2-2离散型随机变量及其分布律
2.2 离散型随机变量及其分布
}
满足下列性质 性质: 满足下列性质:
pk ≥ 0 (k = 1,2,⋯);
概率论与数理统计 数学科学学院 徐 鑫
∑p
k =1
∞
k
常用来确定分布律中的待定参数] 常用来确定分布律中的待定参数 = 1 [常用来确定分布律中的待定参数
这两条也是非负 数列能为某随机 变量分布律的充 要条件
离散型随机变量分布列的求法 求法: 离散型随机变量分布列的求法: 利用古典概率、 利用古典概率、条件概率等计算方法及运算 性质求事件{X=x 概率; 性质求事件{X=xk}概率; 利用已知的重要分布的分布列; 利用已知的重要分布的分布列; 利用分布函数. 利用分布函数. 离散型随机变量分布列的应用 应用: 离散型随机变量分布列的应用: 确定分布列中的待定参数; 确定分布列中的待定参数; 求分布函数; 求分布函数; 求随机事件的概率. 求随机事件的概率.
概率论与数理统计 数学科学学院 徐 鑫
四、几种重要的离散型随机变量 1、(0-1)分布[两点分布] (0-1)分布 两点分布] 分布[ 定义2 定义2 设随机变量X只取0,1两值, 设随机变量X只取0,1两值,且其分布律为 0,1两值
P{X = k} = p (1 − p) (k = 0,1;0 < p < 1)
(−∞, x1 ), [ x1 , x2 ), [ x2 , x3 ) ⋯, [ xk ,+∞)
分别求出F(x)的值,即就x 分别求出F(x)的值,即就x落在上述各区间内计算 F(x)的值 {X≤x}所含可能值概率的累积和; {X≤x}所含可能值概率的累积和; 所含可能值概率的累积和 离散型随机变量X的分布函数是一个右连续的阶梯 离散型随机变量X 函数. 函数.
2-2离散型随机变量及其分布律
松定理(第二章)和中心极限定理(第五章),利用这些定理
可以近似计算出它们的值.
3.泊松分布
定义 2.5 如果随机变量 X 的分布律为
P{X k} k e , k 0,1, 2,L , 0 ,
k!
就称 X 服从参数为 的泊松分布,记为 X ~ P() .
【注 1】 P{X
k
k}
e
0 , k 0,1, 2,L
一般地,在随机试验 E 中,如果样本空间 只包含两个
样本点
{1,2},且
X
0, 1,
若 =1 , 若 =2 ,
则 X ~ B(1, p) ,其中 p P{X 1} P({2}) .
在现实生活中,0 1两点分布有着广泛的应用.例如某产品 合格与不合格;某课程的考试及格与不及格;某事件 A 发生与 不发生等许多现象都能够刻划成 0 1两点分布.
§2 离散型随机变量及其分布律
一、离散型随机变量及其分布律的概念 定义 2.1 若随机变量 X 的取值为有限个或可列无限多个,就 称 X 为离散型随机变量.
定义 2.2 设 X 为离散型随机变量,其所有可能的取值为 x1, x2 ,L , xi ,L ,且
P{X xi} pi , i 1, 2,L .
的概率为 0.6 ,求该射手在 4 次射击中,命中目标次数 X 的
分布律,并问 X 取何值时的概率最大. 解 将每次射击看成一次随机试验,所需考查的试验结果只
有击中目标和没有击中目标,因此整个射击过程为 4 重的贝
努里试验.故由题意知, X ~ B(4, 0.6) ,即
P{X k} C4k 0.6k 0.44k , k 0,1, 2,3, 4 .
P{X
10}
2-2离散型随机变量的概率分布
(3) 二项概率公式 若 X 表示 n 重伯努利试验中事件 A 发生的次数, 则 X 所有可能取的值为
0, 1, 2, , n.
当 X k (0 k n) 时, 即 A 在 n 次试验中发生了 k 次.
