初一数学练习(3
七年级数学上册《第三章 代数式的值》同步练习题及答案(冀教版)
七年级数学上册《第三章 代数式的值》同步练习题及答案(冀教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.当a=﹣2时,代数式1﹣3a 2的值是( )A.﹣2B.11C.﹣11D.22.若x=-3,y=1,则代数式2x -3y +1的值为( )A.-10B.-8C.4D.103.已知a-b=2,则代数式2a-2b-3的值是( )A.1B.2C.5D.74.若x 2-3y-5=0,则6y-2x 2-6的值为( )A.4B.﹣4C.16D.﹣165.下列各数中,使代数式2(x -5)的值为零的是( )A.2B.-2C.5D.-56.当x =1时,代数式12ax 3-3bx +4的值是7.则当x =-1时,这个代数式的值是( ) A.7 B.3 C.1 D.-77.已知代数式x ﹣2y 的值是5,则代数式﹣3x+6y+1的值是( )A.16B.﹣14C.14D.﹣168.按如图所示的运算程序,能使输出的结果为12的是( )A.x =3,y =3B.x =﹣4,y =﹣2C.x =2,y =4D.x =4,y =2二、填空题9.若x 的相反数是3,|y|=5,则x -y=____________.10.已知:x ﹣2y+3=0,则代数式(2y ﹣x)2﹣2x+4y ﹣1的值为 .11.若2x-5y=3,则7-6x+15y=_______.12.已知y=2-x ,则4x +4y -3的值为 .13.试写一个只含字母x 的代数式:当x=﹣2时,它的值等于5.你写的代数式是 .14.下面是一个简单的数值运算程序,当首先输入a=-2时,计算出正数为止,那么输出的结果是________.三、解答题15.已知a=12,b=-3,求代数式4a 2+6ab -b 2的值;16.已知|a +2|与|b -3|互为相反数,求(b +a)(b -a)-(2a +b)2的值.17.某市出租车收费标准为:起步价6元(即行驶距离不超过3km 都付6元车费),超过3km 后,每增加1km ,加收2.4元.某人乘坐出租车行驶x(km)(x>3).①用代数式表示他应付的费用;②求当x=8km 时的乘车费用.18.如图,一块正方形的铁皮,边长为x cm(x>4),如果一边截去宽4 cm的一块,相邻一边截去宽3 cm的一块.(1)求剩余部分(阴影)的面积;(2)若x=8,则阴影部分的面积是多少?19.火车从北京站出发时车上有乘客(5a﹣2b)人,途中经过武汉站是下了一半人,但是又上车若干人,这时车上的人数为(10a﹣3b)人.(1)求在武汉站上车的人数;(2)当a=250,b=100时,在武汉站上车的有多少人?20.用棋子摆成的“T”字形图如图所示:(1)填写表:图形序号①②③④…⑩每个图案中棋子个数 5 8 …(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数.(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?)参考答案1.C2.B3.A4.D5.C6.C7.B8.C9.答案为:-8或210.答案为:14.11.答案为:112.答案为:513.答案为:﹣2x+1.14.答案为:2;15.解:当a=12,b=-3时,4a 2+6ab -b 2=4×(12)2+6×12×(-3)-(-3)2=-17 16.解:∵|a +2|与|b -3|互为相反数∴|a +2|+|b -3|=0.∵|a +2|≥0,|b -3|≥0∴a +2=0,b -3=0∴a=-2,b=3.∴(b +a)(b -a)-(2a +b)2=(3-2)[3-(-2)]-[2×(-2)+3]2=1×5-(-1)2=4.17.解:①2.4(x -3)+6=(2.4x -1.2)元.②当x=8时,2.4x -1.2=2.4×8-1.2=18(元).18.解:(1)阴影部分的面积=(x-3)(x-4)=x 2-7x+12;(2)x=8时,阴影部分的面积=(8-3)×(8-4)=20厘米2.19.解:(1)依题意得:(10a ﹣3b)+12(5a ﹣2b)﹣(5a ﹣2b)=152a ﹣2b ; (2)把a =250,b =100代入(152a ﹣2b),得15×250﹣2×100=1675(人).2答:在武汉站上车的有1675人.20.解:(1)11 14 32;(2)第n个“T”字形图案共有棋子(3n+2)个.(3)当n=20时,3n+2=3×20+2=62(个).即第20个“T”字形图案共有棋子62个.(4)这20个数据是有规律的,第1个与第20个数据的和、第2个与第19个数据的和、第3个与第18个数据的和……都是67,共有10个67.所以前20个“T”字形图案中,棋子的总个数为67×10=670(个).。
【教育资料】2018-2019学年数学人教版(五四学制)七年级上册11.4一元一次方程与 实际问题 同步练习(3)学
2019-2019学年数学人教版(五四学制)七年级上册11.4一元一次方程与实际问题同步练习(3)一、选择题1.某市为节约用水,制定了如下标准:用水不超过20吨,按每吨1.2元收费;超过20吨,则超出部分按每吨1.5元收费.小明家六月份的水费是平均每吨1.25元,那么小明家六月份应交水费( )A. 20元B. 24元C. 30元D. 36元2.杨老师利用暑假带领团员们乘汽车到农村进行社会调查,每张汽车票原价是50元。
甲车主说:乘我的车,全部8折优惠;乙车主说;乘我的车,学生9折优惠,老师不要票.杨老师计算了一下,发现无论乘哪辆车花费都一样。
杨老师去农村带领的团员人数为()A. 6B. 7C. 8D. 93.某商场出售茶壶和茶杯,茶壶每只15元,茶杯每只3元,商店规定购一只茶壶赠一只茶杯,某人共付款171元,得茶壶、茶杯共30只(含赠品在内),则此人购得茶壶的只数为( )A. 8B. 9C. 10D. 114.某市居民生活用电基本价格为每度0.4元,若每月用电量超过a度,超过部分按每度0.6元收费,若某户居民九月份用电84度,共交电费40.4元,则a为( )A. 50度B. 55度C. 60度D. 65度5.一个两位数,十位上的数字是个位数字的2倍,将个位数字与十位数字调换,得到一个新的两位数,这两个两位数的和是132,则原来的两位数为( )A. 48B. 84C. 36D. 636.假期张老师和王老师带学生乘车外出参加实践活动,甲车主说“每人8折”,乙车主说“学生9折,老师减半”,张老师计算了一下,不论坐谁的车,费用都一样,则张老师和王老师带的学生人数为()A. 6名B. 7名C. 8名D. 9名二、填空题7.某校为学生购买名著《三国演义》100套、《西游记》80套,共用了12019元,《三国演义》每套比《西游记》每套多16元,求《三国演义》和《西游记》每套各多少元?设西游记每套x元,可列方程为________.8.某校初一所有学生将在大礼堂内参加2019年“元旦联欢晚会”,若每排坐30人,则有8人无座位;若每排坐31人,则空26个座位,则初一年级共有多少名学生?设大礼堂内共有x排座位,可列方程为________9.全班同学去春游,准备租船游玩,如果比计划减少一条船,则每条船正好坐9个同学,如果比计划增加一条船,每条船正好坐6个同学,则这个班有________个同学,计划租用________条船。
北师大版七年级数学上册第二章《有理数及其运算》练习题含答案解析 (3)
一、选择题1.有理数a,b,c在数轴上的位置如图所示,则式子∣a∣+∣b∣+∣a+b∣−∣b−c∣化简结果为( )A.2a+b−c B.2a+b+c C.b+c D.3b−c2.如图,点A,B在数轴上,点O为原点,OA=OB.按如图所示方法用圆规在数轴上截取BC=AB,若点A表示的数是a,则点C表示的数是( )A.2a B.−3a C.3a D.−2a3.一个点在数轴上距原点3个单位长度开始,先向右移动4个单位长度,再向左移动1个单位长度,这时它表示的数是( )A.6B.0C.−6D.0或64.已知a,b,c为有理数,且a+b+c=0,b≥−c>∣a∣,且a,b,c与0的大小关系是( )A.a<0,b>0,c<0B.a>0,b>0,c<0C.a≥0,b<0,c>0D.a≤0,b>0,c<05.当式子∣x+2∣+∣x−5∣取得最小值时,x的取值范围为( )A.−2≤x<5B.−2<x≤5C.x=2D.−2≤x≤56.在数轴上有两个点,分别表示数x和y,已知∣x∣=1,且x>0,∣y+1∣=4,那么这两个点之间距离为( )A.2或6B.5或3C.2D.37.如果∣a∣a +∣b∣b+∣c∣c=−1,那么ab∣ab∣+bc∣bc∣+ac∣ac∣+abc∣abc∣的值为( )A.−2B.−1C.0D.不确定8.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:指数运算21=222=423=8⋯新运算log 22=1log 24=2log 28=3⋯指数运算31=332=933=27⋯新运算log 33=1log 39=2log 327=3⋯根据上表规律,某同学写出了三个式子:①log 216=4,② log 525=5,③ log 212=−1,其中正确的是 ( ) A .①② B .①③ C .②③ D .①②③9. 【例 9−2 】已知 ∠AOB =60∘,∠AOC =13∠AOB ,射线 OD 平分 ∠BOC ,则 ∠COD 的度数为( ) A . 20∘ B . 40∘ C . 20∘ 或 30∘ D . 20∘ 或 40∘10. 下面四个数中,最大的数为 ( ) A . (−1)2021B . −∣−2∣C . (−2)3D . −12二、填空题11. 若 a +b +c >0,且 abc <0 则 a ,b ,c ,中有 个正数.12. 电子跳蚤落在数轴上的某点 k 0,第一步从 k 0 向左跳 1 个单位到 k 1,第二步由 k 1 向右跳 2个单位到 k 2,第三步由 k 2 向左跳 3 个单位到 k 3,第四步由 k 3 向右跳 4 个单位到 k 4,⋯,按以上规律跳了 140 步时,电子跳蚤落在数轴上的点 k 140 所表示的数恰是 2019.则电子跳蚤的初始位置 k 0 点所表示的数是 .13. 现定义某种运算“∗”,对给定的两个有理数 a ,b (a ≠0),有 a ∗b =a −a b ,则 (−3)∗2= .14. 如图所示是计算机程序计算,若开始输入 x =−1,则最后输出的结果是 .15. 已知实数 a ,b ,定义运算:a ⋇b ={a b ,a >b 且 a ≠0b a,a ≤b 且 a ≠0,若 a ⋇(a −3)=1,则 a = .16. 观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,⋯根据你发现的规律写出272019的末位数字是.17.如图所示的运算程序中,若开始输入的x值为16,我们发现第一次输出的结果为8,第二次输出的结果为4,⋯,则第2017输出的结果为.三、解答题18.阅读下面材料:如图,点A,B在数轴上分别表示有理数a,b,则A,B两点之间的距离可以表示为∣a−b∣.根据阅读材料与你的理解回答下列问题:(1) 数轴上表示3与−2的两点之间的距离是.(2) 数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为.(3) 代数式∣x+8∣可以表示数轴上有理数x与有理数所对应的两点之间的距离;若∣x+8∣=5,则x=.(4) 求代数式∣x+1008∣+∣x+504∣+∣x−1007∣的最小值.19.计算下列各式的值.(1) −3−(−8)−(+7)+5.(2) 49÷74×(−47)÷(−16).(3) 7−(156−23−34)÷124.(4) −32÷(−3)2+3×(−2)+∣−1∣.20.如图,已知数轴上有A,B,C三点,分别表示有理数−26,−10,10,动点P从点A出发,以每秒1个单位的速度向终点C移动,当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,(1) Q点出发3秒后所到的点表示的数为;此时P,Q两点的距离为.(2) 问当点Q从A点出发几秒钟时,能追上点P?(3) 问当点Q从A点出发几秒钟时,点P和点Q相距2个单位长度?直接写出此时点Q在数轴上表示的有理数.21.已知两点A,B在数轴上,AB=9,点A表示的数是a,且a与(−1)3互为相反数.(1) 写出点B表示的数;(2) 如图1,当点A,B位于原点O的同侧时,动点P,Q分别从点A,B处在数轴上同时相向而行,动点P的速度是动点Q的速度的2倍,3秒后两动点相遇,当动点Q到达点4时,运动停止.在整个运动过程中,当PQ=2时,求点P,Q所表示的数;(3) 如图2,当点A,B位于原点O的异侧时,动点P,Q分别从点A,B处在数轴上向右运动,动点Q比动点P晚出发1秒;当动点Q运动2秒后,动点P到达点C处,此时动点P立即掉头以原速向左运动3秒恰与动点Q相遇;相遇后动点P又立即掉头以原速向右运动5秒,此时动点P到达点M处,动点Q到达点N处,当∣OM−ON∣=2时,求动点P,Q运动的速度.22.【背景知识】数轴上A点,B点表示的数为a,b,则A,B两点之间的距离AB=∣a−b∣,.若a>b,则可简化为AB=a−b,线段AB的中点M表示的数为a+b2【问题情境】已知数轴上有A,B两点,分别表示的数为−10,8,点P,Q分别从A,B同时出发,点P以每秒5个单位长度的速度沿数轴向右匀速运动,点Q以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒(t>0).【综合运用】(1) A,B两点的距离为,线段AB的中点C所表示的数;(2) 点P所在的位置的点表示的数为,点Q所在位置的点表示的数为(用含t的代数式表示);(3) P,Q两点经过多少秒会相遇?23.探究规律,完成相关题目.定义“∗”运算:(+2)∗(+4)=+(22+42),(−4)∗(−7)=+[(−4)2+(−7)2],(−2)∗(+4)=−[(−2)2+(+4)2],(+5)∗(−7)=−[(+5)2+(−7)2],0∗(−5)=+(−5)∗0=(−5)2,(+3)∗0=0∗(+3)=(+3)2,0∗0=02+02=0.归纳∗运算的法则(用文字语言叙述):(1) 两数进行∗运算时,.特别地,0和任何数进行∗运算,或任何数和0进行∗运算,.(2) 计算:(−3)∗[0∗(+2)]=.(3) 是否存在有理数m,n,使得(m+1)∗(n−2)=0,若存在,求出m,n的值,若不存在,请说明理由.24.若有理数x,y满足∣x∣=5,∣y∣=2,且∣x+y∣=x+y,求x−y的值.25.数学是一门充满思维乐趣的学科,现有3×3的数阵A,数阵每个位置所对应的数都是1,2或3.定义a∗b为数阵中第a行第b列的数.例如,数阵A第3行第2列所对应的数是3,所以3∗2=3.(1) 对于数阵A,2∗3的值为.若2∗3=2∗x,则x的值为.(2) 若一个3×3的数阵对任意的a,b,c均满足以下条件:条件一:a∗a=a;条件二:(a∗b)∗c=a∗c.则称此数阵是“有趣的”.①请判断数阵A是否是“有趣的”你的结论:(填“是”或“否”).②已知一个“有趣的”数阵满足1∗2=2,试计算2∗1的值.③是否存在“有趣的”数阵,对任意的a,b满足交换律a∗b=b∗a?若存在,请写出一个满足条件的数阵;若不存在,请说明理由.答案一、选择题1. 【答案】D【解析】观察数轴可得:−1<a<0<b<c,∣a∣<∣b∣<∣c∣,∴∣a∣+∣b∣+∣a+b∣−∣b−c∣=−a+b+a+b−(c−b)=3b−c.【知识点】绝对值的化简、利用数轴比较大小2. 【答案】B【解析】∵OA=OB,点A表示的数是a,∴点B表示的数为−a,AB=−2a,∵BC=AB,∴点C表示的数是−3a.【知识点】数轴的概念3. 【答案】D【解析】∵该点距离原点3个单位,∴该点表示的数是3或−3,①若该点表示的数是3,先向右移动4个单位长度,再向左移动1个单位长度,这时它表示的数是:3+4−1=6;②若该点表示的数是−3,先向右移动4个单位长度,再向左移动1个单位长度,这时它表示的数是:3+4−1=0;故选D.【知识点】绝对值的几何意义4. 【答案】D【解析】∵∣a∣≥0,则b≥−c>∣a∣≥0,b>0,−c>0,即c<0,a+b+c=0,即a+b=−c≤b,即a≤0,∴a≤0,b>0,c<0.【知识点】绝对值的几何意义、利用数轴比较大小、有理数的加法法则及计算5. 【答案】D【解析】利用数轴,设A点表示的数为−2,B点表示的数为5,P点表示的数为x,则∣x+2∣+∣x−5∣=PA+PB,∴当P在A,B之间时,PA+PB最小,∴当−2≤x≤5时,∣x+2∣+∣x−5∣取得最小值.【知识点】绝对值的几何意义6. 【答案】A【解析】∵∣x∣=1,且x>0,∴x=1,∵∣y+1∣=4,∴y=−5或3,∴这两个点之间距离为1−(−5)=6或3−1=2.【知识点】绝对值的几何意义7. 【答案】C【解析】∣a∣a +∣b∣b+∣c∣c=−1,所以a,b,c中有一个正数,二个负数,假设a>0,b<0,c<0,则ab∣ab∣+bc∣bc∣+ac∣ac∣+abc∣abc∣=−1+1−1+1=0.【知识点】绝对值的性质与化简8. 【答案】B【知识点】有理数的乘方9. 【答案】D【解析】当OC在∠AOB内时,如图1,则∠BOC=∠AOB−∠AOC=60∘−13×60∘=40∘,∴∠COD=12∠BOC=20∘;当OC在∠AOB外时,如图2,则∠BOC=∠AOB+∠AOC=60∘+13×60∘=80∘,∴∠COD=12∠BOC=40∘.综上,∠COD=20∘或40∘.故选:D.【知识点】角的计算10. 【答案】D【解析】 (−1)2021=−1;−∣−2∣=−2;(−2)3=−8;且 −8<−∣−2∣<(−1)2021<−12, ∴ 最大的数是 −12,故选D .【知识点】有理数的乘方、绝对值的化简二、填空题 11. 