八位数码管显示板原理图
八位七段数码管动态显示电路设计
八位七段数码管动态显示电路的设计一七段显示器介绍七段显示器,在许多产品或场合上经常可见。
其内部结构是由八个发光二极管所组成,为七个笔画与一个小数点,依顺时针方向为A、B、C、D、E、F、G与DP等八组发光二极管之排列,可用以显示0~9数字及英文数A、b、C、d、E、F。
目前常用的七段显示器通常附有小数点,如此使其得以显示阿拉伯数之小数点部份。
七段显示器的脚位和线路图如下图4.1所示( 其第一支接脚位于俯视图之左上角)。
图4.1、七段显示器俯视图由于发光二极管只有在顺向偏压的时候才会发光。
因此,七段显示器依其结构不同的应用需求,区分为低电位动作与高电位动作的两种型态的组件,另一种常见的说法则是共阳极( 低电位动作)与共阴极( 高电位动作)七段显示器,如下图4.2所示。
( 共阳极) ( 共阴极)图4.2、共阳极(低电位动作)与共阴极(高电位动作)要如何使七段显示器发光呢?对于共阴极规格的七段显示器来说,必须使用“ Sink Current ”方式,亦即是共同接脚COM为VCC,并由Cyclone II FPGA使接脚成为高电位,进而使外部电源将流经七段显示器,再流入Cyclone II FPGA的一种方式本实验平台之七段显示器模块接线图如下图4.5所示。
此平台配置了八组共阳极之七段显示器,亦即是每一组七段显示器之COM接脚,均接连至VCC电源。
而每一段发光二极管,其脚位亦均与Cyclone II FPGA接连。
四位一体的七段数码管在单个静态数码管的基础上加入了用于选择哪一位数码管的位选信号端口。
八个数码管的a、b、c、d、e、f、g、h、dp都连在了一起,8个数码管分别由各自的位选信号来控制,被选通的数码管显示数据,其余关闭。
图4.5、七段显示器模块接线图七段显示器之常见应用如下➢可作为与数值显示相关之设计。
⏹电子时钟应用显示⏹倒数定时器⏹秒表⏹计数器、定时器⏹算数运算之数值显示器二七段显示器显示原理七段显示器可用来显示单一的十进制或十六进制的数字,它是由八个发光二极管所构成的( 每一个二极管依位置不同而赋予不同的名称,请参见图4.1 ) 。
(完整word版)八位七段数码管动态显示电路设计
八位七段数码管动态显示电路的设计一七段显示器介绍七段显示器,在许多产品或场合上经常可见。
其内部结构是由八个发光二极管所组成,为七个笔画与一个小数点,依顺时针方向为A、B、C、D、E、F、G与DP等八组发光二极管之排列,可用以显示0~9数字及英文数A、b、C、d、E、F。
目前常用的七段显示器通常附有小数点,如此使其得以显示阿拉伯数之小数点部份。
七段显示器的脚位和线路图如下图4.1所示( 其第一支接脚位于俯视图之左上角)。
图4.1、七段显示器俯视图由于发光二极管只有在顺向偏压的时候才会发光。
因此,七段显示器依其结构不同的应用需求,区分为低电位动作与高电位动作的两种型态的组件,另一种常见的说法则是共阳极( 低电位动作)与共阴极( 高电位动作)七段显示器,如下图4.2所示。
( 共阳极) ( 共阴极)图4.2、共阳极(低电位动作)与共阴极(高电位动作)要如何使七段显示器发光呢?对于共阴极规格的七段显示器来说,必须使用“ Sink Current ”方式,亦即是共同接脚COM为VCC,并由Cyclone II FPGA使接脚成为高电位,进而使外部电源将流经七段显示器,再流入Cyclone II FPGA的一种方式本实验平台之七段显示器模块接线图如下图4.5所示。
此平台配置了八组共阳极之七段显示器,亦即是每一组七段显示器之COM接脚,均接连至VCC电源。
而每一段发光二极管,其脚位亦均与Cyclone II FPGA接连。
四位一体的七段数码管在单个静态数码管的基础上加入了用于选择哪一位数码管的位选信号端口。
八个数码管的a、b、c、d、e、f、g、h、dp都连在了一起,8个数码管分别由各自的位选信号来控制,被选通的数码管显示数据,其余关闭。
图4.5、七段显示器模块接线图七段显示器之常见应用如下可作为与数值显示相关之设计。
⏹电子时钟应用显示⏹倒数定时器⏹秒表⏹计数器、定时器⏹算数运算之数值显示器二七段显示器显示原理七段显示器可用来显示单一的十进制或十六进制的数字,它是由八个发光二极管所构成的( 每一个二极管依位置不同而赋予不同的名称,请参见图4.1 ) 。
八位数码管扫描显示电路的设计
《EDA技术及应用》课程设计报告题目:八位数码管扫描显示电路的设计院(系):机电与自动化学院专业班级:电气自动化技术学生姓名:学号:指导教师:20 年6月10日至20 年6月23日华中科技大学武昌分校4、课程设计使用设备(1)EDA及SOPC综合实验平台;(2)导线若干;(3)PC机;(4)Quartus II开发工具软件。
目录摘要................................................................1.课程设计题目及要求 (1)1.1设计题目 (1)1.2L E D显示器的动态扫描驱动电路 (1)1.3设计方案论证 (1)2.L E D显示器动态扫描驱动电路各单元电路设计 (3)2.1计数器与译码器的设计 (3)2.2一位共阳极L E D动态驱动电路设计 (4)2.3七段数码管的设计 (5)3.L E D显示器动态扫描系统设计 (7)3.1整体电路图及工作原理 (7)3.2V H D L程序设计 (7)3.3电路参数计算 (10)4.Q u a r t u s运行调试 (12)4.1时序仿真 (12)4.2硬件逻辑验证 (13)4.3调试结果分析 (13)4.4调试中出现的问题及解决方法 (14)5.设计总结 (15)6.参考文献 (16)摘要本文通过一个3-8译码器电路,将输入的4位2进制数转换为与LED显示对应的8位段码,位码就是LED的显示使能端,对于共阳级的LED而言,高电平使能。
