3.3二阶系统解析

合集下载

3.3 二阶系统分析

3.3 二阶系统分析

tr

d
,其中 d
n
1 2, arccos
3.3 二阶系统的时域分析
峰值时间tp
c(t) 1
1
1 2
e nt sin(d t )
c(tp)=cmax
dc(tp)/dt=0
1
1 2
e nt sin(d t p ) 0
sin d t p 0, d t p k , k
解: k 6,n 2.45, 0.408
ts
4
n
4
M p 22%
k 12,n 3.46, 0.289
ts

4
n
4
M p 40%
K增大,系统的上升时间减小,超调量增大。 系统的响应速度加快,但振荡幅度增大、频率加快
3.3 二阶系统的时域分析
例题3.3 已知某系统的结构和单位阶跃响应的Mp<5%, tS<4秒,求系统的参数。
n n

2
1
,..T2

n
1
n
,
2 1
C(s)
n2
1
(s 1/ T1)(s 1/ T2 ) s
t
t
c(t) 1 e T1

e T2
T2 / T1 1 T1 / T2 1
1 / T2 1/ T1
3.3 二阶系统的时域分析
T1
1
n n
n

K
3.3.6 改善二阶系统性能的措施
1. 比例—微分控制
(1) 方法的思路
r(t)
1
c(t)01
R(s) E(s)
U(s
ωn2

大学自动控制原理_3.3二阶系统时间响应

大学自动控制原理_3.3二阶系统时间响应

1s 5% ts 1.33 2%
例2 如图所示的机械系统,在质量块上 施加9.8牛顿阶跃力后,m的时间响应 如图曲线,试求系统的 m、k 、c 。
Fi (t )
xo (t )
m c
k
解:根据牛顿第二定律,得
Fi (t ) Fk Fc Mo (t ) x Fk kxo (t ) Fc cxo (t )
即:
e
nt 2
1

1 1 1
2
解得: t s
n
ln
4 ln
若 0.02
1 1
2
则t s
n
3 ln
1 1
2
若 0.05
则t s
n
4
0.02) ( 若0 0.7时 ts n ts 32、源自阻尼状态( 0)2
1 X o (s) 2 2 s s n
1 s s s 2 n2
n
xo (t ) 1 cos nt
曲 线 特 点 : 等 幅 振 荡
3、临界阻尼状态
1 X o (s) 2 s (s n )
( 1)
n
5、振荡次数N
在调整时间内响应曲线振荡的次数
ts ts N T 2
d
0 0.7时,
0.02时,t s 0.05时,t s 4
n
3
N N
2 1
2

1. 5 1
2
n

振荡次数N随着 而 。
( 2 1) nt ( 2 1) n t e e 2 2 1

自动控制原理 3-3二阶系统的时域分析

自动控制原理 3-3二阶系统的时域分析

(a)根分布
(b)单位阶跃响应
图3-12 临界阻尼情况(z =1)
3. >1,称为过阻尼情况 当阻尼比 >1时,系统有两个不相等的实数根:
s1,2 ( 2 1)n 对于单位阶跃输入,C(s)为
(3.27)
C(s) 1 [2 2 1(
2 1)]1 [2 2 1(
2 1)]1
% e 12 100%
e 或 %
tg
100%
取5%
ln
1 2
h(t) 由包络线求调节时间ts
取2%
ln 1 2
0.05 2.997
0.05 3.913
0.1 0.2 0.3
3.001 3.016 3.043
ts
31.5 n
,取5% e 1
n t
12
ts
4.5 n
,取2%
0.1 0.2 0.3
2%, 0.78; 5%, 0.7
当0< <0.9时,则
ts
3
n
3T
(按到达稳态值的95%~105%计)

ts
4
n
4T
(按到达稳态值的98%~102%计)
(3.40)
由此可见, n大,ts就小,当n一定,则ts与成反比,这与tp, tr与的关系正好相反。
根据以上分析,如何选取和n来满足系统设计要求,总结几点
令 dh(t) ab(c a) eat ab(a b) ebt 0
dt c(b a)
c(a b)
j
ca
分子正分母负,t<0,
ln 得:t c b
-c -b -a 0