【答案】 2【解析】 ∵ 有理数 a ,b ,c 满足 a +b +c >0,且 abc <0, ∴a ,b ,c 中负数有 1 个,正数有 2 个. 【知识点】有理数的加法法则及计算、有理数的乘法12. 【答案】 1949【解析】由题意可知:k 140=k 0−1+2−3+4−⋯−139+140=2019, 即 k 0+(−1+2)+(−3+4)+⋯+(−139+140)=2019, k 0+1+1+⋯+1⏟70 个 1=2019,∴k 0+70=2019,解得:k 0=1949.则电子跳蚤的初始位置 k 0 点所表示的数是 1949. 【知识点】有理数的加法法则及计算13. 【答案】 −12【解析】 ∵a ∗b =a −a b , ∴(−3)∗2=(−3)−(−3)2=(−3)−9=−12.【知识点】有理数的乘方14. 【答案】−22【解析】把x=−1代入计算程序中得:(−1)×6−(−2)=−6+2=−4>−5,把x=−4代入计算程序中得:(−4)×6−(−2)=−24+2=−22<−5,则最后输出的结果是−22.【知识点】有理数的乘法15. 【答案】3或±1【解析】∵a>a−3,a⋇(a−3)=1,根据题中的新定义得:a a−3=1,∴a−3=0或a=1或a=−1,∴a=3或±1.【知识点】有理数的乘方16. 【答案】3【解析】272019=(33)2019=36057,末位的循环为3,9,7,1,6057÷4=1514⋯1,所以末位为3.【知识点】有理数的乘方17. 【答案】1【解析】根据题意,x=16,第一次输出结果为:8,第二次输出结果为:4,第三次输出结果为:2,第四次输出结果为:1,第五次输出结果为:4,第六次输出结果为:2,第7次输出结果为:1,第8次输出结果为:4,由上规律可知:从第二次输出结果开始,每3次输出后重复一次,故(2017−1)÷3=672,故输出结果为:1.【知识点】有理数的加法法则及计算、有理数的乘法三、解答题18. 【答案】(1) 5(2) ∣x−7∣(3) −8;−3或−13(4) 如图,∣x+1008∣+∣x+504∣+∣x−1007∣的最小值即∣1007−(−1008)∣=2015.【解析】(1) ∣3−(−2)∣=5.【知识点】绝对值的几何意义、有理数的减法法则及计算19. 【答案】(1) 原式=−3+8−7+5=5−7+5=−2+5=3.(2) 原式=49×47×47×116=1.(3) 原式=7−(116−23−34)×24=7−(116×24−23×24−34×24) =7−(44−16−18)=7−10=−3.(4) 原式=−9÷9+(−6)+1 =−1−6+1=−6.【知识点】有理数的除法、有理数的加减乘除乘方混合运算、有理数的乘法20. 【答案】(1) −17;10(2) Q点出发时,PQ两点距离为(−10)−(−26)=16,Q点速度比P点速度快(3−1)=2个单位/秒,162=8秒,∴当Q从A出发8秒钟时,能追上点P.(3) 设A点出发t秒,点P和Q相距2个单位长度,当Q点还没追上P点时,Q,P速度差为2,∴2t=−10−(−26)−2=14,解得t=7,Q点在数轴上表示的数为−26+3×7=−5,当Q点超过P点时,Q,P速度差为2,∴2t=−10−(−26)+2=18,解得:t=9,−26+3×9=1.故Q点在数轴上表示的有理数为1.综上所得,当Q从A出发7或9秒时,点P和点Q相距2个单位长度,此时Q表示数轴的有理数为−5或1.【解析】(1) P到B点时,Q从A出发,Q点速度为每秒3个单位长度,3秒运动距离为3×3=9,−26+9=−17,∴Q点出发3秒后所到的点表示为−17,3秒钟P点运动距离为3×1=3,又−10+3=−7,PQ两点距离为−7−(−17)=10,∴Q点出发3秒后所到点表示数为−17,此时P,Q两点的距离为10.【知识点】数轴的概念21. 【答案】(1) ∵a与(−1)3互为相反数,∴a=1,∵AB=9,∴①当点A、点B在原点的同侧时,点B所表示的数为1+9=10,如图1所示;②当点A、点B在原点的异侧时,点B所表示的数为1−9=−8,如图2所示.故点B所表示的数为10或−8.(2) 当点A,B位于原点O的同侧时,点B表示的数是10.设点Q的运动速度为x,则点P的速度为2x.∵3秒后两动点相遇,∴3(x+2x)=9,解得:x=1.∴点Q的运动速度为1,则点P的速度为2.运动t秒后PQ=2有两种情形:①相遇前,由题意有:2t+2+t=9,解得:t=73;∴点P表示的数为:1+2×73=173,点Q表示的数为:10−73=233;②相遇后,再运动y秒,P,Q两点相距2,由题意有:y+2y=2,解得:y=23.∴点P表示的数为:1+3×2+23×2=253,点Q表示的数为:10−3×1−23×1=193.(3) 根据题意得,点P和点Q在点A处相遇,此时点Q运动5秒,运动9个单位长度.∴点Q的运动速度为:9÷5=1.8.设点P的速度为v,∵∣OM−ON∣=2,∴∣9+1−(5v+1)∣=2,解得:v=75或115.∴点P的速度为75或115.【知识点】数轴的概念、相遇问题22. 【答案】(1) 18;−1(2) −10+5t;8−3t(3) 依题意有5t+3t=18,解得t=94.故P,Q两点经过94秒会相遇.【解析】(1) A,B两点的距离为8−(−10)=18,线段AB的中点C所表示的数[8+(−10)]÷2=−1.(2) 点P所在的位置的点表示的数为−10+5t,点Q所在位置的点表示的数为8−3t(用含t的代数式表示).【知识点】绝对值的几何意义23. 【答案】(1) 同号得正、异号得负,并把两数的平方相加;等于这个数得平方(2) −25(3) ∵(m+1)∗(n−2)=0,∴±[(m+1)2+(n−2)2]=0,∴m+1=0,n−2=0,解得m=−1,n=2,即m=−1,n=2即为所求.【解析】(1) 由题意可得:两数进行∗运算时,同号得正,异号得负,并把两数的平方相加0和任何数进行运算,或任何数和0迸行∗运算,等于这个数的平方.(2) (−3)∗[0∗(+2)]=(−3)∗(+2)2=(−3)∗(+4)=−[(−3)2+(+4)2]=−25.【知识点】有理数的乘方24. 【答案】∵∣x∣=5,∴x=±5,又∣y∣=2,∴y=±2,又∵∣x+y∣=x+y,∴x+y≥0,∴x=5,y=±2,当x=5,y=2时,x−y=5−2=3,当x=5,y=−2时,x−y=5−(−2)=7.【知识点】有理数的减法法则及计算25. 【答案】(1) 2;1或2或3(2) ①是.② ∵1∗2=2∴2∗1=(1∗2)∗1,∵(a∗b)∗c=a∗c,∴(1∗2)∗1=1∗1,∵a∗a=a,∴1∗1=1,∴2∗1=1.③方法一:不存在理由如下:若存在满足交换律的"有趣的”数阵,依题意,对任意的a,b,c有:a∗c=(a∗b)∗c=(b∗a)∗c=b∗c,这说明数阵每一列的数均相同.∵1∗1=1,2∗2=2,3∗3=3,∴此数阵第一列数均为1,第二列数均为2,第三列数均为3,∴1∗2=2;2∗1=1,与交换律相矛盾,因此,不存在满足交换律的“有趣的”数阵.【解析】(1) 由题意可知:2∗3表示数阵,第2行第3列所对应的数是2,∴2∗3=2.∵2∗3=2∗x,∴2∗x=2,由题意可知:数阵第1行中3列数均为1,∴x=1,2,3.(2) 方法二:不存在理由如下:由条件二可知,a∗b只能取1,2或3,由此可以考虑a∗b取值的不同情形.例如考虑1∗2:情形一:1∗2=1.若满足交换律,则2∗1=1,再次计算1∗2可知:1∗2=(2∗1)∗2=2∗2=2,矛盾.情形二:1∗2=2,由(2)可知,2∗1=1,1∗2≠2∗1,不满足交换律,矛盾.情形三:1∗2=3,若满足交换律,即2∗1=3,再次计算2∗2可知:2∗2=(2∗1)∗2=3∗2=(1∗2)∗2=1∗2=3,与2∗2=2矛盾.综上,不存在满足交换律的“有趣的”数阵.【知识点】有理数的乘法。
浙教版七年级(下)数学第3章整式的乘除章节练习
第3章章节练习[范围:3.3~3.5]一、选择题(每小题3分,共21分)1.计算(a+b)(-a+b)的结果是 ()A.-a2-2ab+b2B.a2-b2C.b2-a2D.-a2+2ab+b22.计算(-a-2b)2的结果是()A.a2-4ab+4b2B.-a2+4ab-4b2C.-a2-4ab-4b2D.a2+4ab+4b23.若(x2-mx+1)(x-2)的结果中x的二次项系数为零,则m的值是()A.1B.-1C.-2D.24.已知x-y=5,(x+y)2=49,则x2+y2的值等于()A.25B.27C.37D.445.如图G-4-1,有正方形卡片A类、B类和长方形卡片C类各若干张.如果要拼成一个长为(2a+b)、宽为(a+2b)的大长方形,那么需要C类卡片的张数为()图G-4-1A.2B.3C.4D.56.如图G-4-2是一块边长为a的正方形花圃,两横一纵宽度均为b的三条人行通道把花圃分隔成6块.下列式子中能表示该花圃的实际种花面积的是()图G-4-2A.a2-3abB.a2-3b2C.a2-2abD.a2-3ab+2b27.已知P=m-1,Q=m2-m(m为任意实数),则P,Q的大小关系为()A.P<QB.P=QC.P>QD.由m的值确定二、填空题(每小题3分,共21分)8.整式A与m2-2mn+n2的和是(m+n)2,则A=.9.已知ab=5,(a-b)2=5,则(a+b)2=.10.若(x+2)(x-a)=x2+bx-10,则ab的值为.11.若(a+b-3)2+|a-b+5|=0,则a2-b2=.12.已知a+b=,ab=1,则(a-2)(b-2)的值为.13.已知ab=a+b+1,则(a-1)(b-1)=.14.一组数:2,1,3,x,7,y,23,…满足“从第三个数起,若前面两个数依次为a,b,则紧随其后的数就是2a-b”,例如:这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中的y表示的数为.三、解答题(共58分)15.(8分)计算:(1)(a+b)2-b(2a+b);(2)(x+1)(x-1)+x(3-x).16.(8分)解方程:(1)(2a-3)(a+1)=2a2-2;(2)3(2x+1)2-12(x+1)(x-1)=0.17.(10分)先化简,再求值:(a+b)(a-b)+(a+b)2-2a2,其中ab=-1.18.(10分)王老师家买了一套新房,其结构如图G-4-3所示(单位:m).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?图G-4-319.(10分)观察下列等式:32-4×12=5,①52-4×22=9,②72-4×32=13,③…根据上述规律解决下列问题:(1)完成第四个等式:92-4×()2=;(2)写出你猜想的第n(n为正整数)个等式(用含n的式子表示),并验证.20.(12分)把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积.(1)图G-4-4①是将几个面积不完全相等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的方法计算这个图形的面积,你能发现什么结论?请写出来;(2)图②是将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连结BD和BF.若两个正方形的边长满足a+b=10,ab=20,请你求出阴影部分的面积.图G-4-4详解详析1.C2.D3.C4.C[解析] x2+y2=[(x+y)2+(x-y)2]=×(49+25)=37.5.D[解析] 大长方形的面积=(2a+b)·(a+2b)=2a2+5ab+2b2,所以大长方形是由2张A类正方形卡片、5张C类长方形卡片、2张B类正方形卡片组成的.故选D.6.D[解析] ∵正方形花圃的边长为a,人行通道的宽为b,∴经过平移后,实际种花部分是一个长为(a-b),宽为(a-2b)的长方形,其面积=(a-2b)(a-b)=a2-3ab+2b2.故选D.7.A8.4mn9.25[解析] ∵ab=5,(a-b)2=5,∴(a+b)2=(a-b)2+4ab=5+20=25.10.-15[解析] (x+2)(x-a)=x2+(2-a)x-2a=x2+bx-10,可得2-a=b,-2a=-10,解得a=5,b=-3,则ab=-15.故答案为-15.11.-15[解析] 由题意,得a+b-3=0且a-b+5=0,∴a=-1,b=4,∴a2-b2=(-1)2-42=1-16=-15.12.2[解析] (a-2)(b-2)=ab-2(a+b)+4=2.13.2[解析] (a-1)(b-1)=ab-a-b+1.当ab=a+b+1时,原式=a+b+1-a-b+1=2.故答案为2.14.-915.解:(1)原式=a2+2ab+b2-2ab-b2=a2.(2)原式=x2-1+3x-x2=3x-1.16.解:(1)(2a-3)(a+1)=2a2-2,2a2-a-3=2a2-2,-a=1,a=-1.(2)3(2x+1)2-12(x+1)(x-1)=0,3(4x2+4x+1)-12(x2-1)=0,12x2+12x+3-12x2+12=0,12x+15=0,x=-.17.解:原式=a2-b2+a2+2ab+b2-2a2=2ab.当ab=-1时,原式=-2.18.解:(1)卧室的面积是2b(4a-2a)=4ab(m2),厨房、卫生间、客厅的面积和是b·(4a-2a-a)+a·(4b-2b)+2a·4b=ab+2ab+8ab=11ab(m2),即木地板需要4ab m2,地砖需要11ab m2.(2)11ab·x+4ab·3x=11abx+12abx=23abx(元),即王老师需要花23abx元.19.解:(1)417(2)(2n+1)2-4n2=4n+1.验证:∵左边=(2n+1)2-4n2=4n2+4n+1-4n2=4n+1=右边,∴等式成立.20.[解析] (1)此题根据面积的不同求解方法,可得到不同的表示方法.一种是3个正方形的面积和6个长方形的面积和,一种是大正方形的面积,可得等式(a+b+c)2=a2+b2+c2+2ab+2bc+2ac.(2)利用S阴影=正方形ABCD的面积+正方形ECGF的面积-三角形BGF的面积-三角形ABD的面积求解.解:(1)S=(a+b+c)2或S=a2+b2+c2+2ab+2bc+2ac.结论:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac.(2)∵a+b=10,ab=20,∴S阴影=a2+b2-(a+b)•b-a2=a2+b2-ab=(a+b)2-ab=×102-×20=50-30=20.。
七年级数学上册1.2.1 有理数-有理数的概念及分类-选择题专项练习三(人教版,含解析)
2021-2022学年度人教版七年级数学上册练习三1.2.1 有理数-有理数的概念及分类1.在()22, 2.5,1,3π------中,负数的个数是()A.1个B.2个C.3个D.4个2.在0,1,-2,-3.5这四个数中,是负整数的是()A.0 B.1 C.-2 D.-3.53.在6,-5,25-,3.7⋅,0,124-,1.5,19中,分数有()A.2 个B.3 个C.4 个D.5 个4.四个数27,0,5,2.6 ,其中既不是正数也不是负数的是()A.27B.0 C.5 D.2.6 5.下列各数中,是负分数是()A.31-.B.6 C.π-D.2.8 6.下列各数中是负整数的是()A.4 B.-3.5 C.-5 D.π-7.在下列各数中,分数有()个.﹣6,0.1234,﹣512,0.3,0,19,15A.2 B.3 C.4 D.5 8.下列关于0的说法错误的是()A.任何情况下,0的实际意义就是什么都没有B.0是偶数不是奇数C.0不是正数也不是负数D.0是整数也是有理数9.下列结论中正确的是()A.a-是负数B.没有最小的正整数C.有最大的正整数D.有最大的负整数10.下列实数中,是有理数的是()A B .C .3π- D .0.1010010001 11.下列各数中:2(3)-,0,21()2--,227,2017(1)-,22-,(8)--,3||4--中,非负数有( ) A .2个B .3个C .4个D .5个 12.在下列数56-,1+,6.7,14-,0,722,|5|-中,属于正整数的有( ) A .2个 B .3个 C .4个 D .5个13.下列说法中错误的是( )A .0既不是正数,也不是负数B .π是小数,也是分数C .正整数,0,负整数统称为整数D .0是自然数,也是整数,也是有理数 14.在下列数π,+1,6.7,﹣15,0,722,﹣1,25%中,属于整数的有( ) A .2个 B .3个 C .4个 D .5个15.在0,1,-1,2这四个数中,是负数的是( )A .0B .1C .-1D .216.下列各数属于负整数的是( ).A .2B .2-C .12- D .017.在下列各数中,正数的个数有______个.( )-6,0.1234,152-,0.3,0,19,15A .2B .3C .4D .5 18.正整数集合与负整数集合合并在一起构成的集合是( )A .整数集合B .有理数集合C .自然数集合D .以上说法都不对19.设a 是最小的自然数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为( )A .1-B .0C .1D .2 20.在+1.2222,29-,π,0这四个数中,有理数的个数有( )A .1个B .2个C .3个D .4个参考答案1.C解析:先将各数化简,然后根据负数的定义判断.详解:解:()2220, 2.5 2.50,110,033-<--=>-=-<--=-<π ∴负数的是:22,1,3----π∴负数的个数有3个.故选:C点睛:本题考查了正数与负数,解题的关键是:先将各数化简,然后根据负数的定义判断.2.C解析:负整数应该既是负数又是整数. 在本题给出的四个数中,负数是:-2,-3.5;整数是:0,1,-2. 由此可知,在这四个数中,-2是负整数.故本题应选C.3.D解析:根据有理数的概念,解答即可,整数和分数统称为有理数.