各类几何图形计算公式定理全集
几何图形计算公式汇总
小学数学图形计算公式(C :周长 S :面积 a :边长、长 、底、上底、棱长 b: 宽 、下底 h: 高 d :直径 r :半径 V:体积 ) 1、长方形周长=(长+宽)×2 C=2(a+b) 长方形面积=长×宽 S=ab2、正方形周长=边长×4 C = 4a 正方形面积=边长×边长 S = a×a = a ²3、平行四边形面积=底×高 s=ah4、三角形面积=底×高÷2 s=ah÷2三角形高=面积 ×2÷底 h = 2s ÷a 三角形底=面积 ×2÷高 5、梯形面积=(上底+下底)×高÷2 s=(a+b)× h÷26、圆的周长=直径×圆周率=2×圆周率×半径 C=лd=2лr d=C π r=C2π圆的面积=半径×半径×圆周率 S = πr ²环形的面积=外圆的面积-内圆的面积 S 环=π(R ²-r ²)7、长方体的棱长总和 = 长×4 + 宽×4 + 高×4 =(长 + 宽 + 高)×4 长方体表面积=(长×宽+长×高+宽×高)×2 S = 2( ab + ah + bh ) 长方体体积=长×宽×高 = 底面积×高 V=abh = sh 8、正方体的棱长总和=棱长×12正方体表面积=棱长×棱长×6 S 表 = a×a×6 = 6a ² 正方体体积=棱长×棱长×棱长=底面积×高 V = a×a×a = a ³ = sh 9、圆柱的侧面积=底面周长×高 s 侧=ch=πdh=2πrh圆柱表面积=侧面积+底面积×2 s 表=s 侧+s 底×2 圆柱体积=底面积×高 V 柱 = sh =πr ²h 10、圆锥体体积=底面积×高×13 V 锥 = 13 sh = 13 πr ²h小学数学图形计算公式(C :周长 S :面积 a :边长、长 、底、上底、棱长 b: 宽 、下底 h: 高 d :直径 r :半径 V:体积 ) 1、长方形周长=(长+宽)×2 C=2(a+b) 长方形面积=长×宽 S=ab2、正方形周长=边长×4 C = 4a 正方形面积=边长×边长 S = a×a = a ²3、平行四边形面积=底×高 s=ah4、三角形面积=底×高÷2 s=ah÷2三角形高=面积 ×2÷底 h = 2s ÷a 三角形底=面积 ×2÷高 5、梯形面积=(上底+下底)×高÷2 s=(a+b)× h÷26、圆的周长=直径×圆周率=2×圆周率×半径 C=лd=2лr d=C π r=C2π圆的面积=半径×半径×圆周率 S = πr ²环形的面积=外圆的面积-内圆的面积 S 环=π(R ²-r ²)7、长方体的棱长总和 = 长×4 + 宽×4 + 高×4 =(长 + 宽 + 高)×4 长方体表面积=(长×宽+长×高+宽×高)×2 S = 2( ab + ah + bh ) 长方体体积=长×宽×高 = 底面积×高 V=abh = sh 8、正方体的棱长总和=棱长×12正方体表面积=棱长×棱长×6 S 表 = a×a×6 = 6a ² 正方体体积=棱长×棱长×棱长=底面积×高 V = a×a×a = a ³ = sh 9、圆柱的侧面积=底面周长×高 s 侧=ch=πdh=2πrh 圆柱表面积=侧面积+底面积×2 s 表=s 侧+s 底×2 圆柱体积=底面积×高 V 柱 = sh =πr ²h 10、圆锥体体积=底面积×高×13 V 锥 = 13 sh = 13 πr ²h。
小学数学公式大全(几何体部分)
小学数学公式大全(几何体部分)小学数学公式大全,第三部分:几何体。
1、正方形正方形的周长=边长×4 公式:C=4a正方形的面积=边长×边长公式:S=a×a正方体的体积=边长×边长×边长公式:V=a×a×a2、长方形长方形的周长=(长+宽)×2 公式:C=(a+b)×2长方形的面积=长×宽公式:S=a×b长方体的体积=长×宽×高公式:V=a×b×h3、三角形三角形的面积=底×高÷2。
公式:S= a×h÷24、平行四边形平行四边形的面积=底×高公式:S= a×h5、梯形梯形的面积=(上底+下底)×高÷2 公式:S=(a+b)h÷26、圆直径=半径×2 公式:d=2r半径=直径÷2 公式:r= d÷2圆的周长=圆周率×直径公式:c=πd =2πr圆的面积=半径×半径×π公式:S=πrr7、圆柱圆柱的侧面积=底面的周长×高。