无解!
ab
j

分子出错,无解! j

33二阶系统的时域分析PPT课件

33二阶系统的时域分析PPT课件

开环传递函数为:
G(s)
s2
n2 2ns
闭环传递函数为: (s)1 G G (s()s)s22n 2 nsn 2
(s)称为典型二阶系统的传递函数,称为阻尼系数, n 称为无阻
尼振荡频率或自然频率。
20.11.2020
3
二、二阶系统的单位阶跃响应
特征方程为: s22 nsn 20
特征根为:s1,2nn 21,注意:当 不同时,特征根
o 1,欠阻尼 s1,2 njn 12
一对共轭复根(左 半平面)
衰减振荡
1,临界阻尼 s1,2 n(重根 ) 一对负实重根 单调上升
1,过阻尼 s1,2 nn 21 两个互异负实根 单调上升
20.11.2020
8
❖二阶系统在各种不同 情况下的闭环极点分布见P95 图3-9
Im [s]
s1
n 1 2
小写 ν ξ ο π ρ σ τ υ φ χ ψ ω
中文名 纽
克西 欧米克隆
派 柔 西格玛 陶 玉普西隆 弗爱 凯 普赛 奥米伽
20.11.2020
2
这是最常见的一种系统,很多高阶系统也可简化为二阶系统。
一、二阶系统的数学模型 下图所示为稳定的二阶系统的典型结构图。
R(s) -
2 n
C(s)
s(s 2 n )
nt
8 10 12
可以看出:随着 的增加,c(t)将从无衰减的周期运动变为有
衰减的正弦运动,当 1 时c(t)呈现单调上升运动(无振荡)。
可见 反映实际系统的阻尼情况,故称为阻尼系数。
20பைடு நூலகம்11.2020
10
三、典型二阶系统的动态过程分析
(一)衰减振荡瞬态过程 (01):欠阻尼

33二阶系统解析

33二阶系统解析

• 近似原则:用其中一个惯性环节近似原二 阶系统,需要保证近似前后初值和终值相 等,并且要用到待定系数法!
过阻尼系统稳态值和最终误差
c() lim sG(s)R(s) lim s
2
1 1;
s0
s0 (s s1)(s s2 ) s
e() 0 过渡过程时间(按近似后一阶系统求出)
为二阶系统。
二、二阶系统的特征根(极点)分布 求解二阶系统特征方程,
s2 2ns n2 0
可得两个特征根(极点)
s1, s2 n n 2 1 ( 1) n jn 1 2 ( <1) j
j
[s]
s1
jn 1 2
讨论:
过阻尼系统是两个惯性环节的串联。
有关分析表明,当 1时,两极点s1和s2与虚轴的
距离相差很大,此时靠近虚轴的极点所对应的惯性 环节的时间响应与原二阶系统非常接近,可以用该 惯性环节来近似原来的二阶系统。即有
C(s) n n 2 1 s1 R(s) s n n 2 1 s s1
s(s2
n2 2ns
n2 )

s(s

n2
s1 )( s

s2 )
A0 A1 A2 s s s1 s s2
A0

C(s)s s0
1
A1

C
(s)(s

s1
) s

s1

2
1
2 1(
2 1)
A2

C
(s)(s

s2
) s s2

2
1

3.3二阶系统的动态性能(上)解析

3.3二阶系统的动态性能(上)解析


s 2n 1 s [( s n ) jd )][( s n ) jd ]

s 2n 1 s 2n 1 s ( s n )2 ( jd )2 s ( s n )2 d 2
at
s n n 1 s (s n )2 d 2 (s n )2 d 2 n 1 2 1 s n 1 2 2 s ( s n ) d ( s n )2 d 2
5.84 n ts 4.75 n
4、稳态误差为0,说明典型二阶系统跟踪阶跃输入信号时,无稳态误差, 系统为无静差系统。
4.过阻尼(ζ>1)状态
闭环特征方程
特征根
2 s 2 2n s n 0
s1 n n 2 1
s2 n n 2 1
nt
d
L[e at cos t ]
上式取拉氏反变换,得
y(t ) 1 e
1 1
cos d t