AAA AAA ,
泊松资料
泊松分布的图形
泊松分布随机数演示
上面我们提到
二项分布 np ( n )泊松分布
单击图形播放/暂停 ESC键退出
合理配备维修工人问题
例5 为了保证设备正常工作, 需配备适量的维修 工人 (工人配备多了就浪费 , 配备少了又要影响生 产),现有同类型设备300台,各台工作是相互独立的, 发生故障的概率都是0.01.在通常情况下一台设备 的故障可由一个人来处理(我们也只考虑这种情况 ) ,问至少需配备多少工人 ,才能保证设备发生故障 但不能及时维修的概率小于0.01?
把检查一只元件是否为一级品看成是一次试 验, 检查20只元件相当于做20 重伯努利试验.
解 以 X 记 20 只元件中一级品的只数, 则 X ~ b(20, 0.2), 因此所求概率为
P{ X k} 20(0.2)k (0.8)20k , k 0,1,,20. k
P{ X 0} 0.012 P{ X 4} 0.218 P{ X 8} 0.022 P{ X 1} 0.058 P{ X 5} 0.175 P{ X 9} 0.007 P{ X 2} 0.137 P{ X 6} 0.109 P{ X 10} 0.002 P{ X 3} 0.205 P{ X 7} 0.055
一、离散型随机变量的分布律
定义 设离散型随机变量X 所有可能取的值为 xk (k 1,2,), X 取各个可能值的概率, 即事件 { X xk } 的概率, 为
§2.2离散型随机变量及其分布列
1, x a F ( x) 0, x a
1
例2.2.9 若
.
服从两点分布
0
P
q
求
的分布函数
解: P( x) 0 当 x 0时,F(x) F(x) P( x) P( 0) q 当 0 x 1 时, F ( x) P( x) P( 0) P( 1) 1 当 x 1 时, 例2.2.10 设 的分布列为
0 1 2 3 4 5
k 5 k 5k
k=0,1,2,3,4,5.
q 5 5 pq 4 10 p 2 q 3 10 p 3 q 2 5 p 4 q p 5
3.分布列的性质
由概率的性质可知,任一离散型随机变量 的分布列 p i 都具有下述性质:
非负性:1)pi 0, i 1, 2, 规范性:2) pi 1
k 6 k 6
5000
5000
其中b(k;5000,1/1000)= C
k 5000
1 k 1 5000 k ( ) (1 ) 1000 1000
这时如果直接计算P 5 ,计算量较大。由于n很大 ,p较小,而np=5不很大 ,
可以利用 Poisson定理
5 P( 5) 1 P 5 1 e k 0 k !
i
例2.2.11 设随机变量
的分布函数为 的分布列。
解: 依题意可得
0, x 1 0.4, 1 x 1 F ( x) ,求 0.8,1 x 3 1, x 3
的可能取值为-1,1,3
P 1 F 1 0 F 1 0.4,
P 3 F 3 0 F 3 0.2
所以 的分布列为
2.2离散型随机变量及其分布
k 0,1, , n,
其中0<p<1, 称X服从参数为n,p的二项分布,记为 X~b(n,p)。
上一页 下一页 返回
在n重贝努里试验中,假设A在每次试验中出现 的概率为p,若以X表示n次试验中A出现的次数。那 么由二项概率公式得X的分布律为:
第二节
离散型随机变量及其分布
一、离散型随机变量和概率分布 定义3:如果随机变量所有的可能取值为有限个或 可列无限多个,则称这种随机变量为离散型随机变量。 定义4:设离散型随机变量X的可能取值为xk (k=1,2, …),事件 { X x k } 发生的概率为pk ,即
P { X x k } pk
k k PX k C n p (1 p ) n k
k 0,1, , n
即X服从二项分布。 当n=1时,二项分布化为:P{X=k}=pk(1-p)1-k 即为(0-1)分布 (0-1)分布可用b(1,p)表示。
上一页 下一页 返回
k=0,1
k nk n p ( 1 p ) P{X = k}= C k 恰好是 [ P +(1 - P )] n 二项展开式中出现pk的那一项,这就是二项分布 名称的由来。
e 5 5 k 0.95 k! k 0
a
e5 5k 即 0.05 k a 1 k !
