集合教材分析
北师大版高中高一数学必修1《集合》评课稿
北师大版高中高一数学必修1《集合》评课稿1. 引言本篇评课稿旨在对北师大版高中高一数学必修1《集合》这一章节进行评估和分析。
本节课的主要内容是集合的基本概念、运算及常见运算规则。
该章节是高一数学课程中引入集合论的一个重要章节,对数学思维的培养和逻辑思维的训练具有重要意义。
2. 课程设计2.1 教材分析该章节的教材来源于北师大版高中高一数学教材。
教材以简洁明了的文字和清晰的示例,系统地介绍了集合的含义、符号表示法、集合间的运算及运算规则等概念。
2.2 教学目标通过本章的学习,学生应能达到以下目标:1.理解集合及其相关概念。
2.掌握集合的符号表示法和相关运算。
3.熟练运用集合的运算规则,解决与集合相关的问题。
2.3 教学重点和难点本章的教学重点是集合的基本概念和符号表示法,以及集合的交、并、差、补集等运算规则。
难点在于培养学生的逻辑思维和集合运算的灵活运用能力。
2.4 教学方法在教学过程中,采用以下方法来帮助学生理解和掌握集合的概念和运算规则:1.归纳法:通过具体的例子,引导学生从具体到抽象,由简到繁地理解集合的含义和运算规则。
2.对话式教学:引导学生以对话形式解决问题,培养学生的逻辑思维和表达能力。
3.练习与实践:通过大量的练习题和问题解答,帮助学生深入理解和掌握集合的运算规则。
3. 课堂实施3.1 情境导入为了激发学生的学习兴趣,教师可引入集合概念的现实生活情境。
例如,老师可以出示一张水果市场的照片,让学生根据不同种类的水果划分集合,并用集合符号表示。
3.2 知识讲解与互动教师通过简明扼要的语言解释集合的基本概念,并配以具体的示例,引导学生理解集合的符号表示法和运算规则。
在教学过程中,教师鼓励学生参与互动,提出问题并解答。
3.3 练习与巩固教师设计一系列练习题,包括求集合的交、并、差、补集等运算,并结合具体的情境让学生应用所学知识解决实际问题。
同时,教师会适时给出解题思路和方法,引导学生独立解决问题。
小学数学_集合教学设计学情分析教材分析课后反思
《集合》教学设计教学内容:人教版三年级上册104-105页内容一、教学目标(一)知识与技能1.在已有知识的基础上经历集合思想方法的形成过程,初步理解集合知识的意义。
2.能结合具体情境体会用“韦恩图”解决有重复部分的问题的价值,理解集合图中每一部分的含义,通过语言的描述和计算的方法,能解决简单的重复问题。
(二)过程与方法通过观察、操作、实验、交流、猜测等活动,让学生在合作学习中感知集合图形成过程,体会集合图的优点,能直观看出重复部分,解决生活中的问题。
(三)情感态度与价值观体验个体与小组合作探究相结合的学习过程,养成勤动脑,乐思考、巧运用的学习习惯,同时在这个过程中感受数学与生活的密切联系,体会数学的价值。
二、教学诊断“集合问题”是人教版三年级上册第九单元“数学广角”的第一课时,是小学阶段集合思想教学。
集合思想对于三年级学生来说并不陌生,在以往的题型中有过接触,只是无意识形成一些简单解决问题的方法。
而本节课所要学的是含有重复部分的集合图,学生是第一次接触。
教材中的例1通过统计表的方式列出参加踢毽子比赛和跳绳比赛的学生名单,而总人数并不是这两项参赛的人数之和,从而引发学生的认知冲突。
教材中是利用集合图(韦恩图)把这两项比赛人数的关系直观地表示出来,从而帮助学生找到解决问题的办法。
教材要求只是让学生通过生活中容易理解的题材去初步体会集合思想,能够用自己的方法解决问题,为后继学习打下必要的基础。
对于教师应根据学生特点,适度让学生亲历集合图的形成过程,不必拔高要求,引导学生理解集合图各部分的意义,培养学生应用集合思想解决实际问题的能力,初步感受集合思想的奇妙与作用。
三、教学重难点教学重点:了解集合图的产生过程,利用集合的思想方法解决有重复部分的问题。
教学难点:理解集合图的意义,会解决简单重复问题。
四、教学准备多媒体课件、小白板、练习题卡五、教学过程(一)创设情境,引入新知1、教师课件出示“脑筋急转弯”师:今天,老师给大家带来一个脑筋急转弯,想不想挑战一下自己。
高一数学第一章集合与逻辑教材分析
第一章“集合与简易逻辑”教材分析本章安排的是“集合与简易逻辑”,这一章主要讲述集合的初步知识与简易逻辑知识两部分内容.集合的初步知识是现行高中数学教科书中原来就有的内容,这部分主要包括集合的有关概念、集合的表示及集合同集合之间的关系.简易逻辑知识则是新增加的内容,这部分主要介绍逻辑联结词“或”、“且”、“非”、四种命题及其相互关系、充要条件等有关知识集合概念及其基本理论,称为集合论,是近代数学的一个重要的基础.一方面,许多重要的学科,如数学中的数理逻辑、近世代数、实变函数、泛函分析、概率统计、拓扑等,都建立在集合理论的基础上.另一方面,集合论及其所反映的数学思想,在越来越广泛的领域中得到应用.逻辑是研究思维形式及其规律的一门基础学科.学习数学,需要全面地理解概念,正确地进行表述、推理和判断,这就离不开对逻辑知识的掌握和运用.更广泛地说,在日常生活、学习、工作中,基本的逻辑知识也是认识问题、研究问题不可缺少的工具,是人们文化素质的组成部分.在高中数学中,集合的初步知识与简易逻辑知识,与其他内容有着密切联系,它是学习、掌握和使用数学语言的基础,这就是把它们安排在高中数学起始章的出发点.本章共编排了8小节,教学时间约需22课时:1.1 集合约2课时1.2 子集、全集、补集约2课时1.3 交集、并集约2课时1.4 绝对值不等式的解法约2课时1.5 一元二次不等式的解法约4课时1.6 逻辑联结词约2课时1.7 四种命题约2课时1.8 充分条件与必要条件约2课时小结与复习约4课时说明:本章是高中数学的起始章,课时安排得相对宽松一些,像小结与复习部分安排4课时,其中考虑到了对初中内容进行适当复习、巩固的因素.一内容与要求大体上按照集合与逻辑这两个基本内容,第一章编排成两大节.第一大节是“集合”.学生在小学和初中数学中,已经接触过集合,对于诸如数集(整数的集合、有理数的集合)、点集(圆)等,都有了一定的感性认识.在此基础上,这一大节首先结合实例引出集合与集合的元素的概念,并介绍了集合的表示方法.然后,从讨论集合与集合之间的包含与相等的关系入手,给出子集的概念,此外,还给出了与子集相联系的全集与补集的概念.接着,又讲述了属于集合运算的交集、并集的初步知识.鉴于不等式的内容目前初中数学只讲述一元一次不等式与一元一次不等式组,考虑到集合知识的运用与巩固,又考虑到下一章讨论函数的定义域与值域的需要,第一大节最后安排的是绝对值不等式与一元二次不等式的解法.此外,在这一大节之后,还附了一篇关于有限集合元素个数的阅读材料.这一大节的重点是有关集合的基本概念.学习集合的初步知识,可以使学生更好地理解数学中出现的集合语言,可以使学生更好地使用集合语言表述数学问题,并且可以使学生运用集合的观点研究、处理数学问题,这里,起重要作用的就是有关集合的基本概念.这一大节的难点是有关集合的各个概念的含义以及这些概念相互之间的区别与联系.学生是从本章才正式开始学习集合知识的,这部分包含了比较多的新概念,还有相应的新符号,有些概念、符号还容易混淆,这些因素都可能造成学生学习的障碍.第二大节是“简易逻辑”.学生在初中数学中,学习过简单的命题(包括原命题与逆命题)知识,掌握了简单的推理方法(包括对反证法的了解).由此,这一大节首先给出含有“或”、“且”、“非”的复合命题的意义,介绍了判断含有“或”、“且”、“非”的复合命题的真假的方法.接下来,讲述四种命题及其相互关系,并且在初中的基础上,结合四种命题的知识,进一步讲解反证法.然后,通过若干实例,讲述了充分条件、必要条件和充要条件的有关知识.这一大节的重点是逻辑联结词“或”、“且”、“非”与充要条件.学习简易逻辑知识,主要是为了培养学生进行简单推理的技能,发展学生的思维能力,在这方面,逻辑联结词“或”、“且”、“非”与充要条件的有关内容是十分必要的.这一大节的难点是对一些代数命题真假的判断.初中阶段,学生只是对简单的推理方法有一定程度的熟悉,并且,相关的技能和能力,主要还是通过几何课的学习获得的,初中代数侧重的是运算的技能和能力,因此,像对代数命题的证明,学生还需要有一个逐步熟悉的过程.根据《全日制普通高级中学数学教学大纲(试验修订版)》的规定,本章的教学要求是:⒈理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合;掌握带绝对值的不等式与一元二次不等式的解法.⒉理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相互关系;进一步了解反证法,会用反证法证明简单的问题;掌握充要条件的意义.二本章的特点⒈注意初中与高中的衔接近年来,在与本章有关的内容上,按照教学大纲,初中的教学要求有哪些变化呢?先看有关集合的部分.初中适当渗透一些集合思想,这一点基本没有变化.此外,初中去掉了一元二次不等式与绝对值不等式的内容.再看有关逻辑的部分.1996年以前的初中毕业生,应该达到以下要求:⑴了解命题的概念;⑵初步掌握逆命题和逆定理的概念,能正确叙述题设与结论都是简单命题的命题的逆命题,了解正确命题的逆命题的逆命题不一定正确;⑶了解四种命题及其相互关系;⑷理解用反证法证明命题的思路,能用反证法证明一些比较简单的几何题.从1996年起,对于高一新生,初中的要求又有进一步调整.上述⑵改为:了解逆命题和逆定理的概念,原命题成立它的逆命题不一定成立,会识别两个互逆命题.⑶删去.⑷改为:了解反证法.基于以上情况,考虑到学习高中数学的需要,新教材一方面补充了一些必要的知识点,例如关于一元二次不等式与绝对值不等式的解法;另一方面对一些初中相对薄弱的内容,适当予以加强,例如关于反证法等.