2016-2017学年福建省福州市平潭城关教研片九年级(上)数学期中试卷带解析答案

合集下载

初三上-期中卷-《期中质量检测》2016-2017学年福州十九中(九上+相似)

初三上-期中卷-《期中质量检测》2016-2017学年福州十九中(九上+相似)

福州第十九中学2016-2017学年九年级第一学期期中数学试卷(测试范围:九上+概率 测试时间:120分钟,满分:150分)一、选择题(共12小题,每小题3分,共36分)1.如图所示的几何图形中,是中心对称图形的个数是( )A .4B .3C .2D .12.下列方程x 2+1=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根3.抛物线223y x x =++的对称轴是( )A .直线1x =B .直线1x =-C .直线2x =-D .直线2x =4.“射击运动员射击一次,命中靶心”这个事件是( ) A .确定事件 B .必然事件 C .不可能事件D .随机事件5.已知△ABC 的边AB 是⊙O 的直径,40A ∠=,50B ∠=,则点C 与圆的位置关系是( ) A .点C 在圆上 B .点C 在圆内 C .点C 在圆外 D .无法确定 6.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC .若23AD DB =,则DEBC的值为( ) A .13 B .25 C .23D .356题图 8题图7.若x =1是方程250(0)ax bx a ++=≠的一个根,则a b --的值为( ) A .5- B .5 C .4- D .48.如图,A 、B 、P 是半径为2的⊙O 上的三点,∠APB =45°,则弦AB 的长为( ) A .B .2C .2D .49.平面直角坐标系中,点A 的坐标为(4,3),将线段OA 绕原点O 顺时针旋转90°得到OA ′,则点A ′的坐标是( ) A .(﹣4,3) B .(﹣3,4)C .(3,﹣4)D .(4,﹣3)10.在平面直角坐标系中,二次函数2()(0)y a x h a =-≠的图象可能是( )A .B .C .D .11.小莉家附近有一公共汽车站,大约每隔30分钟准有一趟车经过.则“小莉在到达该车站后10分钟内可坐上车”这一事件的概率是( ) A .B .C .D .12.已知关于x 的二次函数2(1)3y a x a =-+-,当23x -≤≤时,0y >,则a 的取值范围( ) A .3a > B .0a <或310a >C .3010a <<D .3310a << 二、填空题(共6小题,每小题4分,共24分)13.抛物线2y x =的对称轴与该抛物线的交点坐标是 .14.在△ABC 中,D 、E 分别为AB ,BC 的中点,则△ADE 与△ABC 的面积比为 . 15.已知正三角形的边长为6,则它的内切圆面积为 .16.已知关于x 的一元二次方程20(0)ax bx c a ++=≠的一个根为22241(4)21-+-⨯⨯-⨯,则244ac b a-= 。

2016-2017学年度九年级(上)期中数学试卷解析

2016-2017学年度九年级(上)期中数学试卷解析

2016-2017学年度九年级(上)期中数学试卷学号一、选择题(本大题共16小题,1-10小题,每小题3分;11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列标志中,可以看作是中心对称图形的是( )A.B.C. D.2.已知函数:①y=3x﹣1;②y=3x2﹣1;③y=﹣20x2;④y=x2﹣6x+5,其中是二次函数的有( )A.1个B.2个C.3个D.4个3.下列哪个方程是一元二次方程( )A.x+2y=1 B.2x(x﹣1)﹣2x+3=0 C.+4x=3 D.x2﹣2xy=04.一元二次方程x2﹣8x﹣1=0配方后可变形为( )A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=155.一元二次方程x(x﹣2)=2﹣x的根是( )A.﹣1 B.2 C.1和2 D.﹣1和26.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是( )A.27 B.36 C.27或36 D.187.若函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,则m的值为( )A.﹣2 B.1 C.2 D.﹣18.某工厂一种产品的年产量是20件,如果每一年都比上一年的产品增加x倍,两年后产品y与x的函数关系是( )A.y=20(1﹣x)2B.y=20+2xC.y=20(1+x)2 D.y=20+20x2+20x9.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2015的值为( ) A.2014 B.2015 C.2016 D.201710.如图所示,在平面直角坐标系中,二次函数y=ax2+bx+c的图象顶点为A(﹣2,﹣2),且过点B(0,2),则y与x的函数关系式为( )A.y=x2+2 B.y=(x﹣2)2+2 C.y=(x﹣2)2﹣2 D.y=(x+2)2﹣211.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是( )A.点A B.点B C.点C D.点D12.如图,在平面直角坐标系中,A点坐标为(3,4),将OA绕原点O逆时针旋转90°得到OA′,则点A′的坐标是( )A.(﹣4,3)B.(﹣3,4)C.(3,﹣4)D.(4,﹣3)13.设⊙O的半径为3,点O到直线l的距离为d,若直线l与⊙O至少有一个公共点,则d 应满足的条件是( )A.d=3 B.d≤3 C.d<3 D.d>314.如图,已知CD相切圆O于点C,BD=OB,则∠A的度数是( )A.30°B.25°C.40°D.20°15.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P 沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为( )A.1 B.1或5 C.3 D.516.二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是( )A.函数有最小值 B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题中横线上)17.抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是__________.18.如图,在Rt△ABC中,∠BAC=90°,如果将该三角形绕点A按顺时针旋转到△AB1C1的位置,点B1恰好落在边BC的中点处,那么旋转的角度等于__________.19.如图是一座抛物线形拱桥,当水面的宽为12m时,拱顶离水面4m,当水面下降2m时,水面的宽为__________m.20.某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价__________元.三、解答题(本答题共6个小题,共66分,解答应写出文字说明、证明过程或演算步骤)21.如图,已知二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?22.已知P(﹣3,m)和Q(1,m)是抛物线y=2x2+bx+1上的两点.(1)求b的值;(2)判断关于x的一元二次方程2x2+bx+1=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线y=2x2+bx+1的图象向上平移k(k是正整数)个单位,使平移后的图象与x 轴无交点,求k的最小值.23.某市新建了圆形文化广场,小杰和小浩准备不同的方法测量该广场的半径.(1)小杰先找圆心,再量半径.请你在图1中,用尺规作图的方法帮小杰找到该广场的圆心O(不写作法,保留作图痕迹);(2)小浩在广场边(如图2)选取A、B、C三根石柱,量得A、B之间的距离与A、C之间的距离相等,并测得BC长为240米,A到BC的距离为5米.请你帮他求出广场的半径(结果精确到米).(3)请你解决下面的问题:如图3,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求出OP的长度范围是多少?24.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线.(2)过点E作EH⊥AB于点H,求证:CD=HF.25.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?26.某学校兴趣小组的同学进行社会实践,经过市场调查,整理出某种商品在第x天(1≤x≤80)天的售价与销量的相关信息如下表:时间x(天)1≤x<45 45≤x≤80售价(元/件)x+40 80每天销量(件)200﹣2x已知该商品的进价为每件20元,设该商品的每天销售利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于5400元?2016-2017学年度九年级(上)期中数学试答案一、选择题(本大题共16小题,1-10小题,每小题3分;11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列标志中,可以看作是中心对称图形的是( )A.B.C. D.【考点】中心对称图形.【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此结合各图形的特点求解.【解答】解:根据中心对称的定义可得:A、C、D都不符合中心对称的定义.故选B.【点评】本题考查中心对称的定义,属于基础题,注意掌握基本概念.2.已知函数:①y=3x﹣1;②y=3x2﹣1;③y=﹣20x2;④y=x2﹣6x+5,其中是二次函数的有( )A.1个B.2个C.3个D.4个【考点】二次函数的定义.【分析】分别根据一次函数及二次函数的定义对各小题进行逐一分析即可.【解答】解:①y=3x﹣1是一次函数;②y=3x2﹣1;③y=﹣20x2;④y=x2﹣6x+5是二次函数.故选C.【点评】本题考查的是二次函数的定义,熟知一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数是解答此题的关键.3.下列哪个方程是一元二次方程( )A.x+2y=1 B.2x(x﹣1)﹣2x+3=0 C.+4x=3 D.x2﹣2xy=0【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、是二元一次方程,故A错误;B、是一元二次方程,故B正确;C、是分式方程,故C错误;D、是二元二次方程,故D错误;故选:B.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.4.一元二次方程x2﹣8x﹣1=0配方后可变形为( )A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=15【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.5.一元二次方程x(x﹣2)=2﹣x的根是( )A.﹣1 B.2 C.1和2 D.﹣1和2【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】先移项得到x(x﹣2)+(x﹣2)=0,然后利用提公因式因式分解,最后转化为两个一元一次方程,解方程即可.【解答】解:x(x﹣2)+(x﹣2)=0,∴(x﹣2)(x+1)=0,∴x﹣2=0或x+1=0,∴x1=2,x2=﹣1.故选D.【点评】本题考查了运用因式分解法解一元二次方程的方法:利用因式分解把一个一元二次方程化为两个一元一次方程.6.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是( )A.27 B.36 C.27或36 D.18【考点】等腰三角形的性质;一元二次方程的解.【专题】分类讨论.【分析】由于等腰三角形的一边长3为底或腰不能确定,故应分两种情况进行讨论:①当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一根,再根据三角形的三边关系判断是否符合题意即可;②当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.【解答】解:分两种情况:①当其他两条边中有一个为3时,将x=3代入原方程,得32﹣12×3+k=0,解得k=27.将k=27代入原方程,得x2﹣12x+27=0,解得x=3或9.3,3,9不能够组成三角形,不符合题意舍去;②当3为底时,则其他两条边相等,即△=0,此时144﹣4k=0,解得k=36.将k=36代入原方程,得x2﹣12x+36=0,解得x=6.3,6,6能够组成三角形,符合题意.故k的值为36.故选:B.【点评】本题考查的是等腰三角形的性质,一元二次方程根的判别式及三角形的三边关系,在解答时要注意分类讨论,不要漏解.7.若函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,则m的值为( )A.﹣2 B.1 C.2 D.﹣1【考点】二次函数的定义.【分析】根据题意列出关于m的不等式组,求出m的值即可.【解答】解:∵函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,∴,解得m=﹣2.故选A.【点评】本题考查的是二次函数的定义,熟知一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数是解答此题的关键.8.某工厂一种产品的年产量是20件,如果每一年都比上一年的产品增加x倍,两年后产品y与x的函数关系是( )A.y=20(1﹣x)2B.y=20+2xC.y=20(1+x)2 D.y=20+20x2+20x【考点】根据实际问题列二次函数关系式.【分析】根据已知表示出一年后产品数量,进而得出两年后产品y与x的函数关系.【解答】解:∵某工厂一种产品的年产量是20件,每一年都比上一年的产品增加x倍,∴一年后产品是:20(1+x),∴两年后产品y与x的函数关系是:y=20(1+x)2.故选:C.【点评】此题主要考查了根据实际问题列二次函数关系式,得出变化规律是解题关键.9.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2015的值为( ) A.2014 B.2015 C.2016 D.2017【考点】抛物线与x轴的交点.【分析】根据抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0)得到m2﹣m﹣1=0,整体代入即可求出代数式m2﹣m+2015的值.【解答】解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,∴m2﹣m+2015=2016,故选C.【点评】此题主要考查了抛物线与x轴的交点、函数图象上点的坐标性质以及整体思想的应用,求出m2﹣m=1是解题关键.10.如图所示,在平面直角坐标系中,二次函数y=ax2+bx+c的图象顶点为A(﹣2,﹣2),且过点B(0,2),则y与x的函数关系式为( )A.y=x2+2 B.y=(x﹣2)2+2 C.y=(x﹣2)2﹣2 D.y=(x+2)2﹣2【考点】待定系数法求二次函数解析式.【专题】计算题.【分析】已知二次函数的顶点坐标,设顶点式比较简单.【解答】解:设这个二次函数的关系式为y=a(x+2)2﹣2,将(0,2)代入得2=a(0+2)2﹣2解得:a=1故这个二次函数的关系式是y=(x+2)2﹣2,故选D.【点评】本题考查了用待定系数法求函数解析式的方法,设解析式时注意选择顶点式还是选择一般式.11.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是( )A.点A B.点B C.点C D.点D【考点】旋转的性质.【分析】连接PP1、NN1、MM1,分别作PP1、NN1、MM1的垂直平分线,看看三线都过哪个点,那个点就是旋转中心.【解答】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选B.【点评】本题考查了学生的理解能力和观察图形的能力,注意:旋转时,对应顶点到旋转中心的距离应相等且旋转角也相等,对称中心在连接对应点线段的垂直平分线上.12.如图,在平面直角坐标系中,A点坐标为(3,4),将OA绕原点O逆时针旋转90°得到OA′,则点A′的坐标是( )A.(﹣4,3)B.(﹣3,4)C.(3,﹣4)D.(4,﹣3)【考点】坐标与图形变化-旋转.【分析】根据旋转的性质结合坐标系内点的坐标特征解答.【解答】解:由图知A点的坐标为(3,4),根据旋转中心O,旋转方向逆时针,旋转角度90°,画图,从而得A′点坐标为(﹣4,3).故选A.【点评】本题涉及图形的旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心,旋转方向,旋转角度,通过画图求解.13.设⊙O的半径为3,点O到直线l的距离为d,若直线l与⊙O至少有一个公共点,则d 应满足的条件是( )A.d=3 B.d≤3 C.d<3 D.d>3【考点】直线与圆的位置关系.【分析】当d=r时,直线与圆相切,直线L与圆有一个公共点;当d<r时,直线与圆相交,直线L与圆有两个公共点;当d>r时,直线与圆相离,直线L与圆没有公共点.【解答】解:因为直线L与⊙O至少有一个公共点,所以包括直线与圆有一个公共点和两个公共点两种情况,因此d≤r,即d≤3,故选B.【点评】本题考查的是直线与圆的位置关系,利用直线与圆的交点的个数判定圆心到直线的距离与圆的半径的大小关系.14.如图,已知CD相切圆O于点C,BD=OB,则∠A的度数是( )A.30°B.25°C.40°D.20°【考点】切线的性质.【专题】计算题.【分析】连结OC,如图,先根据切线的性质得∠OCD=90°,再利用直角三角形斜边上的中线性质得BC=BO=BD,则可判断△OBC为等边三角形,所以∠BOC=60°,然后根据等腰三角形的性质和三角形外角性质求∠A的度数.【解答】解:连结OC,如图,∵CD相切圆O于点C,∴OC⊥CD,∴∠OCD=90°,∵OB=BD,∴BC=BO=BD,∴OC=OB=BC,∴△OBC为等边三角形,∴∠BOC=60°,而OA=OC,∴∠A=∠OCA,而∠BOC=∠A+∠OCA,∴∠A=∠BOC=30°.故选A.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.15.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P 沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为( )A.1 B.1或5 C.3 D.5【考点】直线与圆的位置关系;坐标与图形性质.【分析】平移分在y轴的左侧和y轴的右侧两种情况写出答案即可.【解答】解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故选:B.【点评】本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.16.二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是( )A.函数有最小值 B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0【考点】二次函数的性质.【专题】压轴题;数形结合.【分析】根据抛物线的开口方向,利用二次函数的性质判断A;根据图形直接判断B;根据对称轴结合开口方向得出函数的增减性,进而判断C;根据图象,当﹣1<x<2时,抛物线落在x轴的下方,则y<0,从而判断D.【解答】解:A、由抛物线的开口向上,可知a>0,函数有最小值,正确,故A选项不符合题意;B、由图象可知,对称轴为x=,正确,故B选项不符合题意;C、因为a>0,所以,当x<时,y随x的增大而减小,正确,故C选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故D选项符合题意.故选:D.【点评】本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题中横线上)17.抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是y=﹣2x2﹣4x﹣3.【考点】二次函数图象与几何变换.【分析】根据旋转的性质,可得a的绝对值不变,根据中心对称,可得答案.【解答】解:将y=2x2﹣4x+3化为顶点式,得y=2(x﹣1)2+1,抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是y=﹣2(x+1)2﹣1,化为一般式,得y=﹣2x2﹣4x﹣3,故答案为:y=﹣2x2﹣4x﹣3.【点评】本题考查了二次函数图象与几何变换,利用了中心对称的性质.18.如图,在Rt△ABC中,∠BAC=90°,如果将该三角形绕点A按顺时针旋转到△AB1C1的位置,点B1恰好落在边BC的中点处,那么旋转的角度等于60°.【考点】旋转的性质.【分析】根据直角三角形斜边上的中线等于斜边的一半以及旋转的性质可以证明△ABB1是等边三角形,据此即可求解.【解答】解:∵B1是AB的中点,∴BB1=AB1,又∵AB1=AB,∴△ABB1是等边三角形,∴∠BAB1=60°,故答案是:60°.【点评】本题考查了直角三角形的性质,以及旋转的性质,等边三角形的判定与性质,正确证明△ABB1是等边三角形是关键.19.如图是一座抛物线形拱桥,当水面的宽为12m时,拱顶离水面4m,当水面下降2m时,水面的宽为6m.【考点】二次函数的应用.【专题】推理填空题.【分析】根据题意可以建立合适的平面直角坐标系,设出二次函数的顶点式,由图象知抛物线过点(6,0),从而可以求得抛物线的解析式,然后将y=﹣2代入解析式,即可求得问题的答案.【解答】解:根据题意可以建立合适的平面直角坐标系,如下图所示:设二次函数的解析式为:y=ax2+4,∵点(6,0)在抛物线的上,∴0=a×62+4解得a=,∴y=,将y=﹣2代入,得,∴水面的宽为:.故答案为:.【点评】本题考查二次函数的应用,解题的关键是画出相应的平面直角坐标系,设出合适的二次函数.20.某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价5元.【考点】一元二次方程的应用.【专题】销售问题.【分析】设每千克应涨价x元,根据每千克涨价1元,销售量将减少10千克,每天盈利1500元,列出方程,求解即可.【解答】解:设每千克应涨价x元,由题意列方程得:(5+x)=1500,解得:x=5或x=10,为了使顾客得到实惠,那么每千克应涨价5元;故答案为:5.【点评】此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.三、解答题(本答题共6个小题,共66分,解答应写出文字说明、证明过程或演算步骤)21.如图,已知二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?【考点】二次函数的性质;坐标与图形变化-旋转.【分析】(1)由于抛物线过点O(0,0),A(2,0),根据抛物线的对称性得到抛物线的对称轴为直线x=1;(2)作A′B⊥x轴于B,先根据旋转的性质得OA′=OA=2,∠A′OA=60°,再根据含30度的直角三角形三边的关系得OB=OA′=1,A′B=OB=,则A′点的坐标为(1,),根据抛物线的顶点式可判断点A′为抛物线y=﹣(x﹣1)2+的顶点.【解答】解:(1)∵二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).解得:h=1,a=﹣,∴抛物线的对称轴为直线x=1;(2)点A′是该函数图象的顶点.理由如下:如图,作A′B⊥x轴于点B,∵线段OA绕点O逆时针旋转60°到OA′,∴OA′=OA=2,∠A′OA=60°,在Rt△A′OB中,∠OA′B=30°,∴OB=OA′=1,∴A′B=OB=,∴A′点的坐标为(1,),∴点A′为抛物线y=﹣(x﹣1)2+的顶点.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x >﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.也考查了旋转的性质.22.已知P(﹣3,m)和Q(1,m)是抛物线y=2x2+bx+1上的两点.(1)求b的值;(2)判断关于x的一元二次方程2x2+bx+1=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线y=2x2+bx+1的图象向上平移k(k是正整数)个单位,使平移后的图象与x 轴无交点,求k的最小值.【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】(1)根据对称轴的定义观察点P(﹣3,m)和Q(1,m)纵坐标相同,求出对称轴,从而求出b值;(2)把b值代入一元二次方程,根据方程的判别式来判断方程是否有根;(3)先将抛物线向上平移,在令y=0,得到一个新方程,此方程无根,令△<0,解出k的范围,从而求出k的最小值.【解答】解:(1)∵点P、Q在抛物线上且纵坐标相同,∴P、Q关于抛物线对称轴对称并且到对称轴距离相等.∴抛物线对称轴,∴b=4.(2)由(1)可知,关于x的一元二次方程为2x2+4x+1=0.∵△=b2﹣4ac=16﹣8=8>0,∴方程有实根,∴x===﹣1±;(3)由题意将抛物线y=2x2+bx+1的图象向上平移k(k是正整数)个单位,使平移后的图象与x轴无交点,∴设为y=2x2+4x+1+k,∴方程2x2+4x+1+k=0没根,∴△<0,∴16﹣8(1+k)<0,∴k>1,∵k是正整数,∴k的最小值为2.【点评】此题主要考查一元二次方程与函数的关系及函数平移的知识.23.某市新建了圆形文化广场,小杰和小浩准备不同的方法测量该广场的半径.(1)小杰先找圆心,再量半径.请你在图1中,用尺规作图的方法帮小杰找到该广场的圆心O(不写作法,保留作图痕迹);(2)小浩在广场边(如图2)选取A、B、C三根石柱,量得A、B之间的距离与A、C之间的距离相等,并测得BC长为240米,A到BC的距离为5米.请你帮他求出广场的半径(结果精确到米).(3)请你解决下面的问题:如图3,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求出OP的长度范围是多少?【考点】圆的综合题.【分析】(1)作出弦的垂直平分线,再结合垂径定理推论得出圆心位置;(2)设圆心为O,连结OA、OB,OA交BC于D,根据A、B之间的距离与A、C之间的距离相等,得出=,从而得出BD=DC=BC,再根据勾股定理得出OB2=OD2+BD2,设OB=x,即可求出广场的半径;(3)过点O作OE⊥AB于点E,连接OB,由垂径定理可知AE=BE=AB,再根据勾股定理求出OE的长,由此可得出结论.【解答】解:(1)如图1所示,在圆中作任意2条弦的垂直平分线,由垂径定理可知这2条垂直平分线必定与圆的2条直径重合,所以交点O即为所求;(2)如图2,连结OA、OB,OA交BC于D,∵AB=AC,∴=,∴OA⊥BC,∴BD=DC=BC=120(米),由题意DA=5,在Rt△BDO中,OB2=OD2+BD2,设OB=x,则x2=(x﹣5)2+1202,解得:10x=14425,x≈1443,答:广场的半径1443米.(3)如图3,过点O作OE⊥AB于点E,连接OB,∵AB=8cm,∴AE=BE=AB=×8=4cm,∵⊙O的直径为10cm,∴OB=×10=5cm,∴OE===3(cm),∵垂线段最短,半径最长,∴3cm≤OP≤5cm.【点评】此题考查了圆的综合题,用到的知识点是垂径定理、勾股定理、弧、弦、圆周角之间的关系,熟练利用勾股定理得出AO的长是解题的关键.另外,解答(3)时,根据题意作出辅助线,构造出直角三角形是解答此题的关键.24.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线.(2)过点E作EH⊥AB于点H,求证:CD=HF.【考点】切线的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)连接OE,由于BE是角平分线,则有∠CBE=∠OBE;而OB=OE,就有∠OBE=∠OEB,等量代换有∠OEB=∠CBE,那么利用内错角相等,两直线平行,可得OE∥BC;又∠C=90°,所以∠AEO=90°,即AC是⊙O的切线;(2)连结DE,先根据AAS证明△CDE≌△HFE,再由全等三角形的对应边相等即可得出CD=HF.【解答】证明:(1)如图1,连接OE.∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径.∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)如图2,连结DE.∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE.在△CDE与△HFE中,,∴△CDE≌△HFE(AAS),∴CD=HF.【点评】本题主要考查了切线的判定,全等三角形的判定与性质.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.25.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?【考点】二次函数的应用.【分析】(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),于是得到=4.5;,求得抛物线的解析式为:y=﹣t2+5t+,当t=时,y最大(2)把x=28代入x=10t得t=2.8,当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,于是得到他能将球直接射入球门.【解答】解:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),∴,解得:,∴抛物线的解析式为:y=﹣t2+5t+,=4.5;∴当t=时,y最大(2)把x=28代入x=10t得t=2.8,∴当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,∴他能将球直接射入球门.【点评】本题考查了待定系数法求二次函数的解析式,以及二次函数的应用,正确求得解析式是解题的关键.26.某学校兴趣小组的同学进行社会实践,经过市场调查,整理出某种商品在第x天(1≤x≤80)天的售价与销量的相关信息如下表:时间x(天)1≤x<45 45≤x≤80售价(元/件)x+40 80每天销量(件)200﹣2x已知该商品的进价为每件20元,设该商品的每天销售利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于5400元?【考点】二次函数的应用.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于5400,一次函数值大于或等于54000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<45时,y=(x+40﹣20)=﹣2x2+160x+4000,当45≤x≤80时,y=(80﹣20)=﹣120x+12000.综上所述:y=;(2)当1≤x<45时,二次函数开口向下,二次函数对称轴为x=40,=﹣2×402+160×45+4000=7200,当x=40时,y最大当45≤x≤80时,y随x的增大而减小,=6600,当x=45时,y最大因为7200>6600,综上所述,该商品第40天时,当天销售利润最大,最大利润是7200元;。