上一页 下一页 返回
查表可得
e 10 ≈0.031828<005 k! k 10
即 a 1 10, a 9
于是,这家商店只要在月底进货这种商品9件 (假定上个月没有存货),就可以95%以上的把握 保证这种商品在下个月不会脱销.
上一页 下一页 返回
随机变量分布律
随机变量分布律随机变量分布律是概率论中非常重要的概念之一,它是指随机变量取某一特定值的概率。
随机变量分布律不同于概率密度函数,它针对离散型随机变量而言,对于连续型随机变量,通常使用概率密度函数描述。
离散型随机变量的分布律,是指记作P(X=x)的函数,表示随机变量X等于x的概率。
这个函数满足以下条件:1.由于随机变量的值是离散的,因此它只能取某个确定的值x,这个概率总是非负的。
2.所有的分布律的和为1,即对于所有可能取的值x,P(X=x)的和等于1。
3.对于任意的x,P(X=x)不超过1。
总之,离散型随机变量的分布律就是一种描述随机变量各个取值以及取这些值的概率的函数。
接下来,我们来看一些典型的离散型随机变量的分布律。
1.伯努利分布:伯努利分布是一种二项式分布的特殊形式,表示只有两个可能结果的随机试验,如硬币的正反面,它的分布律为:P(X=k) = p^k (1-p)^(1-k)其中,p表示试验成功的概率,1-p表示试验失败的概率。
2.二项式分布:二项式分布表示的是n次独立试验中,成功的次数的概率,它的分布律为:P(X=k) = C(n,k) p^k (1-p)^(n-k)其中,C(n,k)表示组合数,p表示每次试验成功的概率,1-p表示失败的概率。
3.泊松分布:泊松分布表示的是单位时间内某一事件发生次数的概率,例如一天内一个商店的进客人数等,它的分布律为:P(X=k) = (e^(-λ) λ^k) / k!其中,λ表示单位时间内事件发生的平均次数。
这些典型的离散型随机变量的分布律,是概率论中非常重要的部分,经常被应用于真实世界的问题中。
通过分析问题中涉及到的随机变量,我们可以利用分布律求出相应的概率,进而得到我们需要的结果。
在实际应用中,我们可以使用计算机来处理这些问题,以提高计算速度和精度,而不必一步一步地手算。
总之,随机变量分布律是概率论中不可或缺的基础概念,其应用极为广泛,包括统计学、经济学、物理学等多个领域。
概率论与数理统计3.2 离散型随机变量及其分布律
(2)每次试验中事件 A 发生的概率相等, P( A) p
且 0 p1
则称这样的试验为n重伯努利(Bernoulli)试验
定理 (伯努利定理) 设在一次试验中,事件 A
发生的概率为 p(0 p 1), 则在 n 重贝努利
试验中,事件A恰好发生k次的概率为
P{ X
k}
C
k n
pk (1
解 设X:该学生靠猜测能答对的题数
则 X ~ B 5, 1
4
P至少能答对4道题 P X 4
P X 4 P X 5
C
4 5
1 4
4
3 4
1 5
4
1 64
某人进行射击,设每次射击的命中率 为0.02,独立射击400次,求至少击中 两次的概率。
称
pi P{ X xi } i 1,2,3,
为离散型随机变量X的概率分布或概率函数,也 称为分布列或分布律
表格形式
X x1 pi p1
x2 xn p2 pn
分布列的性质:
(1) pi 0 , k 1,2,
(2) pi 1
i
用这两条性质 判断一个函数 是否是分布律
解:将每次射击看成一次试验,设击中的次数 为X,则X~B(400,0.02),
P{ X
k}
C
k 400
(0.02)
k
(0.98)400
k
(k
0,1,2,..., 400)
所求概率为
P{X 2} 1 P{X 0} P{X 1}
1 (0.98)400 400(0.02)(0.98)399
2.2离散型随机变量的概率分布(分布律)
一、离散型随机变量的分布律
二、常见离散型随机变量的概率分布 三、小结
2019/2/22
概率统计
北邮概率统计课件
第二节
离散型随机变量的概率分布(分布律)
一.离散型随机变量的分布律
引例
如图中所示,从中任取 3 个球 取到的白球数 X 是一个随机变量 X可能取的值是0,1,2
取每个值的概率为: 2 1 1 2 C C C C 6 3 C3 1 3 2 3 2 3 P{ X 2} P{ X 0} 3 P{ X 1} 3 3 C5 10 C5 10 C5 10
k C 在哪 k 次发生,所以它应有 n 种不同的发生方式.
