基于运算放大器的峰值检测电路
峰值检测电路实例与分析
史上最实用较深刻的峰值检测电路实例与分析一、前言峰值检测电路(PKD,Peak Detector)的作用是对输入信号的峰值进行提取,产生输出Vo = Vpeak,为了实现这样的目标,电路输出值会一直保持,直到一个新的更大的峰值出现或电路复位。
峰值检测电路在AGC(自动增益控制)电路和传感器最值求取电路中广泛应用,自己平时一般作为程控增益放大器倍数选择的判断依据。
有的同学喜欢用AD637等有效值芯片作为程控增益放大器的判据,主要是因为集成的方便,但个人认为是不合理的,因为有效值和信号的正负峰值并没有必然联系;其次,实际应用中这类芯片太贵了。
当然,像电子设计竞赛是可以的,因为测试信号总是正弦波,方波等。
(本文参加了TI公司的博文比赛,觉得还行的话,希望大家帮顶一下、回复一个,谢谢大家,我会更努力的:-)二、峰值检测电路原理顾名思义,峰值检测器(PKD,Peak Detector)(本文默认以正峰值检测为例)就是要对信号的峰值进行采集并保持。
其效果如下如(MS画图工具绘制):根据这样的要求,我们可以用一个二极管和电容器组成最简单的峰值检测器。
如下图(TINA TI 7.0绘制):这时候我们可以选择用面包板搭一个电路,接上信号源示波器观察结果,但在这之前利用仿真软件TINA TI进行简单验证会节省很多时间。
通过简单仿真(输入正弦信号5kHz,2Vpp),我们发现仅仅一个二极管和电容器组成的峰值检测器可以工作,但性能并不是很理想,对1nF的电容器,100ms后达到稳定的峰值,误差达10%。
而且,由于没有输入输出的缓冲,在实际应用中,电容器中的电荷会被其他部分电路负载消耗,造成峰值检测器无法保持信号峰值电压。
既然要改进,首先要分析不足。
上图检测的误差主要来自与二极管的正向导通电压降,因此我们可以用模电书上说的“超级二极管”代替简单二极管(TIN A TI 7.0绘制):从仿真结果来看,同等测试条件下,检测误差大大减小。
基于运算放大器的峰值检测电路
燕山大学课程设计说明书
关,即二极管;
(c)
当一个新的峰值出现时,使电容电压能够跟踪输入电压的器件, 即电压跟随器;
(d)
能周期的将 vo 重新置零的开关,这里是用 NPN 型 BJT 和电容相
并联实现的。Hale Waihona Puke 第四章 电路模块选取及参数计算
4.1 模块选取及测量电路设计
在图 4.1 中,四个模块的功能分别是由 C2 、 D2 、 OA1 和 555 多谐振荡电路与
2011第一章摘要第二章引言第三章基本原理31理论分析32电路功能分析第四章电路模块选取及参数计算41模块选取及测量电路设计42参数选取及计算43设计电路器件选取第五章电路性能测试51输出波形multisim仿真52对于微小输入幅值的分析10第六章误差分析10第七章电路部件可替换方案11第八章结论12第九章心得体会13参考文献第一章摘要本文介绍一种基于运算放大器的峰值检测电路的设计简要地介绍了峰值检测电路的工作原理与设计方案并详细地介绍了该检测电路的参数设计和制作过程
指导教师签字
基层教学单位主任签字
说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。
2010 年 6 月 27 日
燕山大学课程设计评审意见表
指导教师评语:
成绩: 答辩小组评语:
指导教师: 年 月日
成绩:
课程设计总成绩: 答辩小组成员签字:
组长: 年 月日
年 月日
基于运算放大器的峰值检测电路设计
目录
第一章 摘要 ............................................................ 5 第二章 引言 ............................................................ 5 第三章 基本原理 ........................................................ 6 3.1 理论分析 ..................................................................................... 6 3.2 电路功能分析 ................................................................................. 6 第四章 电路模块选取及参数计算 .......................................... 