详解:整数和分数统称为有理数,整数:6,-5,0,; 分数:2 5-,3.7⋅,1 24-,1.5,19; 故选D.点睛:本题考查的知识点是分数的概念,解题关键是正确区分分数和整数.解析:根据大于0的数叫正数,小于0的数叫负数即可解答.详解:解:0既不是正数,也不是负数,故选B点睛:本题考查了整数的意义,0既不是正数,也不是负数.5.A解析:根据负分数的概念,选项必须既是负数又是分数.详解:A、-3.1是负分数,故本选项正确;B、6是整数,不是分数,故本选项错误;C、π-是无理数,不是分数,故本选项错误;D、2.8是正分数,故本选项错误;故选A.点睛:本题考查了有理数的分类.解题的关键是熟练掌握分数的概念.6.C解析:根据负整数的定义即可判定选择项.详解:A.4是正整数,故选项不合题意;B.-3.5为负分数,故选项不合题意;C.﹣5为负整数,故选项正确;D.π-不是有理数,故选项不合题意.故选C.点睛:本题考查了有理数的相关概念及其分类方法,掌握有理数的相关概念是解答本题的关键.解析:分数有三种形式:含有分数线,分子、分母是整数;有限小数;无限循环小数.详解:解:分数有:0.1234,﹣512,0.3,19,共4个.故选:C.点睛:本题考查了有理数的分类,熟记分数的三种形式是解决此题的关键.8.A解析:根据有理数中整数的定义,有理数的分类,零的意义即可作出选择.详解:解:A. 0的意义是一个也没有,但加上单位后,就不一样了.例如,0℃,它就是温度中的一个值,也是天气中零上和零下的分界点,故本选项错误;B. 0是偶数不是奇数,故正确;C. 0不是正数也不是负数,故正确;D. 0是整数也是有理数,故正确.故选A.点睛:本题考查了有理数中整数的定义,有理数的分类,零的意义,关键是注意区分,不要混淆.9.D解析:试题解析:A. 当a<0时,−a是正数,故本选项错误;B. 最小的正整数是1,故本选项错误;C. 没有最大的正整数,故本选项错误;D. 最大的负整数是−1,故本选项正确;故选D.10.D解析:根据有理数的定义即可得出答案.3π-均为无理数,0.1010010001为有理数,故答案选择D. 点睛:本题考查的是有理数的定义,比较简单,整数和分数统称为有理数. 11.C解析:根据非负数包括0和正数可得:题中的非负数有()23-,0,227,()8--,共计4个.故选C.12.A解析:根据正整数的概念先找出正整数,再计算个数即可.详解:解:56-负分数,1+是正整数,6.7是正分数,14-是负整数,0是整数,722是正分数,|5|-是正整数,其中正整数有2个,+1和|5|-故选:A点睛:本题考查了有理数的分类和正整数的概念,熟练掌握正整数的概念是解题的关键.13.B解析:根据正负数、小数、分数、整数、自然数以及有理数的概念逐项判断.详解:解:A. 0既不是正数,也不是负数,正确;B. π是无限不循环小数,不是分数,故错误;C. 正整数,0,负整数统称为整数,正确;D. 0是自然数,也是整数,也是有理数,正确;故选:B.点睛:本题考查了有理数的分类,掌握各自的定义是解题的关键.解析:根据整数的定义,可得答案.详解:在数π,+1,6.7,﹣15,0,722,﹣1,25%中,属于整数的有+1,﹣15,0,﹣1,一共4个.故选:C.点睛:本题考查了有理数的分类.解题的关键是掌握有理数的分类,能够利用整数的定义判断整数,形如-3,-5,0,1,4,7…的数是整数.15.C解析:根据有理数的分类解答即可详解:解:0既不是正数也不是负数;1,2是正数;-1是负数;故选C.点睛:本题考查了有理数的分类,熟练掌握有理数的两种分类方式是解答本题的关键.有理数可分为整数和分数,整数分正整数,零和负整数;分数分正分数和负分数.有理数也可分为正有理数,零和负有理数,正有理数分为正整数和正分数,负有理数分为负整数和负分数.16.B解析:根据小于0的整数即为负整数进行判断即可;详解:A、2是正整数,故A不符合题意;B、-2是负整数,故B符合题意;C、12是负分数,故C不符合题意;D、0既不是正数也不是负数,故D不符合题意;故选:B.本题考查了有理数,小于0的整数即为负整数,注意0既不是正数也不是负数.17.C解析:根据大于0的数是正数可得结果.详解:解:在-6,0.1234,152-,0.3,0,19,15中,正数有:0.1234,0.3,19,15共4个,故选C.点睛:本题考查了正数的定义,熟记概念是解题的关键,要注意0既不是正数也不是负数.18.D解析:试题分析:根据整数的分类即可得到结果.正整数、负整数和0统称为整数,故选D.考点:本题考查的是整数的分类点评:解答本题的关键是注意0的特殊性,0是整数,但既不是正数,也不是负数.19.B解析:∵最小的自然数是0,最小的正整数是1,最大的负整数是-1∴三数之和为0故选B20.C解析:有理数包含整数和分数,π是无限不循环小数,属于无理数.详解:有理数有:+1.2222,29-,0共3个,故选:C.本题考查了有理数的定义,熟练掌握有理数的分类是解题的关键.。
人教版七年级数学上学期:第3章 一元一次方程应用单元过关练习(含答案)
人教版七年级数学上学期:第3章一元一次方程应用单元过关练习(含答案)1.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?解:(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.2.某书店准备订购一批图书,现有甲、乙两个供应商,均标价每本20元.为了促销,甲说:“凡来我处进货一律九折.”乙说:“如果订货超出100本,则超出的部分打八折(1)设该书店准备订购x本图书(x>100),请用含x的整式表示在甲供应商所需支付的钱数为 18x 元,在乙供应商所需支付的钱数为 (16x+400) 元.(2)在(1)的条件下,当购进多少本图书时,去两个供应商处的进货价钱一样多?(3)已知该书店第一次从乙供应商处购进了500本图书,书店以每本24元全部售出.该书店第二次从乙供应商购进的数量比第一次多20%,如果第二次购进的图书也能全部售出,则第二次购进图书每本售价多少元时,书店两批图书的总利润率为50%.解:(1)在甲供应商所需支付的钱数为0.9×20x=18x元;在乙供应商所需支付的钱数为20×100+0.8×20(x﹣100)=(16x+400)元.故答案为:18x;(16x+400).(2)依题意,得:18x=16x+400,解得:x=200.答:当购进200本图书时,去两个供应商处的进货价钱一样多.(3)设第二次购进图书每本售价为y元时,书店两批图书的总利润率为50%,依题意,得:24×500+500×(1+20%)y﹣[16×500+400+16×500×(1+20%)+400]=[16×500+400+16×500×(1+20%)+400]×50%,解得:y=26.答:第二次购进图书每本售价为26元时,书店两批图书的总利润率为50%.3.一件商品按进价提高40%后标价,然后打八折卖出,结果仍能获利18元,问这件商品的进价是多少元?解:设这件商品的进价是x元,由题意得:(1+40%)x×80%=x+18,解得:x=150,答:这件商品的进价是150元.4.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民“一户一表“生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a0.90超过17吨但不超过30吨的部分b0.90超过30吨的部分 6.000.90(说明:每户生产的污水量等于该户自来水用量;②水费=自来水费用+污水处理费)已知小王家2018年7月用水16吨,交水费43.2元.8月份用水25吨,交水费75.5元.(1)求a、b的值;(2)如果小王家9月份上交水费156.1元,则小王家这个月用水多少吨?(3)小王家10月份忘记了去交水费,当他11月去交水费时发现两个月一共用水50吨,其中10月份用水超过30吨,一共交水费215.8元,其中包含30元滞纳金,求小王家11月份用水多少吨?(滞纳金:因未能按期缴纳水费,逾期要缴纳的“罚款金额”)解:(1)由题意得:解①,得a=1.8,将a=1.8代入②,解得b=2.8∴a=1.8,b=2.8.(2)1.8+0.9=2.7,2.8+0.9=3.7,6.00+0.9=6.9设小王家这个月用水x吨,由题意得:2.7×17+3.7×13+(x﹣30)×6.9=156.1解得:x=39∴小王家这个月用水39吨.(3)设小王家11月份用水y吨,当y≤17时,2.7y+2.7×17+3.7×13+(50﹣30﹣y)×6. 9=215.8﹣30解得y=11当17<y<20时,17×2.7+(y﹣17)×3.7+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=9.125(舍去)∴小王家11月份用水11吨.5.已知数轴上顺次有A、B、C三点,分别表示数a、b、c,并且满足(a+12)2+|b+5|=0,b与c互为相反数.一只电子小蜗牛从A点向正方向移动,速度为2个单位/秒.(1)请求出A、B、C三点分别表示的数;(2)运动多少秒时,小蜗牛到点B的距离为1个单位长度;(3)设点P在数轴上点A的右边,且点P分别到点A、点B、点C的距离之和是20,那么点P所表示的数是 ﹣8或﹣2 .解:(1)∵(a+12)2+|b+5|=0,∴a+12=0,b+5=0,解得:a=﹣12,b=﹣5,又∵b与c互为相反数,∴b+c=0,∴c=5;(2)若小蜗牛运动到B前相距1个单位长度时,运动时间为x秒,∵AB的距离为|﹣12﹣(﹣5)|=7,∴2x+1=7,解得:x=3;若小蜗牛运动到B后相距1个单位长度时,运动时间为y秒,依题意得:2y=7+1,解得:y=4,综合所述:经过3秒或4秒时,小蜗牛到点B的距离为1个单位长度;(3)设点P表示数为z,∵AC的距离为|﹣12﹣5|=17,BC的距离为|5﹣(﹣5)|=10,∴点P只能在AC之间,不可能在点C的右边;又∵PA+PC=17,PA+PB+PC=20,∴|PB|=3∴|z﹣(﹣5)|=3,解得:z=﹣8或z=﹣2.6.你能借助于数轴这个工具帮小红解决一个问题吗?一天,小红去问曾当过数学老师现在退休在家的爷爷的年龄,爷爷说:“我若是你现在这么大,你还要35年才出生呢,你若是我现在这么大,我已经是老寿星,115岁了,哈哈!”小红纳闷,爷爷到底是多少岁?解:设小红的年龄为x岁,则爷爷的年龄为(x+35)岁,依题意,得:x+35+35=115,解得:x=45,∴x+35=80.答:爷爷今年80岁了.7.某县自来水收费实行阶梯水价,收费标准如下表所示超过30吨的部分月用水量不超过16吨的部分超过16吨不超过30吨的部分收费标准(元/吨) 1.85 2.75 3.70(1)若张老师家6月份的用水量是18吨,则张老师应付水费多少元?(2)若张老师家7月份的用水是a吨(a不超过30),则张老师应付水费多少元?(用含a的代数式表示)(3)若张老师家8月份付水费65.35元,求张老师家8月份的用水量.解:(1)∵16<18<30,∴1.85×16+2.75×2=29.6+5.5=35.1(元),答:四月份用水量为18吨,需交水费为35.1元;(2)①当a≤16时,需交水费1.85a元;②当16<a≤30时,需交水费,1.85×16+(a﹣16)×2.75=(2.75a﹣14.4)元,(3)设8月份所用水量为x吨,依据题意可得:因为2.75×30﹣14.4=68.1>65.35所以应该分两段交费,依题意得:2.75x﹣14.4=65.35,解得;x=29答:张老师家8月份的用水量是29吨.8.某体育用品商场用32000元购进了一批运动服,上市后很快销售一空.商场又用68000元紧急购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)若两批运动服每套的售价相同,第二批售完后获利比第一批售完后获利多12000元,则每套运动服的售价是 240 元.解:(1)设商场第一次购进x套运动服,由题意得:.解这个方程,得x=200.经检验,x=200是所列方程的根.2x+x=2×200+200=600.答:商场两次共购进这种运动服600套.(2)第一批运动服的进价为=160(元),第二批运动服的进价为=170(元),设每套运动服的售价是x元,由题意得:400(x﹣170)﹣200(x﹣160)=12000,解得:x=240故答案为:240.9.为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?解:设乙工程队再单独需x个月能完成,由题意,得2×++x=1.解得x=1.答:乙工程队再单独需1个月能完成.10.某人乘船由A地顺流而下到达B地,然后又逆流而上到C地,共用了3小时.已知船在静水中速度为每小时8千米,水流速度是每小时2千米.已知A、B、C三地在一条直线上,若AC两地距离是2千米,则AB两地距离多少千米?(C在A、B之间)解:设AB两地距离为x千米,则CB两地距离为(x﹣2)千米.根据题意,得+=3解得x=.答:AB两地距离为千米.11.某服装厂要生产某种型号的学生校服,已知3m长的某种布料可做上衣2件或者裤子3条.一件上衣和一条裤子为一套,库存这种布料600m.如果用这批布料做上衣和裤子恰好配套,求制作上衣所用的布料的米数.甲同学所列方程为1.5x+x=600,乙同学所列方程为=600﹣y(1)甲同学所列方程中的x表示 制作上衣的件数或制作裤子的件数 ;乙同学所列方程中的y表示 制作上衣所用布料的米数 .(2)甲、乙两名同学选用未知数的方法分别是 间接设元 法、 直接设元 法;(3)任选甲、乙两同学的其中一个方法解答这个题目.解:(1)根据题意得;制作1件上衣所需布料的米数为:3÷2=1.5m,制作1条裤子所需布料的米数为:3÷3=1m,设制作上衣的件数或制作裤子的件数为x,则1.5x+x=600,设制作上衣所用布料的米数为y,则=600﹣y,故答案为:制作上衣的件数或制作裤子的件数,制作上衣所用布料的米数,(2)甲同学选用未知数的方法是间接设元法,乙同学选用未知数的方法是直接设元法,故答案为:间接设元,直接设元,(3)选乙同学的方法:=600﹣y,解得:y=360,答:制作上衣所用的布料的米数为360m.12.用白铁皮做罐头盒,每张铁皮可制作盒身15个或盒底42个,一个盒身与两个盒底配成一套罐头盒,现有144张白铁皮,用多少张制作盒身,多少张制作盒底,可以正好制成整套罐头盒?解:设用x张制作盒身,(144﹣x)张制作盒底,可以正好制成整套罐头盒.根据题意,得2×15x=42(144﹣x)解得x=84,∴144﹣x=60.答:用84张制作盒身,60张制作盒底,可以正好制成整套罐头盒.13.一只汽艇从A码头顺流航行到B码头用2小时,从B码头返回到A码头,用了2.5小时,如果水流速度是3千米/时,求:(1)汽艇在静水中的速度;(2)A、B两地之间的距离.解:(1)设汽艇在静水中的速度为xkm/h.由题意,得2(x+3)=2.5(x﹣3)﹣0.5x=﹣13.5x=27.答:汽艇在静水中的平均速度是27千米/小时;(2)由题意,得2(x+3)=2(27+3)=60(千米)答:A、B两地之间的距离是60千米.14.甲、乙两人骑自行车分别从相距36km的两地匀速同向而行,如果甲比乙先出发半小时,那么他们在乙出发后经3小时甲追上乙;如果乙比甲先出发1小时,那么他们在甲出发后经5小时甲才能追上乙.请问:甲、乙两人骑自行车每小时各行多少千米?解:设甲骑自行车每小时行x千米,乙骑自行车每小时行(x﹣12)千米,依题意得:5x﹣(5+1)(x﹣12)=36,解得:x=18,x﹣12=21﹣12=9.答:甲骑自行车每小时行18千米,乙骑自行车每小时行9千米.15.某市上网有两种收费方案,用户可任选其一,A为计时制0.8元/时;B为包月制60元/月,此外每种上网方式都附加通讯费0.2元/时.(1)某用户每月上网50小时,选哪种方式比较合适?(2)某用户每月有100元钱用于上网,选哪种方式比较合算?(3)当每月上网多少小时时,A、B两种方案上网费用一样多?解:(1)A方案收费:50×(0.8+0.2)=50,B方案收费:60+50×0.2=70.答:每月上网50小时,选A方案合算.(2)设每月100元上网x小时.根据题意,得A方案上网:0.8x+0.2x=100,解得x=100B方案上网:60+0.2x=100,解得x=200答:每月100元上网B方案比较合算.(3)设每月上网x小时,A、B两种方案上网费用一样多.根据题意,得0.8x+0.2x=60+0.2x解得x=75.答:每月上网75小时,A、B两种方案上网费用一样多.。
七上数学练习(3)
1.将下列各数填入相应的括号内:-6,9.3,-61,42,0,-0.33,0.333…,1.41421356,-2π, 3.3030030003…,-3.1415926.正数集合:{ …} 负数集合:{ …} 有理数数集合:{ …} 无理数数集合:{ … }2.把下列各数填入相应的集合内: 68.0,923,01.10,73,1,16,0,3,33.7---- 分数集合{ …}整数集合{ …}负数集合{ …}正数集合{ …}7.画出数轴,并用数轴上的点表示下面各数8.(1)在数轴上表示出下列各数:-4,3,-1.5, 14 ,0, 23(2)根据数轴,指出若将-4所对应的点移到3所对应的点需要向右平移几个单位长度?9.一只蜗牛以原点开始,先向左爬了3个单位长度再向右爬了2个单位长度到达终点,那么终点表示什么数?一、填空:1.最小的自然数是 , 最小的正整数是 ,最大的负整数是 。
2.写出三个大于-4的负整数 。
3.在数轴上,A 点表示0.01,B 点表示-0.1,则离原点较近的点是 点.。
4.数轴上点M 表示3,点N 表示-3.5,点A 表示-0.5,在点M 和点N 中,距离A 点较远的点是 。
5.在数轴上,到原点距离小于3的点所表示的整数是 。
6.m 、n 都是负数,n 比m 大,那么在数轴上,表示m 、n 的点都在原点的 侧,表示m的点比表示n 的点距离原点更 。
