浙江大学-数学分析(1)-试卷及答案(baidu),推荐文档
数学分析考研试题及答案
数学分析考研试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)在点x=a处可导,则下列说法正确的是:A. f(x)在x=a处连续B. f(x)在x=a处不可导C. f(x)在x=a处不一定连续D. f(x)在x=a处可微答案:A2. 极限lim(x→0)(sinx/x)的值为:A. 0B. 1C. 2D. 3答案:B3. 函数f(x)=x^3-6x^2+11x-6的极值点为:A. 1B. 2C. 3D. 1和2答案:D4. 若函数f(x)在区间(a,b)上连续,则下列说法错误的是:A. f(x)在(a,b)上必有最大值B. f(x)在(a,b)上必有最小值C. f(x)在(a,b)上可以没有最大值D. f(x)在(a,b)上可以没有最小值答案:C二、填空题(每题5分,共20分)1. 设函数f(x)=x^2+3x+2,则f'(x)=_________。
答案:2x+32. 函数y=x^3-3x+1在x=1处的切线斜率为_________。
答案:13. 设函数f(x)=ln(x),则f'(x)=_________。
答案:1/x4. 若函数f(x)=x^2-4x+c在x=2处取得极小值,则c=_________。
答案:4三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-6x^2+11x-6的单调区间。
答案:函数f(x)的导数为f'(x)=3x^2-12x+11。
令f'(x)>0,解得x<1或x>3;令f'(x)<0,解得1<x<3。
因此,函数f(x)在(-∞,1)和(3,+∞)上单调递增,在(1,3)上单调递减。
2. 求极限lim(x→0)(x^2sinx/x^3)。
答案:lim(x→0)(x^2sinx/x^3) = lim(x→0)(sinx/x^2) = 0。
3. 证明函数f(x)=x^3+3x^2-9x+1在x=-3处取得极小值。
最新2003年浙江大学数学分析试题答案
2003年浙江大学数学分析试题答案2003年浙江大学数学分析试题答案一、,,0N ∃>∀ε当N n >时,ε<->>∀m n a a N n N m ,, 证明:该数列一定是有界数列,有界数列必有收敛子列}{kn a ,a a k n k =∞→lim ,所以,ε2<-+-≤-a a a a a a k k n n n n二 、,,0N ∃>∀ε当N x >时,ε<-)()(x g x f ,,0,01>∃>∀δε当1'''δ<-x x 时,ε<-)''()'(x f x f对上述,0>ε当N x x >'','时,且1'''δ<-x xε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>∃>∀δε2'''δ<-x x 时ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},m in{21δδδ=即可。
三、由,0)('',0)('<>x f a f 得,0)('<x f 所以)(x f 递减, 又2))((''21))((')()(a x f a x a f a f x f -+-+=ξ,所以-∞=+∞→)(lim x f x ,且0)(>a f ,所以)(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。
浙江大学2000年研究生数学分析试题参考答案
浙江大学2000年研究生数学分析试题一.(共10分)(1)求极限1(1)lim xx e x x→-+解:原式=12(1)ln(1)2(1)lim(1)xx x xe x x x x ++-+→+=(2)设2101,,,2,3,,lim 2n n n nn x x x a x b x n x --→∞-==== 求解:)(21211-----=-n n n n x x x x ,这可以构造成为一个压缩映象,则数列收敛,以下求解就按照}{1--n n x x 这个数列来进行即可。
