题字区域(点A,E,D,B在圆上,点C,F在AB上),形成一幅装饰画,则圆的半径为5.若点A,N,M在同一直线上,AB∥PN,DE=EF,则题字区域的面积为.【分析】根据不共线三点确定一个圆,根据对称性得出圆心的位置,进而垂径定理、勾股定理求得r,连接OE,取ED的中点T,连接OT,在Rt△OET中,根据勾股定理即可求解.【解答】解:如图所示,依题意,GH=2=GQ,∵过左侧的三个端点Q,K,L作圆,QH=HL=4,又NK⊥QL,∴O在KN上,连接OQ,则OQ为半径,∵OH=r﹣KH=r﹣2,在Rt△OHQ中,OH2+QH2=QO2,∴(r﹣2)2+42=r2,解得:r=5;连接OE,取ED的中点T,连接OT,交AB于点S,连接PB,AM,过点O作OU⊥AM于点U.连接OA.由△OUN∽△NPM,可得==,∴OU=.MN=2,∴NU=,∴AU==,∴AN=AU﹣NU=2,∴AN=MN,∵AB∥PN,∴AB⊥OT,∴AS=SB,∴NS∥BM,∴NS∥MP,∴M,P,B共线,又NB=NA,∴∠ABM=90°,∵MN=NB,NP⊥MP,∴MP=PB=2,∴NS=MB=2,∵KH+HN=2+4=6,∴ON=6﹣5=1,∴OS=3,∵,设EF=ST=a,则,在Rt△OET中,OE2=OT2+TE2,即,整理得5a2+12a﹣32=0,即(a+4)(5a﹣8)=0,解得:或a=﹣4,∴题字区域的面积为.故答案为:.一十五.轴对称-最短路线问题(共1小题)20.(2023•安徽)如图,E是线段AB上一点,△ADE和△BCE是位于直线AB同侧的两个等边三角形,点P,F分别是CD,AB的中点.若AB=4,则下列结论错误的是()A.P A+PB的最小值为3B.PE+PF的最小值为2C.△CDE周长的最小值为6D.四边形ABCD面积的最小值为3【分析】延长AD,BC交于M,过P作直线l∥AB,由△ADE和△BCE是等边三角形,可得四边形DECM 是平行四边形,而P为CD中点,知P为EM中点,故P在直线l上运动,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB=P A'+PB最小,即可得P A+PB 最小值A'B==2,判断选项A错误;由PM=PE,即可得当M,P,F共线时,PE+PF 最小,最小值为MF的长度,此时PE+PF的最小值为2,判断选项B正确;过D作DK⊥AB于K,过C作CT⊥AB于T,由△ADE和△BCE是等边三角形,得KT=KE+TE=AB=2,有CD≥2,故△CDE周长的最小值为6,判断选项C正确;设AE=2m,可得S四边形ABCD=(m﹣1)2+3,即知四边形ABCD面积的最小值为3,判断选项D正确.【解答】解:延长AD,BC交于M,过P作直线l∥AB,如图:∵△ADE和△BCE是等边三角形,∴∠DEA=∠MBA=60°,∠CEB=∠MAB=60°,∴DE∥BM,CE∥AM,∴四边形DECM是平行四边形,∵P为CD中点,∴P为EM中点,∵E在线段AB上运动,∴P在直线l上运动,由AB=4知等边三角形ABM的高为2,∴M到直线l的距离,P到直线AB的距离都为,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB =P A'+PB最小,此时P A+PB最小值A'B===2,故选项A错误,符合题意;∵PM=PE,∴PE+PF=PM+PF,∴当M,P,F共线时,PE+PF最小,最小值为MF的长度,∵F为AB的中点,∴MF⊥AB,∴MF为等边三角形ABM的高,∴PE+PF的最小值为2,故选项B正确,不符合题意;过D作DK⊥AB于K,过C作CT⊥AB于T,如图,∵△ADE和△BCE是等边三角形,∴KE=AE,TE=BE,∴KT=KE+TE=AB=2,∴CD≥2,∴DE+CE+CD≥AE+BE+2,即DE+CE+CD≥AB+2,∴DE+CE+CD≥6,∴△CDE周长的最小值为6,故选项C正确,不符合题意;设AE=2m,则BE=4﹣2m,∴AK=KE=m,BT=ET=2﹣m,DK=AK=m,CT=BT=2﹣m,∴S△ADK=m•m=m2,S△BCT=(2﹣m)(2﹣m)=m2﹣2m+2,S梯形DKTC =(m+2﹣m)•2=2,∴S四边形ABCD=m2+m2﹣2m+2+2=m2﹣2m+4=(m﹣1)2+3,∴当m=1时,四边形ABCD面积的最小值为3,故选项D正确,不符合题意;故选:A.一十六.翻折变换(折叠问题)(共2小题)21.(2023•乐至县)如图,在平面直角坐标系xOy中,边长为2的等边△ABC的顶点A、B分别在x轴、y 轴的正半轴上移动,将△ABC沿BC所在直线翻折得到△DBC,则OD的最大值为+1.【分析】过点D作DF⊥AB,交AB延长线于点F,取AB的中点E,连接DE,OE,OD,在Rt△ABO 中利用斜边中线性质求出OE,根据OE+DE≥OD确定当D、O、E三点共线时OD最大,最大值为OD =OE+DE.【解答】解:如图,过点D作DF⊥AB,交AB延长线于点F,取AB的中点E,连接DE,OE,OD,∵等边三角形ABC的边长为2,∴AB=2,∠ABC=60°,由翻折可知:∠DBC=∠ABC=60°,DB=AB=2,∴∠DBF=60°,∵DF⊥AB,∴∠DFB=90°,∴∠BDF=30°,∴BF=BD=1,∴DF=BF=,∵E是AB的中点,∴AE=BE=OE=AB=1,∴EF=BE+BF=2,∴DE===,∴OD≤DE+OE=+1,∴当D、E、O三点共线时OD最大,最大值为+1.故答案为:+1.22.(2023•南京)如图,在菱形纸片ABCD中,点E在边AB上,将纸片沿CE折叠,点B落在B′处,CB′⊥AD,垂足为F.若CF=4cm,FB′=1cm,则BE=cm.【分析】作EH⊥BC于点H,由CF=4cm,FB′=1cm,求得B′C=5cm,由折叠得BC=B′C=5cm,由菱形的性质得BC∥AD,DC=BC=5cm,∠B=∠D,因为CB′⊥AD于点F,所以∠BCB′=∠CFD =90°,则∠BCE=∠B′CE=45°,DF==3cm,所以∠HEC=∠BCE=45°,则CH=EH,由=sin B=sin D=,=cos B=cos D=,得CH=EH=BE,BH=BE,于是得BE+BE =5,则BE=cm.【解答】解:作EH⊥BC于点H,则∠BHE=∠CHE=90°,∵CF=4cm,FB′=1cm,∴B′C=CF+FB′=4+1=5(cm),由折叠得BC=B′C=5cm,∠BCE=∠B′CE,∵四边形ABCD是菱形,∴BC∥AD,DC=BC=5cm,∠B=∠D,∵CB′⊥AD于点F,∴∠BCB′=∠CFD=90°,∴∠BCE=∠B′CE=∠BCB′=×90°=45°,DF===3(cm),∴∠HEC=∠BCE=45°,∴CH=EH,∵=sin B=sin D==,=cos B=cos D==,∴CH=EH=BE,BH=BE,∴BE+BE=5,∴BE=cm,故答案为:.一十七.旋转的性质(共1小题)23.(2023•西宁)如图,在矩形ABCD中,点P在BC边上,连接P A,将P A绕点P顺时针旋转90°得到P A′,连接CA′,若AD=9,AB=5,CA′=2,则BP=2.【分析】过A′点作A′H⊥BC于H点,如图,根据旋转的性质得到P A=P A′,再证明△ABP≌△PHA′得到PB=A′H,PH=AB=5,设PB=x,则A′H=x,CH=4﹣x,然后在Rt△A′CH中利用勾股定理得到x2+(4﹣x)2=(2)2,于是解方程求出x即可.【解答】解:过A′点作A′H⊥BC于H点,如图,∵四边形ABCD为矩形,∴BC=AD=9,∠B=90°,∵将P A绕点P顺时针旋转90°得到P A′,∴P A=P A′,∵∠P AB+∠APB=90°,∠APB+∠A′PH=90°,∴∠P AB=∠A′PH,在△ABP和△PHA′中,,∴△ABP≌△PHA′(AAS),∴PB=A′H,PH=AB=5,设PB=x,则A′H=x,CH=9﹣x﹣5=4﹣x,在Rt△A′CH中,x2+(4﹣x)2=(2)2,解得x1=x2=2,即BP的长为2.故答案为:2.一十八.相似三角形的判定与性质(共2小题)24.(2023•杭州)如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设=k,若AD=DF,则=(结果用含k的代数式表示).【分析】方法一:先根据轴对称的性质和已知条件证明DE∥AC,再证△BDE∽△BAC,推出EC=k•AB,通过证明△ABC∽△ECF,推出CF=k2•AB,即可求出的值.方法二:证明AD=DF=BD,可得BF⊥AC,设AB=AC=1,BC=k,CF=x,则AF=1﹣x,利用勾股定理列方程求出x的值,进而可以解决问题.【解答】解:方法一:∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB,∵AD=DF,∴∠A=∠DF A,∵点B和点F关于直线DE对称,∴∠BDE=∠FDE,∵∠BDE+∠FDE=∠BDF=∠A+∠DF A,∴∠FDE=∠DF A,∴DE∥AC,∴∠C=∠DEB,∠DEF=∠EFC,∵点B和点F关于直线DE对称,∴∠DEB=∠DEF,∴∠C=∠EFC,∵AB=AC,∴∠C=∠B,∵∠ACB=∠EFC,∴△ABC∽△ECF,∴=,∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴==,∴EC=BC,∵=k,∴BC=k•AB,∴EC=k•AB,∴=,∴CF=k2•AB,∴====.方法二:如图,连接BF,∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB=DF,∴BF⊥AC,设AB=AC=1,则BC=k,设CF=x,则AF=1﹣x,由勾股定理得,AB2﹣AF2=BC2﹣CF2,∴12﹣(1﹣x)2=k2﹣x2,∴x=,∴AF=1﹣x=,∴=.故答案为:.25.(2023•广东)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为15.【分析】根据相似三角形的性质,利用相似比求出梯形的上底和下底,用面积公式计算即可.【解答】解:如图,∵BF∥DE,∴△ABF∽△ADE,∴=,∵AB=4,AD=4+6+10=20,DE=10,∴=,∴BF=2,∴GF=6﹣2=4,∵CK∥DE,∴△ACK∽△ADE,∴=,∵AC=4+6=10,AD=20,DE=10,∴=,∴CK=5,∴HK=6﹣5=1,∴阴影梯形的面积=(HK+GF)•GH=(1+4)×6=15.故答案为:15.一十九.相似三角形的应用(共1小题)26.(2023•南京)如图,不等臂跷跷板AB的一端A碰到地面时,另一端B到地面的高度为60cm;当AB 的一端B碰到地面时,另一端A到地面的高度为90cm,则跷跷板AB的支撑点O到地面的高度OH是()A.36cm B.40cm C.42cm D.45cm【分析】过点B作BC⊥AH,垂足为C,再证明A字模型相似△AOH∽△ABC,从而可得=,过点A作AD⊥BH,垂足为D,然后证明A字模型相似△ABD∽△OBH,从而可得=,最后进行计算即可解答.【解答】解:如图:过点B作BC⊥AH,垂足为C,∵OH⊥AC,BC⊥AC,∴∠AHO=∠ACB=90°,∵∠BAC=∠OAH,∴△AOH∽△ABC,∴=,∴=,如图:过点A作AD⊥BH,垂足为D,∵OH⊥BD,AD⊥BD,∴∠OHB=∠ADB=90°,∵∠ABD=∠OBH,∴△ABD∽△OBH,∴=,∴=,∴+=+,∴+=,∴+=1,解得:OH=36,∴跷跷板AB的支撑点O到地面的高度OH是36cm,故选:A.二十.解直角三角形(共1小题)27.(2023•丹东)如图,在平面直角坐标系中,点O是坐标原点,已知点A(3,0),B(0,4),点C在x 轴负半轴上,连接AB,BC,若tan∠ABC=2,以BC为边作等边三角形BCD,则点C的坐标为(﹣2,0);点D的坐标为(﹣1﹣2,2+)或(﹣1+2,2﹣).【分析】过点C作CE⊥AB于E,先求处AB=5,再设BE=t,由tan∠ABC=2得CE=2t,进而得BC =,由三角形的面积公式得S△ABC=AC•OB=AB•CE,即5×2t=4×(3+OC),则OC=﹣3,然后在Rt△BOC中由勾股定理得,由此解出t1=2,t2=10(不合题意,舍去),此时OC=﹣3=2,故此可得点C的坐标;设点D的坐标为(m,n),由两点间的距离公式得:BC2=20,BD2=(m﹣0)2+(n﹣4)2,CD2=(m+2)2+(n﹣0)2,由△BCD为等边三角形得,整理:,②﹣①整理得m=3﹣2n,将m=3﹣2n代入①整理得n2﹣4n+1=0,解得n=,进而再求出m即可得点D的坐标.【解答】解:过点C作CE⊥AB于E,如图:∵点A(3,0),B(0,4),由两点间的距离公式得:AB==5,设BE=t,∵tan∠ABC=2,在Rt△BCE中,tan∠ABC=,∴=2,∴CE=2t,由勾股定理得:BC==t,∵CE⊥AB,OB⊥AC,AC=OC+OA=3+OC,∴S△ABC=AC•OB=AB•CE,即:5×2t=4×(3+OC),∴OC=﹣3,在Rt△BOC中,由勾股定理得:BC2﹣OB2=OC2,即,整理得:t2﹣12t+20=0,解得:t1=2,t2=10(不合题意,舍去),∴t=2,此时OC=﹣3=2,∴点C的坐标为(﹣2,0),设点D的坐标为(m,n),由两点间的距离公式得:BC2=(﹣2﹣0)2+(0﹣4)2=20,BD2=(m﹣0)2+(n﹣4)2,CD2=(m+2)2+(n﹣0)2,∵△BCD为等边三角形,∵BD=CD=BC,∴,整理得:,②﹣①得:4m+8n=12,∴m=3﹣2n,将m=3﹣2n代入①得:(3﹣2n)2+n2﹣8n=4,整理得:n2﹣4n+1=0,解得:n=,当n=时,m=3﹣2n=,当n=时,m=3﹣2n=,∴点D的坐标为或.故答案为:(﹣2,0);或.二十一.解直角三角形的应用(共1小题)28.(2023•杭州)第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE,△ABF,△BCG,△CDH)和中间一个小正方形EFGH 拼成的大正方形ABCD中,∠ABF>∠BAF,连接BE.设∠BAF=α,∠BEF=β,若正方形EFGH与正方形ABCD的面积之比为1:n,tanα=tan2β,则n=()A.5B.4C.3D.2【分析】设AE=a,DE=b,则BF=a,AF=b,解直角三角形可得,化简可得(b﹣a)2=ab,a2+b2=3ab,结合勾股定理及正方形的面积公式可求得S正方形EFGH;S正方形ABCD=1:3,进而可求解n的值.【解答】解:设AE=a,DE=b,则BF=a,AF=b,∵tanα=,tanβ=,tanα=tan2β,∴,∴(b﹣a)2=ab,∴a2+b2=3ab,∵a2+b2=AD2=S正方形ABCD,(b﹣a)2=S正方形EFGH,∴S正方形EFGH:S正方形ABCD=ab:3ab=1:3,∵S正方形EFGH:S正方形ABCD=1:n,∴n=3.故选:C.。
中考数学部分选填压轴