7 4.1 模块选取及测量电路设计........................................................................ 7 4.2 参数选取及计算................................................................................ 9 4.3 设计电路器件选取............................................................................. 10 第五章 电路性能测试 ................................................... 10 5.1 输出波形multisim仿真......................................................................... 10 5.2 对于微小输入幅值的分析 ....................................................................... 11 第六章 误差分析 ....................................................... 12 第七章 结论 ........................................................... 13 心得体会 .............................................................. 14 参考文献 .............................................................. 15
峰值检测电路说明书
燕山大学课程设计说明书燕山大学课程设计说明书题目:基于运算放大器的峰值检测电路设计学院:电气工程学院年级专业: 10级检测2班学号:学生姓名:指导教师:温江涛教师职称:讲师燕山大学课程设计说明书燕山大学课程设计(论文)任务书仪器科学与工程系基层教学单位:院(系):电气工程学院说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。
2013年6月28日燕山大学课程设计说明书目录摘要 (2)第一章设计要求及意义 (3)1.1 设计要求 (3)1.2 设计意义 (3)第二章峰值检测电路的设计原理 (4)2.1 峰值的跟踪与保持 (5)2.2 复位开关 (7)2.3 元件选取及参数计算 (10)第三章 Multisim 仿真原理图及结果分析 (11)3.1 Multisim 仿真原理图 (11)3.2仿真结果分析 (12)第四章总结与体会 (16)参考文献·····················································页17 共页1 第说明书燕山大学课程设计要摘软件进行Multisim本次课设要求基于运算放大器设计峰值电路,并按要求利用仿真结果演示。
)的作用是对输入信号的峰值进行提取,峰值检测电路(PKD,Peak Detector,为了实现这样的目标,电路输出值会一直保持,直到一个新产生输出Vo = Vpeak(自动增益控制)电路和传感的更大的峰值出现或电路复位。
史上最实用较深刻峰值检测电路
史上最实用较深刻的峰值检测电路实例与分析一、前言峰值检测电路(PKD,Peak Detector)的作用是对输入信号的峰值进行提取,产生输出Vo = Vpeak,为了实现这样的目标,电路输出值会一直保持,直到一个新的更大的峰值出现或电路复位。
峰值检测电路在AGC(自动增益控制)电路和传感器最值求取电路中广泛应用,自己平时一般作为程控增益放大器倍数选择的判断依据。
有的同学喜欢用AD637等有效值芯片作为程控增益放大器的判据,主要是因为集成的方便,但个人认为是不合理的,因为有效值和信号的正负峰值并没有必然联系;其次,实际应用中这类芯片太贵了。
当然,像电子设计竞赛是可以的,因为测试信号总是正弦波,方波等.(本文参加了TI公司的博文比赛,觉得还行的话,希望大家帮顶一下、回复一个,谢谢大家,我会更努力的:—)二、峰值检测电路原理顾名思义,峰值检测器(PKD,Peak Detector)(本文默认以正峰值检测为例)就是要对信号的峰值进行采集并保持。
其效果如下如(MS画图工具绘制):根据这样的要求,我们可以用一个二极管和电容器组成最简单的峰值检测器。