7.下列判断:①若数轴上点A 在点B 的左边,则点A 表示的数比点B 表示的数大;②有理数集中没有最小数也没有最大数;③最小的整数是零;④最大的负整数是-1。
其中正确的是 。
23,5,0,4,32--二、解答题:8.在数轴上表示223-和112,并根椐数轴指出所有大于223-而小于112的整数。
9.把—3.1、1、—0.02、0、12-、213按从小到大的顺序用“<”连接起来。
10.在数轴上,点M 的位置如图所示:(1)若将M 向右移动4个单位长度,再向左移动1个单位长度,此时M 点表示的是什么数?(2)与点M 到原点距离相等的点还有吗?若存在,则表示为点N ,将点N 做同样的移动以后,点N 表示什么数?若不存在,请说明理由1.一个数的绝对值就是在数轴上表示___________ 。
人教版初中七年级数学上册第二单元《整式的加减》经典练习题(含答案解析)(3)
一、选择题1.某养殖场2018年年底的生猪出栏价格是每千克a 元.受市场影响,2019年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )A .(1-15%)(1+20%)a 元B .(1-15%)20%a 元C .(1+15%)(1-20%)a元 D .(1+20%)15%a 元 2.已知322x y 和m 2x y -是同类项,则式子4m 24-的值是( )A .21-B .12-C .36D .123.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( )A .-7B .-1C .5D .114.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .55 5.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .666.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( )A .2-B .13C .23D .327.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( )A .3B .﹣3C .1D .﹣18.下面去括号正确的是( )A .2()2y x y y x y +--=+-B .2(35)610a a a a --=-+C .()y x y y x y ---=+-D .222()2x x y x x y +-+=-+ 9.已知 2x 6y 2和﹣3x 3m y n 是同类项,则9m 2﹣5mn ﹣17的值是( )A .﹣1B .﹣2C .﹣3D .﹣410.下列式子中,是整式的是( )A .1x +B .11x +C .1÷xD .1x x+ 11.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( )A .mB .nC .m n +D .m ,n 中较大者 12.若23,33M N x M x +=-=-,则N =( )A .236x x +-B .23x x -+C .236x x --D .23x x - 13.有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是( )A .2B .﹣2C .0D .414.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b +元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元C .赚了(5a-5b )元D .亏了(5a-5b )元 15.如果m ,n 都是正整数,那么多项式x m +y n +3m+n 的次数是( )A .2m +2nB .mC .m +nD .m ,n 中的较大数二、填空题16.m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________.17.已知轮船在静水中的速度为(a +b )千米/时,逆流速度为(2a -b )千米/时,则顺流速度为_____千米/时18.观察下列一组图形中点的个数,其中第1个图中共有 4 个点,第2个图中共有 10 个点,第3个图中共有 19 个点, 按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.19.礼堂第一排有 a 个座位,后面每排都比第一排多 1 个座位,则第 n 排座位有________________.20.用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .21.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a ,b 的等式表示出来是_____.22.计算7a 2b ﹣5ba 2=_____. 23.将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到________条折痕.24.如图:矩形花园ABCD 中,,AB a AD b ==,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK .若LM RS c ==,则花园中可绿化部分的面积为______.25.某市出租车的收费标准为:3km 以内为起步价10元,3km 后每千米收费1.8元,某人乘坐出租车()km 3x x >,则应付费______元.26.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________三、解答题27.学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当2a =-,2018b =,求222221(324)2(23)2()12a b ab a a b a ab a b -+--++-的值”.小明做完后对同桌说:“老师给的条件2018b =是多余的,这道题不给b 的值,照样可以求出结果来”.同桌不相信他的话.亲爱的同学们,你相信小明的说法吗?28.先化简,再求值:-2x 2-2[3y 2-2(x 2-y 2)+6],其中x =-1,y =-2.29.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值.30.如图,将面积为2a 的小正方形和面积为2b 的大正方形放在同一水平面上(0b a >>)(1)用a 、b 表示阴影部分的面积;(2)计算当3a =,5b =时,阴影部分的面积.。
2021-2022学年度七年级数学上册1.2.2 数轴 复习练习三(人教版,含解析)
2021-2022学年度人教版七年级数学上册练习1.2.2 数轴一、单选题1.数轴上:原点左边有一点M ,从M 对应着数m ,有如下说法: ①m -表示的数一定是正数: ②若8m =,则8m =-;③在21,,,m m m m-中,最大的数是2m 或m -;④式子1m m+的最小值为2. 其中正确的个数是( ) A .1个B .2个C .3个D .4个2.以下是四位同学画的数轴,其中正确的是 ( ) A . B . C .D .3.在下列表示数轴的图示中,正确的表示是( ) A .B .C .D .4.下列数轴表示正确的是( ) A . B . C .D .5.如图所示的数轴上,被叶子盖住的点表示的数可能是( )A .-1.3B .1.3C .πD .2.36.如图,数轴上的点分别表示有理数a 、b ,若a>b,其中表示正确的图形是( ) A .B .C .D .7.实数在数轴上的位置如图所示,下列各式正确的是( )A .B .C .D .8.点A 、B 、C 、D 在数轴上的位置如图用示,点A 、D 表示的数是互为相反数,若点B 所表示的数为a ,2AB =,则点D 所表示的数为( )A .2a -B .2a +C .2a -D .2a --9.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )A .a+b >0B .|b|<|a|C .a ﹣b >0D .a•b>010.数轴上点A 、B 表示的数分别是﹣3、8,它们之间的距离可以表示为( ) A .﹣3+8B .﹣3﹣8C .|﹣3+8|D .|﹣3﹣8|11.有理数a 、b 在数轴上对应点的位置如图所示,则( )A .a>bB .a=bC .a<bD .无法确定12.如图是有理数a 、b 在数轴上的位置,下列结论:①0a b +<;②22a b >;③||||||a b a b +<+;④1a b>-,其中正确的是( )A .①②B .①②③C .①②④D .①②③④13.数轴上与表示﹣1的点距离10个单位的数是( ) A .10B .±10C .9D .9或﹣1114.数轴上一点A 表示﹣3,若将A 点向左平移5个单位长度,再向右平移6个单位长度,则此时A 点表示的数是( ) A .﹣1B .﹣2C .﹣3.D .115.如图所示,A、B是数轴上的两点,O是原点,AO=10,OB=15,点P、Q分别从A、B同时出发,点P以每秒2个单位长度的速度沿数轴向左匀速运动,点Q以每秒4个单位长度的速度沿数轴向左匀速运动,M为线段AP的中点,设运动的时间为t(t≥0)秒,M、Q两点到原点O的距离相等时,t的值是()A.1t s=或252t s=B.2t s=或253t s=C.1t s=或253t s=D.2t s=或252t s=16.如图,点A,B在数轴上,点O为原点,OA OB=.按如图所示方法用圆规在数轴上截取BC AB=,若点A表示的数是a,则点C表示的数是( )A.2a B.3a-C.3a D.2a-17.数轴上点A到原点的距离是4,则点A表示的数为:()A.8或-8 B.8 C.-8 D.4或-4.18.若数a,b在数轴上的位置如图示,则()A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>0二、填空题1.数轴上距离3的点5个单位长度所表示的数是______.2.在数轴上与表示2的点相距5个单位长度的点所表示的数是____________.3.把数轴上表示数3的点移动5个单位后,表示的数为_________________.4.在数轴上的点A表示的数是2-,若将点A移动3个单位长度得到点B,则点B表示的数是________.5.如图,将a、b、c用“<”号连接是__________________.6.若有理数a、b、c在数轴上的位置如图所示,则abc_____0(填“>”,“=”或“<”)7.观察有理数a、b、c在数轴上的位置并比较大小:c﹣b_____0,a+b_____0.8.有理数a、b在数轴上的位置如图,则a____0;a___b,b-a____9.如果数轴上的点A对应有理数为2,那么与A点相距3个单位长度的点所对应的有理数为___.10.如图,已知纸面上有一数轴,折叠纸面,使表示-2的点与表示5的点重合,则3表示的点与______表示的点重合.11.规定了___________________的直线叫做数轴12.规定了_________________叫数轴.三、解答题1.如图,数轴上点A对应的有理数为10,点P以每秒1个单位长度的速度从点A出发,点Q 以每秒3个单位长度的速度从原点O出发,且P、Q两点同时向数轴正方向运动,设运动时间为t秒.(1)当t=2时,P,Q两点对应的有理数分别是,,PQ=;(2)当PQ=8时,求t的值.2.请你画一条数轴,并把-2,4,0,123,112这五个数在数轴上表示出来.3.如图,在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB =2BC ,设点A ,B ,C 所对应数的和是m .(1)若点C 为原点,BC =1,则点A ,B 所对应的数分别为 , ,m 的值为 ;(2)若点B 为原点,AC =6,求m 的值.(3)若原点O 到点C 的距离为8,且OC =AB ,求m 的值.4.在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,并且a 是多项式2241x x --+的一次项系数, b 是数轴上最小的正整数,单项式2412x y -的次数为c .()1a = , b = ,c = .()2请你画出数轴,并把点,,A B C 表示在数轴上; ()3请你通过计算说明线段AB 与AC 之间的数量关系.5.如图,在数轴上点A 表示数a,点B 表示数b,AB 表示A 点和B 点之间的距离,且a,b 满足|a+2|+(b+3a)2=0.(1)求A,B 两点之间的距离;(2)若在线段AB 上存在一点C,且AC=2BC,求C 点表示的数;(3)若在原点O 处放一个挡板,一小球甲从点A 处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动. 设运动时间为t 秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t 的代数式表示) ②求甲乙两小球到原点距离相等时经历的时间.6.如图,一条直线的流水线上有5个机器人,它们站立的位置在数轴上依次用点A1、A2、A3、A 4、A5表示.(数轴上每个单位长度代表1米)(1)将点A3向(填“左”或“右”)移动个单位到达点A2,再向(填“左”或“右”)移动个单位到达点A5.(2)若原点是零件的供应点,求这5个机器人分别到达供应点取货的总路程.(3)将零件的供应点设在哪个机器人处,才能使另外4个机器人分别到达供应点取货的总路程最短?最短路程是多少?7.如图,已知数轴上点A表示的数为﹣7,点B表示的数为5,点C到点A,点B的距离相等,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动的时间为t(t>0)秒.(1)点C表示的数是;(2)求当t等于多少秒时,点P到达点B处;(3)点P表示的数是(用含有t的代数式表示);(4)求当t等于多少秒时,PC之间的距离为2个单位长度.8.在数轴上表示下列各数:﹣2,0,﹣0.5,4,1,并用“<”符号连接起来.9.已知有理数a ,b ,c 在数轴上对应的点如图所示,(1)比较a ,a -,b ,b -,c ,c -的大小,并用“<”号连接. (2)请化简:||||||||c c b a c b a -++--+.10.把下列各数()515, 1.5,,0,3,122-----表示的点 (1)画在数轴上;(2)用“<”把这些数连接起来; (3)指出:上述各数中,分数有_____个参考答案一、单选题 1.D解析:先求出m 的取值范围,即可判断①;根据8m =求出m 的值,再结合m 的取值范围即可判断②;分情况进行讨论,分别求出每种情况下的最大值即可判断③;根据110m m m m+-≥即可判断④. 详解:∵点M 在原点的左边 ∴m<0∴-m >0,故①正确; 若8m =,则8m =±又m <0,则m=-8,故②正确;在21,,,m m m m-中当m <-1时,最大值为2m ; 当-1<m<0时,最大值为m -;当m=-1时,最大值为2m 或m -,故③正确; ∵110m m m m+-≥ ∴112m m m m+≥=,故④正确; 故答案选择D. 点睛:本题考查的是点在数轴上的表示、绝对值以及数的比较大小,难度较高,需要熟练掌握基础知识.解析:根据数轴的概念:规定了原点、正方向和单位长度的直线叫数轴,进行判断.详解:解:A、没有原点,错误;B、正确;C、原点左边的数反了,错误;D、单位长度不统一,错误.故选:B.点睛:考查了数轴的概念,注意数轴的三要素缺一不可.3.C解析:根据数轴的三要素进行判断.详解:解:A、-2应该在-1的左边,故错误;B、1应该在0的右边,故错误;C、正确;D、没有正方向,故错误;故选择:C.点睛:本题考查了数轴的定义,原点、正方向、单位长度是数轴的三要素,缺一不可.4.D解析:根据数轴的三要素:原点、正方向和单位长度逐一判断即可.详解:A.没有表示出正方向,故该选项错误;B.数轴从左到右依次是-3,-2,-1,故该选项错误;C.单位长度不统一,故该选项错误;D.符合数轴的三要素,故该选项正确;故选:D.本题主要考查数轴的表示,掌握数轴的三要素是解题的关键.5.D解析:设被叶子盖住的点表示的数为x,则1<x<3,再根据每个选项中实数的范围进行判断即可.详解:解:设被叶子盖住的点表示的数为x,则1<x<3,又因为x的位置比较靠近3,则表示的数可能是2.3.故选D.点睛:本题考查实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.6.B解析:分析:根据数轴上表示的数,右边的数总比左边的数大,根据a>b,得出a在b的右边,根据以上结论判断即可.解答:解:根据a>b,知道a在b的右边,A、a在b的左边,故本选项错误;B、a在b的右边,故本选项正确;C、a在b的左边,故本选项错误;D、a在b的左边,故本选项错误;故选B.7.D解析:∵由数轴可知,|a|>b,a<0,b>0,∴a<b.故选D.8.A解析:根据题意和数轴可以用含 a的式子表示出点 A表示的数,本题得以解决.详解:∵点B所表示的数为a,2AB=,∴点A表示的数为:2a-,∵点A、D表示的数是互为相反数∴点D表示的数为:()22--=-,a a故选:A.点睛:本题考查数轴,解答本题的关键是明确题意,利用数形结合的思想解答.9.C解析:先根据数轴判定a、b、a+b、a-b的正负,然后进行判定即可.详解:解:由数轴可得,b<﹣2<0<a<2,∴a+b<0,故选项A错误,|b|>|a|,故选项B错误,a﹣b>0,故选项C正确,a•b<0,故选项D错误,故答案为C.点睛:本题考查了数轴的应用、绝对值、正数和负数的相关知识,解题的关键在于根据数轴判定字母和代数式的正负.10.D解析:由距离的定义和绝对值的关系容易得出结果.详解:∵点A、B表示的数分别是﹣3、8,∴它们之间的距离=|﹣3﹣8|.故选:D.点睛:本题考查了数轴上点的距离问题,掌握数轴的性质以及应用是解题的关键.11.C解析:根据数轴的定义即可得.详解:因为在数轴上表示的两个数,右边的总比左边的大,所以a b <,故选:C .点睛:本题考查了利用数轴比较有理数的大小,熟练掌握数轴的定义是解题关键.12.B解析:根据各点在数轴上的位置判断出a ,b 的符号及绝对值的大小,再对各小题进行逐一分析即可.详解:解:∵由图可知,a <0<b ,|a|>|b|,∴0a b +<,故①正确;22a b >,故②正确;||||||a b a b +<+,故③正确;1a b<-,故④错误; 故选:B .点睛:本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.13.D解析:根据数轴上两点间的距离可得答案.提示1:此题注意考虑两种情况:要求的点在-1的左侧或右侧.提示2:当要求的点在已知点的左侧时,用减法;当要求的点在已知点的右侧时,用加法. 详解:与点-1相距10个单位长度的点有两个:①-1+10=9;②-1-10=-11.故选D.点睛:本题主要考查数轴上两点间的距离及分类讨论思想.考虑所求点在已知点两侧是解答本题关键.14.B解析:在数轴上“左减右加”,向左平移是减向右平移是加,所以点A所表示的数先减去5再加上6得出正确答案。