选填压轴题选集一.选择题(共16小题)1.函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=AP.其中所有正确结论的序号是()A.①②③B.②③④C.①③④D.①②④2.如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:①S△ADB=S△ADC;②当0<x<3时,y1<y2;③如图,当x=3时,EF=;④当x>0时,y1随x的增大而增大,y2随x的增大而减小.其中正确结论的个数是()A.1B.2C.3D.43.如图,A、B是双曲线上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若S△AOC=6.则k的值为()A.1B.2C.4D.无法确定4.如图,是二次函数 y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是()A.①②B.②③C.①③D.①②③④5.如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是()A.①②③B.②③B.①③④D.②④6.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2.上述说法正确的是()A.①②④B.③④C.①③④D.①②7.如图,已知A、B两点的坐标分别为(﹣2,0)、(0,1),⊙C 的圆心坐标为(0,﹣1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是()A.3B.C.D.48.图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4B.6C.4﹣2D.10﹣49.如图,AB为半圆O在直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,连接OD、OC,下列结论:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2,④OD:OC=DE:EC,⑤OD2=DE•CD,正确的有()A.2个B.3个C.4个D.5个10.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.2B.11.如图,⊙O的半径为2,AB、CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A、B、C、D不重合),经过P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为()B.C.D.A.B.12.一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是()A.5:4B.5:2C.:2D.:13.如图,在平面直角坐标系中,⊙O的半径为1,点P在经过点A(﹣4,0)、B(0,4)的直线上,PQ切⊙O于点Q,则切线长PQ的最小值为()A.B.2C.3D.414.如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是()B.5C.6D.A.15.如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,平行于对角线BD的直线l从O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动到直线l与正方形没有交点为止.设直线l扫过正方形OBCD的面积为S,直线l运动的时间为t(秒),下列能反映S与t之间函数关系的图象是()A.B.C.D.16.如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为()A.B.C.D.二.填空题(共7小题)17.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(﹣2,﹣2),则k的值为.18.如图,已知点A,C在反比例函数y=(a>0)的图象上,点B,D在反比例函数y=(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a﹣b的值是.19.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x 轴的正半轴上,点C在边DE上,反比例函数y=(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为.20.如图,点A1,A2依次在y=(x>0)的图象上,点B1,B2依次在x轴的正半轴上.若△A1OB1,△A2B1B2均为等边三角形,则点B2的坐标为.21.如图,若双曲线y=(k>0)与边长为3的等边△AOB(O为坐标原点)的边OA、AB 分别交于C、D两点,且OC=2BD,则k的值为.22.如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B,C在反比例函数y=(x>0)的图象上,则△OAB的面积等于.23.如图,已知点A1,A2,…,A n均在直线y=x﹣1上,点B1,B2,…,B n均在双曲线y=﹣上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,A n B n⊥x轴,B n A n+1⊥y 轴,…,记点A n的横坐标为a n(n为正整数).若a1=﹣1,则a2015=.2018年06月02日445****3977的初中数学组卷参考答案一.选择题(共17小题)1.C;2.C;3.C;4.C;5.C;6.A;7.B;8.D;9.C;10.A;11.A;12.A;13.A;14.B;15.D;16.B;二.填空题(共7小题)17.4;18.6;19.6+2;20.(6,0);21.;22.;23.2;。
2023年各地中考几何压轴题汇编附详解
2023年各地中考几何压轴题汇编1.(2023·安徽)在Rt ABC △中.M 是斜边AB 的中点.将线段MA 绕点M 旋转至MD 位置.点D 在直线AB 外.连接,AD BD .(1)如图1.求ADB ∠的大小;(2)已知点D 和边AC 上的点E 满足,ME AD DE AB ⊥∥.(ⅰ)如图2.连接CD .求证:BD CD =;(ⅱ)如图3.连接BE .若8,6AC BC ==.求tan ABE ∠的值.2.(2023·北京)在ABC 中、()045B C αα∠=∠=︒<<︒.AM BC ⊥于点M .D 是线段MC 上的动点(不与点M .C 重合).将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1.当点E 在线段AC 上时.求证:D 是MC 的中点;(2)如图2.若在线段BM 上存在点F (不与点B .M 重合)满足DF DC =.连接AE .EF .直接写出AEF ∠的大小.并证明.3.(2023·福建)如图1.在ABC 中.90,,BAC AB AC D ∠=︒=是AB 边上不与,A B 重合的一个定点.AO BC ⊥于点O .交CD 于点E .DF 是由线段DC 绕点D 顺时针旋转90︒得到的.,FD CA 的延长线相交于点M .(1)求证:ADE FMC △∽△;(2)求ABF ∠的度数;(3)若N 是AF 的中点.如图2.求证:ND NO =.4.(2023·广西)如图.ABC是边长为4的等边三角形.点D.E.F分别在边AB.BC.CA==.上运动.满足AD BE CF≌;(1)求证:ADF BED(2)设AD的长为x.DEF的面积为y.求y关于x的函数解析式;(3)结合(2)所得的函数.描述DEF的面积随AD的增大如何变化.5.(2023·河北)如图1和图2.平面上.四边形ABCD 中.8,12,6,90AB BC CD DA A ====∠=︒.点M 在AD 边上.且2DM =.将线段MA 绕点M 顺时针旋转(0180)n n ︒<≤到,MA A MA ''∠的平分线MP 所在直线交折线—AB BC 于点P .设点P 在该折线上运动的路径长为(0)x x >.连接A P '.(1)若点P 在AB 上.求证:A P AP '=;(2)如图2.连接BD .①求CBD ∠的度数.并直接写出当180n =时.x 的值;①若点P 到BD 的距离为2.求tan A MP '∠的值;(3)当08x <≤时.请直接..写出点A '到直线AB 的距离.(用含x 的式子表示).6.(2023·山西)问题情境:“综合与实践”课上.老师提出如下问题:将图1中的矩形纸片沿对角线剪开.得到两个全等的三角形纸片.表示为ABC 和DFE △.其中90,ACB DEF A D ∠=∠=︒∠=∠.将ABC 和DFE △按图2所示方式摆放.其中点B 与点F 重合(标记为点B ).当ABE A ∠=∠时.延长DE 交AC 于点G .试判断四边形BCGE 的形状.并说明理由.(1)数学思考:谈你解答老师提出的问题;(2)深入探究:老师将图2中的DBE 绕点B 逆时针方向旋转.使点E 落在ABC 内部.并让同学们提出新的问题.①“善思小组”提出问题:如图3.当ABE BAC ∠=∠时.过点A 作AM BE ⊥交BE 的延长线于点,M BM 与AC 交于点N .试猜想线段AM 和BE 的数量关系.并加以证明.请你解答此问题;①“智慧小组”提出问题:如图4.当CBE BAC ∠=∠时.过点A 作AH DE ⊥于点H .若9,12BC AC ==.求AH 的长.请你思考此问题.直接写出结果.7.(2023·深圳)(1)如图.在矩形ABCD 中.E 为AD 边上一点.连接BE .①若BE BC =.过C 作CF BE ⊥交BE 于点F .求证:ABE FCB ≌△△;②若20ABCD S =矩形时.则BE CF ⋅=______.(2)如图.在菱形ABCD 中.1cos 3A =.过C 作CE AB ⊥交AB 的延长线于点E .过E 作EF AD ⊥交AD 于点F .若24ABCD S =菱形时.求EF BC ⋅的值.(3)如图.在平行四边形ABCD 中.60A ∠=︒.6AB =.5AD =.点E 在CD 上.且2CE =.点F 为BC 上一点.连接EF .过E 作EG EF ⊥交平行四边形ABCD 的边于点G .若EF EG ⋅=.请直接写出AG 的长.8.(2023·无锡)如图.四边形ABCD 是边长为4的菱形.60A ∠=︒.点Q 为CD 的中点.P 为线段AB 上的动点.现将四边形PBCQ 沿PQ 翻折得到四边形PB C Q ''.(1)当45QPB ∠=︒时.求四边形BB C C ''的面积;(2)当点P 在线段AB 上移动时.设BP x =.四边形BB C C ''的面积为S .求S 关于x 的函数表达式.9.(2023·武汉)问题提出:如图(1).E 是菱形ABCD 边BC 上一点.AEF △是等腰三角形.AE EF =.()90,α∠=∠=≥︒AEF ABC a AF 交CD 于点G .探究GCF ∠与α的数量关系.问题探究:(1)先将问题特殊化.如图(2).当90α=︒时.直接写出GCF ∠的大小;(2)再探究一般情形.如图(1).求GCF ∠与α的数量关系.问题拓展:(3)将图(1)特殊化.如图(3).当120α=︒时.若12DG CG =.求BE CE 的值.10.(2023·徐州)【阅读理解】如图1.在矩形ABCD 中.若,AB a BC b ==.由勾股定理.得222AC a b =+.同理222BD a b =+.故()22222AC BD a b+=+.【探究发现】如图2.四边形ABCD 为平行四边形.若,AB a BC b ==.则上述结论是否依然成立?请加以判断.并说明理由.【拓展提升】如图3.已知BO 为ABC 的一条中线.,,AB a BC b AC c ===.求证:222224a b c BO +=-.【尝试应用】如图4.在矩形ABCD 中.若8,12AB BC ==.点P 在边AD 上.则22PB PC +的最小值为_______.11.(2023·黄冈)【问题呈现】CAB △和CDE 都是直角三角形.90,,ACB DCE CB mCA CE mCD ∠=∠=︒==.连接AD .BE .探究AD .BE 的位置关系.(1)如图1.当1m =时.直接写出AD .BE 的位置关系:____________;(2)如图2.当1m ≠时.(1)中的结论是否成立?若成立.给出证明;若不成立.说明理由. 【拓展应用】(3)当4m AB DE ===时.将CDE 绕点C 旋转.使,,A D E 三点恰好在同一直线上.求BE 的长.12.(2023·十堰)过正方形ABCD 的顶点D 作直线DP .点C 关于直线DP 的对称点为点E .连接AE .直线AE 交直线DP 于点F .(1)如图1.若25CDP ∠=︒.则DAF ∠=___________︒;(2)如图1.请探究线段CD .EF .AF 之间的数量关系.并证明你的结论;(3)在DP 绕点D 转动的过程中.设AF a =.EF b =请直接用含,a b 的式子表示DF 的长.13.(2023·随州)1643年.法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A .B .C .求平面上到这三个点的距离之和最小的点的位置.意大利数学家和物理学家托里拆利给出了分析和证明.该点也被称为“费马点”或“托里拆利点”.该问题也被称为“将军巡营”问题.(1)下面是该问题的一种常见的解决方法.请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空.①处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空.①处填写角度数.①处填写该三角形的某个顶点) 当ABC 的三个内角均小于120︒时.如图1.将APC △绕.点C 顺时针旋转60︒得到A P C ''.连接PP '.由60PC P C PCP ''=∠=︒,.可知PCP '△为 ① 三角形.故PP PC '=.又P A PA ''=.故PA PB PC PA PB PP A B '''++=++≥.由 ① 可知.当B .P .P '.A 在同一条直线上时.PA PB PC ++取最小值.如图2.最小值为A B '.此时的P 点为该三角形的“费马点”.且有APC BPC APB ∠=∠=∠= ① ; 已知当ABC 有一个内角大于或等于120︒时.“费马点”为该三角形的某个顶点.如图3.若120BAC ∠≥︒.则该三角形的“费马点”为 ① 点.(2)如图4.在ABC 中.三个内角均小于120︒.且3430AC BC ACB ==∠=︒,,.已知点P 为ABC 的“费马点”.求PA PB PC ++的值;(3)如图5.设村庄A .B .C 的连线构成一个三角形.且已知4km 60AC BC ACB ==∠=︒,,.现欲建一中转站P 沿直线向A .B .C 三个村庄铺设电缆.已知由中转站P到村庄A.B.C的铺设成本分别为a元/km.a元/km元/km.选取合适的P的位置.可以使总的铺设成本最低为___________元.(结果用含a的式子表示)14.(2023·东营)(1)用数学的眼光观察.如图.在四边形ABCD 中.AD BC =.P 是对角线BD 的中点.M 是AB 的中点.N 是DC 的中点.求证:PMN PNM ∠=∠.(2)用数学的思维思考.如图.延长图中的线段AD 交MN 的延长线于点E .延长线段BC 交MN 的延长线于点F .求证:AEM F ∠=∠.(3)用数学的语言表达.如图.在ABC 中.AC AB <.点D 在AC 上.AD BC =.M 是AB 的中点.N 是DC 的中点.连接MN 并延长.与BC 的延长线交于点G .连接GD .若60ANM ∠=︒.试判断CGD △的形状.并进行证明.15.(2023·临沂) 如图.90,,,A AB AC BD AB BC AB BD ∠=︒=⊥=+.(1)写出AB 与BD 的数量关系;(2)延长BC 到E .使CE BC =.延长DC 到F .使CF DC =.连接EF .求证:EF AB ⊥. (3)在(2)的条件下.作ACE ∠的平分线.交AF 于点H .求证:AH FH =.16.(2023· 烟台)如图.点C 为线段AB 上一点.分别以,AC BC 为等腰三角形的底边.在AB 的同侧作等腰ACD 和等腰BCE .且A CBE ∠=∠.在线段EC 上取一点F .使EF AD =.连接,BF DE .(1)如图1.求证:DE BF =;(2)如图2.若2AD BF =,的延长线恰好经过DE 的中点G .求BE 的长.17.(2023·邵阳)如图.在等边三角形ABC 中.D 为AB 上的一点.过点D 作BC 的平行线DE 交AC 于点E .点P 是线段DE 上的动点(点P 不与D E 、重合).将ABP 绕点A 逆时针方向旋转60︒.得到ACQ .连接,EQ PQ PQ 、交AC 于F .(1)证明:在点P 的运动过程中.总有120PEQ ∠=︒. (2)当APDP为何值时.AQF 是直角三角形?18.(2023·湘潭)问题情境:小红同学在学习了正方形的知识后.进一步进行以下探究活动:在正方形ABCD的边BC上任意取一点G.以BG为边长向外作正方形BEFG.将正方形BEFG绕点B顺时针旋转.特例感知:,相交于点P.小红发现点P恰为DF的中点.如图(1)当BG在BC上时.连接DF AC①.针对小红发现的结论.请给出证明;(2)小红继续连接EG.并延长与DF相交.发现交点恰好也是DF中点P.如图②.根据小∆的形状.并说明理由;红发现的结论.请判断APE规律探究:(3)如图③.将正方形BEFG绕点B顺时针旋转α.连接DF.点P是DF中点.连接AP. EP.AE.APE∆的形状是否发生改变?请说明理由.19.(2023·岳阳)如图1.在ABC 中.AB AC =.点,M N 分别为边,AB BC 的中点.连接MN .初步尝试:(1)MN 与AC 的数量关系是_________.MN 与AC 的位置关系是_________.特例研讨:(2)如图2.若90,BAC BC ∠=︒=先将BMN 绕点B 顺时针旋转α(α为锐角).得到BEF △.当点,,A E F 在同一直线上时.AE 与BC 相交于点D .连接CF .(1)求BCF ∠的度数;(2)求CD 的长.深入探究:(3)若90BAC ∠<︒.将BMN 绕点B 顺时针旋转α.得到BEF △.连接AE .CF .