福建省福州市九年级上学期期中数学试卷(五四制)

福建省福州市九年级上学期期中数学试卷(五四制)

福建省福州市九年级上学期期中数学试卷(五四制)姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)方程 =9的根是()A . x=3B . x=-3C . =3, =-3D . = =32. (2分)(2017·玄武模拟) 下列平面图形,既是中心对称图形,又是轴对称图形的是()A . 等腰三角形B . 正五边形C . 平行四边形D . 矩形3. (2分) (2016九上·余杭期中) 下列说法正确的是()A . 半圆是弧,弧也是半圆B . 三点确定一个圆C . 平分弦的直径垂直于弦D . 直径是同一圆中最长的弦4. (2分)(2017·唐河模拟) 如图,在平面直角坐标系中,抛物线y= x2经过平移得到抛物线y=ax2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为,则a、b的值分别为()A . ,B . ,﹣C . ,﹣D . ﹣,5. (2分)关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A . a≥1B . a>1且a≠5C . a≥1且a≠5D . a≠56. (2分) (2017七下·无锡期中) 以下现象:①传送带上,瓶装饮料的移动;②打气筒打气时,活塞的运动;③钟摆的摆动;④在荡秋千的小朋友.其中属于平移的是()A . ①②B . ①③C . ②③D . ②④7. (2分) (2017九上·江津期中) 某校进行体操队列训练,原有8行10列,后增加40人,使得队伍增加的行数、列数相同,你知道增加了多少行或多少列吗?设增加了行或列,则列方程得()A . (8﹣ ) (10﹣)=8×10﹣40B . (8﹣ )(10﹣)=8×10+40C . (8+ )(10+ )=8×10﹣40D . (8+ )(10+ )=8×10+408. (2分)已知二次函数y=-x2+x- ,当自变量x取m时对应的值大于0,当自变量x分别取m-1、m+1时对应的函数值为y1、y2 ,则y1、y2必须满足()A . y1>0、y2>0B . y1<0、y2<0C . y1<0、y2>0D . y1>0、y2<09. (2分)(2015·宁波) 如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为()A . 5cmB . 10cmC . 20cmD . 5πcm10. (2分)如图所示的二次函数y=ax2+bx+c的图象中,刘星同学观察得出了下面四条信息:(1)b2-4ac>0;(2)c>1;(3)2a-b<0;(4)a+b+c<0.你认为其中错误的有()A . 2个B . 3个C . 4个D . 1个二、填空题 (共8题;共10分)11. (1分)如果﹣﹣6=0,则的值是________.12. (1分)(2017·高港模拟) 如图,矩形ABCD中,AB=4,BC=3,边CD在直线l上,将矩形ABCD沿直线l 作无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为________.13. (1分) (2017九上·龙岗期末) 如图,半径为3的 A经过原点O和点C(0,2),B是y轴左侧 A优弧上一点,则sin∠OBC=________.14. (1分) (2016九上·兴化期中) 已知某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣t2+20t+1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为________.15. (1分) (2017八下·瑶海期中) 若方程x2﹣ x+n=0有两个相等实数根,则的值是________.16. (2分)(2017·承德模拟) 定义:在平面直角坐标系中,点A、B为函数L图象上的任意两点,点A坐标为(x1 , y1),点B坐标为(x2 , y2),把式子称为函数L从x1到x2的平均变化率;对于函数K:y=2x2﹣3x+1图象上有两点A(x1 , y1)和B(x2 , y2),当x1=1,x2﹣x1= 时,函数K从x1到x2的平均变化率是________;当x1=1,x2﹣x1= (n为正整数)时,函数K从x1到x2的平均变化率是________.17. (2分)一条长度为10cm的线段,当它绕线段的________ 旋转一周时,线段“扫描”经过的圆面积最小,此时最小面积为________ cm2.18. (1分)在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是________.三、解答题 (共6题;共70分)19. (10分)计算(1)(﹣a3)2÷a2(2) |﹣3|﹣(﹣1)0÷()﹣2 .20. (10分)(2018·宜宾模拟) 综合题(1)计算:﹣2sin45°+(2﹣π)0﹣()﹣1;(2)先化简,再求值•(a2﹣b2),其中a= ,b=﹣2 .21. (5分)(2017·安徽模拟) 如图,已知△ABC的顶点A,B,C的坐标分别是A(﹣1,﹣1),B(﹣4,﹣3),C(﹣4,﹣1).①作出△ABC关于原点O中心对称的图形;②将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1 ,画出△A1B1C1 ,并写出点A1的坐标.22. (15分) (2018九上·东台期中) 如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB于点H,求证:EF平分∠AEH;(3)求证:CD=HF.23. (15分)(2016·黔西南) 我州某养殖场计划购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元,相关资料表明:甲、乙两种鱼苗的成活率为80%,90%(1)若购买这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购买多少条?(2)若要使这批鱼苗的总成活率不低于85%,则乙种鱼苗至少购买多少条?(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的总费用最低?最低费用是多少?24. (15分) (2019九上·高邮期末) 如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在抛物线上(与A,B两点不重合),若△ABP的三边满足AP2+BP2=AB2 ,则我们称点P为抛物线y=ax2+bx+c(a≠0)的勾股点.(1)直接写出抛物线y=x2﹣1的勾股点坐标为;(2)如图2,已知抛物线:y=ax2+bx(a<0,b>0)与x轴交于A、B两点,点P为抛物线的顶点,问点P能否为抛物线的勾股点,若能,求出b的值;(3)如图3,在平面直角坐标系中,点A(2,0),B(12,0),点P到x轴的距离为1,点P是过A、B两点的抛物线上的勾股点,求过P、A、B三点的抛物线的解析式和点P的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共70分)19-1、19-2、20-1、20-2、21-1、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、第11 页共11 页。