数学人教版(五四学制)七年级上册11.4一元一次方程与 实际问题 同步练习(3)
2019-2019学年数学人教版(五四学制)七年级上册11.4一元一次方程与实际问题同步练习(3)一、选择题1.某市为节约用水||,制定了如下标准:用水不超过20吨||,按每吨1.2元收费;超过20吨||,则超出部分按每吨1.5元收费.小明家六月份的水费是平均每吨1.25元||,那么小明家六月份应交水费( )A. 20元B. 24元C. 30元D. 36元2.杨老师利用暑假带领团员们乘汽车到农村进行社会调查||,每张汽车票原价是50元||。
甲车主说:乘我的车||,全部8折优惠;乙车主说;乘我的车||,学生9折优惠||,老师不要票.杨老师计算了一下||,发现无论乘哪辆车花费都一样||。
杨老师去农村带领的团员人数为()A. 6B. 7C. 8D. 93.某商场出售茶壶和茶杯||,茶壶每只15元||,茶杯每只3元||,商店规定购一只茶壶赠一只茶杯||,某人共付款171元||,得茶壶、茶杯共30只(含赠品在内)||,则此人购得茶壶的只数为( )A. 8B. 9C. 10D. 114.某市居民生活用电基本价格为每度0.4元||,若每月用电量超过a度||,超过部分按每度0.6元收费||,若某户居民九月份用电84度||,共交电费40.4元||,则a为( )A. 50度B. 55度C. 60度D. 65度5.一个两位数||,十位上的数字是个位数字的2倍||,将个位数字与十位数字调换||,得到一个新的两位数||,这两个两位数的和是132||,则原来的两位数为( )A. 48B. 84C. 36D. 636.假期张老师和王老师带学生乘车外出参加实践活动||,甲车主说“每人8折”||,乙车主说“学生9折||,老师减半”||,张老师计算了一下||,不论坐谁的车||,费用都一样||,则张老师和王老师带的学生人数为()A. 6名B. 7名C. 8名D. 9名二、填空题7.某校为学生购买名著《三国演义》100套、《西游记》80套||,共用了12019元||,《三国演义》每套比《西游记》每套多16元||,求《三国演义》和《西游记》每套各多少元?设西游记每套x元||,可列方程为________.8.某校初一所有学生将在大礼堂内参加2019年“元旦联欢晚会”||,若每排坐30人||,则有8人无座位;若每排坐31人||,则空26个座位||,则初一年级共有多少名学生?设大礼堂内共有x排座位||,可列方程为________9.全班同学去春游||,准备租船游玩||,如果比计划减少一条船||,则每条船正好坐9个同学||,如果比计划增加一条船||,每条船正好坐6个同学||,则这个班有________个同学||,计划租用________条船||。
练习3 数轴-2020-2021学年七年级数学(苏科版)(解析版)
练习3 数轴1.对数轴上的点P 进行如下操作:先把点P 表示的数乘以m (m ≠0),再把所得数对应的点沿数轴向左平移n (n >0)个单位长度,得到点P '.称这样的操作为点P 的“倍移”,对数轴上的点A ,B ,C 进行“倍移”操作得到的点分别记为A ',B ',C '. (1)当m =12,n =2时,①若点A 表示的数为﹣6,则它的对应点A '表示的数为 ﹣5 . ②若点B '表示的数是3,则点B 表示的数为 10 .③数轴上点M 表示的数为1,若点M 到点C 和点C '的距离相等,求点C 表示的数. (2)若点A '到点B '的距离是点A 到点B 距离的3倍,求m 的值. 【分析】(1)①由∴﹣6×12−2=﹣5,即可得出对应点A '表示的数为﹣5, ②设点B 表示的数为x ,12x ﹣2=3,解得x =10;③设点C 表示的数为a ,则C ′表示的数为a 2−2,由∴|a ﹣1|=|a 2−2﹣1|,解得a =﹣4或83;(2)设点A 表示的数为a ,点B 表示的数为b ,则点A ′表示的数为am ﹣n ,点B ′表示的数为bm ﹣n ,则|bm ﹣n ﹣am +n |=3|b ﹣a |,解得m =±3. 【解答】解:(1)①∵点A 表示的数为﹣6, ∴﹣6×12−2=﹣5,∴它的对应点A '表示的数为﹣5; 故答案为﹣5;②设点B 表示的数为x , ∵点B '表示的数是3,∴12x ﹣2=3,解得:x =10, 故答案为:10;③设点C 表示的数为a ,则C ′表示的数为a2−2,∵点M 到点C 和点C '的距离相等, ∴|a ﹣1|=|a2−2﹣1|,解得:a =﹣4或a =83, 故C 表示的数为:﹣4或83;(2)由题意得:2m +3=﹣5, 解得:m =﹣4, 故答案为:﹣4;(3)设点A 表示的数为a ,点B 表示的数为b , 则点A ′表示的数为am ﹣n ,点B ′表示的数为bm ﹣n , ∴|bm ﹣n ﹣am +n |=3|b ﹣a |, ∴|m (b ﹣a )|=3|b ﹣a |, 解得:m =±3.【点评】本题考查了新概念“倍移”、数轴、两点间的距离、绝对值等知识;熟练掌握数轴上两点间的距离是解题的关键.2.如图,已知数轴上两点A 、B 对应的数分别为﹣1、3,点P 为数轴上一动点,其对应的数为x . (1)若点P 到点A 、点B 的距离相等,求点P 对应的数是 1 ; (2)数轴上存在点P 到点A 、点B 的距离之和为10,则x = ﹣4或6 ;(3)若将数轴折叠,使﹣1与3表示的点重合,则﹣3表示的点与数 5 表示的点重合;(4)若数轴上M 、N 两点之间的距离为2021(M 在N 的左侧),且M 、N 两点经过(3)折叠后互相重合,则M ,N 两点表示的数分别是:M : 1014.5 ,N : 1016.5 .【分析】(1)由于点P 到点A 、点B 的距离相等,所以点P 为线段AB 的中点,即可得出点P 对应的数; (2)由题点P 到点A 、点B 的距离之和为10,对P 的位置进行分类讨论,即可求出x ;(3)由题若将数轴折叠,使﹣1与3表示的点重合,则对折点对应的数值为1,即可求解;(4)由题M,N两点经过(3)折叠后互相重合,可求出对折点对应的数值为1,根据M、N两点之间的距离为2011(M在N的左侧)即可求出M,N两点表示的数.【解答】解:(1)∵点P到点A、点B的距离相等,∴点P为线段AB的中点,∴点P对应的数为1;故答案为:1;(2)∵点P到点A、点B的距离之和为10,对点P的位置分情况讨论如下:①点P在点A左边,∵点P到点A、点B的距离之和为10,且线段AB的距离为4,∴点P到点A的距离为3,∴x=﹣4;②点P在线段AB上,不符合题意,舍去;③点P在点B右边,∵点P到点A、点B的距离之和为10,且线段AB的距离为4,∴点P到点B的距离为3,∴x=6;∴综上所述:x=﹣4或6;故答案为:﹣4或6;(3)若将数轴折叠,使﹣1与3表示的点重合,则对折点对应的数值为1,∵﹣3到1的距离为4,∴5到1的距离也为4,∴则﹣3表示的点与数5表示的点重合;故答案为:5;(4)若数轴上M、N两点之间的距离为2021(M在N的左侧),且M,N两点经过(3)折叠后互相重合,则对折点对应的数值为1,∴点M到1的距离为1015.5,∴M对应的数为﹣1014.5,∵点N到1的距离为1015.5,∴N点对应的数为1016.5.故答案为:﹣1014.5,1016.5.【点评】本题考查了数轴和对称的基本性质以及实数的基本运算,难度不大.3.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:1,B:﹣2.5;(2)观察数轴,与点A的距离为4的点表示的数是:﹣3或5;(3)若将数轴折叠,使A点与﹣3表示的点重合,则B点与数0.5表示的点重合;(4)若数轴上M、N两点之间的距离为2019(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是:M:﹣1010.5,N:1008.5.【分析】(1)观察数轴即可求解;(2)分点A左边4个单位和右边4个单位两种情况;(3)根据点A与﹣3表示的点重合可得对称中心,继而可得点B关于﹣1对称的点;(4)根据题意得出M、N两点到对称中心的距离,继而由对称中心分别向左和向右得出点M、N所表示的数.【解答】解:(1)A:1,B:﹣2.5.故答案为:1,﹣2.5;(2)观察数轴,与点A的距离为4的点表示的数是1﹣4=﹣3或1+4=5.故答案为:﹣3或5;(3)将数轴折叠,使A点与﹣3表示的点重合,则对称点是﹣1,则B点与数0.5表示的点重合.故答案为:0.5;(4)由对称点为﹣1,且M、N两点之间的距离为2019(M在N的左侧)可知,M点表示数﹣1010.5,N点表示数1008.5.故答案为:﹣1010.5、1008.5.【点评】本题考查了数轴的运用.关键是利用数轴,数形结合求出答案,注意不要漏解.4.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:若数轴上数﹣3表示的点与数1表示的点重合.(根据此情境解决下列问题)(1)则数轴上数3表示的点与数﹣5表示的点重合.(2)若点A到原点的距离是5个单位长度,并且A、B两点经折叠后重合,则B点表示的数是﹣7或3.(3)若数轴上M,N两点之间的距离为2018,并且M,N两点经折叠后重合,如果M点表示的数比N 点表示的数大,则M点表示的数是1008;则N点表示的数是﹣1010.【分析】(1)数轴上数﹣3表示的点与数1表示的点关于点﹣1对称,1﹣(﹣3)=4,而﹣1﹣4=﹣5,可得数轴上数3表示的点与数﹣5表示的点重合;(2)点A到原点的距离是5个单位长度,则点A表示的数为5或﹣5,分两种情况讨论,即可得到B点表示的数是﹣7或3;(3)依据M、N两点之间的距离为2018,并且M、N两点经折叠后重合,M点表示的数比N点表示的数大,即可得到M点表示的数是1008,N点表示的数是﹣1010.【解答】解:(1)∵数轴上数﹣3表示的点与数1表示的点关于点﹣1对称,1﹣(﹣3)=4,而﹣1﹣4=﹣5,所以数轴上数3表示的点与数﹣5表示的点重合;故答案为:﹣5;(2)点A到原点的距离是5个单位长度,则点A表示的数为5或﹣5,∵A、B两点经折叠后重合,∴当点A表示﹣5时,﹣1﹣(﹣5)=4,﹣1+4=3,当点A表示5时,5﹣(﹣1)=6,﹣1﹣6=﹣7,∴B点表示的数是﹣7或3;故答案为:﹣7或3;(3)M、N两点之间的距离为2018,并且M、N两点经折叠后重合,∴﹣1+12×2018=1008,﹣1−12×2018=﹣1010,又∵M点表示的数比N点表示的数大,∴M点表示的数是1008,N点表示的数是﹣1010.故答案为:1008,﹣1010.【点评】本题主要考查的是数轴的认识,掌握数轴的定义和点的对称性是解题的关键.5.如图,半径为1的小圆与半径为2的大圆,有一个公共点与数轴上的原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位,(1)若小圆不动,大圆沿数轴来回滚动,规定大圆向右滚动的时间记为正数,向左滚动时间即为负数,依次滚动的情况录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,+6①第4次滚动后,大圆与数轴的公共点到原点的距离最远;②当大圆结束运动时,大圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(2)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距9π,求此时两圆与数轴重合的点所表示的数.【分析】(1)①算出每次滚动后大圆与数轴的公共点到原点的距离,然后比较大小即可;②总路程与方向无关把每次的移动的距离相加即可;(2)分同向和反相两种情况讨论,同向路程之差为9π,反向路程之和为9π,然后求出相应时间,再根据不同方向确定两圆与数轴重合的点所表示的数【解答】解:(1)①:第1次滚动后,大圆与数轴的公共点到原点的距离:|﹣1×2π|=2π第2次滚动后,大圆与数轴的公共点到原点的距离:|﹣1×2π+2×2π|=2π第3次滚动后,大圆与数轴的公共点到原点的距离:|﹣1×2π+2×2π﹣4×2π|=6π第4次滚动后,大圆与数轴的公共点到原点的距离:|﹣1×2π+2×2π﹣4×2π﹣2×2π|=10π第5次滚动后,大圆与数轴的公共点到原点的距离:|﹣1×2π+2×2π﹣4×2π﹣2×2π+3×2π|=4π第6次滚动后,大圆与数轴的公共点到原点的距离:|﹣1×2π+2×2π﹣4×2π﹣2×2π+3×2π+6×2π|=8π所以第四次滚动后大圆与数轴的公共点到原点的距离最远.故答案为4;②总路程为:|﹣1×2π|+|+2×2π|+|﹣4×2π|+|﹣2×2π|+|+3×2π|+|+6×2π|=36π此时两圆与数轴重合的点之间的距离为:|﹣1×2π+2×2π﹣4×2π﹣2×2π+3×2π+6×2π|=8π(2)当它们同向运动时9π2π−π=9秒,小圆与数轴重合的点所表示的数为9π,大圆与数轴重合的点所表示的数为18π, 或小圆与数轴重合的点所表示的数为﹣9π,大圆与数轴重合的点所表示的数为﹣18π, 当它们反向运动时9π2π+π=3秒,小圆与数轴重合的点所表示的数为﹣3π,大圆与数轴重合的点所表示的数为6π, 或小圆与数轴重合的点所表示的数为3π,大圆与数轴重合的点所表示的数为﹣6π,【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.6.如图,数轴上有A 、B 、C 三点,点A 和点B 所表示的数分别为﹣3和+52,点C 到点A 、点B 的距离相等.(1)点C 表示的数为 −14;(2)若数轴上有一点P ,若满足P A +PB =10,求点P 表示的数; (3)若数轴上有一点Q .若满足QA +QB ﹣QC =103,求点Q 表示的数.【分析】(1)先根据数轴上两点的距离=较大的数﹣较小的数计算AB 的长,由点C 到点A 、点B 的距离相等,可得结论;(2)设点P 表示的数是x ,分两种情况:根据P A +PB =10列方程可得结论; (3)设点Q 表示的数为y ,分四种情况:根据QA +QB ﹣QC =103列方程可得结论. 【解答】解:(1)∵点A 和点B 所表示的数分别为﹣3和+52, ∴AB =52−(﹣3)=5.5, ∵AC =BC , ∴点C 表示的数为52−114=−14,故答案为:−14;(2)设点P 表示的数是x , ∵P A +PB =10,分两种情况:①P 在A 的左边时,52−x +(﹣3)﹣x =10,x =−214②P 在B 的右边时,x −52+x ﹣(﹣3)=10,x =194 ∴点P 表示的数是−214或194; (3)设点Q 表示的数为y , 分四种情况:①当Q 在点A 的左边时,如图1,∵QA +QB ﹣QC =103, ∴QA +BC =103,即﹣3﹣y +114=103,y =−4312∴点Q 表示的数是−4312; ②当Q 在点B 的右边时,如图2,∵QA +QB ﹣QC =103,∴QB +AC =103,即y −52+114=103,y =3712 ∴点Q 表示的数是3712;③当Q 在点A 和点C 之间时,如图3,∵QA +QB ﹣QC =103,∴AB ﹣QC =103,即5.5﹣(−14−y )=103,y =−2912 ∴点Q 表示的数是−2912;④当Q 在点B 和点C 之间时,如图4,∵QA +QB ﹣QC =103, ∴AB ﹣QC =103,即5.5﹣(y +14)=103,y =3312, ∴点Q 表示的数是3312;综上,点Q 表示的数是−4312或3712或−2912或2312.【点评】此题考查了数轴上两点的距离和一元一次方程的应用,弄清题意,得出距离之间的关系是解决本题的关键.7.如图,在一条不完整的数轴上从左到右有点A ,B ,C ,D ,其中点A 与点B 之间距离为3,点B 与点C 之间距离为2,点C 与点D 之间距离为1.设点A ,B ,C ,D 所对应数的和为w . (1)若点C 为数轴的原点.请你写出点A 、B 、D 所对应的数,并计算w 的值; (2)若点C 与数轴原点的距离为2020时,求w 的值; (3)若点C 与数轴原点的距离为a (a >0)时,求w 的值.【分析】(1)利用C 点表示的数为0,再利用A 、B 、D 三点到原点的距离确定它们对应的数,然后计算w 的值;(2)由于点C 与数轴原点的距离为2020,所以C 点对应的数为2020或﹣2020,当C 点对应的数为2020,利用A 、B 、D 三点到C 点的距离确定它们对应的数,再计算w 的值;当C 点对应的数为﹣2020,利用A 、B 、D 三点到原点的距离确定它们对应的数,然后计算w 的值;(3)由于点C 与数轴原点的距离为a (a >0),则C 点对应的数为a 或﹣a ,然后和(2)一样的方法解决问题.