要使8个数码管动态扫描显示,就是把所有数码管的相同段并联在一起,通过选通信号分时控制各个数码管的公共端,循环点亮多个数码管,并利用人眼的视觉暂留现象,只要扫描的频率大于50Hz,将看不到闪烁现象。
使用Quartus II6.0软件设计一个VHDL程序并对设计方案进行仿真,再硬件调试经检测输出正确的设计要求结果。
关键词:动态扫描Quartus II6.0 VHDLAbstractIn this paper, through a 3-8 decoder circuit, the input of four hexadecimal number into 2 and eight LED display the corresponding section of code, a codeis the LED display can make side, for the LED with Yang level, high level canmake. To makeeight digital tube dynamic scans showed that is all the samesegment digital tube connected in parallel, through the gating signal time-sharing control public side, the digital tube loop light multiple digital tube, and use the eye of the phenomenon of persistence of vision, as long as the scanning frequency is more than 50 hz, will see the flicker phenomenon. Using Quartus II6.0 a VHDL program design and the software design simulation, and hardware debugging through testing output correct design requirementsKey words: dynamic scanning Quartus II6.0 VHDL1. 课程设计题目及要求1.1设计题目八位数码管扫描显示电路的设计设计主要内容:本课题要求掌握使用Quartus II设计数字系统的设计思路和设计方法。
实验二 数码管动态显示模块设计2
6、单片机中断系统结构及工作原理
标准51单片机的中断系统有五个中断源。分别为:
中断源入口地址优先级别(同级)
外部中断00003H最高
定时器0溢出000BH
外部中断10013H
定时器1溢出001BH
串行口中断0023H最低
使用中断之前,必须对中断允许寄存器IE进行设置,将中断允许标志EA和对应中断位置1,以将中断打开。中断控制结构如图4-10所示。
实验内容
1、在数码管上显示学号的后8位
2、设计一个以学号后两位加10秒的倒计时程序
实验步骤及现象
打开万利仿真机,接好单片机开发板,新建工程,下载安装程序。我们这次实验的程序如下:
#include<reg52.h>
#define uint unsigned int
#define uchar unsigned char
图4-10 MSC51中断结构图
CPU中断的过程为:当有中断源发生中断信号时,首先对IE中对应的中断位判断;如打开,则进行EA判断;如EA=1,将根据中断优先级IP的设置情况进行优先级判别;如该中断优先级较高,在硬件控制下,先将程序计数器PC的内容压入堆栈,同时把被响应的中断服务程序的入口地址装入PC中,以执行中断服务程序。中断服务程序的最后一条指令必须是中断返回指令RETI。CPU执行完这条指令后,将从堆栈中弹出两个字节内容(断点地址)装入PC中,从而执行被中断的程序。
图4-7定时器模式控制字格式
TCON寄存器用于定时器的计数控制和中断标志。如图4-8所示。
图4-8定时控制寄存器数据格式
编写程序控制这两个寄存器就可以控制定时器的运行方式。
单片机内部定时器/计数器的使用,简而概之:(1)如需用中断,则将EA和相关中断控制位置1;(2)根据需要设置工作方式,即对TMOD设置;(3)然后启动计数,即对TR0或TR1置1。(4)如使用中断,则计数溢出后硬件会自动转入中断入口地址;如使用查询,则必须对溢出中断标志位TF0或TF1进行判断。
八段数码管显示实验总结
八段数码管显示实验总结以下是一篇关于八段数码管显示实验总结的文章,旨在详细介绍实验的步骤和结果。
引言:在现代电子技术领域中,七段数码管是一种常见的数字显示装置,常用于计时器、电子表、计数器等设备中。
而八段数码管则是七段数码管的进化版,它增加了一个小数点显示位,可以显示更多的数码和字符。
本篇文章将围绕八段数码管显示实验展开,介绍实验过程及实验结果。
第一步:材料准备进行八段数码管显示实验前,需要准备以下材料:1. 八段数码管:这是实验中的核心组件,用于显示数字和字符。
2. 转接板:用于连接八段数码管和单片机,实现电路的连接。
3. 单片机:本实验中我们选择XXXX型号的单片机,它具备足够的输入输出引脚,方便实验开展。
4. 面包板:用于搭建电路,连接各个组件。
5. 连接线:用于连接数码管、转接板和单片机。
第二步:电路连接1. 将转接板插入面包板中心位置,确保其稳固。
2. 将八段数码管插入转接板对应位置,并通过连接线将其与转接板上的引脚相连。
3. 将单片机插入转接板上的插槽,并通过连接线将其与转接板上的引脚相连。
4. 连接线的连接需要按照电路连接图进行,确保连线正确无误。
第三步:程序编写1. 打开XXXX软件,创建一个新的工程。
2. 在新的工程中,编写程序代码来控制八段数码管显示。