而且它们是相互独立的,故在 n 次试验中A发生 k 次的概率 ( 依概率的加法定理) 为:
P{X k } C p (1 p)
k n k
n k
(k 0,1, 2
n)
概率 Pn (k ) 就等于二项式 注 ▲ 显然它满足: [ px (1 p)]n 的展开式中 x k 的系数,这也是二项分布的名称的 P{ X k } 0, 由来. n
记为: 列表:
X ~b(n, p)
X
P (k )
概率统计
0
1
2
n
P(n)
P(0) P(1) P(2)
注 ▲ 特别当n=1时,二项分布即为 ( 0-1 ) 分布 ▲ 二项分布 X~b(n,p) 的图形特点: 对于固定n 及 p,当 k 增加时 ,概率P(X=k) 先是随之增加直至达 到最大值,随后单调 减少.
k 4 k
P { X k } C p (1 p )
k 4
,
k 0,1, 2, 3,4
2-2离散型随机变量及其分布律
4、二项分布的泊松近似 (泊松定理)
当试验次数n很大时,计算二项分布很麻烦,必须寻求近似方法
P ( X 5 )
5 k 0
Ck 5000
(
1 1000
)k
(
999 1000
)5000k
离散型随机变量X b(n, p). 又设np ( 0), 则有
Cnk
pk (1
p )nk
n
k e
k!
即当n 很大且p 很小时,可用泊松分布近似计算二项分布.
P(X=0)=P(A1)=1/2,
P(X 1) P(A1A2 ) P(A1)P(A2 ) 1 4 P(X 2) P(A1 A2A3 ) P(A1)P(A2)P(A3) 1 8 P(X 3) P(A1 A2 A3A4 ) P(A1)P(A2 )P(A3 )P(A4 ) 1 16 P(X 4) P(A1A2 A3 A4 ) P(A1)P(A2)P(A3)P(A4) 1 16
例3 (P30,例2) 设射手每次击中目标的概率p=0.75, 且各次射击 相互独立。现共射击4次,以X表示击中目标的次数。(1)写出X的 分布律;(2)求恰击中3次的概率;(3)求至少击中2次的概率。
解 : 定义 A {击中目标}, 伯努利试验.
X的可能取值有:0,1,2,3,4. 显然, X b(2,0.75)
解 : 记 X表示200人中患此病的人数.
显然, X b(200, 0.01)
np 200* 0.01 2
P ( X 4 ) 1 P( X 3)
3
1
Ck 200
(0.01)k
(0.99)2004
k
k0
1 3 2k e2 k0 k !
=1-0.8571=0.1429 (查泊松分布表: P247)
离散型随机变量及其分布
X0 1
P 1-p p
0
易求得其分布函数为: F (x) 1 p
1
x0 0 x 1
x 1
2.二项分布(binomial distribution): 定义:若离散型随机变量X的分布律为
PX k Cnk pkqnk k 0,1,L , n
其中0<p<1,q=1-p,则称X服从参数为n,p的二项
下面我们看一个应用的例子.
例7 为保证设备正常工作,需要配备适量的 维修人员 . 设共有300台设备,每台独立工作, 且发生故障的概率都是0.01。若在通常的情况 下,一台设备的故障可由一人来处理 , 问至 少应配备多少维修人员,才能保证当设备发生 故障时不能及时维修的概率小于0.01?
我们先对题目进行分析:
§2.2 离散型随机变量及其分布
一、离散型随机变量及其分布律
1.离散型随机变量的定义 设X为一随机变量,如X的全部可能取到的值
是有限个或可列无限多个,则称随机变量X为离 散型随机变量(discrete random variable)。
设X是一个离散型随机变量,它可能取的值 是 x1, x2 , … .为了描述随机变量 X ,我们不仅 需要知道随机变量X的取值,而且还应知道X取 每个值的概率.