【解答】解:(1)若点C 为数轴的原点,即C 点表示的数为0, ∵点C 与点D 之间距离为1, ∴D 点对应的数为1, ∵点B 与点C 之间距离为2,∴B 点对应的数为﹣2,∵点A与点B之间距离为3,∴A点表示的数为﹣5,∴w=﹣5+(﹣2)+1=﹣6;(2)点C与数轴原点的距离为2020时,即C点对应的数为2020或﹣2020,当C点对应的数为2020,∴D点表示的数为2020+1=2021,B点对应的数为2020﹣2=2018,A点表示的数为2018﹣3=2015,∴w=2021+2018+2020+2015=8074;当C点对应的数为﹣2020,∴D点表示的数为﹣2020+1=﹣2019,B点对应的数为﹣2020﹣2=﹣2022,A点表示的数为﹣2022﹣3=﹣2025,∴w=﹣2025﹣2022﹣2020﹣2025=﹣8086;即w的值为8074或﹣8086;(3)若点C与数轴原点的距离为a(a>0),即C点对应的数为a或﹣a,当C点对应的数为a,∴D点表示的数为a+1,B点对应的数为a﹣2,A点表示的数为a﹣2﹣3=a﹣5,∴w=a﹣5+a﹣2+a+a+1=4a﹣6;当C点对应的数为﹣a,∴D点表示的数为﹣a+1,B点对应的数为﹣a﹣2,A点表示的数为﹣a﹣2﹣3=﹣a﹣5,∴w=﹣a﹣5﹣a﹣2﹣a﹣a+1=﹣4a﹣6;即w的值为﹣4a﹣6或4a﹣6.【点评】本题考查了数轴:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数;数轴上右边的数总比左边的数大.也考查了数形结合的思想.8.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4,表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:若数轴上数﹣3表示的点与数1表示的点重合.(请依据此情境解决下列问题)①则数轴上数4表示的点与数﹣6表示的点重合.②若点A到原点的距离是6个单位长度,并且A,B两点经折叠后重合,则点B点表示的数是4或﹣8.③若数轴上M,N两点之间的距离为2020,并且M,N两点经折叠后重合,如果M点表示的数比N点表示的数大,则M点表示的数是1009,则N点表示的数是﹣1011.【分析】①数轴上数﹣3表示的点与数1表示的点关于点﹣1对称,4﹣(﹣1)=5,而﹣1﹣5=﹣6,可得数轴上数4表示的点与数﹣6表示的点重合;②点A到原点的距离是6个单位长度,则点A表示的数为6或﹣6,分两种情况讨论,即可得到B点表示的数是5或7;③依据M、N两点之间的距离为2020,并且M、N两点经折叠后重合,M点表示的数比N点表示的数大,即可得到M点表示的数是1007,N点表示的数是﹣1013.【解答】解:①∵数轴上数﹣3表示的点与数1表示的点关于点﹣1对称,4﹣(﹣1)=5,而﹣1﹣5=﹣6,∴数轴上数4表示的点与数﹣6表示的点重合;故答案为:﹣6;②点A到原点的距离是6个单位长度,则点A表示的数为6或﹣6,∵A、B两点经折叠后重合,∴当点A表示﹣6时,﹣1﹣(﹣6)=5,﹣1+5=4,当点A表示6时,6﹣(﹣1)=7,﹣1﹣7=﹣8,∴B点表示的数是4或﹣8;故答案为:4或﹣8;③M、N两点之间的距离为2020,并且M、N两点经折叠后重合,∴﹣1+12×2020=1009,﹣1−12×2020=﹣1011,又∵M点表示的数比N点表示的数大,∴M点表示的数是1009,N点表示的数是﹣1011,故答案为:1009,﹣1011.【点评】本题主要考查的是数轴的认识,掌握数轴的定义和点的对称性是解题的关键.9.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油1.5升,那么这辆货车此次送货共耗油多少升?【分析】(1)根据已知,以百货大楼为原点,以向东为正方向,用1个单位长度表示1千米一辆货车从百货大楼出发,向东走了4千米,到达小明家,继续向东走了1.5千米到达小红家,然后西走了8.5千米,到达小刚家,最后返回百货大楼,则小明家、小红家和小刚家在数轴上的位置可知.(2)用小明家的坐标减去与小刚家的坐标即可.(3)这辆货车一共行走的路程,实际上就是4+1.5+8.5+3=17(千米),货车从出发到结束行程共耗油量=货车行驶每千米耗油量×货车行驶所走的总路程.【解答】解:(1)如图所示:(2)小明家与小刚家相距:4﹣(﹣3)=7(千米);(3)这辆货车此次送货共耗油:(4+1.5+8.5+3)×1.5=25.5(升).答:小明家与小刚家相距7千米,这辆货车此次送货共耗油25.5升.【点评】本题是一道典型的有理数混合运算的应用题,同学们一定要掌握能够将应用问题转化为有理数的混合运算的能力,数轴正是表示这一问题的最好工具.如工程问题、行程问题等都是这类.10.定义:若A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是【A,B】的美好点.例如:如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的美好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的美好点,但点D是【B,A】的美好点.如图2,M,N为数轴上两点,点M所表示的数为﹣7,点N所表示的数为2.(1)点E,F,G表示的数分别是﹣3,6.5,11,其中是【M,N】美好点的是G;写出【N,M】美好点H所表示的数是﹣4或﹣16.(2)现有一只电子蚂蚁P从点N开始出发,以2个单位每秒的速度向左运动.当t为何值时,P,M和N中恰有一个点为其余两点的美好点?【分析】(1)根据美好点的定义,结合图2,直观考察点E,F,G到点M,N的距离,只有点G符合条件.结合图2,根据美好点的定义,在数轴上寻找到点N的距离是到点M的距离2倍的点,在点的移动过程中注意到两个点的距离的变化.(2)根据没好点的定义,P,M和N中恰有一个点为其余两点的美好点分6种情况,须区分各种情况分别确定P点的位置,进而可确定t的值.【解答】解:(1)根据美好点的定义,结合图2,直观考察点E,F,G到点M,N的距离,只有点G符合条件,故答案是:G.结合图2,根据美好点的定义,在数轴上寻找到点N的距离是到点M的距离2倍的点,点N的右侧不存在满足条件的点,点M和N之间靠近点M一侧应该有满足条件的点,进而可以确定﹣4符合条件.点M 的左侧距离点M的距离等于点M和点N的距离的点符合条件,进而可得符合条件的点是﹣16.故答案是﹣4或﹣16.(2)根据美好点的定义,P,M和N中恰有一个点为其余两点的美好点分6种情况,第一情况:当P为【M,N】的美好点,点P在M,N之间,如图1,当MP=2PN时,PN=3,点P对应的数为2﹣3=﹣1,因此t=1.5秒;第二种情况,当P为【N,M】的美好点,点P在M,N之间,如图2,当2PM=PN时,NP=6,点P对应的数为2﹣6=﹣4,因此t=3秒;第三种情况,P为【N,M】的美好点,点P在M左侧,如图3,当PN=2MN时,NP=18,点P对应的数为2﹣18=﹣16,因此t=9秒;第四种情况,M为【P,N】的美好点,点P在M左侧,如图4,当MP=2MN时,NP=27,点P对应的数为2﹣27=﹣25,因此t=13.5秒;第五种情况,M为【N,P】的美好点,点P在M左侧,如图5,当MN=2MP时,NP=13.5,点P对应的数为2﹣13.5=﹣11.5,因此t=6.75秒;第六种情况,M为【N,P】的美好点,点P在M,N左侧,如图6,当MN=2MP时,NP=4.5,因此t=2.25秒;第七种情况,N为【P,M】的美好点,点P在M左侧,当PN=2MN时,NP=18,因此t=9秒,第八种情况,N为【M,P】的美好点,点P在M右侧,当MN=2PN时,NP=4.5,因此t=2.25秒,综上所述,t的值为:1.5,2.25,3,6.75,9,13.5.【点评】本题考查实数与数轴、点是【M,N】的美好点的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.11.如图,在数轴上,点A 表示﹣10,点B 表示11,点C 表示18.动点P 从点A 出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q 从点C 出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t 秒.(1)当t 为何值时,P 、Q 两点相遇?相遇点M 所对应的数是多少?(2)在点Q 出发后到达点B 之前,求t 为何值时,点P 到点O 的距离与点Q 到点B 的距离相等; (3)在点P 向右运动的过程中,N 是AP 的中点,在点P 到达点C 之前,求2CN ﹣PC 的值.【分析】(1)根据题意,由P 、Q 两点的路程和为28列出方程求解即可;(2)由题意得,t 的值大于0且小于7.分点P 在点O 的左边,点P 在点O 的右边两种情况讨论即可求解;(3)根据中点的定义得到AN =PN =12AP =t ,可得CN =AC ﹣AN =28﹣t ,PC =28﹣AP =28﹣2t ,再代入计算即可求解.【解答】解:(1)根据题意得2t +t =28, 解得t =283, ∴AM =563>10,∴M 在O 的右侧,且OM =563−10=263, ∴当t =283时,P 、Q 两点相遇,相遇点M 所对应的数是263; (2)由题意得,t 的值大于0且小于7.若点P 在点O 的左边,则10﹣2t =7﹣t ,解得t =3. 若点P 在点O 的右边,则2t ﹣10=7﹣t ,解得t =173. 综上所述,t 的值为3或173时,点P 到点O 的距离与点Q 到点B 的距离相等;(3)∵N是AP的中点,∴AN=PN=12AP=t,∴CN=AC﹣AN=28﹣t,PC=28﹣AP=28﹣2t,2CN﹣PC=2(28﹣t)﹣(28﹣2t)=28.【点评】本题考查了一元一次方程的应用,数轴.解题时,一定要“数形结合”,这样使抽象的问题变得直观化,降低了题的难度.12.阅读下面的材料:如图1,在数轴上A点所示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB=b﹣a.请用上面的知识解答下面的问题:如图2,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B点,然后向右移动7cm到达C点,用1个单位长度表示1cm.(1)请你在数轴上表示出A.B.C三点的位置:(2)点C到点A的距离CA=5cm;若数轴上有一点D,且AD=4,则点D表示的数为﹣5或3;(3)若将点A向右移动xcm,则移动后的点表示的数为﹣1+x;(用代数式表示)(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,试探索:CA﹣AB的值是否会随着t的变化而改变?请说明理由.【分析】(1)根据题意容易画出图形;(2)由题意容易得出CA的长度;设D表示的数为a,由绝对值的意义容易得出结果;(3)将点A向右移动xcm,则移动后的点表示的数为﹣1+x;(4)表示出CA和AB,再相减即可得出结论.【解答】解:(1)如图所示:(2)CA=4﹣(﹣1)=4+1=5(cm);设D表示的数为a,∵AD=4,∴|﹣1﹣a|=4,解得:a=﹣5或3,∴点D表示的数为﹣5或3;故答案为:5,﹣5或3;(3)将点A向右移动xcm,则移动后的点表示的数为﹣1+x;故答案为:﹣1+x;(4)CA﹣AB的值不会随着t的变化而变化,理由如下:根据题意得:CA=(4+4t)﹣(﹣1+t)=5+3t,AB=(﹣1+t)﹣(﹣3﹣2t)=2+3t,∴CA﹣AB=(5+3t)﹣(2+3t)=3,∴CA﹣AB的值不会随着t的变化而变化.【点评】此题考查了数轴,掌握数轴上两点之间的距离求解方法是解决问题的关键.13.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.【分析】(1)根据路程除以速度等于时间,可得答案;(2)根据相遇时P,Q的时间相等,可得方程,根据解方程,可得答案;(3)根据PO与BQ的时间相等,可得方程,根据解方程,可得答案.【解答】解:(1)点P 运动至点C 时,所需时间t =10÷2+10÷1+8÷2=19(秒), (2)由题可知,P 、Q 两点相遇在线段OB 上于M 处,设OM =x . 则10÷2+x ÷1=8÷1+(10﹣x )÷2, 解得x =163.故相遇点M 所对应的数是163.(3)P 、O 两点在数轴上相距的长度与Q 、B 两点在数轴上相距的长度相等有4种可能: ①动点Q 在CB 上,动点P 在AO 上,则:8﹣t =10﹣2t ,解得:t =2. ②动点Q 在CB 上,动点P 在OB 上,则:8﹣t =(t ﹣5)×1,解得:t =6.5. ③动点Q 在BO 上,动点P 在OB 上,则:2(t ﹣8)=(t ﹣5)×1,解得:t =11. ④动点Q 在OA 上,动点P 在BC 上,则:10+2(t ﹣15)=t ﹣13+10,解得:t =17. 综上所述:t 的值为2、6.5、11或17.【点评】本题考查了数轴,一元一次方程的应用,利用PO 与BQ 的时间相等得出方程是解题关键,要分类讨论,以防遗漏.14.某景区一电瓶小客车接到任务从景区大门出发,向东走2千米到达A 景区,继续向东走2.5千米到达B 景区,然后又回头向西走8.5千米到达C 景区,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长表示1千米,建立如图所示的数轴,请在数轴上表示出上述A 、B 、C 三个景区的位置. (2)A 景区与C 景区之间的距离是多少?(3)若电瓶车充足一次电能行走15千米,则该电瓶车能否在一开始充足电而途中不充电的情况下完成此次任务?请计算说明.【分析】(1)根据以景区大门为原点,向东为正方向,在数轴上表示出A 、B 、C 的位置; (2)根据两点间的距离公式列式计算即可; (3)计算出电瓶车一共走的路程,即可解答. 【解答】解:(1)如图,(2)A 景区与C 景区之间的距离是:2﹣(﹣4)=6(千米);(3)不能完成此次任务.理由如下:电瓶车一共走的路程为:|+2|+|2.5|+|﹣8.5|+|+4|=17(千米),因为17>15,所以不能完成此次任务.【点评】本题考查了利用数轴表示一对具有相反意义的量,借助数轴用几何方法解决问题,有直观、简捷,举重若轻的优势.。
最新2019-2020年度人教版七年级数学上册:实际问题与一元一次方程-同步练习(3)及解析-经典试题
实际问题与一元一次方程综合练习【配套问题】1.某工地需要派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应该怎样安排人员,正好能使挖的土及时运走?2.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套,现在有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?3.某车间有工人85人,平均每人每天可以加工大齿轮8个或小齿轮10个,又知1个大齿轮和三个小齿轮配为一套,问应如何安排劳力使生产的产品刚好成套?4.某车间有28名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓12个或螺帽18个,两个螺栓要配三个螺帽,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽刚好配套?5.一张方桌与四张椅子配成一套,如果5个工人每天能制11张椅子,每4个工人每天能制22张方桌,现有工人66人,应怎样合理分配生产椅子和桌子的工人才能使每天生产的方桌和椅子及时配套出厂?6.生产某种产品需经过两道工序,进行第一道工序时,每人每天可完成90件;进行第二道工序时,每人每天可完成120件。
今有14名工人分别参加这两道工序工作,问7.某服装厂要生产某种型号的学生校服,已知3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,库内存这种布料600m,应如何分配布料做上衣和做裤子才能恰好配套?8.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净?纺织车间和制衣车间。
现在知道工人每人每天平均能织布30米或制4件成衣,每件成衣用布1.5米,若使生产出的布匹刚好制成成衣,问应有多少人去生产成衣?10.有一些相同的房间需要粉刷墙面,一天3名一级技工去粉刷8个房间,结果其中有50㎡墙面未来得及刷,同样时间内5名二级技工粉刷了10个房间之外,还多刷了40㎡墙面,每名一级技工比二级技工一天多粉刷10㎡墙面。
七年级上册数学练习及答案3篇
七年级上册数学练习及答案3篇放开往日的学习中的紧张,用一颗平常心去轻松面对,相信你会考出自己理想的成绩的。
愿好运一直陪伴着你!下面是小编给大家带来的七年级上册数学练习及答案,欢迎大家阅读参考,我们一起来看看吧!七年级上册数学答案(单元同步练习)1基础检测1、-(+5)表示的相反数,即-(+5)= ;-(-5)表示的相反数,即-(-5)= 。
2、-2的相反数是 ;的相反数是 ;0的相反数是。
3、化简下列各数:-(-68)= -(+0.75)= -()=-(+3.8)= +(-3)= +(+6)=4、下列说法中正确的是( )A、正数和负数互为相反数B、任何一个数的相反数都与它本身不相同C、任何一个数都有它的相反数D、数轴上原点两旁的两个点表示的数互为相反数拓展提高:5、-(-3)的相反数是。
6、已知数轴上A、B表示的数互为相反数,并且两点间的距离是6,点A在点B的左边,则点A、B表示的数分别是。
7、已知a与b互为相反数,b与c互为相反数,且c=-6,则a= 。
8、一个数a的相反数是非负数,那么这个数a与0的大小关系是a 0.9、数轴上A点表示-3,B、C两点表示的数互为相反数,且点B 到点A的距离是2,则点C表示的数应该是。