例如,关于交集、并集的概念,教科书先从图形表示入手,让学生有一个直观的认识,然后给出定义,再用实例加以说明,并且,引出概念的图形也只是采用了一种简明的形式,而没有画出全部可能出现的情况.又如,本章是对比初中学过的一元一次不等式,并且借助二次函数的图象,讲述一元二次不等式解法的.⒉重视集合与逻辑在中学数学学习中的应用本章是高中数学的基础,学习本章,主要目的是为了理解后续章节出现的集合与逻辑语言,会用集合与逻辑语言描述学习中遇到的数学问题,进而解决这些问题.像对一些性质、定理的理解,对函数的定义域、值域的描述,对推理方法的掌握,等等.本章在集合与逻辑内容的编排上,既考虑到知识的系统性,又照顾到学生的可接受性,并且始终围绕着集合与逻辑在中学数学学习中的应用这一基本出发点.在集合这部分,有关集合运算的内容,就注意在解方程和不等式方面的应用,在数学概念的分类方面的应用.在逻辑这部分,有关命题的内容,突出的是对逻辑联结词“或”、“且”、“非”的理解和对复合命题真值的认识,而不过多地涉及对一个语句是不是命题的判断.此外,像关于复合命题的否定,对近期学习影响不大,学生学习又比较困难,本章基本未涉及.为了帮助学生理解逻辑联结词“或”、“且”、“非”,教科书中介绍了“或门电路”、“与门电路”,这是两个应用的实例.实际上,计算机的“智能”装置就是以数学逻辑为基础进行设计的.三教学中应注意的问题⒈教学要求的把握要适时、适度本章是高中数学的起始章,适当地把握本章的教学要求是教学中应该重视的问题.集合与逻辑的初步知识是高中数学的基础知识,学习这些内容,主要是为今后进一步学习其他知识作基本语言、基本方法的准备,相应地,对知识系统性、严谨性的要求一定要适度.学习有关集合的初步知识,其目的主要在于应用.具体说,就是在学习其他知识时,能读懂其中的简单的集合概念和符号;在处理简单的实际问题时,能根据需要,运用集合语言进行表述.在安排训练时,要把握一定的分寸,不要搞偏题、怪题.集合有关性质的证明,一般不要求学生掌握.有些可能混淆但在实际问题中并不多见的关系,就不必故意编排在一起,让学生去一一进行辨析.本章安排的是集合与逻辑的初步知识,这些知识的讲述,是以初中数学的内容为基础的.从引出有关知识的实例,到具体应用的问题,基本都属于初中数学的范围,这种局限自然会对有关知识的理解和掌握造成一定影响.随着后续章节的学习,对集合与逻辑知识的应用将越来越广泛和深入,相应地,对集合与逻辑知识理解和掌握的水平也就越来越高了.因此,本章的教学要求,应该避免一步到位.关于含有“或”、“且”、“非”的复合命题的真值表,在开始时,教学重点还是借助三个真值表,加深对含有“或”、“且”、“非”的复合命题的了解,而不必急于让学生掌握对一般复合命题的真假的判断.关于充分条件、必要条件与充要条件,本章对教学要求的尺度,还是控制在对初中代数、几何的有关问题的理解上为宜.⒉提高集合与逻辑的教学效益目前高中数学教学的一个突出问题是教学效益不高.具体表现在:一方面,学生用在数学上的时间比较多,像与美国比,是美国学生的好几倍;另一方面,学生在考试中表现良好,但创造性能力和应用能力有一定欠缺,个性发展也存在着不足之处.为了后续章节的学习,在本章必须给学生打下适当的集合与逻辑基础,限于学生的预备知识与接受能力,在本章又不能过多地追求理论的完整,只有处理好这个关系,才能提高教学效益.因此,在实际教学时,一定要抓住重点.怎样把握本章的教学重点呢?一是要有助于对初中数学的理解,二是要能为高中数学的学习扫除障碍.换句话说,学习集合与逻辑,要着眼于用集合与逻辑的知识解决数学学习中的问题,而不要在概念的严谨性、知识的系统性上花过多的时间与精力.像逻辑中有不少问题,在学术界内部都有争论,在高一数学课上,就完全没有必要去涉及了.⒊使用数学符号要规范本章教材有不少集合与逻辑的数学符号,这些符号的采用,依据的是新的国家标准,其中有些符号与原教科书不同,在教学时应该注意.。
小学数学_《集合》教学设计学情分析教材分析课后反思
《集合》教学设计教学目标:知识与技能:1.通过观察、拼摆、画图、比较等方法经历探索维恩图产生的过程,理解、体会集合图其各部分的意义和价值。
过程与方法:2.了解简单的集合知识,能利用维恩图、运用集合的思想方法来解决较简单的实际问题。
情感、态度与价值观:3.体会数学和生活的密切联系,在解决问题的过程中形成合作意识、培养合作能力。
教学重点:让学生经历维恩图的产生过程,学会用集合的思想方法解决较简单的实际问题。
教学难点:理解“交集”的具体含义,利用维恩图解决问题。
教学准备:打印学生名单,塑料集合圈,探究单等。
教学过程:一.唤起与生成1.师课件出示学校比赛通知:通知三年级每个班选拔5名同学参加8时举行的“跳绳比赛”,6名同学参加9时举行的“踢毽比赛”。
师根据通知要求,引导学生猜想“三年级每个班要选拔多少人参加比赛?”预设:生猜想11人。
【设计意图:从学生身边熟悉的两个比赛出发,让学生猜一猜“三年级每个班要选拔多少人参加比赛?”激发出学生学习的积极性。
】二.探究与解决(一)通过观察表格,发现表格中的人数不是11人而是9人,产生矛盾冲突。
三(1)班的参加跳绳比赛和踢毽比赛的情况如下表:师呈现三(1)班参加比赛的学生名单,并让学生观察表格,看看三(1)班一共有多少人参加这两项比赛。
预设:生1:11人生2:9人。
师追问“为什么一共是9人”。
通过观察、比较发现杨明、刘红重复参加了这比赛。
为了确定一共有几人参加这两项比赛,师建议学生到讲台上数一数表格中应该有多少人。
预设:11人或9人。
师生共同观察表格,发现参加这两项比赛的同学一共有9人。
师提出质疑:“明明算的是5+6=11(人),可数起来为什么是9人呢?”产生矛盾冲突。
预设:生:因为有重复的人。
体现“重复”的重要性。
得出结论:这个表格不能清楚的表示“重复参加比赛的人”和“一共有几人”,引出“努力小目标”。
努力小目标:1.想一想:怎样既能清楚的表示“重复的人”,又能一眼看出“一共有9人”。
《集合的概念》说课稿(精选10篇)
《集合的概念》说课稿(精选10篇)《集合的概念》说课稿 1一、说教材1、教材的地位和作用《集合的概念》是人教版第一章的内容(中职数学)。
本节课的主要内容:集合以及集合有关的概念,元素与集合间的关系。
初中数学课本中已现了一些数和点的集合,如:自然数的集合、有理数的集合、不等式解的集合等,但学生并不清楚“集合”在数学中的含义,集合是一个基础性的概念,也是也是中职数学的开篇,是我们后续学习的重要工具,如:用集合的语言表示函数的定义域、值域、方程与不等式的解集,曲线上点的集合等。
通过本章节的学习,能让学生领会到数学语言的.简洁和准确性,帮助学生学会用集合的语言描述客观,发展学生运用数学语言交流的能力。
2、教学目标(1)知识目标:a、通过实例了解集合的含义,理解集合以及有关概念;b、初步体会元素与集合的“属于”关系,掌握元素与集合关系的表示方法。
(2)能力目标:a、让学生感知数学知识与实际生活得密切联系,培养学生解决实际的能力;b、学会借助实例分析,探究数学问题,发展学生的观察归纳能力。
(3)情感目标:a、通过联系生活,提高学生学习数学的积极性,形成积极的学习态度;b、通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。
3、重点和难点重点:集合的概念,元素与集合的关系。
难点:准确理解集合的.概念。
二、学情分析(说学情)对于中职生来说,学生的数学基础相对薄弱,他们还没具备一定的观察、分析理解、解决实际问题的能力,在运算能力、思维能力等方面参差不齐,学生学好数学的自信心不强,学习积极性不高,有厌学情绪。
三、说教法针对学生的实际情况,采用探究式教学法进行教学。
首先从学生较熟悉的实例出发,提高学生的注意力和激发学生的学习兴趣。
在创设情境认知策略上给予适当的点拨和引导,引导学生主动思、交流、讨论,提出问题。
在此基础上教师层层深入,启发学生积极思维,逐步提升学生的数学学习能力。
集合概念的形成遵循由感性到理性,由具体到抽象,便于学生的理解和掌握。
集合的概念教案5篇
集合的概念教案5篇教师需要了解学生的学习偏好,以确保教案包括多种教学方法,以满足不同学生的需求,教案包括教学评估的方法,用于测量学生的学习成果和教学效果,以下是作者精心为您推荐的集合的概念教案5篇,供大家参考。
集合的概念教案篇1第二教时教材:1、复习2、《课课练》及《教学与测试》中的有关内容目的:复习集合的概念;巩固已经学过的内容,并加深对集合的理解。
过程:一、复习:(结合提问)1.集合的概念含集合三要素2.集合的表示、符号、常用数集、列举法、描述法3.集合的分类:有限集、无限集、空集、单元集、二元集4.关于“属于”的概念二、例一用适当的方法表示下列集合:1.平方后仍等于原数的数集解:{x|x2=x}={0,1}2.比2大3的数的集合解:{x|x=2+3}={5}3.不等式x2-x-64.过原点的直线的集合解:{(x,y)|y=kx}5.方程4x2+9y2-4x+12y+5=0的解集解:{(x,y)| 4x2+9y2-4x+12y+5=0}={(x,y)| (2x-1)2+(3y+2)2=0}={(x,y)| (1,3)} 6.使函数y=有意义的实数x的集合解:{x|x2+x-60}={x|x2且x3,xr}三、处理苏大《教学与测试》第一课含思考题、备用题四、处理《课课练》五、作业《教学与测试》第一课练习题集合的概念教案篇2一、说教材(1)说教材的内容和地位本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。
集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。
然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。