当旋转角α满足0360α︒<<︒.点,,C E F 在同一直线上时.利用所提供的备用图探究BAE ∠与ABF ∠的数量关系.并说明理由.20.(2023·大连)综合与实践问题情境:数学活动课上.王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质. 已知,90AB AC A =∠>︒.点E 为AC 上一动点.将ABE 以BE 为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D 落在BC 上时.2EDC ACB ∠=∠.”小红:“若点E 为AC 中点.给出AC 与DC 的长.就可求出BE 的长.”实践探究:奋进小组的同学们经过探究后提出问题1.请你回答:问题1:在等腰ABC 中.,90,AB AC A BDE =∠>︒△由ABE 翻折得到.(1)如图1.当点D 落在BC 上时.求证:2EDC ACB ∠=∠;(2)如图2.若点E 为AC 中点.43AC CD ==,.求BE 的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成90A ∠<︒的等腰三角形.可以将问题进一步拓展.问题2:如图3.在等腰ABC 中.90,4,2A AB AC BD D ABD ∠<===∠=∠︒.若1CD =.则求BC 的长.2023年各地中考几何压轴题汇编详解1.(2023·安徽)在Rt ABC △中.M 是斜边AB 的中点.将线段MA 绕点M 旋转至MD 位置.点D 在直线AB 外.连接,AD BD .(1)如图1.求ADB ∠的大小;(2)已知点D 和边AC 上的点E 满足,ME AD DE AB ⊥∥.(ⅰ)如图2.连接CD .求证:BD CD =;(ⅱ)如图3.连接BE .若8,6AC BC ==.求tan ABE ∠的值.【答案】(1)90ADB ∠=︒ (2)(ⅰ)见解析;(ⅱ)21 【小问1详解】解:①MA MD MB ==.∴,MAD MDA MBD MDB ∠=∠∠=∠.在ABD △中.=180MAD MDA MBD MDB ∠+∠+∠+∠︒. ∴180902ADB ADM BDM ︒∠=∠+∠==︒. 【小问2详解】证明:(ⅰ)证法一:如图.延长BD AC 、.交于点F .则90BCF ∠=︒.∵ME AD ⊥.90ADB ∠=︒.∴EM BD ∥.又∵DE AB ∥.∴四边形BDEM 是平行四边形.∴DE BM =.∵M 是AB 的中点..∴AM BM =.∴DE AM =.∴四边形AMDE 是平行四边形.∵ME AD ⊥.∴AMDE 是菱形.∴AE AM =.∵EM BD ∥. ∴AE AM AF AB=. ∴AB AF =.∵90ADB ∠=︒.即AD BF ⊥.∴BD DF =.即点D 是Rt BCF 斜边的中点.∴BD CD =.证法二:∵90ACB ADB ∠=∠=︒.M 是斜边AB 的中点.∴点A C D B 、、、在以M 为圆心.AB 为直径的M 上.∵ME AD ⊥.∴ME 垂直平分AD .∴EA ED =.∴EAD EDA ∠=∠.∵DE AB ∥.∴BAD EDA ∠=∠.∴EAD BAD ∠=∠.∴BD CD =.证法三:∵ME AD ⊥.90ADB ∠=︒.∴EM BD ∥.又∵DE AB ∥.∴四边形BDEM 是平行四边形.∴DE BM =.∵M 是AB 的中点.∴AM BM =.∴DE AM =.∴四边形AMDE 是平行四边形.∵ME AD ⊥.∴AMDE 是菱形.∴EAD MAD ∠=∠.∵90ACB ADB ∠=∠=︒.M 是斜边AB 的中点.∴点A C D B 、、、在以M 为圆心.AB 为直径的M 上.∴BD CD =.(2)如图所示.过点E 作EH AB ⊥于点H .①8,6AC BC ==.∴10AB =.则152AE AM AB ===. ∵,90EAH BAC ACB AHE ∠=∠∠=∠=︒.①AHE ACB ∽. ①510EH AH AE BC AC AB ===. ①3,4EH AH ==.∴1046BH AB AH =-=-=.∴31tan 62EH ABE BH ===. 2.(2023·北京)在ABC 中、()045B C αα∠=∠=︒<<︒.AM BC ⊥于点M .D 是线段MC 上的动点(不与点M .C 重合).将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1.当点E 在线段AC 上时.求证:D 是MC 的中点;(2)如图2.若在线段BM 上存在点F (不与点B .M 重合)满足DF DC =.连接AE .EF .直接写出AEF ∠的大小.并证明.【答案】(1)见解析 (2)90AEF ∠=︒.证明见解析【小问1详解】证明:由旋转的性质得:DMDE =.2MDE α∠=.∵C α∠=.∴D DEC M E C α∠-∠∠==.∴C DEC ∠=∠.∴DE DC =.∴DM DC =.即D 是MC 的中点;【小问2详解】 90AEF ∠=︒;证明:如图2.延长FE 到H 使FE EH =.连接CH .AH .∵DF DC =.∴DE 是FCH ∆的中位线.∴DE CH ∥.2CH DE =.由旋转的性质得:DMDE =.2MDE α∠=.∴2FCH α∠=.∵B C α∠=∠=.∴ACH α∠=.ABC 是等腰三角形.∴B ACH ∠∠=.AB AC =.设DM DE m ==.CD n =.则2CH m =.CM m n =+.∴DF CD n ==.∴FM DF DM n m =-=-.∵AM BC ⊥.∴BM CM m n ==+.∴()2BF BM FM m n n m m =-=+--=.∴CH BF =.在ABF △和ACH 中.AB AC B ACH BF CH =⎧⎪∠=∠⎨⎪=⎩.∴()SAS ABF ACH ≅.∴AF AH =.∵FE EH =.∴AE FH ⊥.即90AEF ∠=︒.3.(2023·福建)如图1.在ABC 中.90,,BAC AB AC D ∠=︒=是AB 边上不与,A B 重合的一个定点.AO BC ⊥于点O .交CD 于点E .DF 是由线段DC 绕点D 顺时针旋转90︒得到的.,FD CA 的延长线相交于点M .(1)求证:ADE FMC △∽△;(2)求ABF ∠的度数;(3)若N 是AF 的中点.如图2.求证:ND NO =.【答案】(1)见解析 (2)135ABF ∠=︒ (3)见解析.【小问1详解】解: DF 是由线段DC 绕点D 顺时针旋转90︒得到的.45DFC ∴∠=︒.,AB AC AO BC =⊥.12BAO BAC ∴∠=∠. 90BAC ∠=︒.45BAO ABC ∴∠=∠=︒.BAO DFC ∴∠=∠.90,90EDA ADM M ADM ︒∠+∠︒=∠+∠=.EDA M ∴∠=∠.ADE FMC ∴△∽△.【小问2详解】解:如图1:设BC 与DF 的交点为I .45,DBI CFI BID FIC ︒∠=∠=∠=∠.BID FIC ∴△∽△.BI DI FI CI∴=. BI FI DI CI ∴=. BIF DIC ∠=∠.BIF DIC ∴△∽△.IBF IDC ∴∠=∠.又90IDC =︒∠.90IBF ∴∠=︒.45,ABC ABF ABC IBF ∠=∠︒=∠+∠.135ABF ∴∠=︒.【小问3详解】解:如图2:延长ON 交BF 于点T .连接,DT DO .90FBI BOA ∠︒∠==.BF AO ∴∥.FTN AON ∴∠=∠. N 是AF 的中点.AN NF ∴=.又TNF ONA ∠=∠.TNF ONA ∴△≌△.,NT NO FT AO ∴==.90,,BAC AB AC AO BC =︒∠=⊥.AO CO ∴=.FT CO ∴=.由(2)知.BIF DIC △∽△.DFT DCO ∴∠=∠.DF DC .DFT DCO ∴△≌△.,DT DO FDT CDO ∴=∠=∠.FDT FDO CDO FDO ∴∠+∠=∠+∠.即ODT CDF ∠=∠.90CDF ∠=︒.90ODT CDF ∴∠=∠=︒.12ND TO NO ∴==. 4.(2023·广西) 如图.ABC 是边长为4的等边三角形.点D .E .F 分别在边AB .BC .CA 上运动.满足AD BE CF ==.(1)求证:ADF BED ≌;(2)设AD 的长为x .DEF 的面积为y .求y 关于x 的函数解析式;(3)结合(2)所得的函数.描述DEF 的面积随AD 的增大如何变化.【答案】(1)见详解 ; (2)24y x =-+ ; (3)当24x <<时.DEF 的面积随AD 的增大而增大.当02x <<时.DEF 的面积随AD 的增大而减小.【小问1详解】证明:∵ABC 是边长为4的等边三角形.∴60∠=∠=∠=︒A B C .4AB BC AC ===.∵AD BE CF ==.∴AF BD CE ==.在ADF △和BED 中.AF BD A B AD BE =⎧⎪∠=∠⎨⎪=⎩.∴()SAS ADF BED ≌;【小问2详解】解:分别过点C 、F 作CH AB ⊥.FG AB ⊥.垂足分别为点H 、G .如图所示:在等边ABC 中.60A B ACB ∠=∠=∠=︒.4AB BC AC ===.∴sin 60CH AC =⋅︒=∴12ABCSAB CH =⋅= 设AD 的长为x .则AD BE CF x ===.4AF x =-.∴)sin 6042FG AF x =⋅︒=-.∴()142ADFSAD FG x =⋅=-. 同理(1)可知ADF BED CFE ≌≌. ∴()344ADFBEDCFESSSx x ===-. ∵DEF 的面积为y .∴()234444ABCADFy SSx xx =-=-=-+ 【小问3详解】 解:由(2)可知:2y x=-+∴04a =>.对称轴为直线2x ==. ∴当2x >时.y 随x 的增大而增大.当2x <时.y 随x 的增大而减小;即当24x <<时.DEF 的面积随AD 的增大而增大.当02x <<时.DEF 的面积随AD 的增大而减小.5.(2023·河北)如图1和图2.平面上.四边形ABCD 中.8,12,6,90AB BC CD DA A ====∠=︒.点M 在AD 边上.且2DM =.将线段MA 绕点M 顺时针旋转(0180)n n ︒<≤到,MA A MA ''∠的平分线MP 所在直线交折线—AB BC 于点P .设点P 在该折线上运动的路径长为(0)x x >.连接A P '.(1)若点P 在AB 上.求证:A P AP '=; (2)如图2.连接BD .①求CBD ∠的度数.并直接写出当180n =时.x 的值; ①若点P 到BD 的距离为2.求tan A MP '∠的值;(3)当08x <≤时.请直接..写出点A '到直线AB 的距离.(用含x 的式子表示). 【答案】(1)见解析 (2)①90CBD ∠=︒.13x =;①76①236 .(3)22816x x +. 【小问1详解】①将线段MA 绕点M 顺时针旋转()0180n n ︒<≤到MA '. ①A M AM '=.①A MA '∠的平分线MP 所在直线交折线AB BC -于点P . ①A MP AMP '∠=∠. 又①PM PM =.①)('SAS AMP MP A ∆≅∆. ①A P AP '=; 【小问2详解】①①8AB =.6DA =.90A ∠=︒.①10BD ==.①=BC 12CD =.①(222210144BC BD +=+=.2212144CD ==.①222BC BD CD +=. ①90CBD ∠=︒; 如图所示.当180n =时.①PM 平分A MA '∠. ①90PMA ∠=︒. ①PM AB ∥.①DNM ∆∽DBA ∆. ①DN DM MNDB DA BA ==. ①2DM =.6DA =. ①21068DN MN==. ①103DN =.83MN =.①203BN BD DN =-=. ①90PBN NMD ∠=∠=︒.PNB DNM ∠=∠. ①PBN ∆∽DMN ∆.①PB BNDM MN=.即203823PB =. ①解得5PB =.①8513x AB PB =+=+=.①如图所示.当P 点在AB 上时.2PQ =.A MP AMP '∠=∠.∵8,6,90AB DA A ==∠=︒.∴10BD ==.63sin 105AD DBA BD ∠===. ∴2103sin 35BQ BP DBA ===∠.①1014833AP AB BP =-=-= ∴1473tan tan 46AP A MP AMP AM '∠=∠===; 如图所示.当P 在BC 上时.则2PB =.过点P 作PQ AB ⊥交AB 的延长线于点Q .延长MP 交AB 的延长线于点H .∵90PQB CBD DAB ∠=∠=∠=︒. ①90QPB PBQ DBA ∠=︒-∠=∠. ①PQB BAD ∽.∴PQ QB PBBA AD BD ==. 即8610PQ QB PB==.∴4855PQ PB ==.3655BQ PB ==. ∴465AQ AB BQ =+=. ∵,PQ AB DA AB ⊥⊥. ∴PQ AD ∥. ∴HPQ HMA ∽.∴HQ PQHA AM=. ∴854645HQHQ =+. 解得:9215HQ =. ∴922315tan tan tan 865HQ A MP AMP QPH PQ '∠=∠=∠===. 综上所述.tan A MP '∠的值为76①236① 【小问3详解】 解:①当08x <≤时. ∴P 在AB 上.如图所示.过点A '作A E AB '⊥交AB 于点E .过点M 作MF A E '⊥于点F .则四边形AMFE 是矩形.①AE FM =.4EF AM ==.①A MP AMP '≌. ①90PA M A '∠=∠=︒. ①90PA E FA M ''∠+∠=︒. 又90A MF FA M ''∠+∠=︒. ∴PA E A MF ''∠=∠. 又∵90A EP MFA ''∠=∠=︒. ∴A PE MA F ''∽. ∴A P PE A EMA A F FM''==''. ∵A P AP x '==.4MA MA '==.设FM AE y ==.A E h '=即44x x y h h y-==-. ∴4hy x=.()()44x y x h -=-. ∴()444h x x h x ⎛⎫-=- ⎪⎝⎭. 整理得22816x h x =+. 即点A '到直线AB 的距离为22816x x +.6.(2023·山西)问题情境:“综合与实践”课上.老师提出如下问题:将图1中的矩形纸片沿对角线剪开.得到两个全等的三角形纸片.表示为ABC 和DFE △.其中90,ACB DEF A D ∠=∠=︒∠=∠.将ABC 和DFE △按图2所示方式摆放.其中点B 与点F 重合(标记为点B ).当ABE A ∠=∠时.延长DE 交AC 于点G .试判断四边形BCGE 的形状.并说明理由.(1)数学思考:谈你解答老师提出的问题;(2)深入探究:老师将图2中的DBE 绕点B 逆时针方向旋转.使点E 落在ABC 内部.并让同学们提出新的问题.①“善思小组”提出问题:如图3.当ABE BAC ∠=∠时.过点A 作AM BE ⊥交BE 的延长线于点,M BM 与AC 交于点N .试猜想线段AM 和BE 的数量关系.并加以证明.请你解答此问题;①“智慧小组”提出问题:如图4.当CBE BAC ∠=∠时.过点A 作AH DE ⊥于点H .若9,12BC AC ==.求AH 的长.请你思考此问题.直接写出结果.【答案】(1)正方形.见解析 .(2)①AM BE =.见解析;①275. 【小问1详解】解:四边形BCGE 为正方形.理由如下: ①90BED ∠=︒.①18090BEG BED ∠=︒-∠=︒. ①ABE A ∠=∠. ①AC BE ∥.①90CGE BED ∠=∠=︒. ①90C ∠=︒.①四边形BCGE 为矩形. ①ACB DEB ≅. ①BC BE =.①矩形BCGE 为正方形. 【小问2详解】 :①AM BE =.证明:①ABE BAC ∠=∠. ①AN BN =. ①90C ∠=︒. ①BC AN ⊥.①AM BE ⊥.即AM BN ⊥. ①1122ABN S AN BC BN AM =⋅=⋅△. ①AN BN =. ①BC AM =.由(1)得BE BC =. ①AM BE =.①解:如图:设,AB DE 的交点为M .过M 作MG BD ⊥于G . ①ACB DEB ≅.①9,12BE BC DE AC ====.A D ABC DBE ∠=∠∠=∠,. ①CBE DBM ∠=∠; ①CBE BAC ∠=∠. ①D BAC ∠=∠. ①MD MB =. ①MG BD ⊥. ①点G 是BD 的中点;由勾股定理得15AB ==.①11522DG BD ==; ①cos DG DED DM BD∠==.