2017年福建省福州七中九年级上学期数学期中试卷与解析

2017年福建省福州七中九年级上学期数学期中试卷与解析

2016-2017学年福建省福州七中九年级(上)期中数学试卷一、选择题:(10小题,每题4分,共40分)1.(4分)下列电视台的台标,是中心对称图形的是()A. B.C.D.2.(4分)下列事件中,是必然事件的为()A.3天内会下雨B.打开电视机,正在播放广告C.367人中至少有2人公历生日相同D.某妇产医院里,下一个出生的婴儿是女孩3.(4分)如果一元二次方程x2=c有实数根,那么常数c不可能是()A.2 B.﹣2 C.0 D.4.(4分)把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+4 B.y=2(x+3)2﹣4 C.y=2(x﹣3)2﹣4 D.y=2(x﹣3)2+45.(4分)如图,已知△AOB是正三角形,OC⊥OB,OC=OB,将△OAB绕点O 按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转的角度是()A.150°B.120°C.90°D.60°6.(4分)在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个B.20个C.30个D.35个7.(4分)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD 的长为()A.2 B.4 C.4 D.88.(4分)已知二次函数y=2(x+1)(x﹣a),其中a>0,且对称轴为直线x=2,则a的值是()A.3 B.5 C.7 D.不确定9.(4分)设a,b是方程x2+x﹣2017=0的两个实数根,则a2+2a+b的值为()A.2014 B.2015 C.2016 D.201710.(4分)如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列结论(1)4a﹣2b+c<0;(2)2a﹣b<0;(3)a﹣3b>0;(4)b2+8a<4ac;其中正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共24分)11.(4分)已知点A(﹣1,﹣2)与点B(m,2)关于原点对称,则m的值是.12.(4分)如图,点A、B、C、D分别是⊙O上四点,∠ABD=20°,BD是直径,则∠ACB=.13.(4分)卫生部门为控制流感的传染,对某种流感研究发现:若一人患了流感,经过两轮传染后共有100人患了流感,若按此传染速度,第三轮传染后,患流感人数共有人.14.(4分)抛物线y=2x2﹣4x+2绕坐标原点旋转180°所得的抛物线的解析式是.15.(4分)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是.16.(4分)定义符号min{a,b}的含义为:当a≥b时,min{a,b}=b;当a<b 时,min{a,b}=a.如:min{1,﹣2}=﹣2,min{﹣1,2}=﹣1.(1)min{x2﹣1,﹣2}=;(2)若min{x2﹣2x+k,﹣3}=﹣3,则实数k的取值范围是.三、解答题(共9题,满分86分;作图或添辅助线需用黑色签字笔描黑)17.(8分)解下列方程:(1)x2﹣6x﹣4=0(2)(x+1)2﹣3(x+1)=0.18.(8分)已知:关于x的一元二次方程:x2+kx+3=0(1)当k=3时,判断方程根的情况;(2)若方程的一个根是﹣1,求另一个根及k的值.19.(8分)在一个暗箱中装有红、黄、白三种颜色的乒乓球(除颜色外其余均相同).其中白球、黄球各1个,若从中任意摸出一个球是白球的概率是.(1)求暗箱中红球的个数.(2)先从暗箱中任意摸出一个球记下颜色后放回,再从暗箱中任意摸出一个球,求两次摸到的球颜色不同的概率(用树形图或列表法求解).20.(8分)已知:二次函数y=ax2+bx+c,y与x的一些对应值如表:(1)根据表格中的数据,确定二次函数解析式为;(2)填齐表格中空白处的对应值并利用表,用五点作图法,画出二次函数y=ax2+bx+c的图象.(不必重新列表)(3)当1<x≤4时,y的取值范围是.21.(8分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A 按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.22.(10分)如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S 米2.(1)求S与x的函数关系式;(2)如果要围成面积为45米2的花圃,AB的长是多少米?(3)能围成面积比45米2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.23.(10分)如图,AB是⊙O的直径,过点B作BM⊥AB,弦CD∥BM,交AB 于点F,且DA=DC,连接AC,AD,延长AD交BM于点E.(1)求证:△ACD是等边三角形;(2)若AC=,求DE的长.24.(12分)(1)如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,求证:△ACD≌△BCE;(2)如图2,将图1中△DCE绕点C逆时针旋转n°(0<n<45°),使∠BED=90°,又作△DCE中DE边上的高CM,请完成图2,并判断线段CM、AE、BE之间的数量关系,并说明理由;(3)如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.25.(14分)如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴相交于点C(0,4),与x轴相交于A、B两点,点A的坐标为(4,0).(1)求此抛物线的解析式;(2)抛物线在x轴上方的部分有一动点Q,当△QAB的面积等于12时,求点Q 的坐标;(3)若平行于x轴的动直线l 与该抛物线交于点P,与直线AC交于点F,点D 的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.2016-2017学年福建省福州七中九年级(上)期中数学试卷参考答案与试题解析一、选择题:(10小题,每题4分,共40分)1.(4分)下列电视台的台标,是中心对称图形的是()A. B.C.D.【解答】解:A、不是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项错误;D、是中心对称图形,故D选项正确.故选:D.2.(4分)下列事件中,是必然事件的为()A.3天内会下雨B.打开电视机,正在播放广告C.367人中至少有2人公历生日相同D.某妇产医院里,下一个出生的婴儿是女孩【解答】解:A、3天内会下雨为随机事件,所以A选项错误;B、打开电视机,正在播放广告,所以B选项错误;C、367人中至少有2人公历生日相同是必然事件,所以C选项正确;D、某妇产医院里,下一个出生的婴儿是女孩是随机事件,所以D选项错误.故选:C.3.(4分)如果一元二次方程x2=c有实数根,那么常数c不可能是()A.2 B.﹣2 C.0 D.【解答】解:∵一元二次方程x2=c有实数根,∴c≥0,故选:B.4.(4分)把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+4 B.y=2(x+3)2﹣4 C.y=2(x﹣3)2﹣4 D.y=2(x﹣3)2+4【解答】解:把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数解析式为y=2(x+3)2+4.故选:A.5.(4分)如图,已知△AOB是正三角形,OC⊥OB,OC=OB,将△OAB绕点O 按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转的角度是()A.150°B.120°C.90°D.60°【解答】解:旋转角∠AOC=∠AOB+∠BOC=60°+90°=150°.故选:A.6.(4分)在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个B.20个C.30个D.35个【解答】解:设袋中有黄球x个,由题意得=0.3,解得x=15,则白球可能有50﹣15=35个.故选:D.7.(4分)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD 的长为()A.2 B.4 C.4 D.8【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选:C.8.(4分)已知二次函数y=2(x+1)(x﹣a),其中a>0,且对称轴为直线x=2,则a的值是()A.3 B.5 C.7 D.不确定【解答】解:∵二次函数y=2(x+1)(x﹣a)与x轴的交点坐标为(﹣1,0),(a,0),∴对称轴x==2,解得:x=5.故选:B.9.(4分)设a,b是方程x2+x﹣2017=0的两个实数根,则a2+2a+b的值为()A.2014 B.2015 C.2016 D.2017【解答】解:∵a是方程x2+x﹣2017=0的根,∴a2+a﹣2017=0,∴a2=﹣a+2017,∴a2+2a+b=﹣a+2017+2a+b=2017+a+b,∵a,b是方程x2+x﹣2017=0的两个实数根,∴a+b=﹣1,∴a2+2a+b=2017﹣1=2016.故选:C.10.(4分)如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列结论(1)4a﹣2b+c<0;(2)2a﹣b<0;(3)a﹣3b>0;(4)b2+8a<4ac;其中正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:(1)根据图象知,当x=﹣2时,y<0,即4a﹣2b+c<0;故本选项正确;(2)∵该函数图象的开口向下,∴a<0;又对称轴﹣1<x=﹣<0,∴2a﹣b<0,故本选项正确;(3)∵a<0,﹣<0,∴b<0,∵二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),∴a﹣b+c=2,∵0<c<2,∴a﹣b=2﹣c>0,则a﹣3b>0.故本选项正确;(4)∵y=>2,a<0,∴4ac﹣b2<8a,即b2+8a>4ac,故本选项错误.综上所述,正确的结论有3个;故选:C.二、填空题(每题4分,共24分)11.(4分)已知点A(﹣1,﹣2)与点B(m,2)关于原点对称,则m的值是1.【解答】解:∵点A(﹣1,﹣2)与点B(m,2)关于原点对称,∴m=1.故答案为:1.12.(4分)如图,点A、B、C、D分别是⊙O上四点,∠ABD=20°,BD是直径,则∠ACB=70°.【解答】解:连接AD,∵BD是直径,∴∠BAD=90°,∵∠ABD=20°,∴∠D=90°﹣∠ABD=70°,∴∠ACB=∠D=70°.故答案为:70°.13.(4分)卫生部门为控制流感的传染,对某种流感研究发现:若一人患了流感,经过两轮传染后共有100人患了流感,若按此传染速度,第三轮传染后,患流感人数共有1000人.【解答】解:设每轮传染中平均一个人传染的人数为x人,第一轮过后有(1+x)个人感染,第二轮过后有(1+x)+x(1+x)个人感染,那么由题意可知1+x+x(1+x)=100,整理得,x2+2x﹣99=0,解得x=9或﹣11,x=﹣11不符合题意,舍去.那么每轮传染中平均一个人传染的人数为9人.第三轮传染后,患流感人数共有:100+9×100=1000.故答案为1000.14.(4分)抛物线y=2x2﹣4x+2绕坐标原点旋转180°所得的抛物线的解析式是y=﹣2x2﹣4x﹣2.【解答】解:∵y=2x2﹣4x+2=2(x﹣1)2,∴抛物线y=2x2﹣4x+2绕坐标原点旋转180°所得的抛物线的解析式是y=﹣2(x+1)2=﹣2x2﹣4x﹣2.故答案为:y=﹣2x2﹣4x﹣2.15.(4分)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是(﹣2,0)或(2,10).【解答】解:因为点D(5,3)在边AB上,所以AB=BC=5,BD=5﹣3=2;(1)若把△CDB顺时针旋转90°,则点D′在x轴上,OD′=2,所以D′(﹣2,0);(2)若把△CDB逆时针旋转90°,则点D′到x轴的距离为10,到y轴的距离为2,所以D′(2,10),综上,旋转后点D的对应点D′的坐标为(﹣2,0)或(2,10).故答案为:(﹣2,0)或(2,10).16.(4分)定义符号min{a,b}的含义为:当a≥b时,min{a,b}=b;当a<b 时,min{a,b}=a.如:min{1,﹣2}=﹣2,min{﹣1,2}=﹣1.(1)min{x2﹣1,﹣2}=﹣2;(2)若min{x2﹣2x+k,﹣3}=﹣3,则实数k的取值范围是k≥﹣2.【解答】解:(1)∵x2≥0,∴x2﹣1≥﹣1,∴x2﹣1>﹣2.∴min{x2﹣1,﹣2}=﹣2,(2)∵x2﹣2x+k=(x﹣1)2+k﹣1,∴(x﹣1)2+k﹣1≥k﹣1.∵min{x2﹣2x+k,﹣3}=﹣3,∴k﹣1≥﹣3.∴k≥﹣2.故答案为﹣2,k≥﹣2.三、解答题(共9题,满分86分;作图或添辅助线需用黑色签字笔描黑)17.(8分)解下列方程:(1)x2﹣6x﹣4=0(2)(x+1)2﹣3(x+1)=0.【解答】解:(1)∵a=1,b=﹣6,c=﹣4,∴△=36﹣4×1×(﹣4)=20,则x==3;(2)∵(x+1)(x﹣2)=0,∴x+1=0或x﹣2=0,解得:x=﹣1或x=2.18.(8分)已知:关于x的一元二次方程:x2+kx+3=0(1)当k=3时,判断方程根的情况;(2)若方程的一个根是﹣1,求另一个根及k的值.【解答】解:(1)∵当k=3时,△=32﹣4×1×3=﹣3<0,∴方程无解;(2)∵x1x2=3,方程的一个根是﹣1,∴﹣x2=﹣3,把x1=﹣1代入x2+kx+3=0得:k=4,则另一个根是﹣3,k的值是4.19.(8分)在一个暗箱中装有红、黄、白三种颜色的乒乓球(除颜色外其余均相同).其中白球、黄球各1个,若从中任意摸出一个球是白球的概率是.(1)求暗箱中红球的个数.(2)先从暗箱中任意摸出一个球记下颜色后放回,再从暗箱中任意摸出一个球,求两次摸到的球颜色不同的概率(用树形图或列表法求解).【解答】解:(1)设红球有x个,根据题意得,=,解得x=1,经检验x=1是原方程的解,所以红球有1个;(2)根据题意画出树状图如下:一共有9种情况,两次摸到的球颜色不同的有6种情况,所以,P(两次摸到的球颜色不同)==.20.(8分)已知:二次函数y=ax2+bx+c,y与x的一些对应值如表:(1)根据表格中的数据,确定二次函数解析式为y=x2﹣4x+3;(2)填齐表格中空白处的对应值并利用表,用五点作图法,画出二次函数y=ax2+bx+c的图象.(不必重新列表)(3)当1<x≤4时,y的取值范围是﹣1≤y≤3.【解答】解:(1)将点(0,3)、(2,﹣1)、(4,3)代入y=ax2+bx+c中,,解得:,∴二次函数的解析式为y=x2﹣4x+3.当x=﹣1时,y=8;当x=1时,y=0;当x=3时,y=0.(2)如图,y=x2﹣4x+3=(x﹣2)2﹣1,抛物线的顶点坐标为(2,﹣1),当1<x≤4时,y的取值范围是﹣1≤y≤3.故答案为:8,0,0;y=x2﹣4x+3;﹣1≤y≤3.21.(8分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A 按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.【解答】(1)证明:∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,∵AB=AC,∴AE=AF,∴△AEB可由△AFC绕点A按顺时针方向旋转得到,∴BE=CF;(2)解:∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴BE=AC=,∴BD=BE﹣DE=﹣1.22.(10分)如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S 米2.(1)求S与x的函数关系式;(2)如果要围成面积为45米2的花圃,AB的长是多少米?(3)能围成面积比45米2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.【解答】解:(1)由题可知,花圃的宽AB为x米,则BC为(24﹣3x)米这时面积S=x(24﹣3x)=﹣3x2+24x.(2)由条件﹣3x2+24x=45化为x2﹣8x+15=0解得x1=5,x2=3∵0<24﹣3x≤10得≤x<8∴x=3不合题意,舍去即花圃的宽为5米.(3)S=﹣3x2+24x=﹣3(x2﹣8x)=﹣3(x﹣4)2+48(≤x<8)∴当时,S有最大值48﹣3(﹣4)2=46故能围成面积比45米2更大的花圃.围法:24﹣3×=10,花圃的长为10米,宽为米,这时有最大面积平方米.23.(10分)如图,AB是⊙O的直径,过点B作BM⊥AB,弦CD∥BM,交AB 于点F,且DA=DC,连接AC,AD,延长AD交BM于点E.(1)求证:△ACD是等边三角形;(2)若AC=,求DE的长.【解答】(1)证明:∵BM⊥AB,CD∥BM,∴AB⊥CD,∵AB是⊙O的直径,∴=,∴AD=AC,∵DA=DC,∴AD=AC=CD,∴△ACD是等边三角形;(2)解:过O作ON⊥AC于N,则AN=AC=,由(1)知,△ACD是等边三角形,∴∠DAC=60°.∵AD=AC,CD⊥AB,∴∠CAB=30°,∴AO==1,∴⊙O的半径为1.24.(12分)(1)如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,求证:△ACD≌△BCE;(2)如图2,将图1中△DCE绕点C逆时针旋转n°(0<n<45°),使∠BED=90°,又作△DCE中DE边上的高CM,请完成图2,并判断线段CM、AE、BE之间的数量关系,并说明理由;(3)如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.【解答】解:(1)∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS);(2)如图2,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠BEC=∠ADC=135°,∴A、D、E三点共线,∵DE=DM+ME=2CM,∴AE=BE+2CM;(3)①如图,∵∠DPE=∠BAE=90°,∴△DPE∽△BAE,∴=,BE=DE,AE=﹣DE,在Rt△BAE中,AB2+AE2=BE2,解得DE=,∵BP==3,在Rt△BDPE中,PD2+PE2=DE2,解得PE=,∴A到BE距离为=1.②如图,∵∠DPE=∠BCE=90°,∴△DPE∽△BCE,∴=,∵BP==3,∴PE=,∴C到BE距离为=1.∴A到BE距离为2.25.(14分)如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴相交于点C(0,4),与x轴相交于A、B两点,点A的坐标为(4,0).(1)求此抛物线的解析式;(2)抛物线在x轴上方的部分有一动点Q,当△QAB的面积等于12时,求点Q 的坐标;(3)若平行于x轴的动直线l 与该抛物线交于点P,与直线AC交于点F,点D 的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线经过点C(0,4),A(4,0),∴,解得,∴抛物线解析式为y=﹣x2+x+4;(2)在y=﹣x2+x+4中,令y=0可得0=﹣x2+x+4,解得x=4或x=﹣2,∴B(﹣2,0),∴AB=4﹣(﹣2)=6,设Q(x,y)(y>0),∴S=AB•y,△ABQ∴12=×6y,解得y=4,由﹣x2+x+4=4,解得x=0或x=2,∴Q点坐标为(0,4)或(2,4);(3)存在.在△ODF中,①若DO=DF,∵A(4,0),D(2,0),∴AD=OD=DF=2.又在Rt△AOC中,OA=OC=4,∴∠OAC=45°.∴∠DFA=∠OAC=45°.∴∠ADF=90°.此时,点F的坐标为(2,2).由﹣x2+x+4=2,得x1=1+,x2=1﹣.此时,点P的坐标为:P1(1+,2)或P2(1﹣,2);②若FO=FD,如图,过点F作FM⊥x轴于点M.由等腰三角形的性质得:OM=OD=1,∴AM=3.∴在等腰直角△AMF中,MF=AM=3.∴F(1,3).由﹣x2+x+4=3,得x1=1+,x2=1﹣.此时,点P的坐标为:P3(1+,3)或P4(1﹣,3);③若OD=OF,∵OA=OC=4,且∠AOC=90°.∴AC=4.∴点O到AC的距离为2.而OF=OD=2<2,与OF≥2矛盾.∴在AC上不存在点使得OF=OD=2.此时,不存在这样的直线l,使得△ODF是等腰三角形.综上所述,存在这样的直线l,使得△ODF是等腰三角形.所求点P的坐标为P1(1+,2)或P2(1﹣,2)或P3(1+,3)或P4(1﹣,3).赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。

【人教版】2016届九年级上期中数学试卷及答案解析

【人教版】2016届九年级上期中数学试卷及答案解析

九年级上学期期中数学试卷一、选择题(本大题共8个小题,每小题3分,共24分。

在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项选出来并填在该题相应的括号内)1.如果两个相似三角形的相似比是1:2,那么它们的面积比是()A.1:2 B.1:4 C.1: D.2:12.在△ABC中,∠C=90°,sinA=,则sinB的值是()A.B.C.D.3.如图,AB是⊙O的直径,∠ACD=15°,则∠BAD的度数为()A.15°B.30°C.60°D.75°4.如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD •AB.其中单独能够判定△ABC∽△ACD的个数为()A.1 B.2 C.3 D.45.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.如图,每个小正方形边长均为1,则下列图中的三角形与左图中△ABC相似的是()A.B.C.D.7.如图,BC是⊙O的直径,P是CB延长线上一点,PA切⊙O于点A,如果PA=4,PB=2,那么线段BC的长等于()A.3 B.4 C.5 D.68.如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④ C.②③④D.①③④二、填空题(本大题共6个小题,每小题3分,共18分,只要求填写最后结果,每小题填对得3分)9.等腰三角形底边长10cm,周长为36cm,则一底角的正切值为.10.弧长为6π的弧所对的圆心角为60°,则该弧所在圆的半径是.11.将一副三角尺如图所示叠放在一起,则的值是.12.如图,平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果,则= .13.如图,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的一点,已知∠BAC=80°,那么∠BDC= 度.14.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为.三、解答题(本大题共7个小题,共78分)解答应写出必要的证明过程或演算步骤15.计算:tan30°•sin60°+cos230°﹣sin245°•tan45°.16.如图,△ABC中,DE∥BC,DE=1,AD=2,DB=3,求BC的长.17.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD ⊥AB交AB于D.已知cos∠ACD=,BC=4,求AC的长.18.如图,△ABC的三顶点分别为A(4,4),B(﹣2,2),C(3,0).请画出一个以原点O为位似中心,且与△ABC相似比为的位似图形△A1B1C1,并写出△A1B1C1各顶点的坐标.(只需画出一种情况,A1B1:AB=)19.如图1表示一个时钟的钟面垂直固定与水平桌面上,其中分针上有一点A,且当钟面显示3点30分时,分针垂直与桌面,A点距桌面的高度为10公分.如图2,若此钟面显示3点45分时,A点距离桌面的高度为16公分,则钟面显示3点50分时,A点距桌面的高度为多少公分?20.如图,小明为测量某铁塔AB的高度,他在离塔底B的10米C处测得塔顶的仰角α=43°,已知小明的测角仪高CD=1.5米,求铁塔AB的高.(精确到0.1米)(参考数据:sin43°=0.6820,cos43°=0.7314,tan43°=0.9325)21.如图,以线段AB为直径的⊙O交线段AC于点E,点M是的中点,OM交AC于点D,∠BOE=60°,cosC=,BC=2.(1)求∠A的度数;(2)求证:BC是⊙O的切线;(3)求MD的长度.22.钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号)23.在矩形ABCD中,DC=2,CF⊥BD分别交BD、AD于点E、F,连接BF.(1)求证:△DEC∽△FDC;(2)当F为AD的中点时,求sin∠FBD的值及BC的长度.24.如图,在Rt△ABC中,斜边BC=12,∠C=30°,D为BC的中点,△ABD的外接圆⊙O与AC交于F点,过A作⊙O的切线AE交DF的延长线于E点.(1)求证:AE⊥DE;(2)计算:AC•AF的值.九年级上学期期中数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共24分。

福建省各地市九年级上学期数学期中考试试卷(12套)附答案解析

福建省各地市九年级上学期数学期中考试试卷(12套)附答案解析

九年级上学期数学期中考试试卷一、单项选择题1.以下列图形是中心对称图形的是〔〕A. B. C. D.2.二次函数图象的对称轴是〔〕A. B. C. D.3.如图,AB为⊙O直径,∠BCD=30°,那么∠ABD为〔〕A. 30°B. 40°C. 50°D. 60°4.抛物线y=x2-4x+5的顶点坐标是〔〕A. 〔-2,1〕B. 〔2,1〕C. 〔-2,-1〕D. 〔2,-1〕5.如图,是⊙O的直径,切⊙O于点,交⊙O于点,假设,那么的度数为〔〕A. 40°B. 50°C. 60°D. 70°6.抛物线y=ax2+bx+c(a<0)过A(-3,0),B(1,0),C(-5,y1),D(5,y2)四点,那么y1与y2的大小关系是〔〕A. y1>y2B. y1=y2C. y1<y2D. 不能确定7.?九章算术?是我国古代内容极为丰富的数学名著.书中有以下问题“今有勾八步,股十五步,问勾中容圆径几何?〞其意思是“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?〞( )A. 3步B. 5步C. 6步D. 8步8.二次函数的图象如下列图,以下结论中正确的选项是A. B. C. 当时,y随x的增大而减小 D.9.在中,,,.如下列图,将绕点按逆时针方向旋转后得到.那么图中阴影局部面积为〔〕A. B. C. D.10.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,点P是AB上一动点,以点C为旋转中心,将△ACP顺时针旋转到△BCQ的位置,那么PQ最小值为〔〕A. B. 2 C. D.二、填空题11.将抛物线向上平移3个单位长度,再向左平移2个单位长度后,得到的抛物线解析式是 .12.以原点为中心,把逆时针旋转90°得到点,那么点的坐标为 .13.如图,四个三角形拼成一个风车图形,假设,当风车转动90°时,点运动路径的长度为 .14.用半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,那么这个圆锥的底面圆半径为________.15.如图,正六边形ABCDEF 内接于⊙O.假设直线PA 与⊙O 相切于点A,那么∠PAB= .16.二次函数的图象如下列图,对称轴为直线,假设关于的一元二次方程〔为实数〕在的范围内有解,那么的取值范围是 .三、解答题17.如图,在平面直角坐标系中,三个顶点的坐标分别是、、.〔1〕以点为旋转中心,将顺时针转动90°,得到,在坐标系中画出;〔2〕作出关于点的中心对称图形.18.二次函数的顶点坐标为,并经过点,求二次函数的解析式,并在所给的坐标平面内画出这条抛物线.〔不要求列表〕19.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,求线段AE的长.20.:如图,将△ADE绕点A顺时针旋转得到△ABC,点E对应点C恰在D的延长线上,假设BC∥AE.求证:△ABD为等边三角形.21.抛物线与轴有两个不同的交点.〔1〕求的取值范围;〔2〕证明该抛物线一定经过某一定点,并求出该定点的坐标.22.如图,是⊙O的直径,点在⊙O上,平分交⊙O于点,过点作,垂足为.〔1〕求证:与⊙O相切;〔2〕假设,,求的长.23.某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件的售价每涨1元〔售价每件不能高于45元〕,那么每星期少卖10件.设每件涨价x元〔x为非负整数〕,每星期的销量为y件.〔1〕求y与x的函数关系式及自变量x的取值范围;〔2〕如何定价才能使每星期的利润最大且每星期的销量较大?每星期的最大利润是多少?24.如图,四边形内接于⊙O,是⊙O的直径,是上一点,,连接.〔1〕求证:;〔2〕连接,假设,,求的长.25.如图,二次函数图象的顶点为,与轴交于点,点〔与顶点不重合〕在该函数的图象上.〔1〕当时,求的值;〔2〕当时,假设点在第三象限内,结合图象,求当时,自变量的取值范围;〔3〕作直线与轴相交于点.当点在轴下方,且在线段上时,求的取值范围.答案解析局部一、单项选择题1.【答案】 C【解析】【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故答案为:C.【分析】根据轴对称和中心对称图形特点分别分析判断,轴对称图形沿一条轴折叠180°,被折叠两局部能完全重合,中心对称图形绕其中心点旋转180°后图形仍和原来图形重合.2.【答案】 D【解析】【解答】解:∵= ,∴二次函数图象的对称轴是x= = ;故答案为:D.【分析】先把函数式化为二次函数的一般形式,然后根据对称轴公式“〞解答即可.3.【答案】 D【解析】【解答】解:∵AB为⊙O直径,∴∠ACB=90°,又∵∠BCD=30°,∴∠ABD=∠ACD=90°-∠BCD=90°-30°=60°.故答案为:D.【分析】由直径所对的圆周角等于90°求出∠ACB,根据同弧所对的圆周角相等结合∠BCD的度数,由4.【答案】B∠ABD=∠ACD=90°-∠BCD即可算出答案.【解析】【解答】解:∵y=x2-4x+5=〔x-2〕2+1,∴顶点坐标为〔2,1〕,故答案为:B.【分析】根据y=a(x+)2+将抛物线的解析式配成顶点式即可求解.5.【答案】 C【解析】【解答】解:∵AC是圆O的切线,AB是圆O的直径,∴AB⊥AC.∴∠CAB=90°.又∵∠C=60°,∴∠CBA=30°.∴∠DOA=60°.故答案为:C.【分析】由切线的性质得出∠CAB=90°,根据直角三角形的性质求出∠CBA,然后根据同弧圆周角和圆心角的关系,即可解答.6.【答案】A【解析】【解答】解:∵抛物线过A〔﹣3,0〕、B〔1,0〕两点,∴抛物线的对称轴为x= =﹣1.∵a<0,抛物线开口向下,离对称轴越远,函数值越小,比较可知C点离对称轴远,对应的纵坐标值小,即y1>y2.故答案为:A.【分析】A、B两点皆为x轴上的两点,根据二次函数图像的轴对称性可得抛物线对称轴为x=-1,再根据抛物线开口向下的图像性质,可得y1与y2的大小关系。