定义1 :设xk(k=1,2, …)是离散型随机变 量X所取的一切可能值,称等式
P(X xk) pk, k=1,2,… …
为离散型随机变量X的概率函数或分布律, 也称概率分布.
其中 pk (k=1,2, …) 满足:
(1) pk 0,
(2) pk1
k
k=1,2, …
用这两条性质判断 一个函数是否是
2-2离散型随机变量及其分布律
P(X=2)=C (0.05) (0.95) = 0.007125
思考:本例中的“有放回”改为”无放回” 思考: 本例中的“有放回”改为”无放回”? 不是伯努利试验。 各次试验条件不同,此试验就不是伯努利试验 此时, 各次试验条件不同,此试验就不是伯努利试验。此时, 1 2 只能用古典概型求解. 古典概型求解 只能用古典概型求解. C C
3. 泊松分布
定义 若一个随机变量 X 的概率分布为 λke−λ P{ X = k} = , k = 0,1,2,⋯, k! 则称 X 服从参数为 λ 的泊松分布, 泊松分布, 记为 X ~ P (λ ) 或 X ~ π (λ ). 易见, 易见,1) P { X = k } ≥ 0; ( k −λ ∞ ∞ ∞ λk λe −λ (2)∑P{X = k} = ∑ =e ∑ k! k=0 k ! k=0 k=0
泊松分布是常见的一种分布: 泊松分布是常见的一种分布: 地震 火山爆发 特大洪水
商场接待的顾客数 电话呼唤次数 交通事故次数
4. 二项分布的泊松近似
很大时, 对二项分布 b( n, p ), 当试验次数 n 很大时, 计 算其概率很麻烦. 例如, 算其概率很麻烦 例如,b(5000, 0.001), 要计算
.
二、几种常见分布
1. 两点分布 只可能取x 设随机变量 X 只可能取 1与x2两个值 , 它的 分布律为 x x
X pi
p 1− p
1
2
0< p<1
则称 X 服从x1 , x2处参数为 的两点分布。 处参数为p的两点分布。
说明: 只可能取0与 两个值 说明:若随机变量 X 只可能取 与1两个值 , 它的 分布律为 0 1
则随机变量 X的分布律为 X 的分布律为
2.2离散型随机变量及其分布律
当1≤x<2时, {X≤x}={X=0}∪{X=1} X 0 1x 2
又{X=0}与{X=1}互不相容 得: F(x)=P{X≤x}=P{X=0}+P{X=1}
=0.6+0.3=0.9
当x≥2时, {X≤x}为必然事件
X
0 1 2x
8
得: F(x)=P{X≤x}=1
0, x 0
F
(
x)
0.6, 0.9,
P{X k} C5k pk (1 p)5k
k 0,1,..., 5 18
例.用步枪向某一目标射击,每次击中目标
的概率为0.001,今射击6000次,试求至少有
两弹击中目标的概率.
解:.设X为击中目标的次数.