把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。
从知识结构上来说是为了引入函数的定义。
因此在高中数学的模块中,集合就显得格外的举足轻重了。
集合的含义及其表示教学设计
集合的含义及其表示教学设计集合的含义及其表示教学设计篇1一、教材分析本节课的主要目的是为了让学生了解集合的含义、体会元素与集合的“属于”关系;能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用的数集及其记法和集合元素的三个特征。
最终学会用集合这种数学模型来解释自然生活现象,为自然生活现象进行数学建模。
二、学生分析由于学生初识集合,需要我们通过适当的情境引入集合的含义及其表示方法。
学生的学习认知过程是一个循序渐进的过程,通过合适的情境引入,让学生在生活中掌握数学的基础知识,也教会了学生使用数学思路来解释生活现象。
这是一个双赢的局面。
三、教学目标让学生理解集合的含义及其表示方法,学会用集合这种数学模型解释自然生活现象,从而学会数学建模思想。
四、教学环境简易多媒体教学环境,辅助黑板板书教学。
五、信息技术应用思路在教学过程中,我使用了ppt作为教学内容的基本板书,提纲挈领的给出课程目标、基础知识梳理、要点导航、典例剖析,从而有条不紊的进行集合知识的讲解。
在进行情境教学时,我放映了一个日常生活中的自我介绍片段(VCR),并且通过跟学生互动,让学生们也进行自我介绍。
然后让学生总结在介绍的过程中提及到的常用词语。
提及“家庭”、“学校”、“班级”、“男生”、“女生”等词语,这些所涉及的范围与“学生×××”相比,它们有什么区别,又有什么联系呢?从而引出本节课的集合的主题。
一般地,由在一定范围内不同的、确定的对象的全体组成一个集合。
同时,在集合的表示的环节中,我使用了ppt的动画演示的方法,演示了集合的三种表示方法,列举法、描述法、venn图法。
通过ppt技术、视频演示技术、动画演示技术,让学生可以直观形象生动的进行学习,可以起到举一反三的功效。
让学生在轻松的环境中进行学习。
六、教学流程设计1、教学环节首先,通过播放一段日常生活中的自我介绍VCR视频,导入本节课的主题,然后通过跟学生互动,让学生自己也参与到自我介绍的过程中,通过与学生的互动,增进了与学生之间的'交流,然后接着通过总结分析,发现介绍过程中的通用介绍词汇,接着引入本节课的集合的概念。
高中数学集合教案
高中数学集合教案【篇一:高一数学集合教学案(4课时)】高一数学《集合》教学案一、教材分析(一)学习目标Ⅰ、知识与技能:1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
Ⅱ、过程与方法:通过讲练结合让学生在实践中突破重点和难点,并对易错、易混点重新认定,达到熟练应用的地板。
情感态度与价值观:让学生在重新审视的基础上重新定位对知识的把握,在充分发挥学习的主动性地基础上提高自己在学习中的信心和进一步学习数学的兴趣。
(二)重点、难点重点:理解集合之间包含与相等的含义,能识别给定集合的子集;理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
难点:能使用venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
二、教学计划:四课时三、教学设计第一课时1.1.1《集合的概念》一、课题引入阅读教材中的章头引言二、概念形成与深化1、集合的概念(1)对象:阅读课本p3(3)元素:集合中每个叫做这个集合的元素,元素通常用表示 2、元素与集合的关系(1)属于:记作:a___a;(2)不属于:记作:a___a;(1) 参加2008北京奥运会的中国代表团的所有成员构成的集合; 其中元素为(2) 三角形的全体构成的集合; 其中元素为2(3) 方程方程x=1的解的全体构成的集合; 其中元素为(4) 不等式x+12x+2的解的全体构成的集合. 其中元素为你能指出各个集合的元素吗?各个集合的元素与集合之间是什么关系?3、集合中元素的性质”年轻人”、“较小的有理数”能否分别构成一个集合,为什么? 集合中元素的性质(1);(2);(3)_____________.(1) 节头图是中国体育代表团步入亚特兰大奥林匹克体育场的照片,代表团有309名成员;(2) 平面上与一个定点o的距离等于定长r的点的全体;(3) 方程x+1=x+2的解的全体.4、空集: 集合,记作 .5、集合分类(1)含有个元素的集合叫做有限集(2)含有个元素的集合叫做无限集6、常用数集及其表示方法(1)自然数集:的集合.记作;(2)正整数集:的集合.记作;(3)整数集:的集合.记作;(4)有理数集:的集合.记作;(5)实数集:的集合.记作。
三年级上册数学第九单元《集合》教材解析
三年级上册数学第九单元《集合》教材解析人教版数学三年级上册第九单元《集合》教材解析一、教材分析本单元教材第一次安排了简单的集合思想的教学。
集合思想是数学中最基本的思想,虽然学生在计数和计算的研究中,已经接触过集合思想,但学生在低年级接触的集合思想更多是一一对应的思想,对于两个集合间的运算,尤其是交集的体会并不多。
学生在早期研究数学时就已经开始运用集合的思想方法。
如:分类的思想与方法,再如:一年级时接触过这样题:“有一列小朋友,从前数明明排第5,从后数明明排第3,这一列有几人?”对于“重复的人数要减去”,学生是有经验的,能够列式解答。
集合数学思想方法不仅有着广泛的应用,而且是今后进一步研究数学的基础。
这一数学思想的引入为培养学生的逻辑思维能力提供了良好的素材。
在今后的研究经常运用到维恩图表示关系,如:三角形的分类、各种四边形关系等。
都是让学生在体会运用上解决实际问题,为今后研究奠定基础。
编排特点1.数形结合,帮助学生感悟集合头脑在数学中,经常用平面上封闭曲线的内部代表集合,这种图被称为维恩图。
这种表示方法直观、形象,尤其对于解决比较复杂的问题(例如,涉及三个以上的集合的并、交的问题)更能显示出它的优越性。
因此,教科书注重借助维恩图人教版数学三年级上册表示集合及其运算,帮助学生理解集合的知识,并让学生掌握画维恩图的方法。
在通过例题介绍了用XXX示集合及其运算的方法后,接下来的练中,不断让学生应用XXX图解决简单的实际问题,并利用XXX帮助学生进一步理解集合概念及其关系。
例如,在维恩图中填出每个集合的元素,体会集合元素的特性(练二十三第2题、第3题);用画图的方法表示出两个集合的交集(练二十三第3题);借助维恩图体会集合的包含关系(练二十三第6题)等。
2.重视学生的已有根蒂根基,自立探索与有意义的承受研究有机结合虽然学生在计数和计算的研究中,已经接触过集合思想,但学生在低年级接触的集合思想更多是一一对应的思想,对于两个集合间的运算,尤其是交集的体会并不多。
高中数学集合教学教案及反思
高中数学集合教学教案及反思
一、教学目标:
1. 理解数学集合的概念,掌握集合的表示方式和基本性质。
2. 掌握集合的运算:并集、交集、补集。
3. 能够应用集合运算解决实际问题。
二、教学重点和难点:
1. 集合概念的理解和表示方法。
2. 集合的运算及应用。
三、教学内容:
1. 集合的概念及表示方式。
2. 集合的运算:并集、交集、补集。
3. 集合运算的实际应用。
四、教学过程:
1. 引言:通过举例引入集合的概念,引导学生理解集合的含义和表示方式。
2. 探究:学生自主探究集合的概念和运算规律,引导学生发现集合运算的性质。
3. 梳理:总结集合的表示方法和运算规律,并让学生掌握相关概念。
4. 实践:设计一些实际问题,让学生应用集合运算解决问题,培养学生解决问题的能力。
5. 拓展:扩展学生的视野,让学生了解集合在其他学科中的应用。
五、教学反思:
本节课在教学过程中,学生对集合的概念和运算规律有了初步的理解,但在应用层面还存
在一定的困难。
在以后的教学中,可以通过增加更多的实例让学生练习,加深对集合运算
的理解。
同时,可以引导学生思考集合运算与实际生活的联系,培养学生的数学应用能力。
整体上,需要更加注重培养学生的实践能力和思维能力,提高数学学习的实际应用水平。
三年级上册数学说课稿《第九单元【第一课时】集合》人教新课标
三年级上册数学说课稿《第九单元【第一课时】集合》人教新课标一. 教材分析集合是数学中的基本概念,它是描述事物集合的一种数学模型。
人教新课标三年级上册数学第九单元《集合》主要让学生初步理解集合的概念,能够用集合表示事物,并掌握一些简单的集合运算。
本节课的内容包括:集合的定义,集合的表示方法,集合的运算(并集、交集、补集)。
这些内容是学生进一步学习数学的基础,也是培养学生逻辑思维能力的重要环节。
二. 学情分析三年级的学生已经具备了一定的逻辑思维能力,他们能够理解生活中的一些简单集合现象,但对于集合的抽象概念还需要通过具体的事物来帮助他们理解。
此外,学生对于集合的运算还比较陌生,需要通过大量的练习来掌握。
三. 说教学目标1.知识与技能:学生能够理解集合的概念,掌握集合的表示方法,了解并集、交集、补集的定义及应用。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生用集合的观点解决问题,提高学生的逻辑思维能力。
3.情感态度与价值观:培养学生对数学的兴趣,培养学生合作、交流、探究的学习态度。
四. 说教学重难点1.教学重点:学生能够理解集合的概念,掌握集合的表示方法,了解并集、交集、补集的定义。
2.教学难点:学生能够运用集合的知识解决实际问题,理解集合运算的原理。
五. 说教学方法与手段1.教学方法:采用启发式教学法、情境教学法、小组合作学习法等,激发学生的学习兴趣,培养学生主动探究的能力。