公式:S=ch=πdh=2πrh圆柱的表面积=底面的周长×高+两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的总体积=底面积×高。
公式:V=Sh8、圆锥圆锥的总体积=底面积×高×1/3 公式:V=1/3Sh三角形内角和=180度。
平行线:同一平面内不相交的两条直线叫做平行线垂直:两条直线相交成直角,像这样的两条直线,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
几何图形所有公式
几何图形所有公式一、正方形:1. 正方形的周长=边长×42. 正方形的面积=边长×边长3. 正方形的边长=面积÷边长4. 正方形的边长=周长÷4二、长方形:1.长方形的周长=(长+宽)×22.长方形的面积=长×宽3.长方形的宽=周长÷2—长4.长方形的长=周长÷2—宽三、平行四边形:1.平行四边形的面积=底×高2.平行四边形的底=面积÷高3.平行四边形的高=面积÷底四、三角形:1.三角形的面积=底×高÷22.三角形的底=面积×2÷高3.三角形的高=面积×2÷底五、梯形1.梯形的面积=(上底+下底)×高÷22.梯形的高=面积×2—上底—下底3.梯形的上底和下底=面积×2÷高4.梯形的上底=面积×2÷高—下底5.梯形的下底=面积×2÷高—上底六、圆形: 1.圆的面积=圆周率×半径的平方 2.圆的周长=圆周率×直径 3.直径=半径×2 4.半径=直径÷2 5.半径的平方=圆面积÷圆周率 6.直径=周长÷圆周率 7.圆的周长=2×圆周率×半径 8.圆周率=3.1415926~3.1415927之间七、长方体:1.长方体的体积=长×宽×高 2.长方体的表面积=(长×宽)+(长×宽)+(宽×高)×2 3.长方体的宽=体积÷长÷高八、正方体:1.正方体的体积=棱长×棱长×棱长2.正方体的表面积=棱长×6九、圆柱、圆锥:1.圆柱的体积=底面积×高,圆锥的体积为=1/3×底面积×高2.圆柱的表面积=两个底面积+一个侧面积 3.圆柱的侧面积=底面周长×高。
图形公式大全表
图形公式大全表所有图形的公式一、平面图形公式:1、正方形 s=a²或对角线×对角线÷2 c=4a2、平行四边形 s=ah3、三角形s=ah÷24、梯形s=(a b)×h÷25、圆形s=πr2 c=πd6、椭圆s=πr7、扇形 s=lr/2二、立体图形公式:1、长方体的表面积=2×(长×宽长×高宽×高) 用符号表示是:s=2(ab bc ca)2、长方体的体积 =长×宽×高用符号表示是:v=abh 或底面积×高用符号表示是:v=sh3、正方体的表面积=棱长×棱长×6 用符号表示是:s=a²×64、正方体的体积=棱长×棱长×棱长用符号表示是:v=a³5、圆柱的侧面积=底面周长×高用符号表示是:s侧=πd×h6、圆柱的表面积=2×底面积侧面积用符号表示是:s=πr²×2 dπh7、圆柱的体积=底面积×高用符号表示是:v=πr²×h8、圆锥的体积=底面积×高÷3 用符号表示是:v=πr²×h÷39、圆锥侧面积=1/2*母线长*底面周长10、圆台体积=[s s′ √(ss′)]h÷311、球体体积=(1/3*s*h)*(4*pi*r²)/s=4/3*pi*r²三、立体几何图形:1、柱体:包括圆柱和棱柱。
棱柱又可分为直棱柱和斜棱柱,按底面边数的多少又可分为三棱柱、四棱柱、n棱柱;棱柱体积都等于底面面积乘以高,即v=sh;2、锥体:包括圆锥体和棱锥体,棱锥分为三棱锥、四棱锥及n棱锥;棱锥体积为v=sh/3 ;3、旋转体:包括圆柱、圆台、圆锥、球、球冠、弓环、圆环、堤环、扇环、枣核形等。
几何问题公式
几何问题公式
1.三角形周长公式:周长=边长1 +边长2 +边长3
该公式适用于所有三角形,可以用于计算三角形的周长。
2.直角三角形斜边长公式:斜边长= √(直角边1² +直角边2²)
该公式仅适用于直角三角形,可以用于计算直角三角形的斜边长。
3.三角形面积公式:面积= 1/2 ×底边长×高
该公式适用于所有三角形,可以用于计算三角形的面积。
4.圆的周长公式:周长= 2 × π ×半径
该公式适用于所有圆形,可以用于计算圆的周长。
5.圆的面积公式:面积= π ×半径²
该公式适用于所有圆形,可以用于计算圆的面积。
6.球体表面积公式:表面积= 4 × π ×半径²
该公式适用于所有球体,可以用于计算球体的表面积。