10、下列结论正确的有( )①任何数都不等于它的相反数;②符号相反的数互为相反数;③表示互为相反数的两个数的点到原点的距离相等;④若有理数a,b互为相反数,那么a+b=0;⑤若有理数a,b互为相反数,则它们一定异号。
A 、2个 B、3个 C、4个 D、5个11、如果a=-a,那么表示a的点在数轴上的什么位置?答案基础检测1、5,-5,-5,5;2、2,,0;3、68,-0.75,,-3.8,-3,6;4、C拓展提高5、-36、-3,37、-68、≥9、1或510、A。
11、a=-a表示有理数a的相反数是它本身,那么这样的有理数只有0,所以a=0,表示a的点在原点处。
七年级上册数学答案(单元同步练习)2基础检测1、画出数轴并表示出下列有理数:2、在数轴上表示-4的点位于原点的边,与原点的距离是个单位长度。
苏教版初一上册数学练习题【三篇】
苏教版初一上册数学练习题【三篇】导语:数学练习题是学生的学习状态和所掌握知识程度的一种方法,练习题结果可以反映出学生对知识点的薄弱环节和学生的解题思路,可以纠正学习错误和巩固知识点不可缺少的环节。
以下是整理的苏教版初一上册数学练习题【三篇】,希望对大家有帮助。
初一上册数学练习题(1)一、填空题:(每空2分,共42分)1、如果运进货物30吨记作+30吨,那么运出50吨记作;2、3的相反数是_____,______的相反数是3、既不是正数也不是负数的数是;4.-2的倒数是,绝对值等于5的数是;5、计算:-3+1=;;;;;6、根据语句列式计算:⑴-6加上-3与2的积,⑵-2与3的和除以-3;7、比较大小:;+||;8、.按某种规律填写适当的数字在横线上1,-,,-,,9、绝对值大于1而小于4的整数有,其和为,积为;10.规定图形表示运算a-b+c,图形表示运算.则+=_______二、选择题(每题3分,共30分)11、已知室内温度为3℃,室外温度为℃,则室内温度比室外温度高()(A)6℃(B)-6℃(C)0℃(D)3℃12、下列各对数中,互为相反数的是()A.与B.与C.与D.与13、下列各图中,是数轴的是()A.B.-1011C.D.-101-10114.对下列各式计算结果的符号判断正确的一个是()A、B、C、D、15.一个数的倒数等于这个数本身,这个数是()(A)1(B)(C)1或(D)016.下列各计算题中,结果是零的是()(A)(B)(C)(D)17.已知a、b互为相反数,则()(A)a–b=0(B)a+b=0(C)a=(D)a-|b|=018.数轴上的两点M、N分别表示-5和-2,那么M、N两点间的距离是()A.-5+(-2)B、-5-(-2)C、|-5+(-2)|D、|-2-(-5)|19.下列说法正确的是()(A)一个数的绝对值一定是正数(B)任何正数一定大于它的倒数(C)-a一定是负数(D)零与任何一个数相乘,其积一定是零20.如图是一个正方形盒的展开图,若在其中的三个正方形A、B、C、内分别填入适当的数,使得它们折成正方形后相对的面上的两个数互为相反数,则填入正方形A、B、C内的三个数依次为()(A)1,-2,0(B)0,-2,1(C)-2,0,1(D)-2,1,021.计算下列各题:(每小题5分,共20分)(1)(2)12—(—18)+(—7)—15(3)(4)-2+|5-8|+24÷(-3)22、(4分)把下列各数填在相应的表示集合的大括号里:(1)正整数集合{…}(2)整数集合{…}(3)正分数集合{…}(4)负分数集合{…}23、在数轴上表示下列各数,再用“<”号把各数连接起来。
2023年人教版数学七年级上册第二章综合练习题附答案(三)
人教版数学七年级上册第二章综合练习题(时间:90分钟分值:120分)一、选择题(每小题3分,共30分)1.(3分)下列运算中,正确的是()A.3a+5b=8ab B.3y2﹣y2=3C.6a3+4a3=10a6D.5m2n﹣3nm2=2m2n2.(3分)下列去括号正确的是()A.﹣(2x+5)=﹣2x+5 B.C.D.3.(3分)若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是()A.m=3,n=9 B.m=9,n=9 C.m=9,n=3 D.m=3,n=34.(3分)在代数式:,3m﹣3,﹣22,﹣,2πb2中,单项式的个数有()A.1个 B.2个 C.3个 D.4个5.(3分)下列语句正确的是()A.2x2﹣2x+3中一次项系数为﹣2 B.3m2﹣是二次二项式C.x2﹣2x﹣34是四次三项式D.3x3﹣2x2+1是五次三项式6.(3分)﹣[a﹣(b﹣c)]去括号应得()A.﹣a+b﹣c B.﹣a﹣b+c C.﹣a﹣b﹣c D.﹣a+b+c7.(3分)两个3次多项式相加,结果一定是()A.6次多项式B.3次多项式C.次数不高于3的多项式D.次数不高于3次的整式8.(3分)计算:(m+3m+5m+…+2013m)﹣(2m+4m+6m+…+2014m)=()A.﹣1007m B.﹣1006m C.﹣1005m D.﹣1004m9.(3分)已知代数式x2+3x+5的值为7,那么代数式3x2+9x﹣2的值是()A.0 B.2 C.4 D.610.(3分)下列判断:(1)不是单项式;(2)是多项式;(3)0不是单项式;(4)是整式,其中正确的有()A.1个 B.2个 C.3个 D.4个二、填空(每小题3分,共24分)11.(3分)单项式的系数是,次数是.12.(3分)多项式2x2y﹣+1的次数是.13.(3分)任写一个与﹣a2b是同类项的单项式.14.(3分)多项式3x+2y与多项式4x﹣2y的差是.15.(3分)李明同学到文具商店为学校美术组的30名同学购买铅笔和橡皮,已知铅笔每支m元,橡皮每块n元,若给每名同学买两支铅笔和三块橡皮,则一共需付款元.16.(3分)按如图程序输入一个数x,若输入的数x=﹣1,则输出结果为.17.(3分)当x=﹣1时,代数式x2﹣4x﹣k的值为0,则当x=3时,这个代数式的值是.18.(3分)观察下面的单项式:x,﹣2x2,4x3,﹣8x4…根据你发现的规律,写出第6个式子是,第n个式子是.三、解答题(共46分)19.(20分)化简(1)﹣5+(x2+3x)﹣(﹣9+6x2);(2)(5a﹣3a2+1)﹣(4a3﹣3a2);(3)﹣3(2x﹣y)﹣2(4x+y)+2009;(4)﹣[2m﹣3(m﹣n+1)﹣2]﹣1.20.(12分)先化简,再求值.①2x2﹣[x2﹣2(x2﹣3x﹣1)﹣3(x2﹣1﹣2x)],其中②2(ab2﹣2a2b)﹣3(ab2﹣a2b)+(2ab2﹣2a2b),其中a=2,b=1.。
人教版数学七年级上册第3章 一元一次方程 拓展练习(三)
七年级上册第3章拓展练习(三)一.选择题1.已知a为整数,关于x 的一元一次方程的解也为整数,则所有满足条件的数a的和为()A.0B.24C.36D.482.欣欣服装店某天用相同的价格a(a≥0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是()A.亏损B.盈利C.不盈不亏D.与进价有关3.下列方程是一元一次方程的是()A.x2﹣4x=3B.x﹣2=﹣3x C.x+2y=3D .4.已知a=b,下列等式不一定成立的是()A.a﹣c=b﹣c B.ac=bc C.a2=b2D .=15.将方程=5变形为=50﹣,甲、乙、丙、丁四位同学都认为是错的,四人分别给出下列解释,其中正确的是()A.甲:移项时,没变号B.乙:不应该将分子分母同时扩大10倍C.丙:5不应该变为50D.丁:去括号时,括号外面是负号,括号里面的项未变号6.若单项式a m b3与﹣2a2b n 的和仍是单项式,则方程﹣=1的解为()A.﹣23B.23C.﹣29D.29第1页(共1页)7.一个数的是,这个数是()A .B .C .D .8.方程kx﹣4=0的根是x=1,则k的值是()A.﹣4B.﹣1C.4D.﹣39.已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km的两地同时出发,相向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几小时后两人相遇后又相距20km?③甲乙两人从相距60km的两地相向而行,甲的速度是4km/h,乙的速度是6km/h,如果甲先走了20km后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km的两地同时出发,背向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几小时后两人相距60km?其中可以用方程4x+6x+20=60表述题目中对应数量关系的应用题序号是()A.①②③④B.①③④C.②③④D.①②10.把方程﹣=1去分母后,正确的是()A.3x﹣2(x﹣1)=1B.3x﹣2(x﹣1)=6C.3x﹣2x﹣1=12D.3x﹣2(x﹣1)=12二.填空题11.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店为庆“元旦”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔卖第1页(共1页)出60支,卖得金额87元.该文具店在这次活动中卖出铅笔支.12.若关于x的方程3x﹣7=5x+2的解与关于y的方程4y+3a=7a﹣8的解互为倒数,则a 的值为.13.某书中一道方程题+1=x,⊕处印刷时被墨盖住了,查后面答案,这道题的解为x=﹣2.5,那么⊕处的数字为.14.已知数轴上有A、B、C三个点对应的数分别是a、b、c,满足|a+24|+|b+10|+(c﹣10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C 点后,再立即以同样的速度返回,运动到终点A.在返回过程中,当t=秒时,P、Q两点之间的距离为2.15.现定义一种新运算,对于任意有理数a、b、c、d满足=ad﹣bc,若对于含未知数x的式子满足=3,则未知数x=.三.解答题16.解方程(1)x﹣2(x﹣4)=3(1﹣x)(2)1﹣=第1页(共1页)17.鹿山广场元旦期间搞促销活动,如图.(1)小哲在促销活动时两次购物分别用了135元和481元.①若小哲购物时没有促销活动,则他共需付多少钱?②若你需购这些同样的物品,请问还有更便宜的购物方案吗?若有,请说出购物方案,并算出共需付多少钱;若没有,则说明理由.(2)若小明购了原价为a元的物品,小红购了原价为b元的物品,且a<b,但最后小明所付的钱反而比小红多.①你列举一对a,b的值;②求符合条件的整数a,b共有几对?(直接答案即可).18.A,B两点在数轴上的位置如图,点A对应的数值为﹣5,点B对应的数值为11.(1)现有两动点M和N,点M从A点出发以2个单位长度/秒的速度向左运动,点N从点B出发以6个单位长度/秒的速度同时向右运动,问:运动多长时间满足MN=56?第1页(共1页)(2)现有两动点C和D,点C从A点出发以1个单位长度/秒的速度向右运动,点D从点B出发以5个单位长度/秒的速度同时向左运动,问:运动多长时间满足AC+BD=3CD?19.从锦江区社保局获悉,我区范围内已经实现了全员城乡居民新型社会合作医疗保险制度,享受医保的城乡居民可在规定的医院就医并按规定标准报销部分医疗费用,下表是住院费用报销的标准:住院费用x(元)0<x≤50005000<x≤20000x>20000每年报销比例40%50%60%(说明:住院费用的报销采取分段计算方式,如:某人一年住院费用共30000元,则5000元按40%报销.15000元按50%报销,余下的10000元按60%报销:实际支付的住院费=住院费用﹣按标准报销的金额)(1)若我区居民张大哥一年住院费用为20000元,则按标准报销的金额为元,张大哥实际支付了元的住院费.(2)若我区居民王大爷一年内本人实际支付的住院费用为21000元,则王大爷当年的住院费用为多少元?第1页(共1页)20.如图,A、B两点在数轴上对应的数分别为﹣20、24,C点在A、B之间,在A、B、C 三点处各放一个挡板,M、N两个小球分别从A、B两处出发,相对而行,碰到挡板后则向反方向运动,一直如此下去(当M小球第二次碰到C挡板时,两球均停止运动).(1)若两个小球的运动速度相同,当N小球第一次碰到C挡板时,M小球刚好第二次碰到C挡板,求C点所对应的数.(2)在(1)的条件下,若M、N小球的运动速度分别为3个单位/秒、2个单位/秒,则M小球前三次碰到挡板的时间依次为a、b、c秒钟.设两个球的运动时间为t秒钟.①请直接写出下列时间段内M小球所对应的数(用含t的代数式表示).当0≤t≤a时,M小球对应的数为.当a<t≤b时,M小球对应的数为.当b<t≤c时,M小球对应的数为.②当M、N两个小球的距离等于42时,求t的值.(3)移走A、B、C三处的挡板,M、N两点以(2)中的速度运动,与此同时,R点从原点出发,以5个单位/秒的速度向数轴负方向运动,P是AN的中点,Q是MR的中点,求证:PQ的长度为定值,并求出该值为多少?第1页(共1页)参考答案一.选择题1.解:∵,∴(6﹣a)x=6,∵关于x 的一元一次方程的解为整数,∴x =为整数,∴6﹣a=±1或±2或±3或±6,又∵a为整数,∴a=5或7或4或8或3或9或0或12,∴所有满足条件的数a的和为:5+7+4+8+3+9+0+12=48,故选:D.2.解:设第一件衣服的进价为x元,第二件衣服的进价为y元,由题意得:(1+20%)x=a,(1﹣20%)y=a∴(1+20%)x=(1﹣20%)y整理得:3x=2y∴y=1.5x∴该服装店卖出这两件服装的盈利情况是:20%x﹣20%y=0.2x﹣0.2y×1.5=﹣0.1x<0第1页(共1页)即赔了0.1x元.故选:A.3.解:A、未知数的最高次数是2次,不是一元一次方程.B、符合一元一次方程的定义;C、含有两个未知数,不是一元一次方程;D、分母中含有未知数,不是整式,也不是一元一次方程.故选:B.4.解:A、在等式a=b的两边同时减去c,所得的结果仍是等式,即a﹣c=b﹣c;故本选项不符合题意;B、在等式a=b的两边同时乘以c,所得的结果仍是等式,即ac=bc;故本选项不符合题意;C、在等式a=b的两边同时平方,所得的结果仍是等式,即a2=b2;故本选项不符合题意;D、如果b=0时,没有意义,故本选项符合题意.故选:D.5.解:A 、方程=5的左边的每一项的分子、分母乘以10得:﹣=5进一步变形为﹣+6=5移项得:﹣=5﹣6,故A、B、D错误,C正确,第1页(共1页)故选:C.6.解:∵单项式a m b3与﹣2a2b n的和仍是单项式,∴单项式a m b3与﹣2a2b n为同类项,即m=2,n=3,代入方程得:﹣=1,去分母得:2(x﹣7)﹣3(1+x)=6,去括号得:2x﹣14﹣3﹣3x=6,移项合并得:﹣x=23,解得:x=﹣23,故选:A.7.解:设这个数是x,由题意,得x =解得x =.故选:B.8.解:把x=1代入方程得k﹣4=0,解得k=4.故选:C.9.解:①设两人开始工作x小时后还有20个零件没有加工,依题意,得:4x+6x+20=60,∴①可以用方程4x+6x+20=60来表述;第1页(共1页)②设经过x小时后两人相遇后又相距20km,依题意,得:4x+6x﹣20=60,∴②不可以用方程4x+6x+20=60来表述;③设乙出发后x小时两人相遇,依题意,得:4x+20+6x=80,∴③方程4x+6x+20=60来表述;④设经过x小时后两人相距60km,依题意,得:4x+6x+20=60,∴④可以用方程4x+6x+20=60来表述.故选:B.10.解:去分母得:3x﹣2(x﹣1)=12,故选:D.二.填空题11.解:设铅笔卖出x支,由题意,得1.2×0.8x+2×0.9(60﹣x)=87.解得:x=25.答:铅笔卖出25支.故答案是:25.12.解:解方程3x﹣7=5x+2得x =﹣,第1页(共1页)根据题意得,方程4y+3a=7a﹣8的解为y =﹣,所以4×(﹣)+3a=7a﹣8,解得a =.故答案为.13.解:把x=﹣2.5代入方程得2﹣2.5⊕+3=﹣7.5,所以⊕=5.故答案为5.14.解:∵|a+24|+|b+10|+(c﹣10)2=0,∴a+24=0,b+10=0,c﹣10=0,∴a=﹣24,b=﹣10,c=10.当运动时间为t秒时,点P对应的数是t﹣24,当点Q返回时,点Q对应的数是﹣3(t ﹣)+10,根据题意得:|﹣3(t ﹣)+10﹣(t﹣24)|=2,解得:t1=27,t2=28.故答案为:27或28.15.解:∵=3,∴3(﹣2x+1)﹣3(2x﹣1)=3,去括号,可得:﹣6x+3﹣6x+3=3,移项,合并同类项,可得:﹣12x=﹣3,第1页(共1页)系数化为1,可得:x=0.25.故答案为:0.25.三.解答题16.解:(1)去括号得:x﹣2x+8=3﹣3x,移项合并得:2x=﹣5,解得:x=﹣2.5;(2)去分母得:4﹣3x+1=6+2x,移项合并得:﹣5x=1,解得:x=﹣0.2.17.解:(1)①小哲在促销活动时购物用了135元,则原价为135÷(1﹣10%)=150元;小哲在促销活动时购物用了481元,设原价为x元,由题意得:500×(1﹣15%)+(1﹣20%)(x﹣500)=481解得:x=570若小哲购物时没有促销活动,则150+570=720(元)答:若小哲购物时没有促销活动,则他共需付720元;②若我需购买这些同样的物品,则还有更便宜的购物方案,购物方案是两次购物合并成为一次,共需付钱:500×(1﹣15%)+(1﹣20%)×(720﹣500)=425+176=601(元).(2)①若小明购了原价为a元的物品,小红购了原价为b元的物品,且a<b,但最后小明所付的钱反而比小红多.列举一对a、b的值为a=190,b=201,第1页(共1页)当a=190时,实际付款190×(1﹣10%)=171(元),而b=201时,实际付款201×(1﹣15%)=170.85(元).