1
2
sa ( s a)2 2 L[e at sin t ] ( s a)2 2
ent sin d t
e nt 1 2 e
Δ 2 Δ 5
4T1 1.25 ts 3T 1
Δ 2 Δ 5
1.34
3、稳态误差为0,说明典型二阶系统跟踪阶跃输入信号时,无稳态误 Y(t) 差,系统为无静差系统。
2
4、需要说明的是,对于临界阻尼和过阻 尼的二阶系统,其单位阶跃响应都没有 振荡和超调,系统的调节时间随ζ的增加 而变大,在所有无超调的二阶系统中, 临界阻尼时,响应速度最快。
2 n 1 1 s Y ( s ) ( s ) R( s ) 2 2 2 s n s s s 2 n

3-3二阶系统的时域分析

3-3二阶系统的时域分析

输出为衰减振荡形 式(欠阻尼响应) ;
1:
s1, 2 n ;
c(t ) n te
2 t
C(t) t

输出为无振荡衰减形式(临界阻尼响应) ;
1 : T11 n n 2 1 s1 ,T21 n n 2 1 s2 ; n t / T t / T
2
s ( s 2 n )
; ( s)
a2 s a1s a2
2

典型二阶系统有两个参数。系统有两个极点:
1
极点在S平面上的位置不同(值,见图3-9) ,系统 的性质不同,对输入信号的响应过程不同。
0
0
0
s1, 2 jd
(a ) 1 0
s1, 2 n 1
2
s1, 2 jd
(c) 0 1
(b) 1
0
0
0
s1, 2 jn
(d ) 0
s1, 2 n
(e) 1
s1, 2 n 1
2
(f ) 1
n
衰减系数, d n
1
2
(阻尼)振荡频率
图3-9 二阶系统的闭环极点分布
☆二阶系统的单位脉冲响应:
0:
s1, 2 jn ;
c(t ) n sin( nt ) ;
输出为等幅振荡形式(无阻尼响应) ;
0 1 :s1, 2 jd ;c(t )
n
1
2
e
t
sin( d t ) ;

n
d
e
sin( d t 2 ) ;

自控理论 3-3二阶系统分析

自控理论 3-3二阶系统分析


Φ( s ) =
K
2
1 + Kτ s + s+ K T T
T
2 ω n1 = 2 2 s + 2ζ 1ω n1 s + ω n1
系统仍为二阶系统, 特征参数ζ 系统仍为二阶系统 , 特征参数 ζ1 和 ωn1 与实际系 统参数的关系为
K ω = T 1 + Kτ 2ζ 1ω n1 = T
2 n1
2 n
h ( t ) = c ( t ) = 1 − cos ω n t
响应曲线为等幅振荡曲线。 响应曲线为等幅振荡曲线。
2.
ζ >1 (过阻尼) (过阻尼 过阻尼)
ωn2
s ( s + 2ζω n s + ω n )
2 2
2 s 2 + 2ζω n s + ω n = 0
此时
C (s ) =
s1,2 = -ζωn ±ωn ζ 2 - 1
,
ω n1
, ζ1 =
K = T 1 + Kτ 2 KT
ωn = ζ=
K T 1
2 KT
由上式可见, 加入速度反馈不改变ω 由上式可见 , 加入速度反馈不改变 ωn 值 , 但 增大了,从而减小了超调量σ 阻尼比ζ增大了,从而减小了超调量σ% 。
所示, 【例3-3】 设系统结构如图 】 设系统结构如图3-20(b)所示,令T=1。若 所示 。 σ%= %, %,t 。 要求系统具有性能指标 σ%=20%, p=1s。试决定系 统参数K和 统参数 和 τ,并计算暂态性能指标 td , tr 和ts(△=2%)。 ( ) 由图知, 解 由图知,闭环传函为
式中 β = tg −1 1−ζ 2