7.球体体积公式:体积= 4/3 × π ×半径³
该公式适用于所有球体,可以用于计算球体的体积。
除了这些公式外,还有很多几何问题可能需要用到其他公式。
在解决几何问题时,需要根据具体问题选择正确的公式,并注意相关条件和限制。
几何图形计算公式大全
几何图形计算公式大全在几何学中,我们经常会遇到各种各样的几何图形,如三角形、矩形、圆形等等。
对于这些几何图形,我们需要掌握它们的计算公式,以便能够准确地计算它们的各种属性。
本文将为大家总结几何图形的计算公式大全,希望能对大家有所帮助。
一、三角形。
1. 面积公式。
三角形的面积可以用以下公式计算:\[ S = \frac{1}{2} \times 底 \times 高 \]其中,S代表三角形的面积,底代表三角形的底边长,高代表三角形的高。
2. 周长公式。
三角形的周长可以用以下公式计算:\[ 周长 = 边1 + 边2 + 边3 \]其中,边1、边2、边3分别代表三角形的三条边长。
3. 三角形内角和公式。
三角形的内角和为180度,即:\[ 内角和 = 角1 + 角2 + 角3 = 180度 \]其中,角1、角2、角3分别代表三角形的三个内角。
二、矩形。
1. 面积公式。
矩形的面积可以用以下公式计算:\[ S = 长 \times 宽 \]其中,S代表矩形的面积,长代表矩形的长,宽代表矩形的宽。
2. 周长公式。
矩形的周长可以用以下公式计算:\[ 周长 = 2 \times (长 + 宽) \]其中,长代表矩形的长,宽代表矩形的宽。
三、圆形。
1. 面积公式。
圆形的面积可以用以下公式计算:\[ S = \pi \times 半径^2 \]其中,S代表圆形的面积,π代表圆周率,半径代表圆形的半径。
2. 周长公式。
圆形的周长可以用以下公式计算:\[ 周长 = 2 \times \pi \times 半径 \]其中,π代表圆周率,半径代表圆形的半径。
四、正方形。
1. 面积公式。
正方形的面积可以用以下公式计算:\[ S = 边长^2 \]其中,S代表正方形的面积,边长代表正方形的边长。
2. 周长公式。
正方形的周长可以用以下公式计算:\[ 周长 = 4 \times 边长 \]其中,边长代表正方形的边长。
以上就是几何图形的计算公式大全,希望对大家有所帮助。
几何图形计算公式大全
几何图形计算公式大全正方形面积公式:F = 边长²周长公式:P = 4 ×边长名称:长方形面积公式:F = 长 ×宽周长公式:P = 2 × (长 + 宽)名称:三角形面积公式:F = 1/2 ×底边长 ×高周长公式:P = 边长1 + 边长2 + 边长3名称:平行四边形面积公式:F = 底边长 ×高周长公式:P = 2 × (边长1 + 边长2)名称:任意四边形面积公式:F = 1/2 ×对角线1 ×对角线2 × sin(对角线夹角)周长公式:无固定公式,需根据具体情况计算名称:正多边形(n边形)面积公式:F = (n ×边长²)/(4 × tan(π/n))周长公式:P = n ×边长立体图形名称:立方体体积公式:V = 边长³表面积公式:S = 6 ×边长²名称:长方体体积公式:V = 长 ×宽 ×高表面积公式:S = 2 × (长 ×宽 + 长 ×高 + 宽 ×高)名称:棱柱体积公式:V = 底面积 ×高表面积公式:S = 底面积 + 侧面积名称:棱锥体积公式:V = 1/3 ×底面积 ×高表面积公式:S = 底面积 + 侧面积名称:圆柱体体积公式:V = π × 半径² ×高表面积公式:S = 2 × π × 半径² + 2 × π × 半径 ×高名称:圆锥体体积公式:V = 1/3 × π × 半径² ×高表面积公式:S = π × 半径² + π × 半径 ×斜高名称:球体体积公式:V = 4/3 × π × 半径³表面积公式:S = 4 × π × 半径²以上是常见几何图形的计算公式,可根据具体情况灵活运用。
解析几何公式大全
解析几何公式大全几何学是研究图形和空间的性质、变换和计量的一门学科。
在几何学中,有许多重要的公式用于解决各种几何问题。
这些公式涵盖了面积、体积、周长等几何属性的计算方法。
接下来,我们将解析一些几何公式,介绍它们的推导、应用和实际意义。