可以根据自己的需求,编写数字、字符等不同的显示内容。
3. 在程序代码中,通过设置不同的数位选择引脚和段选引脚的高低电平来实现不同位上的显示。
第四步:烧录程序1. 将单片机与电脑通过USB线连接。
2. 打开软件,选择对应的单片机型号和烧录方式。
3. 将程序烧录至单片机中,确保烧录成功。
第五步:实验结果在将程序烧录到单片机后,即可观察八段数码管的显示结果。
根据实验编写的程序,数码管将会显示相应的数字和字符。
可以通过改变程序代码中的内容,实现不同的显示效果。
比如,可以设置不同的数值、字符以及使用动态显示等功能。
结论:通过本次实验,我们成功地搭建了一个八段数码管的显示电路,并利用单片机编写了相应的程序进行控制。
第3章 数码管显示输出
第3章数码管显示输出3.1 概述3.1.1 数码管简介数码管是一种广泛应用在仪表、时钟、车站、家电等场合的半导体发光器件,它由多个发光二极管封装在一起,组成“8”字型的器件,颜色有红、绿、蓝、黄等。
图3-1是1位、2位、3位和4位数码管的实物图。
可以看到,每1位数码管都由7个线段型和1个小数点型发光二极管组成,这8个发光二极管在数码管中称之为“段”,平常所说的7段或8段(小数点也算1段)数码管,就指这个意思。
图3-2是从正面观察(数码管正面面对读者,小数点位于右下角)1位数码管时,数码管8个段的名称及引脚图,其中,引脚3和引脚8是公共端com。
图3-1 数码管实物图图3-2 1位数码管各段名及引脚图3.1.2 数字和字符的数码管显示图样从数码管的结构可知,只要有序地组织,让数码管的7段(或者8段)中部分或全部点亮,就可以显示数字或者字符等信息。
图3-3是数字0~9和字母A~F在数码管上显示时对应的图样,其中的字母b和d是小写字母。
图3-3 数字0~9、字母A 、b 、C 、d 、E 、F 在数码管上显示的图样3.1.3 共阳和共阴数码管数码管按照极性可分为共阳数码管和共阴数码管两类。
所谓共阳数码管,从字面理解,就是数码管8个发光二极管的阳极并联在一起,是公共的,称为公共端com ,而各个阴极彼此独立,如图3-4所示;相反,共阴数码管的8个发光二极管的阴极并联在一起,是公共端com ,而各个阳极彼此独立;如图3-5所示。
实际工作中,怎样判别拿在手里的这个数码管是共阳还是共阴呢?一个简便方法就是使用万用表的二极管档去测量。
选择万用表的二极管档,用万用表的红表笔搭接数码管的公共端com(引脚3或引脚8),而黑表笔依次搭接其它引脚,如果此时数码管各段发光,说明该数码管是共阳的;如果数码管的各段都不发光,则交换红黑表笔,用黑表笔搭接公共端com ,用红表笔依次搭接其它引脚,若数码管各段发光,说明该数码管就是共阴的。
51单片机第四节数码管
51单⽚机第四节数码管本笔记默认学习者已拥有:1.Keil5和stc 烧写⼯具 等各种软件、驱动、环境;2.有⼀个属于⾃⼰的 51单⽚机开发板及相关零件 ;3.认识C 语⾔的语法;本⼈使⽤的51开发板为 郭天祥C51 TX-1C 增强版开发板 ;本笔记根据B 站up 主:江科⼤⾃化协的教学视频 整理得到ヾ(•ω•)4-1 静态数码管显⽰上图为TX-1C 的 数码管及LED 模块 原理图138译码器和74HC245 都是⽤来控制 数码管显⽰ 的;单数码管1.上图为 ⼀位数码管,数码管有两种连接⽅式(对应 右边上下两幅图);2.右上图的原理图,8个LED的阴极都连在⼀个引脚上,称为共阴极连接;3.右下图的原理图,8个LED的阳极都连在⼀个引脚上,称为共阳极连接;TX-1C 开发板的连接⽅式是 共阴极连接;4.左下⾓的 左边图⽚ ,定义了8个LED的名称;5.左下⾓的 右边图⽚ ,定义了引脚的名称,与右图的引脚名称⼀⼀对应假设数码管连接⽅式为 共阳极连接,观察可以发现,数码管中的 LED 的引脚引出,使⽤的是就近原则;假设数码管连接⽅式为 共阴极连接,如果上数码管显⽰ 数字6 ?1.要让数码管显⽰ 数字6,让要 LED-A、C、D、E、F、G亮起;2.共阴极的公共端 要接地(给数据‘0’,或者是低电平);3.阳极(称为位选端)根据LED的亮灭需求给 数据0或1(1亮、0灭) ,称为 段码(阳码) (1011 1110 即为段码);如果 共阳极连接,共阳极端 要接到 VCC (⾼电平),阴极给 数据0或1 (1灭,0亮),称为 段码(阴码),和共阴极正好是相反关系;共阳极连接→共阳极端接VCC 并选中→阴极(位选端)传递(阴码)段码(1亮、0灭)→数码管显⽰共阴极连接→共阴极端接GND 并选中→阳极(位选端)传递(阳码)段码(1灭、0亮)→数码管显⽰四位⼀体数码管开发板上即为 四位⼀体的数码管,且有两个,正好组成了 ⼋位数码管;⽽TX-1C 上 包含的是六位数码管,⽽⾮⼋位;1.四位数码管 也有 两种连接⽅式,即 共阴极连接 和 共阳极连接 ;{Processing math: 100%2.四位数码管,(每位的公共端 单独引出来,位选端全部连在⼀起(所有A段连在⼀起、所有B段连在⼀起……),总共有12个引脚;假设数码管连接⽅式为共阴极连接,如何在第三位显⽰数字1 ?1.给第三位的公共端 赋值 0(低电平),给其他位的公共端 赋值 1(⾼电平);这样等同于 其他位的公共端(负极)接到了正极上,⽆论如何都亮不了;只有第三位能亮;2.这样给 LED-B、C 的位选端 赋值 1,其他 位选端 赋值0共阳极连接即为公共端赋值 1(⾼电平)亮,其他以此类推;3.发现这样⼀个现象,数码管⽆法在同⼀时间显⽰多个数字,其在同⼀时刻下只能有⼀个显⽰,只有⼀个数码管能被点亮,即使有多个被选中的数码管,显⽰的数字也是相同的;这种共⽤引脚的现象,是为了减少控制数码管IO⼝;(四位数码管有32个LED,如果都采⽤共阴极连接的⽅式,也要32+1(公共端)=33个引脚;)(采⽤这种链接,就只需要12个引脚即可控制四位数码管;)如何让数码管多位显⽰不同数字(动态数码管显⽰)?1.