专题14 指数函数(讲)(解析版)
《指数函数》公开课课件
目录
• 指数函数基本概念与性质 • 指数函数运算规则与技巧 • 指数函数在生活中的应用举例 • 指数函数在科学研究中的应用举例 • 指数函数图像变换与性质变化规律 • 指数函数与其他知识点联系与拓展
01
指数函数基本概念与 性质
指数函数定义及图像特征
指数函数定义
形如y=a^x(a>0且a≠1)的函 数称为指数函数。
乘法法则
$a^m times b^m = (a times b)^m$,不同底数 幂相乘,指数不变,底数 相乘。
除法法则
$frac{a^m}{b^m}
=
left(frac{a}{b}right)^m$
,不同底数幂相除,指数
不变,底数相除。
幂的乘方法则
$(a times b)^n = a^n times b^n$,不同底数幂 的乘方,将每个底数分别 乘方。
在医学领域,指数函数可用于预 测肿瘤生长速度、评估治疗效果
等。
化学反应速率计算与分析
反应速率方程
化学反应速率与反应物浓度之间的关系可用指数函数表示。
速率常数计算
通过实验数据,利用指数函数拟合反应速率曲线,计算速率常数 。
反应机理研究
指数函数可用于分析化学反应机理,揭示反应过程中的速率控制 步骤。
物理学中波动现象描述
人口增长模型建立与预测
指数增长模型
人口增长可以采用指数增长模型进行 描述,即人口数量按照一定比例增长 ,增长速度随时间推移而加快。
预测应用
人口预测对于城市规划、资源分配、 环境保护等方面具有重要意义,可以 为政府和企业提供决策依据。
模型建立
根据历史人口数据和增长率,可以建 立出人口增长的指数模型,并预测未 来人口数量。
指数函数优秀课件
•指数函数基本概念•指数函数运算规则•指数函数在生活中的应用•指数函数与对数函数关系目•指数方程和不等式求解方法•指数函数在高级数学中的应用录指数函数的定义底数a的取值范围函数的单调性函数的值域函数的周期性030201指数函数的图像是一条从y轴上的点(0,1)出发的曲线。
当a>1时,曲线向上增长;当0<a<1时,曲线向下减少。
指数函数的图像关于y轴对称,即对于任意x值,f(-x)=f(x)。
指数函数的图像具有渐近线y=0,即当x趋近于负无穷大时,y趋近于0。
同时,当x趋近于正无穷大时,y趋近于正无穷大(a>1)或0(0<a<1)。
指数函数图像与特征同底数指数法则乘法法则除法法则幂的乘方法则不同底数指数法则乘法公式除法公式指数运算优先级01020304括号指数乘除加减复利计算复利公式A = P(1 + r/n)^(nt),其中A表示未来值,P表示本金,r表示年利率,n表示每年计息次数,t表示时间(年)。
该公式用于计算投资或存款在定期计息的情况下的未来值。
连续复利当计息次数趋于无穷大时,复利公式变为A = Pe^(rt),其中e是自然对数的底数,约等于2.71828。
连续复利更精确地描述了资金在连续时间内的增长情况。
放射性物质衰变衰变公式半衰期细菌繁殖模型细菌增长公式N = N₀e^(kt),其中N表示经过时间t后的细菌数量,N₀表示初始数量,k表示细菌增长率,t表示时间。
该公式用于描述在理想条件下细菌数量的指数增长。
细菌繁殖周期细菌从一个分裂成两个所需的时间称为繁殖周期。
在理想条件下,细菌数量每经过一个繁殖周期就会翻倍。
因此,细菌数量的增长与繁殖周期和经过的时间密切相关。
对数函数的定义:对于任意正实数a(a≠1),如果N (N>0)的a次幂等于X,那么X叫做以a 为底N的对数,记作X=logaN。
其中,a 叫做对数的底数,N 叫做真数。
对数函数的性质底数大于1时,函数是增函数;底数小于1时,函数是减函数。
人教版英语八年级下册专题14书面表达专练(解析版)(人教版)含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!八年级下学期期末重难知识点串讲+精练专题14 书面表达专练一、同步作文1.良好的习惯让人受益终身。
如何培养良好的习惯?请根据以下内容提示,以“How to develop a good habit”为题,用英语写一篇短文,可以适当发挥。
要点:1. 坚持锻炼,不要熬夜,睡眠充足;2. 多吃水果蔬菜,少吃垃圾食品;3. 努力学习,广泛阅读;4. 体贴父母,多做家务;……注意:要点齐全,条理清晰,语句通顺,不需逐条翻译;短文不少于80词。
____________________________________________________________________________________________ ____________________________________________________________________________________________ ____________________________________________________________________________________________ ____________________________________________________________________________________________ ____________________________________________________________________________________________ ____________________________________________________________________________________________ ___________________________【答案】高分范文:How to develop a good habitIt’s very important for us to develop good habits. As teenagers, what should we do?In my opinion, it is a good habit to keep exercising and get enough sleep. Remember not to stay up late. What’s more, we should eat more fresh fruit and vegetables and less junk food. It’s necessary for us to study hard and read some books to get more knowledge. We should also care for parents and help them do more housework in our spare time. Always remember to wash our hands before meals to keep clean.I hope everyone can keep healthy and strong.【解析】【详解】1、题干解读:题目要求根据以下提示内容,以“How to develop a good habit”为题,写一篇短文,包括锻炼、饮食、学习、家庭生活等方面的内容,可适当发挥。
指数函数ppt课件
04
指数函数的应用
在金融领域的应用
复利计算
股票和期货价格预测
在金融领域,复利计算是评估投资回 报的重要方式。指数函数用于计算复 利,通过复利公式,可以计算出投资 的未来价值。
在股票和期货市场中,指数函数常用 于价格预测模型。通过分析历史数据 ,利用指数函数可以预测未来的价格 走势。
保险精算
在保险行业中,指数函数用于精算模 型,例如生命表和风险评估。通过指 数函数,保险公司可以预测未来的风 险和损失。
指数函数和三角函数在某些方面具有 相似性,例如在周期性和对称性方面 。
三角函数的图像具有对称性,例如正 弦函数和余弦函数的图像关于y轴对称 ,而指数函数的图像则关于y=1对称 。
三角函数具有周期性,而指数函数在 形式上也可以表示为具有周期性的形 式。
06
练习题与答案解析
基础练习题
定义域和值域
指数函数的定Leabharlann 域和值域分别是什么?指数函数的起源与历史
起源
指数概念最早可以追溯到古代数学家和天文学家的著作中,但现代意义上的指 数函数则是在17世纪由数学家约翰·纳皮斯和费马等人提出。
历史发展
随着数学和科学技术的不断发展,指数函数的概念和应用范围也在不断扩展和 深化。在复数、微积分、线性代数等领域中,指数函数都扮演着重要的角色。
02
指数函数与幂函数的关系
指数函数和幂函数具有相似的 形式,即y=a^x和y=x^a。
当a>0时,指数函数和幂函数 的图像都是单调递增的;当 a<0时,指数函数和幂函数的 图像都是单调递减的。
指数函数和幂函数的定义域都 是全体实数集R,值域都是正 实数集(0,+infty)。
指数函数与三角函数的关系
《指数函数》课件
应用广泛
指数函数是数学、物理、金融、 生物、化学等领域中的重要概 念,可应用于许多实际问题。
引领未来
了解和熟练掌握指数函数是探 索自然、认识世界和关注未来 的重要个人能力。
指数函数的导数可以通过 导数公式进行易解,使得 它在实际应用中更加方便。
指数函数和常见函数的比较
对数函数
指数函数和对数函数是一对互 为反函数的函数,它们在实际 应用中经常一同出现。
幂函数
幂函数是与指数函数类似的一 般形式函数,但其中自变量与 常数的次数可以不相等。
三角函数
三角函数是解析几何和物理学 中不可缺少的一部分,它们与 指数函数密切相关的。
指数增长可以应用于股票、金融市场的分析,为财 务规划和决策提供参考。
人口增长中的指数增长
应用于人口、社会发展的研究,探索城市规划、资 源分配等关键问题。
指数函数的特性
1 指数增长特性
指数函数的特殊增长和减 小特性使得它在许多现象 中都有着广泛的应用。
2 图像特性
3 求导特性
指数函数的图像特性是理 解和应用指数函数的关键, 因此必须加以理解。
指数函数PPT课件
欢迎来到《指数函数》PPT课件,我们将探讨指数函数的定义、性质和应用。 让我们开始吧!
指数函数是什么?
定义
指数函数的数学表达式是 $f(x)=a^x$,其中$a$是常数, $x$是自变量,$a>0$且 $a≠1$。
图像
当$a>1$时,函数增长迅速, 当$0<a<1$时,函数递减, 特殊情况:$a=1$时,函数 值恒为1。
基于指数函数的优化算法可以在数学和计算机应用领域中得到广泛应用。
梯度下降算法
梯度下降算法是使用最广泛的优化算法之一,它可以运用于指数函数的数据建模。
《指数函数》经典讲义(完整版)
指数函数讲义经典整理(含答案)一、同步知识梳理知识点1:指数函数函数(01)xy a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R知识点2:指数函数的图像和性质知识点3:指数函数的底数与图像的关系指数函数在同一直角坐标系中的图像的相对位置与底数大小的关系 如图所示,则01c d a b <<<<<,在y 轴右侧,图像从下到上相应的底数也由小变大, 在y 轴左侧,图像从上到下相应的底数也由小变大 即无论在y 轴左侧还是右侧,底数按逆时针方向变大在第一象限内,“底大图高”知识点4:指数式、指数函数的理解① 分数指数幂与根式或以互化,通常利用分数指数幂进行根式的运算② 根式的运算、变形、求值、化简及等式证明在数学中占有重要的地位,是研究方程、不等式和函数的基础,应引起重视③ 在有关根式、分数指数幂的变形、求值过程中,要注意运用方程的观点处理问题,通过解方程或方程组来求值④ 在理解指数函数的概念时,应抓住定义的“形式”,像1223,,21xx y y x y y =⋅===- 等函数均不符合形式()01x y a a a =>≠且,因此,它们都不是指数函数⑤ 画指数函数x y a =的图像,应抓住三个关键点:()()11,,0,1,1,a a ⎛⎫- ⎪⎝⎭二、同步题型分析题型1:指数函数的定义、解析式、定义域和值域例1:已知函数,且. (1)求m 的值;(2)判定f (x )的奇偶性;(3)判断f (x )在(0,+∞)上的单调性,并给予证明.考点:指数函数的定义、解析式、定义域和值域;函数单调性的判断与证明. 专题: 计算题. 分析:(1)欲求m 的值,只须根据f (4)=的值,当x=4时代入f (x )解一个指数方程即可;(2)求出函数的定义域x|x≠0},利用奇偶性的定义判断f (x )与f (﹣x )的关系,即可得到答案; (3)利用单调性的定义证明即可.任取0<x1<x2,只要证明f (x1)>f (x2),即可. 解答: 解:(1)因为,所以,所以m=1.(2)因为f (x )的定义域为{x|x≠0},又,所以f (x )是奇函数. (3)任取x1>x2>0,则,因为x1>x2>0,所以,所以f (x1)>f (x2),所以f(x)在(0,+∞)上为单调增函数.点评:本题主要考查了函数单调性的判断、函数奇偶性的判断,与证明及指数方程的解法.在判定函数奇偶性时,一定注意函数的定义域关于原点对称,属于基础题.例2:已知函数,(1)讨论函数的奇偶性;(2)证明:f(x)>0.考点:指数函数的定义、解析式、定义域和值域;函数奇偶性的判断;函数奇偶性的性质.专题:计算题.分析:(1)由2x﹣1≠0解得义域为{x|x≠0},关于原点对称.f(﹣x)=()(﹣x)=()x=f(x),故该函数为偶函数.(2)任取x∈{x|x≠0},当x>0时,2x>20=1且x>0,故,从而.当x<0时,﹣x>0,故f(﹣x)>0,由函数为偶函数,能证明f(x)>0在定义域上恒成立.解答:解:(1)该函数为偶函数.由2x﹣1≠0解得x≠0即义域为{x|x≠0}关于原点对称…(2分)f(﹣x)=()(﹣x)=﹣(+)x=()x=()x=()x=f(x)(6分)故该函数为偶函数.…(7分)(2)证明:任取x∈{x|x≠0}当x>0时,2x>20=1且x>0,∴2x﹣1>0,故从而…(11分)当x<0时,﹣x>0,∴f(﹣x)>0,…(12分)又因为函数为偶函数,∴f(x)=f(﹣x)>0,…(13分)∴f(x)>0在定义域上恒成立.…(14分)点评:本题考查函数的奇偶性的判断和证明f(x)>0.解题时要认真审题,注意指数函数性质的灵活运用.例3:已知函数y=ax(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,记.(1)求a的值;(2)求f(x)+f(1﹣x)的值;(3)求的值.考点:指数函数的定义、解析式、定义域和值域.专题:综合题;函数的性质及应用.分析:(1)由y=ax单调得a+a2=20,由此可求a;(2)写出f(x),代入运算可得;(3)借助(2)问结论分n为奇数、偶数讨论可求;解答:解:(1)∵函数y=ax(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,且y=ax单调,∴a+a2=20,得a=4,或a=﹣5(舍去);(2)由(1)知,∴====1;(3)由(2)知f(x)+f(1﹣x)=1,得n为奇数时,=×1=;n为偶数时,=+f()==;综上,=.点评:本题考查指数函数的单调性、最值等知识,属中档题.题型2:指数函数的图像变换.例1:已知函数y=|2x﹣2|(1)作出其图象;(2)由图象指出函数的单调区间;(3)由图象指出当x取何值时,函数有最值,并求出最值.考点:指数函数的图像变换.专题:综合题;函数的性质及应用.分析:(1)函数y=|2x﹣2|图象是由y=2x的图象向下平移2个单位,再将x轴下方的部分翻着到x轴上方得到.(2)结合函数的图象,可得函数的减区间和增区间.(3)数形结合可得,当x=1时,ymiin=0.解答:解:(1)函数y=|2x﹣2|图象是由y=2x的图象向下平移2个单位,再将x轴下方的部分翻着到x轴上方得到,如图所示:(2)结合函数的图象,可得函数的减区间为(﹣∞,1],增区间为(1,+∞).(3)数形结合可得,当x=1时,ymiin=0.点评:本题主要考查指数函数的图象和性质综合,体现了数形结合的数学思想,属于中档题.题型3:指数函数单调性例1:已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0(1)若a•b>0,判断函数f(x)的单调性;(2)若a=﹣3b,求f(x+1)>f(x)时的x的取值范围.考点:指数函数的单调性与特殊点;函数单调性的判断与证明;函数单调性的性质.专题:函数的性质及应用.分析:(1)分a>0,b>0和a<0,b<0两种情况讨论,运用单调性的定义可作出判断;(2)当a=﹣3b时,f(x)=﹣3b•2x+b•3x=b(3x﹣3•2x),分b>0,b<0两种情况进行讨论,整理可得指数不等式解出即可;解答:解:(1)当a>0,b>0时,任意x1,x2∈R,且x1<x2,则f(x1)﹣f(x2)=a(﹣)+b(﹣),∵<,<,a>0,b>0,∴a(﹣)<0,b(﹣)<0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),故函数f(x)在R上是增函数;当a<0,b<0时,同理,可判断函数f(x)在R上是减函数;(2)当a=﹣3b时,f(x)=﹣3b•2x+b•3x=b(3x﹣3•2x),则f(x+1)>f(x)即化为b(3x+1﹣3•2x+1)>b(3x﹣3•2x),若b>0,则有3x+1﹣3•2x+1>3x﹣3•2x,整理得,解得x>1;若b<0,则有3x+1﹣3•2x+1<3x﹣3•2x,整理得,解得x<1;故b>0时,x的范围是x>1;当b<0时,x的范围是x<1.点评:本题考查函数单调性的判断、指数函数的单调性的应用,考查分类讨论思想,属基础题.例2:已知定义在(﹣1,1)上的奇函数f(x).在x∈(﹣1,0)时,f(x)=2x+2﹣x.(1)试求f(x)的表达式;(2)用定义证明f(x)在(﹣1,0)上是减函数;(3)若对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立,求实数t的取值范围.考点:指数函数综合题;奇偶性与单调性的综合.专题:计算题;函数的性质及应用.分析:(1)由f(x)是定义在(﹣1,1)上的奇函数可得f(0)=0,x∈(0,1)时,f(x)=﹣f(﹣x)=﹣(2x+2﹣x);从而写出f(x)的表达式;(2)取值,作差,化简,判号,下结论五步;(3)对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立转化为对于x∈(0,1)上的每一个值,不等式t>﹣恒成立,从而可得.解答:解:(1)∵f(x)是定义在(﹣1,1)上的奇函数,∴f(0)=0,设∈(0,1),则﹣x∈(﹣1,0),则f(x)=﹣f(﹣x)=﹣(2x+2﹣x),故f(x)=;(2)任取x1,x2∈(﹣1,0),且x1<x2,则f(x1)﹣f(x2)=+﹣(+)=,∵x1<x2<0,∴﹣<0,0<<1,故f(x1)﹣f(x2)>0,故f(x)在(﹣1,0)上是减函数;(3)由题意,t•2x•f(x)<4x﹣1可化为t•2x•(﹣(2x+2﹣x))<4x﹣1,化简可得,t>﹣,令g(x)=﹣=﹣1+,∵x∈(0,1),∴g(x)<﹣1+=0,故对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立可化为t≥0.点评:本题考查了函数的性质的综合应用及恒成立问题的处理方法,属于难题.例3:已知函数f(x)=|2x﹣1﹣1|,(x∈R).(1)证明:函数f(x)在区间(1,+∞)上为增函数,并指出函数f(x)在区间(﹣∞,1)上的单调性;(2)若函数f(x)的图象与直线y=t有两个不同的交点A(m,t),B(n,t),其中m<n,求m+n 的取值范围.考点:指数函数综合题.专题:计算题;证明题.分析:(1)函数单调性的证明,通常依据定义,步骤为:取值,作差,变形,定号,下结论,由于与指数函数有关,求解时要利用到指数函数的单调性;(2)由(1)可知,函数的值域为(0,1),要使函数f(x)的图象与直线y=t有两个不同的交点,故有t∈(0,1)又函数f(x)的图象与直线y=t有两个不同的交点,所以A(m,t),B(n,t)分别位于直线x=1的两侧,由m<n,得m<1<n,故可以求出m+n,进而由t∈(0,1),可求m+n的取值范围.解答:解:(1)证明:任取x1∈(1,+∞),x2∈(1,+∞),且x1<x2,=,∵x1<x2,∴,∴,∴f(x1)<f(x2).所以f(x)在区间(1,+∞)上为增函数.(5分)函数f(x)在区间(﹣∞,1)上为减函数.(6分)(2)因为函数f(x)在区间(1,+∞)上为增函数,相应的函数值为(0,+∞),在区间(﹣∞,1)上为减函数,相应的函数值为(0,1),由题意函数f(x)的图象与直线y=t有两个不同的交点,故有t∈(0,1),(8分)易知A(m,t),B(n,t)分别位于直线x=1的两侧,由m<n,得m<1<n,故2m﹣1﹣1<0,2n ﹣1﹣1>0,又A,B两点的坐标满足方程t=|2x﹣1﹣1|,故得t=1﹣2m﹣1,t=2n﹣1﹣1,即m=log2(2﹣2t),n=log2(2+2t),(12分)故m+n=log2(2﹣2t)+log2(2+2t)=log2(4﹣4t2),当0<t<1时,0<4﹣4t2<4,﹣∞<log2(4﹣4t2)<2.因此,m+n的取值范围为(﹣∞,2).(17分)点评:本题的考点是指数函数综合问题,主要考查函数单调性的证明,考查函数图形的性质,有较强的综合性.依据定义,证明函数的单调性的步骤通常为:取值,作差,变形,定号,下结论三、课堂达标检测检测题1:已知函数f(x)=(其中e=2.71828…是一个无理数).(1)求函数f(x)的定义域;(2)判断奇偶性并证明之;(3)判断单调性并证明之.考点:指数函数的定义、解析式、定义域和值域;函数单调性的判断与证明;函数奇偶性的判断.专题:计算题;证明题.分析:(1)把分子整理变化成和分母相同的一部分,进行分子常数化,则变量只在分母上出现,根据分母是一个指数形式,恒大于零,得到函数的定义域是全体实数.(2)根据上一问值函数的定义域关于原点对称,从f(﹣x)入手整理,把负指数变化为正指数,就得到结果,判断函数是一个奇函数.(3)根据判断函数单调性的定义,设出两个任意的自变量,把两个自变量的函数值做差,化成分子和分母都是因式乘积的形式,根据指数函数的性质,判断差和零的关系.解答:解:f(x)==1﹣(1)∵e2x+1恒大于零,∴x∈R(2)函数是奇函数∵f(﹣x)==又由上一问知函数的定义域关于原点对称,∴f(x)为奇函数(3)是一个单调递增函数设x1,x2∈R 且x1<x2则f(x1)﹣f(x2)=1﹣=∵x1<x2,∴∴f(x1)﹣f(x2)<0即f(x1)<f(x2)∴f(x)在R是单调增函数点评:本题考查函数的定义域,考查函数的奇偶性的判断及证明.考查函数单调性的判断及证明,考查解决问题的能力,是一个综合题目.检测题2:已知函数f(x)=2ax+2(a为常数)(1)求函数f(x)的定义域.(2)若a=1,x∈(1,2],求函数f(x)的值域.(3)若f(x)为减函数,求实数a的取值范围.考点:指数函数的定义、解析式、定义域和值域;指数函数的单调性与特殊点.专题:常规题型;转化思想.分析:(1)利用指数函数的定义域来考虑.(2)利用函数f(x)在(1,2]上的单调性求函数的值域.(3)根据复合函数的单调性,函数u=ax+2必须为减函数.解答:解:(1)函数y=2ax+2对任意实数都有意义,所以定义域为实数集R.(2)因为a=1,所以f(x)=2x+2.易知此时f(x)为增函数.又因为1<x≤2,所以f(1)<f(x)≤f(2),即8<f(x)≤16.所以函数f(x)的值域为(8,16].(3)因为f(x)为减函数,而y=2u是增函数,所以函数u=ax+2必须为减函数.所以得a<0点评:本题考查指数函数的定义域、值域、单调性,复合函数的单调性,体现转化的数学思想.检测题3:设f(x)的定义域是(﹣∞,0)∪(0,+∞),且f(x)对任意不为零的实数x都满足f(﹣x)=﹣f(x).已知当x>0时(1)求当x<0时,f(x)的解析式(2)解不等式.考点:指数函数的定义、解析式、定义域和值域;函数奇偶性的性质.专题:常规题型.分析:(1)求当x<0时,f(x)的解析式,在哪个区间上求解析式,就在哪个区间上取值x,再转化到已知区间上求解析式,由f(﹣x)=﹣f(x)解出f(x)即可.(2)解不等式f(x)<﹣,分x>0和x<0两种情况,根据求得的解析式求解即可.解答:解:(1)当x<0时,﹣x>0,=又f(﹣x)=﹣f(x)所以,当x<0时,(2)x>0时,,∴化简得∴,解得1<2x<4∴0<x<2当x<0时,∴解得2x>1(舍去)或∴x<﹣2解集为{x|x<﹣2或0<x<2}点评:本题考查分段函数解析式的求法,注意在哪个区间上求解析式,就在哪个区间上取值,再转化到已知的区间上求解析式,再根据奇偶性,解出f(x)来.解不等式也要分段求解,注意x的取值范围.11。
指数函数及其性质课件
目录
• 指数函数简介 • 指数函数性质 • 指数函数与其他数学知识的结合 • 指数函数在实际问题中的应用 • 指数函数的扩展与深化理解
01
指数函数简介
定义与特性
定义