一、平面图形的公式:1.面积公式:-矩形(正方形)的面积公式:面积=长×宽(面积=边长×边长)-三角形的面积公式:面积=1/2×底×高-梯形的面积公式:面积=1/2×(上底+下底)×高-平行四边形的面积公式:面积=底×高2.周长公式:-矩形(正方形)的周长公式:周长=2×(长+宽)(周长=4×边长)-三角形的周长公式:周长=边1+边2+边3-梯形的周长公式:周长=上底+下底+边1+边2-平行四边形的周长公式:周长=2×(边1+边2)3.直角三角形的公式:-勾股定理:c²=a²+b²(其中c表示斜边的长度,a和b表示两条直角边的长度)- 正弦定理:a/sinA = b/sinB = c/sinC(其中 a、b、c 分别表示三角形的边长,A、B、C 分别表示对应角的度数)- 余弦定理:c² = a² + b² - 2abcosC(其中 a、b、c 分别表示三角形的边长,C 表示夹在 a 和 b 之间的角度)二、立体图形的公式:1.体积公式:-立方体的体积公式:体积=长×宽×高(体积=边长³)-圆柱体的体积公式:体积=圆的面积×高(体积=πr²h)-锥体的体积公式:体积=1/3×圆的面积×高(体积=1/3×πr²h)-球体的体积公式:体积=4/3×πr³2.表面积公式:-立方体的表面积公式:表面积=6×面的面积(表面积=6×边长²)- 圆柱体的表面积公式:表面积= 2 × 圆的面积 + 侧面积(表面积= 2πr² + 2πrh)- 锥体的表面积公式:表面积 = 圆的面积 + 侧面积(表面积 =πr² + πrl)-球体的表面积公式:表面积=4×πr²以上公式是几何学中常用的一些公式,它们在解决各种几何问题时非常有用。
几何计算公式大全
几何计算公式大全一、平面几何公式:1.周长和面积公式:-矩形:周长=2*(长+宽),面积=长*宽-正方形:周长=4*边长,面积=边长^2-圆:周长=2*π*半径,面积=π*半径^2-三角形:周长=边1+边2+边3,面积=(底边*高)/2-梯形:周长=边1+边2+边3+边4,面积=(上底+下底)*高/22.角度和三角函数公式:-弧度和角度的转换关系:度=弧度*(180/π),弧度=度*(π/180)- 正弦定理:a/sin(A) = b/sin(B) = c/sin(C),其中a、b、c是三角形的三条边,A、B、C是对应的角度。
- 余弦定理:c^2 = a^2 + b^2 - 2ab*cos(C),其中c是三角形的斜边,a、b是两个相邻角的边长,C是这两个边对应的夹角。
3.直线和平面的方程公式:-点斜式方程:y-y1=斜率(x-x1),其中(x1,y1)是直线上的一点,斜率可以用两点之间的高度差除以水平距离表示。
-两点式方程:(y-y1)/(y2-y1)=(x-x1)/(x2-x1),其中(x1,y1)和(x2,y2)是直线上的两个点。
-一般式方程:Ax+By+C=0,其中A、B、C是常数,表示直线上的所有点。
二、立体几何公式:1.体积和表面积公式:-立方体:体积=边长^3,表面积=6*边长^2-正方体:体积=边长^3,表面积=6*边长^2-圆柱体:体积=π*半径^2*高,曲面积=2*π*半径*高,总表面积=2*π*半径*(半径+高)-圆锥体:体积=(π*半径^2*高)/3,曲面积=π*半径*侧面长度,总表面积=π*半径*(侧面长度+半径)-球体:体积=(4/3)*π*半径^3,表面积=4*π*半径^22.直角三角形的性质:-毕达哥拉斯定理:直角三角形的两条直角边的平方和等于斜边的平方,即a^2+b^2=c^2- 直角三角形的角度关系:直角的两个锐角的正弦、余弦和正切函数值满足sin(A) = cos(B) = a/c,sin(B) = cos(A) = b/c,tan(A) =a/b,tan(B) = b/a。
初中几何公式定理大全146条