X : B6000,0.001
P X 2 1 P X 2 1 PX 0 PX 1
0 1
x x
1 2
1 0.9
1, x 2 0.6
注: 左闭右开
0 1 2x
9
0, x 0
F(x)
0.6, 0.9,
0 1
x1 x2
1, x 2
(3)
P(X
1 2
)
F
(
1 2
)
0.6
P
(
1 2
X
3 2
)
F
(
3 2
)
F
(
1 2
)
0.9
0.6
0.3
P(1≤X≤2)=P({X=1}∪{1<X≤2})
P
X k
Ck41 C150
(k 5, 6, 7, 8, 9,10)
具体写出,即可得 X 的分布律:
X 5 6 7 8 9 10
2.2离散型随机变量及其分布
例1
从中任取3 从中任取 个球 取到的白球数X是一个随机变量 取到的白球数 是一个随机变量 X可能取的值是 0,1,2 可能取的值是
C 1 取每个值的概率为 P(X=0)= = C 10 3 且 CC 6 ∑P( X = i) = 1 P(X= )= 1 = i=1 C 10 1 2 这样,我们就掌握了X这个 这样,我们就掌握了 这个 C3C2 3 P(X=2)= 3 = 随机变量取值的概率规律. 随机变量取值的概率规律 C5 10
P( X =1) = p,0 < p <1 P( X = 0) =1 p = q
或 P(X=k)=pk(1-p)1-k, (0<p<1;k=0,1) = = - - = 1)
2. 二项分布
每次试验中, 设将试验独立重复进行n次,每次试验中, 事件A发生的概率均为p,则称这n次试验为 n重贝努里试验. 重贝努里试验. 表示n重贝努里试验中事件 用X表示 重贝努里试验中事件 (成功) 表示 重贝努里试验中事件A(成功) 出现的次数, 出现的次数,则
P(X=k)=C (0.8) (0.2) , k = 0,1,2,3 把观察一个灯泡的使用
时数看作一次试验, 时数看作一次试验 P(X ≤ =P(X=0)+P(X=1) 1)
k 3 k
3k
“使用到 使用到1000小时已坏” 小时已坏” 使用到 小时已坏 视为“成功” 每次试验, 视为“成功 每次试验 )3+3(0.8)(0.2)2 ”.每次试验 =(0.2 “成功”的概率为 成功” 成功 的概率为0.8
例5 解: 当 当
X p
0 1 2 1 1 1 3 6 2
,求 F(x).
F(x) = P(X ≤ x)
2-2离散型随机变量及其分布律
即P
X
0
1
2 0.30
3 0.20
4 0.09
5 0.03
6
7
8 0.00
9 0.00
10 0.00
0.11 0.27
0.01 0.00
P ( X 1) P ( X 0) P ( X 1)
1 0.2 0.89 =0.38. 0.810 +C10
第二章 一维随机变量及其分布
第二节 离散型随机变量及其分布律
一、离散型随机变量的分布律
对于离散型随机变量,我们所关心的问题: (1)随机变量所有可能的取值有哪些? (2)取每个可能值的概率是多少? 定义 设x1,x2,…为离散型随机变量X的可能取值, p1,p2,…为 X 取 x1,x2,… 的概率,即 P(X=xi ) = pi (i=1,2,…) (1)
(0 p 1) ,则在n重伯努利试验中事件A出现k次 的概率为
C pq
k n
k
n k
其中p q 1
k 0,1,, n.
k k n k pq 若随机变量 X 的分布律为 PX k Cn
其中 k 0,1,, n; 0 p 1; q 1 p. 即 X p
k e xk e x,易知 1. 利用级数 k 0 k ! k 0 k!
历史上,泊松分布是作为二项分布的 近似,于1837年由法国数学家泊松引入的 . 近数十年来,泊松分布日益显示其重要性 , 成为概率论中最重要的几个分布之一 . 在 实际中,许多随机现象服从或近似服从泊 松分布. 二十世纪初罗瑟福和盖克两位科学家在 观察与分析放射性物质放出的 粒子个数 的情况时,他们做了2608 次观察(每次时 间为7.5 秒)发现放射性物质在 规定的一段时间内, 其放射的粒 子数X 服从泊松分布.
《概率论》第2章2离散型随机变量-24页文档资料
第二章 随机变量及其分布
§2 离散型随机变量及其分布律 11/23
则
P{X1}P(A1) p
P{X2}P(A1A2)P(A2| A1)P(A1) p(1 p)
P{X3}P(A1A2A3) P (A 3|A 1A 2)P (A 2|A 1 )P (A 1 ) p(1 p)2
P{X 4} P (A 1 A 2A 3A 4) P (A 1 A (12 A 3 pA )4 3)
故 X的分布律为
P{X 0} 1 8
P{X
1}
3 8
P{X 2} 3 8
所有样本点 遍历一次
全部和为1
P{X 3} 1 8
分布律有什么特点
第二章 随机变量及其分布
§2 离散型随机变量及其分布律 3/23
pk0, k1,2,
pk 1
k 1
pk P{X xk}
k1
k1
P
U{X
k 1
xk }
P(S) 1
第二章 随机变量及其分布
§2 离散型随机变量及其分布律 8/23
只产生两个结果 A , 的A 试验 伯努利试验产生什么样的随机变量
将伯努利试验独立重复进行 n 次的试验
某战士用步枪对目标进行射击,记
Байду номын сангаас
A { 击中目标 } ,A { 没击中目标 } 每射击一次就是一个伯努利试验 ,如果对目标进行 n 次射
第二章 随机变量及其分布
§2 离散型随机变量及其分布律 6/23
如果 r.v 的X 分布律为
P{X c}1
则称 r.v 服X 从 单点,分其布中 为常数c
概率与数理统计 第二章-2-离散型随机变量及其分布律
(0–1)分布的分布律也可以写成:
P{X k} pk (1 p)1k , k 0,1,0 p 1.