指数函数是一种数学函数,其形 式为 y = a^x,其中 a > 0 且 a ≠ 1,x 是自变量,y 是因变量。
3
应用
复合指数函数在数学、物理、工程等领域有广泛 应用,如计算复利、解决物理问题等。
自然指数函数与欧拉数
定义
自然指数函数是指数函数 (e^x) 的反函数,也称 为欧拉数。
性质
自然指数函数具有连续、可导、可微等性质,且 (e^x) 的导数等于自然指数函数。
应用
自然指数函数在数学、物理、工程等领域有广泛 应用,如计算复利、解决物理问题等。
指数函数的周期性
根据周期函数的定义,判断指数函 数的周期性,并举例说明。
周期性的应用
介绍周期性在数学、物理等领域的 应用,如三角函数的周期性等。
有界性
有界函数的定义
如果存在两个常数M和m,使得对于定义域内的每一个x,都有m≤f(x)≤M,则称 f(x)为有界函数。
指数函数的有界性
根据有界函数的定义,判断指数函数的有界性,并举例说明。
特性
指数函数具有非线性特性,随着 x 的增大或减小,y 的值会以指数 速度增长或减小。
历史背景与发展
历史背景
指数函数的概念可以追溯到古代数学 ,但直到17世纪科学革命时期,数 学家们才开始深入研究指数的性质和 应用。
发展
随着微积分和复数理论的发展,指数 函数的理论基础不断完善,应用领域 也得到了极大的拓展。
04
指数函数(解析版)
考点14 指数函数【命题解读】在高考中指数函数部分往往与其他知识点交汇考查,也常与函数的图像结合考查。
重点考查与此有关的性质。
【基础知识回顾】 .指数函数及其性质(1)概念:函数y =a x (a >0且a ≠1)叫做指数函数,其中指数x 是变量,函数的定义域是R ,a 是底数. (2)指数函数的图象与性质a >10<a <1图象定义域 (1)R 值域(2)(0,+∞)性质(3)过定点(0,1),即x =0时,y =1(4)当x >0时,y >1;当x <0时,0<y <1 (5)当x <0时,y >1;当x >0时,0<y <1(6)在(-∞,+∞)上是增函数(7)在(-∞,+∞)上是减函数[常用结论]1.指数函数图象的画法画指数函数y =a x(a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎫-1,1a .2.指数函数的图象与底数大小的比较如图是指数函数(1)y=a x,(2)y=b x,(3)y=c x,(4)y=d x的图象,底数a,b,c,d与1之间的大小关系为c>d>1>a>b>0.由此我们可得到以下规律:在第一象限内,指数函数y=a x(a>0,a≠1)的图象越高,底数越大.3.指数函数y=a x(a>0,a≠1)的图象和性质跟a的取值有关,要特别注意应分a>1与0<a<1来研究.1、设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是()A.a<b<c B.a<c<bC.b<a<c D.b<c<a【答案】C【解析】因为函数y=0.6x在R上单调递减,所以b=0.61.5<a=0.60.6<1.又c=1.50.6>1,所以b<a<c. 2、函数f(x)=a x-b的图象如图所示,其中a,b为常数,则下列结论正确的是( )A.a>1,b<0B.a>1,b>0C.0<a<1,b>0D.0<a<1,b<0【答案】D【解析】由f(x)=a x-b的图象可以观察出,函数f(x)=a x-b在定义域上单调递减,所以0<a<1. 函数f(x)=a x-b的图象是在f(x)=a x的基础上向左平移得到的,所以b<0.3、若函数y=(a2-1)x是R上的减函数,则实数a的取值范围是( )A. 1<a< 2B. -2<a<-1C. 1<a<2,或-2<a<-1D.22<a<1,或1<a< 2【答案】C【解析】由y=(a2-1)x在(-∞,+∞)上为减函数,得0<a2-1<1,∴1<a2<2,即1<a<2或-2<a<-1.∴数a的取值范围是1<a<2或-2<a<-1.故选C.4、已知函数f(x)=a x-3+2的图像恒过定点A,则A的坐标为.【答案】(3,3)【解析】 由a 0=1知,当x -3=0,即x =3时,f(3)=3,即图像必过定点(3,3). 5、函数的值域为( )A .B .C .(0,]D .(0,2]【答案】A【解析】令t (x )=2x ﹣x 2=﹣(x ﹣1)2+1≤1 ∵单调递减∴即y故选:A .考向一 指数函数的性质与应用例1、(1).已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( )A .b <a <cB .c <a <bC .c <b <aD .a <b <c .(2).如果函数y =a 2x +2a x -1(a >0,a ≠1)在区间[-1,1]上的最大值是14,则a 的值为( ) A .3 B .13 C .-5 D .3或13.(3).已知函数f (x )=2|2x -m |(m 为常数),若f (x )在区间[2,+∞)上是增函数,则m 的取值范围是________. 【解析】(1).B 由函数f (x )=2|x-m |-1为偶函数,得m =0,即f (x )=2|x |-1,其图象过原点,且关于y 轴对称, 在(-∞,0)上单调递减,在(0,+∞)上单调递增. 又a =f (log 0.53)=f (-log 23)=f (log 23),b =f (log 25), c =f (0),且0<log 23<log 25,所以c <a <b .(2).D 令a x =t ,则y =a 2x +2a x -1=t 2+2t -1=(t +1)2-2.当a >1时,因为x ∈[-1,1],所以t ∈⎣⎡⎦⎤1a ,a ,又函数y =(t +1)2-2在⎣⎡⎦⎤1a ,a 上单调递增,所以y max =(a +1)2-2=14,解得a =3(负值舍去).当0<a <1时,因为x ∈[-1,1],所以t ∈⎣⎡⎦⎤a ,1a , 又函数y =(t +1)2-2在⎣⎡⎦⎤a ,1a 上单调递增,则y max =⎝⎛⎭⎫1a +12-2=14,解得a =13(负值舍去). 综上知a =3或a =13.(3)令t =|2x -m |,则t =|2x -m |在区间⎣⎡⎭⎫m 2,+∞上单调递增,在区间⎝⎛⎦⎤-∞,m 2上单调递减,而y =2t 为R 上的增函数,所以要使函数f (x )=2|2x -m |在[2,+∞)上单调递增,则有m2≤2,即m ≤4,所以m 的取值范围是(-∞,4].变式1、(1)函数f(x)=22112x x -++⎛⎫⎪⎝⎭的单调减区间为 .(2)(一题两空)已知函数f (x )=a |x +1|(a >0,且a ≠1)的值域为[1,+∞),则a 的取值范围为________,f (-4)与f (1)的大小关系是________.(3)(2019·福建泉州五中模拟)设a >0,且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,则实数a 的值为________.【答案】(1) (-∞,1] (2)(1,+∞) f (-4)>f (1)(3)13或3【解析】(1)设u =-x 2+2x +1,∵y =12a⎛⎫⎪⎝⎭在R 上为减函数,∴函数f (x )=22112x x -++⎛⎫⎪⎝⎭的减区间即为函数u =-x 2+2x +1的增区间.又u =-x 2+2x +1的增区间为(-∞,1],∴f (x )的减区间为(-∞,1].(2)因为|x +1|≥0,函数f (x )=a |x +1|(a >0,且a ≠1)的值域为[1,+∞),所以a >1.由于函数f (x )=a|x +1|在(-1,+∞)上是增函数,且它的图象关于直线x =-1对称,则函数f (x )在(-∞,-1)上是减函数,故f (1)=f (-3),f (-4)>f (1).(3)令t =a x (a >0,且a ≠1),则原函数化为y =f (t )=(t +1)2-2(t >0).①当0<a <1,x ∈[-1,1]时,t =a x∈⎣⎡⎦⎤a ,1a ,此时f (t )在⎣⎡⎦⎤a ,1a 上为增函数. 所以f (t )max =f ⎝⎛⎭⎫1a =⎝⎛⎭⎫1a +12-2=14.所以⎝⎛⎭⎫1a +12=16,解得a =-15(舍去)或a =13.②当a >1时,x ∈[-1,1],t =a x∈⎣⎡⎦⎤1a ,a ,此时f (t )在⎣⎡⎦⎤1a ,a 上是增函数.所以f (t )max =f (a )=(a +1)2-2=14,解得a =3或a =-5(舍去).综上得a =13或3.变式2、(江苏省南通市通州区2019-2020学年高三第一次调研抽测】不等式23122x x --<的解集为_______. 【答案】(﹣1,2) 【解析】由题23122x x --<则2311222x x ---<=,故23112x x x --<-⇒-<< 故填(﹣1,2)变式3、设函数f(x)=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x<0,x ,x ≥0,若f(a)<1,则实数a 的取值范围是 ;【答案】(-3,1)【解析】当a <0时,不等式f (a )<1可化为12a ⎛⎫ ⎪⎝⎭-7<1,即12a ⎛⎫ ⎪⎝⎭<8,即12a ⎛⎫ ⎪⎝⎭<312-⎛⎫ ⎪⎝⎭,∴a >-3.又a <0,∴-3<a <0.当a ≥0时,不等式f (a )<1可化为a <1.∴0≤a <1, 综上,a 的取值范围为(-3,1).变式4、(2020·包头模拟)已知实数a ≠1,函数f (x )=⎩⎪⎨⎪⎧4x ,x ≥0,2a -x ,x <0,若f (1-a )=f (a -1),则a 的值为______. 【答案】12.【解析】(1)当a <1时,41-a=21,解得a =12;当a >1时,代入不成立.故a 的值为12.方法总结: 指数函数的性质有着广泛的应用,常见的有:比较大小,解不等式,求函数的单调区间和值域、最值等等.(1)比较两个幂值的大小问题是常见问题,解决这类问题首先要分清底数是否相同;若底数相同,则可利用函数的单调性解决;若底数不同,则要利用中间变量进行比较.(2)与指数函数有关的指数型函数的定义域、值域(最值)、单调性、奇偶性问题,常常需要借助换元等手段将其化归于指数函数来解,体现化归与转化思想的运用.(3)在利用指数函数的性质解决与指数函数相关的问题时,要特别注意底数a 的取值范围,并在必要时须分底数0<a <1和a >1两种情形进行分类讨论,防止错解考向二 指数函数的图像与性质例2、如图,过原点O 的直线与函数y =2x 的图像交于A ,B 两点,过点B 作y 轴的垂线交函数y =4x 的图像于点C ,若AC 平行于y 轴,则点A 的坐标是________. 【答案】(1,2).【解析】设C (a,4a ),则A (a,2a ),B (2a,4a ).又O ,A ,B 三点共线,所以2a a =4a2a ,故4a =2·2a ,所以2a =0(舍去)或2a =2,即a =1,所以点A 的坐标是(1,2).变式1、(2020届江苏省南通市海安高级中学高三第二次模拟)已知过点O 的直线与函数3x y =的图象交于A 、B 两点,点A 在线段OB 上,过A 作y 轴的平行线交函数9x y =的图象于C 点,当BC ∥x 轴,点A的横坐标是 【答案】3log 2【解析】根据题意,可设点(),3a A a ,则(),9a C a ,由于BC ∥x 轴,故9aC B y y ==,代入3x y =,可得2B x a =,即()2,9aB a ,由于A 在线段OB 上,故OA OB k k =,即392a a a a=,解得 3log 2a =.变式2、(2020届山东省滨州市高三上期末)已知31log 3a a ⎛⎫= ⎪⎝⎭,133log b b =,131log 3cc ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( ) A .c b a << B .a b c <<C .b c a <<D .b a c <<【答案】C 【解析】在同一直角坐标系内,作出函数13xy ⎛⎫= ⎪⎝⎭,3log y x =,3x y =,13log y x =的图像如下:因为31log 3a a ⎛⎫= ⎪⎝⎭,133log b b =,131log 3cc ⎛⎫= ⎪⎝⎭,所以a 是13x y ⎛⎫= ⎪⎝⎭与3log y x =交点的横坐标;b 是3x y =与13log y x =交点的横坐标;c 是13xy ⎛⎫= ⎪⎝⎭与13log y x =交点的横坐标;由图像可得:b c a <<. 故选:C.变式3、(2019·广西北海一中月考)函数y =a x-1a (a >0,且a ≠1)的图象可能是( )【答案】D【解析】当a >1时,y =a x-1a 是增函数.当x =0时,y =1-1a ∈(0,1),A ,B 不满足. 当0<a <1时,y =a x-1a 在R 上是减函数.当x =0时,y =1-1a <0,C 错,D 项满足. 变式4、 已知f(x)=|2x -1|.(1)求f(x)的单调区间;(2)比较f(x +1)与f(x)的大小;(3)试确定函数g(x)=f(x)-x 2的零点的个数.【解析】 (1)由f(x)=|2x-1|=⎩⎪⎨⎪⎧2x -1,x ≥0,1-2x ,x<0可作出函数的图像如图所示.因此函数f(x)的单调减区间是(-∞,0)上,单调增区间是(0,+∞). (2)在同一坐标系中,分别作出函数f(x)、f(x +1)的图像如图所示.由图像知,当012x +-1=1-02x ,即x 0=log 223时,两图像相交,当x<22log 3时,f(x)>f(x +1); 当x =22log 3时,f(x)=f(x +1);当x>22log 3时,f(x)<f(x +1).(3)将g(x)=f(x)-x 2的零点个数问题转化为函数f(x)与y =x 2的图像的交点个数问题,在同一坐标系中,分别作出函数f(x)=|2x -1|和y =x 2的图像(如图所示),有四个交点,故g(x)有四个零点.方法总结:指数函数的图像直观的刻画了指数函数的性质,在解题中有着十分广泛的应用.(1)已知函数解析式判断其图像一般是取特殊点,判断所给的图像是否过这些点,若不满足则排除; (2)对于有关指数型函数的图像问题,一般是从最基本的指数函数的图像入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论;(3)有关指数方程、不等式问题的求解,往往利用相应的指数函数图像,数形结合求解.考向三 指数函数的综合运用例3、关于函数f (x )=14x+2的性质,下列说法中正确的是( )A .函数f (x )的定义域为RB .函数f (x )的值域为(0,+∞)C .方程f (x )=x 有且只有一个实根D .函数f (x )的图象是中心对称图形 【答案】 ACD【解析】 函数f (x )=14x +2的定义域为R ,所以A 正确;因为y =4x在定义域内单调递增,所以函数f (x )=14x +2在定义域内单调递减,所以函数的值域为⎝⎛⎭⎫0,12,所以方程f (x )=x 只有一个实根,所以B 不正确,C 正确; 因为f (x +1)+f (-x )=14x +1+2+14-x +2=14·4x +2+4x 2·4x +1=12,∴f (x )关于⎝⎛⎭⎫12,14对称,所以D 正确.变式1、(2020届江苏省南通市如皋市高三上学期教学质量调研(二))已知函数(),413,1x x f x x x ⎧≥=⎨+<⎩,若16f f a =,则实数a = _____.【答案】1-【解析】∵函数(),413,1x x f x x x ⎧≥=⎨+<⎩,16f f a =, ∴当1a ≥时,44a f a =,4(())4416aa f f a f ,解得12a =,不合题意. 当1a <时, 3f a a = , 当31a 时,33416af f a f a ==,解得1a =-,当31a 时,33316f f a f a a ==,解得10a =,不合题意.综上,实数1a =-. 故答案为:1-.变式2、已知定义域为R 的函数f (x )=-2x +b2x +1+a 是奇函数.(1) 求a ,b 的值;(2) 若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.【解析】 (1) ∵f (x )是R 上的奇函数,∴f (0)=0,即b -1a +2=0⇒b =1,∴f (x )=1-2xa +2x +1.又由f (1)=-f (-1),得1-2a +4=-1-12a +1⇒a =2. 经检验知,a =2,b =1为所求.(2)(方法1)由(1)得f (x )=1-2x 2+2x +1=-12+12x +1,易知f (x )在(-∞,+∞)上为减函数.∵f (x )是奇函数,∴f (t 2-2t )+f (2t 2-k )<0⇔f (t 2-2t )<-f (2t 2-k )=f (k -2t 2). ∴t 2-2t >k -2t 2,即对一切t 有3t 2-2t -k >0.∴Δ=4+12k <0⇒k <-13.(方法2)由(1)知f (x )=1-2x2+2x +1, ∴222211222ttt t --+-++222211222tkt k --+-+<0,即(2212t k -++2)(1-222t t -)+(2222t t -++2)(1-222t k -<0,即2322t t k --1,故3t 2-2t -k >0.上式对一切t ∈R 均成立,从而Δ=4+12k <0⇒k <-13.变式3、设a 是实数,f (x )=a -22x +1(x ∈R ). (1) 试证明对于任意a ,f (x )都为增函数; (2) 试确定a 的值,使f (x )为奇函数. 【证明】 (1)设x 1,x 2∈R ,且x 1<x 2,则f (x 1)-f (x 2)=1221x a ⎛⎫- ⎪+⎝⎭-2221x a ⎛⎫- ⎪+⎝⎭=21222121x x -++=()()12122(22)2121x x x x -++. 由于指数函数y =2x在R 上是增函数,且x 1<x 2,∴12x <22x ,即1222x x -<0.又由2x>0,得12x +1>0,22x +1>0. ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∵此结论与a 的取值无关,∴对于a 取任意实数, f (x )均为增函数.(2)∵f (x )为奇函数,∴f (-x )=-f (x ),即a -22-x +1=-⎝ ⎛⎭⎪⎫a -22x+1,变形得2a =2·2x (2-x +1)·2x +22x +1=2·(2x +1)2x +1=2,解得a =1. 方法总结:指数函数性质的综合应用,其方法是:首先判断指数型函数的性质,再利用其性质求解以上问题都是指数型函数问题,关键应判断其单调性,对于形如y =a f (x )的函数的单调性,它的单调区间与f (x )的单调区间有关:若a >1,函数f (x )的单调增(减)区间即函数y =a f (x )的单调增(减)区间;若0<a <1,函数f (x )的单调增(减)区间即函数y =a f (x )的单调减(增)区间1、(2018全国卷Ⅱ)函数2()--=x x e e f x x的图像大致为【答案】B【解析】当0<x 时,因为0--<x x e e ,所以此时2()0--=<x x e e f x x,故排除A .D ;又1(1)2=->f e e ,故排除C ,选B .2、(2020届山东省烟台市高三上期末)设0.5log 3a =,30.5b =,0.513c -⎛⎫= ⎪⎝⎭,则,,a b c 的大小关系为( )A .a b c <<B .a c b <<C .b a c <<D .b c a <<【答案】A【解析】 由题,因为0.5log y x =单调递减,则0.50.5log 3log 10a =<=;因为0.5x y =单调递减,则3000.50.51b <=<=;因为3x y =单调递增,则0.50.5013313c -⎛⎫==>= ⎪⎝⎭,所以01a b c <<<<,故选:A 3、(2017北京)已知函数1()3()3x x f x =-,则()f x A .是奇函数,且在R 上是增函数 B .是偶函数,且在R 上是增函数 C .是奇函数,且在R 上是减函数 D .是偶函数,且在R 上是减函数【答案】A【解析】11()3()(3())()33x x x x f x f x ---=-=--=-,得()f x 为奇函数, ()(33)3ln33ln30x x x x f x --''=-=+>,所以()f x 在R 上是增函数.选A .4、(2012山东)若函数在[1,2]-上的最大值为4,最小值为m ,且函数()(0,1)x f x a a a =>≠()(14g x m =-在上是增函数,则a = .【答案】 【解析】 当时,有,此时,此时为减函数,不合题意.若,则,故,检验知符合题意. 5、已知函数f (x )=3x-13|x |. (1)若f (x )=2,求x 的值;(2)判断x >0时,f (x )的单调性;(3)若3tf (2t )+mf (t )≥0对于t ∈⎣⎡⎦⎤12,1恒成立,求m 的取值范围. 【解析】:(1)当x ≤0时,f (x )=3x -3x =0,不满足f (x )=2.当x >0时,f (x )=3x-13x ,令3x -13x =2. 03 1.x x >∴>,∴(3x )2-2·3x -1=0,解得3x =1±2.∵3x >1,∴3x =1+2.∴x =log 3(1+2).0x >,1=33x x f x ∴-函数可化为(). (2)∵y =3x 在(0,+∞)上单调递增,y =13x 在(0,+∞)上单调递减,∴f (x )=3x -13x 在(0,+∞)上单调递增.(3)∵t ∈⎣⎡⎦⎤12,1,∴f (t )=3t -13t >0.∴3t f (2t )+mf (t )≥0化为3t⎝⎛⎭⎫32t -132t +m ⎝⎛⎭⎫3t -13t ≥0, 即3t⎝⎛⎭⎫3t +13t +m ≥0,即m ≥-32t -1. 令g (t )=-32t-1,则g (t )在⎣⎡⎦⎤12,1上递减, ∴g (x )max =-4.∴所求实数m 的取值范围是[-4,+∞).[0,)+∞141a >214,a a m -==12,2a m ==()g x =01a <<124,a a m -==11,416a m ==。
指数函数课件
03
指数函数的应用举例
指数函数在经济学中的应用
01
02
03
复利计算
指数函数可以描述资金在 固定利率下的复利增长情 况,用于计算投资回报和 贷款利息。
经济增长模型
指数函数可以模拟经济增 长的趋势,如GDP、人口 增长等。
指数函数和对数函数是互逆的,即如果$y = a^x$,那么$x = log_a y$。这种关系在解决某些问题时非常有用,可以将指数方程转化为 对数方程进行求解。
指数函数与对数函数的图像关系
指数函数的图像与对数函数的图像关于直线$y = x$对称。这意味着, 如果我们知道一个函数的图像,就可以通过关于直线$y = x$作对称 图形来得到另一个函数的图像。
解法
通过常数变易法或积分因子法求解一阶线性微分方程。对 于一阶非齐次线性微分方程,可以先求出对应的齐次方程 的通解,再利用常数变易法求出特解。
应用 在物理学、工程学等领域中,许多问题都可以转化为一阶 线性微分方程进行求解,如电路分析、热力学等。
THANK YOU
感谢聆听
除法运算
同底数的指数函数相除时,指 数相减,即a^m / a^n = a^(m-n),同时需注意除数不能 为0。
指数函数的复合运算
80%
复合函数的定义
指数函数与其他函数复合而成的函 数,如f(g(x)),其中f(x)和g(x)均 为指数函数。
100%
复合函数的运算规则
根据复合函数的定义,遵循“由内 到外”的运算顺序,先计算内层函 数值,再将其代入外层函数中计算。
03
定点
指数函数的图像都经过点 $(0,1)$。
(完整版),指数函数讲义经典整理(含答案),推荐文档