2.教学手段:利用多媒体课件、实物模型、教学卡片等辅助教学,直观地展示集合的运算过程,帮助学生理解。
六. 说教学过程1.导入新课:通过生活中的实例引入集合的概念,让学生感知集合的存在。
2.教学新知:讲解集合的定义、表示方法,并通过实物模型展示集合的运算过程,让学生理解和掌握。
3.巩固练习:设计一些练习题,让学生运用集合的知识解决问题,巩固所学内容。
4.拓展延伸:引导学生思考集合运算在实际生活中的应用,激发学生的学习兴趣。
《集合的概念》教材分析
1.1集合的概念一、本节知识结构框图二、重点、难点重点:元素与集合的“属于”关系,用符号语言刻画集合.难点:用描述法表示集合.三、教科书编写意图及教学建议本节的主要内容是在小学和初中基础上,引入集合的含义及其表示,通过本节学习,学生要在了解集合含义基础上,会用符号语言刻画集合,并能判断元素与集合之间的关系.教科书首先从6个实例入手引入元素和集合的含义,以及元素与集合间的关系,随后介绍了一些特殊集合的记号,最后介绍了集合的两种表示方法——列举法与描述法.1,元素和集合的含义(1)集合是一个原始的、不定义的概念,教科书上给出的“一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)"只是对集合的描述性说明.学习集合时,主要还是通过实例,让学生了解其含义,教科书第2页上安排的“思考”,其目的是让学生分析6个例子的共同特征,概括元素和集合的含义(2)在了解集合的含义时,要考虑集合中元素的两个性质,即确定性(给定的集合,它的元素必须是确定的)和互异性(一个给定集合中的元素是互不相同的),对于较难理解的“确定性”,教科书用正、反例进行了辨析,并配了第5页“练习”的第1题.教学时,还可以引导学生多举些反例以促进理解,如“好看的衣服”等.2.元素、集合及其关系的表示对于元素、集合的符号表示及“属于”或“不属于”关系,要让学生在具体运用中逐渐熟悉.教学时可以多列举一些例子,让学生了解元素与集合的差异,比如a与{}a,一般地,a表示一个元素,而{}a表示只有一个元素的一个集合,所以0{0},而不能写成0{0}=.3.集合的表示:列举法和描述法列举法相对比较简单,但是有些集合并不能用列举法表示,如教科书第3页的“思考",说明了学习描述法的必要性,描述法是本节课的学习难点,难在对于共同特征的表示,因此,教科书用奇数集的例子详细说明了何为共同特征及其符号表示,即如果一个数x 是奇数,那么它除以2的余数为1,用符号表示就是21x k =+,反之亦然,所以奇数集可以表示为{|21,}x Z x k k Z ∈=+∈.教学时,可以借助有理数集再次细致说明,也可以再举些例子,让学生学会识别并用符号表示共同特征熟悉描述法的表示形式.教科书第5页“思考”的目的是让学生反思、总结本节的学习,体会不同表示方法的特点,特别是列举法和描述法,一般情况下,对于有限集,在元素不太多的情况下,宜采用列举法,它具有直观明了的特点;对于无限集,一般采用描述法.教学时,多创设各种问题情境(代数、几何、生活等),让学生根据需要选择恰当的表示方法,通过使用体会不同表示方法各自的特点.4,例题和习题的教学分析例1,一是示范用列举法表示集合的方法,二是说明集合中元素的列举与元素顺序无关,即集合的“无序性”.教学时,还可以举一些别的例子,如用列举法表示甲、乙两个足球队比赛时“甲方队员”的集合等.例2是巩固列举法和描述法.教学时,可以让学生选择恰当的表示法表示本节开始时的6个例子,并完成教科书第5页练习第3题,由此体会列举法与描述法各自的特点,表示集合时应该根据具体问题确定采用哪种表示法习题1.1的第5题是一个数学文化的题目,本章学习的集合知识只是集合论中的一些基本概念.集合论是现代数学的基础,而且在计算机、人工智能、语言学等方面都有着重要的作用,所以对于它的赞誉也很多.这个题目就是从这些赞誉入手,希望学生能由此走进集合,体味为何"惊人”和“最美”,感受数学的精神5,值得注意的问题本节的新概念、新符号较多,例如属于符号∈、描述法的表示形式{|()}x A P x ∈等,明确符号代表的意义、熟悉不同的符号表示形式,就需要多用、多回归到概念(定理),建立起符号和数学对象之间的关系.因此,教学时要多举例、多使用、多交流、多表达.。
数学:第1章《集合》教材分析(必修一)
第1章集合教材分析目标定位:1.集合是语境的要素.集合语言是近现代数学的基础,利用它可以简洁、准确地表述数学.因此,“集合”内容就成为高中数学学习的起始内容,也是整个高中数学、大学数学乃至现代数学内容表述的基本语境.学习“集合”这一章,需从观念上把握六个字: 语言,工具,渐进.要求学习者认识到集合语言是数学语言的基本构成,并能运用集合语言来简洁地描述问题.当然,熟练地运用集合语言来揭示许多问题有一个理解与掌握的过程.2.本章具体的教学目标是:通过本章学习,使学生感受到用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言表示数学对象,为以后的学习奠定基础.(1)了解集合的含义,体会元素与集合之间的属于关系,并初步掌握集合的表示方法;(2)理解集合间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义;(3)理解补集的含义,会求补集;(4)理解两个集合的交集与并集的含义,会求两个集合的交集与并集;(5)渗透数形结合、分类等数学思想方法;(6)在引导学生观察、分析、抽象、类比得到集合、集合间的关系等数学知识的过程中,培养学生的思维能力.教材解读:通过本章的学习,使学生初步感受到运用集合语言表述数学对象时的简洁和准确,体会数学的简洁美.1.本章结构按照“问题情境→学生活动→意义建构→数学运用→回顾反思”的六步形式设计编写,这一形式具有统领全书的意图.特别是从章头图、章首语中的主问题到各小节问题情境中的小问题,课本以“问题串”的方式逐层深入,为“学生活动”和“意义建构”这两个关键教学环节的落实,提供了实在而广阔的空间.2.本章与传统教材不同的是,学完补集的概念之后,将“补”理解为集合间的一种“运算”而上升到数学内部,并由此引出集合的其它运算.这样处理有着深刻的寓意,对于数学学习与数学研究,对“运算”的感悟和认知十分重要.也为后继学习作好铺垫.(如,函数的运算f (x )+g (x );向量的运算b a -;事件的运算A ·B 等)3. 内容包含了集合的含义、表示和运算等三部分内容.首先设置“设计自己”——感受集合概念,通过实例理解集合的特征,并从不同的角度学习和理解集合的表示方法;通过观察具体的集合,从“数”和“形”两个方面使学生感受并归纳出集合与集合之间包含关系.4. 本章充分利用Venn 图和数轴等帮助学生形象地理解集合的含义与运算, 体现了数形结合的思想.5. 本章内容的呈现,充分考虑到学生的认知规律,在集合概念的呈现过程中,从学生最熟悉的例子入手,并通过旁白,鼓励学生自己举例,整个设计为学生和教师的积极活动提供了空间和可能.6. 本章设置了“思考”、“阅读”等栏目,为拓宽学生的思维和进一步学习提供了载体.例如,引导学生思考A ⊆B 与B ⊆A 能否同时成立,来探索集合相等的证明方法.为了适应不同层次学生的需要,本章在习题和复习题部分设置了探究和拓展类的问题,例如,要求学生探究并证明C )(B A U =(C A U ) (C B U )等.7. 本章注意体现数学的文化价值.如通过旁白介绍集合论的创始人康托尔,设置阅读介绍无限集的历史背景和含义等以提高学生的学习兴趣和数学素养.8. 本章整体设计思路是从具体到理论,再回到具体,螺旋上升.教学方法与教学建议:本章作为全书的一个缩影,首先要求学生学完本章对数学学习的一般模式有一个初步的印象.概言之即是对“从数学外部到数学内部再到数学外部”的过程有所感悟.1. 本章教学应注重数学学习的一般模式.六步形式的前三步“问题情境→学生活动→意义建构”是传统教学的薄弱环节.教师应树立学生是学习主体的理念,多让学生活动、感悟、体会,尽量避免从“数学理论”开始的灌输式教学.多关注数学概念和数学模型的源头!2.学好“集合”,建议教师顺着教材中的问题串以及“思考”等,引导学生学会“三招”:其一是集合语言、自然语言和图形语言之间的转换,其二是Venn 图和数轴的辅助运用;其三是类比联想于算术加法和减法乃至乘法.因此,教学中注意图形的直观性对学生理解集合知识十分有益,教师应对文氏图及数轴等数形结合的思想方法给予高度重视并多作示范.3.课本在问题与正文回答之间一般空留一行.这种空留具有暗示的意图,即此问题的回答应基于学生充分的活动之后再给出.4.对于课本中的拓展内容(如笛卡尔积)不必加深.5.教学中可以引导学生感悟:集合,整体看有表示;构成看有元素,或多或少.集合之间,可用“大小”看,则有“包含”与其他;可用运算看,则有“加、减、乘、除”;可用对应看,则有映射及函数.6.“思考”中A ⊆B与B ⊆A可以同时成立,成立的条件是A =B.这两者同时成立是证明集合相等的方法.教学过程中,可以引导学生利用Venn图加以分析,使学生感受到这两者同时成立和集合相等的等价性.7.交集和并集的概念也可以同时给出,通过对照比较,便于学习;对交集和并集的运算,需时时借助Venn图和数轴来理解.。
1 集合的概念和表示方法教材分析