①1515752128DG BD DM DE ⨯⋅===.即758BM DM ==; ①75451588AM AB BM =-=-=; ①,AH DE BE DE ⊥⊥.AMH BME ∠=∠. ①AMH BME .①35AH AM BE BM ==. ①33279555AH BE ==⨯=.即AH 的长为275.7.(2023·深圳)(1)如图.在矩形ABCD 中.E 为AD 边上一点.连接BE . ①若BE BC =.过C 作CF BE ⊥交BE 于点F .求证:ABE FCB ≌△△; ②若20ABCD S =矩形时.则BE CF ⋅=______.(2)如图.在菱形ABCD 中.1cos 3A =.过C 作CE AB ⊥交AB 的延长线于点E .过E 作EF AD ⊥交AD 于点F .若24ABCD S =菱形时.求EF BC ⋅的值.(3)如图.在平行四边形ABCD 中.60A ∠=︒.6AB =.5AD =.点E 在CD 上.且2CE =.点F 为BC 上一点.连接EF .过E 作EG EF ⊥交平行四边形ABCD 的边于点G .若EF EG ⋅=.请直接写出AG 的长.【答案】(1)①见解析;②20;(2)32;(3)3或4或32. 【详解】解:(1)①①四边形ABCD 是矩形.则90A ABC ∠=∠=︒. ①90ABE CBF ∠+∠=︒. 又①CF BC ⊥.∴90FCB CBF ∠+∠=︒.90CFB A ∠=∠=︒. ∴FCB ABE ∠=∠. 又∵BC BE =. ∴ABE FCB ≌△△;②由①可得FCB ABE ∠=∠.90CFB A ∠=∠=︒. ∴∽ABE FCB . ∴AB BE CF BC=. 又∵20ABCD S AB CD =⋅=矩形.∴20BE CF AB BC ⋅=⋅=.故答案为:20.(2)①在菱形ABCD 中.1cos 3A =. ∴AD BC ∥.AB BC =.则CBE A ∠=∠.①CE AB ⊥.①90CEB ∠=︒. ①cos BE CBE CB∠=. ∴1cos cos 3BE BC CBE BC A BC =⋅∠=⨯∠=. ①114333AE AB BE AB BC AB AB AB =+=+=+=. ①EF AD ⊥.CE AB ⊥.①90AFE BEC ∠=∠=︒.又CBE A ∠=∠.①AFE BEC △∽△. ∴AE EF AF BC CE BE==. ∴EF BC ⋅2443342433ABCD AE CE AB CE S =⨯==⨯⋅==菱形; (3)①当点G 在AD 边上时.如图所示.延长FE 交AD 的延长线于点M .连接GF .过点E 作EH DM ⊥于点H .①平行四边形ABCD 中.6AB =.2CE =.∴6CD AB ==.624DE DC EC =-=-=.①DM FC ∥.①EDM ECF ∽. ∴422EM ED EF EC ===. ∴2MGE FEG S EM SEF ==. ∴2MGE EFGS S ==EF EG ⋅=在Rt DEH △中.60HDE A ∠=∠=︒.则4EH ===.122DH DE ==. ∴12MG HE ⨯= ∴7MG =.∵,GE EF EH MG ⊥⊥.∴90MEH HEG HGE ∠=︒-∠=∠.∴tan tan MEH HGE ∠=∠.∴HE HM HG HE=. ∴2HE HM HG =⋅.设AG a =.则5GD AD AG a =-=-.527GH GD HD a a =+=-+=-.()77HM GM GH aa =-=--=.∴(()27x x =-.解得:3a =或4a =.即3AG =或4AG =.②当G 点在AB 边上时.如图所示.连接GF .延长GE 交BC 的延长线于点M .过点G 作GN AD ∥.则GN BC ∥.四边形ADNG 是平行四边形.设AG x =.则DN AG x ==.4EN DE DN x =-=-.①GN CM ∥.∴ENG ECM ∽. ∴42EG EN GN x EM EC CM -===. ∴21044GN CM x x ==--. ∴42GEF MEF S EG x S EM -==. ∵EF EG⋅=∴244GEF MEF S S x x==--. 过点E 作EH BC ⊥于点H .在Rt EHC △中.2,60ECECH =∠=︒.①EH =1CH =.①12MEF S MF EH =⨯⨯.则12MF = ∴144MF x =-. ∴14101444x FH MF CM CH x x x=--=--=---.1014144x MH CM CH x x-=+=+=--. 90MEF EHM ∠=∠=︒.∴90FEH MEH M ∠=︒-∠=∠.∴tan tan FEH M ∠=∠. 即FH EH EH HM=. ∴2EH FH HM =⋅.即21444x x x x-=⨯--. 解得:123,82x x ==(舍去). 即32AG =; ③当G 点在BC 边上时.如图所示.过点B 作BT DC ⊥于点T .在Rt BTC 中.1522CT BC ==.2BT ==.∴115222BTC S BT TC =⨯==∵EF EG ⋅=∴EFG S =< ∴G 点不可能在BC 边上. 综上所述.AG 的长为3或4或32. 8.(2023·无锡)如图.四边形ABCD 是边长为4的菱形.60A ∠=︒.点Q 为CD 的中点.P 为线段AB 上的动点.现将四边形PBCQ 沿PQ 翻折得到四边形PB C Q ''.(1)当45QPB ∠=︒时.求四边形BB C C ''的面积;(2)当点P 在线段AB 上移动时.设BP x =.四边形BB C C ''的面积为S .求S 关于x 的函数表达式.【答案】(1)8(2)212S x =++ 【小问1详解】如图.连接BD 、BQ .四边形ABCD 为菱形.∴4CB CD ==.60A C ∠=∠=︒.∴BDC 为等边三角形. Q 为CD 中点.∴2CQ =.BQ CD ⊥.∴BQ =QB PB ⊥.45QPB ∠=︒.∴PBQ 为等腰直角三角形.∴PB =PQ =翻折.∴90BPB ∠='︒.PB PB '=.∴BB '=PE =同理2CQ =.∴CC '=QF = ∴((2211122228222PBB CQC BB C C PBCQ S S SS ''''=-+=⨯⨯+⨯⨯+⨯=四边形梯形;【小问2详解】 如图2.连接BQ 、B Q '.延长PQ 交CC '于点F .PB x =.BQ =90PBQ ∠=︒.∴PQ=.∵1122PBQS PQ BE PB BQ =⨯=⨯.∴BQ PBBEPQ⨯==.∴QE=.∴21212QEBSx==+.90BEQ BQC QFC∠=∠=∠=︒.则90EQB CQF FCQ∠=︒-∠=∠.∴BEQ QFC~.∴2213QFCBEQS CQS QB⎛⎫===⎪⎝⎭.∴QFCS=.∵122BQCS=⨯⨯=∴()22222121212QEB BQC QFCS S S Sx x x⎛⎫=++=+=+⎪⎪+++⎝⎭.9.(2023·武汉)问题提出:如图(1).E是菱形ABCD边BC上一点.AEF△是等腰三角形.AE EF=.()90,α∠=∠=≥︒AEF ABC a AF交CD于点G.探究GCF∠与α的数量关系.问题探究:(1)先将问题特殊化.如图(2).当90α=︒时.直接写出GCF ∠的大小; (2)再探究一般情形.如图(1).求GCF ∠与α的数量关系. 问题拓展:(3)将图(1)特殊化.如图(3).当120α=︒时.若12DG CG =.求BE CE 的值. 【答案】(1)45︒(2)3902GCF α∠=-︒ (3)23BE CE = 【解析】【小问1详解】延长BC 过点F 作FH BC ⊥.∵90BAE AEB ∠+∠=︒.90FEH AEB ∠+∠=︒.∴BAE FEH ∠=∠.在EBA △和FHE 中ABE EHF BAE FEH AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABE BHF ≌.∴AB EH =.BE FH =.∴BC EH =.∴BE CH FH .∴045=∠=∠FCH GCF .故答案为:45︒.【小问2详解】解:在AB 上截取AN .使AN EC =.连接NE .180∠+∠+∠=∠+∠+∠=︒ABC BAE AEB AEF FEC AEB . ABC AEF ∠=∠.∴∠=∠EAN FEC .AE EF =.∴△≌△ANE ECF .∴∠=∠ANE ECF .,AB BC =BN BE ∴=α∠=EBN .1902α︒∴∠=-BNE . ∴∠=∠-∠=∠-∠GCF ECF BCD ANE BCD()139********ααα⎛⎫=︒+-︒-=-︒ ⎪⎝⎭.【小问3详解】解:过点A 作CD 的垂线交CD 的延长线于点P .设菱形的边长为3m . 1,2DG CGm CG m DG 2==∴,.在Rt ADP 中.0120=∠=∠ABC ADC .60ADP ∴∠=︒.3,2∴==PD m AP . 120α=︒.由(2)知.390902∠=-︒=︒GCF a .FGC AGP ∠=∠ .FCG ∽∆∆∴APG . ∴=AP PG CF CG. 5222=m CF m.5CF m ∴=. 在AB 上截取AN .使AN EC =.连接NE .作BO NE ⊥于点O . 由(2)知.ANE ECF △≌△.①NE CF =.∵AB BC =.∴BN BE =.12OE EF EN ===. ∵120ABC ∠=︒.∴30BNE BEN ∠=∠=︒. BE OE =0cos30 . ∴6,5BE m m CE 59= . 23BE CE ∴=.。
初中中考数学几何选择填空压轴题精选配包括答案.doc
2 0 1 6中考数学几何选择填空压轴题精选(配答案)一.(共13 小)1.( 2013?春模)如,点O正方形 ABCD的中心, BE 平分∠ DBC 交 DC于点 E,延 BC到点F,使 FC=EC,接 DF交 BE的延于点 H,接 OH交 DC于点 G,接 HC.以下四个中正确的个数()①OH= BF;②∠ CHF=45°;③ GH= BC;④ DH2=HE?HB.A. 1 个B. 2 个C. 3 个D. 4 个2.(2013?云港模)如, Rt△ABC 中, BC= ,∠ ACB=90°,∠ A=30°, D1是斜 AB的中点,D1作 D1E1⊥AC 于 E1, BE1交 CD1于 D2;D2作 D2 E2⊥AC 于 E2, BE2交 CD1于 D3; D3作D3E3⊥AC 于 E3,⋯,如此,可以依次得到点E4、 E5、⋯、 E2013,分△ BCE1、△ BCE2、△BCE3、⋯、△ BCE2013的面 S1、 S2、 S3、⋯、 S2013. S2013的大小()A.B.C.D.3.如,梯形 ABCD中, AD∥BC,,∠ ABC=45°, AE⊥BC 于点 E,BF⊥AC 于点 F,交AE于点 G, AD=BE,接 DG、 CG.以下:①△ BEG≌△ AEC;②∠ GAC=∠GCA;③ DG=DC;④G AE 中点,△ AGC 的面有最大.其中正确的有()A. 1 个B. 2 个C. 3 个D. 4 个4.如,正方形ABCD中,在 AD的延上取点E, F,使 DE=AD, DF=BD,接 BF 分交 CD, CE于H, G下列:①EC=2DG;②∠ GDH=∠GHD;③S△CDG=S?DHGE;④ 中有 8 个等腰三角形.其中正确的是()A.①③B.②④C.①④D.②③5.( 2008? 州)如,直角梯形ABCD中,∠ BCD=90°, AD∥BC, BC=CD, E 梯形内一点,且∠BEC=90°,将△ BECC点旋90°使 BC 与 DC重合,得到△ DCF,EF 交 CD于 M.已知 BC=5,CF=3, DM: MC的()A. 5: 3 B. 3: 5 C. 4: 3 D. 3: 4 6.如,矩形ABCD的面5,它的两条角交于点O1,以 AB, AO1两作平行四形ABCO11,平行四形 ABCO11的角交 BD于点 02,同以 AB, AO2两作平行四形 ABCO22.⋯,依此推,平行四形ABC2009O2009的面()A.B.C.D.7.如,在角△ ABC 中, AB=6,∠ BAC=45°,∠ BAC 的平分交 BC 于点 D, M, N 分是 AD和 AB上的点, BM+MN的最小是()A.B. 6 C.D. 3 8.( 2013? 牡丹江)如,在△ ABC 中∠ A=60°, BM⊥AC 于点 M,CN⊥AB 于点 N, P BC的中点,接 PM, PN,下列:① PM=PN;②;③△ PMN等三角形;④当∠ ABC=45° ,BN= PC.其中正确的个数是()A. 1 个B. 2 个C. 3 个D. 4 个9.( 2012? 黑河) Rt△ABC 中, AB=AC,点 D BC中点.∠ MDN=90°,∠ MDN 点 D 旋, DM、 DN分与 AB、AC 交于 E、 F 两点.下列:①( BE+CF) =BC;②S△AEF≤S△ABC;③S四边形=AD?EF;AEDF④A D≥EF;⑤A D 与 EF 可能互相平分,其中正确的个数是()A. 1 个B. 2 个C. 3 个D. 4 个10.(2012? 无一模)如,在正方形片ABCD中,角AC、 BD交于点 O,折叠正方形片ABCD,使 AD落在 BD上,点 A 恰好与 BD上的点 F 重合,展开后折痕DE分交 AB、 AC于点 E、 G,接 GF.下列①∠ ADG=°;② tan ∠AED=2;③S△AGD=S△OGD;④四形 AEFG是菱形;⑤ BE=2OG.其中正确的有()A.①④⑤B.①②④C.③④⑤D.②③④11.如,正方形ABCD中, O BD中点,以 BC 向正方形内作等△ BCE,接并延AE 交 CD 于 F,接 BD分交 CE、AF 于 G、 H,下列:①∠ CEH=45°;② GF∥DE;③2OH+DH=BD;④ BG= DG;⑤.其中正确的是()A.①②③B.①②④C.①②⑤D.②④⑤12.如,在正方形ABCD中, AB=4, E CD上一点, AE交 BD 于 F, F 作 FH⊥AE 于 H, H 作GH⊥BD 于 G,下列有四个:① AF=FH,②∠ HAE=45°,③ BD=2FG,④△ CEH 的周定,其中正确的有()A.①②③B.①②④C.①③④D.①②③④13.(2013? 州模)正方形 ABCD、正方形 BEFG和正方形 RKPF的位置如所示,点G在段 DK上,正方形 BEFG的4,△ DEK 的面()A. 10 B. 12 C. 14 D. 16 二.填空(共 16 小)14.如,在梯形ABCD中, AD∥BC,EA⊥AD, M是 AE上一点, F、 G分是 AB、 CM的中点,且∠B AE=∠MCE,∠ MBE=45°,出以下五个:① AB=CM;② A E⊥BC;③∠ BMC=90°;④ EF=EG;⑤△ BMC是等腰直角三角形.上述中始正确的序号有_________ .15.(2012? 沟区一模)如,面 1 的△ ABC逐次行以下操作:第一次操作,分延AB、BC、 CA至 A1、 B1、 C1,使得 A1B=2AB, B1C=2BC, C1A=2CA,次接 A1、 B1、 C1,得到△A1B1C1,其面 S1;第二次操作,分延 A1B1, B1C1, C1 A1至 A2, B2, C2,使得 A2B1=2A1B1, B2C1=2B1C1,C2A1=2C1A1,次接 A2,B2, C2,得到△A2B2 C2,其面 S2⋯,按此律下去,可得到△A5B5C5,其面S5= _________ .第 n 次操作得到△A n B n C n,△A n B n C n的面 S n =_________ .16.( 2009? 黑河)如, 1 的菱形 ABCD中,∠ DAB=60 度.接角 AC,以 AC作第二个菱形 ACCD11,使∠D1AC=60°;接AC1,再以 AC1作第三个菱形 AC1C2D2,使∠D2AC1 =60°;⋯,按此律所作的第n 个菱形的_________ .17.( 2012? 通州区二模)如,在△ ABC 中,∠ A=α.∠ ABC 与∠ ACD的平分交于点 A1,得∠A1;∠A1BC与∠A1CD的平分相交于点A2,得∠A2;⋯;∠A2011BC与∠A2011CD的平分相交于点 A2012,得∠A2012,∠A2012= _________ .18.( 2009?湖州)如,已知 Rt△ABC, D1是斜 AB的中点, D1作 D1E1⊥AC 于 E1,接 BE1交 CD1于 D ; D 作D E ⊥AC 于 E ,接 BE 交 CD 于 D ; D 作 D E ⊥AC 于 E ,⋯,如此,可以依次22 2 222133 3 3 3得到点 D4, D5,⋯, D n,分△ BD 1E1,△ BD2E2,△ BD3E3,⋯,△ BD n E n的面 S1, S2,S3,⋯S n. S n= _________ S△ABC(用含 n 的代数式表示).19.