利⽤ ⼈眼视觉的暂留 和 数码管显⽰的余辉 的原理先让第⼀位数码管显⽰1,然后很快地让第⼆位数码管显⽰2,再很快地让第三位数码管显⽰3,让它不断地扫描,重复显⽰1、2、3的过程,这样三个数字就“同时”显⽰了;原理分析138译码器1.观察到 原理图右图 与数码管有关的,有138译码器(74LS138)和74HC245两枚芯⽚;TX-1C的原理图为左图,也有两个74HC573芯⽚与数码管有关;芯⽚名称与功耗、电压、说明符号有关,具体内容不做分析;2.如图,数码管连接⽅式为 共阴极连接,这样传输数据,就能让第三位显⽰ 数字1 了;3.⽽上⾯的 LED1 ~ 8,其实接在了138译码器的输出端,138译码器正好可以实现让LED1 ~ 8输出 0或1;LED1 ~ 8 对应了 TX-1C 六位数码管的SEG DS 1 ~ 6;4.138译码器可将LED 1 ~ 8的⼋个端⼝ 转化为 由 3个端⼝ (P22、P23、P24)控制,⽽G1、G2A、G2B端⼝ 被 称为 使能端;使能端相当于⼀种开关,如果电平有效,它就可以⼯作;如果电平⽆效,它就不⼯作;观察原理图发现,使能端是已经接好 VCC 和 GND 的,也就是说,其上电其实就会⼯作TX-1C的74HC573也是同理,但其并未压缩控制端⼝的数量;5.138译码器也叫“38线译码器”,是由3个线到8个线,其中C是⾼位、A是低位,CBA组成的数符合8进制,控制着Y0 ~ Y7 这8个端⼝;6.所以,138译码器的作⽤就是⽤来选中某⼀位数码管的74HC2451.74HC245是⼀种 双向数据缓冲器,VDD、GND都可视为电源,OE为使能(其 接地 就⼯作);2.DIR(direction),是⽅向的意思,它接到了VCC(⾼电平)上,将数据从左边输出到右边,从右边将数据读取回左边;DIR若接到低电平上,会将数据从右边输出到左边,从左边将数据读取回右边;3.单⽚机的⾼电平 驱动能⼒有限,其输出的最⼤电流不能太⼤;其低电平 驱动能⼒强;因此,LED模块才采⽤了低电平点亮的模式;4.如果⽤⾼电平 直接点亮 数码管,电流会很⼩,灯会很暗;所以其加⼀个缓冲器,缓冲器可以提⾼ 其驱动能⼒,如果直接将 数据 输出 给 数码管,数据就会被视为 驱动数据;现在增加了缓冲器,数据 就变成了 控制信号,控制信号 只需要很微弱,缓冲器 就可以接收到,缓冲器再通过⾃⼰接到的电源,输出 数据 到引脚上,这样控制的电流只需要⾮常⼩,就能驱动数码管 以⽐较亮的形式显⽰;2电容 是⽤来 稳定电源的,叫电源滤波;6.图右有 ⼀ 排阻,阻值为100R(即为100Ω),作⽤为 限流电阻 ,防⽌数码管的电流过⼤;TX-1C既没有电容,也没有排阻;原理总结1.⽤ 138译码器 使 数码管 的某⼀位 被选中;2.再给P0⼝⼀个 段码数据;TX-1C虽然⽤P0⼝控制段码输⼊,但也⽤P0⼝控制位选;需要先⽤ P2.6⼝和P2.7⼝控制输⼊数据是段码还是位选;P2.6⼝控制段码的输⼊;P2.7⼝控制位选的输⼊;例,给P2.6 数据1 (⾼电压)、给P2.7 数据 0 (低电压),就可以确定现在给数据是段码;1.由TX-1C的原理图可知,数码管内 LED灯 与 P0端⼝ 的顺序关系:(1)LED的名称定义是通⽤⽆疑的;(2)数码管本⾝的引脚名称不重要,重要的是 LED与哪个 P0 的 引脚 相连;2.由TX-1C的原理图可知, P0.0引脚 控制 数码管的最左位,P0.5引脚控制 数码管的最右位,剩余引脚是没有控制 数码管 位选 的作⽤的,哪个P0 的 引脚 控制 六位数码管的 哪位 很重要;代码实现静态数码管显⽰(让数码管第三位显⽰3).c#include<reg51.h>sbit D=P2^6; //段码⼝sbit W=P2^7; //位选⼝void main(){D=0;W=1;P0=0xFB;//1111 1011W=0;D=1;P0=0x4F;//0100 1111while(1);}下⾯写出了⼀个通⽤函数,可以让数码管在 第⼏个位置 显⽰ 哪个数#include<reg51.h>#define uchar unsigned charsbit D=P2^6;sbit W=P2^7;void NixieTube(uchar wei,uchar duan){ //NixieTube是数码管的英⽂uchar WEI,DUAN; //(Nixie是⼥⽔妖的意思)D=0;W=1;switch(wei){ //位选部分case 1:WEI=0xFE; break;case 2:WEI=0xFD; break;case 3:WEI=0xFB; break;case 4:WEI=0xF7; break;case 5:WEI=0xEF; break;case 6:WEI=0xDF; break;}P0=WEI;W=0;D=1;switch(duan){ //段码部分case 0:DUAN=0x3F; break;case 1:DUAN=0x06; break;case 2:DUAN=0x5B; break;case 3:DUAN=0x4F; break;case 4:DUAN=0x66; break;case 5:DUAN=0x6D; break;case 6:DUAN=0x7D; break;case 7:DUAN=0x07; break;case 8:DUAN=0x7F; break;case 9:DUAN=0x6F; break;case 10:DUAN=0x77; break; //Acase 11:DUAN=0x7F; break; //Bcase 12:DUAN=0x39; break; //Ccase 13:DUAN=0x3F; break; //Dcase 14:DUAN=0x79; break; //Ecase 15:DUAN=0x71; break; //Fcase 16:DUAN=0x80; break; //.