二.(共10分)1.设K ab a f b f K f b a =--=+-→→)()(lim,)0(0试证明‘证: K ab a f f f b f ab a f b f b a b a ==--+-=--+-+-→→→→ )()0()0()(lim )()(lim2.设()f x 在[,]a b 上连续,()f x ''在(,)a b 内存在,试证明存在(,)a b ξ∈,使得)(4)()2(2)()(2ξf a b b a f a f b f ''-=+-+分析:考虑函数)()()(2x f x f x F b a -+=+即可三.(共15分)1.求数项级数∑∞=12n nn的和S分析:S=2S-S2.试证明∑∞==11)(n xnx s 在),1(∞上的连续函数四.(共15分) 1.设方程组⎩⎨⎧=+=+++0sin sin 0v y u x v u y x ,确定了可微函数⎩⎨⎧==),(),(y x v v y x u u ,试求yvx v du ∂∂∂∂,,分析:用隐函数组的方法求解; 2.设2)()d yx y F y x x=,求)1(F '分析:dt dx dx y F tty t y yxyx yxyx ⎰⎰⎰-=+=1cos cos 0cos 0cos 232222)(五.(共30分) 1.计算定积分2sin cos 1cos x x I dx xπ=+⎰分析:令t=cosx ,I=0。
最新浙江大学数学分析试题及解答汇总
2005年浙江大学数学分析试题及解答浙江大学2005年数学分析解答一 (10分)计算定积分20sin x e xdx π⎰解:2sin xe xdx π⎰=()011cos 22x e x dx π⎡⎤-⎢⎥⎣⎦⎰ ()01x e dx e ππ=-⎰ 由分部积分法0cos 2xe xdx π=⎰()1e π-+20sin 2x e xdx π=⎰()1e π-04cos 2x e xdx π-⎰所以0cos 2x e xdx π=⎰()115e π-,所以20sin x e xdx π⎰=()215e π- 解毕 二 (10分)设()f x 在[0,1]上Riemann可积,且1()2f x dx =⎰,计算 11lim 4ln[1()]nn i if n n →∞=+∑解:因为()f x 在[0,1]上Riemann 可积,所以0,()M f x M ∃>≤,所以1()0if n n→ 因为0ln(1)lim 1x x x →+=,所以114ln[1()]n i i f n n =+∑与114()ni i f n n =∑等价且极限值相等由Riemann 积分的定义:11lim 4ln[1()]nn i if n n →∞=+∑=410()f x dx =⎰解毕三 (15分)设,,a b c 为实数,且1,0b c >-≠试确定,,a b c 的值,使得30sin limln(1)x x b ax xc t dtt →-=+⎰解:若0b ≠,显然30sin lim0ln(1)x x b ax xt dtt →-=+⎰,这与0c ≠矛盾,所以0b =计算300sin limln(1)x x ax xt dtt →-+⎰,利用洛必达法则:33000sin cos lim lim ln(1)ln(1)x x x ax x a xt x dt t x→→--=++⎰,易有30ln(1)lim0x x x→+=,若1a ≠, 33000sin cos limlim ln(1)ln(1)x x x ax x a x t x dt t x →→--==∞++⎰,矛盾,所以1a =.计算301cos lim ln(1)x xx x→-+,继续利用洛必达法则:33001cos cos limlim ln(1)ln(1)x x x x x x x x x →→--=++24003321cos sin 2sin cos lim lim 3631(1)x x x x x x x x x x x x x →→-++==-++332243343cos sin 1lim(612)(1)6(63)(1)2(1)x x x x c x x x x x x x →-===-+--++ 解毕 四 (15分)设()f x 在[,]a b 上连续,且对每一个[],x a b ∈,存在[],y a b ∈,使得1()()2f y f x ≤,证明:在存在[,],a b ξ∈使得()0f ξ=证明:反证法,由于()f x 在[,]a b 上连续,由闭区间上连续函数的性质,不妨假设0()m f x M <<<对于任选的一点1x ,存在2,x 使得211()()2f x f x ≤, 存在3,x 使得321211()()()22f x f x f x ≤≤所以1111[,],()()0,()22n n n n Mx a b f x f x n --∈≤≤→→∞即lim ()0n n f x →∞=,但对所有的x, 0()m f x M <<<,矛盾.所以[,]a b 存在零点 证毕五 (20分)(1)设()f x 在[,)a +∞上连续,且()af x dx +∞⎰收敛。