1 集合的概念和表示方法教材分析集合概念的基本理论,称为集合论.它是近、现代数学的一个重要基础.一方面,许多重要的数学分支,如数理逻辑、近世代数、实变函数、泛函分析、概率统计、拓扑等,都建立在集合理论的基础上.另一方面,集合论及其反映的数学思想,在越来越广泛的领域中得到应用.在小学和初中数学中,学生已经接触过集合,对于诸如数集(整数的集合、有理数的集合)、点集(直线、圆)等,有了一定的感性认识.这节内容是初中有关内容的深化和延伸.首先通过实例引出集合与集合元素的概念,然后通过实例加深对集合与集合元素的理解,最后介绍了集合的常用表示方法,包括列举法,描述法,还给出了画图表示集合的例子.本节的重点是集合的基本概念与表示方法,难点是运用集合的两种常用表示方法———列举法与描述法正确表示一些简单的集合.教学目标1. 初步理解集合的概念,了解有限集、无限集、空集的意义,知道常用数集及其记法.2. 初步了解“属于”关系的意义,理解集合中元素的性质.3. 掌握集合的表示法,通过把文字语言转化为符号语言(集合语言),培养学生的理解、化归、表达和处理问题的能力.任务分析这节内容学生已在小学、初中有了一定的了解,这里主要根据实例引出概念.介绍集合的概念采用由具体到抽象,再由抽象到具体的思维方法,学生容易接受.在引出概念时,从实例入手,由具体到抽象,由浅入深,便于学生理解,紧接着再通过实例理解概念.集合的表示方法也是通过实例加以说明,化难为易,便于学生掌握.教学设计一、问题情境1. 在初中,我们学过哪些集合?2. 在初中,我们用集合描述过什么?学生讨论得出:在初中代数里学习数的分类时,学过“正数的集合”,“负数的集合”;在学习一元一次不等式时,说它的所有解为不等式的解集.在初中几何里学习圆时,说圆是到定点的距离等于定长的点的集合.几何图形都可以看成点的集合.3. “集合”一词与我们日常生活中的哪些词语的意义相近?学生讨论得出:“全体”、“一类”、“一群”、“所有”、“整体”,……4. 请写出“小于10”的所有自然数.0,1,2,3,4,5,6,7,8,9.这些可以构成一个集合.5. 什么是集合?二、建立模型1. 集合的概念(先具体举例,然后进行描述性定义)(1)某种指定的对象集在一起就成为一个集合,简称集.(2)集合中的每个对象叫作这个集合的元素.(3)集合中的元素与集合的关系:a是集合A中的元素,称a属于集合A,记作a∈A;a不是集合A中的元素,称a不属于集合A,记作a A.例:设B={1,2,3},则1∈B,4B.2. 集合中的元素具备的性质(1)确定性:集合中的元素是确定的,即给定一个集合,任何一个对象是否属于这个集合的元素也就确定了.如上例,给出集合B,4不是集合的元素是可以确定的.(2)互异性:集合中的元素是互异的,即集合中的元素是没有重复的.例:若集合A={a,b},则a与b是不同的两个元素.(3)无序性:集合中的元素无顺序.例:集合{1,2}与集合{2,1}表示同一集合.3. 常用的数集及其记法全体非负整数的集合简称非负整数集(或自然数集),记作N.非负整数集内排除0的集合简称正整数集,记作N*或N+;全体整数的集合简称整数集,记作Z;全体有理数的集合简称有理数集,记作Q;全体实数的集合简称实数集,记作R.4. 集合的表示方法[问题]如何表示方程x2-3x+2=0的所有解?(1)列举法列举法是把集合中的元素一一列举出来的方法.例:x2-3x+2=0的解集可表示为{1,2}.(2)描述法描述法是用确定的条件表示某些对象是否属于这个集合的方法.例:①x2-3x+2=0的解集可表示为{x|x2-3x+2=0}.②不等式x-3>2的解集可表示为{x|x-3>2}.③Venn图法例:x2-3x+2=0的解集可以表示为(1,2).5. 集合的分类(1)有限集:含有有限个元素的集合.例如,A={1,2}.(2)无限集:含有无限个元素的集合.例如,N.(3)空集:不含任何元素的集合,记作.例如,{x|x2+1=0,x∈R}=.注:对于无限集,不宜采用列举法.三、解释应用[例题]1. 用适当的方法表示下列集合.(1)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数.(2)平面内到一个定点O的距离等于定长l(l>0)的所有点P.(3)在平面a内,线段AB的垂直平分线.(4)不等式2x-8<2的解集.2. 用不同的方法表示下列集合.(1){2,4,6,8}.(2){x|x2+x-1=0}.(3){x∈N|3<x<7}.3. 已知A={x∈N|66-x∈N}.试用列举法表示集合A.(A={0,3,5})4. 用描述法表示在平面直角坐标中第一象限内的点的坐标的集合.[练习]1. 用适当的方法表示下列集合.(1)构成英语单词mathematics(数字)的全体字母.(2)在自然集内,小于1000的奇数构成的集合.(3)矩形构成的集合.2. 用描述法表示下列集合.(1){3,9,27,81,…}.(2)四、拓展延伸把下列集合“翻译”成数学文字语言来叙述.(1){(x,y)|y=x2+1,x∈R}.(2){y|y=x2+1,x∈R}.(3){(x,y)|y=x2+1,x∈R}.(4){x|y=x2+1,y∈N*}.点评这篇案例注重新、旧知识的联系与过渡,以旧引新,从学生的原有知识、经验出发,创设问题情境;从实例引出集合的概念,再结合实例让学生进一步理解集合的概念,掌握集合的表示方法.非常注重实例的使用是这篇案例的突出特点.这样做,通俗易懂,使学生便于学习和掌握.例题、练习由浅入深,对培养学生的理解能力、表达能力、思维能力大有裨益.拓展延伸注重数学语言的转化和训练,注重区分形似而质异的数学问题,加强了学生对数学概念的理解和认识.2 集合之间的关系教材分析集合之间的关系是集合运算的基础和前提,是用集合观点理清集合之间内在联系的桥梁和工具.这节内容是对集合的基本概念的深化,延伸,首先通过类比、实例引出子集的概念,再结合实例加以说明,然后通过实例说明子集包括真子集和两集合相等两种情况.这节内容的教学重点是子集的概念,教学难点是弄清元素与子集、属于与包含之间的区别.教学目标1. 通过对子集概念的归纳、抽象和概括,体验数学概念产生和形成的过程,培养学生的抽象、概括能力.2. 了解集合的包含、相等关系的意义,理解子集、真子集的概念,培养学生对数学的理解能力.3. 通过对集合之间的关系即子集的学习,初步体会数学知识发生、发展、运用的过程,培养学生的科学思维方法.任务分析这节内容是在学生已经掌握了集合的概念和表示方法以及两个实数之间有大小关系的基础上,进一步学习和研究两个集合之间的关系,采用从实例入手,由具体到抽象,由特殊到一般,再由抽象、一般到具体、特殊的方法,知识的产生、发生比较自然,易于学习、接受和掌握;采用分类讨论的方法阐述子集包括真子集、等集(两集合相等)两种情况,这可以使学生更好地认识子集、真子集、等集三者之间的内在联系.教学设计一、问题情境1. 元素与集合之间的关系是什么?元素与集合是从属关系,即对一个元素x是某集合A中的元素时,它们的关系为x∈A.若一个对象x不是某集合A中的元素时,它们的关系为x A.2. 集合有哪些表示方法?列举法,描述法,V enn图法.数与数之间存在着大小关系,那么,两个集合之间是不是也存在着类似的关系呢?先看下面两个集合:A={1,2,3},B={1,2,3,4,5}.它们之间有什么关系呢?二、建立模型1. 引导学生分析讨论集合A中的任何一个元素都是集合B中的元素.集合B中的元素4,5不是集合A中的元素.2. 与学生共同归纳,明晰子集的定义对于上述问题,教师点拨,A是B的子集,B不是A的子集.子集:对于两个集合A,B,如果集合A中的任何一个元素都是集合B中的元素,即集合A包含于集合B,或集合B包含集合A,记作A B(或B A),就说集合A是集合B的子集.用符号语言可表示为:如果任意元素x∈A,都有x∈B,那么A B.规定:空集是任何集合的子集,即对于任意一个集合A,有A.3. 提出问题,组织学生讨论给出三个集合:A={1,2,3},B={1,2,3,4,5},C={1,2,3}.(1)A是B的子集吗?B是A的子集吗?(2)A是C的子集吗?C是A的子集吗?4. 教师给出真子集与两集合相等的定义上述问题中,集合A是集合B的子集,并且集合B中有元素不属于集合A,这时,我们就说集合A是集合B的真子集;集合A是集合C的子集,且集合A与集合C的元素完全相同,这时,我们就说集合A与集合C相等.真子集:如果集合A是集合B的子集,即A B,并且B中至少有一个元素不属于集合A,那么集合A叫作集合B的真子集,记作AB或B A.A B的V enn图为两集合相等:如果集合A中的每一个元素都是集合B中的元素,即A B,反过来,集合B的每一个元素也都是集合A 中的元素,即BA,那么就说集合A等于集合B,记作A=B.A=B的Venn图为思考:设A,B是两个集合,A B,A B,A=B三者之间的关系是怎样的?5. 子集、真子集的有关性质由子集、真子集的定义可推知:(1)对于集合A,B,C,如果A B,B C,那么A C.(2)对于集合A,B,C,如果A B,B C,那么A C.(3)A A.(4)空集是任何非空集合的真子集.三、解释应用[例题]1. 用适当的符号(∈,,=,,)填空.(1)3 ___________ {1,2,3}.(2)5 ___________ {5}.(3)4 ___________ {5}.(4){a}___________ {a,b,c}.(5)0 ___________ .(6){a,b,c}___________ {b,c}.(7)___________ {0}.(8)___________ {}.(9){1,2}___________ {2,1}.(10)G={x|x是能被3整除的数}___________ H={x|x是能被6整除的数}.2. 写出集合{a,b}的所有子集,并指出其中哪些是它的真子集.3. 说出下列每对集合之间的关系.(1)A={1,2,3,4,},B={3,4}.(2)P={x|x2=1},Q={-1,1}.(3)N,N*.(4)C={x∈R|x2=-1},D={0}.[练习]1. 用适当的符号(∈,,=,,)填空.(1)a ___________ {a}.(2)b ___________ {a}.(3)___________ {1,2}.