自动控制3.3~3.4二阶系统时域分析详解

自动控制3.3~3.4二阶系统时域分析详解

e nt
1 2
sin(d t
) (t
0)
上升时间 tr
阶跃响应从零第一次升到稳态所需的的时间。
• 此时 •即
c(tr ) 1
entr
1 2
s in(d tr
)
0
•得
tr
d
n 1 2
dtr β arc cos
峰值时间 tp
c(t) 1
e nt
1 2
sin(d t
) (t
n
G0 (s)
s(s
n2 2
n)
s(s
/
2 2
n
1)
, K0
n 2
G(s) n2 (Td s 1)
n 2
(Td s 1)
, K n
s(s 2n ) s(s / 2n 1)
2
可见,比例-微分控制不改变开环增益。
R(s) (-) Tds+1
ωn2
s(s 2ωn )
Go(s)
C(s)
0 (s)
模 n 阻尼角 cos
sin 1 2
(1)单位阶跃响应:
C(s)
(s)R(s)
s2
n2 2n s
n2
.1 s
(s2
2ns n2 ) s2 2ns
s(s
n2
2n
)
.
1 s
1 s
(s
s n n )2 d 2
1 2
. (s
1 2n n )2 d 2
c(t ) 1 ent cosd t
n2 2n s
n2
1 s
n2 s(s2 n2 )
1 s
(s2
s

北航机电控制工程基础(自动控制原理)第三章2-时域分析法-一阶系统分析二阶系统分析

北航机电控制工程基础(自动控制原理)第三章2-时域分析法-一阶系统分析二阶系统分析

北京航空航天大学
机电控制工程基础
Fundamentals of Mechatronic Control Engineering
(3 )调节时间Regulation time :t s 根据调节时间的定义,当t≥ts时 |h(t)-h(∞)|≤ h(∞) ×Δ%。
e nt
1 2
sin(d t
tg1
1 2
袁松梅教授 Tel:82339630 Email:yuansm@
北京航空航天大学
• 定性分析 (1) 平稳性Stability ---> % ---> %
机电控制工程基础
Fundamentals of Mechatronic Control Engineering
d n 1 2
1 1
s1,2 n n 2 1 s1,2 n
欠阻尼 underdamping
0
1
s1,2
n
jn
1 2
零阻尼 undamping
0
s1,2 jn
负阻尼
0
negative damping
s1,2 n n 2 1
两个不等负实根 两个相等负实根 两个负实部共轭复根 两个纯虚根 正实部特征根
北京航空航天大学
机电控制工程基础
Fundamentals of Mechatronic Control Engineering
3.3 二阶系统分析(Second-order System analysis)
3.3.1 数学模型 (Mathematical Model)
dc2 (t) dt2
2 n
dc(t) dt
dtp 0, ,2 ,
得:
tp

大学自动控制原理3.3二阶系统时间响应

大学自动控制原理3.3二阶系统时间响应

极点位置影响响应的衰减速度,零点 位置影响响应的振荡频率。
特点
二阶系统的单位阶跃响应具有振荡和 衰减的特性,其形状由系统的极点和 零点决定。
单位冲激响应
定义
01
单位冲激响应是系统在单位冲激函数输入下的输出响应。
特点
02
与单位阶跃响应类似,二阶系统的单位冲激响应也具有振荡和
衰减的特性。
与单位阶跃响应的区别
根轨迹分析
通过分析系统的根轨迹来判断系统的稳定性。
李雅普诺夫稳定性分析
通过分析系统的李雅普诺夫函数来判断系统的稳定性。
05
二阶系统的设计方法
串联校正
串联校正是指通过在系统输出端串联一个适当的装置,以改善系统的性能。常用的 串联校正装置有滞后器、超前器和积分器等。
串联校正的优点是结构简单,易于实现,适用于各种类型的系统。
二阶系统的分类
根据系统参数的性质,二阶系统可以分为欠阻尼、临界阻尼 和过阻尼三种类型。
欠阻尼系统的输出在达到稳态值之前会有一个振荡过程;临 界阻尼系统的输出则不会出现振荡过程;过阻尼系统的输出 则会有一个较大的超调量。
03
二阶系统的时域分析
单位阶跃响应
定义
极点与零点对响应的影响
单位阶跃响应是系统在单位阶跃函数 输入下的输出响应。
电机控制系统
电机控制系统的稳定性
二阶系统的时间响应特性对于电机控制系统的稳定性至关重要, 能够保证电机在各种工况下的正常运行。
电机控制系统的动态性能
二阶系统的快速响应能力有助于提高电机控制系统的动态性能,实 现更精确的速度和位置控制。
电机控制系统的鲁棒性
二阶系统的鲁棒性使其在电机控制系统中具有广泛的应用,能够适 应各种不确定性和干扰。