浙江大学高等数学(上)试题册及参考答案
高数(上)试题库一、判断题1、集合{}0为空集。
( )2、集合{}1,2A =,集合{}1,3,4B =,则{}1,2,3,4A B =。
( )3、函数y x =与函数y =是相同的函数。
( )4、函数()cos f x x x =是奇函数。
( )5、函数arcsin y x =的定义域是(),-∞+∞。
( )6、函数arcsin y u =和22u x =+可以复合成函数2arcsin(2)y x =+。
( )7、函数()sin f x x =是有界函数。
( )8、函数()cos f x x =,()g x = ( ) 9、如果数列n x 发散,则n x 必是无界数列。
( ) 10、如果数列n x 无界,则n x 必是发散数列。
( ) 11、如果)(0x f =6,但00(0)(0)5,f x f x -=+=则)(lim 0x f x x →不存在。
( )12、)(x f 在0x x =处有定义是)(lim 0x f x x →存在的充分条件但非必要条件 。
( )13、0lim ()lim ()x x x x f x f x -+→→=是)(lim 0x f x x →存在的充分必要条件。
( )14、100000x是无穷大。
( )15、零是无穷小。
( ) 16、在自变量的同一变化过程中,两个无穷小的和仍为无穷小。
( )17、1sin lim=∞→xxx 。
( )18、当0x →时,sin ~~tan x x x ,则330tan sin lim lim 0sin x x x x x xx x→∞→--==。
( ) 19、)(x f 在0x 有定义,且0lim x x →)(x f 存在,则)(x f 在0x 连续。
( )20、)(x f 在0x x =无定义,则)(x f 在0x 处不连续。
( ) 21、)(x f 在[a,b]上连续,则在[a,b]上有界。
浙江大学1999年——2008年数学分析
1 在 (1, ∞ ) 上连续可微. x n =1 n
x + y + z =R
2 2
∫∫
dS
2
x 2 + y 2 + ( z h) 2
,其中 h ≠ R .
(2)设 a, b, c 为三个实数,证明:方程 e x = ax 2 + bx + c 的根不超过三个. 四、 (20 分)设 f n ( x) = cos x + cos 2 x +
四、 (20 分)设 f ( x ) 连续, ( x) = ∫ f ( xt )dt ,且 lim
0
x →0
1
论 '( x ) 在 x = 0 处的连续性. 五、 (10 分)定义 Pn ( x ) 为 Pn ( x) = 1 d n ( x 2 1) n , n = 1, 2, 2n n ! dx n P0 ( x) = 1 .
D
四、设 f (x ) 在 x > 0 时连续, f (1) = 3 ,并且 ∫
( x > 0, y > 0) ,试求函数 f (x ) .
xy
1
f (t ) dt = x ∫ f (t ) dt + y ∫ f (t ) dt ,
1 1
y
x
五、设函数 f (t )在(a, b) 连续,若有数列 x n → a, y n → a ( x n , y n ∈ (a, b)) 使 lim f ( xn ) = A 及
2 2
五、 (15 分)设二元函数 f ( x, y ) 在正方形区域 [0,1] × [0,1] 上连续.记 J = [0,1] . (1)试比较 inf sup f ( x, y ) 与 sup inf f ( x, y ) 的大小并证明之;
2019年浙江大学数学分析试题及解答word资料5页
浙江大学2019年数学分析解答一 (10分)计算定积分20sin x e xdx π⎰解:2sin xe xdx π⎰=()011cos 22xe x dx π⎡⎤-⎢⎥⎣⎦⎰()01x e d x e ππ=-⎰由分部积分法cos 2xe xdx π=⎰()1e π-+20sin 2xe xdx π=⎰()1e π-04cos 2x e xdx π-⎰所以cos 2x e xdx π=⎰()115e π-,所以20sin x e xdx π⎰=()215e π- 解毕 二 (10分)设()f x 在[0,1]上Riemann可积,且1()2f x dx =⎰,计算 11lim 4ln[1()]nn i if n n →∞=+∑解:因为()f x 在[0,1]上Riemann 可积,所以0,()M f x