}P0=DUAN;}void main(){NixieTube(3,3);while(1);}运⾏结果如下:4-2 动态数码管显⽰1.如果只是单纯让其显⽰完⼀个再显⽰⼀个,代码如下:#include<reg51.h>#define uchar unsigned charsbit D=P2^6;sbit W=P2^7;uchar Nixiewei[]={0,0xFE,0xFD,0xFB,0xF7,0xEF,0xDF};uchar Nixiecode[]={0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,0x77,0x7F,0x39,0x3F,0x79,0x71,0x80};//将两个switch改进为数组void NixieTube(uchar wei,uchar duan){D=0;W=1;P0=Nixiewei[wei];W=0;D=1;P0=Nixiecode[duan];}void main(){while(1){NixieTube(1,1);NixieTube(2,2);NixieTube(3,3);}}运⾏结果如下:2.这是⼀个数码管的常见问题,称为 数码管的消影 ;位选-->段选-->位选-->段选-->位选-->......在这⼀位的段选(输⼊段码)结束,进⾏下⼀位的位选时,很短的时间内,上⼀位的数据会串到下⼀位数据⾥⾯去;所以我们在段选和位选之间,增加⼀个 P0 清零的操作;动态数码管显⽰(数码管同时显⽰123).c#include<reg51.h>#define uchar unsigned charsbit D=P2^6;sbit W=P2^7;uchar Nixiewei[]={0,0xFE,0xFD,0xFB,0xF7,0xEF,0xDF};uchar Nixiecode[]={0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,0x77,0x7F,0x39,0x3F,0x79,0x71,0x80};void Delayms(unsigned int x){unsigned int j;for(;x>0;x--) for(j=110;j>0;j--);}void NixieTube(uchar wei,uchar duan){D=0;W=1;P0=Nixiewei[wei];W=0;D=1;P0=Nixiecode[duan];Delayms(1); //让数码管稳定显⽰,⽴刻清零会让数码管显⽰较暗P0=0; //清零操作}void main(){while(1){NixieTube(1,1);NixieTube(2,2);NixieTube(3,3);}}运⾏结果如下:相关知识1.在运⾏某些代码时,TX-1C的LED点阵模块会乱闪2.将左下⾓ DOT-OE旁的跳线帽 拔下来即可 断开LED点阵模块,3.拔下来的跳线帽不要乱丢,可以 只插⼀个脚放在原处,也可以妥善保管在其他地⽅上图即为拔下来的跳线帽1.此元件为电容;2.104的数量规则与 第⼆节 所讲的电容是相同的,其单位是pF1000pF=1nF, 1000nF=1uF, 1000uF=1000mF, 1000mF=1FF 是⼀个很⼤的单位,正常电容都是uF、nF级别的;超级电容能达到1 ~ 2 F,其⼀般作为备⽤电池;3.TX-1C的原理图上,电容的量都是直接⽤单位标记好的。
硬件实验十--八段数码管显示
硬件实验十 八段数码管显示一、实验要求利用实验仪提供的显示电路,动态显示一行数据.二、实验目的1. 了解数码管动态显示的原理。
2. 了解用总线方式控制数码管显示三、实验线路及连线四、实验说明1.本实验仪提供了6 位8段码LED 显示电路,只要按地址输出相应数据,就可以实现对显示器的控制。
显示共有6位,用动态方式显示。
8位段码、6位位码是由两片74LS374输出。
位码经MC1413或ULN2003倒相驱动后,选择相应显示位。
本实验仪中 8位段码输出地址为0X004H ,位码输出地址为 0X002H 。
此处X 是由KEY/LED CS 决定,参见地址译码。
做键盘和LED 实验时,需将KEY/LED CS 接到相应的地址译码上。
以便用相应的地址来访问。
例如,将KEY/LED CS 接到CS0上,则段码地址为08004H ,位码地址为08002H 。
位选通信号 (0x002H)段码输出 (0x004H)数据总线连线 连接孔1 连接孔2 1 KEY/LED_CS CS0七段数码管的字型代码表如下表:五、程序框图程序代码OUTBIT equ 08002h ; 位控制口OUTSEG equ 08004h ; 段控制口LEDBuf equ 60h ; 显示缓冲Num equ 70h ; 显示的数据DelayT equ 75h ;ljmp StartLEDMAP: ; 八段管显示码db 3fh, 06h, 5bh, 4fh, 66h, 6dh, 7dh, 07h db 7fh, 6fh, 77h, 7ch, 39h, 5eh, 79h, 71hDelay: ;mov r7, #0DelayLoop:djnz r7, DelayLoopdjnz r6, DelayLoopretDisplayLED:mov r0, #LEDBufmov r1, #6 ;mov r2, #00100000b ;Loop:mov dptr, #OUTBITmov a, #0movx @dptr, a ;mov a, @r0mov dptr, #OUTSEGmovx @dptr,amov dptr, #OUTBITmov a, r2movx @dptr, a ;mov r6, #01call Delaymov a, r2 ;rr amov r2, ainc r0djnz