(4){a,b}___________ {b,a}.(5)A={1,2,4}___________ B={x|x是8的正约数}.2. 求下列集合之间的关系,并用Venn图表示.A={x|x是平行四边形},B={x|x是菱形},C={x|x是矩形},D={x|x是正方形}.拓展延伸填表表2-1(1)你能找出“集合中元素的个数”与“子集的个数”、“真子集的个数”之间关系吗?(2)如果一个集合中有n个元素,你能写出计算它的所有子集个数与真子集个数的公式吗?(用n表达)点评这篇案例结构严谨,思路清晰,概念和关系的引出注重从具体到抽象、从特殊到一般、从感性到理性的认识过程.具体地说就是,先结合实例研究两个具体集合的关系,从而引出子集的定义,然后再结合实例说明A B,包括A B,A=B两种情况,再给出真子集、等集的定义.这样的处理方式,符合学生的认知规律,符合新课程的理念,例题与练习由浅入深,注重数形结合,使学生从不同角度加深了对集合之间的关系的理解.拓展延伸注重培养学生从特殊到一般地解决数学问题的能力.值得注意的是,在引出子集定义时,最好明确指出,集合之间的“大小”关系实质上就是包含关系.6 函数的概念教材分析与传统课程内容相比,这节内容的最大变化就是函数概念的处理方式.事实上,“先讲映射后讲函数”比“先讲函数后讲映射”,有利于学生更好地理解函数概念的本质.第一,在初中函数学习基础上继续深入学习函数,衔接自然,利于学生在原有认知基础上提升对函数概念的理解;第二,直接进入函数概念的学习更有利于学生将注意力放在理解函数概念的学习上,而不必花大量精力学习映射,使其认识映射与函数的关系后才能理解函数的概念.函数概念是中学数学中最重要的概念之一.函数概念、思想贯穿于整个中学教材之中.通过实例,引导学生通过自己的观察、分析、归纳和概括,获得用集合与对应语言刻画的函数概念.对函数概念本质的理解,首先应通过与初中定义的比较、与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念.其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托、反复地、螺旋式上升地理解函数的本质.教学重点是函数的概念,难点是对函数概念的本质的理解.教学目标1. 通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型.在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.2. 了解构成函数的要素,会求一些简单函数的定义域和值域.3. 了解映射的概念.任务分析学生在初中对函数概念有了初步的认识.这节课的任务是在学生原认知水平的基础上,用集合与对应的观点认识函数,了解构成函数定义的三要素,认识映射与函数是一般与特殊的关系.教学设计一、问题情景1. 一枚炮弹发射后,经过60s落到地面击中目标.炮弹的射高为4410m,且炮弹距地面的高度h随时间t的变化规律是h=294t-4.9t2,(0≤t≤60,0≤h≤4410).2. 近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题.下图中的曲线显示了南极上空臭氧层空洞的面积从1979年到2001年的变化情况.3. 国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.下表中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.问题:分析以上三个实例,对任一个给定的t,射高h、臭氧层空洞面积S、恩格尔系数是否有值与之对应?若有,有几个?二、建立模型1. 在学生充分分析和讨论的基础上,总结归纳以上三个实例的共同特点在三个实例中,变量之间的关系都可以描述成两个集合间的一种对应关系:对于数集A中的任一个x,按照某个对应关系,在数集B中都有唯一确定的值与之对应.2. 教师明晰通过学生的讨论归纳出函数的定义:设A,B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任一个x,在集合B中都有唯一确定的数f(x)与它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A.其中,x叫作自变量,x的取值范围A叫作函数的定义域,与x的值相对应的y叫作函数值,函数值的集合:{y|y=f(x),x∈A}叫作函数的值域.注意:(1)从函数的定义可以看出:函数由定义域、对应法则、值域三部分组成,它们称为函数定义的三要素.其中,y=f(x)的意义是:对任一x∈A,按照对应法则f有唯一y与之对应.(2)在函数定义的三个要素中,核心是定义域和对应法则,因此,只有当函数的对应关系和定义域相同时,我们才认为这两个函数相同.思考:函数f(x)=与g(x)=是同一函数吗?三、解释应用[例题]1. 指出下列函数的定义域、值域、对应法则各是什么?如何用集合与对应的观点描述它们?(1)y=1,(x∈R).(2)y=ax+b,(a≠0).(3)y=ax2+bx+c,(a>0).(4)y=kx,(k≠0).解:(3)定义域:{x|x∈R},值域:{y|y≥}对应法则f:自变量→a(自变量)2+b·(自变量)+c,即:f:x→ax2+bx+c(1),(2),(4)略.2. 已知:函数f(x)=(1)求函数的定义域.(2)求f(-3),f()的值.(3)当a>0时,求f(a),f(a-1)的值.目的:深化对函数概念的理解.3. 求下列函数的值域.(1)f(x)=2x.(2)f(x)=1-x+x2,(x∈R).(3)y=3-x,(x∈N).解:(1){y|y≠0}.(2){y|y≥}.(3){3,2,1,0,-1,-2,…}.4. (1)已知:f(x)=x2,求f(x-1).(2)已知:f(x-1)=x2,求f(x).目的:深化对函数符号的理解.解:(1)f(x-1)=(x-1)2.(2)f(x-1)=x2=[(x-1)+1]2=(x-1)2+2(x-1)+1.∴f(x)=x2+2x+1.[练习]1. 求下列函数的定义域.2. 已知二次函数f(x)=x2+a的值域是[-2,+∞),求a的值.3. 函数f(x)=[x],[x]表示不超过x的最大整数,求:(1)f(3.5),(2)f(-3.5).四、拓展延伸在函数定义中,将数集推广到任意集合时,就可以得到映射的概念.集合A={a1,a2}到集合B={b1,b2}的映射有哪几个?解:共有4个不同的映射.思考:集合A={a1,a2,a3}到B={b1,b2,b3}的映射有多少个?点评这篇案例设计完整,条理清楚.案例从三个方面(实际是函数的三种表示方法,为后续内容埋下伏笔)各举一个具体事例,从中概括出函数的本质特征,得出函数概念,体现了由具体到抽象的认知规律,有利于学生理解函数概念,更好地体现了数学从实践中来.例题、练习由浅入深,完整,全面.映射的概念作为函数概念的推广,处理方式有新意.“拓展延伸”的设计为学生加深对概念的理解,提供了素材.在“问题情景”中的三个事例中,第一个例子中的“对应关系”比较明显,后两个例子则不太明显.如果能在教学设计中加以细致对比说明,效果会更好.7 函数的表示方法教材分析函数的表示方法是对函数概念的深化与延伸.解析法、图像法和列表法从三个不同的角度刻画了自变量与函数值的对应关系.这三种表示方法既可以独立的表示函数,又可以相互转化;既各有侧重和优势,又各有劣势和不足;既相互补充,又使函数随自变量的变化而变化的规律直观和具体.这节内容,是初中有关内容的深化、延伸与提高.教材在复习初中三种表示方法定义的基础上,分三个层次对三种表示方法进行了比较.第一个层次:回顾与比较;第二个层次:选择与比较;第三个层次:转化与比较.教学重点:画简单函数的图像;教学难点:分段函数的解析式求法及其图像的作法.教学目标1. 在实际情景中,会根据不同的需要选择恰当的方法(如图像法,列表法,解析法)表示函数.2. 通过具体实例,了解简单的分段函数,并解简单应用.3. 能根据简单的实际问题,建立函数关系式,画出它们的图像,进一步理解、体会函数的意义.任务分析学生在初中已经对这节内容有了初步的认识.这节的教学任务是在学生原认知水平的基础上,用对应的观点认识函数,会根据不同需要选择恰当的方法表示函数,明确三种表示方法各有优劣,在一定条件下可以相互转化.为突出根据简单的实际问题建立函数关系式,画出它们的图像这个重点,除学习教材中的实际问题外,又增加了练习.为突破分段函数这个难点增加了高斯函数作为练习.教学设计一、问题情景1. 复习引入(1)复习初中三种函数的表示方法.(2)学生回答函数三种表示方法的定义.2. 方法探究(1)复习与比较例:某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用三种表示方法表示函数y=f(x).(2)引导学生分析讨论①三种表示方法的各自的特点是什么?所有的函数都能用解析法表示吗?②函数图像上的点满足什么条件?满足函数关系式y=f(x)的点(x,y)在什么地方?二、建立模型1. 教师明晰函数图像既可以是连续的曲线,也可以是直线、折线、离散的点等.采用解析法的条件:变量间的对应法则明确;采用图像法的条件:函数的变化规律清晰;采用列表法的条件:函数值的对应清楚.函数图像上的点满足函数关系式y=f(x),满足函数关系式y=f(x)的点(x,y)在函数图像上,故函数图像即为点集p={(x,y)|y=f(x),x∈A}.2. 比较与分析例:下表是某校高一(1)班三名同学在高一学年度几次数学测试的成绩及班级平均分:表7-1请你对这三名同学在高一学年度的数学学习情况进行分析.学生分析讨论:本例是用何种方法表示函数的?要分析“成绩”与“测试次数”之间的变化规律,用何种方法表示函数?