如下图(TINA TI 7.0绘制):这时候我们可以选择用面包板搭一个电路,接上信号源示波器观察结果,但在这之前利用仿真软件TINA TI进行简单验证会节省很多时间.通过简单仿真(输入正弦信号5kHz,2Vpp),我们发现仅仅一个二极管和电容器组成的峰值检测器可以工作,但性能并不是很理想,对1nF的电容器,100ms后达到稳定的峰值,误差达10%.而且,由于没有输入输出的缓冲,在实际应用中,电容器中的电荷会被其他部分电路负载消耗,造成峰值检测器无法保持信号峰值电压。
ﻩ既然要改进,首先要分析不足。
上图检测的误差主要来自与二极管的正向导通电压降,因此我们可以用模电书上说的“超级二极管”代替简单二极管(TINA TI 7。
0绘制):ﻩ从仿真结果来看,同等测试条件下,检测误差大大减小。
计峰值检测电路
38计峰值检测电路:传感器输入信号的测量范围为1μV~10V~10μμV ,1010μμV ~100~100μμV ,100100μμV ~1mV ~1mV,,1mV~10mV 1mV~10mV;设计程控放大器,利用程控放大器将传感器的输入信号放大为;设计程控放大器,利用程控放大器将传感器的输入信号放大为0~1.999V 0~1.999V,,供A/D 转换用;设计自动切换量程电路,完成各种量程的转换。
一、设计方案峰值电流检测及保护电路通过检测流入电动机的电流来保护电机,在实际运行的基础上,给出了电动机过流保护的控制电路,并分析了相关的参数。
本课题的关键任务是检测峰值并使之保持稳定,本课题的关键任务是检测峰值并使之保持稳定,且用数字显示峰值。
且用数字显示峰值。
且用数字显示峰值。
该方案用采样该方案用采样该方案用采样//保持峰值电路,通过数据所存控制电峰值电路,通过数据所存控制电 路锁存峰值的数字量。
此方案的原理图如图路锁存峰值的数字量。
此方案的原理图如图1所示。
它由传感器、放大器、采样传感器、放大器、采样//保持、采样保持、采样//保持控制电路、保持控制电路、A/D A/D A/D(模数转换)(模数转换)、译码显示、数字锁存控制电路组成。
各组成部分的作用是:图 1 1 峰值检测系统原理框图峰值检测系统原理框图峰值检测系统原理框图(1)传感器:把被测信号量转换成电压量。
(2)放大器:将传感器输出的小信号放大,放大器的输出结果满足模数转换器的转换范围。
)放大器:将传感器输出的小信号放大,放大器的输出结果满足模数转换器的转换范围。
(3)采样)采样//保持:对放大后的被测模拟量进行采样,并保持峰值。
(4)采样采样//保持控制电路保持控制电路::该电路通过控制信号实现对峰值采样,小于原峰值时,保持原峰值,大于原峰值时保持新的峰值。
大于原峰值时保持新的峰值。
(5)A/D 转换:将模拟量转换成数字量。
转换:将模拟量转换成数字量。
峰值检测电路原理
峰值检测电路原理峰值检测电路是一种电路,用于检测一个信号的最大峰值。
它的应用范围很广,例如在音频和视频设备中,用于检测输入信号的最大幅值,以便动态控制音量和亮度。
峰值检测电路很重要,因为当信号峰值超过放大器输出电平时,可能会引起信号失真或破裂,这将损坏音频和视频设备。
峰值检测器在许多应用中也是实现自动增益控制的关键。
峰值检测电路通常由放大器、整流器和滤波器组成。
主要原理是将输入信号放大,然后通过整流器将所有负半周信号翻转成正半周信号,接下来通过低通滤波器,将翻转后的信号滤波并平滑输出,即可得到检测到的峰值。
因为整流后的信号是脉冲形式的,所以峰值检测电路还需要一定的取样和保持电路,以保证输出结果的稳定性。
下面是详细的峰值检测电路原理:一、放大器一个峰值检测电路最常见的配置是放大器-整流器-低通滤波器。
这种配置中,放大器的任务是将输入信号放大到一个能够被后续电路处理的幅度范围内,通常是几个电压单位。
放大器的选择依赖于输入信号的幅度和电路的噪声量级和放大器的增益率。
二、整流器整流器是峰值检测电路中最重要的模块之一,它将输入信号的负半周翻转成正半周。
简单的整流器可以使用二极管,如下图所示:在正半周周期的第一半周,二极管D导通,输出为正,整流电平与输入信号的幅度相同。
在正半周周期的后一半周期,二极管D截止,整流电平保持不变,即保持在最后一次导通时的值。
在负半周周期中,二极管D反向偏置,截止状态下,整流电平保持不变,等于最后一次导通的值加上一个电压降(如果二极管具有正向漏电流,则会出现电压降),即输出为零。
如果二极管具有零偏电流,则会输出一个正负误差,误差等于最后一次导通值与二极管零偏电流之积。
三、低通滤波器整流器输出的信号是脉冲形式的,需要一个低通滤波器来平滑输出信号。
该滤波器的截止频率应该低于输入信号的频率,通常在数百赫兹到几千赫兹之间。