r1, Loopmov dptr, #OUTBITmov a, #0movx @dptr, a ;retStart:mov sp, #40hmov Num, #0MLoop:inc Nummov a, Nummov b, amov r0, #LEDBufFillBuf:mov a, banl a, #0fhmov dptr, #LEDMapmovc a, @a+dptr ;mov @r0,a ;inc r0inc bcjne r0, #LEDBuf+6, FillBufmov DelayT,#0DispAgain:call DisplayLED ;djnz DelayT,DispAgain ljmp MLoopend硬件实验十一 键盘扫描显示实验一、实验要求在硬件实验十的基础上,利用实验仪提供的键盘扫描电路和显示电路,做一个扫描键盘和数码显示实验,把按键输入的键码在六位数码管上显示出来。
实验二 数码管显示
实验二数码管显示本实验的目的是掌握数码管的工作原理与使用,实现数码管的静、动态显示。
静态数码管我们先看看什么是数码管,上图就是各种长相各种样子的数码管了,肯定很眼熟了吧。
不管将几位数码管连在一起,数码管的显示原理都是一样的,都是靠点亮内部的发光二极管来发光,下面就来我们讲解一个数码管是如何亮起来的。
数码管内部电路如下图所示,从右图可看出,一位数码管的引脚是10个,显示一个8字需要7个小段,另外还有一个小数点,所以其内部一共有8个小的发光二极管,最后还有一个公共端,生产商为了封装统一,单位数码管都封装10个引脚,其中第3和第8引脚是连接在一起的。
而它们的公共端又可分为共阳极和共阴极,中间图为共阴极内部原理图,右图为共阳极内部原理图。
上图展出了常用的两种数码管的引脚排列和内部结构。
总所周知,点亮发光二极管就是要给予它足够大的正向压降。
所以点亮数码管其实也就是给它内部相应的发光二极管正向压降。
如上图左(一共a、b、c、d、e、f、g、DP 八段),如果要显示“1”则要点亮b、c 两段LED;显示“A”则点亮a、b、c、e、f、g 这六段LED;我们还知道,既然LED 加载的是正向压降,它的两端电压必然会有高低之分:如果八段LED 电压高的一端为公共端,我们称之为共阳极数码管(如上图中);如果八段LED 电压低的一段为公共端,则称之为共阴极数码管(上图右)。
所以,要点亮共阳极数码管,则要在公共端给予高于非公共端的电平;反之点亮共阴极数码管,则要在非公共端给予较高电平。
对共阴极数码来说,其8个发光二极管的阴极在数码管内部全部连接在一起,所以称“共阴”,而它们的阳极是独立的,通常在设计电路时一般把阴极接地。
当我们给数码管的任意一个阳极加一个高电平时,对应的这个发光二极管就点亮了。
如果想要显示出一个8字,并且把右下角的小数点也点亮的话,可以给8个阳极全部送高电平,如果想让它显示出一个0字,那么我们可以除了给第“g, dp”这两位送低电平外,其余引脚全部都送高电平,这样它就显示出0字了。
八位七段数码管动态显示电路设计知识讲解
八位七段数码管动态显示电路设计八位七段数码管动态显示电路的设计一七段显示器介绍七段显示器,在许多产品或场合上经常可见。
其内部结构是由八个发光二极管所组成,为七个笔画与一个小数点,依顺时针方向为A、B、C、D、E、F、G与DP等八组发光二极管之排列,可用以显示0~9数字及英文数A、b、C、d、E、F。
目前常用的七段显示器通常附有小数点,如此使其得以显示阿拉伯数之小数点部份。
七段显示器的脚位和线路图如下图4.1所示( 其第一支接脚位于俯视图之左上角 )。
图4.1、七段显示器俯视图由于发光二极管只有在顺向偏压的时候才会发光。
因此,七段显示器依其结构不同的应用需求,区分为低电位动作与高电位动作的两种型态的组件,另一种常见的说法则是共阳极( 低电位动作 )与共阴极( 高电位动作 )七段显示器,如下图4.2所示。
( 共阳极 ) ( 共阴极 )图4.2、共阳极(低电位动作)与共阴极(高电位动作)要如何使七段显示器发光呢?对于共阴极规格的七段显示器来说,必须使用“ Sink Current ”方式,亦即是共同接脚COM为VCC,并由Cyclone II FPGA使接脚成为高电位,进而使外部电源将流经七段显示器,再流入Cyclone II FPGA的一种方式本实验平台之七段显示器模块接线图如下图4.5所示。
此平台配置了八组共阳极之七段显示器,亦即是每一组七段显示器之COM接脚,均接连至VCC 电源。
而每一段发光二极管,其脚位亦均与Cyclone II FPGA接连。
四位一体的七段数码管在单个静态数码管的基础上加入了用于选择哪一位数码管的位选信号端口。
八个数码管的a、b、c、d、e、f、g、h、dp都连在了一起,8个数码管分别由各自的位选信号来控制,被选通的数码管显示数据,其余关闭。
图4.5、七段显示器模块接线图七段显示器之常见应用如下➢可作为与数值显示相关之设计。
⏹电子时钟应用显示⏹倒数定时器⏹秒表⏹计数器、定时器⏹算数运算之数值显示器二七段显示器显示原理七段显示器可用来显示单一的十进制或十六进制的数字,它是由八个发光二极管所构成的( 每一个二极管依位置不同而赋予不同的名称,请参见图4.1 ) 。
硬件实验6 八段数码管显示实验
硬件实验6 八段数码管显示实验1.实验目的1)了解数码管实现显示字符的7段码编制方法;2)掌握查表法获得0-F的7段码的方法;3)掌握静态显示和动态显示的原理,硬件连接方式和程序编写方法。
2.预习要求1)了解数码管静态显示和动态显示接口电路的设计方法和特点;2)了解数码管动态显示的程序设计方法;3)理解运用串行口工作方式0扩展I/O连接数码管的方法;4)认真预习本节实验内容,设计实验硬件连接电路,编写实验程序。
3.实验说明1)LED数码管显示原理8段LED数码管有共阴极和共阳极两种结构。