注意:在这里选择何种表示方法,要根据问题的具体情况和三种表示方法的长处来确定.3. 教师进一步明晰将“成绩”与“测试次数”之间的函数关系用函数图像表示出来,就能比较直观地看到成绩的变化情况.4. 转化与比较例:画出函数y=|x|的图像.5. 教师归纳、整理初中作函数图像的基本方法是列表、描点和连线,但这个方法比较烦琐.我们可以把初中学过的一次函数、反比例函数、二次函数的图像作为基本图像,把要作的函数的图像转化为基本函数的图像来解决.y=|x|,若不含“||”号,则是我们初中学过的y=x,现在含绝对值号,故去绝对值号,得分段函数而分段函数的图像只要分段作出即可.三、解释应用[练习一]1. 作出y=|x-1|的图像,与函数y=|x|的图像比较,并说出你发现了什么.2. 作出y=x2+2|x|+1的图像.3. 若x2+2|x|+1=m,当m为何值时,关于x的方程有四个解?三个解?两个解?无解?[例题]某市空调公共汽车的票价按下列规则制定:(1)乘坐汽车不超过5km,票价2元.(2)超过5km,每增加5km,票价增加1元.(不足5km的按5km计算)已知两个相邻的公共汽车站间相距约为1km,如果沿途(包括起点站和终点站)有21个汽车站,请根据题意写出票价与路程之间的函数解析式,并画出函数的图像.学生分析讨论:函数定义域是什么?值域是什么?图像如何作?教师引导学生写出如下解答过程.解:设票价为y元,路程为xkm.如果某空调汽车运行路线中设21个汽车站,那么汽车行驶的路程约为20km,故自变量x的取值范围是x∈(0,20],且x∈N,函数y的取值范围是y∈{2,3,4,5}.由空调汽车票价的规定,可得到以下函数解析式:根据这个函数解析式,可画出函数的图像函数图像共有20个点构成.像例3、例4这样的函数称为分段函数,分段函数的图像应分段作.[练习二]1. 下图都是函数的图像吗?为什么?(D)目的:进一步深化对函数概念和函数图像的理解.2. 某人从甲镇去乙村,一开始沿公路乘车,后来沿小路步行,图中横轴表示运动的时间,纵轴表示此人与乙村的距离,则较符合该人走法的图像是(D)3. 小明从甲地去乙地,先以每小时5km的速度行进1h,然后休息10min,最后以每小时4km 的速度行进了30min到达乙地.(1)试写出速度v(km/h)关于出发时间t(h)的函数关系式,并画出图像.(2)试写出小明离开甲地s(km)关于出发时间t(h)的函数关系,并画出图像.四、拓展延伸1. 设x是任意的一个函数,y是不超过x的最大整数,记作:y=[x],问:x与y之间是否存在函数关系?如果存在,写出这个函数的解析式,并画出这个函数的图像.答案:存在函数关系,是著名的高斯函数.现只写出x∈[-1,1]的函数关系:y=图像略.2. 某家庭2004年1月份、2月份和3月份煤气用量和支付费用如下表所示:表7-2若每月量不超过最低限度Am3,则只付基本费3元和每月每户的定额保险C元;若用气量超过Am3,超过部分每立方米付B元,又知保险费C不超过5元.根据上面的表格,求A,B,C.分析:可设每月用气量xm3,支付费用y元,建立函数解析式解之.解:设每月用气xm3,支付费用y元,则由0<C≤5,得3+C≤8.由第2和3月份的费用都大于8,得两式相减,得B=0.5,∴A=2C+3.再分析1月份的用气量是否超过最低限度.不妨令A<4,将x=4代入3+B(x-A)+C,得3+0.5[4-(3+2C)]+C=4,由此推出3.5=4,矛盾,∴A≥4,1月份付款方式为3+C.∴3+C=4.∴C=1.∴A=5.∴A=5,B=0.5,C=1.点评这篇案例分三个层次对三种表示方法进行了比较:第一层次:用一个简单的例子对函数的三种表示方法进行了复习和比较;第二层次:对函数的三种表示方法进行了比较,选择了适当的方法表示函数;第三层次:三种表示函数的方法的相互转化.三个层次,层层深入,并对三种表示方法的优、劣进了比较,重点突出.拓展延伸通过高斯函数,加深了学生对抽象函数、分段函数的认识.在注重三种表示方法的同时,加强了学生应用意识的培养.8 函数的单调性教材分析函数的单调性是函数的重要特性之一,它把自变量的变化方向和函数值的变化方向定性地联系在一起.在初中学习函数时,借助图像的直观性研究了一些函数的增减性.这节内容是初中有关内容的深化、延伸和提高.这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的.教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系.这节内容的重点是理解函数单调性的概念以及利用函数的单调性的概念。
集合教材分析
北师大版必修(1)第一章《集合》的教材分析1、地位和作用:《普通高中数学课程标准》中写到:集合论是德国数学家康托在19世纪末创立的,集合语言是现代数学的基本语言.使用集合语言,可以简洁、准确地表达数学的一些内容.高中数学课程只将集合作为一种语言来学习,学生将学会使用最基本的集合语言表示有关的数学对象,发展运用数学语言进行交流的能力.2、知识结构和内容分析:内容分析:集合是近代数学中的一个重要概念,集合概念及其基本理论又是近代数学的一个重要的基础,它不仅与高中数学的许多内容有着联系,而且已经渗透到自然科学的众多领域,应用十分广泛.中学数学所研究的各种对象都可以看作集合或集合中的元素,用集合语言可以简明地表述数学概念,准确、简捷地进行数学推理.本章内容以集合的含义与表示、集合的基本关系、集合的基本运算为逻辑链条统领全章,这种安排与以往的教材的处理有很大的区别.例如,§2集合的基本关系,是将集合的包含和相等关系放在一起,并给出自集的概念;§3集合的基本运算,是将集合的交、并、补放在这一节,并给出全集的概念,这样安排给学生展现出知识间的联系,便于学生学习.知识结构:3、教材目标集合语言是现代数学的基本语言.使用集合语言,可以简洁、准确地表达数学的一些内容(集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础),因此高中数学课程中只是将集合作为一种语言来学习.知识与技能:①了解集合的含义,明确元素与集合的“属于”关系.掌握描写某些数集的专用符号.②理解集合的表示法,能用集合语言对事物进行准确,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.③理解集合之间包含与相等的含义,能识别给定集合的子集.培养分析、比较、归纳的逻辑思维能力.④了解全集与空集的含义.⑤理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集.⑥理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.⑦能使用Venn图表达集合的关系及运算.过程与方法:①从学生比较熟悉的实例入手,通过列举丰富的实例,了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.②创设使学生运用集合语言进行表达和交流的情景和机会,以便学生在实际应用中逐渐熟悉自然语言、图形语言、集合语言各自的特点,进行相互转换并掌握集合语言.③借助几何直观,运用Venn图和数轴表示集合的关系及集合的基本运算,从直观上帮助学生理解并运用集合语言处理问题,体现数形结合的思想.情感、态度、价值观:①在运用集合语言解决问题的过程中,逐步养成事实求是,扎实严谨的科学态度,学会用数学思维方法解决问题.②通过直观感知,类比联想和抽象概括,让学生体会数学上的规定要讲逻辑顺序,培养学生有条理地思考的习惯和积极探索创新的意识.4、教材重、难点教学重点(1)集合的概念与表示.(2)集合间的包含与相等关系,子集与真子集的概念.(3)交集与并集、全集与补集的概念.教学难点(1)运用集合的两种常用表示法—列举法与描述法正确表示一些简单的集合.(2)属于关系与包含关系的区别.(3)交集与并集的概念的理解,交集与并集的符号之间的区别与联系.。
高一数学《集合的含义与表示》教材分析
高一数学《集合的含义与表示》教材分析高一数学《集合的含义与表示》教材分析教材分析:本节是集合的初次学习,主要涉及集合的概念,表示方法,集合的特征等内容。
从同学们熟知的地理知识引入集合的概念,通过举例说明什么是集合,易于让刚升入高中的学生接受,由浅入深理解集合的含义及表示方式。
符合学生的心里特点,充分的考虑到了初高中知识的衔接。
学生分析:学生在初中阶段过多的依赖于教师的教,自学能力较差,能独立思考分析的能力较弱,而高中知识的容量较大,难度较大,要求学生在开始学习高中数学时奠定良好的基础积累学习高中数学的经验,养成良好的数学思维习惯。
因此在教学时应考虑到初高中知识的衔接以及学生的认知能力的差异,引导学生自读、自学、交流、讨论等方式掌握集合的含义及表示,注重学习习惯的养成。
教学目标:(一)知识与技能:理解集合的含义及表示方式,会用集合的方法表示一些数学内容,体会元素与集合的关系。
(二)过程与方法:通过引导学生自读、自学、交流讨论集合概念、表示方式的过程,让学生感悟集合的特点及解决数学问题的优越性,体会集合蕴含的分类思想。
(三)情感态度价值观:通过本节课的学习,让学生感悟到数学知识的魅力,激发学生的学习兴趣,体会数学学习的意义。
教学重难点:(1)集合的概念及表示方式(2)会应用集合的语言表示数学问题教学方法:教师讲授,学生交流、探索教学过程:(一)创设情境,导入新课同学们,大家都能听过“物以类聚,人以群分”这句话吗?对于一个集体来说,划分标准的不同,可以导致很多种的划分可能。
比如:我们教室里的所有男生,我们教师里的所有女生,我们学校所有的男教师等等。
我们可以举出很多的例子。
在数学上,它们都能构成一个集合。