1指数函数讲义经典整理(含答案)一、同步知识梳理知识点1:指数函数函数叫做指数函数,其中是自变量,函数的定义域是(01)xy a a a =>≠且x R 知识点2:指数函数的图像和性质知识点3:指数函数的底数与图像的关系指数函数在同一直角坐标系中的图像的相对位置与底数大小的关系 如图所示,则,01c d a b <<<<<在轴右侧,图像从下到上相应的底数也由小变大,y 在轴左侧,图像从上到下相应的底数也由小变大y 即无论在轴左侧还是右侧,底数按逆时针方向变大y 在第一象限内,“底大图高”知识点4:指数式、指数函数的理解2① 分数指数幂与根式或以互化,通常利用分数指数幂进行根式的运算② 根式的运算、变形、求值、化简及等式证明在数学中占有重要的地位,是研究方程、不等式和函数的基础,应引起重视③ 在有关根式、分数指数幂的变形、求值过程中,要注意运用方程的观点处理问题,通过解方程或方程组来求值④ 在理解指数函数的概念时,应抓住定义的“形式”,像等1223,,21xx y y x y y =⋅===-函数均不符合形式,因此,它们都不是指数函数()01x y a a a =>≠且⑤ 画指数函数的图像,应抓住三个关键点:x y a =()()11,,0,1,1,a a ⎛⎫- ⎪⎝⎭二、同步题型分析题型1:指数函数的定义、解析式、定义域和值域例1:已知函数,且.(1)求m 的值;(2)判定f (x )的奇偶性;(3)判断f (x )在(0,+∞)上的单调性,并给予证明.考点:指数函数的定义、解析式、定义域和值域;函数单调性的判断与证明.专题:计算题.(1)欲求m的值,只须根据f(4)=的值,当x=4时代入f(x)解一个指数方程即可;(2)求出函数的定义域x|x≠0},利用奇偶性的定义判断f(x)与f(﹣x)的关系,即可得到答案;(3)利用单调性的定义证明即可.任取0<x1<x2,只要证明f(x1)>f(x2),即可.解答:解:(1)因为,所以,所以m=1.(2)因为f(x)的定义域为{x|x≠0},又,所以f(x)是奇函数.(3)任取x1>x2>0,则,因为x1>x2>0,所以,所以f(x1)>f(x2),所以f(x)在(0,+∞)上为单调增函数.点评:本题主要考查了函数单调性的判断、函数奇偶性的判断,与证明及指数方程的解法.在判定函数奇偶性时,一定注意函数的定义域关于原点对称,属于基础题.例2:已知函数,(1)讨论函数的奇偶性;(2)证明:f(x)>0.3指数函数的定义、解析式、定义域和值域;函数奇偶性的判断;函数奇偶性的性质.专题:计算题.分析:(1)由2x﹣1≠0解得义域为{x|x≠0},关于原点对称.f(﹣x)=()(﹣x)=()x=f(x),故该函数为偶函数.(2)任取x∈{x|x≠0},当x>0时,2x>20=1且x>0,故,从而.当x<0时,﹣x>0,故f(﹣x)>0,由函数为偶函数,能证明f(x)>0在定义域上恒成立.解答:解:(1)该函数为偶函数.由2x﹣1≠0解得x≠0即义域为{x|x≠0}关于原点对称…(2分)f(﹣x)=()(﹣x)=﹣(+)x=()x=()x=()x=f(x)(6分)故该函数为偶函数.…(7分)(2)证明:任取x∈{x|x≠0}当x>0时,2x>20=1且x>0,∴2x﹣1>0,4故从而…(11分)当x<0时,﹣x>0,∴f(﹣x)>0,…(12分)又因为函数为偶函数,∴f(x)=f(﹣x)>0,…(13分)∴f(x)>0在定义域上恒成立.…(14分)点评:本题考查函数的奇偶性的判断和证明f(x)>0.解题时要认真审题,注意指数函数性质的灵活运用.例3:已知函数y=ax(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,记.(1)求a的值;(2)求f(x)+f(1﹣x)的值;(3)求的值.考点:指数函数的定义、解析式、定义域和值域.专题:综合题;函数的性质及应用.5分析:(1)由y=ax单调得a+a2=20,由此可求a;(2)写出f(x),代入运算可得;(3)借助(2)问结论分n为奇数、偶数讨论可求;解答:解:(1)∵函数y=ax(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,且y=ax单调,∴a+a2=20,得a=4,或a=﹣5(舍去);(2)由(1)知,∴====1;(3)由(2)知f(x)+f(1﹣x)=1,得n 为奇数时,=×1=;n 为偶数时,=+f ()==;综上,=.点评:本题考查指数函数的单调性、最值等知识,属中档题.6题型2:指数函数的图像变换.例1:已知函数y=|2x﹣2|(1)作出其图象;(2)由图象指出函数的单调区间;(3)由图象指出当x取何值时,函数有最值,并求出最值.考点:指数函数的图像变换.专题:综合题;函数的性质及应用.分析:(1)函数y=|2x﹣2|图象是由y=2x的图象向下平移2个单位,再将x轴下方的部分翻着到x轴上方得到.(2)结合函数的图象,可得函数的减区间和增区间.(3)数形结合可得,当x=1时,ymiin=0.解答:解:(1)函数y=|2x﹣2|图象是由y=2x的图象向下平移2个单位,再将x轴下方的部分翻着到x轴上方得到,如图所示:(2)结合函数的图象,可得函数的减区间为(﹣∞,1],增区间为(1,+∞).(3)数形结合可得,当x=1时,ymiin=0.7点评:本题主要考查指数函数的图象和性质综合,体现了数形结合的数学思想,属于中档题.题型3:指数函数单调性例1:已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0(1)若a•b>0,判断函数f(x)的单调性;(2)若a=﹣3b,求f(x+1)>f(x)时的x的取值范围.考点:指数函数的单调性与特殊点;函数单调性的判断与证明;函数单调性的性质.专题:函数的性质及应用.分析:(1)分a>0,b>0和a<0,b<0两种情况讨论,运用单调性的定义可作出判断;(2)当a=﹣3b时,f(x)=﹣3b•2x+b•3x=b(3x﹣3•2x),分b>0,b<0两种情况进行讨论,整理可得指数不等式解出即可;8解答:解:(1)当a>0,b>0时,任意x1,x2∈R,且x1<x2,则f(x1)﹣f(x2)=a (﹣)+b (﹣),∵<,<,a>0,b>0,∴a(﹣)<0,b (﹣)<0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),故函数f(x)在R上是增函数;当a<0,b<0时,同理,可判断函数f(x)在R上是减函数;(2)当a=﹣3b时,f(x)=﹣3b•2x+b•3x=b(3x﹣3•2x),则f(x+1)>f(x)即化为b(3x+1﹣3•2x+1)>b(3x﹣3•2x),若b>0,则有3x+1﹣3•2x+1>3x﹣3•2x,整理得,解得x>1;若b<0,则有3x+1﹣3•2x+1<3x﹣3•2x,整理得,解得x<1;故b>0时,x的范围是x>1;当b<0时,x的范围是x<1.点评:本题考查函数单调性的判断、指数函数的单调性的应用,考查分类讨论思想,属基础题.例2:已知定义在(﹣1,1)上的奇函数f(x).在x∈(﹣1,0)时,f(x)=2x+2﹣x.(1)试求f(x)的表达式;9(2)用定义证明f(x)在(﹣1,0)上是减函数;(3)若对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立,求实数t的取值范围.考点:指数函数综合题;奇偶性与单调性的综合.专题:计算题;函数的性质及应用.分析:(1)由f(x)是定义在(﹣1,1)上的奇函数可得f(0)=0,x∈(0,1)时,f(x)=﹣f(﹣x)=﹣(2x+2﹣x);从而写出f(x)的表达式;(2)取值,作差,化简,判号,下结论五步;(3)对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立转化为对于x∈(0,1)上的每一个值,不等式t>﹣恒成立,从而可得.解答:解:(1)∵f(x)是定义在(﹣1,1)上的奇函数,∴f(0)=0,设∈(0,1),则﹣x∈(﹣1,0),则f(x)=﹣f(﹣x)=﹣(2x+2﹣x),10故f(x)=;(2)任取x1,x2∈(﹣1,0),且x1<x2,则f(x1)﹣f(x2)=+﹣(+)=,∵x1<x2<0,∴﹣<0,0<<1,故f(x1)﹣f(x2)>0,故f(x)在(﹣1,0)上是减函数;(3)由题意,t•2x•f(x)<4x﹣1可化为t•2x•(﹣(2x+2﹣x))<4x﹣1,化简可得,t>﹣,令g(x)=﹣=﹣1+,∵x∈(0,1),∴g(x)<﹣1+=0,故对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立可化为11t≥0.点评:本题考查了函数的性质的综合应用及恒成立问题的处理方法,属于难题.例3:已知函数f(x)=|2x﹣1﹣1|,(x∈R).(1)证明:函数f(x)在区间(1,+∞)上为增函数,并指出函数f(x)在区间(﹣∞,1)上的单调性;(2)若函数f(x)的图象与直线y=t有两个不同的交点A(m,t),B(n,t),其中m<n,求m+n 的取值范围.考点:指数函数综合题.专题:计算题;证明题.分析:(1)函数单调性的证明,通常依据定义,步骤为:取值,作差,变形,定号,下结论,由于与指数函数有关,求解时要利用到指数函数的单调性;(2)由(1)可知,函数的值域为(0,1),要使函数f(x)的图象与直线y=t有两个不同的交点,故有t∈(0,1)又函数f(x)的图象与直线y=t有两个不同的交点,所以A(m,t),B(n,t)分别位于直线x=1的两侧,由m<n,得m<1<n,故可以求出m+n,进而由t∈(0,1),可求m+n的取值范围.解答:解:(1)证明:任取x1∈(1,+∞),x2∈(1,+∞),且x1<x2,=,∵x1<x2,∴,12∴,∴f(x1)<f(x2).所以f(x)在区间(1,+∞)上为增函数.(5分)函数f(x)在区间(﹣∞,1)上为减函数.(6分)(2)因为函数f(x)在区间(1,+∞)上为增函数,相应的函数值为(0,+∞),在区间(﹣∞,1)上为减函数,相应的函数值为(0,1),由题意函数f(x)的图象与直线y=t有两个不同的交点,故有t∈(0,1),(8分)易知A(m,t),B(n,t)分别位于直线x=1的两侧,由m<n,得m<1<n,故2m﹣1﹣1<0,2n﹣1﹣1>0,又A,B两点的坐标满足方程t=|2x﹣1﹣1|,故得t=1﹣2m﹣1,t=2n﹣1﹣1,即m=log2(2﹣2t),n=log2(2+2t),(12分)故m+n=log2(2﹣2t)+log2(2+2t)=log2(4﹣4t2),当0<t<1时,0<4﹣4t2<4,﹣∞<log2(4﹣4t2)<2.因此,m+n的取值范围为(﹣∞,2).(17分)点评:本题的考点是指数函数综合问题,主要考查函数单调性的证明,考查函数图形的性质,有较强的综合性.依据定义,证明函数的单调性的步骤通常为:取值,作差,变形,定号,下结论三、课堂达标检测检测题1:已知函数f(x)=(其中e=2.71828…是一个无理数).13(1)求函数f(x)的定义域;(2)判断奇偶性并证明之;(3)判断单调性并证明之.考点:指数函数的定义、解析式、定义域和值域;函数单调性的判断与证明;函数奇偶性的判断.专题:计算题;证明题.分析:(1)把分子整理变化成和分母相同的一部分,进行分子常数化,则变量只在分母上出现,根据分母是一个指数形式,恒大于零,得到函数的定义域是全体实数.(2)根据上一问值函数的定义域关于原点对称,从f(﹣x)入手整理,把负指数变化为正指数,就得到结果,判断函数是一个奇函数.(3)根据判断函数单调性的定义,设出两个任意的自变量,把两个自变量的函数值做差,化成分子和分母都是因式乘积的形式,根据指数函数的性质,判断差和零的关系.解答:解:f(x)==1﹣(1)∵e2x+1恒大于零,∴x∈R(2)函数是奇函数∵f(﹣x)==又由上一问知函数的定义域关于原点对称,∴f(x)为奇函数14(3)是一个单调递增函数设x1,x2∈R 且x1<x2则f(x1)﹣f(x2)=1﹣=∵x1<x2,∴∴f(x1)﹣f(x2)<0即f(x1)<f(x2)∴f(x)在R是单调增函数点评:本题考查函数的定义域,考查函数的奇偶性的判断及证明.考查函数单调性的判断及证明,考查解决问题的能力,是一个综合题目.检测题2:已知函数f(x)=2ax+2(a为常数)(1)求函数f(x)的定义域.(2)若a=1,x∈(1,2],求函数f(x)的值域.(3)若f(x)为减函数,求实数a的取值范围.考点:指数函数的定义、解析式、定义域和值域;指数函数的单调性与特殊点.专题:常规题型;转化思想.分析:(1)利用指数函数的定义域来考虑.(2)利用函数f(x)在(1,2]上的单调性求函数的值域.15(3)根据复合函数的单调性,函数u=ax+2必须为减函数.解答:解:(1)函数y=2ax+2对任意实数都有意义,所以定义域为实数集R.(2)因为a=1,所以f(x)=2x+2.易知此时f(x)为增函数.又因为1<x≤2,所以f(1)<f(x)≤f(2),即8<f(x)≤16.所以函数f(x)的值域为(8,16].(3)因为f(x)为减函数,而y=2u是增函数,所以函数u=ax+2必须为减函数.所以得a<0点评:本题考查指数函数的定义域、值域、单调性,复合函数的单调性,体现转化的数学思想.检测题3:设f(x)的定义域是(﹣∞,0)∪(0,+∞),且f(x)对任意不为零的实数x都满足f(﹣x)=﹣f(x).已知当x>0时(1)求当x<0时,f(x)的解析式(2)解不等式.考点:指数函数的定义、解析式、定义域和值域;函数奇偶性的性质.专题:常规题型.分析:(1)求当x<0时,f(x)的解析式,在哪个区间上求解析式,就在哪个区间上取值x,再转化到已知区间上求解析式,由f(﹣x)=﹣f(x)解出f(x)即可.(2)解不等式f(x)<﹣,分x>0和x<0两种情况,根据求得的解析式求解即可.16解答:解:(1)当x<0时,﹣x>0,=又f(﹣x)=﹣f(x)所以,当x<0时,(2)x>0时,,∴化简得∴,解得1<2x<4∴0<x<2当x<0时,∴解得2x>1(舍去)或∴x<﹣2解集为{x|x<﹣2或0<x<2}点评:本题考查分段函数解析式的求法,注意在哪个区间上求解析式,就在哪个区间上取值,再转化到已知的区间上求解析式,再根据奇偶性,解出f(x)来.解不等式也要分段求解,注意x的取值范围.1718。
指数函数及其性质PPT课件
05 指数函数与其他函数的比 较
与线性函数的比较
线性函数
y=kx+b,表示的是一种 匀速变化,增加或减少的 趋势。
指数函数
y=a^x,表示的是一种爆 炸式增长或衰减的趋势。
比较
线性函数的变化速率是恒 定的,而指数函数的变化 速率会随着x的增大或减小 而快速增大或减小。
与幂函数的比较
01
幂函数
y=x^n,当n>0时,表示的是一种增长趋势;当n<0时,表示的是一种
包括单调性、奇偶性、周期性等。
指数函数的应用
在数学、物理、工程等领域都有广泛的应用。
练习与思考
练习题
根据指数函数的性质,判断下列哪些是指数函数,哪些不是,并说明理由。
思考题
指数函数在生活和生产中有哪些应用?请举例说明。
THANKS FOR WATCHING
感谢您的观看
指数函数的运算性质
01
基本运算性质
02
$a^m times a^n = a^{m+n}$
03
$(a^m)^n = a^{mn}$
04
$frac{a^m}{a^n} = a^{m-n}$
05
复合运算性质:如果 $u(x) = b^x$ 且 $b > 0$ 且 $b neq 1$,则 $y = a^{u(x)}$ 也是指数函数。
04
05
指数函数的值域为 $(0, +infty)$。
指数函数的图像
当 $a > 1$ 时,图像位于第一象限和第四象限 ;
绘制方法:选择一个 $a$ 值,例如 $y = 2^x$ 或 $y = frac{1}{2}^x$,然后使用计算器或数学软件绘制图
指数函数典型例题详细解析
指数函数典型例题详细解析指数函数·例题解析第一课时例1:求下列函数的定义域与值域:1) $y=\frac{3}{2-x}$解:定义域为$x\in R$且$x\neq 2$,值域为$y>0$且$y\neq1$。
2) $y=2x+2-1$解:由$2^{\frac{x+2}{2}-1}\geq 0$,得定义域为$x\geq -2$,值域为$|y|\geq 0$。
3) $y=3-3x-1$解:由$3-3^{\frac{x-1}{2}}\geq 0$,得定义域为$x\leq 2$,由$3-3^{\frac{x-1}{2}}<3$,得值域为$y<3$。
1.指数函数$y=a^x$($a>0$且$a\neq 1$)的定义域是$R$,值域是$(0,+\infty)$。
2.求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为$0$③形如$a^0$,($a\neq 0$)3.求函数的值域:①利用函数$y=a^x$单调性②函数的有界性($x^2\geq 0;a^x>0$)③换元法。
例如:$y=4x+\frac{6}{2x-8}$($1\leq x\leq 2$),先换元,再利用二次函数图象与性质(注意新元的范围)。
例2:指数函数$y=a^x$,$y=b^x$,$y=c^x$,$y=d^x$的图像如图2.6-2所示,则$a$、$b$、$c$、$d$、$1$之间的大小关系是?解:选$(c)$,在$x$轴上任取一点$(x,0)$,则得$b<a<1<d<c$。
例3:比较大小:1)$2$、$3^2$、$5^4$、$8^8$、$9^{16}$的大小关系是:$2<3^2<5^4<8^8<9^{16}$。
2)$\frac{0.6}{4}-\frac{5}{13}-2$,$2$的大小关系是:$\frac{0.6}{4}-\frac{5}{13}-2<2$。
专题14 指、对、幂形数的大小比较问题(精讲精练)(解析版)
专题14 指、对、幂形数的大小比较问题【命题规律】指、对、幂形数的大小比较问题是高考重点考查的内容之一,也是高考的热点问题,命题形式主要以选择题为主.每年高考题都会出现,难度逐年上升.【核心考点目录】核心考点一:直接利用单调性 核心考点二:引入媒介值 核心考点三:含变量问题 核心考点四:构造函数 核心考点五:数形结合核心考点六:特殊值法、估算法 核心考点七:放缩法 核心考点八:不定方程【真题回归】1.(2022·天津·统考高考真题)已知0.72a =,0.713b ⎛⎫= ⎪⎝⎭,21log 3c =,则( )A .a c b >>B .b c a >>C .a b c >>D .c a b >>【答案】C 【解析】因为0.70.7221120log 1log 33⎛⎫>>=> ⎪⎝⎭,故a b c >>.故答案为:C.2.(2022·全国·统考高考真题)已知910,1011,89m m m a b ==-=-,则( ) A .0a b >> B .0a b >> C .0b a >> D .0b a >>【答案】A【解析】[方法一]:(指对数函数性质)由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m >, 所以8log 989890m b =-<-=.综上,0a b >>. [方法二]:【最优解】(构造函数)由910m =,可得9log 10(1,1.5)m =∈.根据,a b 的形式构造函数()1(1)m f x x x x =--> ,则1()1m f x mx -'=-, 令()0f x '=,解得110m x m -= ,由9log 10(1,1.5)m =∈ 知0(0,1)x ∈ .()f x 在 (1,)+∞ 上单调递增,所以(10)(8)f f > ,即 a b > ,又因为9log 10(9)9100f =-= ,所以0a b >> .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用,a b 的形式构造函数()1(1)m f x x x x =-->,根据函数的单调性得出大小关系,简单明了,是该题的最优解.3.(2022·全国·统考高考真题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c<a<bD .a c b <<【答案】C【解析】方法一:构造法设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++, 当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增, 所以1()(0)09f f <=,所以101ln 099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11xx x g x x x x -+'=+=--, 令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当01x <<时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,11x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当01x <<时,()0h x <,所以当01x <<时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增, 所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c > 故选:C.方法二:比较法 0.10.1a e = , 0.110.1b =- , ln(10.1)c =-- , ① ln ln 0.1ln(10.1)a b -=+- , 令()ln(1),(0,0.1],f x x x x =+-∈则 1()1011x f x x x-'=-=<-- , 故 ()f x 在 (0,0.1]上单调递减,可得(0.1)(0)0f f <=,即 ln ln 0a b -< ,所以 a b < ;② 0.10.1ln(10.1)a c e -=+- , 令 ()ln(1),(0,0.1],x g x xe x x =+-∈则 ()()()1111'11x xxx x e g x xe e x x+--=+-=-- , 令 ()(1)(1)1x k x x x e =+-- ,所以 2()(12)0x k x x x e '=--> , 所以 ()k x 在 (0,0.1] 上单调递增,可得 ()(0)0k x k >>,即 ()0g x '> ,所以 ()g x 在 (0,0.1]上单调递增,可得 (0.1)(0)0g g >= ,即 0a c -> ,所以 .a c >故 .c a b <<4.(2021·天津·统考高考真题)设0.3212log 0.3,log 0.4,0.4a b c ===,则a ,b ,c 的大小关系为( ) A .a b c << B .c<a<b C .b<c<a D .a c b <<【答案】D【解析】22log 0.3log 10<=,<0a ∴, 122225log 0.4log 0.4log log 212=-=>=,1b ∴>, 0.3000.40.41<<=,01c ∴<<, a c b ∴<<.故选:D.5.(2022·全国·统考高考真题)已知3111,cos ,4sin 3244a b c ===,则( ) A .c b a >> B .b a c >> C .a b c >> D .a c b >>【答案】A【解析】[方法一]:构造函数 因为当π0,,tan 2x x x ⎛⎫∈< ⎪⎝⎭故14tan 14c b =>,故1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞, ()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,故1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->, 所以b a >,所以c b a >>,故选A [方法二]:不等式放缩 因为当π0,,sin 2x x x ⎛⎫∈< ⎪⎝⎭,取18x得:2211131cos 12sin 1248832⎛⎫=->-= ⎪⎝⎭,故b a >1114sin cos 444ϕ⎛⎫+=+ ⎪⎝⎭,其中0,2πϕ⎛⎫∈ ⎪⎝⎭,且sin ϕϕ==当114sin cos 44+=142πϕ+=,及124πϕ=-此时1sin cos 4ϕ==1cos sin 4ϕ==故1cos4=11sin 4sin 44<=<,故b c < 所以b a >,所以c b a >>,故选A [方法三]:泰勒展开设0.25x =,则2310.251322a ==-,2410.250.25cos 1424!b =≈-+, 241sin10.250.2544sin1143!5!4c ==≈-+,计算得c b a >>,故选A. [方法四]:构造函数 因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭,所以11tan 44>,即1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞,()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->,所以b a >,所以c b a >>, 故选:A .[方法五]:【最优解】不等式放缩 因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭,所以11tan 44>,即1cb >,所以c b >;因为当π0,,sin 2x x x ⎛⎫∈< ⎪⎝⎭,取18x 得2211131cos 12sin 1248832⎛⎫=->-= ⎪⎝⎭,故b a >,所以c b a >>. 故选:A .【整体点评】方法4:利用函数的单调性比较大小,是常见思路,难点在于构造合适的函数,属于通性通法; 方法5:利用二倍角公式以及不等式π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭放缩,即可得出大小关系,属于最优解.