两点分布的模型为:
(1)Ω= {1, 2}, 只有两个基本事件。
P({1}) = p , P({2}) = 1-p =q.
令
X
()
1, 0,
1, 2,
(2) W A A ,有两个结果。
1
2
P 0.04 0.32 0.64
PX 0 0.2 0.2 0.04
PX 1 0.80.2 0.20.8 0.32
PX 2 0.8 0.8 0.64
(2) ∵是并联电路 ∴ P{线路接通} =P{只要一个继电器接通} =P{X≥1} =P{X=1}+P{X=2}=0.32+0.64=0.96
所以,X 的概率分布为
P{X k } C4k p k (1 p )4k ,
k 0, 1, 2, 3, 4 .
(1) 伯努利试验 若随机试验E只有两个可能的结果: 事件A发生与事件A不发生,则称这样的 试验为伯努利(Bermourlli)试验。记
P(A) p, P(A) 1 p q (0 p 1),
P{X=1}:o o o Co41 p1(1 p)41
P{X=2}:o o oo oo oo C42opo2(1oop)42
P{X=3}:ooo oo o o oo oooC43 p3(1 p)43 P{X=4}:oooo C44 p4(1 p )44 p4
其中“×”表示未中,“○”表示命中。
P(A) p, P(A) 1 p ;
③ 各次试验相互独立。
我们关心的问题是:
n次的独立伯努利试验中,事件A发生的次数 及A发生k次的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•1
10P1X
2
离散型随机变量 X 的分布律或概率分布也记为
X
x1
x2
xi
P
p1
p2
pi
或
X
~
x1 p1
x2 p2
xi pi
,
其中 x1, x2 , , xi , 互不相同,且可能为有限个 x1, x2 ,
, xn .
例
1.1
中, X
0, 1,
§2 离散型随机变量及其分布律
一、离散型随机变量及其分布律的概念 定义 2.1 若随机变量 X 的取值为有限个或可列无限多个,就 称 X 为离散型随机变量.
定义 2.2 设 X 为离散型随机变量,其所有可能的取值为 x1, x2 , , xi , ,且
P{X xi} pi , i 1, 2, .
例 2.3 设随机变量 X ~ B(2, p), Y ~ B(3, p) ,若 P{X 1} 5 , 9
求 P{Y 1}.
解 由于 P{X 0} 1 P{X 1} ,及 P{X 1} 5 知, 9
P{X
0} C20 p0 (1
p)2
(1
p)2
4 9
,
所以 p 1 ,从而 3
P{Y 1} P{Y 0} P{Y 1}
变量.由乘法公式和古典概型概率计算公式得 X 的分布律为
P{X 1} 8 4 , P{X 2} 2 8 8 ,
10 5
10 9 45
P{X 3} 2 1 8 1 或 1 4 8 1 ,
10 9 8 45
5 45 45
1 2 3
即
X
~
4 5
8 45
1 45
.
•4
(续解 ) X 的分布函数为
P{X 2} C42 0.62 0.42 0.3456 ,
P{X 3} C43 0.63 0.41 0.3456 ,
P{X 4} C44 0.64 0.40 0.1296 。 O 1 2 3 4 x
例 2.5 设某机械产品的次品率为 0.005,试分别求任意1000 个产品中恰有10个次品的概率和不多于 5 个次品的概率.
由贝努里概率模型,在 n 重贝努里试验中,记 X 表 示事件 A 发生的次数,则 X ~ B(n, p) ,其中 p P(A) , 因此二项分布也称为贝努里分布.