福州XX中学2017届九年级上期中数学试卷含答案解析

福州XX中学2017届九年级上期中数学试卷含答案解析
福州 XX 中学 2016 届年级(上)期中数学试卷(解析版)
一.选择题 1.若关于 x 的方程(m﹣1 )x2﹣3x+2=0 是一元二次方程,则( ) A.m>1 B.m≠0 C.m≥0 D.m≠1 2.已知一元二次方程(x﹣1 )(x﹣2)=0,则下列判断正确的是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.有两个负数根 3.下列图形中,中心对称图形有( )
A.1 B.2 C.4 D.5 8.如图,△OAB 绕点 O 逆时针旋转 ቤተ መጻሕፍቲ ባይዱ0°得到△OCD,若∠A=110°,∠D=40°,则 ∠α 的度数是( )
22.(14 分)已知平面直角坐标系中,抛物线 y=ax2+bx+c(a≠0)过坐标系的 原点 O,与 x 轴的另一个交点为 B,顶点坐标为 A( ,1). (1)求:a、b、c 的值; (2)将△OAB 绕原点 O 顺时针旋转 120°,旋转后的三角形设为△OA′B′(点 A′ 对应点 A,点 B′对应点 B),试判断点 B′是否在抛物线 y=a2+x bx+c(a≠0)上; (3)设点 P 是抛物线 y=a2x+bx+c(a≠0)上的一点,且 PA=PA′,写出点 P 的坐 标.
A.1 个 B.2 个 C.3 个 D.4 个 4.二次函数 y=x2﹣2x+1 的图象与 y 轴的交点坐标是( ) A.(0,1) B.(2,0) C.(1,1) D.(2,2) 5.将抛物线 y=22x 向上平移 3 个单位得到的抛物线的解析式是( ) A.y=22x +3 B.y=2﹣2x3 C.y=2(x+32 D.y=2(x﹣32) 6.若 a﹣b +c=0,则)关于 x 的一元二次方程2+abxx+c=0 必有一根为( ) A.0 B.1 C.﹣1 D.2 7.如图,△ABC 以点 O 为旋转中心,旋转 180°后得到△A′B′C′.ED 是△ABC 的 中位线,经旋转后为线段 E′D′.已知 E′D′=2,则 BC 的值是( )

2016-2017学年福建省福州一中九年级(上)数学期中试卷带解析答案

2016-2017学年福建省福州一中九年级(上)数学期中试卷带解析答案

2016-2017学年福建省福州一中九年级(上)期中数学试卷一.选择题(共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题要求的)1.(4分)下列图案中,既是中心对称又是轴对称图形的个数有()A.B.C.D.2.(4分)下列事件中,必然事件的是()A.a是实数,﹣a2≤0B.天上打雷后就下雨C.掷一枚质地均匀的硬币一次,反面朝上D.某运动员跳高的最好成绩是200.1米3.(4分)在平面直角坐标系中,点(m,n)关于原点对称的点的坐标是()A.(m,n)B.(﹣m,﹣n)C.(n,﹣m)D.(n,m)4.(4分)已知⊙O的半径为5,圆心O到直线l的距离为3,则反映直线l与⊙O的位置关系的图形是()A.B. C.D.5.(4分)如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC的大小是()A.80°B.100°C.60°D.40°6.(4分)二次函数y=﹣x2+2kx+1(k<0)的图象可能是()A.B. C.D.7.(4分)下列命题错误的个数有()①过三点一定可以作一个圆.②三角形的外心到三角形的三个顶点的距离相等.③同圆或等圆中,相等的圆心角所对的弧相等.④平分弦的直径垂直于弦.A.1个 B.2个 C.3个 D.4个8.(4分)学校开运动会期间,九年级某两个班级安排乘坐三辆车,其中小明与小刚都可以从这三辆车中任选一辆搭乘,则小明与小刚同车的概率为()A.B.C.D.9.(4分)已知关于x的方程kx2+(1﹣k)x﹣1=0,下列说法正确的是()A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=﹣1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解10.(4分)如图,在△ABC中,∠A=90°,AB=AC=3,现将△ABC绕点B逆时针旋转一定角度,点C′恰落在边BC上的高所在的直线上,则边BC在旋转过程中所扫过的面积为()A.πB.2πC.3πD.4π二.填空题(共6小题,每小题4分,共24分)11.(4分)若二次函数y=2x2﹣5的图象上有两个点A(2,a)、B(3,b),则a b(填“<”或“=”或“>”).12.(4分)圆锥的底面的圆的半径为5,侧面面积为60π,则圆锥的母线长为.13.(4分)在创建国家生态园林城市活动中,某市园林部门为了扩大城市的绿化面积.进行了大量的树木移栽.下表记录的是在相同的条件下移栽某种幼树的棵数与成活棵树:依此估计这种幼树成活的概率是.(结果用小数表示,精确到0.1)14.(4分)边心距为的正六边形的面积为.15.(4分)小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为.16.(4分)如图,AB为⊙O的直径,C为⊙O上一点,CD⊥AB于点D.过C点的切线交AB的延长线于点P,若BP=1,CP=.若M为AC上一动点,则OM+DM 的最小值为.三.解答题(共9小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤)17.(8分)(1)x2+2=x(2)(x﹣3)2+4x(x﹣3)=0.18.(8分)画图:在平面直角坐标系中,△OAB的位置如图所示,且点A(﹣3,4),B(0,3).(1)画出△OAB绕点O顺时针旋转90°后得到的△OA′B′;(2)写出点A,B的对称点A′,B′的坐标;(3)求点A在旋转过程中所走过的路径长.19.(8分)已知关于x的一元二次方程x2﹣4x+m﹣1=0有两个相等的实数根,求m的值及方程的根.20.(8分)在一个不透明的盒子里,装有三个分别写有数字﹣1,0,1的乒乓球(形状,大小一样),先从盒子里随即取出一个乒乓球,记下数字后放回盒子,摇匀后再随即取出一个乒乓球,记下数字.(1)请用树状图或列表的方法求两次取出乒乓球上数字相同的概率;(2)求两次取出乒乓球上数字之积等于0的概率.21.(8分)如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.(1)求证:AE=BD;(2)求∠BAE的度数.22.(10分)学校要围一个矩形花圃,其一边利用足够长的墙,另三边用篱笆围成,由于园艺需要,还要用一段篱笆将花圃分隔为两个小矩形部分(如图所示),总共36米的篱笆恰好用完(不考虑损耗).设矩形垂直于墙面的一边AB的长为x米(要求AB<AD),矩形花圃ABCD的面积为S平方米.(1)求S与x之间的函数关系式,并直接写出自变量x的取值范围;(2)要想使矩形花圃ABCD的面积为60平方米,AB边的长应为多少米?23.(10分)如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.(3)AE=4,BD=10,求CD的长度.24.(12分)如图,形如量角器的半圆O的直径DE=12cm,形如三角板的△ABC 中,∠ACB=90°,∠ABC=30°,BC=12cm半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上.设运动时间为t(s),当t=0s时,半圆O在△ABC的左侧,OC=8cm.(1)当t=(s)时,⊙O与AC所在直线第一次相切;点C到直线AB的距离为;(2)当t为何值时,直线AB与半圆O所在的圆相切;(3)当△ABC的一边所在直线与圆O相切时,若⊙O与△ABC有重叠部分,求重叠部分的面积.25.(14分)已知:抛物线C 1的顶点坐标为(2,1),且经过(1,0).把C1先向左平移2个单位,再向上平移8个单位得到抛物线C2.(1)求抛物线C2的函数解析式;(2)设抛物线C2交x轴于M,N两点(点M在点N的左侧),第一象限有一点A,以AM为直径的圆经过点N,且∠MAN=45°,点P(a,b)为抛物线C2在第二象限上的一个动点,求△AMP面积的最大值;(3)若点P(a,b)为抛物线C2在x轴上方部分图象上的一个动点,当∠MPN ≥45°时,求出a的取值范围.2016-2017学年福建省福州一中九年级(上)期中数学试卷参考答案与试题解析一.选择题(共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题要求的)1.(4分)下列图案中,既是中心对称又是轴对称图形的个数有()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,也是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故选:C.2.(4分)下列事件中,必然事件的是()A.a是实数,﹣a2≤0B.天上打雷后就下雨C.掷一枚质地均匀的硬币一次,反面朝上D.某运动员跳高的最好成绩是200.1米【解答】解:A、是必然事件,故A正确;B、是随机事件,故B错误;C、是随机事件,故C错误;D、是不可能事件,故D错误;故选:A.3.(4分)在平面直角坐标系中,点(m,n)关于原点对称的点的坐标是()A.(m,n)B.(﹣m,﹣n)C.(n,﹣m)D.(n,m)【解答】解:由题意,得点(m,n)关于原点对称的点的坐标是(﹣m,﹣n),故选:B.4.(4分)已知⊙O的半径为5,圆心O到直线l的距离为3,则反映直线l与⊙O的位置关系的图形是()A.B. C.D.【解答】解:∵⊙O的半径为5,圆心O到直线l的距离为3,∵5>3,即:d<r,∴直线L与⊙O的位置关系是相交.故选:B.5.(4分)如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC的大小是()A.80°B.100°C.60°D.40°【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠ADC=180°,∴∠ABC=180°﹣140°=40°.∴∠AOC=2∠ABC=80°.故选:A.6.(4分)二次函数y=﹣x2+2kx+1(k<0)的图象可能是()A.B. C.D.【解答】解:数y=﹣x2+2kx+1(k<0)的对称轴是x=﹣=k<0,得对称轴在y轴的左侧.当x=0时,y=1,图象与y轴的交点在x轴的上方,故A正确;故选:A.7.(4分)下列命题错误的个数有()①过三点一定可以作一个圆.②三角形的外心到三角形的三个顶点的距离相等.③同圆或等圆中,相等的圆心角所对的弧相等.④平分弦的直径垂直于弦.A.1个 B.2个 C.3个 D.4个【解答】解:①过不在同一直线上的三点一定可以作一个圆,错误;②三角形的外心到三角形的三个顶点的距离相等,正确;③同圆或等圆中,相等的圆心角所对的弧相等,正确;④平分弦(不是直径)的直径垂直于弦,故错误,错误的有2个,故选:B.8.(4分)学校开运动会期间,九年级某两个班级安排乘坐三辆车,其中小明与小刚都可以从这三辆车中任选一辆搭乘,则小明与小刚同车的概率为()A.B.C.D.【解答】解:画树状图为:共有9种等可能的结果数,其中小明与小刚选选择同一辆车的结果数为3,所以小明与小刚同车的概率==.故选:A.9.(4分)已知关于x的方程kx2+(1﹣k)x﹣1=0,下列说法正确的是()A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=﹣1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解【解答】解:关于x的方程kx2+(1﹣k)x﹣1=0,A、当k=0时,x﹣1=0,则x=1,故此选项错误;B、当k=1时,x2﹣1=0方程有两个实数解,故此选项错误;C、当k=﹣1时,﹣x2+2x﹣1=0,则(x﹣1)2=0,此时方程有两个相等的实数解,故此选项正确;D、由C得此选项错误.故选:C.10.(4分)如图,在△ABC中,∠A=90°,AB=AC=3,现将△ABC绕点B逆时针旋转一定角度,点C′恰落在边BC上的高所在的直线上,则边BC在旋转过程中所扫过的面积为()A.πB.2πC.3πD.4π【解答】解:作高AD,则C′点在AD的反向延长线上,如图,∵∠A=90°,AB=AC=3,∴△ABC为等腰直角三角形,∴BC=AB=3,BD=CD,∵△ABC绕点B逆时针旋转一定角度,点C′恰落在边BC上的高所在的直线上,∴BC′=BC=3,∴BD=BC′,∴∠BC′D=30°,∴∠DBC′=60°,∴边BC在旋转过程中所扫过的面积==3π.故选:C.二.填空题(共6小题,每小题4分,共24分)11.(4分)若二次函数y=2x2﹣5的图象上有两个点A(2,a)、B(3,b),则a <b(填“<”或“=”或“>”).【解答】解:y=2x2﹣5的对称轴为x=0,开口方向向上,顶点为(0,﹣5).对于开口向上的函数,x距离对称轴越近,y值越小,2比3距离近,所以a<b.故答案为<.12.(4分)圆锥的底面的圆的半径为5,侧面面积为60π,则圆锥的母线长为12.【解答】解:设圆锥的母线长为l,根据题意得l•2π•5=60π,解得l=12.故答案为:12.13.(4分)在创建国家生态园林城市活动中,某市园林部门为了扩大城市的绿化面积.进行了大量的树木移栽.下表记录的是在相同的条件下移栽某种幼树的棵数与成活棵树:依此估计这种幼树成活的概率是0.9.(结果用小数表示,精确到0.1)【解答】解:根据抽样的意义可得幼树成活的概率为(++)÷3≈0.9.故本题答案为:0.9.14.(4分)边心距为的正六边形的面积为6.【解答】解:∵图中是正六边形,∴∠AOB═60°.∵OA=OB,∴△OAB是等边三角形.∴OA=OAB=AB,∵OD⊥AB,OD=,∴OA==2.∴AB=4,=AB×OD=×2×=,∴S△AOB∴正六边形的面积=6S=6×=6.△AOB故答案为:6.15.(4分)小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为π.【解答】解:∵如图所示的正三角形,∴∠CAB=60°,设三角形的边长是a,∴AB=a,∵⊙O是内切圆,∴∠OAB=30°,∠OBA=90°,∴BO=tan30°AB=a,则正三角形的面积是a2,而圆的半径是a,面积是a2,因此概率是a2÷a2=π.故答案为:π.16.(4分)如图,AB为⊙O的直径,C为⊙O上一点,CD⊥AB于点D.过C点的切线交AB的延长线于点P,若BP=1,CP=.若M为AC上一动点,则OM+DM的最小值为.【解答】解:连接OC,设⊙O的半径为r,则OC=OB=r,∵PC为⊙O的切线,∴OC⊥PC,∴∠OCP=90°,由勾股定理得:OC2+PC2=OP2,∴,∴r=1,连接BC,作O关于AC的对称点E,交AC于N,连接DE交AC于M,过E作EF ⊥AB于F,连接OM,此时OM+DM为最小,则AC是OE的中垂线,∴OM=EM,∴OM+DM=EM+DM=DE,在Rt△OCP中,OB=BP=1,∴BC=OP=1,∴△OCB是等边三角形,∴∠COB=60°,∵OA=OC,∴∠A=∠ACO=30°,在Rt△ANO中,ON=OA=,∴EN=ON=,∴OE=1,即E在⊙O上,Rt△EFO中,∠AOE=60°,∴∠FEO=30°,∴FO=EO=,由勾股定理得:EF==,∵CD⊥AB,∴∠ODC=90°,∵∠COD=60°,∴∠OCD=30°,∴OD=OC=,∴FD=OF+OD=1,由勾股定理得:ED==,即OM+DM的最小值为;故答案为:.三.解答题(共9小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤)17.(8分)(1)x2+2=x(2)(x﹣3)2+4x(x﹣3)=0.【解答】解:(1)整理成一般式可得:x2﹣x+2=0,∵a=1,b=﹣1,c=2,∴△=(﹣1)2﹣4×1×2=﹣7<0,∴方程无实数根;(2)∵(x﹣3)(x﹣3+4x)=0,即(x﹣3)(5x﹣3)=0,∴x﹣3=0或5x﹣3=0,解得:x=3或x=.18.(8分)画图:在平面直角坐标系中,△OAB的位置如图所示,且点A(﹣3,4),B(0,3).(1)画出△OAB绕点O顺时针旋转90°后得到的△OA′B′;(2)写出点A,B的对称点A′,B′的坐标;(3)求点A在旋转过程中所走过的路径长.【解答】解:(1)△OA′B′如图所示;(2)A′(4,3),B′(3,0);(3)由勾股定理得,OA==5,所以,点A在旋转过程中所走过的路径长==π.19.(8分)已知关于x的一元二次方程x2﹣4x+m﹣1=0有两个相等的实数根,求m的值及方程的根.【解答】解:由题意可知△=0,即(﹣4)2﹣4(m﹣1)=0,解得m=5.当m=5时,原方程化为x2﹣4x+4=0.解得x1=x2=2.所以原方程的根为x1=x2=2.20.(8分)在一个不透明的盒子里,装有三个分别写有数字﹣1,0,1的乒乓球(形状,大小一样),先从盒子里随即取出一个乒乓球,记下数字后放回盒子,摇匀后再随即取出一个乒乓球,记下数字.(1)请用树状图或列表的方法求两次取出乒乓球上数字相同的概率;(2)求两次取出乒乓球上数字之积等于0的概率.【解答】解:(1)共有9种情况,两次取出乒乓球上数字相同的情况有3种,所以概率是;(2)两次取出乒乓球上数字之积等于0的情况有5种,所以概率是.21.(8分)如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD 绕点C按顺时针方向旋转60°后得到CE,连接AE.(1)求证:AE=BD;(2)求∠BAE的度数.【解答】(1)证明:∵△ABC是等边三角形,∴AC=BC,∠B=∠ACB=60°.∵线段CD绕点C顺时针旋转60°得到CE,∴CD=CE,∠DCE=60°,∴∠DCE=∠ACB,即∠BCD+∠DCA=∠DCA+∠ACE,∴∠BCD=∠ACE,在△BCD与△ACE中,,∴△BCD≌△ACE,(2)∵△BCD≌△ACE,∴∠EAC=∠BAC=60°,∴∠EAB=∠EAC+∠CAB=120°.22.(10分)学校要围一个矩形花圃,其一边利用足够长的墙,另三边用篱笆围成,由于园艺需要,还要用一段篱笆将花圃分隔为两个小矩形部分(如图所示),总共36米的篱笆恰好用完(不考虑损耗).设矩形垂直于墙面的一边AB的长为x米(要求AB<AD),矩形花圃ABCD的面积为S平方米.(1)求S与x之间的函数关系式,并直接写出自变量x的取值范围;(2)要想使矩形花圃ABCD的面积为60平方米,AB边的长应为多少米?【解答】解:(1)由题意得:AB=x,BC=36﹣3x,S=AB•BC=x(36﹣3x)=﹣3x2+36x,即S与x之间的函数关系式为:S=﹣3x2+36x(0<x<9);(2)﹣3x2+36x=60,解得x1=10(舍去),x2=2,答:要想使矩形花圃ABCD的面积为60平方米,AB边的长应为2米.23.(10分)如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.(3)AE=4,BD=10,求CD的长度.【解答】(1)证明:连接OA,∵DA平分∠BDE,∴∠BDA=∠EDA.∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠EDA,∴OA∥CE.∵AE⊥CE,∴AE⊥OA.∴AE是⊙O的切线.(2)解:∵BD是直径,∴∠BCD=∠BAD=90°.∵∠DBC=30°,∠BDC=60°,∴∠BDE=120°.∵DA平分∠BDE,∴∠BDA=∠EDA=60°.∴∠ABD=∠EAD=30°.∵在Rt△AED中,∠AED=90°,∠EAD=30°,∴AD=2DE.∵在Rt△ABD中,∠BAD=90°,∠ABD=30°,∴BD=2AD=4DE.∵DE的长是1cm,∴BD的长是4cm.(3)解:如图2,连接OA,过O点作OF垂直CD于F,∴∠OFE=90°,CD=2DF,∵AE是⊙O的切线.∴∠OAE=90°,∵AE⊥CD,∴∠AED=90°,∴∠OFE=∠OAE=∠AED=90°,∴四边形OAEF是矩形,∴OF=AE=4,在Rt△ODF中,OD=BD=5,∴DF==3∴CD=2DF=6.24.(12分)如图,形如量角器的半圆O的直径DE=12cm,形如三角板的△ABC 中,∠ACB=90°,∠ABC=30°,BC=12cm半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上.设运动时间为t(s),当t=0s时,半圆O在△ABC的左侧,OC=8cm.(1)当t=1(s)时,⊙O与AC所在直线第一次相切;点C到直线AB的距离为6;(2)当t为何值时,直线AB与半圆O所在的圆相切;(3)当△ABC的一边所在直线与圆O相切时,若⊙O与△ABC有重叠部分,求重叠部分的面积.【解答】解:(1)∵DE=12,∴OE=OD=6,∵OC=8,∴EC=8﹣6=2,∴t=2÷2=1,∴当t=1s时,⊙O与AC所在直线第一次相切;如图1,过C作CF⊥AB于F,Rt△BCF中,∵∠ABC=30°,BC=12,∴CF=BC=6,故答案为:1,6;(2)如图2,过C作CF⊥AB于F,同理得:OF=6,当直线AB与半圆O所在的圆相切时,又∵圆心O到AB的距离为6,半圆的半径为6,且圆心O又在直线BC上,∴O与C重合,即当O点运动到C点时,半圆O与△ABC的边AB相切,此时,点O运动了8cm,所求运动时间t=8÷2=4;如图3,当点O运动到B点的右侧时,且OB=12,过O作OQ⊥AB,交直线AB 于Q,在Rt△QOB中,∠OBQ=30°,则OQ=OB=6,即OQ与半圆O所在的圆相切,此时点O运动了12+12+8=32cm,所求运动时间t=32÷2=16,综上所述,当t为4秒或16秒时,直线AB与半圆O所在的圆相切;(3)有两种情况:①当半圆O与AB边相切于F时,如图2,重叠部分的面积S=π×62=9π;②当半圆O与AC相切于C时,如图4,连接OG,∵BC=DE=12,∴C与D重合,E与B重合,∵OG=OB,∴∠ABC=∠OGB=30°,∴∠COG=60°,过O作OH⊥AB于H,∵OB=6,∴OH=OB=3,由勾股定理得:BH==3,∴BG=2BH=6,此时重叠部分的面积S=+××3=6π+9;综上所述,重叠部分的面积为9πcm2或(6π+9)cm2.25.(14分)已知:抛物线C1的顶点坐标为(2,1),且经过(1,0).把C1先向左平移2个单位,再向上平移8个单位得到抛物线C2.(1)求抛物线C2的函数解析式;(2)设抛物线C2交x轴于M,N两点(点M在点N的左侧),第一象限有一点A,以AM为直径的圆经过点N,且∠MAN=45°,点P(a,b)为抛物线C2在第二象限上的一个动点,求△AMP面积的最大值;(3)若点P(a,b)为抛物线C2在x轴上方部分图象上的一个动点,当∠MPN ≥45°时,求出a的取值范围.【解答】解:(1)∵抛物线C1的顶点坐标为(2,1),∴设抛物线C1的解析式为y=a(x﹣2)2+1,∵经过(1,0),∴0=a×(1﹣2)2+1,解得a=﹣1,∴设抛物线C1的解析式为y=﹣(x﹣2)2+1,∵把C1先向左平移2个单位,再向上平移8个单位得到抛物线C2,∴抛物线C2的解析式为y=﹣x2+9;(2)在y=﹣x2+9中,令y=0可得:﹣x2+9=0,解得x=3或x=﹣3,∴M(﹣3,0),N(3,0),∵AM为直径,∴∠MNA=90°,∴AN⊥MN,∵∠MAN=45°,∴AN=MN=3﹣(﹣3)=6,∴A(3,6),∴直线AM解析式为y=x+3,如图1,过P作PE⊥x轴,交AM于点E,∵P在抛物线上,∴P(a,﹣a2+9),则E(a,a+3),∵P在第二象限,∴PE=﹣a2+9﹣(a+3)=﹣a2﹣a+6=﹣(a+)2+,=PE•[3﹣(﹣3)]=3×[﹣(a+)2+]=﹣3(a+)2+,∴S△AMP∴当a=﹣时,△AMP的面积最大,最大值为;(3)在(2)中,可知当点P在以AM为直径的圆上时,∠MAN=∠MPN=45°,如图2,则当点P在圆内时有∠MPN≥45°,∵M(﹣3,0),A(3,6),∴AM的中点为(0,3),即圆心坐标为(0,3),当点P在圆上时,满足点P到圆心的距离等于半径,∴a2+(﹣a2+9﹣3)2=32+32,解得a2=9(舍去)或a2=2,解得a=或a=﹣,∴当∠MPN≥45°时,求出a的取值范围为﹣3<a≤﹣或≤a<3.。