一、直线和角度1. 直线的性质2. 同位角、内错角、同旁内角、同旁外角、相交线性质3. 平行线性质4. 角的度量5. 角的性质6. 垂直角与互补角7. 角平分线的性质8. 三角形内角和为180°9. 三角形外角和等于对应的内角和二、平行四边形10. 平行四边形的性质11. 平行四边形对角线的性质12. 平行四边形的判定定理13. 等腰平行四边形性质三、三角形14. 三角形的定义15. 三角形的分类16. 三角形的内角和17. 三角形的外角和18. 等腰三角形的性质19. 等边三角形的性质20. 直角三角形的性质21. 斜角三角形的性质22. 三角形内心、外心、重心、垂心23. 三角形中位线定理24. 三角形的中线定理25. 三角形的高定理26. 三角形的中线定理27. 三角形的角平分线定理28. 三角形的正弦定理29. 三角形的余弦定理30. 三角形的海伦公式四、全等三角形31. 全等三角形的性质32. 三角形全等条件33. 全等三角形的判定定理五、相似三角形34. 相似三角形的性质35. 相似三角形的判定定理36. 相似三角形的应用六、勾股定理和勾股数37. 勾股定理的条件38. 勾股定理的应用39. 勾股数的构造和性质40. 勾股数的判定定理七、平面图形41. 正方形的性质42. 长方形的性质43. 菱形的性质44. 梯形的性质45. 正多边形的性质46. 圆的性质47. 圆的切线定理48. 圆的切割定理49. 圆的弦理论50. 圆的扇形面积八、平行线与比例51. 平行线分线段52. 线段比例定理53. 平行线的中位线定理54. 平行线的高度定理九、数学建模55. 数学建模的概念56. 数学建模的解题步骤57. 数学建模的应用实例十、平面几何命题证明58. 角平分线的性质证明59. 平行线性质证明60. 直角三角形的性质证明61. 狄尼茨定理证明62. 三等分角定理证明63. 正多边形内角和公式证明十一、解决几何问题64. 几何问题的解决方法65. 几何问题的三步走解题法66. 几何问题的类比辅助法67. 几何问题的逆向方法十二、空间图形68. 空间图形的概念69. 空间图形的分类70. 空间图形的性质71. 空间图形的体积公式十三、平面与立体坐标系72. 平面直角坐标系73. 立体坐标系74. 坐标变换定理十四、等差数列和等比数列75. 等差数列的性质76. 等差数列的应用77. 等比数列的性质78. 等比数列的应用十五、向量79. 向量的概念80. 向量的性质81. 向量的加法和减法82. 向量的数量积83. 向量的叉积84. 向量的应用十六、向量的平面几何应用85. 向量的平移86. 向量的夹角87. 向量的垂直和平行88. 向量作为平行四边形的对角线十七、圆锥曲线的方程89. 圆的方程90. 椭圆的方程91. 双曲线的方程92. 抛物线的方程十八、解析几何命题证明93. 直线的方程证明94. 圆的方程证明95. 椭圆的方程证明96. 双曲线的方程证明97. 抛物线的方程证明十九、三角函数98. 三角函数的概念99. 三角函数的正弦、余弦、正切、余切100. 三角函数的性质101. 三角函数的定义域和值域102. 三角函数图像二十、三角函数的一般式103. 三角函数的和差化积104. 三角函数的倍角公式105. 三角函数的半角公式106. 三角函数的和角公式107. 三角函数的差角公式108. 三角函数的积化和差二十一、三角函数的应用109. 三角函数的变量代换110. 三角函数的方程解法111. 三角函数的不等式解法112. 三角函数的应用实例二十二、立体几何113. 立体几何的基本概念114. 立体几何的三视图115. 立体几何的截面图116. 立体几何的投影图二十三、立体几何命题证明117. 立体几何的平行轴定理证明118. 立体几何的旋转定理证明119. 立体几何的平移定理证明120. 立体几何的镜像对称定理证明二十四、空间向量121. 空间向量的概念122. 空间向量的性质123. 空间向量的共线124. 空间向量的垂直125. 空间向量的平行二十五、空间向量运算126. 空间向量的和127. 空间向量的差128. 空间向量的数量积129. 空间向量的叉积二十六、立体几何和向量130. 空间平面的方程131. 空间直线的方程132. 空间平面和直线的位置关系133. 空间立体几何和向量的应用二十七、立体图形的几何性质134. 立体图形的视图和截面135. 立体图形的平面和直线位置关系136. 立体图形的边和面的关系137. 立体图形的三视图和投影图二十八、三视图的绘制138. 正交三视图的绘制139. 斜投影三视图的绘制140. 立体图形的三视图应用二十九、空间几何建模141. 空间几何建模的概念142. 空间几何建模的三步走解题法143. 空间几何建模的应用实例三十、空间曲面的方程144. 圆锥曲线的方程证明145. 曲面的方程证明146. 空间曲面的方程应用在初中阶段,学习几何公式定理是非常重要的,因为它为理解和解决各种几何问题打下了坚实的基础。