M ∃>≤,所以1()0if n n→ 因为0ln(1)lim 1x x x →+=,所以114ln[1()]n i i f n n =+∑与114()ni i f n n =∑等价且极限值相等由Riemann 积分的定义:11lim 4ln[1()]nn i if n n →∞=+∑=410()f x dx =⎰ 解毕三 (15分)设,,a b c 为实数,且1,0b c >-≠试确定,,a b c 的值,使得30sin limln(1)x x b ax xc t dtt →-=+⎰解:若0b ≠,显然30sin lim0ln(1)x x b ax xt dtt →-=+⎰,这与0c ≠矛盾,所以0b =计算300sin limln(1)x x ax xt dtt →-+⎰,利用洛必达法则:33000sin cos lim lim ln(1)ln(1)x x x ax x a xt x dt t x→→--=++⎰,易有30ln(1)lim0x x x→+=,若1a ≠, 33000sin cos limlim ln(1)ln(1)x x x ax x a x t x dt t x →→--==∞++⎰,矛盾,所以1a =.计算301cos lim ln(1)x x x x→-+,继续利用洛必达法则:3322430343cos sin 1lim(612)(1)6(63)(1)2(1)x x x x c x x x x x x x →-===-+--++ 解毕四 (15分)设()f x 在[,]a b 上连续,且对每一个[],x a b ∈,存在[],y a b ∈,使得1()()2f y f x ≤,证明: 在存在[,],a b ξ∈使得()0f ξ=证明:反证法,由于()f x 在[,]a b 上连续,由闭区间上连续函数的性质,不妨假设0()m f x M <<<对于任选的一点1x ,存在2,x 使得211()()2f x f x ≤, 存在3,x 使得321211()()()22f x f x f x ≤≤所以1111[,],()()0,()22n n n n Mx a b f x f x n --∈≤≤→→∞即lim ()0n n f x →∞=,但对所有的x, 0()m f x M <<<,矛盾.所以[,]a b 存在零点 证毕五 (20分)(1)设()f x 在[,)a +∞上连续,且()af x dx +∞⎰收敛。
浙江大学 2019 年数学分析考研试题
y
dx
在 x ≥ 0 上一致收敛.(注:此为试卷原题,但疑似是 dy )
第 I 页(共 II 页)
三、(15′ ) 对于函数 f : R → R, 证明 f 在 R 上连续的充分必要条件是,对于 R 上任意 a, b,
{x : f (x) > a} 和 {x : f (x) < a} 都是开集合.
四、(15′ ) 对于函数 f : [a, b] → R, 证明函数 |f (x)| 在 [a, b] 上黎曼可积的充分必要条件是,函数
f 2 (x) 在 [a, b] 上黎曼可积.
五、(15′ )
(1)(5′ ) 叙述 R 上的聚点定理; (2)(10′ ) 使用聚点定理证明闭区间上的连续函数一致连续.
时,∀n ≥ 1, 有 |fn (x) − fn (y )| < ε; 又设函数列 {fn (x)} 在 [a, b] 上逐点收敛, 证明 {fn (x)} 在 [a, b] 上一 致收敛.
第 II 页(共 II 页)
3. (10′ ) 计算
∫
0
1
ln x
(1 + x)
2 dx.
4. (15′ ) 计算
∫∫ x2 dxdy,
D
其中 D 是由 A (x1 , y1 ) , B (x2 , y2 ) , C (x3 , y3 ) 三点围成的三角形闭区域.
二、(15′ ) 证明
I (x) =
∫
0
∞
x 2 e −x
3
2 2
浙江大学 2019 年数学分析考研试题
一、计算题 (50′ )
1. (10′ ) 计算 In =
0
∫
n
( x )n xa−1 1 − dx. n
浙江大学2018年数学分析考研试题及解答
{xn} 收敛到 x0. 由 f (xn) = 0 以及 f (x) 的连续性, 取极限得 f (x0) = 0, 因此 x0 ∈ (0, 1). 前面的数列 {xn} 可以取成单调数列, 用罗尔定理可以得到一个趋于 x0 的单调数列 {yn}, 使得 f ′(yn) = 0. 如果 f ′(x0) = 0, 则得到矛盾. 最后用反证法来证明前一句话, 从而完成证 明.
|f ′(x) − f ′(y)| < L|x − y|.