对于共阴数码管,其8个LED的阴极连接在一起作为公共COM端;而共阳数码管中8个LED的阳极连接在一起作为公共COM端。
共阴数码管显示的必要条件是其COM端接地或接具有较大灌电流能力的输入端口,此时当某个发光二级管的阳极为高电平时,该发光二极管点亮;共阳数码管显示的必要条件是共阳极接电源或具有较强电流输出能力的输出端口,此时当某个发光二极管的阴极接低电平时,该发光二级管被点亮。
2)LED数码管显示方式A.静态显示方式静态显示的特点是每个数码管需要一个具有锁存功能的8位输出口,用来锁存待显示的段码。
将要显示数的7段码输出到端口,数码管就会显示并一直保持到接收到新的显示段码为止。
静态显示的优点:显示程序简单,占用CPU时间少。
但当数码管数量较多时,就需要外扩较多的输出端口,因此静态显示的缺点是占用硬件资源多,成本较高。
B.动态显示方式动态显示的特点是将多个数码管的相应段码线连在一起,接到一个8位输出端口,该端口称为段码输出口;同时将各个(如8个)数码管的COM端连接到一个8位输出端口,该端口称为位控输出口。
这样的连接使得8个数码管只要2个输出端口就可以实现控制,大大简化硬件电路。
但是由于多个数码管的段码是连在一起的,所以需要结合位控信号,分时输出不同数码管上显示的7段码,即需要采用动态显示扫描,轮流向段码输出口输出段码和向位控输出口输出位选信号,并进行1~2ms的短时延时;8个数码管轮流输出一遍后,约20ms后,就要进行一次显示刷新,这样才能利用发光管的余辉和人眼视觉暂留作用,得到全部数码管同时稳定显示的效果。
八位七段数码管动态显示电路设计
八位七段数码管动态显示电路的设计一七段显示器介绍七段显示器,在许多产品或场合上经常可见。
其内部结构是由八个发光二极管所组成,为七个笔画与一个小数点,依顺时针方向为A、B、C、D、E、F、G与DP等八组发光二极管之排列,可用以显示0~9数字及英文数A、b、C、d、E、F。
目前常用的七段显示器通常附有小数点,如此使其得以显示阿拉伯数之小数点部份。
七段显示器的脚位和线路图如下图4.1所示( 其第一支接脚位于俯视图之左上角)。
图4.1、七段显示器俯视图由于发光二极管只有在顺向偏压的时候才会发光。
因此,七段显示器依其结构不同的应用需求,区分为低电位动作与高电位动作的两种型态的组件,另一种常见的说法则是共阳极( 低电位动作)与共阴极( 高电位动作)七段显示器,如下图4.2所示。
( 共阳极) ( 共阴极)图4.2、共阳极(低电位动作)与共阴极(高电位动作)要如何使七段显示器发光呢?对于共阴极规格的七段显示器来说,必须使用“Sink Current ”方式,亦即是共同接脚COM为VCC,并由Cyclone II FPGA使接脚成为高电位,进而使外部电源将流经七段显示器,再流入Cyclone II FPGA的一种方式本实验平台之七段显示器模块接线图如下图4.5所示。
此平台配置了八组共阳极之七段显示器,亦即是每一组七段显示器之COM接脚,均接连至VCC电源。
而每一段发光二极管,其脚位亦均与Cyclone II FPGA接连。
四位一体的七段数码管在单个静态数码管的基础上加入了用于选择哪一位数码管的位选信号端口。
八个数码管的a、b、c、d、e、f、g、h、dp都连在了一起,8个数码管分别由各自的位选信号来控制,被选通的数码管显示数据,其余关闭。
图4.5、七段显示器模块接线图七段显示器之常见应用如下可作为与数值显示相关之设计。
⏹电子时钟应用显示⏹倒数定时器⏹秒表⏹计数器、定时器⏹算数运算之数值显示器二七段显示器显示原理七段显示器可用来显示单一的十进制或十六进制的数字,它是由八个发光二极管所构成的( 每一个二极管依位置不同而赋予不同的名称,请参见图4.1 ) 。
实验四 八位七段数码管动态显示电路的设计
八位七段数码管动态显示电路的设计一、实验目的1、了解数码管的工作原理。
2、学习七段数码管显示译码器的设计。
3、学习VHDL的CASE语句及多层次设计方法。
二、实验原理七段数码管是电子开发过程中常用的输出显示设备。
在实验系统中使用的是两个四位一体、共阴极型七段数码管。
其单个静态数码管如下图4-4-1所示。
图4-1 静态七段数码管由于七段数码管公共端连接到GND(共阴极型),当数码管的中的那一个段被输入高电平,则相应的这一段被点亮。
反之则不亮。
共阳极性的数码管与之相么。
四位一体的七段数码管在单个静态数码管的基础上加入了用于选择哪一位数码管的位选信号端口。
八个数码管的a、b、c、d、e、f、g、h、dp都连在了一起,8个数码管分别由各自的位选信号来控制,被选通的数码管显示数据,其余关闭。
三、实验内容本实验要求完成的任务是在时钟信号的作用下,通过输入的键值在数码管上显示相应的键值。
在实验中时,数字时钟选择1024HZ作为扫描时钟,用四个拨动开关做为输入,当四个拨动开关置为一个二进制数时,在数码管上显示其十六进制的值。
四、实验步骤1、打开QUARTUSII软件,新建一个工程。
2、建完工程之后,再新建一个VHDL File,打开VHDL编辑器对话框。
3、按照实验原理和自己的想法,在VHDL编辑窗口编写VHDL程序,用户可参照光盘中提供的示例程序。
4、编写完VHDL程序后,保存起来。
方法同实验一。
5、对自己编写的VHDL程序进行编译并仿真,对程序的错误进行修改。
6、编译仿真无误后,根据用户自己的要求进行管脚分配。
分配完成后,再进行全编译一次,以使管脚分配生效。
7、根据实验内容用实验导线将上面管脚分配的FPGA管脚与对应的模块连接起来。
如果是调用的本书提供的VHDL代码,则实验连线如下:CLK:FPGA时钟信号,接数字时钟CLOCK3,并将这组时钟设为1024HZ。
KEY[3..0]:数码管显示输入信号,分别接拨动开关的S4,S3,S2,S1。
八段数码管显示
实验一八段数码管显示1、实验目的:(1)了解数码管动态显示的原理。
(2)了解74LS164扩展端口的方法。