(完整版)小学几何图形公式大全
正方形C周长S面积a边长
周长=边长×4 面积=边长×边长
正方体V:体积a:棱长
表面积=棱长×棱长×6 体积=棱长×棱长×棱长
长方形C周长S面积a边长
周长=(长+宽)×2 面积=长×宽
长方体V:体积s:面积a:长b: 宽h:高
表面积= (长×宽+长×高+宽×高)×2 体积=长×宽×高三角形s面积a底h高面积=底×高÷2
三角形高=面积×2÷底三角形底=面积×2÷高平行四边形s面积a底h高面积=底×高
梯形s面积a上底b下底h高面积=(上底+下底)×高÷2
圆形S面积C周长∏d=直径r=半径
周长=直径×∏=2×∏×半径C=∏d=2∏r
面积=半径×半径×∏直径=半径×2
圆柱体v:体积h:高s;底面积r:底面半径c:底面周长
侧面积=底面周长×高表面积=侧面积+底面积×2
体积=底面积×高
圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3。
初中数学常见的146条定理和公式
初中数学常见的146条定理和公式
1、几何定理:
(1)直角三角形斜边长的平方等于两直角边长的乘积:a2=b2+c2(2)梯形面积=底边*高/2
(3)三角形面积=底边*高/2
(4)正方形的面积=边长的平方
(5)长方形的面积=长*宽
(6)圆形的面积=πr2
(7)椭圆的面积=πa*b
(8)任意多边形的面积=1/2*a*h
(9)平行四边形面积=对边乘积/2
(10)三角形的周长=a+b+c
(11)正多边形的周长=边数×边长
(12)圆的周长=2πr
(13)椭圆的周长=2π(a+b)/2
(14)正方体的表面积=6a2
(15)正方体的体积=a3
(16)长方体的表面积=2(a+b)h
(17)长方体的体积=a*b*h
(18)圆柱的表面积=2πr(r+h)
(19)圆柱的体积=πr2h
(20)圆锥的表面积=πrl+πr2
(21)圆锥的体积=πr2h/3
(22)球的表面积=4πr2
(23)球的体积=4/3πr3
2、数列定理:
(1)等差数列之和Sn=n(a1+an)/2
(2)等比数列之和Sn=a1(1-qn)/(1-q)
(3)调和数列之和Sn=n2/2(a1+an)
(4)加绝对值的调和数列之和Σ,a,=n(2a1+n-1da/2 ) 3、代数定理:
(1)多项式乘积与乘积分配律:(a+b)(c+d)=ac+ad+bc+bd (2)二次多项式求根公式:X1,2=[-b±√(b2-4ac)]/2a。
几何图形公式
几何图形公式1、正方形:周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体(V:体积 a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a 3、长方形( C:周长 S:面积 a:边长)周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab4、长方体(V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高 V=abh5、三角形(s:面积 a:底 h:高)面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积 a:底 h:高)面积=底×高 s=ah7、梯形(s:面积 a:上底 b:下底 h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形(S:面积 C:周长л d=直径 r=半径)(1)周长=直径×л=2×л×半径 C=лd=2лr (2)面积=半径×半径×л9、圆柱体(v:体积 h:高 s:底面积 r:底面半径 c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积 h:高 s:底面积 r:底面半径)体积=底面积×高÷3常用单位换算大单位小单位长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤=2斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒。
数学公式定理大全!