【方法技巧与总结】(1)利用函数与方程的思想,构造函数,结合导数研究其单调性或极值,从而确定a ,b ,c 的大小. (2)指、对、幂大小比较的常用方法:①底数相同,指数不同时,如1x a 和2x a ,利用指数函数x y a =的单调性; ②指数相同,底数不同,如1ax 和2ax 利用幂函数a y x =单调性比较大小;③底数相同,真数不同,如1log a x 和2log a x 利用指数函数log a x 单调性比较大小;④底数、指数、真数都不同,寻找中间变量0,1或者其它能判断大小关系的中间量,借助中间量进行大小关系的判定.(3)转化为两函数图象交点的横坐标 (4)特殊值法 (5)估算法(6)放缩法、基本不等式法、作差法、作商法、平方法【核心考点】核心考点一:直接利用单调性 【典型例题】例1.(2023·全国·高三专题练习)已知三个函数112()21,()e 1,()log (1)1x x f x x g x h x x x --=+-=-=-+-的零点依次为,,a b c ,则,,a b c 的大小关系( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>【答案】D【解析】∵函数1()21x f x x -=+-为增函数,又11(0)210,(1)102f f -=-=-<=>,∴()0,1a ∈,由1()e 10x g x -=-=,得1x =,即1b =, ∵2()log (1)1h x x x =-+-在()1,+∞单调递增,又223331()log (1)10,(2)log (21)21102222h h =-+-=-<=-+-=>,∴322c <<, ∴c b a >>. 故选:D.例2.(2022春·辽宁大连·高三校联考期中)已知111m n>>,n a n =,m b n =,n c m =,则a ,b ,c 的大小关系正确的为( ) A .c >a >b B .b >a >c C .b >c >a D .a >b >c【答案】B 【解析】由题意111m n>>,故01m n <<<, 由指数函数的单调性,x y n =单调递减,故b a >, 由幂函数的单调性,n y x =在(0,)+∞单调递增,故a c >, 综上:b a c >>. 故选:B例3.(2022春·贵州黔东南·高二凯里一中阶段练习)设21log 3aa ⎛⎫= ⎪⎝⎭,132log bb =,154c⎛⎫= ⎪⎝⎭,则a 、b 、c的大小关系是( ) A .b a c << B .c b a << C .a b c << D .b<c<a【答案】B【解析】构造函数()21log 3xf x x ⎛⎫=- ⎪⎝⎭,因为函数2log y x =、13xy ⎛⎫=- ⎪⎝⎭在()0,∞+上均为增函数,所以,函数()f x 为()0,∞+上的增函数,且()1103f =-<,()8209f =>,因为()0f a =,由零点存在定理可知12a <<;构造函数()132log xg x x =-,因为函数2x y =、13log y x =-在()0,∞+上均为增函数, 所以,函数()g x 为()0,∞+上的增函数,且1912209g ⎛⎫=-< ⎪⎝⎭,1312103g ⎛⎫=-> ⎪⎝⎭,因为()0g b =,由零点存在定理可知1193b <<.因为154c⎛⎫= ⎪⎝⎭,则1144log 5log 10c =<=,因此,c b a <<.故选:B.例4.(2023·全国·高三专题练习)已知54m =,89n =,0.90.8p =,则正数m ,n ,p 的大小关系为( ) A .p m n >> B .m n p >>C .m p n >>D .p n m >>【答案】A【解析】由54m =,得125542m ==<89n =,得118493n ==, 因此,122112020855202011520442222561324333m n ⨯⨯⎛⎫⎛⎫⎛⎫ ⎪====> ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭m n >, 由0.90.8p =,得0.90.9log 0.8log 0.812p =>=,于是得p m n >>, 所以正数m ,n ,p 的大小关系为p m n >>. 故选:A核心考点二:引入媒介值 【典型例题】例5.(2023·全国·高三专题练习)已知3110π,53,log 2a bc ===-,则a ,b ,c 的大小关系为( )A .a b c <<B .b a c <<C .c<a<bD .a c b <<【答案】D【解析】由3110,53,log 2a bc π===-可得,lg πa =,5log 3b =,123c -=,由于1213,12c -⎛⎫==⎪⎝⎭,1lg π2a ==,551log 3log 2b =>=,而35c =<,3553<,所以35553log 3log 55b =>=,所以ac b <<. 故选:D .例6.(2023·全国·高三专题练习)设0.124log 3,log 5,2a b c -===,则a ,b ,c 的大小关系为( )A .a b c >>B .b a c >>C .c b a >>D .a c b >>【答案】A【解析】依题意,24ln 3log 3ln 32ln 22ln 3ln 9ln 21,ln 5log 5ln 2ln 5ln 5ln 5ln 4a a b b ===⨯==>∴>, 0.14404121log 5log ,2b c ->==<==,所以1a b c >>> 故选:A例7.(2023·全国·高三专题练习)已知14sin 4,ln 4,4a b c -===,则a ,b ,c 的大小关系是( )A .c b a <<B .a b c <<C .a c b <<D .b<c<a【答案】C【解析】()sin4sin 40π==--<a , ln 4ln e 1=>=b , 14124210--==<=<c , 所以a c b <<. 故选:C .例8.(2022·云南昆明·昆明一中模拟预测)已知13e a =,ln 2b =,3log 2c =,则,,a b c 的大小关系为( ) A .a c b >> B .a b c >> C .b c a >> D .c b a >>【答案】B 【解析】103e e 1=>=a ,ln 2ln e 1b =<=,33log 2log 31c =<=∴a 最大,3lg 2lg 211ln 2log 2lg 20lge lg3lge lg3⎛⎫-=-=-=⋅-> ⎪⎝⎭b c ,∴b c >, ∴a b c >>,故选:B例9.(2023·广西南宁·南宁二中校考一模)已知0.20.212log 0.5,0.5,log 0.4a b c ===,则a ,b ,c 的大小关系为( ) A .a b c << B .a c b << C .b<c<a D .c<a<b【答案】A【解析】因为0.20.20.21log 0.5log log 2a ==<=,而150.2110.522b ⎛⎫==> ⎪⎝⎭,且0.20.51<,所以a b <. 又12225log 0.4log log 212c ==>>, 所以a b c <<, 故选:A.例10.(2023·全国·高三专题练习)三个数a =0.42,b =log 20.3,c =20.6之间的大小关系是( ) A .a <c <b B .a <b <cC .b <a <cD .b <c <a【答案】C【解析】∵0<0.42<0.40=1,∴0<a <1, ∵log 20.3<log 21=0,∴b <0, ∵20.6>20=1,∴c >1, ∴b <a <c , 故选:C .核心考点三:含变量问题 【典型例题】例11.(2022·广西·统考模拟预测)已知正数,,x y z 满足e ,x y =且,,x y z 成等比数列,则,,x y z 的大小关系为( ) A .x y z >> B .y x z >> C .x z y >> D .z y x >>【答案】D【解析】令()e ,0x f x y x x x =-=->,则()e 1xf x '=-,当0x >时,()e 10x f x '=->,()f x 单调递增,所以()0=e >e =1x f x x -,所以e x x >,故y x >,因为正数,,x y z 成等比数列,所以2y xz =即2e x xz =,故2e x z x=,所以2e e 1e x xx z y x x==>,故z y >, 综上所述,z y x >>, 故选:D例12.(2022春·湖南岳阳·高三统考阶段练习)已知正数,,a b c ,满足ln c a b b e c a =⋅=⋅,则,,a b c 的大小关系为( ) A .a b c << B .a c b << C .b c a << D .c b a <<【答案】D【解析】,,a b c 均为正数,因为ln a b c a =⋅,所以ln c b =,设()ln 0ca b b e c a t t =⋅=⋅=>,则,=,ln ln e c t t ta b c b b b===, 令()()ln 0f x x x x =->,则()111xf x x x-'=-=,当01x <<时0f x,()f x 单调递增,当1x >时()0f x '<,()f x 单调递减,所以()()110f x f ≤=-<,即ln x x <,所以ln b b <,可得a b >, 又ln c b =得c b <,综上,c b a <<. 故选:D.例13.(2022春·湖北·高三校联考开学考试)已知,,a b c 均为不等于1的正实数,且ln ln ,ln ln c a b a b c ==,则,,a b c 的大小关系是( )A .c a b >>B .b c a >>C .a b c >>D .a c b >>【答案】D【解析】ln ln ,ln ln c a b a b c ==且a 、b 、c 均为不等于1的正实数, 则ln c 与ln b 同号,ln c 与ln a 同号,从而ln a 、ln b 、ln c 同号. ①若a 、b 、()0,1c ∈,则ln a 、ln b 、ln c 均为负数,ln ln ln a b c c =>,可得a c >,ln ln ln c a b b =>,可得c b >,此时a c b >>;②若a 、b 、()1,c ∈+∞,则ln a 、ln b 、ln c 均为正数,ln ln ln a b c c =>,可得a c >,ln ln ln c a b b =>,可得c b >,此时a c b >>.综上所述,a c b >>. 故选:D.例14.(2023·全国·高三专题练习)已知实数a ,b ,c 满足ln ln ln 0e a a b cb c==-<,则a ,b ,c 的大小关系为( ) A .b a c << B .c b a <<C .a b c <<D .c<a<b【答案】C【解析】由题意知0,0,0a b c >>>,由ln ln ln 0a a b ce b c==-<,得01,01,1a b c <<<<>, 设ln ()(0)x f x x x =>,则21ln ()xf x x -'=, 当01x <<时,()0,()'>f x f x 单调递增,因1x e x ≥+, 当且仅当0x =时取等号,故(01)a e a a ><<, 又ln 0a <,所以ln ln a a ae a >,故ln ln b a b a>, ∴()()f b f a >,则b a >,即有01a b c <<<<,故a b c <<. 故选:C .例15.(2023·全国·高三专题练习)已知,42x ππ⎛⎫∈ ⎪⎝⎭且222sin 2sin 1exx a +=,cos cos 1e x x b +=,sin sin 1e x x c +=,则a ,b ,c 的大小关系为( ) A .a b c << B .b<c<a C .a c b << D .c<a<b【答案】C【解析】构造函数()()10e x x f x x +=>,则()2222sin 2sin 12sin exx a f x +==,()cos cos 1cos e x x b f x +==,()sin sin 1sin e xx c f x +==. 因为()()()2e 1e 0e e x xxx x xf x -+'==-<在()0,∞+上恒成立,所以函数()f x 在()0,∞+上单调递减. 又因为,42x ππ⎛⎫∈ ⎪⎝⎭,所以()22sin sin sin 2sin 10x x x x -=->,且sin cos x x >,故a c b <<.故选:C .例16.(2023·四川绵阳·四川省绵阳南山中学校考一模)已知()1e ,1x -∈,记ln ln 1ln ,,e 2⎛⎫=== ⎪⎝⎭xx a x b c ,则,,a b c的大小关系是( ) A .a c b << B .a b c << C .c b a << D .b<c<a【答案】A【解析】因为()1e ,1x -∈,所以()()ln ln 1ln 1,0,,e 211,2,1e ⎛⎫=∈-== ⎪⎛⎫∈∈ ⎝⎝⎭⎪⎭xx a x b c ,所以a c b <<, 故选:A核心考点四:构造函数 【典型例题】例17.(2023·全国·高三专题练习)已知0.03e 1a =-,3103b =,ln1.03c =,则a ,b ,c 的大小关系为( )A .a b c >>B .a c b >>C .c a b >>D .b a c >>【答案】B【解析】记()()e 1,0xf x x x =--≥.因为,所以当0x >时,,所以()f x 在()0,+∞上单调递增函数,所以当0x >时,()()00f x f >=,即1x e x ->,所以0.03e 10.03->.记()()()ln 1,0g x x x x =+-≥.因为,所以()g x 在()0,+∞上单调递减函数,所以当0x >时,()()00g x g <=,即()ln 1x x +<,所以ln1.030.03<.所以a c >.记()()()ln 1,01xh x x x x=+-≥+. 因为,所以当0x >时,,所以()h x 在()0,+∞上单调递增函数,所以当0x >时,()()00h x h >=,即()ln 11x x x +>+,所以0.033ln1.0310.03103>=+. 所以c b >.综上所述:a c b >>. 故选:B例18.(四川省眉山市2023届高三第一次诊断性考试数学(文)试题)设 1.02a =,0025.e b =,0.92sin 0.06c =+,则a ,b ,c 的大小关系是( ) A .c b a << B .a b c << C .b<c<a D .c<a<b【答案】D【解析】令()e x f x x =-,则()e 1xf x '=-,当0x >,()0f x >′,此时()f x 单调递增, 当0x <,()0f x <′,此时()f x 单调递减, 所以()()00e 01f x f >=-=,所以()0.020.02e 0.021f =->,即0.02e 1.02>,所以0.0250.02e e 1.02b a =>>=;又设()sin g x x x =-,()cos 10g x x '=-≤恒成立, ∴当0x >, ()g x 单调递减,()sin (0)0g x x x g =-<= 当0x >时,有sin x x <,则sin0.060.06<, 所以0.92sin0.060.920.06 1.02c a =+<+⨯==, 综上可得c a b <<. 故选:D .例19.(2023春·广东广州·高三统考阶段练习)设0.1a =,sin0.1b =, 1.1ln1.1c =,则,,a b c 的大小关系正确的是( ) A .b c a << B .b a c <<C .a b c <<D .a c b <<【答案】B【解析】令函数()sin f x x x =-,[0,)2x π∈,当02x π<<时,()cos 10f x x '=-<,即()f x 在(0,)2π上递减,则当02x π<<时,()(0)<f x f ,即sin x x <,因此sin 0.10.1<,即b a <;令函数()(1)ln(1)g x x x x =++-,01x ≤<,当01x <<时,()ln(1)0g x x '=+>,则()g x 在(0,1)上单调递增, 则当01x <<时,()(0)0g x g >=,即(1)ln(1)x x x ++>,因此0.1 1.1ln1.1<,即a c <,所以,,a b c 的大小关系正确的是b a c <<. 故选:B例20.(2023·全国·高三专题练习)设150a =,()ln 1sin0.02b =+,5121n 50c =,则a ,b ,c 的大小关系正确的是( ) A .a b c << B .a c b << C .b<c<a D .b a c <<【答案】D【解析】设()sin ,0,2f x x x x π⎛⎫=-∈ ⎪⎝⎭,则()cos 10f x x '=-≤,所以()f x 在0,2x π⎛⎫∈ ⎪⎝⎭上递减,所以()()00f x f <=,即sin x x <,设()()ln 1,0,1g x x x x =-+∈,则()110g x x'=->,()g x 递增, 则()()10g x g <=,即ln 1x x <-,所以()ln 1sin0.02sin0.020.02b a =+<<=,令()()2e 1x h x x =-+,则()()e 21x h x x '=-+,()e 2xh x ''=-,当ln 2x <时,()0h x ''<,则()h x '递减,又()()ln 22ln 20,010h h ''=-<=-<, 所以当()0,ln 2x ∈时,()0h x '<,()h x 递减, 则()()00h x h <=,即()2e 1x x <+,因为()0.020,ln 2∈,则()0.020h <, 所以512ln 0.02250e 1.02e <=,即150a =<5121n 50c =, 故b a c <<, 故选:D例21.(2023·全国·高三专题练习)设11166,2ln sin cos ,ln 5101055a b c ⎛⎫==+= ⎪⎝⎭,则,,a b c 的大小关系是___________. 【答案】.b a c <<【解析】由已知可得2111112ln sin cos ln sin cos ln(1sin )101010105b ⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭,设()sin f x x x =-,(0,1)x ∈,则()1cos 0f x x '=->, 所以()sin f x x x =-在(0,1)上单调递增,所以1(0)05f f ⎛⎫>= ⎪⎝⎭,即11sin 55>,所以11ln 1sin ln 155b ⎛⎫⎛⎫=+<+ ⎪ ⎪⎝⎭⎝⎭,设()ln(1)g x x x =-+,(0,1)x ∈,则1()1011x g x x x '=-=>++, 所以()ln(1)g x x x =-+在(0,1)上单调递增,所以1(0)05g g ⎛⎫>= ⎪⎝⎭,即111ln 1ln 1sin 555⎛⎫⎛⎫>+>+ ⎪ ⎪⎝⎭⎝⎭,所以a b >,设6()ln(1)5h x x x =-+,(0,1)x ∈,则651()1551x h x x x -'=-=++,当105x ⎛⎫∈ ⎪⎝⎭,时,()0h x '<,当1,15x ⎛⎫∈ ⎪⎝⎭时,()0h x '>,所以6()ln(1)5h x x x =-+在105⎛⎫⎪⎝⎭,上单调递减,在1,15⎛⎫ ⎪⎝⎭上单调递增,所以1(0)05h h ⎛⎫<= ⎪⎝⎭,即16166ln 1ln 55555⎛⎫<+= ⎪⎝⎭,所以a c <,所以.b a c << 故答案为:.b a c <<.例22.(2023·四川南充·四川省南充高级中学校考模拟预测)设150a =,112ln sin cos 100100b ⎛⎫=+ ⎪⎝⎭,651ln 550c =,则a ,b ,c 的大小关系正确的是( ) A .a b c << B .a c b << C .b<c<a D .b a c <<【答案】D【解析】因为10.0250ln e ln e a ==,211ln sin cos 100100b ⎛⎫=+ ⎪⎝⎭,6551ln 50c ⎛⎫= ⎪⎝⎭,所以只要比较6250.02 1.211151e ,sin cos 1sin 1sin 0.02,(10.02)1001005050x y z ⎛⎫⎛⎫==+=+=+==+ ⎪ ⎪⎝⎭⎝⎭的大小即可,令()e (1sin )(0)x f x x x =-+>,则()e cos 0x f x x '=->,所以()f x 在 (0,)+∞上递增, 所以()(0)f x f >,所以e 1sin x x >+, 所以0.02e 1sin 0.02>+,即1x y >>,令 1.2()(1)e x g x x =+-,则0.2() 1.2(1)e x g x x '=+-,0.8()0.24(1)e x g x x -''=+- 因为()g x ''在(0.)+∞上为减函数,且(0)0.2410g ''=-<, 所以当0x >时,()0g x ''<, 所以()g x '在(0.)+∞上为减函数,因为(0) 1.210g '=->,0.20.2 1.20.2(0.2) 1.2 1.2e 1.2e g '=⨯-=-,要比较 1.21.2与0.2e 的大小,只要比较 1.2ln1.2 1.2ln1.2=与0.2lne 0.2=的大小, 令()(1)ln(1)(0)h x x x x x =++->,则()ln(1)11ln(1)0h x x x '=++-=+>,所以()h x 在上递增,所以()(0)0h x h >=,所以当,()0x ∈+∞时,(1)ln(1)x x x ++>,所以1.2ln1.20.2>, 所以 1.21.2>0.2e ,所以0.20.2 1.20.2(0.2) 1.2 1.2e 1.2e 0g '=⨯-=->, 所以当(0,0.2)x ∈时,()0g x '>, 所以()g x 在(0,0.2)上递增,所以()(0)0g x g >=,所以 1.2(1)e x x +>,所以 1.20.02(10.02)e +>,所以z x >,所以z x y >>, 所以c a b >>, 故选:D例23.(2022春·湖南长沙·高三长沙一中校考阶段练习)已知πln ,2,2tan 13a b c ⎫===⎪⎪⎭,则,,a b c 的大小关系是( ) A .c b a >> B .a b c >> C .b a c >> D .a c b >>【答案】A【解析】设()ln (1)f x x x =--,则1()1f x x'=-,当01x <<时,()0f x '>, 当1x <时,()0f x '<,所以函数()f x 在(0,1)上单调递增,在(1,)+∞单调递减, 所以1x =时,max ()(1)0f x f ==,所以()0f x <,即ln 1x x <-,所以πln213a b ⎫==<=⎪⎪⎭,又(2tan 121tan c b x x ⎫⎫=>=>⎪⎪⎪⎪⎭⎭,对任意π0,2x ⎛⎫∈ ⎪⎝⎭恒成立). 因此c b a >>, 故选:A .例24.(2023·全国·高三专题练习)设23a =ln 2)b =-,3c =,则,,a b c 的大小关系是( ) A .b<c<a B .c b a << C .b a c << D .a b c <<【答案】A【解析】①先比较,a c:2332a ==,3c =,设函数2e ()x f x x =, 则'3e (2)()0x x f x x -=<,得函数()f x 在(0,2)单调递减,'3e (2)()0x xf x x-=>得函数()f x 在(2,)+∞单调递增 所以f f<即c a<;②再比较,b c:由①知2mine()(2)4f x f f c==<=,而1ln2)2b=-=,设2(ln2)3()xh xx+=,'22(ln1)3()xh xx+=-当1ex<<,'()0h x>,()h x单调递增,当1ex>,'()0h x<,()h x单调递减,所以max12()()ee3b h h x h=<==,而22e ee.e344f c<=<=,所以b c<,故选:A核心考点五:数形结合【典型例题】例25.(2023·全国·高三专题练习)已知函数()2xf x x=+,2()logg x x x=+,()2sinh x x x=+的零点分别为a,b,c则a,b,c的大小顺序为()A.a b c>>B.b a c>>C.c a b>>D.b c a>>【答案】D【解析】由()2sin0h x x x=+=得0x=,0c∴=,由()0f x=得2x x=-,由()0g x=得2log x x=-.在同一平面直角坐标系中画出2xy=、2logy x=、y x=-的图象,由图象知a<0,0b>,a c b∴<<.故选:D例26.(2023·江苏·高三专题练习)已知正实数a,b,c满足2e e e ec a a c--+=+,28log3log6b=+,2log2c c+=,则a,b,c的大小关系为()A.a b c<<B.a c b<<C.c a b<<D.c b a<<【答案】B【解析】22e e e e e e e e c a a c c c a a ----⇒+=+-=-,故令()e e x x f x -=-,则()e e c c f c -=-,()e e a af a -=-.