2、实验要求:利用实验仪提供的显示电路,动态显示一行数据.3、实验电路图LED1LED2LED3LED4LED5LED64、实验器材:(1)超想-3000TB综合实验仪 1 台(2)超想3000仿真器 1 台(3)计算机 1 台5、实验连线无 6、实验说明:(1)本实验仪提供了8段码LED 显示电路,学生只要按地址输出相应数据,就可以实现对显示器的控制。
显示共有6位,用动态方式显示。
8段数码管是由8155的PB0、PB1经74LS164“串转并”后输出得到。
6位位码由8155的PA0口输出,经Ua2003反向驱动后,选择相应显示位。
74LS164是串行输入并行输出转换电路,串行输入的数据位由8155的PB0控制,时钟位由8155的PB1控制输出。
写程序时,只要向数据位地址输出数据,然后向时钟位地址输出一高一低两个电平就可以将数据位移到74LS164中,并且实现移位。
向显示位选通地址输出高电平就可以点亮相应的显示位。
本实验仪中数据位输出地址为0e102H ,时钟位输出地址为0e102H ,位选通输出地址为 0e101H 。
本实验涉及到了8155 I0/RAM 扩展芯片的工作原理以及74LS164器件的工作原理。
(2)七段数码管的字型代码表显示字形g f e d c b a 段码 0 0 1 1 1 1 1 1 3fh 1 0 0 0 0 1 1 0 06h2 1 0 1 1 0 1 1 6bh3 1 0 0 1 1 1 1 4fh4 1 1 0 0 1 1 0 66h5 1 1 0 1 1 0 1 6dh6 1 1 1 1 1 0 1 7dh7 0 0 0 0 1 1 1 07h8 1 1 1 1 1 1 1 7fh9 1 1 0 1 1 1 1 6fh A 1 1 1 0 1 1 1 77h B 1 1 1 1 1 0 0 7ch C 0 1 1 1 0 0 1 39h D 1 0 1 1 1 1 0 5eh E 1 1 1 1 0 0 1 79h F1111 71hab c def g dp7、程序框图8、实验步骤1.将KEIL仿真器上40芯排线一端和实验箱上51CPU板上的40芯排针连接起来,将仿真器连接的USB或串口线与PC机对应的USB或串口连接起来,打开实验箱电源。
《FPGA设计与应用》数码管显示实验一
《FPGA设计与应用》数码管显示实验一、实验目的和要求
1.学习动态数码管的工作原理;
2.实现对EGO1开发板四位动态数码管的控制;
二、实验内容
实现对EGO1开发板四位动态数码管的控制,使其能够正常工作;
三、实验要求
在EGO1开发板上显示想要的数字。
四、操作方法与实验步骤
1、八段数码管的动态显示原理:
2、数码管显示的设计共分3个模块:
(1)数码管封装模块
(2)数码管设计模块
(3)顶层模块
数码管动态显示的MODULE实现:
模块顶层设计——显示4个(位)十进制数
逻辑实现:
确定当前显示的位
确定当前“位”需要显示的“数”:
将“数”翻译成相应的“段码”
仿真测试台代码编写与仿真测试定义时间标尺:
定义测试Moudle
实例化被测Moudle
定义激励信号与响应信号
构造激励信号:
五、实验数据记录和处理实验代码如下:
设计文件:(部分)
仿真文件:
约束文件:
六、实验结果与分析网表结构:
仿真图像:
实物图:
七、讨论和心得
通过这次实验,我学会了数码管的动态显示,每一个数码管共用一套电路,显示时只需控制哪一个数码管进行显示。
虽然一次只能控制单独一个数码管进行显示,但可以快速切换数码管显示,利用人眼的”视觉暂留"来“同步”进行显示。
最后我明白了我们不要遇到一点困难就退缩,就去向老师同学寻求帮助,自己是自己最好的老师,只有我们靠自己的不断修改出正确结果,才会对这个知识掌握的更加透彻。
8只数码管滚动显示单个数字设计报告
机电工程学院课程设计报告书题目: 8只数码管滚动显示单个数字专业:电气自动化技术班级: DQ 09302学号:学生姓名:杨超指导教师:朱晓玲2010 年12月30日摘要功能简介:1内容:利用动态扫描让八位数码管稳定的显示1、2、3、4、5、6、7、82目标:(1)掌握单片机控制八位数码管的动态扫描技术,包括程序设计和电路设计,本任务的效果是让八位数码管稳定的显示12345678。
(2)用PROTEUS进行电路设计和实时仿真3知识点链接(1)数码管动态扫描(动态扫描的定义以及与静态显示的区别)动态显示的特点是将所有位数码管的段选线s一位数码管有效。
选亮数码管采用动态扫描显示。
所谓动态扫描显示即轮流向各位数码管送出字形码和相应的位选,利用发光管的余辉和人眼视觉暂留作用,使人的感觉好像各位数码管同时都在显示。
(2)总线的应用元器件与总线的连线P0口的接线采用总线方式,详细如图------所示。
①选择总线按钮②绘制总线:与普通电线的绘制方法一样,选择合适的起点、终点单击。
如果终点在空白处,左键双击结束连线。
画总线的时候为了和一般的导线区分,我们一般喜欢画斜线来表示分支线。
此时我们需要自己决定走线路径,只需在想要拐点处单击鼠标左键即可。
在画斜线时,需要关闭线路自动路径功能才好绘制。
Proteus的线路自动路径功能简称WAR,当选中两个连接点后,WAR将选择一个合适的路径连线。
WAR可通过使用标准工具栏里的“WAR”命令按钮来关闭或打开,也可以在菜单栏的“Tools”下找到这个图标。
③给与总线连接的导线贴标签PART LABELS与P0口相连的线标签名依次为P00—P06,本电路中的P0口的上拉电阻通过总线与P0口相连,数码管也是通过总线与P0口相连,这些都需要标注,以表明正确的电气连接。
单击绘图工具栏中的导线标签按钮,使之处于选中状态。
将鼠标置于图形编辑窗口的欲标标签的导线上,跟着鼠标的指针就会出现一个“×”号,表明找到了可以标注的导线,单击鼠标左键,弹出编辑导线标签窗口,如图---所示。