低通滤波器通常由电容器和电阻器组成,如下图所示:四、取样和保持电路由于整流器输出的电压是一个脉冲序列,因此需要一个取样和保持电路来捕获这些脉冲,并在滤波器输出电压的反向方向建立一个参考电压。
史上最实用较深刻的峰值检测电路实例与分析
史上最实用较深刻的峰值检测电路实例与分析峰值检测电路是一种广泛应用于信号处理系统中的电路,用来检测信号中的峰值或最大值。
它可以应用于多种应用领域,例如音频处理、通信系统和图像处理等。
本文将介绍一个实用较深刻的峰值检测电路实例,并对其进行分析。
峰值检测电路的主要功能是检测输入信号的峰值,并将其保持在输出端,以便进一步处理或显示。
典型的峰值检测电路由一个整流电路和一个低通滤波器组成。
整流电路将输入信号的负半周转换为正半周,并得到一个最大值。
而低通滤波器则用于平滑输出信号,以避免过高的响应速度。
在这个实例中,我们将介绍一种基于操作放大器的峰值检测电路。
它可以检测输入信号的峰值,并将输出保持在峰值的水平上。
以下是该电路的原理图:整个电路可以分为四个关键部分:输入缩放电阻(R1和R2)、操作放大器(A1和A2)、整流电路(D1和D2)和输出低通滤波器(R3、C1和A3)。
首先,输入缩放电阻R1和R2用于调整输入信号的幅度。
这是为了适应不同幅度的信号,并将其缩放到操作放大器的工作范围内。
操作放大器A1和A2构成了一个峰值检测器的核心部分。
A1用于检测输入信号的峰值,并通过负反馈使得A2输出与A1输入相等,以保持峰值。
通过这种方式,我们可以将输入信号的峰值保持在电路的输出端。
整流电路D1和D2用于将输入信号的负半周转换为正半周。
它们通过将负半周的信号与零电平比较,并选择较大的值作为输出。
这样,我们可以在整个波形周期内得到输入信号的最大值。
最后,输出低通滤波器R3、C1和A3用于平滑输出信号,并避免过高的响应速度。
通过选择合适的滤波器参数,可以使得输出信号更加平滑,并适应不同的应用需求。
以上是该峰值检测电路的分析。
它能够实时检测输入信号的峰值,并将其保持在输出端。
这对于很多应用领域都是非常实用的,例如音频处理中的音量调节、通信系统中的信号强度检测和图像处理中的边缘检测等。
总结起来,峰值检测电路是一种实用且较深刻的电路设计。
基于运算放大器的峰值检测电路-----实用版
基于运算放大器的峰值检测电路设计目录第一章引言 (2)第二章基本原理 (2)2.1原理分析及原理框图............................ ...................... ... .. (2)2.2 电路功能分析 (3)2.2 电路分块设计 (4)第三章电路具体设计....... .. .. .. (7)3.1 峰值检测电路元件参数选取 (7)3.2 采样信号发生器........................................................... (8)3.3 总体电路图...................................................... .... . (9)第四章电路仿真测试 (10)4.1 输出波形multisim仿真 (10)4.2对于微小输入信号的分析 (14)第五章误差分析 (17)5.1 复位误差.......................................... ....... . (17)5.2 保持误差........ .... ........................................ .......... . (21)第六章整体电路图 .................... .. (22)第七章结论 (23)第八章心得体会..................... ..................... .. 24 参考文献.. (25)第一章、引言峰值检测技术是数字存储示波器及数字采集卡中的重要技术之一,在科研、生产的很多领域都需要用到峰值检测设备,用来实现波形的毛刺捕捉或高占空比信号的检测、冲击信号峰值检测,比如检测建筑物中梁的最大承受力、钢材的最大允许拉力、轴承振动噪声的峰值检测等等。
相比正常采样给出信号的一个完整的波形显示,峰值检测只记录发生在每个采样间隔期间内的最大最小峰值,这样就可以不增加存储深度,还可以捕获毛刺或者偶发事件。
峰峰值检测电路 应用笔记
史上最实用较深刻的峰值检测电路实例与分析作者:billyevansBlog:一、前言峰值检测电路(PKD,Peak Detector)的作用是对输入信号的峰值进行提取,产生输出Vo = Vpeak,为了实现这样的目标,电路输出值会一直保持,直到一个新的更大的峰值出现或电路复位。