【初三数学】福州市九年级数学上期中考试检测试题(解析版)

【初三数学】福州市九年级数学上期中考试检测试题(解析版)

新人教版九年级第一学期期中模拟数学试卷(含答案)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)1.抛物线y=2x2-1的顶点坐标是(A)A.(0,-1) B.(0,1) C.(-1,0) D.(1,0)2.如果x=-1是方程x2-x+k=0的解,那么常数k的值为(D)A.2 B.1 C.-1 D.-23.将抛物线y=x2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是(B)A.y=(x+2)2+1 B.y=(x-2)2+1 C.y=(x+2)2-1 D.y=(x-2)2-1 4.小明在解方程x2-4x-15=0时,他是这样求解的:移项,得x2-4x=15,两边同时加4,得x2-4x+4=19,∴(x-2)2=19.∴x-2=±19.∴x1=2+19,x2=2-19.这种解方程的方法称为(B)A.待定系数法 B.配方法 C.公式法 D.因式分解法5.下列图形中,既是轴对称图形,又是中心对称图形的是(C)A B C D6.已知抛物线y=-2x2+x经过A(-1,y1)和B(3,y2)两点,那么下列关系式一定正确的是(C)A.0<y2<y1 B.y1<y2<0 C.y2<y1<0 D.y2<0<y17.已知a,b,c分别是三角形的三边长,则方程(a+b)x2+2cx+(a+b)=0的根的情况是(D)A.有两个不相等的实数根 B.有两个相等的实数根C.可能有且只有一个实数根 D.没有实数根8.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是(D)A .68°B .20°C .28°D .22°9.已知二次函数y =ax 2+bx +c 的图象如图所示,则下列结论正确的是(D) A .a >b >c B .c >a >b C .c >b >a D .b >a >c10.如图,将△ABC 绕着点B 顺时针旋转60°得到△DBE ,点C 的对应点E 恰好落在AB 的延长线上,连接AD ,AC 与DB 交于点P ,DE 与CB 交于点Q ,连接PQ.若AD =5 cm ,PB AB =25,则PQ 的长为(A)A .2 cm B.52 cm C .3 cm D.72cm二、填空题(本大题共5个小题,每小题3分,共15分)11.在平面直角坐标系中,点A(0,1)关于原点对称的点是(0,-1). 12.方程x(x +1)=0的根为x 1=0,x 2=-1.13.某楼盘2016年房价为每平方米8 100元,经过两年连续降价后,2018年房价为7 600元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为8__100(1-x)2=7__600. 14.二次函数y =ax 2+bx +c(a ≠0)中x ,y 的部分对应值如下表:则当x =-2时,y 的值为11.15.如图,射线OC 与x 轴正半轴的夹角为30°,点A 是OC 上一点,AH ⊥x 轴于H ,将△AOH 绕着点O 逆时针旋转90°后,到达△DOB 的位置,再将△DOB 沿着y 轴翻折到达△GOB 的位置.若点G恰好在抛物线y=x2(x>0)上,则点A三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(共题共2个小题,每小题5分,共10分)(1)解方程:x(x+5)=5x+25;解:x(x+5)=5(x+5),x(x+5)-5(x+5)=0,∴(x-5)(x+5)=0.∴x-5=0或x+5=0.∴x1=5,x2=-5.(2)已知点(5,0)在抛物线y=-x2+(k+1)x-k上,求出抛物线的对称轴.解:将点(5,0)代入y=-x2+(k+1)x-k,得0=-52+5×(k+1)-k,解得k=5.∴y=-x2+6x-5.∴该抛物线的对称轴为直线x=-62×(-1)=3.17.(本题6分)如图所示的是一桥拱的示意图,它的形状类似于抛物线,在正常水位时,该桥下面宽度为20米,拱顶距离水面4米,建立平面直角坐标系如图所示.求抛物线的解析式.解:设该抛物线的解析式为y=ax2.由图象可知,点B(10,-4)在函数图象上,代入y=ax2,得100a=-4,解得a=-125,∴该抛物线的解析式为y=-125x2.18.(本题7分)如图,在平面直角坐标系中,有一Rt△ABC,已知△A1AC1是由△ABC绕某点顺时针旋转90°得到的.(1)请你写出旋转中心的坐标是(0,0);(2)以(1)中的旋转中心为中心,画出△A1AC1顺时针旋转90°,180°后的三角形.解:如图,△B 1A 1C 2,△BB 1C 3即为所求作图形.19.(本题7分)(1)求二次函数y =x 2+x -2与x 轴的交点坐标; (2)若二次函数y =-x 2+x +a 与x 轴只有一个交点,求a 的值. 解:(1)令y =0,则有x 2+x -2=0. 解得x 1=1,x 2=-2.∴二次函数y =x 2+x -2与x 轴的交点坐标为(1,0),(-2,0). (2)∵二次函数y =-x 2+x +a 与x 轴只有一个交点, ∴令y =0,即-x 2+x +a =0有两个相等的实数根. ∴Δ=1+4a =0,解得a =-14.20.(本题7分)如图,已知在Rt △ABC 中,∠ABC =90°,先把△ABC 绕点B 顺时针旋转90°至△DBE 后,再把△ABC 沿射线AB 平移至△FEG ,DE ,FG 相交于点H.(1)判断线段DE ,FG 的位置关系,并说明理由; (2)连接CG ,求证:四边形CBEG 是正方形. 解:(1)FG ⊥DE ,理由如下:∵把△ABC 绕点B 顺时针旋转90°至△DBE ,∴∠DEB =∠ACB. ∵把△ABC 沿射线平移至△FEG ,∴∠GFE =∠A.∵∠ABC =90°,∴∠A +∠ACB =90°.∴∠DEB +∠GFE =90°.∴∠FHE =90°. ∴FG ⊥DE.(2)证明:根据旋转和平移可得∠GEF =90°,∠CBE =90°,CG ∥EB ,CB =BE , ∵CG ∥EB ,∴∠BCG =∠CBE =90°.∴四边形CBEG 是矩形.又∵CB=BE,∴四边形CBEG是正方形.21.(本题12分)我市某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发现,如果每件童装降价1元,那么平均每天可多售出2件.设每件童装降价x元(x>0)时,平均每天可盈利y元.(1)写出y与x的函数关系式;(2)根据(1)中你写出的函数关系式,解答下列问题:①当该专卖店每件童装降价5元时,平均每天盈利多少元?②当该专卖店每件童装降价多少元时,平均每天盈利400元?③该专卖店要想平均每天盈利600元,可能吗?请说明理由.解:(1)根据题意,得y=(20+2x)(60-40-x)=(20+2x)(20-x)=400+40x-20x-2x2=-2x2+20x+400.∴y=-2x2+20x+400.(2)①当x=5时,y=-2×52+20×5+400=450,∴当该专卖店每件童装降价5元时,平均每天盈利450元.②当y=400时,400=-2x2+20x+400,整理,得x2-10x=0,解得x1=10,x2=0(不合题意,舍去),∴当该专卖店每件童装降价10元时,平均每天盈利400元.③该专卖店平均每天盈利不可能为600元.理由:当y=600时,600=-2x2+20x+400,整理,得x2-10x+100=0,∵Δ=(-10)2-4×1×100=-300<0,∴方程没有实数根.故该专卖店平均每天盈利不可能为600元.问题情境:(1)如图1,两块等腰直角三角板△ABC 和△ECD 如图所示摆放,其中∠ACB =∠DCE =90°,点F ,H ,G 分别是线段DE ,AE ,BD 的中点,A ,C ,D 和B ,C ,E 分别共线,则FH 和FG 的数量关系是FH =FG ,位置关系是FH ⊥FG ; 合作探究:(2)如图2,若将图1中的△DEC 绕着点C 顺时针旋转至A ,C ,E 在一条直线上,其余条件不变,那么(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;(3)如图3,若将图1中的△DEC 绕着点C 顺时针旋转一个锐角,那么(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由.解:(2)(1)中的结论还成立.证明:延长AD 交BE 于点M.∵CD =CE ,AC =BC ,∠ACD =∠BCE =90°, ∴△ACD ≌△BCE(SAS).∴AD =BE ,∠CAD =∠CBE.∵∠CBE +∠CEB =90°,∴∠CAD +∠CEB =90°.∴∠AME =90°.∴AD ⊥BE. ∵F ,H ,G 分别是DE ,AE ,BD 的中点,∴FH =12AD ,FH ∥AD ,FG =12BE ,FG ∥BE.∴FH =FG.∵AD ⊥BE ,∴FH ⊥FG.∴(1)中结论还成立. (3)(1)中的结论仍成立.证明:连接AD ,BE ,两线交于点Z ,AD 交BC 于点X. 同(2)可得FH =12AD ,FH ∥AD ,FG =12BE ,FG ∥BE.∵△ECD ,△ACB 都是等腰直角三角形,∠ECD =∠ACB =90°,∴CE =CD ,AC =BC. ∴∠ACD =∠BCE.∴△ACD ≌△BCE(SAS).∴AD =BE ,∠EBC =∠DAC.∴FH =FG. ∵∠DAC +∠CXA =90°,∠CXA =∠DXB ,∴∠DXB +∠EBC =90°.∴∠BZA =180°-90°=90°.∴AD ⊥BE. ∵FH ∥AD ,FG ∥BE ,∴FH ⊥FG.∴(1)中的结论仍成立.如图,二次函数y =-14x 2+32x +4的图象与x 轴交于点B新人教版九年级第一学期期中模拟数学试卷(含答案)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)1.抛物线y =2x 2-1的顶点坐标是(A)A .(0,-1)B .(0,1)C .(-1,0)D .(1,0) 2.如果x =-1是方程x 2-x +k =0的解,那么常数k 的值为(D) A .2 B .1 C .-1 D .-23.将抛物线y =x 2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是(B)A .y =(x +2)2+1 B .y =(x -2)2+1 C .y =(x +2)2-1 D .y =(x -2)2-1 4.小明在解方程x 2-4x -15=0时,他是这样求解的:移项,得x 2-4x =15,两边同时加4,得x 2-4x +4=19,∴(x -2)2=19.∴x -2=±19.∴x 1=2+19,x 2=2-19.这种解方程的方法称为(B)A .待定系数法B .配方法C .公式法D .因式分解法 5.下列图形中,既是轴对称图形,又是中心对称图形的是(C)A B C D6.已知抛物线y =-2x 2+x 经过A(-1,y 1)和B(3,y 2)两点,那么下列关系式一定正确的是(C)A .0<y 2<y 1B .y 1<y 2<0C .y 2<y 1<0D .y 2<0<y 17.已知a ,b ,c 分别是三角形的三边长,则方程(a +b)x 2+2cx +(a +b)=0的根的情况是(D)A .有两个不相等的实数根B .有两个相等的实数根C .可能有且只有一个实数根D .没有实数根8.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB ′C ′D ′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是(D) A .68°B .20°C .28°D .22°9.已知二次函数y =ax 2+bx +c 的图象如图所示,则下列结论正确的是(D) A .a >b >c B .c >a >b C .c >b >a D .b >a >c10.如图,将△ABC 绕着点B 顺时针旋转60°得到△DBE ,点C 的对应点E 恰好落在AB 的延长线上,连接AD ,AC 与DB 交于点P ,DE 与CB 交于点Q ,连接PQ.若AD =5 cm ,PB AB =25,则PQ 的长为(A)A .2 cm B.52 cm C .3 cm D.72cm二、填空题(本大题共5个小题,每小题3分,共15分)11.在平面直角坐标系中,点A(0,1)关于原点对称的点是(0,-1). 12.方程x(x +1)=0的根为x 1=0,x 2=-1.13.某楼盘2016年房价为每平方米8 100元,经过两年连续降价后,2018年房价为7 600元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为8__100(1-x)2=7__600. 14.二次函数y =ax 2+bx +c(a ≠0)中x ,y 的部分对应值如下表:则当x =-2时,y 的值为11.15.如图,射线OC与x轴正半轴的夹角为30°,点A是OC上一点,AH⊥x轴于H,将△AOH 绕着点O逆时针旋转90°后,到达△DOB的位置,再将△DOB沿着y轴翻折到达△GOB的位置.若点G恰好在抛物线y=x2(x>0)上,则点A三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(共题共2个小题,每小题5分,共10分)(1)解方程:x(x+5)=5x+25;解:x(x+5)=5(x+5),x(x+5)-5(x+5)=0,∴(x-5)(x+5)=0.∴x-5=0或x+5=0.∴x1=5,x2=-5.(2)已知点(5,0)在抛物线y=-x2+(k+1)x-k上,求出抛物线的对称轴.解:将点(5,0)代入y=-x2+(k+1)x-k,得0=-52+5×(k+1)-k,解得k=5.∴y=-x2+6x-5.∴该抛物线的对称轴为直线x=-62×(-1)=3.17.(本题6分)如图所示的是一桥拱的示意图,它的形状类似于抛物线,在正常水位时,该桥下面宽度为20米,拱顶距离水面4米,建立平面直角坐标系如图所示.求抛物线的解析式.解:设该抛物线的解析式为y=ax2.由图象可知,点B(10,-4)在函数图象上,代入y=ax2,得100a=-4,解得a=-125,∴该抛物线的解析式为y=-125x2.18.(本题7分)如图,在平面直角坐标系中,有一Rt△ABC,已知△A1AC1是由△ABC绕某点顺时针旋转90°得到的.(1)请你写出旋转中心的坐标是(0,0);(2)以(1)中的旋转中心为中心,画出△A 1AC 1顺时针旋转90°,180°后的三角形.解:如图,△B 1A 1C 2,△BB 1C 3即为所求作图形.19.(本题7分)(1)求二次函数y =x 2+x -2与x 轴的交点坐标; (2)若二次函数y =-x 2+x +a 与x 轴只有一个交点,求a 的值. 解:(1)令y =0,则有x 2+x -2=0. 解得x 1=1,x 2=-2.∴二次函数y =x 2+x -2与x 轴的交点坐标为(1,0),(-2,0). (2)∵二次函数y =-x 2+x +a 与x 轴只有一个交点, ∴令y =0,即-x 2+x +a =0有两个相等的实数根. ∴Δ=1+4a =0,解得a =-14.20.(本题7分)如图,已知在Rt △ABC 中,∠ABC =90°,先把△ABC 绕点B 顺时针旋转90°至△DBE 后,再把△ABC 沿射线AB 平移至△FEG ,DE ,FG 相交于点H.(1)判断线段DE ,FG 的位置关系,并说明理由; (2)连接CG ,求证:四边形CBEG 是正方形. 解:(1)FG ⊥DE ,理由如下:∵把△ABC 绕点B 顺时针旋转90°至△DBE ,∴∠DEB =∠ACB. ∵把△ABC 沿射线平移至△FEG ,∴∠GFE =∠A.∵∠ABC =90°,∴∠A +∠ACB =90°.∴∠DEB +∠GFE =90°.∴∠FHE =90°. ∴FG ⊥DE.(2)证明:根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG=∠CBE=90°.∴四边形CBEG是矩形.又∵CB=BE,∴四边形CBEG是正方形.21.(本题12分)我市某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发现,如果每件童装降价1元,那么平均每天可多售出2件.设每件童装降价x元(x>0)时,平均每天可盈利y元.(1)写出y与x的函数关系式;(2)根据(1)中你写出的函数关系式,解答下列问题:①当该专卖店每件童装降价5元时,平均每天盈利多少元?②当该专卖店每件童装降价多少元时,平均每天盈利400元?③该专卖店要想平均每天盈利600元,可能吗?请说明理由.解:(1)根据题意,得y=(20+2x)(60-40-x)=(20+2x)(20-x)=400+40x-20x-2x2=-2x2+20x+400.∴y=-2x2+20x+400.(2)①当x=5时,y=-2×52+20×5+400=450,∴当该专卖店每件童装降价5元时,平均每天盈利450元.②当y=400时,400=-2x2+20x+400,整理,得x2-10x=0,解得x1=10,x2=0(不合题意,舍去),∴当该专卖店每件童装降价10元时,平均每天盈利400元.③该专卖店平均每天盈利不可能为600元.理由:当y=600时,600=-2x2+20x+400,整理,得x2-10x+100=0,∵Δ=(-10)2-4×1×100=-300<0,∴方程没有实数根.故该专卖店平均每天盈利不可能为600元. 22.(本题12分)综合与实践: 问题情境:(1)如图1,两块等腰直角三角板△ABC 和△ECD 如图所示摆放,其中∠ACB =∠DCE =90°,点F ,H ,G 分别是线段DE ,AE ,BD 的中点,A ,C ,D 和B ,C ,E 分别共线,则FH 和FG 的数量关系是FH =FG ,位置关系是FH ⊥FG ; 合作探究:(2)如图2,若将图1中的△DEC 绕着点C 顺时针旋转至A ,C ,E 在一条直线上,其余条件不变,那么(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;(3)如图3,若将图1中的△DEC 绕着点C 顺时针旋转一个锐角,那么(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由.解:(2)(1)中的结论还成立.证明:延长AD 交BE 于点M.∵CD =CE ,AC =BC ,∠ACD =∠BCE =90°, ∴△ACD ≌△BCE(SAS).∴AD =BE ,∠CAD =∠CBE.∵∠CBE +∠CEB =90°,∴∠CAD +∠CEB =90°.∴∠AME =90°.∴AD ⊥BE. ∵F ,H ,G 分别是DE ,AE ,BD 的中点,∴FH =12AD ,FH ∥AD ,FG =12BE ,FG ∥BE.