证明: (f ′(x))2 < 2Lf (x).
2
微信公众号
浙江大学 2018 年数学分析试题参考解答
小花爱数学
浙江大学 2018 年数学分析考研试题参考解答
1. (1) 因为 故 于是
(2) (3)
sin kπ = kπ + O n2 n2
.
(3) 求
Rxdydz + (z + R)2dxdy
,
Σ
x2 + y2 + z2
其中 Σ 为 x2 + y2 + z2 = R2 的下半球面的上侧, R 为一常数.
2. (10 分)
(1) 用极限定义叙述 limx→+∞ f (x) ̸= +∞.
(2)
证明
limx→+∞
x√sin x x+1
̸=
+∞.
原式 = 1
Rx dy dz + (z + R)2 dx dy
RΣ
1 =−
Rx dy dz + (z + R)2 dx dy + 1
R Σ∪{z=0}
R
1 =−
[R + 2(z + R)] dx dy dz + πR3
2016年浙江大学数学分析试题参考解答
lim
n
1 xn
1 lim xn
1 A
,
lim
n
xn
A
n
即 lnimxn
lim
n
xn
A ,从而数列
xn
收敛.
三、(15 分)利用有限覆盖定理证明:有界数列必有收敛子列.
证 设数列 xn有界,且不妨假设其下界为 a ,上界为 b ,则 xn a, b.假设 xn无
收 敛 的 子 列 , 那 么 xn 在 a, b 中 没 有 聚 点 . 于 是 对 x a, b , 存 在 x 0 , 使 得
Ftcos ntdt .
0
且
Ft
n1
nan
sin
nt
,其中 an
2
Ft cos ntdt .
0
从而有
an2 nan 2 , n 1,2,
根据 Parseval 等式,我们有
1
F
2
t dt
1
Ft 2dt .
事实上,至此我们已经将Wirtinger 不等式证了一遍.现在我们将 t x a 代入上式(注
x x , x x 只包含xn中有限项,并且有 x x , x x a,b.由于 a,b为紧集, xa ,b
故 a, b 的 任 意 开 覆 盖 都 有 有 限 子 覆 盖 , 于 是 存 在 x1,x2 ,, xn 使 得
n
a, b xi xi , xi xi .这样 a, b只包含 xn中有限项,与条件矛盾!
一个正数 0 ,对任何正整数 n c ,总存在 xn a, b,使得
n
f
xn ,
y dy
0 .