二阶系统

二阶系统

T1 / T2 1
稳态分量为1,动态分量为两项指数函数,且随着
时间t的增长而衰减为零,最终输出稳态值为1,所以
系统不存在稳态误差。其响应曲线如下图所示:
h(t)
1 C(t)
系统有两个衰减指数项, 当ξ》1时,后一项指数 比前一项衰减的快,可以 忽略,近似为一阶系统
对于过阻尼二阶系统,无超调量,无稳态误差只着重讨
方程的特征根为: s1,2 wn wn 2 1
由方程的特征根说明,随着阻尼比的不同,二阶 系统的特征根(闭环极点)也不同,如下所示:
jw
s1
wn 1 2
wn
0
σ
s2
当0<ξ<1时,系统处于欠阻尼 状态, 有一对实部为负的共轭复 根,系统时间响应应具有振荡 性
jw s2 s1
wn 0
当ξ=1时,系统处于临界阻尼 σ 状态, 有一对相等的负实根,系
h(t) 1 (1 nt)ewnt
3、零阻尼ξ=0的情况
这时系统极点为,s1,2=±jWn
C(s)
2 n
s(n2
s2)
1 s
s2
s
n2
c(t) 1 cosnt,t 0
4、欠阻尼0<ξ<1的情况
系统具有一对实部为负的共轭复根,时间响应呈衰 减振荡特性,故又称为振荡环节。一对共轭复根为:
s1,2 n jn 1 2 jd
12
阻尼比与超调量σ%的关系曲线如下: σ
ζ
平稳性:
由曲线看出,阻尼比ξ越大,超调量越小,相应的 振荡倾向越弱,平稳性越好,反之,则振荡越强,平 稳性越差。当ξ=0时,零阻尼响应变成具有频率为 Wn的不衰减(等幅)振荡,表达式如下:

3-3 二阶系统

3-3 二阶系统

0
s1
s2
0
n
s2
7
1
0
二阶系统单位阶跃 响应定性分析
1 1
1
Φ(s)=
j
n 2 s2 +2 ns + n2
jj 00 j
>1 >1 =1
T s1,2= -n T n √2 - 1 ± =1
2
0
h(t)= s+ Te 11,2=
2
t T1
T1
1
-e + Tn
15
(3)临界阻尼二阶系统的单位阶跃响应
n 2 n 2 闭环传递函数 (s) 2 2 2 s 2n s n ( s n )
1
单位阶跃响应为
n n 1 1 1 C ( s) 2 2 ( s n ) s s ( s n ) s n
s n n 1 2 2 2 s ( s n ) d ( s n ) 2 d
10
d n 1 2
s n n 1 C ( s) 2 2 2 2 s ( s n ) d ( s n ) d
dc(t ) 2 斜率k n te nt 0, 当t趋向无穷时 k 0 dt
wn=2,ζ=1.0
稳态值为1,无 稳态误差 响应过程是单调 上升的
1 0.8 0.6 0.4 0.2 0
0
1
2
3
4
5
6
7
8
17
(4)过阻尼二阶系统的单位阶跃 响应 过阻尼时,系统有两个负实根
s1, 2 n n 2 1
利用如下公式对C(s)求拉氏逆变换
L1[ sa 1 1 ] e at cos t , L1[ ] e at sin t ( s a) 2 2 ( s a) 2 2