∴FH =FG.∵AD ⊥BE ,∴FH ⊥FG.∴(1)中结论还成立. (3)(1)中的结论仍成立.证明:连接AD ,BE ,两线交于点Z ,AD 交BC 于点X. 同(2)可得FH =12AD ,FH ∥AD ,FG =12BE ,FG ∥BE.∵△ECD ,△ACB 都是等腰直角三角形,∠ECD =∠ACB =90°,∴CE =CD ,AC =BC. ∴∠ACD =∠BCE.∴△ACD ≌△BCE(SAS).∴AD =BE ,∠EBC =∠DAC.∴FH =FG. ∵∠DAC +∠CXA =90°,∠CXA =∠DXB ,∴∠DXB +∠EBC =90°.∴∠BZA =180°-90°=90°.∴AD ⊥BE.∵FH ∥AD ,FG ∥BE ,∴FH ⊥FG.∴(1)中的结论仍成立.23.(本题14分)综合与探究:如图,二次函数y =-14x 2+32x +4的图象与x 轴交于点B新九年级(上)数学期中考试试题(含答案)(1)一、选择题(本大题共10小题,共30.0分) 1. 下列运算中,结果正确的是( )A. B. C.D.2. 若是关于x .y 的方程2x -y +2a =0的一个解,则常数a 为( )A. 1B. 2C. 3D. 43. 下列由左到右边的变形中,是因式分解的是( )A.B.C.D.4. 如图,直线a ∥b ,∠1=120°,则∠2的度数是( ) A. B. C. D.5. 已知a m =6,a n =3,则a 2m -3n的值为( )A.B.C. 2D. 96. 下列代数式变形中,是因式分解的是( )A.B. C.D.7. 已知4y 2+my +9是完全平方式,则m 为( )A. 6B.C.D. 12 8. 803-80能被( )整除.A. 76B. 78C. 79D. 82 9. 如果x =3m +1,y =2+9m ,那么用x 的代数式表示y 为( )A. B. C. D. 10. 已知关于x ,y 的方程组,则下列结论中正确的是( )①当a =5时,方程组的解是 ; ②当x ,y 的值互为相反数时,a =20; ③不存在一个实数a 使得x =y ; ④若22a -3y =27,则a =2.A. B. C. D.二、填空题(本大题共6小题,共24.0分)11.在方程4x-2y=7中,如果用含有x的式子表示y,则y=______.12.将方程3x+2y=7变形成用含y的代数式表示x,得到______.13.若要(a-1)a-4=1成立,则a=______.14.如图,将△ABC平移到△A′B′C′的位置(点B′在AC边上),若∠B=55°,∠C=100°,则∠AB′A′的度数为______°.15.有若干张如图所示的正方形A类、B类卡片和长方形C类卡片,如果要拼成一个长为(2a+b),宽为(a+2b)的大长方形,则需要C类卡片______张.16.若x+y+z=2,x2-(y+z)2=8时,x-y-z=______.三、计算题(本大题共2小题,共20.0分)17.计算:(1)(8a3b-5a2b2)÷4ab(2)(2x+y)2-(2x+3y)(2x-3y)18.我县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图1所示,(单位:cm)(1)列出方程(组),求出图甲中a与b的值.(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图2的竖式与横式两种无盖礼品盒.①两种裁法共产生A型板材______张,B型板材______张;y个,根据题意完成表格:③做成的竖式和横式两种无盖礼品盒总数最多是______个;此时,横式无盖礼品盒可以做______个.(在横线上直接写出答案,无需书写过程)四、解答题(本大题共5小题,共36.0分)19.化简:(1)(2a2)4÷3a2(2)(1+a)(1-a)+a(a-3)20.先化简,再求值:(2x+3)(2x-3)-(x-2)2-3x(x-1),其中x=2.21.已知a-b=7,ab=-12.(1)求a2b-ab2的值;(2)求a2+b2的值;(3)求a+b的值.22.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数.23.已知:如图,AB∥CD,BD平分∠ABC,CE平分∠DCF,∠ACE=90°.(1)请问BD和CE是否平行?请你说明理由.(2)AC和BD的位置关系怎样?请说明判断的理由.答案和解析1.【答案】A【解析】解:A、x3•x3=x6,本选项正确;B、3x2+2x2=5x2,本选项错误;C、(x2)3=x6,本选项错误;D、(x+y)2=x2+2xy+y2,本选项错误,故选:A.A、利用同底数幂的乘法法则计算得到结果,即可做出判断;B、合并同类项得到结果,即可做出判断;C、利用幂的乘方运算法则计算得到结果,即可做出判断;D、利用完全平方公式展开得到结果,即可做出判断.此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及幂的乘方,熟练掌握公式及法则是解本题的关键.2.【答案】B【解析】解:将x=-1,y=2代入方程2x-y+2a=0得:-2-2+2a=0,解得:a=2.故选:B.将x=-1,y=2代入方程中计算,即可求出a的值.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.3.【答案】D【解析】解:A、(x+2)(x-2)=x2-4,是多项式乘法,故此选项错误;B、x2-1=(x+1)(x-1),故此选项错误;C、x2-4+3x=(x+4)(x-1),故此选项错误;D、x2-4=(x+2)(x-2),正确.故选:D.直接利用因式分解的意义分别判断得出答案.此题主要考查了因式分解的意义,正确把握定义是解题关键.4.【答案】C【解析】解:∵a∥b∴∠3=∠2,∵∠3=180°-∠1,∠1=120°,∴∠2=∠3=180°-120°=60°,故选C.如图根据平行线的性质可以∠2=∠3,根据邻补角的定义求出∠3即可.本题考查平行线的性质,利用两直线平行同位角相等是解题的关键,记住平行线的性质,注意灵活应用,属于中考常考题型.5.【答案】A【解析】解:∵a m=6,a n=3,∴原式=(a m)2÷(a n)3=36÷27=,故选:A.原式利用同底数幂的除法法则及幂的乘方运算法则变形,将已知等式代入计算即可求出值.此题考查了同底数幂的除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.6.【答案】D【解析】解:A、是整式的乘法,故A错误;B、左边不等于右边,故B错误;C、没把一个多项式转化成几个整式乘积的形式,故C错误;D、把一个多项式转化成几个整式乘积的形式,故D正确;故选:D.根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.本题考查了因式分解的意义,把一个多项式转化成几个整式乘积的形式是解题关键.7.【答案】C【解析】解:∵4y2+my+9是完全平方式,∴m=±2×2×3=±12.故选:C.原式利用完全平方公式的结构特征求出m的值即可.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.8.【答案】C【解析】解:∵803-80=80×(802-1)=80×(80+1)×(80-1)=80×81×79.∴803-80能被79整除.故选:C.先提取公因式80,再根据平方查公式进行二次分解,即可得803-80=80×81×79,继而求得答案.本题考查了提公因式法,公式法分解因式.注意提取公因式后,利用平方差公式进行二次分解是关键.9.【答案】C【解析】解:x=3m+1,y=2+9m,3m=x-1,y=2+(3m)2,y=(x-1)2+2,故选:C.根据移项,可得3m的形式,根据幂的运算,把3m代入,可得答案.本题考查了幂的乘方与积的乘方,先化成要求的形式,把3m代入得出答案.10.【答案】D【解析】解:把a=5代入方程组得:,解得:,本选项错误;由x与y互为相反数,得到x+y=0,即y=-x,代入方程组得:,解得:a=20,本选项正确;若x=y,则有,可得a=a-5,矛盾,故不存在一个实数a使得x=y,本选项正确;方程组解得:,由题意得:2a-3y=7,把x=25-a,y=15-a代入得:2a-45+3a=7,解得:a=,本选项错误,则正确的选项有,故选:D.把a=5代入方程组求出解,即可做出判断;根据题意得到x+y=0,代入方程组求出a的值,即可做出判断;假如x=y,得到a无解,本选项正确;根据题中等式得到2a-3y=7,代入方程组求出a的值,即可做出判断.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.11.【答案】【解析】解:4x-2y=7,解得:y=.故答案为:将x看做已知数求出y即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.12.【答案】x=【解析】解:由题意可知:x=故答案为:x=根据等式的性质即可求出答案.本题考查等式的性质,解题的关键是熟练运用等式的性质,本题属于基础题型.13.【答案】4,2,0【解析】解:a-4=0,即a=4时,(a-1)a-4=1,当a-1=1,即a=2时,(a-1)a-4=1.当a-1=-1,即a=0时,(a-1)a-4=1故a=4,2,0.故答案为:4,2,0.根据任何非0的数的0次幂等于1,以及1的任何次幂等于1、-1的偶次幂等于1即可求解.本题考查了整数指数幂的意义,正确进行讨论是关键.14.【答案】25【解析】解:∵∠B=55°,∠C=100°,∴∠A=180°-∠B-∠C=180°-55°-100°=25°,∵△ABC平移得到△A′B′C′,∴AB∥A′B′,∴∠AB′A′=∠A=25°.故答案为:25.根据三角形的内角和定理求出∠A,再根据平移的性质可得AB∥A′B′,然后根据两直线平行,内错角相等可得∠AB′A′=∠A.本题考查了平移的性质,三角形的内角和定理,平行线的性质,熟记平移的性质得到AB∥A′B′是解题的关键.15.【答案】5【解析】解:长方形的面积=(2a+b)(a+2b)=2a2+5ab+b2,所以要拼成一个长为(2a+b),宽为(a+2b)的大长方形,则需要A类卡片2张,B类卡片1张,C类卡片5张.故答案为5.计算长方形的面积得到(2a+b)(a+2b),再利用多项式乘多项式展开后合并,然后确定ab的系数即可得到需要C类卡片的张数.本题考查了多项式乘多项式相乘:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.16.【答案】4【解析】解:∵x2-(y+z)2=8,∴(x-y-z)(x+y+z)=8,∵x+y+z=2,∴x-y-z=8÷2=4,故答案为:4.首先把x2-(y+z)2=8的左边分解因式,再把x+y+z=2代入即可得到答案.此题主要考查了因式分解的应用,关键是熟练掌握平方差公式分解因式.平方差公式:a2-b2=(a+b)(a-b).17.【答案】解:(1)原式=2a2-ab;(2)原式=4x2+4xy+y2-4x2+9y2=10y2+4xy.【解析】(1)原式利用多项式除以单项式法则计算即可求出值;(2)原式利用完全平方公式,以及平方差公式计算,去括号合并即可得到结果.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.18.【答案】64 38 20 16或17或18【解析】解:(1)由题意得:,解得:,答:图甲中a与b的值分别为:60、40.(2)由图示裁法一产生A型板材为:2×30=60,裁法二产生A型板材为:1×4=4,所以两种裁法共产生A型板材为60+4=64(张),由图示裁法一产生B型板材为:1×30=30,裁法二产生A型板材为,2×4=8,所以两种裁法共产生B型板材为30+8=38(张),故答案为:64,38.由已知和图示得:横式无盖礼品盒的y个,每个礼品盒用2张B型板材,所以用B型板材2y张.由上表可知横式无盖款式共5y个面,用A型3y张,则B型需要2y张.则做两款盒子共需要A型4x+3y张,B型x+2y张.则4x+3y≤64;x+2y≤38.两式相加得5x+5y≤102.则x+y≤20.4.所以最多做20个.两式相减得3x+y≤26.则2x≤5.6,解得x≤2.8.则y≤18.则横式可做16,17或18个.故答案为:20,16或17或18.(1)由图示列出关于a、b的二元一次方程组求解.(2)根据已知和图示计算出两种裁法共产生A型板材和B型板材的张数,同样由图示完成表格,并完成计算.本题考查的知识点是二元一次方程组的应用,关键是根据已知先列出二元一次方程组求出a、b的值,再是根据图示解答.19.【答案】解:(1)原式=24a8÷3a2=.(2)原式=1-a2+a2-3a=1-3a.【解析】(1)根据单项式的幂的乘方法则和除法法则进行计算.(2)根据多项式的乘法法则以及单项式乘多项式的法则进行计算.本题考查单项式的乘方法则、单项式除以单项式的法则、乘法公式等知识,正确运用法则是解题的关键.20.【答案】解:(2x+3)(2x-3)-(x-2)2-3x(x-1)=4x2-9-x2+4x-4-3x2+3x=7x-13,当x=2时,原式=7×2-13=1.【解析】利用平方差及完全平方公式化简,再把x=2代入求解即可.本题主要考查了整式的化简求值,解题的关键是正确的化简.21.【答案】解:(1)∵a-b=7,ab=-12,∴a2b-ab2=ab(a-b)=-12×7=-84;(2)∵a-b=7,ab=-12,∴(a-b)2=49,∴a2+b2-2ab=49,∴a2+b2=25;(3)∵a2+b2=25,∴(a+b)2=25+2ab=25-24=1,∴a+b=±1.【解析】(1)直接提取公因式ab,进而分解因式得出答案;(2)直接利用完全平方公式进而求出答案;(3)直接利用(2)中所求,结合完全平方公式求出答案.此题主要考查了完全平方公式以及提取公因式法分解因式,正确应用完全平方公式是解题关键.22.【答案】解:∵AD∥BC,∴∠DEF=∠EFB=20°,在图b中∠GFC=180°-2∠EFG=140°,在图c中∠CFE=∠GFC-∠EFG=120°.【解析】由平行线的性质知∠DEF=∠EFB=20°,进而得到图b中∠GFC=140°,依据图c中的∠CFE=∠GFC-∠EFG进行计算.本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性新九年级上册数学期中考试试题(含答案)一、选择题(本题共16分,每小题2分)1.(2分)以下是“回收”、“绿色包装”、“节水”、“低碳”四个标志,其中是中心对称图形的是()A.B.C.D.2.(2分)二次函数y=(x+2)2+3的图象的顶点坐标是()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)3.(2分)如图,⊙O的直径为10,AB为弦,OC⊥AB,垂足为C,若OC=3,则弦AB的长为()A.8B.6C.4D.104.(2分)如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A.29°B.31°C.59°D.62°5.(2分)如图4×4的正方形网格中,△PMN绕某点旋转一定的角度,得到△P1M1N1,其旋转中心是()A.A点B.B点C.C点D.D点6.(2分)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=6,阴影部分图形的面积为()A.4πB.3πC.2πD.π7.(2分)已知抛物线y=ax2+bx+c上部分点的横坐标x纵坐标y的对应值如下表:物线y=ax2+bx+c的开口向下;抛物线y=ax2+bx+c的对称轴为直线x=﹣1;方程ax2+bx+c=0的根为0和2;当y>0时,x的取值范围是x<0或x>2以上结论中其中的是()A.B.C.D.8.(2分)如图1,⊙O过正方形ABCD的顶点A、D且与边BC相切于点E,分别交AB、DC于点M、N.动点P在⊙O或正方形ABCD的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为x,圆心O与P点的距离为y,图2记录了一段时间里y与x的函数关系,在这段时间里P点的运动路径为()A.从D点出发,沿弧DA→弧AM→线段BM→线段BCB.从B点出发,沿线段BC→线段CN→弧ND→弧DAC.从A点出发,沿弧AM→线段BM→线段BC→线段CND.从C点出发,沿线段CN→弧ND→弧DA→线段AB二、填空题(本题共16分,每小题2分)9.(2分)在平面直角坐标系中,点P(2,﹣3)关于原点对称点P′的坐标是.10.(2分)平面直角坐标系xOy中,以原点O为圆心,5为半径作⊙O,则点A(4,3)在⊙O(填:“内”或“上“或“外”)11.(2分)如图所示,把一个直角三角尺ACB绕30°角的顶点B顺时计旋转,使得点A 落在CB的延长线上的点E处,则∠BCD的度数为.12.(2分)将抛物线y=x2﹣6x+5化成y=a(x﹣h)2﹣k的形式,则hk=.13.(2分)若正六边形的边长为2,则其外接圆的面积为.14.(2分)二次函数满足下列条件:函数有最大值3;对称轴为y轴,写出一个满足以上条件的二次函数解析式:15.(2分)圆锥底面半径为6,高为8,则圆锥的侧面积为.16.(2分)阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:∠ACB是△ABC的一个内角.求作:∠APB=∠ACB.小明的做法如下:如图作线段AB的垂直平分线m;作线段BC的垂直平分线n,与直线m交于点O;以点O为圆心,OA为半径作△ABC的外接圆;在弧ACB上取一点P,连结AP,BP.所以∠APB=∠ACB.老师说:“小明的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是;(2)∠APB=∠ACB的依据是.三、解答题(本原共68分,第17-22题,每小题5分,第23、24、26、28题,每小题5分,第25,27题,每小题5分)17.(5分)如图,在Rt△OAB中,∠OAB=90,且点B的坐标为(4,2)(1)画出△OAB绕点O逆时针旋转90°后的△OA1B1.(2)求点B旋转到点B1所经过的路线长(结果保留π)18.(5分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示.(1)确定二次函数的解析式;(2)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.19.(5分)如图,四边形ABCD内接于⊙O,∠ABC=135°,AC=4,求⊙O的半径长.20.(5分)关于x一元二次方程x2+mx+n=0.(1)当m=n+2时,利用根的判别式判断方程根的情况.(2)若方程有实数根,写出一组满足条件的m,n的值,并求此时方程的根.。