易知1e exx y -=-=-和e x y =均为()0,+∞上的增函数,故()f x 在()0,+∞为增函数. ∵2e e a a --<,故由题可知,2e e e e e e c c a a a a ----=->-,即()()f c f a >,则0c a >>.易知22log 3log log 2b =+>,2log 2c c =-, 作出函数2log y x =与函数2y x =-的图象,如图所示,则两图象交点横坐标在()1,2内,即12c <<,c b ∴<,a cb ∴<<.故选:B .例27.(2023·全国·高三专题练习)已知e ππee ,π,a b c ===,则这三个数的大小关系为( )A .c b a <<B .b c a <<C .b a c <<D .c a b <<【答案】A 【解析】令()()ln ,0x f x x x =>,则()()21ln ,0x f x x x -'=>, 由0fx,解得0e x <<,由()0f x '<,解得e x >,所以()()ln ,0xf x x x=>在()0,e 上单调递增,在()e,+∞上单调递减; 因为πe >, 所以()()πe f f <,即ln πln eπe<, 所以eln ππlne <,所以e πln πln e <, 又ln y x =递增, 所以e ππe <,即b a <;ee ππ=⎡⎤⎢⎥⎣⎦,在同一坐标系中作出xy =与y x =的图象,如图:由图象可知在()2,4中恒有xx >,又2π4<<,所以ππ>,又e y x =在()0,∞+上单调递增,且ππ>所以eπe πeπ=⎡⎤>⎢⎥⎣⎦,即b c >;综上可知:c b a <<, 故选:A例28.(2022春·四川内江·高三校考阶段练习)最近公布的2021年网络新词,我们非常熟悉的有“yyds ”、“内卷”、“躺平”等.定义方程()()f x f x '=的实数根x 叫做函数()f x 的“躺平点”.若函数()ln g x x =,()31h x x =-的“躺平点”分别为α,β,则α,β的大小关系为( ) A .αβ≥ B .αβ> C .αβ≤ D .αβ<【答案】D【解析】∵()ln g x x =,则()1g x x'=, 由题意可得:1ln aα=, 令()1ln G x x x=-,则α为()G x 的零点,可知()G x 在定义域()0,∞+内单调递增,且1110,e 10eG G ,∴()1,e α∈;又∵()31h x x =-,则()23h x x '=,由题意可得:3213ββ-=,令()3231H x x x =--,则β为()H x 的零点,()()23632H x x x x x '=-=-,令()0H x '>,则0x <或2x >,∴()H x 在(),0∞-,()2,+∞内单调递增,在()0,2内单调递减, 当(),2x ∈-∞时,()()010H x H ≤=-<,则()H x 在(),2-∞内无零点, 当[)2,x ∞∈+时,()()310,4150H H =-<=>,则()3,4β∈, 综上所述:()3,4β∈; 故αβ<. 故选:D.核心考点六:特殊值法、估算法 【典型例题】例29.(2022·全国·高三专题练习)已知3142342,3,log 4,log 5a b c d ====,则a b c d ,,,的大小关系为( )A .b a d c >>>B .b c a d >>>C .b a c d >>>D .a b d c >>>【答案】C 【解析】 依题意,314222)a ==,函数y =[0,)+∞上单调递增,而934<<,于是得112232)32<<,即32b a >>, 函数4log y x =在(0,)+∞单调递增,并且有44log 30,log 50>>, 则44442log 16log 15log 3log 5=>=+=2+>于是得44log 3log 51⨯<,即4341log 5log 4log 3<=,则c d >, 又函数3log y x =在(0,)+∞单调递增,且4<333log 4log 2<=, 所以32b acd >>>>. 故选:C例30.(2022·全国·高三专题练习)已知a =142b =,2e log c =,则a ,b ,c 的大小关系为( ) A .a b c >>B .a c b >>C .b a c >>D .b c a >>【答案】B 【解析】由49a =,42b =,可知1a b >>,又由2e 8<,从而32e 2<=,可得23log e 2c a =<<,因为4461296()205625b -=-<,所以615b <<; 因为565e 2 2.7640->->,从而56e 2>,即65e 2>, 由对数函数单调性可知,65226log e >log 25c ==, 综上所述,a c b >>. 故选:B.例31.(2023·全国·高三专题练习)若e b a >>>b m a =,a n b =,log a p b =,则m ,n ,p 这三个数的大小关系为( ) A .m n p >> B .n p m >> C .n m p >> D .m p n >>【答案】C【解析】因为e b a >>> 所以取52,2a b ==,则()5225,6bm a ===,25256.2524a n b ⎛⎫=== ⎪⎝⎭=,()25log log 1,22a pb ==∈,所以n m p >>.故选:C.核心考点七:放缩法 【典型例题】例32.(2022·全国·模拟预测)已知2022a =,2223b =,c a b =,则a ,b ,c 的大小关系为( ) A .c a b >> B .b a c >> C .a c b >> D .a b c >>【答案】D【解析】分别对2022a =,2223b =,c a b =两边取对数,得20log 22a =,22log 23b =,log a c b =.()22022lg 22lg 20lg 23lg 22lg 23log 22log 23lg 20lg 22lg 20lg 22a b -⋅-=-=-=⋅. 由基本不等式,得:()222222lg 20lg 23lg 460lg 484lg 22lg 20lg 23lg 222222⎛⎫+⎛⎫⎛⎫⎛⎫⋅<=<== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 所以()2lg 22lg 20lg 230-⋅>, 即0a b ->,所以1a b >>.又log log 1a a c b a =<=,所以a b c >>. 故选:D .例33.(2023·全国·高三专题练习)已知:0.42e a =,0.52b =,4log 5c =,则a 、b 、c 大小关系为( ) A .b a c >> B .a b c >> C .c a b >> D .b c a >>【答案】B【解析】令()e 1x f x x =--,则()e 1xf x '=-,当0x >时,0fx,所以函数()f x 在()0,∞+上递增, 所以()()0.4200f f >=, 即0.42e 0.421>+, 又21.42 2.01642=>, 所以0.420.5e 0.4212>+>, 所以a b >,又25252416⎛⎫=< ⎪⎝⎭,所以0.5524>,54444441024log 54log 5log 4log 55625log 504444---===>, 所以0.5452log 54>>, 所以a b c >>. 故选:B.例34.(2023·全国·高三校联考阶段练习)已知实数,,a b c 满足12330a b +⨯-=1=()()25log 3a c x x x =+-+∈R ,则,,a b c 的大小关系是( )A .a b c >>B .b c a >>C .c b a >>D .a c b >>【答案】D【解析】由12330a b +⨯-=得:2333a b ⨯=⨯,3312a b-∴=>,0a b ∴->,即a b >;31b +=>c b >;由()()25log 3a c x x x =+-+∈R 得:()25log 3a c x x -=-+,221553222y x x x ⎛⎫=-+=-+≥ ⎪⎝⎭,()25555log 3log log 102x x ∴-+≥>=,即a c >;综上所述:a c b >>. 故选:D.例35.(2022·全国·高三专题练习)己知544567,117<<,设6711log 5,log 6,log 7a b c ===,则a ,b ,c 的大小关系为_______.(用“<”连接) 【答案】a b c <<【解析】由544567,117<<得 7115log 645log 7<<,即7114log 6log 75<<, b c ∴<,又267lg 5lg 6lg 5lg 7lg 6log 5log 6lg 6lg 7lg 6lg 7a b ⋅--=-=-=⋅22lg5lg 7lg 62lg 6lg 7+⎛⎫- ⎪⎝⎭⋅<, lg5lg7lg35lg36+=<,lg5lg 7lg 62+∴<, 22lg5lg 7lg 62+⎛⎫∴ ⎪⎝⎭<,a b ∴<,综上:a b c <<. 故答案为:a b c <<.核心考点八:不定方程 【典型例题】例36.(2022·宁夏·银川一中一模(文))已知实数a ,b ,c ,满足ln e a b c ==,则a ,b ,c 的大小关系为( ) A .a b c >> B .c b a >> C .b c a >> D .a c b >>【答案】C解:设e ()x x f x =-,则()e 1x f x '=-,当0x <时,()0f x '<,当0x >时,()0f x '>, 所以()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增, 所以min ()(0)10f x f ==>,故e x x >, 所以e a c a =>,又ln b c =, 所以e c b c =>, 所以b c a >>. 故选:C .例37.(2023·全国·高三专题练习)正实数,,a b c 满足422,33,log 4ab a bc c -+=+=+=,则实数,,a b c 之间的大小关系为( ) A .b a c << B .a b c << C .a c d << D .b<c<a【答案】A【解析】22a a -+=,即220a a -+-=,即22a a -=-,2xy -=与2y x =-的图象在()0,∞+只有一个交点,则220x x -+-=在()0,∞+只有一个根a ,令()22xf x x -=+-,()21222204f -=+-=>,()11112202f -=+-=-<,()()120f f <,则12a <<; 33b b +=,即330b b +-=,即33b b =-,由3xy =与3y x =-的图象在()0,∞+只有一个交点,则330x x +-=在()0,∞+只有一个根b ,令()33xg x x =+-,()113310g =+-=>, 12115330222g ⎛⎫=+-=< ⎪⎝⎭,()1102g g ⎛⎫< ⎪⎝⎭,故112b <<;4log 4c c +=,即4log 4c c =-,即4log 40c c +-=,由4log y x =与4y x =-的图象在()0,∞+只有一个交点,则4log 40x x +-=在()0,∞+只有一个根c ,令()4log 4h x x x =+-,()444log 4410h =+-=>,()4433log 34log 310h =+-=-<,()()340h h <,则34c <<;b ac ∴<<故选:A.【新题速递】一、单选题1.(2022春·天津和平·高三耀华中学阶段练习)已知0.5x x =,0.5log y y x =,log 0.5zx z =,则( ) A .y x z <<B .z x y <<C .x z y <<D .z y x <<【解析】要比较0.5x x =,0.5log y y x =,log 0.5zx z =中的,,x y z 大小, 等价于比较0.5log x x =,0.5log y y x =,log 0.5zx z =中的,,x y z 大小,∵0.5log x x =,由定义域可知0x >, 故0.50.51log 0log x >=,∵0.5log y x =在定义域上单调递减, 0.501,0log 1x x ∴<<<<,0.51x ∴<<,∵0.50z >, ∴1log 0log x x z >=, ∵0.51x <<, ∴01z <<,故()0.50,1z∈,则()log 0,1x z ∈,1x z ∴<<,0.5log y y x =,由定义域可知:0y >,又∵0.51x <<,∴()0,1yx ∈,则()0.5log 0,1y ∈,()0.5,1y ∴∈,故y x x <,∵0.5log x x =,0.5log yy x =, ∴0.50.5log log x y <,x y ∴>,y x z ∴<<. 故选:A.2.(2022·浙江·模拟预测)已知正数a ,b ,c 满足3e 1.1a =,251030b b +-=,e 1.3c =,则( ) A .a c b << B .b a c << C .c<a<b D .c b a <<【答案】D【解析】由251030b b +-=解得1b =-,构造函数21()ln(1)2f x x x x =--+,(1)x >-,显然2()01x f x x -'=<+, 故()f x 是减函数,结合(0)0f =,故0x >时,()0f x <,。
专题14 指数函数(讲)(解析版)
《2020-2021学年高一数学同步讲练测(新教材人教A 版必修第一册)》专题14指数函数(讲)知识点课前预习与精讲精析1.指数函数的定义一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中x 是自变量.[知识点拨]指数函数y =a x (a >0,且a ≠1)的结构特征:(1)底数:大于零且不等于1的常数;(2)指数:仅有自变量x ;(3)系数:a x 的系数是1.2.指数函数的图象和性质指数函数的图象和性质如下表所示:a >10<a <1图象性质定义域R 值域(0,+∞)过定点过定点(0,1),即x =0时,y =1单调性在R 上是增函数在R 上是减函数奇偶性非奇非偶函数[知识点拨](1)a >1是“一撇”,0<a <1是“一捺”;(2)图象位于x 轴上方;(3)当x =0时,y =1;(4)在y 轴右侧,a 越大,图象越高,即逆时针方向,底数依次增大.3.比较幂的大小比较幂的大小的常用方法:(1)对于底数相同,指数不同的两个幂的大小比较,可以利用指数函数的单调性来判断;(2)对于底数不同,指数相同的两个幂的大小比较,可以利用指数函数图象的变化规律来判断;(3)对于底数不同,且指数也不同的幂的大小比较,可先化为同底的两个幂,或者通过中间值来比较.4.有关指数型函数的性质(1)求复合函数的定义域形如y =a f (x )的函数的定义域就是f (x )的定义域.求形如y =a f (x )的函数的值域,应先求出u =f (x )的值域,再由单调性求出y =a u 的值域.若a 的范围不确定,则需对a 进行讨论.求形如y =f (a x )的函数的值域,要先求出u =a x 的值域,再结合y =f (u )确定出y =f (a x )的值域.(2)判断复合函数的单调性令u =f (x ),x ∈[m ,n ],如果复合的两个函数y =a u 与u =f (x )的单调性相同,那么复合后的函数y =a f (x )在[m ,n ]上是增函数;如果两者的单调性相反(即一增一减),那么复合函数y =a f (x )在[m ,n ]上是减函数.(3)研究函数的奇偶性一是定义法,即首先是定义域关于原点对称,然后分析式子f (x )与f (-x )的关系,最后确定函数的奇偶性.二是图象法,作出函数图象或从已知函数图象观察,若图象关于原点或y 轴对称,则函数具有奇偶性.1.若指数函数()x f x a =(0a >且1a ≠)的图象经过点()3,8,则()142f f ⎛⎫⋅= ⎪⎝⎭______.【答案】【解析】由题知()338f a ==,解得2a =,()2x f x ∴=,因此,()14214222f f ⎛⎫⋅=⨯= ⎪⎝⎭.故答案为.2.若函数()xf x a =(0a >且1a ≠)在[]1,2上最大值是最小值的2倍,则a =______.【答案】2或12【解析】当01a <<时,函数()x f x a =为R 上的减函数,故()()122f f =,即22a a =,解得12a =.当1a >时,函数()xf x a =为R 上的增函数,故()()221f f =,即22a a =,解得2a =.故a 的值为2或12.故填:2或12.3.指数函数f(x)=(a﹣1)x在R 上是增函数,则a 的取值范围是_____.【答案】(2,+∞)【解析】∵指数函数f(x)=(a﹣1)x 在R 上是增函数,∴a﹣1>1,即a>2,故a 的取值范围是(2,+∞),故答案为(2,+∞).4.已知函数()3x f x a -=+的图像经过第二、三、四象限,()()(1)g a f a f a =-+,则()g a 的取值范围是_______.【答案】(2,)+∞【解析】因为函数()3x f x a -=+的图像经过第二、三、四象限,所以()00310f a a -=+=+<,解得:1a <-又()()12()()(1)3333a a a g a f a f a a a -+--⎡⎤=-+=+-+=⨯⎣⎦又1a <-,所以1a ->,所以()33,a -∈+∞所以()232,3a -⨯∈+∞,所以()g a 的取值范围是()2,+∞5.已知(a 2+a +2)x >(a 2+a +2)1-x ,则x 的取值范围是________.【答案】1,2⎛⎫+∞ ⎪⎝⎭【解析】∵a 2+a +2=217()124a ++>,∴y =(a 2+a +2)x 为R 上的增函数.∴x >1-x ,即12x >.x 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭.典型题型与解题方法重要考点一:指数函数的概念【典型例题】已知函数2()(1)(1)x f x a a a =+-+为指数函数,则a =.【答案】1【解析】函数()()()211x f x a a a =+-+为指数函数,21110a a a ⎧+-=∴⎨+>⎩解得1a =【题型强化】下列函数是指数函数的是________(填序号).①y =4x ;②y =x 4;③y =(-4)x ;④y =4x 2.【答案】①【解析】形如(0x y a a =>且1a ≠)的函数,叫指数函数.由指数函数定义,只有①是指数函数;②y =x 4是幂函数;③y =(-4)x ,由于底数4(0,1)(1,)-∉+∞ ,所以③不是指数函数;④y =4x 2不是指数函数.故答案为:①【收官验收】已知指数函数图像经过点(1,3)p -,则(3)f =_____.【答案】127【解析】设指数函数为()x f x a =(0a >且1a ≠),由题意得13a -=,解得13a =,所以1()()3x f x =,故311(3)()327f ==.答案:127.【名师点睛】判断一个函数是否是指数函数,关键是看解析式是否符合y =a x (a >0,a ≠1)这一结构形式.重要考点二:指数函数的图象【典型例题】如图,是指数函数①x y a =、②x y b =、③x y c =、④x y d =的图象,则()A .1a b c b<<<<B .1b a d c <<<<C .1a b c d<<<<D .1a b d c<<<<【答案】B【解析】∵当底数大于1时指数函数是定义域内的增函数,当底数大于0小于1时是定义域内的减函数,由图可知x y c =、x y d =为增函数,则,c d 大于1.x y a =、x y b =为减函数,则a b ,大于0小于1.当1x =时,对应的函数值依次为①y a =、②y b =、③y c =、④y d =,由图知,当1x =时,对应函数值由下到上依次是②①④③,得1b a d c <<<<,所以正确选项为B故选:B .【题型强化】函数(0,1)x y a a a a =->≠的图象可能是()A .B .C .D .【答案】C【解析】①当1a >时,函数(0,1)x y a a a a =->≠可以看做函数x y a =的图象向下平移a 个单位,由于1a >,则A 错误;又1x =时,0y a a =-=,则函数(0,1)xy a a a a =->≠过点(1,0),故B 错误;②当01a <<时,函数(0,1)x y a a a a =->≠可以看做函数xy a =的图象向下平移a 个单位,由于01a <<,则D 错误;又1x =时,0y a a =-=,则函数(0,1)x y a a a a =->≠过点(1,0),故C 正确;故选:C【收官验收】在同一直角坐标系中,函数()a f x x =与()x g x a -=在[)0,+∞上的图象可能是().A .B .C .D .【答案】A【解析】()a f x x =为幂函数,()1()-==x x g a a x 为指数函数A.()1(-==x x g a a x 过定点(0,1),可知101<<a ,1a ∴>,()a f x x =的图象符合,故可能.B.()1(-==x x g a a x 过定点(0,1),可知101<<a ,1a ∴>,()a f x x =的图象不符合,故不可能.C.()1(-==x x g a a x 过定点(0,1),可知11a>,01a ∴<<,()a f x x =的图象不符合,故不可能.D.图象中无幂函数图象,故不可能.故选:A【名师点睛】指数函数的图象随底数变化的规律可归纳为:在第一象限内,图象自下而上对应的底数依次增大.重要考点三:指数函数中忽视对底数的分类讨论致误【典型例题】已知函数()(),1xf x a a =>在区间[]1,2上的最大值比最小值大2,求实数a 的值.【答案】2【解析】函数()(),1x f x a a =>∴函数()f x 在[]1,2单调递增即()()2max 2f x f a ==,()()min 1f x f a ==又 函数()(),1x f x a a =>在区间[]1,2上的最大值比最小值大2.∴()()2212f f a a -=-=,解得2a =或1a =-(舍去)综上所述:2a =【题型强化】已知函数()x f x a=(0a >,且)1a ≠的图象经过点()24,.(1)求a 的值;(2)若2131x x a a +-<,求x 的取值范围.【答案】(1)2a =(2)()2,+∞【解析】(1)∵()x f x a =(0a >,且)1a ≠的图象经过点()24,∴24a =,由0a >,且1a ≠可得2a =(2)由(1)得2a =若2131x x a a +-<,代入2a =可得213122x x +-<由指数函数的单调性可知满足2131x x +<-解得2x >,即()2,x ∈+∞【收官验收】已知函数(0,1)x y a a a =>≠在区间[1,2]上的最大值比最小值大3a ,求实数a 的值.【答案】43a =或23【解析】1a >时,x y a =是增函数,则23a a a -=,解得43a =(0a =舍去);01a <<时,x y a =是减函数,则23a a a -=,解得23a =(0a =舍去).综上,43a =或23.重要考点四:指数型函数图象过定点问题【典型例题】函数1()3x f x a -=+的图象一定过定点P ,则P 点的坐标是______.【答案】(1,4)【解析】()13x f x a -=+由x y a =向右平移1个单位,向上平移3个单位得到,x y a =过定点()0,1,则()13x f x a -=+过定点()1,4.【题型强化】函数223x y a =+﹣(0a >且1a ≠)的图象恒过定点_______________.【答案】()14,【解析】根据题意,数223x y a -=+中,令220x -=,解可得1x =,此时22134f a -=+=(),即函数的图象恒过定点14(,),故答案为:14(,).【收官验收】已知函数1()4x f x a -=+(其中0a >且1a ≠)的图象恒过定点P ,则点P 坐标是_________.【答案】(1,5)【解析】解:令10x -=,此时1x =,101x a a -==,此时()15f =,所以图象恒过()1,5P .故答案为:(1,5).【名师点睛】指数型函数过定点的求法:求指数型函数图象所过的定点,只要令指数为0,求出对应的x 与y 的值,即为函数图象所过的定点.重要考点五:指数型函数的定义域与值域【典型例题】设()2121x f x =-+.(1)求()f x 的值域;(2)证明()f x 为R 上的增函数.【答案】(1)()1,1-;(2)证明见解析.【解析】(1)因为20x >,所以20221x <<+,所以211121x -<-<+,即()f x 的值域为(1,1)-;(2)任取1x 、2x ,且12x x <.