( 2011? 丰台区二模)已知:如,在Rt△ABC 中,点 D1是斜 AB 的中点,点 D1作 D1 E1⊥AC 于点 E1,接 BE1交 CD1于点 D2;点 D2作 D2E2⊥AC于点 E2,接 BE2交 CD1于点 D3;点 D3作 D3E3⊥AC于点 E3,如此,可以依次得到点D4、 D5、⋯、 D n,分△ BD 1E1、△ BD2E2、△ BD3E3、⋯、△ BD n E n的面 S1、 S2、 S3、⋯S n.△ ABC 的面是1, S1= _________ , S n= _________ (用含 n 的代数式表示).20.( 2013?路北区三模)在△ ABC中, AB=6, AC=8, BC=10, PBC上一点, PE⊥AB 于 E,PF⊥AC于 F, M EF 中点, AM的最小_________ .21.如,已知 Rt△ABC中, AC=3, BC=4,直角点 C作 CA1⊥AB,垂足 A1,再 A1作 A1C1⊥BC,垂足 C1, C1作 C1 A2⊥AB,垂足A2,再 A2作 A2 C2⊥BC,垂足 C2,⋯,一直做下去,得到了一段 CA1, A1C1, C1A2,⋯,CA1= _________ ,= _________ .22.( 2013? 沐川二模)如,点A1, A2, A3, A4,⋯, A n在射 OA上,点 B1, B2, B3,⋯, B n﹣1在射 OB上,且 A1B1∥A2B2∥A3B3∥⋯∥A n﹣1B n﹣1, A2B1∥A3B2∥A4B3∥⋯∥A n B n﹣1,△A1A2 B1,△A2A3B2,⋯,△A n﹣ 1A n B n﹣ 1 阴影三角形,若△A 2B1B2,△A3B2B3 的面分1、 4,△A1A2B1的面_________ ;面小于2011 的阴影三角形共有_________ 个.23.( 2010?城区)如,已知点A1( a, 1)在直 l :上,以点 A1心,以半径画弧,交 x 于点 B1、 B2,点 B2作 A1B1的平行交直 l 于点 A2,在 x 上取一点 B3,使得A2B3=A2 B2,再点 B3作 A2B2的平行交直 l 于点 A3,在 x 上取一点B4,使得 A3B4 =A3B3,按此律作下去,① a= _________ ;②△A4 B4B5 的面是_________ .24.( 2013? 松北区二模)如,以Rt△ABC 的斜 BC 一在△ ABC 的同作正方形 BCEF,正方形的中心 O,接 AO,如果 AB=4, AO=6 ,那么 AC的等于_________ .25.( 2007? 淄川区二模)如,将矩形ABCD的四个角向内折起,恰好拼成一个既无隙又无重叠的四形 EFGH,若 EH=3, EF=4,那么段AD与 AB的比等于_________ .26.( 2009? 泰市模)梯形ABCD中 AB∥CD,∠ ADC+∠BCD=90°,以AD、 AB、 BC 斜向形外作等腰直角三角形,其面分是S1、 S2、 S3且 S1+S3 =4S2, CD= _________ AB.27.如,察中菱形的个数: 1 中有 1 个菱形, 2 中有 5 个菱形, 3 中有 14 个菱形, 4 中有 30 个菱形⋯,第 6 个中菱形的个数是_________ 个.28.(2012? 港一模)如, E、 F 分是平行四形 ABCD的 AB、 CD上的点, AF 与 DE相交于点 P,BF 与 CE 相交于点 Q,若 S△APD=15cm2,S△BQC=25cm2,阴影部分的面_________ cm2.29.( 2012? 天津)如,已知正方形ABCD的 1,以点 A、 B 心, 1 半径的两弧交于点E,以点 C、 D 心, 1 半径的两弧交于点F, EF 的_________ .30.如, ABCD是凸四形, AB=2, BC=4, CD=7,求段 AD 的取范().参考答案与试题解析一.(共 13 小)1.( 2013?春模)如,点O正方形 ABCD的中心, BE 平分∠ DBC 交 DC于点 E,延 BC到点F,使 FC=EC,接 DF交 BE的延于点H,接 OH交 DC于点 G,接 HC.以下四个中正确的个数()①OH= BF;②∠ CHF=45°;③ GH= BC;④ DH2=HE?HB.A. 1 个B. 2 个C. 3 个D. 4 个解答:解:作 EJ⊥BD 于 J,接 EF①∵ BE 平分∠ DBC∴E C=EJ,∴△ DJE≌△ ECF∴D E=FE∴∠ HEF=45°+°=°∴∠ HFE==°∴∠ EHF=180°﹣°﹣° =90°∵D H=HF, OH是△ DBF 的中位线∴OH∥BF∴O H= BF②∵四边形ABCD是正方形, BE 是∠ DBC的平分线,∴B C=CD,∠ BCD=∠DCF,∠ EBC=°,∵C E=CF,∴Rt△BCE≌Rt△DCF,∴∠ EBC=∠CDF=°,∴∠ BFH=90°﹣∠ CDF=90°﹣° =°,∵OH是△ DBF 的中位线, CD⊥AF,∴O H是 CD的垂直平分线,∴D H=CH,∴∠ CDF=∠DCH=°,∴∠ HCF=90°﹣∠ DCH=90°﹣° =°,∴∠ CHF=180°﹣∠ HCF﹣∠ BFH=180°﹣°﹣° =45°,故②正确;③∵ OH是△ BFD 的中位线,∴D G=CG= BC, GH= CF,∵C E=CF,∴G H= CF= CE∵C E< CG= BC,∴GH<BC,故此结论不成立;④∵∠ DBE=45°, BE 是∠ DBF 的平分线,∴∠ DBH=°,由②知∠ HBC=∠CDF=°,∴∠ DBH=∠CDF,∵∠ BHD=∠BHD,∴△ DHE∽△ BHD,∴=∴D H=HE?HB,故④成立;所以①②④正确.故选 C.2.(2013?云港模)如, Rt△ABC 中, BC=,∠ ACB=90°,∠A=30°,D1是斜AB的中点,D1作 D1E1⊥AC 于 E1, BE1交 CD1于 D2; D2作 D2 E2⊥AC 于 E2, BE2交 CD1于 D3; D3作D3E3⊥AC 于E3,⋯,如此,可以依次得到点E4、 E5、⋯、E2013,分△ BCE1、△ BCE2、△BCE3、⋯、△ BCE2013的面S1、 S2、 S3、⋯、 S2013.S2013的大小()A.B.C.D.解答:解:∵ Rt△ABC 中, BC=∴AC==BC=6,,∠ ACB=90°,∠ A=30°,∴S△ABC=AC?BC=6,∵D1 E1⊥AC,∴D1 E1∥BC,∴△ BD1E1与△ CD1E1同底同高,面相等,∵D1 是斜AB的中点,∴D1 E1=BC, CE1= AC,∴S1 =BC?CE1= BC×AC= ×AC?BC= S△ABC;∴在△ ACB 中, D2其重心,∴D2 E1=BE1,∴D E =2 2 BC, CE = AC, S =×22×AC?BC= S△,ABC∴D E =3 3BC, CE = AC, S = S△⋯;23ABC ∴S n = S△ABC;∴S2013= ×6= .故C.3.如,梯形ABCD中, AD∥BC,AE于点 G, AD=BE,接 DG、 CG.以下:①△,∠ ABC=45°, AE⊥BC 于点 E,BF⊥AC 于点BEG≌△ AEC;②∠ GAC=∠GCA;③ DG=DC;④GF,交AE中点,△ AGC 的面有最大.其中正确的有()A. 1 个B. 2 个C. 3 个D. 4 个解答:解:根据BE=AE,∠ GBE=∠CAE,∠ BEG=∠CEA可判定①△ BEG≌△AEC;用反法明②∠ GAC≠∠ GCA,假∠ GAC=∠GCA,有△ AGC等腰三角形,F AC 的中点,又BF⊥AC,可AB=BC,与不符;由①知△ BEG≌△ AEC 所以GE=CE 接 ED、四形ABED平行四形,∵∠ ABC=45°, AE⊥BC 于点 E,∴∠ GED=∠CED=45°,∴△ GED≌△ CED,∴D G=DC;④ AG X,易求出GE=EC=2 X 因此, S△=S S =+x=(x22x)AGC AEC GEC=﹣(x2﹣2x+1﹣1)=﹣(x﹣1)2+,当X取1时,面积最大,所以AG等于 1,所以 G是 AE 中点,故 G 为 AE 中点时, GF最长,故此时△ AGC 的面积有最大值.故正确的个数有 3 个.故选 C.4.如图,正方形ABCD中,在AD的延长线上取点E, F,使DE=AD, DF=BD,连接BF 分别交CD, CE于H, G下列结论:①EC=2DG;②∠ GDH=∠GHD;③S△CDG=S?DHGE;④图中有A.①③B.②④解答:解:∵ DF=BD,∴∠ DFB=∠DBF,8 个等腰三角形.其中正确的是(C.①④)D.②③∵AD∥BC, DE=BC,∴∠ DEC=∠DBC=45°,∴∠ DEC=2∠EFB,∴∠ EFB=°,∠ CGB=∠CBG=°,∴CG=BC=DE,∵DE=DC,∴∠ DEG=∠DCE,∵∠ GHC=∠CDF+∠DFB=90°+°=°,∠DGE=180°﹣(∠ BGD+∠EGF),=180°﹣(∠ BGD+∠BGC),=180°﹣( 180°﹣∠ DCG)÷ 2,=180°﹣( 180°﹣ 45°)÷ 2,=°,∴∠ GHC=∠DGE,∴△ CHG≌△ EGD,∴∠ EDG=∠CGB=∠CBF,∴∠ GDH=∠GHD,∴S△CDG=S?DHGE.故选D.5.( 2008? 荆州)如图,直角梯形ABCD中,∠ BCD=90°, AD∥BC,BC=CD, E 为梯形内一点,且∠BEC=90°,将△ BEC 绕 C点旋转90°使BC 与 DC重合,得到△DCF,连EF 交CD于M.已知BC=5,CF=3,则 DM: MC的值为()A.5: 3B.3: 5解答:解:由题意知△ BCE 绕点 C 顺时转动了∴△ BCE≌△ DCF,∠ ECF=∠DFC=90°,90 度,C.4: 3 D.3: 4∴CD=BC=5,DF∥CE,∴∠ ECD=∠CDF,∵∠EMC=∠DMF,∴△ECM∽△ FDM,∴D M: MC=DF: CE,∵DF==4,∴DM: MC=DF: CE=4: 3.故选 C.6.如,矩形ABCD的面5,它的两条角交于点O1,以AB, AO1两作平行四形ABC1O1,平行四形ABC1O1的角交BD于点02,同以AB, AO2两作平行四形ABC2O2.⋯,依此推,平行四形ABC O的面(20092009)A.B.C.D.解答:解:∵矩形ABCD的角互相平分,面5,∴平行四形ABC1O1的面,∵平行四形ABC1O1的角互相平分,∴平行四形ABC2O2的面×=,⋯,依此推,平行四形ABC2009O2009的面.故 B.7.如,在角△ABC 中, AB=6,∠ BAC=45°,∠ BAC 的平分交BC 于点D, M, N 分是AD和AB 上的点,BM+MN的最小是()A.解答:B. 6解:如,作BH⊥AC,垂足H,交 AD 于 M′点,最小.C.M′点作M′N′⊥ AB,垂足D. 3N′,BM′+M′N′ 所求∵A D是∠ BAC 的平分,∴M′H=M′N′,∴BH是点 B 到直 AC的最短距离(垂段最短),∵A B=4,∠ BAC=45°,∴BH=AB?sin45°=6×=3.∵BM+MN的最小是BM′+M′N′=BM′+M′H=BH=3.故 C.8.( 2013? 牡丹江)如,在△ ABC 中∠ A=60°, BM⊥AC 于点 M,CN⊥AB 于点 N, P BC的中点,接PM, PN,下列:①PM=PN;②;③△ PMN等三角形;④当∠ABC=45° ,BN= PC.其中正确的个数是()A. 1 个B. 2 个C. 3 个D. 4 个解答:解:①∵ BM⊥AC 于点 M,CN⊥AB 于点 N, P BC 的中点,∴P M= BC, PN= BC,∴P M=PN,正确;②在△ABM与△ ACN中,∵∠ A=∠A,∠ AMB=∠ANC=90°,∴△ ABM∽△ ACN,∴,正确;③∵∠ A=60°, BM⊥AC 于点 M,CN⊥AB 于点 N,∴∠ ABM=∠ACN=30°,在△ ABC中,∠ BCN+∠CBM═180° 60° 30°× 2=60°,∵点 P 是 BC 的中点, BM⊥AC,CN⊥AB,∴P M=PN=PB=PC,∴∠ BPN=2∠BCN,∠ CPM=2∠CBM,∴∠ BPN+∠CPM=2(∠ BCN+∠CBM)=2×60°=120°,∴∠ MPN=60°,∴△ PMN是等边三角形,正确;④当∠ ABC=45°时,∵ CN⊥AB于点N,∴∠ BNC=90°,∠ BCN=45°,∴B N=CN,∵P为 BC边的中点,∴P N⊥BC,△ BPN 为等腰直角三角形∴B N= PB= PC,正确.故选 D.9.( 2012? 黑河) Rt△ABC 中, AB=AC,点 D 为 BC中点.∠ MDN=90°,∠ MDN 绕点 D 旋转, DM、DN分别与边 AB、 AC 交于 E、 F 两点.下列结论:①( BE+CF) =BC;②S△AEF≤S△ABC;③S四边形 AEDF=AD?EF;④A D≥EF;⑤A D 与 EF 可能互相平分,其中正确结论的个数是()A. 1 解答:个B. 2 个解:∵ Rt△ABC 中, AB=AC,点 D 为∴∠ C=∠BAD=45°,AD=BD=CD,∵∠ MDN=90°,BC中点,C. 3 个D. 4 个∴∠ ADE+∠ADF=∠ADF+∠CDF=90°,∴∠ ADE=∠CDF.在△ AED与△ CFD中,∵,∴△ AED≌△ CFD( ASA),∴A E=CF,在 Rt△ABD 中, BE+CF=BE+AE=AB==BD=BC.故①正确;设AB=AC=a, AE=CF=x,则 AF=a﹣ x .∵S= AE?AF= x( a﹣ x) =﹣(x﹣a)2+a2,△AEF∴当 x= a 时, S△AEF有最大值a2,又∵ S△ABC= × a2= a2,∴S△AEF≤S△ABC.故②正确;EF2=AE2+AF2=x2+( a﹣ x)2 =2( x﹣a)2+a2,∴当 x= a 时, EF2取得最小值a2,∴EF≥a(等号当且仅当x= a 时成立),而AD= a,∴ EF≥AD.故④错误;由①的证明知△ AED≌△ CFD,∴S四边形=S△+S△=S△+S△=S△=AD2,AEDF AED ADF CFD ADF ADC∵E F≥AD,∴A D?EF≥AD 2,∴A D?EF> S 四边形AEDF故③错误;当E、 F 分别为 AB、 AC 的中点时,四边形 AEDF为正方形,此时 AD与 EF 互相平分.故⑤正确.综上所述,正确的有:①②⑤,共 3 个.故选 C.10.(2012? 无锡一模)如图,在正方形纸片ABCD中,对角线AC、 BD交于点 O,折叠正方形纸片ABCD,使 AD落在 BD上,点 A 恰好与 BD上的点 F 重合,展开后折痕DE分别交 AB、 AC于点 E、 G,连接 GF.下列结论①∠ ADG=°;② tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确的结论有()A.①④⑤B.①②④C.③④⑤D.②③④解答:解:∵四边形ABCD是正方形,∴∠ GAD=∠ADO=45°,由折叠的性质可得:∠ADG= ∠ADO=°,故①正确.∵tan ∠AED= ,由折叠的性质可得:AE=EF,∠ EFD=∠EAD=90°,∴A E=EF< BE,∴A E< AB,∴tan ∠AED=>2,故②错误.∵∠ AOB=90°,∴A G=FG> OG,△ AGD与△ OGD同高,∴S△AGD>S△OGD,故③错误.∵∠ EFD=∠AOF=90°,∴E F∥AC,∴∠ FEG=∠AGE,∵∠ AGE=∠FGE,∴∠ FEG=∠FGE,∴EF=GF,∵AE=EF,∴A E=GF,故④正确.∵AE=EF=GF, AG=GF,∴A E=EF=GF=AG,∴四边形 AEFG是菱形,∴∠ OGF=∠OAB=45°,∴E F=GF= OG,∴BE=EF=×OG=2OG.故⑤正确.∴其中正确结论的序号是:①④⑤.故选: A.11.如图,正方形ABCD中, O 为 BD中点,以 BC 为边向正方形内作等边△BCE,连接并延长于 F,连接BD分别交 CE、AF 于 G、 H,下列结论:①∠ CEH=45°;② GF∥DE;AE 交CD③2OH+DH=BD;④ BG= DG;⑤.其中正确的结论是()A.①②③B.①②④C.①②⑤D.