数学公式定理大全!数学公式定理大全!1 、正方形 C周长 S面积 a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2 、正方体 V:体积 a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长 S面积 a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积 s:面积 a:长 b: 宽 h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积 a底 h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积 a底 h高面积=底×高s=ah7 梯形s面积 a上底 b下底 h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形S面积 C周长∏ d=直径 r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积 h:高 s;底面积 r:底面半径 c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积 h:高 s;底面积 r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)时间单位换算1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时 1时=60分1分=60秒 1时=3600秒1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
几何公式定理大全
几何公式定理大全
以下是一些常见的几何公式和定理:
1. 勾股定理:在直角三角形中,a、b和c分别表示斜边和两条直角边的长度,则满足a² + b² = c²。
2. 正弦定理:在任意三角形ABC中,a、b和c分别表示对应的边长,A、B和C分别表示对应的夹角,则有 sin(A)/a =
sin(B)/b = sin(C)/c。
3. 余弦定理:在任意三角形ABC中,a、b和c分别表示对应的边长,A、B和C分别表示对应的夹角,则有 c² = a² + b² - 2ab*cos(C)。
4. 正切定理:在任意三角形ABC中,A、B和C分别表示对应的夹角,则有 tan(A) = a/b,tan(B) = b/a,tan(C) = c/a。
5. 直角三角形三边关系:在直角三角形ABC中,a、b和c分别表示斜边和两条直角边的长度,则有 a² = b² + c²。
6. 平行线定理:如果有一对直线分别与第三条直线相交,则这两条直线互相平行。
7. 平行线夹角定理:如果有两条平行线与第三条直线相交,则所对应的内角和外角互补。
8. 等腰三角形定理:在等腰三角形ABC中,AB = AC,其中
角A为顶角。
9. 等腰三角形底角定理:在等腰三角形ABC中,底角B和底角C相等。
10. 垂直平分线定理:如果一个点P到线段AB的距离相等于到线段AC的距离,则点P在直线BC的垂直平分线上。
这只是一些常见的几何公式和定理,还有很多其他的公式和定理,涉及到各种图形的面积、周长、角度、长度等等。
中学几何图形及公式大全
中学几何图形及公式大全正方形正方形是指具有四个相等边长和四个直角的图形。
正方形的特点包括:- 所有边长相等。
- 所有内角均为直角(90度)。
- 对角线互相垂直且相等长。
常见的正方形公式有:- 周长公式:周长 = 4 * 边长。
- 面积公式:面积 = 边长 * 边长。
长方形长方形是指具有相等对边垂直且相等对边的图形。
长方形的特点包括:- 任意两个对边垂直且相等长。
常见的长方形公式有:- 周长公式:周长 = 2 * (长 + 宽)。
- 面积公式:面积 = 长 * 宽。
三角形三角形是指具有三条边和三个内角的图形。
三角形的特点包括:- 三条边的和大于第三边。
- 任意两个内角的和大于第三个内角。
常见的三角形公式有:- 周长公式:周长 = 边1 + 边2 + 边3。
- 面积公式:面积 = 1/2 * 底边长 * 高。
圆圆是指由所有距离中心相等的点组成的图形。
圆的特点包括:- 圆心到圆上任意点的距离相等。
常见的圆公式有:- 周长公式:周长= π * 直径。
- 面积公式:面积= π * (半径的平方)。
正三角形正三角形是指具有三个相等边长和三个60度内角的图形。
正三角形的特点包括:- 所有边长相等。
- 所有内角均为60度。
正三角形的周长公式和面积公式与一般三角形相同。
正方体正方体是指具有六个相等边长和六个直角的立体图形。
正方体的特点包括:- 所有边长相等。
- 所有内角均为直角(90度)。
正方体的体积公式和表面积公式如下:- 体积公式:体积 = 边长的立方。
- 表面积公式:表面积 = 6 * (边长的平方)。
以上是中学几何图形及公式的简要介绍,希望对你有所帮助!。
高中数学几何公式大全
高中数学几何公式大全以下是高中数学几何相关的公式大全:1.直角三角形相关公式:勾股定理:$a^2+b^2=c^2$。
正弦定理:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$。