则21212121222(22)()()1102121(21)(21)x x x x x x f x f x --=--+=>++++所以21()()f x f x >所以()f x 为R 上的增函数【题型强化】求下列函数的定义域和值域,并写出其单调区间.(1)()f x =(2)121()3xf x -⎛⎫= ⎪⎝⎭;(3)223()2x x f x --+=;(4)121()1,[2,3]933x x f x x ⎛⎫⎛⎫=-⋅+∈- ⎪ ⎪⎝⎭⎝⎭.【答案】(1)定义域:(,2]-∞-,值域:[0,1),减区间:(,2]-∞-;(2)定义域:(,2)(2,)-∞⋃+∞,值域:(0,1)(1,)⋃+∞,减区间:(,2)-∞和(2,)+∞;(3)定义域:R ,值域:(0,16],增区间:(,1]-∞-,减区间:[1,)-+∞;(4)值域8,769⎡⎤⎢⎥⎣⎦,减区间:[2,1]-,增区间:[1,3]【解析】(1)由2130x +-≥得2x -≤,所以定义域为(,2]-∞-,又230x +>,所以20131x +≤-<,01y ≤<,所以值域中[0,1),213x u +=-在R 上是减函数,所以()f x =的减区间是(,2]-∞-;(2)由20x -≠得2x ≠,所以定义域是(,2)(2,)-∞⋃+∞,又102x ≠-,所以值域是(0,1)(1,)⋃+∞,12u x=-在(,2)-∞和(2,)+∞上都是增函数,所以121()3x f x -⎛⎫= ⎪⎝⎭的减区间是(,2)-∞和(2,)+∞;(3)定义域是R ,又2223(1)44x x x --+=-++≤,所以值域中(0,16],2(1)4u x =-++在(,1]-∞-上递增,在[1,)-+∞上递减,所以223()2xx f x --+=的增区间(,1]-∞-,减区间是[1,)-+∞;(4)定义域是[2,3]-,令1()3xt =,由[2,3]x ∈-,所以1[,9]27t ∈,222181()339y t t t =-+=-+,所以876]9y ≤≤,值域8,769⎡⎤⎢⎥⎣⎦,又222181()339y t t t =-+=-+在11[,273上递减,在1[,9]3上递增,而1(3x t =是减函数,所以121()1,[2,3]933xxf x x ⎛⎫⎛⎫=-⋅+∈- ⎪ ⎪⎝⎭⎝⎭的减区间是[2,1]-,增区间[1,3].【收官验收】求下列函数的定义域、值域.(1)y =313xx+;(2)y =4x -2x +1.【答案】(1)定义域为R ;值域为(0,1);(2)定义域为R ;值域为3,4⎡⎫+∞⎪⎢⎣⎭.【解析】(1)∵对一切x ∈R ,3x ≠-1;∴函数的定义域为R;∵y =13113x x+-+=1-113x +;又∵3x >0,1+3x >1;∴0<113x +<1,∴-1<-113x+<0;∴0<1-113x+<1,∴值域为(0,1).(2)函数的定义域为R ;y =(2x )2-2x+1=122x ⎛⎫- ⎪⎝⎭2+34;∵2x >0,∴2x =12,即x =-1时,y 取最小值34;同时y 可以取一切大于34的实数;∴值域为3,4⎡⎫+∞⎪⎢⎣⎭.【名师点睛】1.函数单调性在求函数值域中的应用(1)若函数f (x )在区间[a ,b ]上是增函数,则f (a )≤f (x )≤f (b ),值域为[f (a ),f (b )].(2)若函数f (x )在区间[a ,b ]上是减函数,则f (a )≥f (x )≥f (b ),值域为[f (b ),f (a )].2.函数y =a f (x )定义域、值域的求法(1)定义域.函数y =a f (x )的定义域与y =f (x )的定义域相同.(2)值域.①换元,令t =f (x );②求t =f (x )的定义域x ∈D ;③求t =f (x )的值域t ∈M ;④利用y =a t 的单调性求y =a t ,t ∈M 的值域.重要考点六:幂式大小的比较【典型例题】设0.6 1.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是()A .a b c <<B . a c b <<C .b a c <<D .b c a<<【答案】C 【解析】由0.6xy =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C .【题型强化】若a <0,则0.5a,、5a 、5-a 的大小关系是()A .5-a <5a <0.5aB .5a <0.5a <5-aC .0.5a <5-a <5aD .5a <5-a <0.5a【答案】B 【解析】因为0a <,故可得0.51a >,50.21a a -=>,51a <;再结合指数函数的图像关系,则0.20.5a a >.故50.55a a a ->>.故选:B.【收官验收】已知0.60.3a =,0.50.3b =,0.50.4c =,则()A .a b c >>B .a c b >>C .b c a >>D .c b a>>【答案】D 【解析】根据函数0.3x y =单调递减知:0.60.503..03a b <==;根据函数0.5y x =单调递增知:0.50.503.4.0c b =<=,故c b a >>.故选:D .【名师点睛】比较指数式的大小应根据所给指数式的形式,当底数相同时,运用单调性法求解;当底数不同时,利用一个中间量做比较进行求解.或借助于同一坐标系中的图象求解.重要考点七:指数型函数的奇偶性【典型例题】设函数()xxf x a mb =+,其中,,a m b ∈R .(1)若2a =,12b =且()f x 为R 上偶函数,求实数m 的值;(2)若4a =,2b =且()f x 在R 上有最小值,求实数m 的取值范围;(3)() 0,1a ∈, 1b >,解关于x 的不等式()0f x >.【答案】(1)1m =;(2)0m <;(3)答案见解析.【解析】解:(1)()122xxf x m ⎛⎫=+ ⎪⎝⎭,所以()()1121222m f f m =+=-=+,所以1m =,检验,此时()122x x f x ⎛⎫=+ ⎪⎝⎭,()122xx f x ⎛⎫-=+ ⎪⎝⎭,所以()()f x f x -=,()f x 为偶函数;(2)()4·2xxf x m =+,令20x t =>,则()2g t t mt =+在()0,∞+上有最小值,所以02m->,得0m <;(3)()0xxf x a mb =+>,所以xxa mb >-,所以xx x a a m b b ⎛⎫=>- ⎪⎝⎭,因为()0,1a ∈,1b >,所以()0,1ab∈.①0m -≤,即0m >,解集为R ;②0m ->,即0m <,解集为(),log a b m ⎛⎫-∞- ⎪⎝⎭.【题型强化】已知定义域为R 的函数2()2xx b f x a-=+是奇函数.(1)求a ,b 的值;(2)用定义证明()f x 在(,)-∞+∞上为减函数;(3)若对于任意t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的范围.【答案】(1)1a =,1b =;(2)证明见解析;(3)1(,)3-∞-.【解析】解:(1)()f x 为R 上的奇函数,(0)0f ∴=,可得1b =又(1)f f -=- (1)∴11121222a a----=-++,解之得1a =经检验当1a =且1b =时,12()21xx f x -=+,满足()()f x f x -=-是奇函数.(2)由(1)得122()12121x x x f x -==-+++,任取实数1x 、2x ,且12x x <则21121212222(22)()()2121(21)(21)x x x x x x f x f x --=-=++++12x x < ,可得1222x x <,且12(21)(21)0x x ++>12()()0f x f x ∴->,即12()()f x f x >,函数()f x 在(,)-∞+∞上为减函数;(3)根据(1)(2)知,函数()f x 是奇函数且在(,)-∞+∞上为减函数.∴不等式22(2)(2)0f t t f t k -+-<恒成立,即222(2)(2)(2)f t t f t k f t k -<--=-+也就是:2222t t t k ->-+对任意的t R ∈都成立.变量分离,得232k t t <-对任意的t R ∈都成立,2211323()33t t t -=-- ,当13t =时有最小值为13-13k ∴<-,即k 的范围是1(,3-∞-.【收官验收】已知定义域为R 的函数,12()2x x bf x a+-+=+是奇函数.(1)求a ,b 的值;(2)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围.【答案】(1)2a =;1b =(2)13k <-【解析】(1)因为()f x 是R 上的奇函数,所以()00=f ,即102ba-+=+,解得1b =.从而有121()2x x f x a +-+=+.又由()()11f f =--知1121241a a-+-+=-++,解得2a =.经检验,当121()22x x f x +-+=+时,()()f x f x -=-,满足题意(2)由(1)知12111()22221x x xf x +-+==-+++,由上式易知()f x 在R 上为减函数,又因为()f x 是奇函数,从而不等式()()22220f t t f t k -+-<等价于()()()222222f t t f t k f t k -<--=-+.因为()f x 是R 上的减函数,由上式推得2222t t t k ->-+.即对一切t R ∈有2320t t k -->,从而4120k ∆=+<,解得13k <-.重要考点八:指数型函数的单调性【典型例题】(1)求函数261712x x y -+⎛⎫=⎪⎝⎭的单调区间;(2)求函数21181722xxy ⎛⎫⎛⎫=-⋅+ ⎪ ⎪⎝⎭⎝⎭的单调区间.【答案】(1)单调递增区间为(),3-∞,单调递减区间为()3,+∞(2)单调递增区间为()2,-+∞,单调递减区间为(),2-∞-。
新高考数学复习考点知识与题型专题练习14---指数函数(解析版)
新高考数学复习考点知识与题型专题练习14 指数函数一、选择题:本题共8小题,在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知函数y =2a x -1+1(a >0且a ≠1)恒过定点A (m ,n ),则m +n =( ) A .1B .3 C .4D .2 【答案】C【解析】由题意知,当x =1时,y =3,故A (1,3),m +n =4, 故选:C.2.已知函数()2xy a =-,且当0x <时,1y >,则实数a 的取值范围是( ) A .3a >B .23a <<C .4a >D .34a << 【答案】B【解析】当0x <时,1021y a >∴<-<,, 解得23a <<, 故选:B.3.已知a =0.82b =,0.24c =,则,,a b c 的大小关系为( ) A .c b a <<B .c a b <<C .b a c <<D .b c a << 【答案】B【解析】0.52a ,0.20.442c ==, ∵2x y =递增,且0.40.50.8<<, ∴0.40.50.8222<<,即c a b <<. 故选:B.4.已知11 3xy⎛⎫= ⎪⎝⎭,23xy=,310xy-=,410xy=,则在同一平面直角坐标系内,它们的图象大致为()A.B.C.D.【答案】A【解析】23xy=与410xy=是增函数,11 3xy⎛⎫= ⎪⎝⎭与311010xxy-⎛⎫== ⎪⎝⎭是减函数,在第一象限内作直线1x=,该直线与四条曲线交点的纵坐标的大小对应各底数的大小,易知:选A.故选:A5.若函数f(x)的定义域是[1,+∞),则a的取值范围是()A.[0,1)∪(1,+∞)B.(1,+∞)C.(0,1)D.(2,+∞)【答案】B【解析】∵a x -a ≥0,∴a x ≥a ,∴当a >1时,x ≥1.故函数定义域为[1,+∞)时,a >1. 故选:B .6.已知()xf x a -=(0a >,且1a ≠),且()()23f f ->-,则a 的取值范围是( )A .(0,+∞)B .(1,+∞)C .(-∞,1)D .(0,1) 【答案】D【解析】由0a >,且1a ≠,排除AC ; ∵()1xxa f x a-⎛⎫= ⎪⎝⎭=, 当1a >时,()101,f x a<<为单调递减函数,∴()()23f f ->-,与已知矛盾矛盾,故B 错误; 当01a <<时,()11,f x a>为单调递增函数,∴()()23f f ->-,符合题意. 故选:D.7.函数()()(),0()23,0x a x f x a x a x ⎧<⎪=⎨-+≥⎪⎩,满足对任意12x x ≠,都有()()12120f x f x x x -<-成立,则a 的取值范围是( )A .()0,1a ∈B .1,13a ⎡⎫∈⎪⎢⎣⎭C .10,3a ⎛⎤∈ ⎥⎝⎦D .1,23a ⎡⎫∈⎪⎢⎣⎭【答案】C 【解析】解:()f x 满足对任意12x x ≠,都有1212()()0f x f x x x -<-成立,()f x ∴在R 上是减函数,因为()()(),0()23,0x a x f x a x a x ⎧<⎪=⎨-+≥⎪⎩∴00120(2)03a a a a a <<⎧⎪-<⎨⎪-⨯+⎩,解得103a <,a ∴的取值范围是10,3⎛⎤ ⎥⎝⎦.故选:C .8.设函数f (x )=a -|x |(a >0且a ≠1),f (2)=4,则( ) A .f (-1)>f (-2)B .f (1)>f (2) C .f (2)<f (-2)D .f (-3)>f (-2) 【答案】D【解析】由f (2)=4得a -2=4,又∵a >0,∴a =12,f (x )=2|x |,∴函数f (x )为偶函数,在(-∞,0)上单调递减,在(0,+∞)上单调递增,则A,B 错误,D 正确. 而f (-2)=f (2),故C 错误. 故选:D.二、选择题:本题共4小题,在每小题给出的选项中,有多项符合题目要求. 9.若指数函数x y a =在区间[1,1]-上的最大值和最小值的和为103,则a 的值可能是( ) A .12B .13C .3D .2【答案】BC【解析】当1a >时,函数x y a =在区间[1,1]-上为单调递增函数,当1x =时,max y a =,当1x =-时,1min y a -=,所以1103a a -+=,即231030a a -+=,解得3a =或13a =, 因为1a >,所以3a =;当01a <<时,函数x y a =在区间[1,1]-上为单调递减函数,当1x =时,min y a =,当1x =-时,1max y a -=,所以1103a a -+=,即231030a a -+=,解得3a =或13a =,因为01a <<,所以13a =.综上可得,实数a 的值为3或13.故选:BC10.已知函数()1xxf x a a ⎛⎫=- ⎪⎝⎭其中0a >且1a ≠,则下列结论正确的是( )A .函数()f x 是奇函数B .函数()f x 0=在其定义域上有解C .函数()f x 的图象过定点()0,1D .当1a >时,函数()f x 在其定义域上为单调递增函数 【答案】ABD【解析】()1xxx x f x a a a a -⎛⎫=-=- ⎪⎝⎭,定义域为R ,()()x x f x a a f x --=-=-,所以()f x 为奇函数,且()00f =,故选项A ,B 正确,选项C 错误;1a >,101a <<,xy a =,1xy a ⎛⎫=- ⎪⎝⎭在R 上均为增函数,()f x 在其定义域上为单调递增函数,所以选项D 正确. 故选:ABD .11.已知{}2,0,1,2,3a ∈-,则函数()()22e xf x a b =-+为减函数的实数a 的值可以是( )A .0B .1C .2D .3 【答案】AB【解析】由函数()()22e xf x a b =-+为减函数,得220a -<,即a <<.又{}2,0,1,2,3a ∈-,所以只有0a =,1a =满足题意. 故选:AB.12.对于函数()f x 的定义域中任意的()1212,x x x x ≠,有如下结论:当()2xf x =时,上述结论正确的是( )A .()()()1212f x x f x f x +=⋅B .()()()1212f x x f x f x ⋅=+C .()()12120f x f x x x ->-D .()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭【答案】ACD【解析】对于A ,()12122x x f x x ++=,()()121212222x x x xf x f x +⋅=⋅=,()()()1212f x x f x f x +=⋅,正确;对于B ,()12122x x f x x ⋅⋅=,()()121222x xf x f x +=+,()()()1212f x x f x f x ⋅≠+,错误;对于C ,()2x f x =在定义域中单调递增,()()12120f x f x x x -∴->,正确;对于D ,()1212122122222x x x x x x f ++⎛⎫==≤+= ⎪⎝⎭()()122f x f x +,又12x x ≠,则()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭,正确;故选:ACD三、填空题:本题共4小题.13.已知函数2x y a =⋅和2x b y +=都是指数函数,则a b +=______. 【答案】1【解析】因为函数2x y a =⋅是指数函数,所以1a =, 由2x b y +=是指数函数,所以0b =, 所以1a b +=, 故答案为:1.14.若函数()233xy a a a =-+是指数函数,则a =________.【答案】2【解析】由()233xy a a a =-+是指数函数,可得2331,0,1,a a a a ⎧-+=⎪>⎨⎪≠⎩解得2a =.故答案为:2.15.在某个时期,某湖泊中的蓝藻每天以6.25%的增长率呈指数增长,已知经过30天以后,该湖泊的蓝藻数大约为原来的6倍,那么经过60天后该湖泊的蓝藻数大约为原来的_____ 【答案】36倍【解析】某湖泊中的蓝藻每天以6.25%的增长率呈指数增长,经过30天以后,该湖泊的蓝藻数大约为原来的6倍,设湖泊中原来蓝藻数量为a ,则30(1 6.25%)6a a +=,∴经过60天后该湖泊的蓝藻数量为:26030(1 6.25%)(1 6.25%)36.y a a a ⎡⎤=+=+=⎣⎦∴经过60天后该湖泊的蓝藻数大约为原来的36倍.故答案为:36倍16.函数f (x )=33233x xx x ---++,若有f (a )+f (a -2)>4,则a 的取值范围是________.【答案】(1,+∞)【解析】设F (x )=f (x )-2,则F (x )=3333x x x x ---+,易知F (x )是奇函数,F (x )=3333x x x x ---+=223131x x-+=1-2231x +在R 上是增函数, 由f (a )+f (a -2)>4得F (a )+F (a -2)>0, 于是可得F (a )>F (2-a ),即a >2-a ,解得a >1. 答案:(1,+∞)四、解答题:本题共4小题.解答应写出文字说明、证明过程或演算步骤. 17.已知函数f (x )=11x x a a -+(a >0,且a ≠1).(1)若f (2)=35,求f (x )解析式;(2)讨论f (x )奇偶性.【答案】(1)()2121x x f x -=+;(2)奇函数.【解析】解:(1)()11x x a f x a -=+,()325f =.即221315a a -=+,2a ∴=. 即()2121x x f x -=+.(2)因为f (x )的定义域为R , 且()()1111x xxxa a f x f x a a -----===-++, 所以f (x )是奇函数. 18.求下列各式的值.(1)指数函数()x f x a =(0a >且1a ≠)的图象经过点()3π,,求π(3)f -的值; (2)211511336622263a b a b a b ⎛⎫⎛⎫⎛⎫-÷- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭;【答案】(1)1;(2)4a .【解析】(1)因为()xf x a =的图象经过点()3π,, 所以()33πf a ==,所以13πa =于是()xf x =,所以()3π3π1f --=⋅=(2)211511336622263a b a b a b ⎛⎫⎛⎫⎛⎫-÷- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭()()211115326236263ab+-+-=⨯-÷-⎡⎤⎣⎦1044a b a ==19.截止到2018年底,我国某市人口约为130万.若今后能将人口年平均递增率控制在3‰,经过x 年后,此市人口数为y (万).(1)求y 与x 的函数关系y =f (x ),并写出定义域; (2)若按此增长率,2029年年底的人口数是多少? (3)哪一年年底的人口数将达到135万?【答案】(1)y =f (x )=130(1+3‰)x (x ∈N *);(2)134;(3)2031年. 【解析】解:(1)2018年年底的人口数为130万;经过1年,2019年年底的人口数为130+130×3‰=130(1+3‰)(万);经过2年,2020年年底的人口数为130(1+3‰)+130(1+3‰)×3‰=130(1+3‰)2(万); 经过3年,2021年年底的人口数为130(1+3‰)2+130(1+3‰)2×3‰=130(1+3‰)3(万). ……所以经过的年数与(1+3‰)的指数相同,所以经过x 年后的人口数为130(1+3‰)x (万).即y =f (x )=130(1+3‰)x (x ∈N *). (2)2029年年底,经过了11年,过2029年底的人口数为130(1+3‰)11≈134(万). (3)由(2)可知,2029年年底的人口数为130(1+3‰)11≈134<135. 2030年年底的人口数为130(1+3‰)12≈134.8(万), 2031年年底的人口数为130(1+3‰)13≈135.2(万). 所以2031年年底的人口数将达到135万.20.已知定义在R 上的奇函数()f x 和偶函数()g x 满足()()2(0x x f x g x a a a -+=-+>且1a ≠), (1)若(2)g a =,求(2)f .(2)记()()()2F x f x g x =+,求()()()2G x F x mF x =-的最小值()G m .【答案】(1)154;(2)()242.4,44m m G m m m -≤⎧⎪=⎨->⎪⎩. 【解析】(1)()f x 是奇函数,()g x 是偶函数,∴由()()2x x f x g x a a -+=-+,①得()()()()2x xf xg x f x g x a a --+-=-+=-+,②①+②得()2g x =,①-②得()x xf x a a -=-.又()2g a =,2a ∴=,()22x xf x -∴=-,()22152224f -∴=-=. (2)由(1)可得()()222x x f x g x a a -+=+,故()22x xF x a a -=+,由基本不等式可得()2≥F x ,令()t F x =,则2t ≥且()2G x t mt =-,设()2,2h t t mt t =-≥,当4m ≤即22m≤时,()()min 42G m h t m ==-; 当4m >即22m >时,()()2min 4m G m h t ==-,故()242.4,44m m G m m m -≤⎧⎪=⎨->⎪⎩.。
指数函数-重难点题型精讲(教师版)
3
3
)
2−8
>3−2的解集.
1 2
1 2
【解答过程】解:∵( ) −8>3−2 = ( ) ,
3
3
∴x2﹣8<2x,
解得﹣2<x<4.
故选:A.
【变式 3-2】(2024 秋•黄埔区校级期中)已知 a>0,且 a≠1,若函数 y=xa﹣1 在(0,+∞)内单调递减,
则不等式 a3x+1>a﹣2x 中 x 的取值范围是( )
【方法点拨】
①指数函数图象的识别:对于所给函数解析式,研究函数的单调性、特殊值等,利用排除法,得出正确的
函数图象.
②指数函数图象的应用:对于与指数函数有关的函数的作图问题,一般宜用变换作图法作图,这样有利于
从整体上把握函数的性质,从而指数函数的图象来比较大小、解不等式、求最值等.
【例 4】(2024 秋•临渭区期末)函数 y=x+a 与 y=a﹣x(a>0 且 a≠1)在同一坐标系中的图像可能是( )
【方法点拨】
根据指数函数的定义,结合具体条件,进行求解即可.
【例 1】(2024 秋•南宁期末)函数 f(x)=2x 的定义域为( )
A.[1,+∞)
B.(0,+∞)
C.[0,+∞)
D.R
【解题思路】由指数函数的性质可得其定义域.
【解答过程】解:函数 f(x)=2x 的定义域为 R,
故选:D.