3.3 二阶系统的时域分析

3.3 二阶系统的时域分析

=

e
ζω nts
1 1ζ
=
2
e
ζω nt
sin(ω d t + β ) ≤
e
ζω nt
1ζ 2
1ζ 2

ts =
1
ζω n
(ln
1
+ ln
1 1ζ
2
)
15
当0.4<ζ≤0.8时,可 以采用下面的近似公式 3.5 = 0.05 tS ≤
= 0.02 tS ≤
ts =
1
ζω n
(ln
1
+ ln
18

ωd
ζ一定,即β一定, ωn↑ → tr↓,响应速度越快; ωn一定, ζ ↓ → tr ↓ ,响应速度越慢.
12
h(t ) = 1
1 1ζ 2
e ζω nt sin(ω d t + β )
(t ≥ 0)
(2) 峰值时间tp 根据峰值时间的定义,在峰值处,h(t)的导数为零,故 ζω nt p ζω e ωd dh(t ) ζω t = n sin(ω d t + β ) e n p cos(ω d t + β ) = 0 dt t =t p 1ζ 2 1ζ 2
R C R 实际阻尼系数 ζ= = = 2 L Rc 临界阻尼系数
2
故ζ 称为相对阻尼系数或阻尼比.
一,二阶系统的数学模型
R(s)
2 ωn
C(s)
开环传递函数
2 ωn G(s) = s ( s + 2ζω n )
-
s( s + 2ζω n )
图 3-13 典型二阶系统结构图
闭环传递函数

二阶系统.ppt

二阶系统.ppt

减的指数函数,因此,当时间t趋于无穷时,动态分量衰减 为零,因此,二阶系统的单位阶跃响应不存在稳态误差。
三、欠阻尼二阶系统单位阶跃响应性能指标
1、上升时间tr
单位阶跃响应曲线第一次达到稳态值的时间就是上升
时间,此时,h(tr)=1,即得:
h(t) 1 ent (cosdt
1 2
系统不存在稳态误差。其响应曲线如下图所示:
h(t)
1 C(t)
系统有两个衰减指数项, 当ξ》1时,后一项指数 比前一项衰减的快,可以 忽略,近似为一阶系统
对于过阻尼二阶系统,无超调量,无稳态误差只着重讨
论调节时间,下图是取对变量ts/T1及T1/T2经机器结算后绘 制成的曲线:
ts /T1
误差带5% T1 /T2
似估算为3 T1。
2、临界阻尼ξ=1的情况
这时系统具有两个相等的负实根,s1,2=-Wn
所以
C(s)

(s
Wn 2 Wn
)2

1 s
则可得临界阻尼下二阶系统的单位阶跃响应为:
h(t) 1 (1 nt)ewnt
3、零阻尼ξ=0的情况
这时系统极点为,s1,2=±jWn
C(s)


2 n
s(n2
s2)

1 s

s2
s
n2
c(t) 1 cosnt,t 0
4、欠阻尼0<ξ<1的情况
系统具有一对实部为负的共轭复根,时间响应呈衰 减振荡特性,故又称为振荡环节。一对共轭复根为:
s1,2 n jn 1 2 jd
阶跃响应为:
C(s)

§3-3 二阶系统分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

t 0 t 0
所以,整个暂态过程中, 阶跃响应都是单调增长的 .
2. 临界阻尼(ζ=1)
此时,系统具有二重负实极点,则
2 n A0 A1 A2 C ( s) 2 s ( s n ) s s n ( s n ) 2
A0 1
d 2 A1 C ( s )( s ) 1 n ds s n
dc(t ) 0 dt t 0 dc(t ) 0 dt t 0
e( ) 0
dc(t ) 2 n t n te dt
dc(t ) 0 dt t
表明临界阻尼系统的阶跃响应是单调上升的。

单位阶跃响应变化率最大的时刻:
d 2 h(t ) dt 2
dh ( t ) max dt 2 n t n e (1 n t ) 0
n jn 1 2
j
j
[]
2
j
[s]
s1
j n 1
n 0

2
s1 s 2
n
0

s2
j n 1
(a) 0 1
j
(b) 1
[s]
j
[s]
s1
s1
s2
n
0

s2
0

(c) 1
(d) 0
惯性环节来近似原来的二阶系统。即有
n n 2 1 s1 C ( s) R( s ) s n n 2 1 s s1
• 近似原则:用其中一个惯性环节近似原二
阶系统,需要保证近似前后初值和终值相 等,并且要用到待定系数法!