②由题意得:(1﹣15%)b<200×(1﹣10%)而(1﹣10%)a>200×(1﹣15%),且a≤200<b∴200<b ≤,<a≤200∴符合条件的整数a有189~200,整数b有201~211若a=189,则0.85b<189×0.9,b <,没有满足条件的整数b;若a=190,则0.85b<190×0.9,b <,满足条件的整数b为b=201;若a=191,则0.85b<191×0.9,b <,满足条件的整数b有:201,202;若a=192,则0.85b<192×0.9,b <,满足条件的整数b有:201,202,203;若a=193,则0.85b<193×0.9,b <,满足条件的整数b有:201,202,203,204;若a=194,则0.85b<194×0.9,b <,满足条件的整数b有:201,202,203,204,205;…若a=200,则0.85b<200×0.9,b <,满足条件的整数b有:201,202,203,204,205,206,207,208,209,210,211;∴符合条件的整数a、b共有:1+2+3+4+5+6+7+8+9+10+11=66(对).18.解:(1)设运动时间为x秒时,MN=56.第1页(共1页)依题意,得:(6x+11)﹣(﹣2x﹣5)=56,解得:x=5.答:运动时间为5秒时,MN=56.(2)当运动时间为t秒时,点C对应的数为t﹣5,点D对应的数为﹣5t+11,∴AC=t,BD=5t,CD=|t﹣5﹣(﹣5t+11)|=|6t﹣16|.∵AC+BD=3CD,∴t+5t=3|6t﹣16|,即t+5t=3(6t﹣16)或t+5t=3(16﹣6t),解得:t=4或t=2.答:运动时间为2秒或4秒时,AC+BD=3CD.19.解:(1)由题意可得,按标准报销的金额为:5000×40%+(20000﹣5000)×50%=2000+15000×50%=2000+7500=9500(元),张大哥实际支付了:20000﹣9500=10500(元),故答案为:9500,10500;(2)设王大爷当年的住院费用为x元,5000×(1﹣40%)+(20000﹣5000)×(1﹣50%)+(x﹣20000)×(1﹣60%)=21000,解得,x=46250答:王大爷当年的住院费用为46250元.20.解:(1)设C点表示的数为c,根据题意得,3(c+20)=24﹣c,第1页(共1页)解得,c=﹣9,故C表示的数为﹣9;(2)①根据题意得,a=[﹣9﹣(﹣20)]÷3=,则b=2a =,c=3a=11,当0≤t≤a时,M小球对应的数为﹣20+3t,当a<t≤b时,M小球对应的数为﹣20+3a﹣3(t﹣a)=﹣20+6a﹣3t=﹣20+22﹣3t=2﹣3t.当b<t≤c时,M小球对应的数为﹣20+3(t﹣b)=﹣20+3t﹣3b=﹣20+3t﹣22=3t﹣42,故答案为:3t﹣20;2﹣3t;3t﹣42;②根据题意得,N从B到C的时间为:[24﹣(﹣9)]÷2=>11,∴N点从B点出发,还没到达C点,两球就已经停止了运动,当0≤t ≤时,若M、N两个小球的距离等于42,则(24﹣2t)﹣(3t﹣20)=42,解得,t =;当时,若M、N两个小球的距离等于42,则(24﹣2t)﹣(2﹣3t)=42,解得,t=20(舍);当1时,若M、N两个小球的距离等于42,则(24﹣2t)﹣(3t﹣42)=42,解得,t =(舍);综上,t =;(3)根据题意得,P 点表示的数为:,第1页(共1页)Q 点表示的数为:,∴PQ=|(2﹣t)﹣(﹣10﹣t)|=|12|=12,故PQ的长度为定值,该值为12.第1页(共1页)。
初一数学上册分数的加减练习题(三)
初一数学上册分数的加减练习题(三)在数学学习过程中,理解和掌握分数的加减法是非常重要的一项基本技能。
通过不断的练习,我们可以提升自己在这方面的能力。
下面将为大家提供一些初一数学上册分数的加减练习题,希望能够帮助大家更好地掌握这一知识点。
练习题一:分数的相加1. 将1/4和1/3相加,写出结果的最简形式。
2. 3/5 + 2/5 = ?3. 2/7 + 4/7 + 1/7 = ?4. 将2/9, 5/6和3/4相加,写出结果的最简形式。
5. 7/8 + 3/16 = ?练习题二:分数的相减1. 5/6 - 1/3 = ?2. 1/2 - 1/4 = ?3. 2/5 - 1/5 = ?4. 3/4 - 2/3 = ?5. 7/8 - 1/16 = ?练习题三:混合运算1. 1/2 + 3/4 - 1/8 = ?2. 2/3 - 1/4 + 1/6 = ?3. 5/6 + 1/3 - 2/5 = ?4. 2/5 - 1/3 + 3/4 = ?5. 7/8 + 1/16 - 3/16 = ?解答:练习题一:分数的相加1. 1/4 + 1/3 = 7/122. 3/5 + 2/5 = 5/5 = 13. 2/7 + 4/7 + 1/7 = 7/7 = 14. 2/9 + 5/6 + 3/4 = 8/36 + 30/36 + 27/36 = 65/365. 7/8 + 3/16 = 14/16 + 3/16 = 17/16练习题二:分数的相减1. 5/6 - 1/3 = 5/6 - 2/6 = 3/6 = 1/22. 1/2 - 1/4 = 2/4 - 1/4 = 1/43. 2/5 - 1/5 = 1/54. 3/4 - 2/3 = 9/12 - 8/12 = 1/125. 7/8 - 1/16 = 14/16 - 1/16 = 13/16练习题三:混合运算1. 1/2 + 3/4 - 1/8 = 4/8 + 6/8 - 1/8 = 9/8 = 1 1/82. 2/3 - 1/4 + 1/6 = 8/12 - 3/12 + 2/12 = 7/123. 5/6 + 1/3 - 2/5 = 25/30 + 10/30 - 12/30 = 23/304. 2/5 - 1/3 + 3/4 = 8/20 - 6/20 + 15/20 = 17/205. 7/8 + 1/16 - 3/16 = 14/16 + 1/16 - 3/16 = 12/16 = 3/4通过以上练习题的实践,我们可以提升自己在分数的加减运算上的能力。
有理数的乘方 沪科版七年级数学上册同步练习3(含答案)
《有理数的乘方》同步练习3一、选择题1.设n 是一个正整数,则n 10是( ).A .10个n 相乘所得的积B .是n 位整数C .10后面有n 个零的数D .是一个)1(+n 位整数2.一个数的立方等于它本身,这个数是( ).A .0B .1C .-1,1D .-1,1,03.如果一个数的偶次幂是非负的,那么这个数是( )A .正数B .负数C .非负数D .任何有理数4.如果a a =2,那么a 的值是( )A .1B -1C .0D .1或05.下列说法正确的是( )A .一个数的平方一定大于这个数B . 一个数的平方一定大于这个数的相反数C .一个数的平方只能是正数D .一个数的平方不能是负数6.下列各组数中,相等的共有( ).(1)-52和(-5)2 (2)-32和(-3)2 (3)-(-0.3)5和0.35(4)0100和0200 (5)(-1)3和-(-1)2A .2组B .3组C .4组D .5组7.蟑螂的生命力很旺盛,它繁衍后代的方法为下一代的数目永远是上一代数目的5倍也就是说,如果蟑螂始祖(第一代)有5只,则下一代(第二代)就有25只,依次类推,推算蟑螂第10代有( ).A .512B .511C .510D .59二、计算8. (1)2)35(⨯- (2) 2)3(4-⨯-(3) 22)2(2--- (4)200520042003)1()1()1(-----三、解答题9.一块蛋糕,一只小猴子第一天吃了一半,第二天吃了剩下的一半,第三天又吃剩下的一半,如此吃下去,第五天这只小猴子吃了这块蛋糕的多少?10.已知y x ,都是有理数,且2)4(1+++y x =0 求代数式35xy y x +的值. 11.已知162=x ,求代数式123-+-x x x 的值.参考答案1.D2.D3.D4.D5.D6. B7.C8.(1)225(2)-36(3)-8(4)-119.3210. 6811. 51或-85。
七年级数学上册1.2.2 数轴-数轴上的动点问题 选择题专项练习三(人教版,含解析)
2021-2022学年度人教版七年级数学上册练习三1.2.2 数轴-数轴上的动点问题1.数轴上一动点A向左移动3个单位长度到达点B,再向右移动6个单位长度到达点C,若C表示的数为3,则点A表示的数为()A.6 B.0 C.﹣6 D.﹣22.把数轴上表示数2的点移动3个单位后,表示的数为()A.5 B.1 C.5或-1 D.5或13.在数轴上把数2对应的点移动3个单位后所得的对应点表示的数是()A.5 B.﹣1 C.5或﹣1 D.不确定4.在正方形的四个顶点处逆时针依次标上“合”“格”“优”“秀”四个字,将正方形放置在数轴上,其中“优”“秀”对应的数分别为-2和-1,现将正方形绕着顶点按顺时针方向在数轴上向右无滑动地翻滚,例如第一次翻滚后“合”所对应的数为0,则连续翻滚后与数轴上数2018重合的字是( )A.合B.格C.优D.秀5.数轴上一点A表示的有理数为2-,若将A点向右平移3个单位长度后,A点表示的有理数应为()A.3B.1-C.1D.5-6.在数轴上,把表示﹣4的点移动2个单位长度,所得到的对应点表示的数是()A.﹣2 B.﹣6 C.﹣2或﹣6 D.无法确定7.数轴上一动点A向左移动3个单位长度到达点B,再向右移动4个单位长度到达点C,若点C表示的数为1,则点A表示的数为()A.7 B.1 C.0 D.-18.在数轴上把表示2的点向右移动5个单位长度后,所得的对应点是()A.7 B.﹣3 C.6 D.89.-2和2对应的点将数轴分成3段,如果数轴上任意n个不同的点中至少有3个在其中之ㄧ段,那么n的最小值是.A.5 B.6 C.7 D.810.如图,圆的周长为4个单位长度,圆周的四等分点分别为A,B,C,D,先将圆上的A点与数轴上表示1的点重合,如果将圆沿着数轴向左滚动,那么圆上与数轴上表示-2019的点重合的点是()A.A B.B C.C D.D11.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2:则翻转2015次后,数轴上数2015所对应的点是()A.点A B.点B C.点C D.点D12.数轴上一点A表示﹣3,若将A点向左平移5个单位长度,再向右平移6个单位长度,则此时A 点表示的数是()A.﹣1 B.﹣2 C.﹣3.D.113.点A在数轴上距原点3个单位长度,若一个点从点A处左移4个单位长度,此时终点所表示的数是()A.﹣1 B.±1C.±7D.﹣1或﹣714.如图,数轴上一动A点向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的实数为()A.7 B.3 C.-3 D.-215.把数轴上表示数2的点移动5个单位后,表示的数为()A.7 B.3 C.7或3 D.7或-316.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动.设该机器人每秒前进或后退1步,并且每步的距离是一个单位长度,xn表示第n秒时机器人在数轴上的位罝所对应的数.给出下列结论:①x3=3;②x5=1;③x108<x104;④x2007<x2008,其中,正确结论的序号是()A.①③B.②③C.①②③D.①②④17.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A.点C B.点D C.点A D.点B18.一只小球落在数轴上的某点P0处,第一次从P处向右跳1个单位到P1处,第二次从P1向左跳2个单位到P2处,第三次从P2向右跳3个单位到P3处,第四次从P3向左跳4个单位到P4处…,若小球按以上规律跳了(2n+3)次时,它落在数轴上的点P2n+3处所表示的数恰好是n﹣3,则这只小球的初始位置点P所表示的数是()A.﹣4 B.﹣5 C.n+6 D.n+319.点M为数轴上表示﹣2的点,将点M沿数轴向右平移5个单位点N,则点N表示的数是()A.3 B.5 C.—7 D.3 或一720.如图,设一枚5角硬币的半径为1个单位长度,将这枚硬币放置在平面内一条数轴上,使硬币边缘上一点P与原点O重合,让这枚硬币沿数轴正方向无滑动滚动,转动一周时,点P 到达数轴上点P'的位置,则点P'所对应的数是()A.2πB.6.28 C.πD.3.14参考答案1.B解析:根据数轴上的点左移减,右移加,可得答案.详解:解:3﹣6+3=0故选:B.点睛:此题考查数轴,解题关键在于掌握其性质.2.C解析:试题分析:把数轴上表示数2的点移动3个单位后,表示的数为5或﹣1.故选C.考点:数轴.3.C解析:若把数2对应的点向右移动3个单位后所得的对应点表示的数是2+3=5;若向左移动3个单位后所得的对应点表示的数是2﹣3=﹣1.故选C.4.C解析:由题意,画出图形如下图所示,然后结合图形与题意进行分析判断即可.详解:如下图所示,由题意可知,当正方形无滑动向右滚动一次时,“合”与0重合,滚动第二次时,“格”与1重合,滚动第三次时,“优”与2重合,滚动第四次时,“秀”与3重合,滚动第五次时,“合”与4重合,……,由此可知,从“合”与0重合开始,正方形四个顶点上的字与数轴上的正整数的重合情况,是按四个数一组循环出现的,∵2018÷4=504……2,∴正方形连续滚动后,与数轴上的2018重合的字是“优”.故选C.点睛:“读懂题意,画出如图所示的图形,找到数轴上的正整数与正方形四个顶点上的数重合的规律:当数轴上的正整数除以4,余数为:0、1、2、3时,这个正整数分别与“合”、“格”、“优”、“秀”重合”是解答本题的关键.5.C解析:根据平移的性质,进行分析选出正确答案.详解:﹣2+3=1.故A点表示的有理数应为1.故选C.点睛:本题考查了数轴,利用点在数轴上左减右加的平移规律是解决问题的关键.6.C解析:把数轴上的数进行移动包括向左移动和向右移动即可得到结果.详解:解:当向左移动时,得到的对应点所表示的数为;当向右移动时,得到的对应点所表示的数为.故选:C.点睛:本题主要考查数轴的基本概念.7.C解析:利用数轴及移动单位,点C的数确定A的值.详解:数轴上一动点A向左移动3个单位长度到达点B,再向右移动4个单位长度到达点C,若点C表示的数为1,则点A表示的数为0.所以C选项是正确的.点睛:本题主要考查了数轴,解题的关键是利用数轴确定A的值.8.A解析:根据点在数轴上移动,向右移动则数字是增大.详解:向右移动5个单位,则2+5=7.即答案选A.点睛:本题考查了数轴、两点间的距离,了解数轴上点的移动规律是解题的关键.9.C解析:本题可以用抽屉原理解决.解决的时候可以先考虑相反的情况.将数轴上的3段看成3个抽屉,先考虑相反的情况,得到的结果再取反即为答案.令每个抽屉之多有2个点,则最多有6个点.故.10.A解析:圆每转动一周,A、B、C、D循环一次,-2019与1之间有2020个单位长度,即转动2020÷4=505(周),据此可得.详解:1-(-2019)=2020,2020÷4=505(周),所以应该与字母A所对应的点重合.故选A.点睛:此题考查数轴,以及循环的有关知识,把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成.11.C解析:找出在翻转的过程中,顶点A、B、C、D分别对应数的规律,再根据2015=4×503十3可以得到答案.详解:解:在翻转过程中,点A、B、C、D对应数依次为1,2,3,4,5,6,7,8,9……4n,4n+1,4n+2,4n+3,4(n+1).∵2015=4×503+3,数油上数2015所对应的点是顶点C.故答案为:C.点睛:本题考查的是数轴上的点与实数,关键要发现各个顶点在翻转过程中所对应数的规律.12.B解析:在数轴上“左减右加”,向左平移是减向右平移是加,所以点A所表示的数先减去5再加上6得出正确答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学练习(3.1-3.9)
11月4日 十四周周二
1. 方程52=+y x ,用y 的一次式表示x 是____________________,
用x 的一次式表示y 是____________________。
2. 下列方程是二元一次方程的有____________________(写上方程的序号)。
①5=-y x ②1=++z y x ③212=-x ④513=+y
x ⑤432=+y x ⑥0322=+-y x 3. 已知⎩
⎨⎧==31y x 是方程82=-ay x 的一个解,则a 的值是__________。
4. 方程52=+y x 的解有_____个;其中正整数解(x ,y 均是正整数)有_______________。
11月5日 十四周周三
1. 已知方程12
3=-y x ,用x 的一次式表示y 是____________________。
2. 下列方程组是二元一次方程组的有____________________(写上方程组的序号)。
①⎩⎨⎧+=-=132x y y x ②⎪⎩⎪⎨⎧=++=3
113x y x ③⎩⎨⎧=-=-2312y z y x ④⎩⎨⎧==-522xy y x 3. 已知⎩⎨⎧-==11y x 是方程组⎩⎨⎧=-=-1
252by x y ax 的解,则22b a +=__________。
4. 已知012=-+++-y x y x ,则x =_________,y =_________。
11月6日 十四周周四
1. 用代入法解方程组⎩
⎨⎧+==-132x y y x 时,可②将代入①,消去未知数_______,得一元一次方程是________________。
2. 用加减法解方程组⎩⎨⎧=-=+1
2332y x y x 时,应将方程①与方程②相_______,消去未知数_______,可得一元一次方程是________________。
3. 解方程组:⎩
⎨⎧=+=-42734y x y x 4. 解方程组:⎪⎩⎪⎨⎧=+-=+y
y x y x 37)(2132
11月7日 十四周周五
1. 若方程组⎩⎨
⎧=--=+5
213y x y x 的解是方程52=+y mx ,则m 的值是__________。
2.。