【变式 1-1】(2024 秋•阎良区期末)函数 y=2x(x≤0)的值域是( )
当底数 a>1 时,函数单调递增,当 0<a<1 时,函数单调递减,
当底数 a>1,满足底数越大函数的图象在 x>0 时,越靠近 y 轴,
部编数学八年级下册专题14已知两点坐标求两点距离(解析版)含答案
专题14 已知两点坐标求两点距离【例题讲解】阅读材料:两点间的距离公式:如果直角坐标系内有两点A (x 1,y 1)、B (x 2,y 2),那么A 、B 两点的距离AB =AB 2=(x 1﹣x 2)2+(y 1﹣y 2)2.例如:若点A (4,1),B (2,3),则AB ==根据上面材料完成下列各题:(1)若点A (﹣2,3),B (1,﹣3),则A 、B 两点间的距离是 .(2)若点A (﹣2,3),点B 在坐标轴上,且A 、B 两点间的距离是5,求B 点坐标.(3)若点A (x ,3),B (3,x +1),且A 、B 两点间的距离是5,求x 的值.(1)解:点A (﹣2,3),B (1,﹣3),则A 、B 两点间的距离是:(2)解:Q 点B 在坐标轴上,设(),0B x 或()0,,B y当(),0B x 时,点A (﹣2,3),且A 、B 两点间的距离是5,()()22222305,AB x \=--+-= ()2216,x \+=24x \+=或24,x +=- 122,6,x x \==-()20B \,或()6,0B -当()0,B y 时,点A (﹣2,3),且A 、B 两点间的距离是5,()()22222035,AB y \=--+-= ()2321,y \-=(3)解:点A (x ,3),B (3,x +1),且A 、B 两点间的距离是5,()()22233125,AB x x \=-+--= 整理得:2560,x x --=()()610,x x \-+= 解得:126, 1.xx ==-【综合解答】1.在学习了勾股定理后,数学兴使小组在江老师的引导下,利用正方形网格和勾股定理运用构图法进行了一系列探究活动:(1)在ABC V 中,AB 、BC 、AC ,求ABC V 的面积.如图1,在正方形网格(每个小正方形的边长为1)中,画出格点ABC V (即ABC V 三个顶点都在小正方形的顶点处),不需要求ABC V 的高,借用网格就能计算出它的面积,这种方法叫做构图法.则ABC V 的面积为___________.(2)在平面直角坐标系中,①若点A 为()1,2-,点B 为()3,5,则线段AB 的长为___________;②若点A 为()11,x y ,点B 为()22,x y ,则线段AB 的长可表示为__________∶(3)在图21(填“>”或“<”);(4)若ABC V 0m >,0n >.且m n ¹),请在如图3的长方形网格中(设每个小长方形的长为m ,宽为n ),运用构图法画出ABC V ,并求出它的面积(结果用m ,n 表示).【答案】(1)72(2)① 5;(3)<(4)132ABC S mn =V 【解析】【分析】(1)利用构图法求出ABC V 的面积,即可求解;(2)①利用勾股定理,即可求解;②类比①的方法,即可求解;(3的三角形,即可求解;(4ABC V ,再利用构图法求解,即可求解.(1)解:ABC V 的面积为1117333121322222´-´´-´´-´´=;故答案为:72(2)解:① 5AB ===;故答案为:5;②线段AB(3)解:如图,根据题意得:DE =DF 1EF =,∴1DF EF +=+,∵DF EF DE +>,1;故答案为:<(4)解:解:如图,AB ==BC ==,AC ==111134434342222ABC S m n m n m n m n mn=´-´×-´×-´×=V【点睛】本题属于几何变换综合题,考查了三角形的面积,勾股定理等知识,解题的关键是学会利用数形结合思想解决问题,学会用转化的思想解决问题,属于中考常见题,3.(一)问题提出(1)平面直角坐标系中,如果A、B是x轴上的点,他们对应的横坐标分别是xA,xB,C、D是y轴上的两点,它们对应的纵坐标分别是yC,yD,那么A、B两点间的距离,C、D两点间的距离分别是多少?(2)平面直角坐标系中任意一点P(x,y)到原点的距离是多少?(3)已知平面上的两点P1(x1,y1),P2(x2,y2),如何求P1,P2的距离|P1P2|(二)问题探究(1)求平面直角坐标系中x轴上的两点E(5,0)、F(-2,0)之间的距离,可以借助绝对值表示|EF|=|5-(-2)|=7,对于y轴上两点,M(0,-3)、N(0,5)之间的距离|MN|=|3-5|=2.结论:在平面直角坐标系中,如果A、B是x轴上两点,它们对应的横坐标分别是xA,xB,则A、B两点间的距离|AB|=;C、D是y轴上的两点,它们对应的纵坐标分别是yC,yD,那么C、D两点间的距离|CD|=:(2)如图1:平面直角坐标系中任意一点B(3,4),过B向x轴上作垂线,垂足为M,由勾股定理得|OB|=;结论:平面直角坐标系中任意一点P(x,y)到原点的距离|OP|=;(3)如图2,要求AB或DE的长度,可以转化为求Rt V ABC或Rt V DEF的斜边长.例如:从坐标系中发现:D(-7,5),E(4,-3),所|以|DF|=|5-(-3)|=8,|EF|=|4-(-7)|=11,所以由勾股定理得:|DE=在图2中请用上面的方法求线段AB的长:AB=;在图3中:设P1(x1,y1),P2(x2,y2),试用x1,x2,y1,y2表示:|P1C|=,|P2C|=,|P1P2|=.(三)拓展应用试用以上所得结论解决如下问题:已知A(0,1),B(4,3).(1)直线AB与x轴交于点D,求线段BD的长.(2)C为坐标轴上的点,且使得三角形ABC是以AB为底边的等腰三角形,则C点的坐标为(不必写解答过程,直接写出即可).【答案】(二)问题探究:(1)|xA-xB|,|yC-yD|;(2)5(3)5,y1-y2,x1-x2,(三)拓展应用:(1)BD=(2)(3,0)或(0,6)【解析】【分析】(二)问题探究:(1)根据两点间距离的定义,利用两点的坐标差的绝对值表示即可;(2)构造直角三角形利用勾股定理即可解决问题;(3)构造直角三角形,利用勾股定理即可解决问题;(三)拓展应用:(1)利用待定系数法求出直线AB的解析式,求得点D坐标,利用(3)中结论即可解决问题;(2)作线段AB的垂直平分线交x轴于C,交y轴于C′.△ABC,△ABC′是等腰三角形,列方程求解即可;【详解】解:(二)问题探究:(1)|AB|=|xA-xB|,|CD|=|yC-yD|,故答案为:|xA-xB|,|yC-yD|;(2)平面直角坐标系中任意一点B(3,4),过B向x轴上作垂线,垂足为M,|OM|=3,|BM|=4,由勾股定理得|OB:结论:平面直角坐标系中任意一点P(x,y)到原点的距离|OP,故答案为:5(3)∵A (4,5),B (1,1),∴BC =3,AC =4,∴AB .在图3中:设P 1(x 1,y 1),P 2(x 2,y 2),试用x 1,x 2,y 1,y 2表示:|P 1C |=y 1-y 2,|P 2C |=x 1-x 2,|P 1P 2|=故答案为:5,y 1-y 2,x 1-x 2;(三)拓展应用:(1)如图4中,设直线AB 的解析式为1y kx =+,把B (4,3)代入得:341k =+,解得:k =12,∴直线AB 的解析式为112y x =+,令y =0,则x =-2,∴D (-2,0),∵B (4,3),∴BD =;(2)作线段AB 的垂直平分线交x 轴于C ,交y 轴于C ′,△ABC ,△ABC ′是等腰三角形.设C (m ,0),C ′(0,n ),由题意有:AC =BC ,AC ′=BC ′,则()2222143m m +=-+,()()222143n n -=+-,解得:m =3,n =6,∴C (3,0),C ′(0,6);故答案为:(3,0)或(0,6).【点睛】本题考查了待定系数法求直线的解析式、两点间距离公式、勾股定理、等腰三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考创新题型.4.阅读下列一段文字,然后回答下列问题.已知在平面内两点()111,P x y ,()222,P x y ,其两点间的距离12PP =.同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为21x x -或21y y -.(1)已知()2,3A -,()4,5B -,试求A 、B 两点间的距离;(2)已知一个三角形各顶点坐标为()1,3A -、()0,1B 、()2,2C ,请判定此三角形的形状,并说明理由.(3)已知()2,1A ,在x 轴上是否存在一点P ,使OAP △为等腰三角形,若存在请直接写出点P 的坐标;若不存在说明理由.【答案】(1)10;(2)△ABC 是直角三角形;(3)点P 0)或(0)或(4,0)或(54,0).【解析】【分析】(1)利用公式代入计算即可;(2)利用公式求出AB 、AC 、BC 的长,再利用勾股定理的逆定理判断三角形的形状;(3)根据等腰三角形的性质,分三种情况利用勾股定理解答.【详解】解:(1)A 、B 两点间的距离为10AB ==;(2)∵AB ==,AC ==BC ==,∴2225510AB BC AC +=+==,∴△ABC 是直角三角形;(3)∵()2,1A ,∴OA ==当OA=OP ∴P 0)或(0);当AO=AP 时,OP =4,∴P (4,0);当PA=PO 时,过点A 作AD ⊥x 轴于D ,设PA=PO=x ,则PD =2-x ,∵222AP AD PD =+,∴2221(2)x x =+-,解得54x =,∴P (54,0).综上,点P 0)或(0)或(4,0)或(54,0).【点睛】此题考查直角坐标系中两点之间的距离公式,勾股定理的逆定理,等腰三角形的性质,解题的关系是正确掌握各部分知识并熟练应用,解题中注意分类思想的应用.5.数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.探究一:求方程|x ﹣1|=5的解(1)探究|x ﹣1|的几何意义如图①,在以O 为原点的数轴上,设点A ′对应点的数为x ﹣1,由绝对值的定义可知,点A ′与O 的距离为|x ﹣1|,可记为:A ′O =|x ﹣1|.将线段A ′O 向右平移一个单位,得到线段AB ,此时点A 对应的数为x ,点B 的对应数是1,因为AB =A ′O ,所以AB =|x ﹣1|.因此,|x ﹣1|的几何意义可以理解为数轴上x 所对应的点A 与1所对应的点B 之间的距离AB .(2)求方程|x﹣1|=5的解因为数轴上 所对应的点与1所对应的点之间的距离都为5,所以方程的解为 .(1的几何意义如图②,在直角坐标系中,设点M的坐标为(x,y),过M作MP⊥x轴于P,作MQ⊥y轴于Q,则点P点坐标(x,0),Q点坐标(0,y),|OP|=x,|OQ|=y,在Rt△OPM中,PM=OQ=y,则MOM(x,y)与原点O(0,0)之间的距离MO.(2如图③,在直角坐标系中,设点A′的坐标为(x﹣1,y﹣5),由探究(二)(1)可知,A′O=将线段A′O先向右平移1个单位,再向上平移5个单位,得到线段AB,此时A的坐标为(x,y),点B的坐标为(1,5).因为AB=A′O,所以AB A (x,y)与点B(1,5)之间的距离AB.(3请仿照探究二(2)的方法,在图④中画出图形,并写出探究过程.(4的几何意义可以理解为: .拓展应用:(5A(x,y)与点E(2,﹣1)的距离与点A(x,y)与点F (填写坐标)的距离之和.(6的最小值为 .(直接写出结果)【答案】探究一:(2)﹣4或6,x=﹣4或6;探究二:(3)见解析;(4)点(x,y)与点(a,b)之间的距离;(5)(﹣1,5);(6)【解析】【分析】探究一:(2)因为数轴上的-4或6所对应的点与1所对应的点之间的距离都为5,即可求解;探究二:(3)参考(1)的过程画出函数图象即可求解;(4几何意义是表示点(x,y)与点(a,b)之间的距离,即可求解;拓展应用:(5)由探究二(4)可A(x,y)与点F(-1,5)的距离之和;(6)当点A位置线段EF之间时,此时EF=AF+AE,进而求解.【详解】解:探究一:(2)因为数轴上的﹣4或6所对应的点与1所对应的点之间的距离都为5,所以方程的解为x=﹣4或6,故答案为:﹣4或6,x=﹣4或6;探究二:(3)如图④,在直角坐标系中,设点A′的坐标为(x+3,y+4),由探究二(1)可知,A′O,将线段A′O先向左平移3个单位,再向下平移4个单位,得到线段AB,此时点A的坐标为(x,y),点B的坐标为(﹣3,﹣4),因为AB=A′O,所以AB,A(x,y)与点B(﹣3,﹣4)之间的距离AB;(4x,y)与点(a,b)之间的距离,故答案为点(x,y)与点(a,b)之间的距离;拓展应用:(5)由探究二(4A(x,y)与点E(2,﹣1)的距离和点A(x,y)与点F(﹣1,5)的距离之和,故答案为(﹣1,5);(6)当A(x,y)位于直线EF外时,此时点A、E、F三点组成△AEF,∴ 由三角形三边关系可知:EF<AF+AE,当点A位置线段EF之间时,此时EF=AF+AE,∴的最小值为EF的距离,∴ EF=故答案为【点睛】本题考查学生的阅读理解能力,解题的关键是正确理解题意,仿照题意求出答案,本题也考查了学生的综合能力,属于中等题型.6.先阅读下列一段文字,再回答后面的问题:已知在平面直角坐标系内两点P1(x1,y1),P2(x2,y2),其两点间的距离P1P2,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(1,3),B(﹣3,﹣5),试求A,B两点间的距离;(2)已知线段MN∥y轴,MN=4,若点M的坐标为(2,﹣1),试求点N的坐标;(3)已知一个三角形各顶点坐标为D(0,6),E(﹣3,2),F(3,2),你能判定此三角形的形状吗?说明理由.【答案】(1)(2)(2,3)或(2,﹣5);(3)等腰三角形,见解析【解析】【分析】(1)直接利用两点间的距离公式计算;(2)利用MN∥y轴得到M、N的横坐标相同,设N(2,t),利用两点间的距离为4得到|t+1|=4,然后求出t即可;(3)利用两点间的距离公式计算出DE、DF、EF,然后根据三角形的分类进行判断.【详解】解:(1)A,B(2)∵线段MN∥y轴,∴M、N的横坐标相同,设N(2,t),∴|t+1|=4,解得t=3或﹣5,∴N点坐标为(2,3)或(2,﹣5);(3)△DEF为等腰三角形.理由如下:∵D(0,6),E(﹣3,2),F(3,2),∴DE5,DF5,EF6,∴DE=DF,∴△DEF为等腰三角形.【点睛】本题考查了两点间的距离公式.解答该题时,先弄清两点在平面直角坐标系中的位置,然后选取合适的公式来求两点间的距离.7.在平面直角坐标系中,已知两点的坐标是()11,P x y ,()22,Q x y ,则P ,Q 两点之间的距离可以用公式d =.计算,阅读以上内容并解答下列问题:(1)已知点()2,4M ,()3,8N --,则M ,N 两点之间的距离为__________;(2)若点()0,4A ,()1,2B -,()4,2C ,判断ABC V 的形状,并说明理由.【答案】(1)13;(2)ABC V 为直角三角形,理由见解析.【解析】【分析】(1)用两点之间的距离可以用公式即可;(2)分别算出三点之间的距离即可.【详解】解:(1)∵()2,4M ,()3,8N --∴13MN ==.(2)ABC V 为直角三角形.理由:222(01)(42)5AB =++-=;222(04)(42)16420AC =-+-=+=;222(14)(22)25BC =--+-=,∴222BC AB AC =+.∴ABC V 为直角三角形.【点睛】此题考查的是两点之间的距离和三角形类型的判断,掌握两点之间的距离公式和勾股定理的逆定理是解题的关键.8.在信息技术迅猛发展的今天,很多同学都能够借助网络平台进行学习,在学习了平面直角坐标系后,小明同学在网上搜索到下面的文字材料:在x 轴上有两个点,它们的坐标分别为(a ,0)和(c ,0),则这两点所成线段的长为|a ﹣c |;同样的,若在y 轴上的两点坐标分别为(0,b )和(0,d ),则这两点所成线段的长为|b ﹣d |.如图1,在直角坐标系中的任意两点P 1,P 2,其坐标分别是(a ,b )和(c ,d ),分别过这两点作两坐标轴的平行线,构成一个直角三角形,其中直角边P 1Q =|a ﹣c |,PQ =|b ﹣d |,利用勾股定理可得,线段P1P2根据上面材料,回答下面的问题:(1)在平面直角坐标系中,已知A(7,﹣2),B(7,7),则线段AB的长为_____.(2)在平面直角坐标系中,已知M(﹣4,3),N(8,﹣2),则线段MN的长为______.(3)若点C在y轴上,点D的坐标是(﹣3,1),且CD=5,则点C的坐标是______.(4)如图2,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的动点,且A、B、C三点不在同一直线上,求△ABC周长的最小值.【答案】(1)9;(2)13;(3)(0,5)或(0,-3);(4)△ABC周长的最小值为【解析】【分析】(1)由线段的公式得:9AB==,即可求解;(2)由线段的公式得:13MN=,即可求解;(3)设点C(0,m),则5CD==,解得m=5或-3,即可求解;(4)作点A关于y轴的对称点D(-1,4),连接BD交y轴于点C,则此时△ABC周长最小,进而求解.【详解】解:(1)由线段的公式得:9AB==,故答案为:9;(2)由线段的公式得:13MN=,故答案为:13;(3)设点C(0,m),则5CD==,解得m=5或-3,故点C 的坐标为(0,5)或(0,-3),故答案为:(0,5)或(0,-3);(4)作点A 关于y 轴的对称点D (-1,4),连接BD 交y 轴于点C ,则此时△ABC 周长最小,∵CA =CD ,AB 为定长,∴△ABC 周长=AB +AC +BC =AB +CD +BC =AB +BD 为最小,则AB ==同理可得:BD =,故△ABC 周长的最小值=AB +AC +BC =AB +CD +BC =AB +BD =【点睛】本题主要考查了坐标与图形的性质、勾股定理、点的对称性等,这种阅读性题目,通常按照题设的顺序求解,一般容易解答.9.如图①,我们在“格点”直角坐标系上可以清楚看到:要找AB 或DE 的长度,显然是转化为求Rt ABC V 或Rt DEF △的斜边长.下面:以求DE 为例来说明如何解决:从坐标系中发现:()7,5D -,()4,3E -.所以()538DF =--=,()4711EF =--=,所以由勾股定理可得:DE =下面请你参与:(1)在图①中:AC =________,BC =________,AB =________.(2)在图②中:设()11,A x y ,()22,B x y ,试用1x ,2x ,1y ,2y 表示AC =________,BC =________,AB =________.(3)(2)中得出的结论被称为“平面直角坐标系中两点间距离公式”,请用此公式解决如下题目:已知:()2,1A ,()4,3B ,C 为坐标轴上的点,且使得ABC V 是以AB 为底边的等腰三角形.请求出C 点的坐标.【答案】(1)4;3;5;(2)12y y -;12x x -(3)()5,0或()0,5.【解析】【分析】(1) 结合坐标系即可得出AC 、BC 的长度,利用勾股定理可得出AB 的长度;(2)结合坐标系及各点坐标即可得出各线段的长度;(3) 设点C 的坐标为(x ,0)或(y ,0),依次求出即可得出答案.【详解】(1)结合坐标系可得出:4AC =,3BC =,5AB ==.(2)结合图形可得:12AC y y =-,12BC x x =-,AB =(3)若点C 在x 轴上,设点C 的坐标为(),0x ,则AC BC ==解得:5x =.即点C 的坐标为()5,0;若点C 在y 轴上,设点C 的坐标为()0,y .则AC BC ==解得:5y =,即点C 的坐标为()0,5.综上可得点C 的坐标为()5,0或()0,5.【点睛】本题考查了勾股定理及两点间的距离公式,看似难度较大,其实不然,注意仔细审题,领悟题意.10.先阅读下列一段文字,再解答问题.已知在平面内有两点P 1(1x ,1y ),P 2(2x ,2y ),其两点间的距离公式为12p p =标轴或垂直于坐标轴时,两点间距离公式可简化为21x x -或21y y -.(l )已知点A (7,3),B (2,9-),试求A ,B 两点间的距离;(2)已知点A ,B 在平行于x 轴的直线上,点A 的横坐标为6,点B 的横坐标为2-,试求A ,B 两点间的距离;(3+的最小值.【答案】(1)13;(2)8;(3)10.【解析】【分析】(1)利用两点间距离公式12p p =将两点的坐标代入公式计算即可;(2)根据点A ,B 在平行于x 轴的直线上,可利用公式21x x -求出AB ;(3)原式表示点(x ,y )到(0,−1)和(−6,7)的距离之和.由两点之间线段最短,点(x ,y )在以(0,−1)和(−6,7)为端点的线段上时,原式值最小.【详解】解:(1)∵点A (7,3),B (2,9-),∴AB 13=.(2)∵点A ,B 在平行于x 轴的直线上,∴AB =()62--=8.(3)∵,∴原式表示点(x ,y )到(0,−1)和(−6,7)的距离之和.∵两点之间线段最短,∴点(x ,y )在以(0,−1)和(−6,7)为端点的线段上时,原式值最小.∴=10.【点睛】本题考查了平面直角坐标系中两点间的距离,解题的关键是能够理解公式的含义,结合平面内点的坐标特点求解.11.热爱学习的小明同学在网上搜索到下面的文字材料:在x 轴上有两个点它们的坐标分别为(a ,0)和(c ,0).则这两个点所成的线段的长为|a ﹣c |;同样,若在y 轴上的两点坐标分别为(0,b )和(0,d ),则这两个点所成的线段的长为|b ﹣d |.如图1,在直角坐标系中的任意两点P 1,P 2,其坐标分别为(a ,b )和(c ,d ),分别过这两个点作两坐标轴的平行线,构成一个直角三角形,其中直角边P 1Q =|a ﹣c |,P 2Q =|b ﹣d |,利用勾股定理可得:线段P 1P 2的长.根据上面材料,回答下面的问题:(1)在平面直角坐标系中,已知A (3,1),B (6,5),则线段AB 的长为_________________;(2)若点C 在y 轴上,点D 的坐标是(﹣3,0),且CD =6,则点C 的坐标是_________________;(3)如图2,在直角坐标系中,点A ,B 的坐标分别为(1,3)和(3,0),点C 是y 轴上的一个动点,且A ,B ,C 三点不在同一条直线上,求△ABC 周长的最小值.【答案】(1)5;(2)(0,)或(0,-;(3)△ABC 5+【解析】【分析】(1)根据线段长度计算方法计算即可;(2)设C点坐标为(0,b),根据线段长度计算方法列出方程即可求解;(3)找到点A关于y轴的对称点A′(-1,3),连接A′B交y轴于点C,此时△ABC周长的最小,即可求解.【详解】(1)∵A(3,1),B(6,5),∴5=;故答案为:5;(2)设C点坐标为(0,b),6=,解得b=±∴C点坐标为(0,)或(0,-,故答案为:(0,)或(0,-;(3)如图,设A点关于y轴的对称点为A′,则点A′的坐标为(-1,3),当C点为A′B与y轴的交点时,因为AC=A′C,所以△ABC的周长最小,△ABC的周长=AB+A'B.∵点A,B的坐标分别为(1,3)和(3,0),∴=,5A B==¢,所以△ABC5.【点睛】本题考查了坐标与图形,勾股定理,两点的距离公式,轴对称的最短路径问题,以阅读理解的方式,逐次计算即可,此类题目难度适中.12.阅读理解:在平面直角坐标系中,任意两点()11,A x y ,()22,B x y 之间的位置关系有以下三种情形;①如果AB x P 轴,则12y y =,12AB x x =-②如果AB y ∥轴,则12x x =,12AB y y =-③如果AB 与x 轴、y 轴均不平行,如图,过点A 作与x 轴的平行线与过点B 作与y 轴的平行线相交于点C ,则点C 坐标为()21,x y ,由①得12AC x x =-;由②得12BC y y =-;根据勾股定理可得平面直角坐标系中任意两点的距离公式AB =小试牛刀:(1)若点A 坐标为(23)﹣,,B 点坐标为(3,3)则AB = ;(2)若点A 坐标为(3,2),B 点坐标为(3,-4)则AB = ;(3)若点A 坐标为(3,2),B 点坐标为(7,-1)则AB = ;学以致用:若点A 坐标为(7,-1),点B 坐标为(4,4),点P 是x 轴上的动点,当+AP PB 取得最小值时点P 的坐标为并求出+AP PB 最小值=【答案】小试牛刀:(1)5;(2)6;(3)5;学以致用:8,03P æöç÷èø,.【解析】【分析】小试牛刀:(1)由于AB 是平行于x 轴,所以12|3(2)|5AB x x =-=--=;(2)此时AB 是平行于y 轴,所以12|42|6AB y y =-=--=;(3)此时AB 与x 轴、y 轴均不平行,按照题意,AB =AB 、两点的坐标求解即可;学以致用:根据两点之间线段最短可以得到,当A P B 、、三点共线时,+AP PB 取得最小值,此时P 点即为线段AB 与x 轴的交点,所以可以解出直线AB 的解析式然后求一次函数与x 轴的交点坐标,从而求出点P 的坐标,而+AP PB 的值即为线段AB 的值,可以根据题中给到的公式进行求解;【详解】小试牛刀:(1)12|3(2)|5AB x x =-=--=(2)12|42|6AB y y =-=--=(3)5AB ===学以致用:∵点A 坐标为(7,-1),点B 坐标为(4,4),两点位于x 轴的异侧\ 根据两点之间线段最短可得:当A P B 、、三点共线时,+AP PB 取得最小值,此时P 点即为线段AB 与x 轴的交点设直线AB 为(0)y kx b k =+¹则7144k b k b +=-ìí+=î,解得5-3323k b ì=ïïíï=ïî,∴直线AB 为532-+33y x =,令0y =,则325x =,即32,05P æöç÷èø,此时AP PB AB +===故答案是:32,05P æöç÷èø【点睛】本题主要考查一次函数中两点间的距离公式,同时结合了线段最短问题,熟练掌握两点间的距离公式是解决本题的关键.13.数形结合是一种重要的数学思想,我们不但可以用数来解决图形问题,同样也可以用借助图形来解决数量问题,往往能出奇制胜,数轴和勾股定理是数形结合的典范.数轴上的两点A 和B 所表示的数分别是1x 和2x ,则A ,B 两点之间的距离12AB x x =-;坐标平面内两点()11,A x y ,()22,B x y,它们之间的距离AB =如点(3,1)C -,(1,4)D -,则CD ==41表示点(, )x y与点(4,3)-之间的距离,+(, )x y 与点(4,3)-和(2,5)-的距离之和.(1)已知点(3,1)M -, (1,2)N ,MN =________;(2(,____)A a 和点(____,____)B 之间的距离;(3的最小值.【答案】(1;(2)b ,6-,1;(3.【解析】【分析】(1)根据两点之间的距离公式即可得到答案;(2表示点(, )x y 与点(4,3)-之间的距离,可以得到A 、B 两点的坐标;(3)根据两点之间的距离公式,再结合图形,通过化简可以得到答案;【详解】解:(1)根据两点之间的距离公式得:MN ==(2表示点(, )x y 与点(4,3)-之间的距离,(, )A a b 和点(6,1)B -之间的距离,∴(, )A a b (6,1)B -故答案为b ,-6,1.(3=+如图1DC EC +的长,根据两点之间线段最短知DC EC DE+…如图2,DE ==+.【点睛】本题考查了坐标平面内两点之间的距离公式,以及平面内两点之间的最短距离,解题的关键是注意审题,会用数形结合的解题方法.。
《指数函数及其性质》课件
指数函数中的底数 a 必须为正 实数且 a ≠ 1,自变量 x 可以 是实数或复数。
当 a > 1 时,函数是增函数; 当 0 < a < 1 时,函数是减函 数。
指数函数的基本形式
指数函数的基本形式为 y = a^x,其 中 a 为底数,x 为自变量。
指数函数的定义域和值域分别为全体 实数和正实数集。
CATALOGUE
指数函数与其他函数的比较
与线性函数的比较
线性函数
y=kx+b,其图像为直线 。指数函数与线性函数在 某些特性上存在显著差异 ,例如增长速度和斜率。
增长速度
线性函数在x增大时,y以 固定斜率增长;而指数函 数在x增大时,y的增长速 度会越来越快。
斜率
线性函数的斜率是固定的 ,而指数函数的斜率(即 函数的导数)会随着x的增 大而减小。
和第三象限。
指数函数的图像是连续的,但在 x = 0 处存在垂直渐近线。
02
CATALOGUE
指数函数的性质
增减性
总结词
指数函数的增减性取决于底数a的取 值范围。
详细描述
当a>1时,指数函数是增函数,即随 着x的增大,y的值也增大;当0<a<1 时,指数函数是减函数,即随着x的增 大,y的值减小。
奇偶性
总结词
奇函数和偶函数的性质可以通过指数函数的定义来判断。
详细描述
如果一个函数满足f(-x)=-f(x),则它是奇函数;如果满足f(-x)=f(x),则它是偶 函数。对于形如f(x)=a^x的指数函数,当a>0且a≠1时,它是非奇非偶函数; 当a=1时,它是偶函数;当a=-1时,它是奇函数。
值域和定义域
与幂函数的比较
指数函数的概念说课课件
指数函数的概念说课课件
什么是指数函数?