峰值检测电路在AGC(自动增益控制)电路和传感器最值求取电路中广泛应用,自己平时一般作为程控增益放大器倍数选择的判断依据。
有的同学喜欢用AD637等有效值芯片作为程控增益放大器的判据,主要是因为集成的方便,但个人认为是不合理的,因为有效值和信号的正负峰值并没有必然联系;其次,实际应用中这类芯片太贵了。
当然,像电子设计竞赛是可以的,因为测试信号总是正弦波,方波等。
(本文参加了TI公司的博文比赛,觉得还行的话,希望大家帮顶一下、回复一个,谢谢大家,我会更努力的:-)二、峰值检测电路原理顾名思义,峰值检测器(PKD,Peak Detector)(本文默认以正峰值检测为例)就是要对信号的峰值进行采集并保持。
其效果如下如(MS画图工具绘制):根据这样的要求,我们可以用一个二极管和电容器组成最简单的峰值检测器。
如下图(TINA TI 7.0绘制):这时候我们可以选择用面包板搭一个电路,接上信号源示波器观察结果,但在这之前利用仿真软件TINA TI进行简单验证会节省很多时间。
通过简单仿真(输入正弦信号5kHz,2Vpp),我们发现仅仅一个二极管和电容器组成的峰值检测器可以工作,但性能并不是很理想,对1nF的电容器,100ms后达到稳定的峰值,误差达10%。
而且,由于没有输入输出的缓冲,在实际应用中,电容器中的电荷会被其他部分电路负载消耗,造成峰值检测器无法保持信号峰值电压。
既然要改进,首先要分析不足。
上图检测的误差主要来自与二极管的正向导通电压降,因此我们可以用模电书上说的“超级二极管”代替简单二极管(TINA TI 7.0绘制):从仿真结果来看,同等测试条件下,检测误差大大减小。
最实用较深刻的峰值检测电路实例与分析
史上最实用较深刻的峰值检测电路实例与分析 TINA7 OPA128OPA131TL372| 2009-01-23作者:billyevansEDN博客精华文章 作者:billyevans史上最实用较深刻的峰值检测电路实例与分析一、前言峰值检测电路(PKD,Peak Detector)的作用是对输入信号的峰值进行提取,产生输出Vo = Vpeak,为了实现这样的目标,电路输出值会一直保持,直到一个新的更大的峰值出现或电路复位。
峰值检测电路在AGC(自动增益控制)电路和传感器最值求取电路中广泛应用,自己平时一般作为程控增益放大器倍数选择的判断依据。
有的同学喜欢用AD637等有效值芯片作为程控增益放大器的判据,主要是因为集成的方便,但个人认为是不合理的,因为有效值和信号的正负峰值并没有必然联系;其次,实际应用中这类芯片太贵了。
当然,像电子设计竞赛是可以的,因为测试信号总是正弦波,方波等。
(本文参加了TI公司的博文比赛,觉得还行的话,希望大家帮顶一下、回复一个,谢谢大家,我会更努力的:-)二、峰值检测电路原理顾名思义,峰值检测器(PKD,Peak Detector)(本文默认以正峰值检测为例)就是要对信号的峰值进行采集并保持。
其效果如下如(MS画图工具绘制):根据这样的要求,我们可以用一个二极管和电容器组成最简单的峰值检测器。
如下图(TINA TI 7.0绘制):这时候我们可以选择用面包板搭一个电路,接上信号源示波器观察结果,但在这之前利用仿真软件TINA TI进行简单验证会节省很多时间。
通过简单仿真(输入正弦信号5kHz,2Vpp),我们发现仅仅一个二极管和电容器组成的峰值检测器可以工作,但性能并不是很理想,对1nF的电容器,100ms后达到稳定的峰值,误差达10%。
而且,由于没有输入输出的缓冲,在实际应用中,电容器中的电荷会被其他部分电路负载消耗,造成峰值检测器无法保持信号峰值电压。
既然要改进,首先要分析不足。
基于运算放大器的峰值检测电路-----实用版
基于运算放大器的峰值检测电路设计目录第一章引言 (2)第二章基本原理 (2)2.1原理分析及原理框图............................ ...................... ... .. (2)2.2 电路功能分析 (3)2.2 电路分块设计 (4)第三章电路具体设计....... .. .. .. (7)3.1 峰值检测电路元件参数选取 (7)3.2 采样信号发生器........................................................... (8)3.3 总体电路图...................................................... .... . (9)第四章电路仿真测试 (10)4.1 输出波形multisim仿真 (10)4.2对于微小输入信号的分析 (14)第五章误差分析 (17)5.1 复位误差.......................................... ....... . (17)5.2 保持误差........ .... ........................................ .......... . (21)第六章整体电路图 .................... .. (22)第七章结论 (23)第八章心得体会..................... ..................... .. 24 参考文献.. (25)1第一章、引言峰值检测技术是数字存储示波器及数字采集卡中的重要技术之一,在科研、生产的很多领域都需要用到峰值检测设备,用来实现波形的毛刺捕捉或高占空比信号的检测、冲击信号峰值检测,比如检测建筑物中梁的最大承受力、钢材的最大允许拉力、轴承振动噪声的峰值检测等等。
相比正常采样给出信号的一个完整的波形显示,峰值检测只记录发生在每个采样间隔期间内的最大最小峰值,这样就可以不增加存储深度,还可以捕获毛刺或者偶发事件。
设计峰值检测电路-课程设计
课程设计(论文)题目名称设计峰值检测电路课程名称电气测量技术与仪器课程设计学生姓名学号系、专业电气工程系指导教师2014年12月27日邵阳学院课程设计(论文)任务书注:1.此表由指导教师填写,经系、教研室审批,指导教师、学生签字后生效;2.此表1式3份,学生、指导教师、教研室各1份。
指导教师(签名):学生(签名):邵阳学院课程设计(论文)评阅表学生姓名学号系电气工程系专业班级题目名称设计峰值检测电路课程名称电气测量技术与仪器一、学生自我总结二、指导教师评定注:1、本表是学生课程设计(论文)成绩评定的依据,装订在设计说明书(或论文)的“任务书”页后面;2、表中的“评分项目”及“权重”根据各系的考核细则和评分标准确定。
摘要本设计介绍了峰值检测系统的设计原理、软硬件设计方法及系统性能指标调试方法。
被测信号经传感器转化为电信号,再经运放AD620和OP07放大、LF398采样/保持后进行A/D转化和信号处理后数字显示输出。
研究的主要内容有:方案论证、硬件设计、软件设计、系统实物调试。
硬件设计主要有小信号放大电路、峰值采样/保持及采样控制电路、程控放大电路、AD转换电路、自动量程切换电路、LCD显示电路、电源电路和单片机最小系统。
关键词:峰值检测;程控放大;采样/保持电路;LF398目录摘要 ............................................................................................................. I 绪论 (1)1峰值检测基本原理 (2)2 系统方案设计 (2)2.1 系统总体框图设计 (2)2.2 峰值检测方案设计和论证 (3)3 硬件设计 (5)3.1 单片机A/D转换电路和LCD接口电路 (5)3.1.1 ATMEGA16简介 (5)3.1.2 ATMEGA16的管脚分布及功能 (5)3.1.3 LCD1602的接口电路 (5)3.2 小信号放大电路 (6)3.3 程控放大及量程转换电路........................... 错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
燕山大学课程设计说明书题目:基于运算放大器的峰值检测电路设计学院(系):电气工程学院年级专业: 08级检测1学号: 080103020042学生姓名:井涛指导教师:温江涛教师职称:讲师燕山大学课程设计(论文)任务书院(系):电气工程学院基层教学单位:仪器科学与工程系学号080103020042学生姓名井涛专业(班级)08检测1 班设计题目基于运算放大器的峰值检测电路设计设计技术参数输入信号是由 10-100Hz 的正弦波和三角波叠加而成。
测量电路每隔0.2 秒采集一次输入信号的峰值。
设计要求1:完成题目的理论设计模型;2:完成电路的m ultisim 仿真;工作量1:完成一份设计说明书(其中包括理论设计的相关参数及仿真结果);2:提交一份电路原理图;工作计划周一,查阅资料;周二到周四,理论设计及计算机仿真;周五,撰写设计说明书;参考资料1:基于运算放大器和模拟集成电路的电路设计;2:模拟电子技术;3:数字电子技术;4:电路理论指导教师签字基层教学单位主任签字说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。