设 X ~ B(n, p) ,当 n 1 时,可得 X 的分布律为 P{X k} pk (1 p)1k , k 0,1 ,
故 0 1两点分布为二项分布中 n 1 时的特例.
C30
(1)0 3
(1
1)3 3
C31
(
1)1 3
(1
1)2 3
20 27
.
例 2.4 设某射手独立地向一目标射击 4 次,每次击中目标
的概率为 0.6 ,求该射手在 4 次射击中,命中目标次数 X 的
分布律,并问 X 取何值时的概率最大. 解 将每次射击看成一次随机试验,所需考查的试验结果只
有击中目标和没有击中目标,因此整个射击过程为 4 重的贝
解 设 X 表示1000个产品中次品的个数,则 X ~ B(1000,0.005) .
反面向上,
为离散型随机变量,其分布律为 正面向上
X0 1
0 1
11 P
22
或
X
~
1
1
.
2 2
•2
性质 2.1(离散型随机变量分布律的性质)设离散型随机变
量
X
的分布律为 X
~
x1 p1
x2 p2
⑴ pi 0 , i 1, 2, ;
xi pi
,则有
⑵
pi 1 .
i
结论 2.1 设 L 为任意实数集合,则 PX L pi . xi L
0,
0
4
4
,
F ( x)
PX
x
4
5
5 8 45
5 44
45
,
44 45
1 45
1,
x 1, 1 x 2, 2 x 3,
x 3.
【注】分布函数的三个特征:
单调上升;右连续;阶梯形;在 x xi 处跳跃间断。
•5
y
4
1
5
8
45
1
45
o 1 2 3x
F ( x)
0.8 1
x
1 2 3x
努里试验.故由题意知, X ~ B(4, 0.6) ,即
P{X k} C4k 0.6k 0.44k , k 0,1, 2,3, 4 .
可具体计算得, P{X 0} C40 0.60 0.44 0.0256 ,
P{X 1} C41 0.61 0.43 0.1536 ,
P{X k}
一般地,在随机试验 E 中,如果样本空间 只包含两个
样本点
{1,2},则
X
0, 1,
=1 =2
.
在现实生活中,0 1两点分布有着广泛的应用.例如某产品
合格与不合格;某课程的考试及格与不及格;某事件 A 发生与
不发生等许多现象都能够刻划成0 1两点分布,本章例 1.1 中, 随机变量 X ~ B(1, 1) .
1
i 1
P{X
2i 1}
i 1
1 22i1
2 1 (1)2
2. 3
2
•7
二、几种常见的离散型随机变量的概率分布
1. 0 1两点分布
定义 2.3 如果随机变量 X 的分布律为 P{X k} pk (1 p)1k , k 0,1 , 0 p 1
即
X
0
1
P 1- p p
就称 X 服从 0 1两点分布,记为 X ~ B(1, p) .
结论 2.2 X 的分布函数
F(x) PX x pi , x . xi x
•3
例 2.1 设盒子中有8 个正品和2 个次品,现依次不放回地将其
逐个取出,记 X 为首次取到正品时的所取产品个数,试求 X 的
分布律和分布函数 F(x) .
解 由题意知 X 的可能取值为1, 2,3 ,因此 X 为离散型随机
2
2.二项分布(贝努里(Bernulli)分布)
定义 2.4 如果随机变量 X 的分布律为 P{X k} Cnk pk (1 p)nk , k 0,1, 2, , n ,
就称 X 服从二项分布,记为 X ~ B(n, p) ,其中n 为正整数, 0 p 1.
注 又 Cnk pk (1 p)nk 为二项式[ p (1 p)]n 的展开式中 的各项,因此称 X 服从二项分布.
例 2.2
设随机变量
X
的分布律为 P{X
i}
k 2i
,i
1, 2,
,
试求常数 k ,以及 X 取奇数的概率.
解
由
P{X i}
k
k
1 k ,以及分布律的性质
i 1
2i
i 1
2i
i 1
可得 k 1.由上可知, X 的分布律为
P{X
i}
1 2i
,i
1, 2,
,
所以 X 取奇数的概率为