由于有界数列 xn必有收敛子列,故不妨设 xn收敛,并记
浙江大学2011-2012数学分析(2)-试卷及答案(baidu-word版)(K12教育文档)
浙江大学2011-2012数学分析(2)-试卷及答案(baidu-word版)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江大学2011-2012数学分析(2)-试卷及答案(baidu-word版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江大学2011-2012数学分析(2)-试卷及答案(baidu-word版)(word版可编辑修改)的全部内容。
浙江大学20 11 —20 12 学年 春夏 学期《 数学分析(Ⅱ)》课程期末考试试卷(A)课程号: 061Z0010 ,开课学院:___理学部___ 考试形式:闭卷,允许带___笔____入场考试日期: 2012 年 6 月 18 日,考试时间: 120 分钟诚信考试,沉着应考,杜绝违纪。
考生姓名: 学号: 所属院系: _一、 计算下列各题: ( 每题5分,共35分 )1. 22()(02)()(02)2222()(02)()(02)ln(1)lim lim 4.sin ln(1)ln(1)lim =lim 4.sin sin x y x y x y x y xy xy xx xy xy x y x xy x→→→→+==++⋅⋅=,,,,,,,,【方法一】:【方法二】: 2. 22222221(1)()()12.(1)1(1)11zxy x y y z x xxy x x x x y xy ∂--+-∂=⋅==-∂-+∂+⎛⎫++ ⎪-⎝⎭, 3. 1:(){r t t t =,平行,并求该点处的切线方程.22(1){1}{121}=120 1.{111}1111(2)(1)1.2323s t t n s n t t t s P x y z ==-⋅-+=⇒==-=-=-曲线的切向量,,,平面的法向量,,,由于切线与平面平行,则:切向量,,切点,,,因此,切线方程为:4.121433411fl i j l i j l ∂=+=-=∂有连续偏导数,,;且在点,23.fl ∂=-∂求:12124334(1){}{}55554334+11+() 3.555579.(2)(12)79.ll f f f f f f x y x y l l f fx yf fP dz dx dy dx dy x y-∂∂∂∂∂∂=⋅⋅==⋅⋅-=-∂∂∂∂∂∂∂∂==∂∂∂∂=+=+∂∂与、同方向的单位向量分别为,、,,则:,因此,,在点,处的全微分为:5.11132132010()()().y y I dy f x y dx dy f x y dx dy f x y dx --=+=⎰⎰⎰⎰,,,6. 112222222211222211111111111(1)1()1()().28284111lim [(1)].4nn nn n n n u eo o on n nn nn n n n n u e n n+∞+∞→+∞==⎛⎫⎛⎫=-+=+++-+-+=+ ⎪ ⎪⎝⎭⎝⎭=-+∑∑则,,而收敛,因此,原级数收敛7. 2224.3C x y z xds C x y z ⎧++=⎨++=⎩⎰计算:,其中:(1) 1.1(2)()22.3CC C O d C r I x y z ds ds r ππ====++===⎰⎰曲线为圆,原点到平面的距离的半径根据对称性,二、计算题:(每题8分,共48分)8.()()()()1111112011112111(11).111()..(1)()()ln 1.(11)(1)1122()12122n n n n x nn n n n n n n n n n n n n f x x x n n f x nx nx nx dx x x x xf x f x x x x xn n f n n ∞∞++==∞∞∞∞--====∞∞+===-++''⎛⎫⎛⎫'==== ⎪ ⎪-⎝⎭⎝⎭'=⇒=+--<<--==++∑∑∑∑∑∑⎰∑∑令:,则:级数的收敛区间为,则:而因此,故,22ln 2.=-9. ()()12211122221222221112222(1)2.(2)222.42()(1).xy xy xy xy xy xy xy xy xy zxf ye f x z x yf xe f e f xye f ye yf xe f x y xyf x y e f xye f xy e f ∂=+∂∂=-++++-+∂∂=-+-+++ 10. 2244().1.Dx y dxdy D x y ++=⎰⎰计算:其中是由曲线所围区域14442(cos sin )223002tan 22444440000cos (1)()sin 114sin cos sin cos 11((2)00 1.2Du x r x y dxdy d r dr y r d d u du u u u x x r y πθθπθπθθθθθθθθθπθ-+=+∞+∞=⎧+=⎨=⎩+===+++⎫=-=⎪⎭⎧=∂⎪≤≤≤≤⇒⎨=⎪⎩⎰⎰⎰⎰⎰⎰⎰令:,则:令:,1112222202224000)()()4()4(cos sin 1112211DD uy r D x y dxdy x y dxdy d r u du uu u πππθθθθθθ+∞=∂+=+=++==+⎫=-⎰⎰⎰⎰⎰⎰⎰⎰⎰,,设由曲线所围区域中第一象限部分为,根据区域的对称性,0+∞=⎪⎭11.