福建省九年级上学期期中数学试卷及答案

福建省九年级上学期期中数学试卷及答案

福建省九年级(上)期中数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合要求的.1.(4分)下列事件是必然事件的是()A.三角形内角和等于180°B.乘公共汽时恰好有空座C.打开手机有未接电话D.任意画一个正五边形它是中心对称图形2.(4分)下列抛物线中对称轴为直线x=1的是()A.y=x2 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2 3.(4分)若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为()A.6 B.﹣6 C.12 D.﹣124.(4分)如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC的度数为()A.20°B.40°C.60°D.80°5.(4分)若抛物线y=x2﹣2x+m与x轴有交点,则m的取值范围是()A.m>1 B.m≥1C.m<1 D.m≤16.(4分)已知圆锥的底面面积为9πcm2,母线长为6cm,则该圆锥的侧面积是()A.18cm2B.27cm2C.18πcm2D.27πcm27.(4分)将抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为()A.4 B.6 C.8 D.108.(4分)如图,在菱形ABCD中,∠B=45°,以点A为圆心的扇形与BC,CD相切,向这样一个靶子上随意抛一枚飞镖,则飞镖插在阴影区域的概率为()A.1﹣B.C.1﹣D.9.(4分)《九章算术》是我国古代内容极为丰富的数学名著,书中有这样一个问题:“今有勾八步,股十五步,问勾中容圆,径几何?”其意思是:“如图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”此问题中,该内切圆的直径是()A.5步B.6步C.8步D.10步10.(4分)方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,那么用此方法可推断出方程x2+2x﹣1=0的实数根x0所在的范围是()A.﹣1<x0<0 B.0<x0<1 C.1<x0<2 D.2<x0<3二、填空题:本题共6小题,每小题4分,共24分.11.(4分)若抛物线y=ax2+bx+c的开口向下,则a的值可能是.(写一个即可)12.(4分)从数﹣2,﹣1,2,5,8中任取一个数记作k,则反比例函数的图象在第二、四象限的概率是.13.(4分)一只不透明的袋子中装有红色、黑色、白色的球共有20个,这些球除颜色外,形状、大小、质地等完全相同.某校数学兴趣小组做试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,发现摸到红色、黑色球的频率分别稳定在0.1和0.3,则袋中白色球的个数很可能是个.14.(4分)如图,点A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为.15.(4分)如图,P(m,m)是反比例函数在第一象限内的图象上一点,以P为顶点作等边△P AB,使AB落在x轴上,则△POB的面积为.16.(4分)如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为5,则GE+FH的最大值为.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过称或演算步骤. 17.(8分)已知一个反比例函数图象经过点(4,﹣2),求这反比例函数的解析式.18.(8分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,CD=8,求BE的长.19.(8分)在如图的正方形网格中,点O在格点上,⊙O的半径与小正方形的边长相等,请利用无刻度的直尺完成作图,在图(1)中画出一个45°的圆周角,在图(2)中画出一个22.5°的圆周角.20.(8分)如图,一次函数y1=kx+b的图象与反比例函数的图象交于M,N两点.(1)利用图中条件,求m,n的值;(2)观察图象,直接写出当x的取值范围是时,有y1>y2.21.(10分)已知:如图AB是⊙O的直径,AC是弦,直线EF是过点C的⊙O的切线,AD⊥EF 于点D.(1)求证:∠BAC=∠CAD;(2)若∠B=30°,AB=12,求AC的长.22.(10分)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.23.(10分)如图,已知△ABC是等边三角形,以AB为直径作圆O,交BC边于点D,交AC边于点F,作DE⊥AC于点E.(1)求证:DE是圆O的切线;(2)若△ABC的边长为6,求EF的长度.24.(12分)如图,点A是反比例函数y1=(x>0)图象上的任意一点,过点A作AB∥x轴,交另一个比例函数y2=(k<0,x<0)的图象于点B.(1)若S△AOB的面积等于3,则k是=;(2)当k=﹣8时,若点A的横坐标是1,求∠AOB的度数;(3)若不论点A在何处,反比例函数y2=(k<0,x<0)图象上总存在一点D,使得四边形AOBD为平行四边形,求k的值.25.(12分)已知y关于x的二次函数:y=(m﹣n)x2+nx+t﹣n.(1)当m=t=0时,判断该函数图象和x轴的交点个数;(2)若n=t=3m,当x为何值时,函数有最值;(3)是否存在实数m和t,使该函数图象和x轴有交点,且n的最大值和最小值分别为8和4?若存在,求m和t值;若不存在,请说明理由.福建省九年级(上)期中数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合要求的.1.(4分)下列事件是必然事件的是()A.三角形内角和等于180°B.乘公共汽时恰好有空座C.打开手机有未接电话D.任意画一个正五边形它是中心对称图形【解答】解:A、是必然事件,故A符合题意;B、是随机事件,故B不符合题意;C、是随机事件,故C不符合题意;D、是随机事件,故D不符合题意;故选:A.2.(4分)下列抛物线中对称轴为直线x=1的是()A.y=x2B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2【解答】解:A、y=x2对称轴为x=0,此选项不符合题意;B、y=x2+1对称轴为x=0,此选项不符合题意;C、y=(x﹣1)2对称轴为x=1,此选项符合题意;D、y=(x+1)2对称轴为x=﹣1,此选项不符合题意;故选:C.3.(4分)若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为()A.6 B.﹣6 C.12 D.﹣12【解答】解:设反比例函数的解析式为y=,把A(3,﹣4)代入得:k=﹣12,即y=﹣,把B(﹣2,m)代入得:m=﹣=6,故选:A.4.(4分)如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC的度数为()A.20°B.40°C.60°D.80°【解答】解:∵⊙O是△ABC的外接圆,∠ABC=40°,∴∠AOC=2∠ABC=80°.故选:D.5.(4分)若抛物线y=x2﹣2x+m与x轴有交点,则m的取值范围是()A.m>1 B.m≥1C.m<1 D.m≤1【解答】解:根据题意得△=(﹣2)2﹣4m≥0,解得m≤1.故选:D.6.(4分)已知圆锥的底面面积为9πcm2,母线长为6cm,则该圆锥的侧面积是()A.18cm2B.27cm2C.18πcm2D.27πcm2【解答】解:∵圆锥的底面积为9πcm2,∴圆锥的底面半径为3cm,∵母线长为6cm,∴侧面积为3×6π=18πcm2,故选:C.7.(4分)将抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为()A.4 B.6 C.8 D.10【解答】解:将抛物线y=x2﹣1向下平移8个单位长度,其解析式变换为:y=x2﹣9而抛物线y=x2﹣9与x轴的交点的纵坐标为0,所以有:x2﹣9=0解得:x1=﹣3,x2=3,则抛物线y=x2﹣9与x轴的交点为(﹣3,0)、(3,0),所以,抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为6故选:B.8.(4分)如图,在菱形ABCD中,∠B=45°,以点A为圆心的扇形与BC,CD相切,向这样一个靶子上随意抛一枚飞镖,则飞镖插在阴影区域的概率为()A.1﹣B.C.1﹣D.【解答】解:如图,设切点为E,F,连接AE,∵以点A为圆心的扇形与BC,CD相切,∴AE⊥BC,∵∠B=45°,∴AE=BE=AB,∠BAC=135°,∴S=BC•AE=AB2,菱形ABCDS阴影=S菱形﹣S扇形=AB2﹣=πAB2,∴飞镖插在阴影区域的概率=1﹣,故选:A.9.(4分)《九章算术》是我国古代内容极为丰富的数学名著,书中有这样一个问题:“今有勾八步,股十五步,问勾中容圆,径几何?”其意思是:“如图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”此问题中,该内切圆的直径是()A.5步B.6步C.8步D.10步【解答】解:如图,在Rt△ABC中,AC=8,BC=15,∠C=90°,∴AB==17,∴S△ABC=AC•BC=×8×15=60,设内切圆的圆心为O,分别连接圆心和三个切点,及OA、OB、OC,设内切圆的半径为r,∴S△ABC=S△AOB+S△BOC+S△AOC=×r(AB+BC+AC)=20r,∴20r=60,解得r=3,∴内切圆的直径为6步,故选:B.10.(4分)方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,那么用此方法可推断出方程x2+2x﹣1=0的实数根x0所在的范围是()A.﹣1<x0<0 B.0<x0<1 C.1<x0<2 D.2<x0<3【解答】解:方程x2+2x﹣1=0的实数根可以看作函数y=x+2和y=的交点.函数大体图象如图所示:A.由图可得,第三象限内图象交点的横坐标小于﹣2,故﹣1<x0<0错误;B.当x=1时,y1=1+2=3,y2==1,而3>1,根据函数的增减性可知,第一象限内的交点的横坐标小于1,故0<x0<1正确;C.当x=1时,y1=1+2=3,y2==1,而3>1,根据函数的增减性可知,第一象限内的交点的横坐标小于1,故1<x0<2错误;D.当x=2时,y1=2+2=4,y2=,而4>,根据函数的增减性可知,第一象限内的交点的横坐标小于2,故2<x0<3错误.故选:B.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)若抛物线y=ax2+bx+c的开口向下,则a的值可能是﹣1.(写一个即可)【解答】解:∵抛物线y=ax2+bx+c的开口向下,∴a<0,∴a的值可能是﹣1,故答案为:﹣1.12.(4分)从数﹣2,﹣1,2,5,8中任取一个数记作k,则反比例函数的图象在第二、四象限的概率是.【解答】解:∵从数﹣2,﹣1,2,5,8中任取一个数记作k,有5种情况,其中使反比例函数的图象经过第二、四象限的k值只有2种,即k=﹣1和k=﹣2,∴满足条件的概率为.故答案为:.13.(4分)一只不透明的袋子中装有红色、黑色、白色的球共有20个,这些球除颜色外,形状、大小、质地等完全相同.某校数学兴趣小组做试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,发现摸到红色、黑色球的频率分别稳定在0.1和0.3,则袋中白色球的个数很可能是12个.【解答】解:根据题意得:20×(1﹣0.1﹣0.3)=12(个),答:袋中白色球的个数很可能是12个;故答案为:12.14.(4分)如图,点A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为5.【解答】解:如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这5个格点,故答案为:5.15.(4分)如图,P(m,m)是反比例函数在第一象限内的图象上一点,以P为顶点作等边△P AB,使AB落在x轴上,则△POB的面积为.【解答】解:作PD⊥OB,∵P(m,m)是反比例函数在第一象限内的图象上一点,∴m=,解得:m=3,∴PD=3,∵△ABP是等边三角形,∴BD=PD=,∴S△POB=OB•PD=(OD+BD)•PD=,故答案是:.16.(4分)如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为5,则GE+FH的最大值为7.5.【解答】解:如图1,连接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB为等边三角形,∵⊙O的半径为5,∴AB=OA=OB=5,∵点E,F分别是AC、BC的中点,∴EF=AB=,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵当弦GH是圆的直径时,它的最大值为:5×2=10,∴GE+FH的最大值为:10﹣=7.5.故答案为:7.5.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过称或演算步骤. 17.(8分)已知一个反比例函数图象经过点(4,﹣2),求这反比例函数的解析式.【解答】解:设这个反比例函数的解析式为y=(k≠0),依题意得:﹣2=,∴k=﹣8,这个反比例函数解析式为y=﹣.18.(8分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,CD=8,求BE的长.【解答】解:连接OC,如图∵弦CD⊥AB,∴CE=DE=CD=4,在Rt△OCE中,∵OC=5,CE=4,∴OE==3,∴BE=OB﹣OE=5﹣3=2.19.(8分)在如图的正方形网格中,点O在格点上,⊙O的半径与小正方形的边长相等,请利用无刻度的直尺完成作图,在图(1)中画出一个45°的圆周角,在图(2)中画出一个22.5°的圆周角.【解答】解:(1)如图1,连接OA、OB,在优弧AB上任意找一点C,连接AC、AB∠ACB为所求作(2)如图2,连接OA交圆O于点C,在优弧BC上任意找一点D,连接CD、BD,∠CDB为所求作20.(8分)如图,一次函数y1=kx+b的图象与反比例函数的图象交于M,N两点.(1)利用图中条件,求m,n的值;(2)观察图象,直接写出当x的取值范围是﹣1<x<0或x>2时,有y1>y2.【解答】解:(1)∵M、N在反比例函数的图象上,∴m==2,﹣4=,解得n=﹣1,∴m的值为2,n的值为﹣1;(2)当y1>y2时,即一次函数图象在反比例函数图象的上方,结合图象可知﹣1<x<0或x>2,故答案为:﹣1<x<0或x>2.21.(10分)已知:如图AB是⊙O的直径,AC是弦,直线EF是过点C的⊙O的切线,AD⊥EF 于点D.(1)求证:∠BAC=∠CAD;(2)若∠B=30°,AB=12,求AC的长.【解答】(1)证明:连接OC,如图,∵DE为切线,∴OC⊥DE,而AD⊥EF,∴OC∥AD,∴∠OCA=∠CAD,∵OA=OC,∴∠BAC=∠OCA,∴∠BAC=∠CAD;(2)解:∵AB为直径,∴∠ACB=90°,在Rt△ABC中,∵∠B=30°,∴AC=AB=×12=6.22.(10分)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.【解答】解:(1)所有可能出现的结果如图:从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为:;(2)不公平.从表格可以看出,两人抽取数字和为2的倍数有5种,两人抽取数字和为5的倍数有3种,所以甲获胜的概率为:,乙获胜的概率为:.∵>,∴甲获胜的概率大,游戏不公平.23.(10分)如图,已知△ABC是等边三角形,以AB为直径作圆O,交BC边于点D,交AC边于点F,作DE⊥AC于点E.(1)求证:DE是圆O的切线;(2)若△ABC的边长为6,求EF的长度.【解答】(1)证明:如图1,连接OD,∵△ABC是等边三角形,∴∠B=∠C=60°.∵OB=OD,∴∠ODB=∠B=60°.∵DE⊥AC,∴∠DEC=90°.∴∠EDC=30°.∴∠ODE=90°.∴DE⊥OD于点D.∵点D在⊙O上,∴DE是⊙O的切线;(2)解:如图2,连接AD,BF,∵AB为⊙O直径,∴∠AFB=∠ADB=90°.∴AF⊥BF,AD⊥B D.∵△ABC是等边三角形,∴DC =BC =×6=3,FC =AC =3.∵∠EDC =30°,∴EC =DC =.∴FE =FC ﹣EC =3﹣=1.5.24.(12分)如图,点A 是反比例函数y 1=(x >0)图象上的任意一点,过点A 作 AB ∥x轴,交另一个比例函数y 2=(k <0,x <0)的图象于点B . (1)若S △AOB 的面积等于3,则k 是= ﹣4 ;(2)当k =﹣8时,若点A 的横坐标是1,求∠AOB 的度数; (3)若不论点A 在何处,反比例函数y 2=(k <0,x <0)图象上总存在一点D ,使得四边形AOBD 为平行四边形,求k 的值.【解答】解:(1)如图1,设AB交y轴于点C,∵点A是反比例函数y1=(x>0)图象上的任意一点,且AB∥x轴,∴AB⊥y轴,∴S△AOC=×2=1,∵S△AOB=3,∴S△BOC=2,∴k=﹣4;故答案为:﹣4;(2)∵点A的横坐标是1,∴y==2,∴点A(1,2),∵AB∥x轴,∴点B的纵坐标为2,∴2=﹣,解得:x=﹣4,∴点B(﹣4,2),∴AB=AC+BC=1+4=5,OA==,OB==2,∴OA2+OB2=AB2,∴∠AOB=90°;(3)解:假设y2=上有一点D,使四边形AOBD为平行四边形,过D作DE⊥AB,过A作AC⊥x轴,∵四边形AOBD为平行四边形,∴BD=OA,BD∥OA,∴∠DBA=∠OAB=∠AOC,在△AOC和△DBE中,,∴△AOC≌△DBE(AAS),设A(a,)(a>0),即OC=a,AC=,∴BE=OC=a,DE=AC=,∴D纵坐标为,B纵坐标为,∴D横坐标为,B横坐标为,∴BE=|﹣|=a,即﹣=a,∴k=﹣4.25.(12分)已知y关于x的二次函数:y=(m﹣n)x2+nx+t﹣n.(1)当m=t=0时,判断该函数图象和x轴的交点个数;(2)若n=t=3m,当x为何值时,函数有最值;(3)是否存在实数m和t,使该函数图象和x轴有交点,且n的最大值和最小值分别为8和4?若存在,求m和t值;若不存在,请说明理由.【解答】解:(1)当m=t=0时,y=﹣nx2+nx﹣n,△=n2﹣4×n×(﹣n)=﹣n2,当n=0时,△=0,该函数图象与x轴有1个交点;当n≠0时,△<0,该函数图象与x轴没有交点;(2)若n=t=3m,抛物线的解析式为:y=(m﹣3m)x2+3mx=﹣mx2+3mx=﹣m(x﹣)2+,当﹣m>0,即m<0时,所以当x=时,函数有最小值为,当﹣m<0,即m>0时,所以当x=时,函数有最大值为;(3)y=(m﹣n)x2+nx+t﹣n,△=n2﹣4×(m﹣n)(t﹣n)=﹣n2+2(m+t)n﹣2mt,设w=﹣n2+2(m+t)n﹣2mt,∵该函数图象和x轴有交点,∴w≥0,∵n的最大值和最小值分别为8和4,∴新二次函数w与n轴有两个交点为(4,0)和(8,0),则w=﹣(n﹣4)(n﹣8)=﹣n2+12n﹣32,∴,,此方程组无实数解,∴不存在实数m和t,使该函数图象和x轴有交点.。