②④⑤解答:解:①由∠ ABC=90°,△ BEC为等边三角形,△ ABE为等腰三角形,∠ AEB+∠BEC+∠CEH=180°,可求得∠CEH=45°,此结论正确;②由△ EGD≌△ DFE,EF=GD,再由△ HDE 为等腰三角形,∠ DEH=30°,得出△ HGF为等腰三角形,∠ HFG=30°,可得 GF∥DE,此结论正确;③由图可知2( OH+HD) =2OD=BD,所以 2OH+DH=BD此结论不正确;④如图,过点G作 GM⊥CD 垂足为 M,GN⊥BC 垂足为 N,设 GM=x,则 GN= x ,进一步利用勾股定理求得GD=BG= x,得出BG=GD,此结论不正确;⑤由图可知△BCE 和△ BCG同底不等高,它们的面积比即是两个三角形的高之比,由④可知△BCE 的高为(x+x )和△ BCG的高为x ,因此S△BCE:S△BCG= (x+x ):x= ,此结论正确;故正确的结论有①②⑤.故选 C.12.如图,在正方形ABCD中, AB=4, E 为 CD上一动点, AE交 BD 于 F,过GH⊥BD 于 G,下列有四个结论:① AF=FH,②∠ HAE=45°,③ BD=2FG,④△ CEH F 作 FH⊥AE 于 H,过 H 作的周长为定值,其中正确的结论有()A.①②③解答:解:( 1)连接B.①②④FC,延长 HF交 AD 于点L,C.①③④D.①②③④∵B D为正方形 ABCD的对角线,∴∠ ADB=∠CDF=45°.∵AD=CD, DF=DF,∴△ ADF≌△ CDF.∴FC=AF,∠ ECF=∠DAF.∵∠ ALH+∠LAF=90°,∴∠ LHC+∠DAF=90°.∵∠ ECF=∠DAF,∴∠ FHC=∠FCH,∴F H=FC.∴F H=AF.(2)∵ FH⊥AE,FH=AF,∴∠ HAE=45°.(3)连接 AC交 BD于点 O,可知: BD=2OA,∵∠ AFO+∠GFH=∠GHF+∠GFH,∴∠ AFO=∠GHF.∵AF=HF,∠ AOF=∠FGH=90°,∴△ AOF≌△ FGH.∴OA=GF.∵B D=2OA,∴B D=2FG.(4)延长 AD至点 M,使 AD=DM,过点 C 作 CI∥HL,则: LI=HC,根据△ MEC≌△ CIM,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△ CEH的周长为8,为定值.故( 1)( 2)( 3)( 4)结论都正确.故选 D.13.(2013? 钦州模拟)正方形 ABCD、正方形BEFG和正方形RKPF的位置如图所示,点正方形 BEFG的边长为4,则△ DEK 的面积为()G在线段DK上,A.10 B.12 C.14 D.16解答:解:如图,连DB, GE, FK,则 DB∥GE∥FK,在梯形 GDBE中, S△DGE=S△GEB(同底等高的两三角形面积相等),同理 S△GKE=S△GFE.∴S阴影 =S△+S△,DGE GKE=S△GEB+S△GEF,=S 正方形GBEF,=4×4=16故选 D.二.填空题(共16 小题)14.如图,在梯形ABCD中, AD∥BC,EA⊥AD,M是 AE上一点, F、 G分别是AB、 CM的中点,且∠BAE=∠MCE,∠ MBE=45°,则给出以下五个结论:① AB=CM;② A E⊥BC;③∠ BMC=90°;④ EF=EG;⑤△ BMC是等腰直角三角形.上述结论中始终正确的序号有①②④.解答:解:∵梯形ABCD中, AD∥BC,EA⊥AD,∴A E⊥BC,即②正确.∵∠MBE=45°,∴B E=ME.在△ ABE 与△ CME中,∵∠ BAE=∠MCE,∠ AEB=∠CEM=90°,BE=ME,∴△ ABE≌△ CME,∴AB=CM,即①正确.∵∠ MCE=∠BAE=90° ∠ ABE<90° ∠ MBE=45°,∴∠ MCE+∠MBC<90°,∴∠ BMC>90°,即③⑤ .∵∠ AEB=∠CEM=90°,F、 G分是AB、 CM的中点,∴E F= AB, EG= CM.又∵ AB=CM,∴EF=EG,即④正确.故正确的是①②④.15.(2012? 沟区一模)如,面 1 的△ ABC逐次行以下操作:第一次操作,分延 AB、BC、 CA至 A1、 B1、 C1,使得 A1B=2AB, B1C=2BC, C1A=2CA,次接 A1、 B1、 C1,得到△A1B1C1,其面 S1;第二次操作,分延 A1B1,B1C1, C1 A1至 A2, B2, C2,使得 A2B1=2A1B1, B2C1=2B1C1,C2A1=2C1A1,次接A2, B2, C2,得到△A2B2 C2,其面S2⋯,按此律下去,可得到△A5B5C5,其面S5= 2476099.第n次操作得到△A n B n C n,△A n B n C n的面S n= 19 n.解答:解:接A1C;S△AA1C=3S△ABC=3,S△AA1C1=2S△AA1C=6,所以 S△=6×3+1=19;A1B1C1同理得 S△A2B2C2=19×19=361;S△A3B3C3=361×19=6859,S△A4B4C4=6859×19=130321,S△A5B5C5=130321×19=2476099,从中可以得出一个律,延各后得到的三角形是原三角形的19 倍,所以延第 n 次后,得到△A n B n C n,其面 S n=19n?S1 =19n故答案是: 2476099 ; 19n.16.( 2009? 黑河)如, 1 的菱形 ABCD中,∠ DAB=60 度.接角 AC,以 AC作第二个菱形 ACC1D1,使∠D1AC=60°;接AC1,再以 AC1作第三个菱形AC1C2D2,使∠D2AC1 =60°;⋯,按此律所作的第n 个菱形的() n﹣ 1 .解答:解:接 DB,∵四形 ABCD是菱形,∴AD=AB.AC⊥DB,∵∠ DAB=60°,∴△ ADB 是等三角形,∴D B=AD=1,∴B M= ,∴AM= = ,∴AC= ,同理可得 AC1 = AC=()2, AC2= AC1=3=()3,按此律所作的第n 个菱形的(n﹣ 1 )n﹣ 1 故答案().∠A BC与∠A CD的平分相交于点1 1ABC 中,∠ A=α.∠ ABC 与∠ ACD的平分交于点A1,得∠A1;A2,得∠A2;⋯;∠A2011BC与∠A2011CD的平分相交于点A2012,得∠A2012,∠A2012= .解答:解:∵∠ ABC 与∠ ACD的平分交于点A1,∴∠A1BC= ∠ABC,∠A1CD= ∠ACD,根据三角形的外角性,∠A+∠ABC=∠ACD,∠A1+∠A1BC=∠A1CD,∴∠A1+∠A1BC=∠A1 +∠ABC=(∠A+∠ABC),整理得,∠A1=∠A=,同理可得,∠A2=∠A1=×=,⋯,∠A2012=.故答案:.18.( 2009?湖州)如,已知Rt△ABC, D1是斜 AB的中点,D1作 D1E1⊥AC 于 E1,接 BE1交 CD1 于D2; D2作 D2E2⊥AC 于 E2,接 BE2交 CD1于 D3; D3作 D3E3⊥AC 于 E3,⋯,如此,可以依次得到点 D4,D5,⋯, D n,分△ BD 1E1,△ BD2E2,△ BD3E3,⋯,△ BD n E n的面 S1, S2,S3,⋯S n. S n =S△ABC(用含n 的代数式表示).解答:解:易知D1E1∥BC,∴△ BD 1E1与△ CD1 E1同底同高,面相等,以此推;根据直角三角形的性以及相似三角形的性可知:D1E1= BC, CE1= AC, S1=S△ABC;∴在△ ACB 中, D2其重心,∴D E = BE ,2 1 1∴D2E2=BC, CE2= AC, S2=S△ABC,∵D2E2:D1E1=2:3,D1E1:BC=1:2,∴B C: D2E2 =2D1 E1: D1E1=3,∴CD3: CD2 =D3E3: D2E2=CE3: CE2=3: 4,∴D3E3=D2E2=×BC= BC, CE3= CE2=×AC= AC, S3=S△ABC⋯;∴S n=S△ABC.19.( 2011? 丰台区二模)已知:如,在Rt△ABC 中,点 D1是斜 AB 的中点,点D1作 D1 E1⊥AC 于点 E1,接 BE1交 CD1于点 D2;点 D2作 D2E2⊥AC于点 E2,接 BE2交 CD1于点 D3;点 D3作 D3E3⊥AC于点 E3,如此,可以依次得到点D4、 D5、⋯、 D n,分△ BD 1E1、△ BD2E2、△ BD3E3、⋯、△ BD n E n的面S1、 S2、 S3、⋯S n.△ ABC 的面是1, S1=,S n=(用含n 的代数式表示).解答:解:易知 D1E1∥BC,∴△ BD 1E1与△ CD1 E1同底同高,面相等,以此推;∴S1=S△D1E1A= S△ABC,根据直角三角形的性以及相似三角形的性可知:D1E1= BC, CE1= AC, S1= S△ABC;∴在△ ACB 中, D2其重心,又D1E1三角形的中位,∴D1E1∥BC,∴△D2D1E1∽△ CD2B,且相似比 1: 2,即= ,∴D2E1=BE1,∴D2E2=BC, CE2= AC, S2=S△ABC,∴D E = BC, CE = AC, S =S△⋯;3 333ABC∴S=S△.n ABC故答案:,.20.( 2013?路北区三模)在△ ABC中, AB=6, AC=8, BC=10, P BC上一点, PE⊥AB 于 E,PF⊥AC 于 F, M EF 中点,AM的最小.解答:解:∵四形AFPE是矩形∴A M= AP,AP⊥BC , AP最短,同 AM也最短∴当 AP⊥BC ,△ ABP∽△ CAB∴A P: AC=AB: BC∴A P: 8=6: 10∴A P 最短, AP=∴当 AM最短, AM=AP÷2=.点:解决本的关是理解直外一点到直上任一点的距离,垂段最短,利用相似求解.21.如,已知 Rt△ABC中, AC=3, BC=4,直角点 C作 CA1⊥AB,垂足 A1,再 A1作 A1C1⊥BC,垂足 C1, C1作 C1 A2⊥AB,垂足 A2,再 A2作 A2 C2⊥BC,垂足 C2,⋯,一直做下去,得到了一段CA1, A1C1, C1A2,⋯,CA1=,=.解答:解:在 Rt△ABC 中, AC=3,BC=4,∴AB=,又因 CA1⊥AB,∴AB?CA=AC?BC,1即 CA1===.∵C4A5⊥AB,∴△ BA5C4∽△ BCA,∴,∴==.所以填和.22.( 2013? 沐川二模)如,点A1, A2, A3, A4,⋯, A n在射 OA上,点 B1, B2, B3,⋯, B n﹣1在射 OB上,且 A1B1∥A2B2∥A3B3∥⋯∥A n﹣1B n﹣1, A2B1∥A3B2∥A4B3∥⋯∥A n B n﹣1,△A1A2 B1,△A A B ,⋯,△A﹣ A B ﹣阴影三角形,若△A B B ,△A B B 的面分1、 4,△A A B 的面2 3 2n 1 n n 1 2 1 2 3 2 3 1 2 1;面小于2011 的阴影三角形共有6个.解答:解:由意得,△A2B1B2∽△A3B2B3,∴==,==,又∵A1B1∥A2B2∥A3B3,∴===,==,∴OA1=A1 A2, B1B2=B2B3而可得出律:A1A2= A2A3= A3A4⋯; B1B2= B2B3= B3 B4⋯又△A2B1B2,△A3B2B3 的面分1、 4,∴S△A1B1A2=,S△A2B2A3=2,而可推出S△A3B3A4=8, S△A,4B4A5=32, S△A5B5A6=128 ,S△A6B6A7=512, S△A7B7A8=2048 ,故可得小于2011 的阴影三角形的有:△A 1 B1A2,△A2B2A3,△A3B3A4,△A4B4A5,△A5 B5 A6,△A6 B6A7,共 6 个.故答案是:; 6.23.( 2010?城区)如,已知点A1( a, 1)在直l :上,以点A1心,以半径画弧,交x 于点B1、 B2,点 B2作 A1B1的平行交直l 于点 A2,在 x 上取一点B3,使得A2B3=A2 B2,再过点B3作A2B2的平行线交直线l 于点A3,在x 轴上取一点B4,使得A3B4 =A3B3,按此规律继续作下去,则①a= ;②△A4B4B5 的面积是.解答:解:如图所示:①将点A1( a,1)代入直线 1 中,可得,所以a= .②△A1B1B2 的面积为:S= =;因为△ OA1B1∽△ OA2B2,所以2A1 B1 =A2B2,又因为两线段平行,可知△A 1 B1B2∽△A2B2B3,所以△A 2B2B3 的面积为S1=4S;以此类推,△A4B4B5 的面积等于64S= .BCEF,设正方24.( 2013? 松北区二模)如图,以Rt△ABC 的斜边 BC 为一边在△ ABC 的同侧作正方形形的中心为O,连接 AO,如果AB=4, AO=6,那么AC的长等于16.解答:解:如图,过O点作 OG垂直 AC, G点是垂足.∵∠ BAC=∠BOC=90°,∴ABCO四点共圆,∴∠ OAG=∠OBC=45°∴△ AGO是等腰直角三角形,2 2 2∴2AG =2GO=AO==72,∴O G=AG=6,∵∠ BAH=∠0GH=90°,∠ AHB=∠OHG,∴△ ABH∽△ GOH,∴A B/OG=AH/( AG﹣AH),∵AB=4,OG=AG=6,∴A H=在直角△ OHC 中,∵ HG=AG﹣ AH=6﹣ =, OG又是斜边HC上的高,2∴OG=HG×GC,而OG=6,GH=,∴GC=10.∴AC=AG+GC=6+10=16.故 AC边的长是 16.25.( 2007? 淄川区二模)如图,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形 EFGH,若 EH=3, EF=4,那么线段 AD与 AB的比等于.解答:解:∵∠ 1=∠2,∠ 3=∠4,∴∠ 2+∠3=90°,∴∠ HEF=90°,同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形.∴E H=FG(矩形的对边相等);又∵∠ 1+∠4=90°,∠ 4+∠5=90°,∴∠ 1=∠5(等量代换),同理∠ 5=∠7=∠8,∴∠ 1=∠8,∴R t△AHE≌Rt△CFG,∴A H=CF=FN,又∵ HD=HN,∴A D=HF,在 Rt△HEF 中, EH=3, EF=4,根据勾股定理得HF=,∴H F=5,又∵ HE?EF=HF?EM,∴E M= ,又∵ AE=EM=EB(折叠后A、 B 都落在M点上),∴A B=2EM= ,∴AD: AB=5:=.故答案:.26.( 2009? 泰市模)梯形ABCD中 AB∥CD,∠ ADC+∠BCD=90°,以等腰直角三角形,其面分是S1、 S2、 S3且 S1+S3 =4S2, CD= 3 解答:解:∵以AD、 AB、 BC斜向外作等腰直角三角形,其面分是S1、 S2、 S3,AD、 AB、 BC 斜向形外作AB.∴S1=,S2=,S3=∵S1+S3=4S2,∴A D2+BC2=4AB2点 B 作 BK∥AD 交 CD于点 K,∵A B∥CD∴AB=DK, AD=BK,∠ BKC=∠ADC∵∠ ADC+∠BCD=90°∴∠ BKC+∠BCD=90°∴B K2+BC2=CK2∴A D2+BC2=CK22 2∴C K =4AB∴C K=2AB∴C D=3AB.27.如,察中菱形的个数: 1 中有 1 个菱形, 2 中有 5 个菱形, 3 中有 14 个菱形, 4中有 30 个菱形⋯,第 6 个中菱形的个数是91个.2 222 214+4 =30 个菱形,第 5 个中菱形的个数是30+5 =55,第 6 个中菱形的个数是55+6 =91 个.4 中有故答案91.28.(2012? 港一模)如, E、 F 分是平行四形ABCD的 AB、 CD上的点, AF 与 DE相交于点22 2解答:解:如,接EFP,∵△ ADF 与△ DEF 同底等高,∴S△ADF=S△DEF即 S△﹣S△=S△﹣S△,ADF DPF DEF DPF即S△APD=S△EPF=15cm2,同理可得S△=S△=25cm2,BQC EFQ∴阴影部分的面积为S△EPF+S△EFQ=15+25=40cm2.故答案为40.29.( 2012? 天津)如图,已知正方形ABCD的边长为1,以顶点A、 B 为圆心, 1 为半径的两弧交于点E,以顶点C、 D 为圆心, 1 为半径的两弧交于点F,则解答:解:连接AE, BE, DF, CF.∵以顶点A、 B 为圆心, 1 为半径的两弧交于点∴AB=AE=BE,∴△ AEB 是等边三角形,EF 的长为E, AB=1,.∴边 AB上的高线为EN=,延长 EF 交 AB于 N,并反向延长EF 交 DC于 M,则 E、 F、 M, N 共线,则EM=1﹣ EN=1﹣,∴NF=EM=1﹣,∴EF=1﹣ EM﹣ NF=﹣1.故答案为﹣ 1.30.如图, ABCD是凸四边形,AB=2, BC=4, CD=7,求线段AD 的取值范围.解答:解:连接AC.∵AB=2, BC=4,在△ ABC 中,根据三角形的三边关系,4﹣ 2< AC< 2+4,即 2< AC< 6.∴﹣ 6<﹣ AC<﹣ 2, 1< CD﹣ AC< 5, 9< CD+AC< 13 ,在△ ACD 中,根据三角形的三边关系,得CD﹣ AC< AD<CD+AC,∴1< AD< 13.故 AD的取值范围是1< AD< 13.