()2222221(0)211cos 0cos 201112.241(sin )4sin cos 2422.2zzx y z z z u xxu z x y z xoy e z I e dV I d rdr dz r dr r x x xedx ue du I e dzdxdy ππθππππππ++≤≥=+≤-===-==⋅---===⎰⎰⎰⎰⎰⎰=⎰⎰⎰⎰⎰由于积分区域关于平面对称,被积函数关于为偶函数,因此,【方法一】:令:【方法二】:()12011200211cos 2cos 222011cos 202(1)2(1)2()22(1)2(2)2.2sin 4sin 44(1)2.z z z e z dze z e ze dz e e I d d ed de d ed e d πππρϕρϕπρϕρππππππθϕρϕρπρρϕϕπρρπρρπ-⎡⎤=---=---=⎢⎥⎣⎦===-=-=⎰⎰⎰⎰⎰⎰⎰⎰⎰【方法三】:12.22(xdydz ydzdx x y ∑+=++⎰⎰(){x y z x =,,()()133322222222222222222252222222213222222(1)()()()33330.()(2):(01).z P Q R x y z x y z x y z x y z x y z P Q R x y zx y z x y z xdydz ydzdx zdxdyxdydz ydzdx zdxdyI xy zxy εε-∑+∑===++++++++---∂∂∂++==∂∂∂++∑++=<<++++=-+++⎰⎰设,,,则:添加曲面,取外侧则:()()111222213223222233331111140334.3(.)xy z zP Q R xdydz ydzdx zdxdy dxdydz x y z x y zxdydz ydzdx zdxdy dV επεπεεε-∑Ω∑∑++≤+⎛⎫∂∂∂++=+++ ⎪∂∂∂⎝⎭++=+++==⋅⋅=Ω∑∑⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰其中:为、之间的空间区域13. 222()()().1Ly z dx z x dy x y dz L x y z -+-+-++=⎰求曲线积分:其中是球面 222(1)(1)(1)4x y z z -+-+-=与的交线,从轴正向看为逆时针方向.2221:00..DDx y z L x y z L D x y z Storkes I dS dS x y z y zz xx y⎧++=++=⎨++=⎩∂∂∂===-∂∂∂---⎰⎰曲线,记平面上由曲线所围成的区域为,方向向上根据公式,三、证明题:(9分、8分,共17分)14.(1)()(2)()(00)(00)(3)().x y f x y f x y f f f x y ,在原点连续;,在原点处的偏导数,和,存在;,在原点不可微12222233()(00)22222223()(00)22200()1()(1)()lim0.4()()()lim 0.().()()(00)(2)(00)lim lim 1(00) 1.(3)lim x y x y x y x x x xy xy x y x y x y xy x y f x y x y f x f x f f x x →→∆→∆→∆→≤+=++⎛⎫ ⎪-+= ⎪ ⎪+⎝⎭∆-∆====-∆∆,,,,由于,因此,则:故,,在原点处连续,0,,;同样,,22220022222220()(00)(00)(00)()lim[()()]()lim .[()()](1)().x y y y k x x f x y f f x f y x y x y x y k x y k k f x y ∆→∆→∆→∆=∆∆→∆∆--∆-∆∆⋅∆=∆+∆∆⋅∆=∆+∆+,,,,而极限与有关,故,上式极限不存在;因此,,在原点处不可微15. (1){()}().n f x D f x 叙述函数列在区间上一致收敛于的定义(1)00()(){()}().(2)[]()()[]()[]00[]()().10[]0[n n N n N x D f x f x f x D f x a b S x S x x y x y S x S y N n N x εεαβαβαβεδαβδεεαδ∀>∃>>∀∈-<'⊂'∀>∃>∀∈''-<-<∀>∃=>>∀∈对,,当时,对均有,,则称函数列在上一致收敛于对任意,,,由于在,上连续,则:在,上一致连续,因此,对,,对、,,当时,有因此,对,,当时,对1()()]1()()()().0 1.[]()()().n n n n nS x S x S n S x S x S x n S x S S x n n x x n βθθεθαβ⎡⎤'+--⎢⎥⎣⎦''''=+⋅-'-=+<<<,都有,其中:在上因此,,一致收敛于。