你知道什么是集合吗?今天就我们来学习集合以及集合的表示方法。
(二)讲解新知,探索交流1.请同学们自己读P3的内容设计目的:引导学生学会自己分析,掌握阅读的技能,提高学生的自学能力。
2.请同学们互相交流,讨论什么是集合呢?什么是元素?举例说明生:划分标准的不同,就会有不同的表示,如按湖面的面积的大小划分,按咸水湖和淡水湖划分等生:水面积在3000km2以上的有:青海湖、鄱阳湖;其中青海湖、鄱阳湖就是这个集合的元素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 20 13 年 高 考 湖 南 ( 文 ) ) 对 于 E={a1,a2,„,a100} 的 子 集 X={a1,a2,„,an},定义 X 的“特征数列”为 x1,x2,x100,其 中 x1=x10=xn=1.其余项均为 0,例如子集{a2,a3}的“特征数列” 为 0,1,0,0,,0 (1) 子 集 {a1,a3,a5} 的 “ 特 征 数 列 ” 的 前 三 项 和 等 于 ____ _______; (2) 若 E 的子集 P 的“特征数列”P1,P2,,P100 满足 P1+Pi+1=1, 1≤i≤99; E 的子集 Q 的“特征数列” q1,q2,q100 满足 q1=1,q1+qj+1+qj+2=1, 1≤j≤98,则 P∩Q 的元素个数为_________. 【答案】(1) 2 (2)17
教学的 示范性
表达形式 的多样性
描述法 图示法 文字语言
语言形式 的丰富性
符号语言
图形语言
知识属性 目标的层次性 语言功能 教育功能
1.知识属性
(1)集合的含义与表示 ① 通过实例,了解集合的含义,体会元素与集合的“属于”关系 ② 能选择自然语言、图形语言、集合语言(列举法或描述法)描 述不同的具体问题,感受集合语言的意义和作用。 (2)集合间的基本关系 ① 理解集合之间包含与相等的含义,能识别给定集合的子集。 ② 在具体情境中,了解全集与空集的含义。 (3)集合的基本运算 ① 理解两个集合的并集与交集的含义,会求两个简单集合的并集 与交集。 ② 理解在给定集合中一个子集的补集的含义,会求给定子集的补 集。 ③ 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽 象概念的作用。
其中 (a,b) 是有序数对,集合 S 和 S 中的元素个数分别为 m 和 n. 若对于任意的 a A ,总有 a A ,则称集合 A 具有性质 P. (I)检验集合 0, 1 , 2, 3 与 1 , 2, 3是否具有性质 P 并对其中具有 性质 P 的集合,写出相应的集合 S 和 T; (II)对任何具有性质 P 的集合 A,证明: n ≤
k ( k 1) ; 2
(III)判断 m 和 n 的大小关系,并证明你的结论.
(2009 北京文)设 A 是整数集的一个非空子集,对于
kA
,如果 k 1 A 且 k 1 A ,那么 k 是 A 的一个“孤立元” , 个.
给定 S {1,2,3,4,5,6,7,8,} ,由 S 的 3 个元素构成的所有集合中, 不含“孤立元”的集合共有
2013 广东(理)设整数 n 4 ,集合 X 1,2,3,
, n.令集合
S x, y , z | x, y , z X , 且三条件x y z, y z x, z x y恰有一个成立 ,
若 x, y, z 和 z, w, x 都在 S 中,则下列选项正确的是( ) A . y, z, w S , x, y, w S B. y, z, w S , x, y, w S C. y, z, w S , x, y, w S 【答案】B D. y, z, w S , x, y, w S
《集合》教材分析
北京二中
庄肃钦
一.内容地位
•集合语言是现代数学的基本语言,可 以简洁、准确地表达数学内容,是研究 数学的重要工具; •发展运用集合语言进行交流的能力, 有利于学生把握各个模块之间的关系。
二.教学原则
1.教学实施要发挥示范性 2.教学目标要把握层次性
3.目标落实要注意阶段性
良好的开端是成功的一半 列举法
(2008 福建卷 16)设 P 是一个数集,且至少含有两个数,若对任意 a、b∈R, a 都有 a+b、a-b, ab、 ∈P(除数 b≠0) ,则称 P 是一个数域.例如有理数集 Q b 是数域;数集 F a b 2 a, b Q 也是数域.有下列命题:①整数集是数域;② 若有理数集 Q M ,则数集 M 必为数域;③数域必为无限集;④存在无穷多个 数域.其中正确的命题的序号是 ③④ .(把你认为正确的命题的序号填填上)
特级教师 王新敞
w xckt@
y x 1 ∵ y kx b ∵A∩C=
2
∴k2x2+(2bk-1)x+b2-1=0
∴Δ 1=(2bk-1)2-4k2(b2-1)<0 ∴4k2-4bk+1<0,此不等式有解, 其充要条件是 16b2-16>0, 即 b2>1 ①
( 2013
重 庆 理 ) 对 正 整 数
n, 记 .
I m {1,2,
, n}
,
m Pm { m Im , k Im} k
(1)求集合 中元素的个数;
P7
(2)若
的子集 A 中任意两个元素之和不是 整数的平 .. Pm
方,则称 A 为“稀疏集”.求 n 最大值,使 上不相交的稀疏集的并.
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
解 ∵(A∪B)∩C= ,∴A∩C= 且 B∩C=
特级教师 王新敞
w xckt@
新疆
源头学子 小屋
http://w ww .xj /w xc/
例.某班级共有 48 人,其中爱好体育的 25 名,爱好文 艺的 24 名,体育和文艺都爱好的 9 名,试求体育和文 艺都不爱好的有几名?
3.教育功能
(2)阅读理解能力、抽象思维能力培养、分 析问题与解决问题能力的培养,
只有在深刻理解集合概念,明确集合中元 素的属性,熟练地运用集合与集合的关系解 决具体问题上下功夫,才能读懂用集合语言描 述的数学命题。
4k 2 8k 1 0, 得 2 k 2k 3 0
∴k=1,故存在自然数 k=1,b=2,使得(A∪B)∩C=
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
2009 北京.20. (本小题共 13 分) 已知数集 A {a ,a
1 2
, an } (1 a 1 a 2
an n,
i j
2)
j
具有性质
a i , j (1 i j n ) ;对任意的 , 与 两数中至 aa P a
i
少有一个属于 A。 (I)分别判断数集 {1,3,4} 与 {1,2,3,6}是否具有性质 P, 并说明理由; (Ⅱ)证明: a
Pm
能分成两人
2007 北 京 .20 . 已 知 集 合 ,由 ai Z( i , 1, 2 , k )
A a1,a2, ,ak (k ≥ 2)
,其中
A 中的元素构成两个相应的集合:
S ( a,b) a A,b A,a b A , T ( a,b) a A,b A,a b A.
2.语言功能
(1)课标:集合语言是现代数学的基本语言。 使用集合语言,可以简洁、准确地表达数学的一 些内容。高中数学课程只将集合作为一种语言来 学习,学生将学会使用最基本的集合语言表示有 关的数学对象,发展运用数学语言进行交流的能 力。 能选择自然语言、图形语言、集合语言(列 举法或描述法)描述不同的具体问题,感受集合 语言的意义和作用。
(2010 湖南文数) 15.若规定 E= a a ...a 的子集 a
1, 2 10
k1
ak2 ..., akn
为 E 的第 k 个子集,其中 k= k 2
1, 3
k1
2k2 1 2k3 1
2kn 1
,则
(1) a , a 是 E 的第___个子集; (2)E 的第 211 个子集是_______
2013 福建文 16.设 S,T 是 R 的两个非空子集,如果存 在一个从 S 到 T 的函数 y=f(x)满足; (i) (ii) 对任意 x1 , x2 S , 当 x1 x2 时, T { f ( x ) x S}; 恒有 f ( x1 ) f ( x2 ) . 那么称这两个集合“保序同构”.现给出以下 3 对集合: ① A N , B N *; ② A {x 1 x 3}, B {x 8 x 10}; ③ A {x 0 x 1}, B R . 其中,“保序同构”的集合对的序号是 出所有“保序同构”的集合对的序号) (写
例.设 A={(x,y)|y2-x-1=0},B={(x,y)|4x2+2x-2y+5=0}, C={(x,y)|y=kx+b},是否存在 k、b∈N,使得(A∪B)∩C= , 证明此结论
新疆
源头学子 小屋
http://w ww .xj /w xc/
新疆 源头学子小屋
/wxc/
(2010 四川理数) (16) 设 S 为复数集 C 的非空子集.若对任 意 x, y S ,都有 x y,x y,xy S ,则称 S 为封闭集。下列命题: ① 集合 S={a+bi|( a ,b 为整数, i 为虚数单位)}为封闭集; ② 若 S 为封闭集,则一定有 0 S ; ③封闭集一定是无限集; ④若 S 为封闭集,则满足 S T C 的任意集合 T 也是封闭集. 其中真命题是 号) (写出所有真命题的序
(2)关于集合等内容的符号表示法,是整 个高中数学各部分内容都要使用的基本数学 符号语言,高中数学教学对学生使用数学语 言的要求比初中数学教学有明显的提高,即 要求表达问题时语言更准确、更简练、更规 范,符号化是数学语言的一个显著特征,随 着教学内容的不断扩充和抽象性的加强,高 中数学中要使用更多的符号和术语,集合语 言深刻的体现了数学语言的严密性和简洁性。