2011年 6 月 25 日燕山大学课程设计评审意见表指导教师评语:成绩:指导教师:年月日答辩小组评语:成绩:组长:年月日课程设计总成绩:答辩小组成员签字:年月日3基于运算放大器的峰值检测电路设计目录第一章引言 (2)第二章基本原理 (2)2.1原理分析及原理框图............................ ...................... ... .. (2)2.2 电路功能分析 (3)2.2 电路分块设计 (4)第三章电路具体设计....... .. .. .. (7)3.1 峰值检测电路元件参数选取 (7)3.2 采样信号发生器........................................................... (8)3.3 总体电路图...................................................... .... . (9)第四章电路仿真测试 (10)4.1 输出波形multisim仿真 (10)4.2对于微小输入信号的分析 (14)第五章误差分析 (17)5.1 复位误差.......................................... ....... . (17)5.2 保持误差........ .... ........................................ .......... . (21)第六章整体电路图 .................... .. (22)第七章结论 (23)第八章心得体会..................... ..................... .. 24 参考文献.. (25)4第一章、引言峰值检测技术是数字存储示波器及数字采集卡中的重要技术之一,在科研、生产的很多领域都需要用到峰值检测设备,用来实现波形的毛刺捕捉或高占空比信号的检测、冲击信号峰值检测,比如检测建筑物中梁的最大承受力、钢材的最大允许拉力、轴承振动噪声的峰值检测等等。
相比正常采样给出信号的一个完整的波形显示,峰值检测只记录发生在每个采样间隔期间内的最大最小峰值,这样就可以不增加存储深度,还可以捕获毛刺或者偶发事件。
峰值检测的实现方法有模拟式实现和数字式实现两种,模拟峰值检测是一个专门的硬件电路,它以电容上电压的形式存储信号的峰值,速度比较慢,通常只能存储宽度大于几个微秒且具有相当幅值的毛刺。
数字式峰值检测器围绕ADC构成,以尽可能高的采样速率连续对信号进行采样,通过峰值检测模块筛选出最大值和最小值,然后将峰值存储在一个专用的存储器中作为采样点值,特点是采样速度快,可以实现高频信号的峰值检测。
这次课设的给出需要检测的输入信号的是由10-100Hz的正弦波和三角波叠加而成,测量电路每0.2s采集一次输入信号峰值,属于对低频信号的峰值采集,因此采用模拟硬件电路的方式实现峰值检测。
第二章、基本原理2.1 原理分析及原理框图2.1.1 原理分析峰值检测电路(PKD,Peak Detector)的作用是对输入信号的峰值进行提取,产生输56出Vo = Vpeak ,为了实现这样的目标,电路输出值会一直保持,直到一个新的更大的峰值出现或电路复位。
它的时域波形如图1所示:图1 峰值检测电路时域波形2.1.2 原理框图图2 电路原理框图2.2 电路功能分析由峰值检测器的电路特性,并根据参考文献一关于峰值检测器的内容,可以确定下面四个功能模块:(a )用来保持最近峰值的模拟储存器,即电容器,它存储电荷的功能 使它充当一个电压存储器,V = Q /C ;(b ) 当一个新的峰值出现时,用来进一步对电容充电的单向电流开关,即二输入信号电压跟随单向充电开关 电压存储器脉冲采样开关信号输出信号极管;(c)当一个新的峰值出现时,使电容电压能够跟踪输入电压的器件,即电压跟随器;(d)能周期的将v o 重新置零的开关,这里是用两个NPN 型BJT 串联起来作为采样开关和采集电压的电容相并联实现的。
2.3 电路分块设计将整个电路分为三大部分,分别是正向峰值检测的电路、反向峰值检测电路和复位开关电路。
下面对三个部分进行分别设计。
2.3.1 正向峰值检测电路图3正向峰值检测电路正向峰值检测电路原理图如图3所示。
与参考文献一中类似,由电容C2实现电压存储器的功能;U1为实现电容电压跟随输入峰值变化的电压跟随器。
对于给电容C2充电的单向开关,我们采用了一个场效应管Q3,目的是减小反向电流同时增加第一个运放的输出7驱动力U2的作用是对电容电压进行缓冲,以防止通过R1 和任何外部负载所引起的放电。
U2选用具有超低偏执电流的B JT 输入运算放大器,以减少C2的放电。
正向峰值检测的工作过程分为两部分,即跟踪模式和保持模式。
在跟踪模式期间,D2、Q3二极管对相当于一个单向开关,当一个新的峰值到达时,OA1的输出V1为正,D1截止D2导通,U1利用反馈通路D2-Q3-U2-R1使输入端之间保持虚短路。