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学几何选择填空压轴题精选配答案Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】2016中考数学几何选择填空压轴题精选(配答案)一.选择题(共13小题)1.(2013蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC 于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为()①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HEHB.A .1个B.2个C.3个D.4个2.(2013连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为()A .B.C.D.3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有()A .1个B.2个C.3个D.4个4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S DHGE;④图中有8个等腰三角形.其中正确的是()A .①③B.②④C.①④D.②③5.(2008荆州)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为()A .5:3 B.3:5 C.4:3 D.3:46.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为()A .B.C.D.7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是()A .B.6 C.D.38.(2013牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN 为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()A .1个B.2个C.3个D.4个9.(2012黑河)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①(BE+CF)=BC;②S△AEF≤S△ABC;③S四边形AEDF=ADEF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是()A .1个B.2个C.3个D.4个10.(2012无锡一模)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF.下列结论①∠ADG=°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确的结论有()A .①④⑤B.①②④C.③④⑤D.②③④11.如图,正方形ABCD中,O为BD中点,以BC为边向正方形内作等边△BCE,连接并延长AE交CD于F,连接BD分别交CE、AF于G、H,下列结论:①∠CEH=45°;②GF∥DE;③2OH+DH=BD;④BG=DG;⑤.其中正确的结论是()A .①②③B.①②④C.①②⑤D.②④⑤12.如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有()A .①②③B.①②④C.①③④D.①②③④13.(2013钦州模拟)正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为()A .10 B.12 C.14 D.16二.填空题(共16小题)14.如图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,F、G分别是AB、CM的中点,且∠BAE=∠MCE,∠MBE=45°,则给出以下五个结论:①AB=CM;②A E⊥BC;③∠BMC=90°;④EF=EG;⑤△BMC是等腰直角三角形.上述结论中始终正确的序号有_________ .15.(2012门头沟区一模)如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2…,按此规律继续下去,可得到△A5B5C5,则其面积为S5= _________ .第n次操作得到△A n B n C n,则△A n B n C n的面积S n= _________ .16.(2009黑河)如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为_________ .17.(2012通州区二模)如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012= _________ .18.(2009湖州)如图,已知Rt△ABC,D1是斜边AB的中点,过D1作D1E1⊥AC 于E1,连接BE1交CD1于D2;过D2作D2E2⊥AC于E2,连接BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点D4,D5,…,D n,分别记△BD1E1,△BD2E2,△BD3E3,…,△BD n E n的面积为S1,S2,S3,…S n.则S n=_________ S△ABC(用含n的代数式表示).19.(2011丰台区二模)已知:如图,在R t△ABC中,点D1是斜边AB的中点,过点D1作D1E1⊥AC于点E1,连接BE1交CD1于点D2;过点D2作D2E2⊥AC于点E2,连接BE2交CD1于点D3;过点D3作D3E3⊥AC于点E3,如此继续,可以依次得到点D4、D5、…、D n,分别记△BD1E1、△BD2E2、△BD3E3、…、△BD n E n的面积为S1、S2、S3、…S n.设△ABC的面积是1,则S1= _________ ,S n= _________ (用含n的代数式表示).20.(2013路北区三模)在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_________ .21.如图,已知Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1= _________ ,= _________ .22.(2013沐川县二模)如图,点A1,A2,A3,A4,…,A n在射线OA上,点B1,B2,B3,…,B n﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥A n﹣1B n﹣1,A2B1∥A3B2∥A4B3∥…∥A n B n﹣1,△A1A2B1,△A2A3B2,…,△A n﹣1A n B n﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为_________ ;面积小于2011的阴影三角形共有_________ 个.23.(2010鲤城区质检)如图,已知点A1(a,1)在直线l:上,以点A1为圆心,以为半径画弧,交x轴于点B1、B2,过点B2作A1B1的平行线交直线l于点A2,在x轴上取一点B3,使得A2B3=A2B2,再过点B3作A2B2的平行线交直线l 于点A3,在x轴上取一点B4,使得A3B4=A3B3,按此规律继续作下去,则①a=_________ ;②△A4B4B5的面积是_________ .24.(2013松北区二模)如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,那么AC的长等于_________ .25.(2007淄川区二模)如图,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于_________ .26.(2009泰兴市模拟)梯形ABCD中AB∥CD,∠ADC+∠BCD=90°,以AD、AB、BC为斜边向形外作等腰直角三角形,其面积分别是S1、S2、S3且S1+S3=4S2,则CD= _________ AB.27.如图,观察图中菱形的个数:图1中有1个菱形,图2中有5个菱形,图3中有14个菱形,图4中有30个菱形…,则第6个图中菱形的个数是_________ 个.28.(2012贵港一模)如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为_________ cm2.29.(2012天津)如图,已知正方形ABCD的边长为1,以顶点A、B为圆心,1为半径的两弧交于点E,以顶点C、D为圆心,1为半径的两弧交于点F,则EF 的长为_________ .30.如图,ABCD是凸四边形,AB=2,BC=4,CD=7,求线段AD的取值范围().参考答案与试题解析一.选择题(共13小题)1.(2013蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC 于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为()①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HEHB.A.1个B.2个C.3个D.4个解答:解:作EJ⊥BD于J,连接EF①∵BE平分∠DBC∴EC=EJ,∴△DJE≌△ECF∴DE=FE∴∠HEF=45°+°=°∴∠HFE==°∴∠EHF=180°﹣°﹣°=90°∵DH=HF,OH是△DBF的中位线∴OH∥BF∴OH=BF②∵四边形ABCD是正方形,BE是∠DBC的平分线,∴BC=CD,∠BCD=∠DCF,∠EBC=°,∵CE=CF,∴Rt△BCE≌Rt△DCF,∴∠EBC=∠CDF=°,∴∠BFH=90°﹣∠CDF=90°﹣°=°,∵OH是△DBF的中位线,CD⊥AF,∴OH是CD的垂直平分线,∴DH=CH,∴∠CDF=∠DCH=°,∴∠HCF=90°﹣∠DCH=90°﹣°=°,∴∠CHF=180°﹣∠HCF﹣∠BFH=180°﹣°﹣°=45°,故②正确;③∵OH是△BFD的中位线,∴DG=CG=BC,GH=CF,∵CE=CF,∴GH=CF=CE∵CE<CG=BC,∴GH<BC,故此结论不成立;④∵∠DBE=45°,BE是∠DBF的平分线,∴∠DBH=°,由②知∠HBC=∠CDF=°,∴∠DBH=∠CDF,∵∠BHD=∠BHD,∴△DHE∽△BHD,∴=∴DH=HEHB,故④成立;所以①②④正确.故选C.2.(2013连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为()A.B.C.D.解答:解:∵Rt△ABC中,BC=,∠ACB=90°,∠A=30°,∴AC==BC=6,∴S△ABC=ACBC=6,∵D1E1⊥AC,∴D1E1∥BC,∴△BD1E1与△CD1E1同底同高,面积相等,∵D1是斜边AB的中点,∴D1E1=BC,CE1=AC,∴S1=BCCE1=BC×AC=×ACBC=S△ABC;∴在△ACB中,D2为其重心,∴D2E1=BE1,∴D2E2=BC,CE2=AC,S2=××ACBC=S△ABC,∴D3E3=BC,CE2=AC,S3=S△ABC…;∴S n=S△ABC;∴S2013=×6=.故选C.3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有()A.1个B.2个C.3个D.4个解答:解:根据BE=AE,∠GBE=∠CAE,∠BEG=∠CEA可判定①△BEG≌△AEC;用反证法证明②∠GAC≠∠GCA,假设∠GAC=∠GCA,则有△AGC为等腰三角形,F为AC 的中点,又BF⊥AC,可证得AB=BC,与题设不符;由①知△BEG≌△AEC 所以GE=CE 连接ED、四边形ABED为平行四边形,∵∠ABC=45°,AE⊥BC于点E,∴∠GED=∠CED=45°,∴△GED≌△CED,∴DG=DC;④设AG为X,则易求出GE=EC=2﹣X 因此,S△AGC=S AEC﹣S GEC=﹣+x=﹣(x2﹣2x)=﹣(x2﹣2x+1﹣1)=﹣(x﹣1)2+,当X取1时,面积最大,所以AG等于1,所以G是AE中点,故G为AE中点时,GF最长,故此时△AGC的面积有最大值.故正确的个数有3个.故选C.4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S DHGE;④图中有8个等腰三角形.其中正确的是()A.①③B.②④C.①④D.②③解答:解:∵DF=BD,∴∠DFB=∠DBF,∵AD∥BC,DE=BC,∴∠DEC=∠DBC=45°,∴∠DEC=2∠EFB,∴∠EFB=°,∠CGB=∠CBG=°,∴CG=BC=DE,∵DE=DC,∴∠DEG=∠DCE,∵∠GHC=∠CDF+∠DFB=90°+°=°,∠DGE=180°﹣(∠BGD+∠EGF),=180°﹣(∠BGD+∠BGC),=180°﹣(180°﹣∠DCG)÷2,=180°﹣(180°﹣45°)÷2,=°,∴∠GHC=∠DGE,∴△CHG≌△EGD,∴∠EDG=∠CGB=∠CBF,∴∠GDH=∠GHD,∴S△CDG=S DHGE.故选D.5.(2008荆州)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为()A.5:3 B.3:5 C.4:3 D.3:4解答:解:由题意知△BCE绕点C顺时转动了90度,∴△BCE≌△DCF,∠ECF=∠DFC=90°,∴CD=BC=5,DF∥CE,∴∠ECD=∠CDF,∵∠EMC=∠DMF,∴△ECM∽△FDM,∴DM:MC=DF:CE,∵DF==4,∴DM:MC=DF:CE=4:3.故选C.6.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为()A.B.C.D.解答:解:∵矩形ABCD的对角线互相平分,面积为5,∴平行四边形ABC1O1的面积为,∵平行四边形ABC1O1的对角线互相平分,∴平行四边形ABC2O2的面积为×=,…,依此类推,平行四边形ABC2009O2009的面积为.故选B.7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是()A.B.6 C.D.3解答:解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=4,∠BAC=45°,∴BH=ABsin45°=6×=3.∵BM+MN的最小值是BM′+M′N′=BM′+M′H=BH=3.故选C.8.(2013牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN 为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()A.1个B.2个C.3个D.4个解答:解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②在△ABM与△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,正确;③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM═180°﹣60°﹣30°×2=60°,∵点P是BC的中点,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;④当∠ABC=45°时,∵CN⊥AB于点N,∴∠BNC=90°,∠BCN=45°,∴BN=CN,∵P为BC边的中点,∴PN⊥BC,△BPN为等腰直角三角形∴BN=PB=PC,正确.故选D.9.(2012黑河)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①(BE+CF)=BC;②S△AEF≤S△ABC;③S四边形AEDF=ADEF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是()A.1个B.2个C.3个D.4个解答:解:∵Rt△ABC中,AB=AC,点D为BC中点,∴∠C=∠BAD=45°,AD=BD=CD,∵∠MDN=90°,∴∠ADE+∠ADF=∠ADF+∠CDF=90°,∴∠ADE=∠CDF.在△AED与△CFD中,∵,∴△AED≌△CFD(ASA),∴AE=CF,在Rt△ABD中,BE+CF=BE+AE=AB==BD=BC.故①正确;设AB=AC=a,AE=CF=x,则AF=a﹣x.∵S△AEF=AEAF=x(a﹣x)=﹣(x﹣a)2+a2,∴当x=a时,S△AEF有最大值a2,又∵S△ABC=×a2=a2,∴S△AEF≤S△ABC.