过阻尼系统稳态值和最终误差
A1 C ( s )( s s1 ) s s
1
1 2
2
1(
2
1)
A2 C ( s )( s s2 ) s s
2
1 2 2 1( 2 1)

拉氏反变换可得过阻尼系统的单位阶跃响应:
c(t ) 1 1 2 1( 1)
s1 , s2 jn 是一对共轭纯虚数根。
三、二阶系统的单位阶跃响应
对于单位阶跃输入
r (t ) 1(t )
1 R( s) s
于是
2 n 1 C ( s) 2 2 s 2n s n s
由拉氏反变换可以得到二阶系统的单位阶跃响应为
c(t ) L1[C ( s)] 下面按阻尼比分别讨论。
• 典型二阶系统是一个前向通道为惯性环节和积分 环节串联的单位负反馈系统。
• 令
K1 K 2 1


2 n

2n
则二阶系统传递函数的标准形式为
2 n C (s) G( s) 2 2 R( s ) s 2n s n
其中ζ称为阻尼比,τ为时间常数,ωn为系统的自然 振荡角频率(无阻尼自振角频率)。
注意:
• 控制工程中,二阶系统的典型应用极为普
遍; • 为数众多的高阶系统在一定条件下可近似 为二阶系统。
二、二阶系统的特征根(极点)分布

求解二阶系统特征方程,
2 s2 2n s n 0
可得两个特征根(极点)
s1 , s2 n n 1
2
( 1) ( <1)
3.3 二阶系统的时域分析
一、 二阶系统数学模型及其标准形式
R( s) +

K1 s 1
K2 s
C (s)
RLC电路、电动机转速控制系统
R( s)
2 n 2 s 2 2n s n
C (s)
K1 K 2 C ( s) G( s) 2 R( s ) s s K1 K 2
(1). 欠阻尼
0 1
s1 , s2 n jn 1 2 是一对共轭复数根。 (2). 临界阻尼 1
s1 , s2 n
(3). 过阻尼 1
是两个相同的负实根。
s1 , s2 n n 2 1 是两个不同的负实根。
(4). 无阻尼 0
1.
过阻尼(ζ>1)
n n 2 1
这种情况下,系统存在两个不等的负实根,则
2 2 n n C (s) 2 2 s ( s 2n s n ) s ( s s1 )( s s2 )
A0 A1 A2 s s s1 s s2
A0 C (s)s s 0 1
1 c() lim sG( s) R( s) lim s 1; s 0 s 0 ( s s1 )( s s2 ) s
2
e( ) 0
过渡过程时间(按近似后一阶系统求出)
ts (3 ~ 4)
1 ( 2 1)n
单调上升,无振荡,过渡过程时间长,无稳态误差。

过阻尼系统单位阶跃响应的变化率
( 2 1)n dc(t ) e ( dt 2 2 1( 2 1)
2 1)n t
2 1)n e ( 2 2 1( 2 1)
(
2 1)n t
dc(t ) 0 dt 0
2 2
e
( 2 1)n t
1 2 1( 1)
2 2
e
( 2 1)n t
(t 0)
稳态分量:1 暂态分量:两个指数函数之和, 指数部分由系统传递函数极点确定。
讨论:

过阻尼系统是两个惯性环节的串联。 有关分析表明,当 1时,两极点s1和s2与虚轴的 距离相差很大,此时靠近虚轴的极点所对应的惯性 环节的时间响应与原二阶系统非常接近,可以用该
2 A2 C ( s )( s ) n s n n

单位阶跃响应为
c(t ) 1 ent (1 nt )
临界阻尼系统单位阶跃响应的误差及终值
e(t ) r (t ) c(t ) ent (1 nt )
单位阶跃响应的变化率为:
相关文档
最新文档