由于没有电流流过R1,Vo会跟踪Vi,U1流出的电流经过D2对CH充电。
在经历了峰值以后,进入保持模式,Vi开始下降,这也使U1的输出开始下降.此时D2截止D1导通,这就给U1提供了另一条反馈通路。
在保持模式期间,R2将Q3极拉起,使它与阴极具有相同的电位,这样就消除了Q3的泄露,只用D2 来保持反相偏置。
2.3.2 反向峰值检测电路图4 反向峰值检测电路将正向峰值检测电路中的D1、D2反向,用一个反向的二极管D5代替Q3,其他部分不变,即得到了可以检测反向峰值的电路,工作原理和正向峰值检测电路类似。
2.3.3 采样开关89图5采样开关电路图6 脉冲信号发生模块如图所示开关是由两个 B JT 来实现的。
给它们的基极加上一个正的脉冲会使两个BJ导通,C2放电。
一旦脉冲结束,两个BJT 截止;然而,因为R7、R8将Q1 的发射极拉至与集电极具有相同的电位,Q1、Q4的漏电就被消除了;仅用Q2、Q5来维持开关电压。
控制开关电路脉冲信号由80C51给出,使用单片机定时编程使其P2.0和P2.1分别输出占空比为1:14的脉冲信号,周期为0.2s,并且两者的相位相差半个周期。
第三章、电路具体设计3.1 峰值检测电路元件参数选取3.1.1 正向峰值检测电路:1)对于U2的要求是输入胼胝电流必须足够的低,这样才能使峰值之间的电容放电最小,因此应该选择双JFET运放,这里我们采用3554AM运放。
对U1的要求是它应该具有足够低的直流输入误差和输出电流能力,以便再短暂的峰值期间对CH进行充电。
通过仿真测试,精密高速的OP-249和3554AM都可以满足要求。
2)二极管选用通用的1N914,采样开关电路使用两个2N2923晶体管来实现。
上拉电阻R2用于限流,故选择1MΩ。
3)充电电容C2必须足够的大,才能降低漏电流的影响,然而太大的电容值会导致充电时间过长,影响电路快速性,经过多次仿真模拟,选用10μf的电容作为C2,既可以保证回应速度,又能很好的保持峰值。
4)3.1.2 反向峰值检测电路反向峰值检测电路的元件选取同正向电路,仅仅将两个单向导通的开关D2和Q3用同类型器件反向接入电路即可。
3.2 采样信号发生器10利用80C51定时计数功能来产生脉冲信号,P2.0和P2.1分别输出占空比为1:19的脉冲信号,周期为0.2s,两个信号相差半个周期,分别作为正向和反向峰值检测的控制信号。
编程程序如下:#include<reg52.h>char number1;void main(){TMOD=0X01;ET0=1;EA=1;TR0=1;TH0=(65536-10000)/256;TL0=(65536-10000)%256;number1=0;P2=0X00;while(1){switch(number1){case 9: P2=0X01;break;case 19: P2=0x02;break;default : P2=0x00;11}}}void intt0(void) interrupt 1{TH0=(65536-10000)/256;TL0=(65536-10000)%256;number1++;if(number1>=20)number1=0;}通过修改变量number1和number2的数值,可以很容易的修改采样周期和脉冲信号占空比。
产生的脉冲方波波形图:图7 脉冲控制信号波形图3.3 总体电路图整体电路图如下,改进后的请见第六章。
12图8 整体电路图第四章、电路仿真测试4.1 用一个三角波和一个正弦波的叠加作为输入信号,以下是几个仿真结果。
1)信号1: 频率为15Hz,幅值为10V的正弦波;信号2:频率为20Hz,占空比为5%,幅值为5V的三角波;采样周期为0.2s,占空比为7%;132)信号1:频率为100Hz,幅值为10V的正弦波;信号2:频率为88Hz,占空比为10%,幅值为10V的三角波;采样周期为0.2s,占空比为7%;143)信号1:频率为50Hz,幅值为6V的正弦波;信号2:平率为88Hz,占空比为20%,幅值为6V的三角波;采样周期为0.2s,占空比为7%;15从2和3的波形图中可以得知,当信号变化速度较快的时候,峰值检测会有较大的失真,有些采样期间内的峰值没有捕捉到。
可以通过减小采样脉冲占空比的方法减小电容器放电时间,以减少漏掉峰值的现象。
4)信号1:频率为50Hz,幅值为6V的正弦波;信号2:频率为88Hz,占空比为20%,幅值为6V的三角波;采样周期为0.2s,占空比为1%;16从4的波形图中可以得知,减小采样脉冲占空比,可以很大程度地避免漏掉某时间段的峰值。