余弦定理:$a^2=b^2+c^2-2bc\cos A$。
余割定理:$\frac{1}{\sin A}=\frac{b}{a},\frac{1}{\cosA}=\frac{c}{a},\frac{1}{\tan A}=\frac{c}{b}$。
2.圆相关公式:圆的周长:$C=2\pi r$。
圆的面积:$S=\pi r^2$。
弧长公式:$L=\theta r$。
扇形面积:$S=\frac{\theta}{360} \pi r^2$。
圆锥的侧面积:$S=\pi r l$。
圆锥的体积:$V=\frac{1}{3}\pi r^2h$。
3.平面几何相关公式:四边形内角和公式:$S=(n-2) \times 180^\circ$。
正多边形内角和公式:$S=(n-2) \times \frac{180^\circ}{n}$。
相似三角形对应边比公式:$\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$。
相似三角形的面积比公式:$\frac{S_1}{S_2}=\left(\frac{a_1}{a_2}\right)^2$。
4.空间几何相关公式:球的体积:$V=\frac{4}{3}\pi r^3$。
球的表面积:$S=4\pi r^2$。
圆柱的体积:$V=\pi r^2h$。
圆柱的表面积:$S=2\pi r^2+2\pi rh$。
圆锥的体积:$V=\frac{1}{3}\pi r^2h$。
圆锥的表面积:$S=\pi r l+\pi r^2$。
五棱锥的体积:$V=\frac{1}{3} Bh$。
五棱锥的表面积:$S=\frac{5}{4} Pl+\pi r^2$。
几何公式大全范文
几何公式大全范文1.圆的相关公式:-圆的周长:C=2πr,其中C为周长,r为半径。
-圆的面积:A=πr²,其中A为面积,r为半径。
-弧长公式:L=rθ,其中L为弧长,r为半径,θ为弧度。
-扇形面积公式:A=1/2r²θ,其中A为扇形面积,r为半径,θ为弧度。
2.三角形的相关公式:-根据边长求面积:A=√(s(s-a)(s-b)(s-c)),其中A为面积,a、b、c为三角形的边长,s为半周长(s=(a+b+c)/2)。
- 角度求三角形面积:A = 1/2absin(C),其中A为面积,a、b为三角形两边的长度,C为夹角的度数。
- 三角形的外接圆半径:R = (abc)/(4A),其中R为外接圆的半径,a、b、c为三角形的边长,A为三角形的面积。
3.四边形的相关公式:- 矩形的面积:A = lw,其中A为面积,l为长,w为宽。
-正方形的周长:P=4s,其中P为周长,s为边长。
- 平行四边形的面积:A = bh,其中A为面积,b为底边长,h为高。
-梯形的面积:A=1/2(a+b)h,其中A为面积,a和b为两条底边的长度,h为高。
-菱形的面积:A=(d1d2)/2,其中A为面积,d1和d2为两条对角线的长度。
4.圆锥和球体的相关公式:-圆锥的体积:V=1/3πr²h,其中V为体积,r为底面半径,h为高。
-圆锥的母线长度:l=√(r²+h²),其中l为母线长度,r为底面半径,h为高。
-球体的体积:V=4/3πr³,其中V为体积,r为半径。
-球体的表面积:A=4πr²,其中A为表面积,r为半径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多面体的体积和表面积图形尺寸符号
立
方
体
长
方
体
∧
棱
柱
∨
三
棱
柱
棱
锥
棱
台
圆
柱
和
空
心
圆
柱
∧
管
∨
斜线直圆柱
直圆锥
圆台
球
球扇形∧球楔∨
球
缺
圆
环
体
∧
胎
∨
球
带
体
桶
形
椭
a,b,c-半轴球
体
交
叉
圆
柱
体
梯
形
体
常用图形求面积公式
图形尺寸符号面积(F)表面积(S)
正
方
形
长
方
形
三
角
形
平
行
四
边
形
任
意
四
边
形
正
多
边
形
菱
形
梯
形
圆
形
椭
a·b-主轴F= (π/4) a·b 圆
形
扇
形
弓
形
圆
环
部
分
圆
环
新
月
形
L d/102d/10 3d/10 4d/105d/10 6d/10 7d/10 P 0.400.79 1.18 1.56 1.91 2.25 2.55
抛
物
线
形
等
多
边
形
土方量计算的基本方法
土方量的计算的基本方法主要有平均高度法和平均断面两种。
1.平均高度法
土方量计算公式表(四方棱柱体法)
注:1.表中a为方格边长,b、c为计算图形相应的两个边长;
2.h
1、h
2
、h
3
、h
4
分为各角点的施工高度;
3. Σh为各计算图形相应的挖方或填方的施工高度总和,用绝对值代入;
4.V为挖方或填方的体积(m3)。
2.平均断面法
当采用平均断面法计算基槽、管沟或路基土方量时,可先测绘出纵断面图,再根据沟槽基底的宽、纵向坡度及放坡宽度,绘出在纵断面图上各转折点处的横断面,算出各横断面面积后便可用平均断面法计算各段的土方量,
即:V=(F1+ F2) *L1/2 +(F2+ F3) *L2/2+(F3+ F4) *L3/2+…….
土方工程纵断面
V=(F1+ F2) *L1/2 +(F2+ F3) *L2/2+(F3+ F4) *L3/2+……. 注:F1、F2…….表示横断面面积;
L1、 L2…….表示断面之间距离。