指数函数是一种特殊的代数函数,可以用以下形式表示:
f(x) = a * b^x,其中a 和b 是常数,b 称为底数,x 是自变量。
指数函数的图像通常表现出随着自变量x 增加或减少而呈指数增长或衰减的趋势。
指数函数的性质
1. 底数大于1 时,函数递增;底数在0 和1 之间时,函数递减。
这是指数函数的基本特点。
2. 当x = 0 时,指数函数的值为1。
这是因为任何数的0 次方都等于1。
3. 不同底数的指数函数在相同自变量下的图像形状不同。
例如,当底数大于1 时,图像呈现上升的曲线;当底数在0 和 1 之间时,图像则呈现下降的曲线。
还有许多其他性质,可以通过实际例子和计算来展示。
指数函数的应用
1. 在经济学中,指数函数常用于描述货币的贬值和物价的上涨。
通常情况下,货币的购买力会随着时间的推移而下降。
2. 在生物学和环境科学中,指数函数可以用于描述种群的增长和衰退。
种群的数量通常会受到各种因素的影响,指数函数提供了一种模型来预测种群变化。
3. 在物理学中,指数函数可以用于描述放射性衰变和电路中的电荷放电。
这些过程都与时间的指数关系紧密相关。
指数函数在各个领域都有广泛的应用,并且为我们理解和解决实际问题提供了便利。
总结
指数函数是一种特殊的代数函数,具有许多独特的性质和广泛的应用。
通过深入学习和理解指数函数的概念,我们可以拓宽数学思维、应用数学知识解决实际问题,提高数学素养。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《2020-2021学年高一数学同步讲练测(新教材人教A 版必修第一册)》专题14指数函数(讲)知识点课前预习与精讲精析1.指数函数的定义一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中x 是自变量.[知识点拨]指数函数y =a x (a >0,且a ≠1)的结构特征:(1)底数:大于零且不等于1的常数;(2)指数:仅有自变量x ;(3)系数:a x 的系数是1.2.指数函数的图象和性质指数函数的图象和性质如下表所示:a >10<a <1图象性质定义域R 值域(0,+∞)过定点过定点(0,1),即x =0时,y =1单调性在R 上是增函数在R 上是减函数奇偶性非奇非偶函数[知识点拨](1)a >1是“一撇”,0<a <1是“一捺”;(2)图象位于x 轴上方;(3)当x =0时,y =1;(4)在y 轴右侧,a 越大,图象越高,即逆时针方向,底数依次增大.3.比较幂的大小比较幂的大小的常用方法:(1)对于底数相同,指数不同的两个幂的大小比较,可以利用指数函数的单调性来判断;(2)对于底数不同,指数相同的两个幂的大小比较,可以利用指数函数图象的变化规律来判断;(3)对于底数不同,且指数也不同的幂的大小比较,可先化为同底的两个幂,或者通过中间值来比较.4.有关指数型函数的性质(1)求复合函数的定义域形如y =a f (x )的函数的定义域就是f (x )的定义域.求形如y =a f (x )的函数的值域,应先求出u =f (x )的值域,再由单调性求出y =a u 的值域.若a 的范围不确定,则需对a 进行讨论.求形如y =f (a x )的函数的值域,要先求出u =a x 的值域,再结合y =f (u )确定出y =f (a x )的值域.(2)判断复合函数的单调性令u =f (x ),x ∈[m ,n ],如果复合的两个函数y =a u 与u =f (x )的单调性相同,那么复合后的函数y =a f (x )在[m ,n ]上是增函数;如果两者的单调性相反(即一增一减),那么复合函数y =a f (x )在[m ,n ]上是减函数.(3)研究函数的奇偶性一是定义法,即首先是定义域关于原点对称,然后分析式子f (x )与f (-x )的关系,最后确定函数的奇偶性.二是图象法,作出函数图象或从已知函数图象观察,若图象关于原点或y 轴对称,则函数具有奇偶性.1.若指数函数()x f x a =(0a >且1a ≠)的图象经过点()3,8,则()142f f ⎛⎫⋅= ⎪⎝⎭______.【答案】【解析】由题知()338f a ==,解得2a =,()2x f x ∴=,因此,()14214222f f ⎛⎫⋅=⨯= ⎪⎝⎭.故答案为.2.若函数()xf x a =(0a >且1a ≠)在[]1,2上最大值是最小值的2倍,则a =______.【答案】2或12【解析】当01a <<时,函数()x f x a =为R 上的减函数,故()()122f f =,即22a a =,解得12a =.当1a >时,函数()xf x a =为R 上的增函数,故()()221f f =,即22a a =,解得2a =.故a 的值为2或12.故填:2或12.3.指数函数f(x)=(a﹣1)x在R 上是增函数,则a 的取值范围是_____.【答案】(2,+∞)【解析】∵指数函数f(x)=(a﹣1)x 在R 上是增函数,∴a﹣1>1,即a>2,故a 的取值范围是(2,+∞),故答案为(2,+∞).4.已知函数()3x f x a -=+的图像经过第二、三、四象限,()()(1)g a f a f a =-+,则()g a 的取值范围是_______.【答案】(2,)+∞【解析】因为函数()3x f x a -=+的图像经过第二、三、四象限,所以()00310f a a -=+=+<,解得:1a <-又()()12()()(1)3333a a a g a f a f a a a -+--⎡⎤=-+=+-+=⨯⎣⎦又1a <-,所以1a ->,所以()33,a -∈+∞所以()232,3a -⨯∈+∞,所以()g a 的取值范围是()2,+∞5.已知(a 2+a +2)x >(a 2+a +2)1-x ,则x 的取值范围是________.【答案】1,2⎛⎫+∞ ⎪⎝⎭【解析】∵a 2+a +2=217()124a ++>,∴y =(a 2+a +2)x 为R 上的增函数.∴x >1-x ,即12x >.x 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭.典型题型与解题方法重要考点一:指数函数的概念【典型例题】已知函数2()(1)(1)x f x a a a =+-+为指数函数,则a =.【答案】1【解析】函数()()()211x f x a a a =+-+为指数函数,21110a a a ⎧+-=∴⎨+>⎩解得1a =【题型强化】下列函数是指数函数的是________(填序号).①y =4x ;②y =x 4;③y =(-4)x ;④y =4x 2.【答案】①【解析】形如(0x y a a =>且1a ≠)的函数,叫指数函数.由指数函数定义,只有①是指数函数;②y =x 4是幂函数;③y =(-4)x ,由于底数4(0,1)(1,)-∉+∞ ,所以③不是指数函数;④y =4x 2不是指数函数.故答案为:①【收官验收】已知指数函数图像经过点(1,3)p -,则(3)f =_____.【答案】127【解析】设指数函数为()x f x a =(0a >且1a ≠),由题意得13a -=,解得13a =,所以1()()3x f x =,故311(3)()327f ==.答案:127.【名师点睛】判断一个函数是否是指数函数,关键是看解析式是否符合y =a x (a >0,a ≠1)这一结构形式.重要考点二:指数函数的图象【典型例题】如图,是指数函数①x y a =、②x y b =、③x y c =、④x y d =的图象,则()A .1a b c b<<<<B .1b a d c <<<<C .1a b c d<<<<D .1a b d c<<<<【答案】B【解析】∵当底数大于1时指数函数是定义域内的增函数,当底数大于0小于1时是定义域内的减函数,由图可知x y c =、x y d =为增函数,则,c d 大于1.x y a =、x y b =为减函数,则a b ,大于0小于1.当1x =时,对应的函数值依次为①y a =、②y b =、③y c =、④y d =,由图知,当1x =时,对应函数值由下到上依次是②①④③,得1b a d c <<<<,所以正确选项为B故选:B .【题型强化】函数(0,1)x y a a a a =->≠的图象可能是()A .B .C .D .【答案】C【解析】①当1a >时,函数(0,1)x y a a a a =->≠可以看做函数x y a =的图象向下平移a 个单位,由于1a >,则A 错误;又1x =时,0y a a =-=,则函数(0,1)xy a a a a =->≠过点(1,0),故B 错误;②当01a <<时,函数(0,1)x y a a a a =->≠可以看做函数xy a =的图象向下平移a 个单位,由于01a <<,则D 错误;又1x =时,0y a a =-=,则函数(0,1)x y a a a a =->≠过点(1,0),故C 正确;故选:C【收官验收】在同一直角坐标系中,函数()a f x x =与()x g x a -=在[)0,+∞上的图象可能是().A .B .C .D .【答案】A【解析】()a f x x =为幂函数,()1()-==x x g a a x 为指数函数A.()1(-==x x g a a x 过定点(0,1),可知101<<a ,1a ∴>,()a f x x =的图象符合,故可能.B.()1(-==x x g a a x 过定点(0,1),可知101<<a ,1a ∴>,()a f x x =的图象不符合,故不可能.C.()1(-==x x g a a x 过定点(0,1),可知11a>,01a ∴<<,()a f x x =的图象不符合,故不可能.D.图象中无幂函数图象,故不可能.故选:A【名师点睛】指数函数的图象随底数变化的规律可归纳为:在第一象限内,图象自下而上对应的底数依次增大.重要考点三:指数函数中忽视对底数的分类讨论致误【典型例题】已知函数()(),1xf x a a =>在区间[]1,2上的最大值比最小值大2,求实数a 的值.【答案】2【解析】函数()(),1x f x a a =>∴函数()f x 在[]1,2单调递增即()()2max 2f x f a ==,()()min 1f x f a ==又 函数()(),1x f x a a =>在区间[]1,2上的最大值比最小值大2.∴()()2212f f a a -=-=,解得2a =或1a =-(舍去)综上所述:2a =【题型强化】已知函数()x f x a=(0a >,且)1a ≠的图象经过点()24,.(1)求a 的值;(2)若2131x x a a +-<,求x 的取值范围.【答案】(1)2a =(2)()2,+∞【解析】(1)∵()x f x a =(0a >,且)1a ≠的图象经过点()24,∴24a =,由0a >,且1a ≠可得2a =(2)由(1)得2a =若2131x x a a +-<,代入2a =可得213122x x +-<由指数函数的单调性可知满足2131x x +<-解得2x >,即()2,x ∈+∞【收官验收】已知函数(0,1)x y a a a =>≠在区间[1,2]上的最大值比最小值大3a ,求实数a 的值.【答案】43a =或23【解析】1a >时,x y a =是增函数,则23a a a -=,解得43a =(0a =舍去);01a <<时,x y a =是减函数,则23a a a -=,解得23a =(0a =舍去).综上,43a =或23.重要考点四:指数型函数图象过定点问题【典型例题】函数1()3x f x a -=+的图象一定过定点P ,则P 点的坐标是______.【答案】(1,4)【解析】()13x f x a -=+由x y a =向右平移1个单位,向上平移3个单位得到,x y a =过定点()0,1,则()13x f x a -=+过定点()1,4.【题型强化】函数223x y a =+﹣(0a >且1a ≠)的图象恒过定点_______________.【答案】()14,【解析】根据题意,数223x y a -=+中,令220x -=,解可得1x =,此时22134f a -=+=(),即函数的图象恒过定点14(,),故答案为:14(,).【收官验收】已知函数1()4x f x a -=+(其中0a >且1a ≠)的图象恒过定点P ,则点P 坐标是_________.【答案】(1,5)【解析】解:令10x -=,此时1x =,101x a a -==,此时()15f =,所以图象恒过()1,5P .故答案为:(1,5).【名师点睛】指数型函数过定点的求法:求指数型函数图象所过的定点,只要令指数为0,求出对应的x 与y 的值,即为函数图象所过的定点.重要考点五:指数型函数的定义域与值域【典型例题】设()2121x f x =-+.(1)求()f x 的值域;(2)证明()f x 为R 上的增函数.【答案】(1)()1,1-;(2)证明见解析.【解析】(1)因为20x >,所以20221x <<+,所以211121x -<-<+,即()f x 的值域为(1,1)-;(2)任取1x 、2x ,且12x x <.则21212121222(22)()()1102121(21)(21)x x x x x x f x f x --=--+=>++++所以21()()f x f x >所以()f x 为R 上的增函数【题型强化】求下列函数的定义域和值域,并写出其单调区间.(1)()f x =(2)121()3xf x -⎛⎫= ⎪⎝⎭;(3)223()2x x f x --+=;(4)121()1,[2,3]933x x f x x ⎛⎫⎛⎫=-⋅+∈- ⎪ ⎪⎝⎭⎝⎭.【答案】(1)定义域:(,2]-∞-,值域:[0,1),减区间:(,2]-∞-;(2)定义域:(,2)(2,)-∞⋃+∞,值域:(0,1)(1,)⋃+∞,减区间:(,2)-∞和(2,)+∞;(3)定义域:R ,值域:(0,16],增区间:(,1]-∞-,减区间:[1,)-+∞;(4)值域8,769⎡⎤⎢⎥⎣⎦,减区间:[2,1]-,增区间:[1,3]【解析】(1)由2130x +-≥得2x -≤,所以定义域为(,2]-∞-,又230x +>,所以20131x +≤-<,01y ≤<,所以值域中[0,1),213x u +=-在R 上是减函数,所以()f x =的减区间是(,2]-∞-;(2)由20x -≠得2x ≠,所以定义域是(,2)(2,)-∞⋃+∞,又102x ≠-,所以值域是(0,1)(1,)⋃+∞,12u x=-在(,2)-∞和(2,)+∞上都是增函数,所以121()3x f x -⎛⎫= ⎪⎝⎭的减区间是(,2)-∞和(2,)+∞;(3)定义域是R ,又2223(1)44x x x --+=-++≤,所以值域中(0,16],2(1)4u x =-++在(,1]-∞-上递增,在[1,)-+∞上递减,所以223()2xx f x --+=的增区间(,1]-∞-,减区间是[1,)-+∞;(4)定义域是[2,3]-,令1()3xt =,由[2,3]x ∈-,所以1[,9]27t ∈,222181()339y t t t =-+=-+,所以876]9y ≤≤,值域8,769⎡⎤⎢⎥⎣⎦,又222181()339y t t t =-+=-+在11[,273上递减,在1[,9]3上递增,而1(3x t =是减函数,所以121()1,[2,3]933xxf x x ⎛⎫⎛⎫=-⋅+∈- ⎪ ⎪⎝⎭⎝⎭的减区间是[2,1]-,增区间[1,3].【收官验收】求下列函数的定义域、值域.(1)y =313xx+;(2)y =4x -2x +1.【答案】(1)定义域为R ;值域为(0,1);(2)定义域为R ;值域为3,4⎡⎫+∞⎪⎢⎣⎭.【解析】(1)∵对一切x ∈R ,3x ≠-1;∴函数的定义域为R;∵y =13113x x+-+=1-113x +;又∵3x >0,1+3x >1;∴0<113x +<1,∴-1<-113x+<0;∴0<1-113x+<1,∴值域为(0,1).(2)函数的定义域为R ;y =(2x )2-2x+1=122x ⎛⎫- ⎪⎝⎭2+34;∵2x >0,∴2x =12,即x =-1时,y 取最小值34;同时y 可以取一切大于34的实数;∴值域为3,4⎡⎫+∞⎪⎢⎣⎭.【名师点睛】1.函数单调性在求函数值域中的应用(1)若函数f (x )在区间[a ,b ]上是增函数,则f (a )≤f (x )≤f (b ),值域为[f (a ),f (b )].(2)若函数f (x )在区间[a ,b ]上是减函数,则f (a )≥f (x )≥f (b ),值域为[f (b ),f (a )].2.函数y =a f (x )定义域、值域的求法(1)定义域.函数y =a f (x )的定义域与y =f (x )的定义域相同.(2)值域.①换元,令t =f (x );②求t =f (x )的定义域x ∈D ;③求t =f (x )的值域t ∈M ;④利用y =a t 的单调性求y =a t ,t ∈M 的值域.重要考点六:幂式大小的比较【典型例题】设0.6 1.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是()A .a b c <<B . a c b <<C .b a c <<D .b c a<<【答案】C 【解析】由0.6xy =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C .【题型强化】若a <0,则0.5a,、5a 、5-a 的大小关系是()A .5-a <5a <0.5aB .5a <0.5a <5-aC .0.5a <5-a <5aD .5a <5-a <0.5a【答案】B 【解析】因为0a <,故可得0.51a >,50.21a a -=>,51a <;再结合指数函数的图像关系,则0.20.5a a >.故50.55a a a ->>.故选:B.【收官验收】已知0.60.3a =,0.50.3b =,0.50.4c =,则()A .a b c >>B .a c b >>C .b c a >>D .c b a>>【答案】D 【解析】根据函数0.3x y =单调递减知:0.60.503..03a b <==;根据函数0.5y x =单调递增知:0.50.503.4.0c b =<=,故c b a >>.故选:D .【名师点睛】比较指数式的大小应根据所给指数式的形式,当底数相同时,运用单调性法求解;当底数不同时,利用一个中间量做比较进行求解.或借助于同一坐标系中的图象求解.重要考点七:指数型函数的奇偶性【典型例题】设函数()xxf x a mb =+,其中,,a m b ∈R .(1)若2a =,12b =且()f x 为R 上偶函数,求实数m 的值;(2)若4a =,2b =且()f x 在R 上有最小值,求实数m 的取值范围;(3)() 0,1a ∈, 1b >,解关于x 的不等式()0f x >.【答案】(1)1m =;(2)0m <;(3)答案见解析.【解析】解:(1)()122xxf x m ⎛⎫=+ ⎪⎝⎭,所以()()1121222m f f m =+=-=+,所以1m =,检验,此时()122x x f x ⎛⎫=+ ⎪⎝⎭,()122xx f x ⎛⎫-=+ ⎪⎝⎭,所以()()f x f x -=,()f x 为偶函数;(2)()4·2xxf x m =+,令20x t =>,则()2g t t mt =+在()0,∞+上有最小值,所以02m->,得0m <;(3)()0xxf x a mb =+>,所以xxa mb >-,所以xx x a a m b b ⎛⎫=>- ⎪⎝⎭,因为()0,1a ∈,1b >,所以()0,1ab∈.①0m -≤,即0m >,解集为R ;②0m ->,即0m <,解集为(),log a b m ⎛⎫-∞- ⎪⎝⎭.【题型强化】已知定义域为R 的函数2()2xx b f x a-=+是奇函数.(1)求a ,b 的值;(2)用定义证明()f x 在(,)-∞+∞上为减函数;(3)若对于任意t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的范围.【答案】(1)1a =,1b =;(2)证明见解析;(3)1(,)3-∞-.【解析】解:(1)()f x 为R 上的奇函数,(0)0f ∴=,可得1b =又(1)f f -=- (1)∴11121222a a----=-++,解之得1a =经检验当1a =且1b =时,12()21xx f x -=+,满足()()f x f x -=-是奇函数.(2)由(1)得122()12121x x x f x -==-+++,任取实数1x 、2x ,且12x x <则21121212222(22)()()2121(21)(21)x x x x x x f x f x --=-=++++12x x < ,可得1222x x <,且12(21)(21)0x x ++>12()()0f x f x ∴->,即12()()f x f x >,函数()f x 在(,)-∞+∞上为减函数;(3)根据(1)(2)知,函数()f x 是奇函数且在(,)-∞+∞上为减函数.∴不等式22(2)(2)0f t t f t k -+-<恒成立,即222(2)(2)(2)f t t f t k f t k -<--=-+也就是:2222t t t k ->-+对任意的t R ∈都成立.变量分离,得232k t t <-对任意的t R ∈都成立,2211323()33t t t -=-- ,当13t =时有最小值为13-13k ∴<-,即k 的范围是1(,3-∞-.【收官验收】已知定义域为R 的函数,12()2x x bf x a+-+=+是奇函数.(1)求a ,b 的值;(2)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围.【答案】(1)2a =;1b =(2)13k <-【解析】(1)因为()f x 是R 上的奇函数,所以()00=f ,即102ba-+=+,解得1b =.从而有121()2x x f x a +-+=+.又由()()11f f =--知1121241a a-+-+=-++,解得2a =.经检验,当121()22x x f x +-+=+时,()()f x f x -=-,满足题意(2)由(1)知12111()22221x x xf x +-+==-+++,由上式易知()f x 在R 上为减函数,又因为()f x 是奇函数,从而不等式()()22220f t t f t k -+-<等价于()()()222222f t t f t k f t k -<--=-+.因为()f x 是R 上的减函数,由上式推得2222t t t k ->-+.即对一切t R ∈有2320t t k -->,从而4120k ∆=+<,解得13k <-.重要考点八:指数型函数的单调性【典型例题】(1)求函数261712x x y -+⎛⎫=⎪⎝⎭的单调区间;(2)求函数21181722xxy ⎛⎫⎛⎫=-⋅+ ⎪ ⎪⎝⎭⎝⎭的单调区间.【答案】(1)单调递增区间为(),3-∞,单调递减区间为()3,+∞(2)单调递增区间为()2,-+∞,单调递减区间为(),2-∞-。