故②正确;EF2=AE2+AF2=x2+(a﹣x)2=2(x﹣a)2+a2,∴当x=a时,EF2取得最小值a2,∴EF≥a(等号当且仅当x=a时成立),而AD=a,∴EF≥AD.故④错误;由①的证明知△AED≌△CFD,∴S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=AD2,∵EF≥AD,∴ADEF≥AD2,∴ADEF>S四边形AEDF故③错误;当E、F分别为AB、AC的中点时,四边形AEDF为正方形,此时AD与EF互相平分.故⑤正确.综上所述,正确的有:①②⑤,共3个.故选C.10.(2012无锡一模)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF.下列结论①∠ADG=°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确的结论有()A.①④⑤B.①②④C.③④⑤D.②③④解答:解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG=∠ADO=°,故①正确.∵tan∠AED=,由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴tan∠AED=>2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD>S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确.∴其中正确结论的序号是:①④⑤.故选:A.11.如图,正方形ABCD中,O为BD中点,以BC为边向正方形内作等边△BCE,连接并延长AE交CD于F,连接BD分别交CE、AF于G、H,下列结论:①∠CEH=45°;②GF∥DE;③2OH+DH=BD;④BG=DG;⑤.其中正确的结论是()A.①②③B.①②④C.①②⑤D.②④⑤解答:解:①由∠ABC=90°,△BEC为等边三角形,△ABE为等腰三角形,∠AEB+∠BEC+∠CEH=180°,可求得∠CEH=45°,此结论正确;②由△EGD≌△DFE,EF=GD,再由△HDE为等腰三角形,∠DEH=30°,得出△HGF为等腰三角形,∠HFG=30°,可求得GF∥DE,此结论正确;③由图可知2(OH+HD)=2OD=BD,所以2OH+DH=BD此结论不正确;④如图,过点G作GM⊥CD垂足为M,GN⊥BC垂足为N,设GM=x,则GN=x,进一步利用勾股定理求得GD=x,BG=x,得出BG=GD,此结论不正确;⑤由图可知△BCE和△BCG同底不等高,它们的面积比即是两个三角形的高之比,由④可知△BCE的高为(x+x)和△BCG的高为x,因此S△BCE:S△BCG=(x+x):x=,此结论正确;故正确的结论有①②⑤.故选C.12.如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有()A.①②③B.①②④C.①③④D.①②③④解答:解:(1)连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.(2)∵FH⊥AE,FH=AF,∴∠HAE=45°.(3)连接AC交BD于点O,可知:BD=2OA,∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.(4)延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,根据△MEC≌△CIM,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故(1)(2)(3)(4)结论都正确.故选D.13.(2013钦州模拟)正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为()A.10 B.12 C.14 D.16解答:解:如图,连DB,GE,FK,则DB∥GE∥FK,在梯形GDBE中,S△DGE=S△GEB(同底等高的两三角形面积相等),同理S△GKE=S△GFE.∴S阴影=S△DGE+S△GKE,=S△GEB+S△GEF,=S正方形GBEF,=4×4=16故选D.二.填空题(共16小题)14.如图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,F、G分别是AB、CM的中点,且∠BAE=∠MCE,∠MBE=45°,则给出以下五个结论:①AB=CM;②A E⊥BC;③∠BMC=90°;④EF=EG;⑤△BMC是等腰直角三角形.上述结论中始终正确的序号有①②④.解答:解:∵梯形ABCD中,AD∥BC,EA⊥AD,∴AE⊥BC,即②正确.∵∠MBE=45°,∴BE=ME.在△ABE与△CME中,∵∠BAE=∠MCE,∠AEB=∠CEM=90°,BE=ME,∴△ABE≌△CME,∴AB=CM,即①正确.∵∠MCE=∠BAE=90°﹣∠ABE<90°﹣∠MBE=45°,∴∠MCE+∠MBC<90°,∴∠BMC>90°,即③⑤错误.∵∠AEB=∠CEM=90°,F、G分别是AB、CM的中点,∴EF=AB,EG=CM.又∵AB=CM,∴EF=EG,即④正确.故正确的是①②④.15.(2012门头沟区一模)如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2…,按此规律继续下去,可得到△A5B5C5,则其面积为S5= 2476099 .第n次操作得到△A n B n C n,则△A n B n C n的面积S n= 19n.解答:解:连接A1C;S△AA1C=3S△ABC=3,S△AA1C1=2S△AA1C=6,所以S△A1B1C1=6×3+1=19;同理得S△A2B2C2=19×19=361;S△A3B3C3=361×19=6859,S△A4B4C4=6859×19=130321,S△A5B5C5=130321×19=2476099,从中可以得出一个规律,延长各边后得到的三角形是原三角形的19倍,所以延长第n 次后,得到△A n B n C n,则其面积S n=19n S1=19n故答案是:2476099;19n.16.(2009黑河)如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为()n﹣1.解答:解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM==,∴AC=,同理可得AC1=AC=()2,AC2=AC1=3=()3,按此规律所作的第n个菱形的边长为()n﹣1故答案为()n﹣1.17.(2012通州区二模)如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012= .解答:解:∵∠ABC与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,根据三角形的外角性质,∠A+∠ABC=∠ACD,∠A1+∠A1BC=∠A1CD,∴∠A1+∠A1BC=∠A1+∠ABC=(∠A+∠ABC),整理得,∠A1=∠A=,同理可得,∠A2=∠A1=×=,…,∠A2012=.故答案为:.18.(2009湖州)如图,已知Rt△ABC,D1是斜边AB的中点,过D1作D1E1⊥AC 于E1,连接BE1交CD1于D2;过D2作D2E2⊥AC于E2,连接BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点D4,D5,…,D n,分别记△BD1E1,△BD2E2,△BD3E3,…,△BD n E n的面积为S1,S2,S3,…S n.则S n= S△ABC(用含n的代数式表示).解答:解:易知D1E1∥BC,∴△BD1E1与△CD1E1同底同高,面积相等,以此类推;根据直角三角形的性质以及相似三角形的性质可知:D1E1=BC,CE1=AC,S1=S△ABC;∴在△ACB中,D2为其重心,∴D2E1=BE1,∴D2E2=BC,CE2=AC,S2=S△ABC,∵D2E2:D1E1=2:3,D1E1:BC=1:2,∴BC:D2E2=2D1E1:D1E1=3,∴CD3:CD2=D3E3:D2E2=CE3:CE2=3:4,∴D3E3=D2E2=×BC=BC,CE3=CE2=×AC=AC,S3=S△ABC…;∴S n=S△ABC.19.(2011丰台区二模)已知:如图,在Rt△ABC中,点D1是斜边AB的中点,过点D1作D1E1⊥AC于点E1,连接BE1交CD1于点D2;过点D2作D2E2⊥AC于点E2,连接BE2交CD1于点D3;过点D3作D3E3⊥AC于点E3,如此继续,可以依次得到点D4、D5、…、D n,分别记△BD1E1、△BD2E2、△BD3E3、…、△BD n E n的面积为S1、S2、S3、…S n.设△ABC的面积是1,则S1= ,S n= (用含n的代数式表示).解答:解:易知D1E1∥BC,∴△BD1E1与△CD1E1同底同高,面积相等,以此类推;∴S1=S△D1E1A=S△ABC,根据直角三角形的性质以及相似三角形的性质可知:D1E1=BC,CE1=AC,S1=S△ABC;∴在△ACB中,D2为其重心,又D1E1为三角形的中位线,∴D1E1∥BC,∴△D2D1E1∽△CD2B,且相似比为1:2,即=,∴D2E1=BE1,∴D2E2=BC,CE2=AC,S2=S△ABC,∴D3E3=BC,CE3=AC,S3=S△ABC…;∴S n=S△ABC.故答案为:,.20.(2013路北区三模)在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为.解答:解:∵四边形AFPE是矩形∴AM=AP,AP⊥BC时,AP最短,同样AM也最短∴当AP⊥BC时,△ABP∽△CAB∴AP:AC=AB:BC∴AP:8=6:10∴AP最短时,AP=∴当AM最短时,AM=AP÷2=.点评:解决本题的关键是理解直线外一点到直线上任一点的距离,垂线段最短,利用相似求解.21.如图,已知Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1= ,= .解答:解:在Rt△ABC中,AC=3,BC=4,∴AB=,又因为CA1⊥AB,∴ABCA1=ACBC,即CA1===.∵C4A5⊥AB,∴△BA5C4∽△BCA,∴,∴==.所以应填和.22.(2013沐川县二模)如图,点A1,A2,A3,A4,…,A n在射线OA上,点B1,B2,B3,…,B n﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥A n﹣1B n﹣1,A2B1∥A3B2∥A4B3∥…∥A n B n﹣1,△A1A2B1,△A2A3B2,…,△A n﹣1A n B n﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为;面积小于2011的阴影三角形共有 6 个.解答:解:由题意得,△A2B1B2∽△A3B2B3,∴==,==,又∵A1B1∥A2B2∥A3B3,∴===,==,∴OA1=A1A2,B1B2=B2B3继而可得出规律:A1A2=A2A3=A3A4…;B1B2=B2B3=B3B4…又△A2B1B2,△A3B2B3的面积分别为1、4,∴S△A1B1A2=,S△A2B2A3=2,继而可推出S△A3B3A4=8,S△A,4B4A5=32,S△A5B5A6=128,S△A6B6A7=512,S△A7B7A8=2048,故可得小于2011的阴影三角形的有:△A1B1A2,△A2B2A3,△A3B3A4,△A4B4A5,△A5B5A6,△A6B6A7,共6个.故答案是:;6.23.(2010鲤城区质检)如图,已知点A1(a,1)在直线l:上,以点A1为圆心,以为半径画弧,交x轴于点B1、B2,过点B2作A1B1的平行线交直线l于点A2,在x轴上取一点B3,使得A2B3=A2B2,再过点B3作A2B2的平行线交直线l于点A3,在x轴上取一点B4,使得A3B4=A3B3,按此规律继续作下去,则①a=;②△A4B4B5的面积是.解答:解:如图所示:①将点A1(a,1)代入直线1中,可得,所以a=.②△A1B1B2的面积为:S==;因为△OA1B1∽△OA2B2,所以2A1B1=A2B2,又因为两线段平行,可知△A1B1B2∽△A2B2B3,所以△A2B2B3的面积为S1=4S;以此类推,△A4B4B5的面积等于64S=.24.(2013松北区二模)如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,那么AC的长等于16 .解答:解:如图,过O点作OG垂直AC,G点是垂足.∵∠BAC=∠BOC=90°,∴ABCO四点共圆,∴∠OAG=∠OBC=45°∴△AGO是等腰直角三角形,∴2AG2=2GO2=AO2==72,∴OG=AG=6,∵∠BAH=∠0GH=90°,∠AHB=∠OHG,∴△ABH∽△GOH,∴AB/OG=AH/(AG﹣AH),∵AB=4,OG=AG=6,∴AH=在直角△OHC中,∵HG=AG﹣AH=6﹣=,OG又是斜边HC上的高,∴OG2=HG×GC,而OG=6,GH=,∴GC=10.∴AC=AG+GC=6+10=16.故AC边的长是16.25.(2007淄川区二模)如图,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于.解答:解:∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形.∴EH=FG(矩形的对边相等);又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根据勾股定理得HF=,∴HF=5,又∵HEEF=HFEM,∴EM=,又∵AE=EM=EB(折叠后A、B都落在M点上),∴AB=2EM=,∴AD:AB=5:=.故答案为:.26.(2009泰兴市模拟)梯形ABCD中AB∥CD,∠ADC+∠BCD=90°,以AD、AB、BC为斜边向形外作等腰直角三角形,其面积分别是S1、S2、S3且S1+S3=4S2,则CD= 3 AB.解答:解:∵以AD、AB、BC为斜边向外作等腰直角三角形,其面积分别是S1、S2、S3,∴S1=,S2=,S3=∵S1+S3=4S2,∴AD2+BC2=4AB2过点B作BK∥AD交CD于点K,∵AB∥CD∴AB=DK,AD=BK,∠BKC=∠ADC∵∠ADC+∠BCD=90°∴∠BKC+∠BCD=90°∴BK2+BC2=CK2∴AD2+BC2=CK2∴CK2=4AB2∴CK=2AB∴CD=3AB.27.如图,观察图中菱形的个数:图1中有1个菱形,图2中有5个菱形,图3中有14个菱形,图4中有30个菱形…,则第6个图中菱形的个数是91 个.解答:解:观察图形,发现规律:图1中有1个菱形,图2中有1+22=5个菱形,图3中有5+32=14个菱形,图4中有14+42=30个菱形,则第5个图中菱形的个数是30+52=55,第6个图中菱形的个数是55+62=91个.故答案为91.28.(2012贵港一模)如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为40 cm2.解答:解:如图,连接EF∵△ADF与△DEF同底等高,∴S△ADF=S△DEF即S△ADF﹣S△DPF=S△DEF﹣S△DPF,即S△APD=S△EPF=15cm2,同理可得S△BQC=S△EFQ=25cm2,∴阴影部分的面积为S△EPF+S△EFQ=15+25=40cm2.故答案为40.29.(2012天津)如图,已知正方形ABCD的边长为1,以顶点A、B为圆心,1为半径的两弧交于点E,以顶点C、D为圆心,1为半径的两弧交于点F,则EF 的长为.解答:解:连接AE,BE,DF,CF.∵以顶点A、B为圆心,1为半径的两弧交于点E,AB=1,∴AB=AE=BE,∴△AEB是等边三角形,∴边AB上的高线为EN=,延长EF交AB于N,并反向延长EF交DC于M,则E、F、M,N共线,则EM=1﹣EN=1﹣,∴NF=EM=1﹣,∴EF=1﹣EM﹣NF=﹣1.故答案为﹣1.30.如图,ABCD是凸四边形,AB=2,BC=4,CD=7,求线段AD的取值范围.解答:解:连接AC.∵AB=2,BC=4,在△ABC中,根据三角形的三边关系,4﹣2<AC<2+4,即2<AC<6.∴﹣6<﹣AC<﹣2,1<CD﹣AC<5,9<CD+AC<13,在△ACD中,根据三角形的三边关系,得CD﹣AC<AD<CD+AC,∴1<AD<13.故AD的取值范围是1<AD<13.。