2016-2017年福建省福州八中九年级上学期期中数学试卷及参考答案

2016-2017年福建省福州八中九年级上学期期中数学试卷及参考答案

2016-2017学年福建省福州八中九年级(上)期中数学试卷一.选择题(共10小题,每小题4分,满分40分)1.(4分)下列图形依次是圆、正方形、平行四边形、正三角形,其中不是中心对称图形的是()A.B.C.D.2.(4分)方程x2=2x的解是()A.x=2 B.x1=2,x2=0 C.x1=﹣,x2=0 D.x=03.(4分)下列事件中,为必然事件的是()A.购买一张彩票,一定中奖B.打开电视,正在播放广告C.一个袋中只有装有5个黑球,从中摸出一个球是黑球D.抛掷一枚硬币,正面向上4.(4分)抛物线y=﹣3x2+2x﹣l的图象与坐标轴的交点个数是()A.无交点B.1个 C.2个 D.3个5.(4分)平面直角坐标系内一点P(﹣1,4)绕原点O顺时针旋转180°的对应点的坐标是()A.(1,4) B.(1,﹣4)C.(4,1) D.(﹣4,﹣1)6.(4分)将抛物线y=2(x﹣7)2+3平移,使平移后的函数图象顶点落在y轴上,则下列平移正确的是()A.向上平移3个单位B.向下平移3个单位C.向左平移7个单位D.向右平移7个单位7.(4分)如图所示,AB,AC与⊙O相切于点B,C,点P是圆上异于B、C的一动点,则∠BPC的度数是()A.65°B.115°C.65°或115°D.130°或50°8.(4分)如图,在平面直角坐标系中,⊙P与x轴相切于原点O,平行于y轴的直线交⊙P于M,N两点.若点M的坐标是(2,﹣1),则点N的坐标是()A.(2,﹣4)B.(2,﹣4.5) C.(2,﹣5)D.(2,﹣5.5)9.(4分)如图,在△ABC中,AB=AC,D是边BC的中点,一个圆过点A,交边AB于点E,且与BC相切于点D,则该圆的圆心是()A.线段AE的中垂线与线段AC的中垂线的交点B.线段AB的中垂线与线段AC的中垂线的交点C.线段AE的中垂线与线段BC的中垂线的交点D.线段AB的中垂线与线段BC的中垂线的交点10.(4分)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx﹣与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.二.填空题(共6小题,每小题4分,满分24分)11.(4分)抛物线y=x2+1的对称轴是.12.(4分)在一个不透明的袋子中有4个白球和6个红球,他们除了颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是.13.(4分)把图中的五角星图案,绕着它的中心旋转,旋转角至少为度时,旋转后的五角星能与自身重合.14.(4分)如图,在纸上剪下一个扇形和一个圆形,使之恰好围成一个圆锥,若圆的半径为1cm,若扇形的圆心角等于90°,则扇形的半径为.15.(4分)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为.16.(4分)如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数y=(k≠0,x >0)的图象过点B,E.若AB=2,则k的值为.三.解答题(共10小题,共86分)17.(6分)解方程:x2﹣4x+2=0.18.(6分)若关于x的方程x2+(2m﹣3)x+4=0有两个相等的实数根,求m的值.19.(8分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长度,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连接AD、CD.(2)请在(1)的基础上,完成下列问题:①写出点的坐标:C、D;②⊙D的半径=.(结果保留根号).20.(8分)一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性.(填“相同”或“不相同”);(2)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.25,则n的值是;(3)在(2)的条件下,从袋中随机摸出两个球,请用树状图或列表方法表示所有等可能的结果,并求出摸出的两个球颜色不同的概率.21.(8分)如图,正比例函数y=﹣x的图象与反比例函数y=的图象分别交于M,N两点,已知点M(﹣2,m).(1)求反比例函数的表达式;(2)当正比例函数的函数值小于反比例函数的函数值时,直接写出x的取值范围.22.(8分)已知:如图,AB是⊙O的一条弦,点C为的中点,CD是⊙O的直径,过C点的直线l交AB(除端点以外)于点E,交⊙O于点F.(1)判定图1中∠CEB与∠FDC的数量关系,并证明你的结论;(2)将直线l绕C点旋转(与CD不重合),在旋转过程中,E点,F点的位置也随之变化,试在下面备用图中画出∠CEB与∠FDC的数量关系发生变化后的图形,并直接写出∠CEB与∠FDC的数量关系.23.(10分)把一副三角板如图放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°,得到△D1CE1,这时AB与CD1相交于点O,与D1E1相交于点F.(1)在备用图中画出图形并标出相应的字母,并直接写出∠BOC的度数度;(2)求线段AD1的长.24.(10分)某商场销售一种笔记本,进价为每本10元.试营销阶段发现:当销售单价为12元时,每天可卖出100本,如调整价格,每涨价1元,每天要少卖出10本.(1)写出商场销售这种笔记本,每天所得的销售利润y(元)与销售单价x(元)之间的函数关系式(x>12);(2)若该笔记本的销售单价高于进价且不超过15元,求销售单价为多少元时,该笔记本每天的销售利润最大?并求出最大值.25.(10分)已知点A(﹣2,n)在抛物线y=x2+bx+c上.(1)若b=1,c=3,求n的值;(2)若此抛物线经过点B(4,n),且二次函数y=x2+bx+c的最小值是﹣4,请画出点P(x﹣1,x2+bx+c)的纵坐标随横坐标变化的图象,并说明理由.26.(12分)已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P是线段DE上一定点(其中EP<PD)(1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G.①求证:PG=PF;②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DF、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.2016-2017学年福建省福州八中九年级(上)期中数学试卷参考答案与试题解析一.选择题(共10小题,每小题4分,满分40分)1.(4分)下列图形依次是圆、正方形、平行四边形、正三角形,其中不是中心对称图形的是()A.B.C.D.【解答】解:根据中心对称图形的概念可确定A、B、C三项属于中心对称图形,D项为轴对称图形,不是中心对称图形.故选:D.2.(4分)方程x2=2x的解是()A.x=2 B.x1=2,x2=0 C.x1=﹣,x2=0 D.x=0【解答】解:x2=2x,x2﹣2x=0,x(x﹣2)=0,∴x=0,x﹣2=0,∴x1=0,x2=2,故选:B.3.(4分)下列事件中,为必然事件的是()A.购买一张彩票,一定中奖B.打开电视,正在播放广告C.一个袋中只有装有5个黑球,从中摸出一个球是黑球D.抛掷一枚硬币,正面向上【解答】解:A、是随机事件,选项错误;B、是随机事件,选项错误;C、是必然事件,选项正确;D、是随机事件,选项错误.故选:C.4.(4分)抛物线y=﹣3x2+2x﹣l的图象与坐标轴的交点个数是()A.无交点B.1个 C.2个 D.3个【解答】解:∵△=22﹣4×(﹣3)×(﹣1)=﹣8,∴抛物线与x轴没有公共点,∵x=0时,y=﹣3x2+2x﹣l=﹣1,∴抛物线与y轴的交点为(0,﹣1),∴抛物线y=﹣3x2+2x﹣l的图象与坐标轴的交点个数为1.故选:B.5.(4分)平面直角坐标系内一点P(﹣1,4)绕原点O顺时针旋转180°的对应点的坐标是()A.(1,4) B.(1,﹣4)C.(4,1) D.(﹣4,﹣1)【解答】解:根据题意得,点P关于原点的对称点是点P′,∵P点坐标为(﹣1,4),∴点P′的坐标(1,﹣4).故选:B.6.(4分)将抛物线y=2(x﹣7)2+3平移,使平移后的函数图象顶点落在y轴上,则下列平移正确的是()A.向上平移3个单位B.向下平移3个单位C.向左平移7个单位D.向右平移7个单位【解答】解:依题意可知,原抛物线顶点坐标为(7,3),平移后抛物线顶点坐标为(0,t)(t为常数),则原抛物线向左平移7个单位即可.故选:C.7.(4分)如图所示,AB,AC与⊙O相切于点B,C,点P是圆上异于B、C的一动点,则∠BPC的度数是()A.65°B.115°C.65°或115°D.130°或50°【解答】解:分别连接O、C;O、B;B、P1;B、P2;C、P1;C、P2各点(1)当∠BPC为锐角,也就是∠BP1C时:∵AB,AC与⊙O相切于点B,C两点∴OC⊥AC,OB⊥AB,∵∠A=50°,∴在△ABC中,∠COB=130°,∵在⊙O中,∠BP1C为圆周角,∴∠BP1C=65°,(2)如果当∠BPC为钝角,也就是∠BP2C时∵四边形BP1CP2为⊙O的内接四边形,∵∠BP1C=65°,∴∠BP2C=115°,故∠BPC的度数是65°或115°.故选:C.8.(4分)如图,在平面直角坐标系中,⊙P与x轴相切于原点O,平行于y轴的直线交⊙P于M,N两点.若点M的坐标是(2,﹣1),则点N的坐标是()A.(2,﹣4)B.(2,﹣4.5) C.(2,﹣5)D.(2,﹣5.5)【解答】解:过点M作MA⊥OP,垂足为A设PM=x,PA=x﹣1,MA=2则x2=(x﹣1)2+4,解得x=,∵OP=PM=,PA=﹣1=,∴OP+PA=4,所以点N的坐标是(2,﹣4)故选:A.9.(4分)如图,在△ABC中,AB=AC,D是边BC的中点,一个圆过点A,交边AB于点E,且与BC相切于点D,则该圆的圆心是()A.线段AE的中垂线与线段AC的中垂线的交点B.线段AB的中垂线与线段AC的中垂线的交点C.线段AE的中垂线与线段BC的中垂线的交点D.线段AB的中垂线与线段BC的中垂线的交点【解答】解:连接AD,作AE的中垂线交AD于O,连接OE,∵AB=AC,D是边BC的中点,∴AD⊥BC.∴AD是BC的中垂线,∵BC是圆的切线,∴AD必过圆心,∵AE是圆的弦,∴AE的中垂线必过圆心,∴该圆的圆心是线段AE的中垂线与线段BC的中垂线的交点,故选:C.10.(4分)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx﹣与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.【解答】解:∵抛物线对称轴在y轴右侧,∴ab<0,∵抛物线与y轴的交点在x轴下方,∴c<0,对于一次函数y=cx﹣,c<0,图象经过第二、四象限;<0,图象与y轴的交点在x轴上方;对于反比例函数y=,ab<0,图象分布在第二、四象限故选:A.二.填空题(共6小题,每小题4分,满分24分)11.(4分)抛物线y=x2+1的对称轴是直线x=0.【解答】解:y=2x2+1的对称轴是x=﹣=0.故答案为:直线x=0.12.(4分)在一个不透明的袋子中有4个白球和6个红球,他们除了颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是.【解答】解:由题意可得,摸到白球的概率是:,故答案为:.13.(4分)把图中的五角星图案,绕着它的中心旋转,旋转角至少为72度时,旋转后的五角星能与自身重合.【解答】解:该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,旋转角至少为72°.故答案为:72.14.(4分)如图,在纸上剪下一个扇形和一个圆形,使之恰好围成一个圆锥,若圆的半径为1cm,若扇形的圆心角等于90°,则扇形的半径为4cm.【解答】解:扇形的弧长等于底面圆的周长得出2π.设扇形的半径是r,则=2π,解得:r=4.故答案为:4cm.15.(4分)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为2.【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC﹣OP=5﹣3=2.∴PC最小值为2.故答案为2.16.(4分)如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数y=(k≠0,x >0)的图象过点B,E.若AB=2,则k的值为6+2.【解答】解:设E(x,x),∴B(2,x+2),∵反比例函数y=(k≠0,x>0)的图象过点B、E.∴x2=2(x+2),解得x1=1+,x2=1﹣(舍去),∴k=x2=6+2,故答案为6+2.三.解答题(共10小题,共86分)17.(6分)解方程:x2﹣4x+2=0.【解答】解:x2﹣4x=﹣2x2﹣4x+4=2(x﹣2)2=2或∴,.18.(6分)若关于x的方程x2+(2m﹣3)x+4=0有两个相等的实数根,求m的值.【解答】解:∵方程x2+(2m﹣3)x+4=0有两个相等的实数根,∴△=(2m﹣3)2﹣4×4=0,解得m=,或m=﹣.19.(8分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长度,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连接AD、CD.(2)请在(1)的基础上,完成下列问题:①写出点的坐标:C(6,2)、D(2,0);②⊙D的半径=2.(结果保留根号).【解答】解:(1)如图所示:(2)①C(6,2)、D(2,0);②⊙D的半径====.20.(8分)一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性相同.(填“相同”或“不相同”);(2)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.25,则n的值是2;(3)在(2)的条件下,从袋中随机摸出两个球,请用树状图或列表方法表示所有等可能的结果,并求出摸出的两个球颜色不同的概率.【解答】解:(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性相同;故答案为:相同;(2)利用频率估计概率得到摸到绿球的概率为0.25,则=0.25,解得n=2,故答案为2;(3)画树状图为:共有12种等可能的结果数,其中两次摸出的球颜色不同的结果共有10 种,所以两次摸出的球颜色不同的概率=.21.(8分)如图,正比例函数y=﹣x的图象与反比例函数y=的图象分别交于M,N两点,已知点M(﹣2,m).(1)求反比例函数的表达式;(2)当正比例函数的函数值小于反比例函数的函数值时,直接写出x的取值范围.【解答】解:(1)∵点M(﹣2,m)在正比例函数y=﹣x的图象上,∴m=﹣×(﹣2)=1,∴M(﹣2,1),∵反比例函数y=的图象经过点M(﹣2,1),∴k=﹣2×1=﹣2.∴反比例函数的解析式为y=﹣;(2)当正比例函数的函数值小于反比例函数的函数值时,x的取值范围是﹣2<x<0或x>2.22.(8分)已知:如图,AB是⊙O的一条弦,点C为的中点,CD是⊙O的直径,过C点的直线l交AB(除端点以外)于点E,交⊙O于点F.(1)判定图1中∠CEB与∠FDC的数量关系,并证明你的结论;(2)将直线l绕C点旋转(与CD不重合),在旋转过程中,E点,F点的位置也随之变化,试在下面备用图中画出∠CEB与∠FDC的数量关系发生变化后的图形,并直接写出∠CEB与∠FDC的数量关系∠CEB=∠FDC.【解答】(1)解:∠CEB=∠FDC;理由:∵CD是⊙O的直径,点C为的中点,∴CD⊥AB,∴∠CEB+∠ECD=90°,∵CD是⊙O的直径,∴∠CFD=90°.∴∠FDC+∠ECD=90°.∴∠CEB=∠FDC.(2)证明:如图②∵CD是⊙O的直径,点C为的中点,∴CD⊥AB,∴∠CEB+∠ECD=90°,∵CD是⊙O的直径,∴∠CFD=90°.∴∠FDC+∠ECD=90°.∴∠CEB=∠FDC.故答案为:∠CEB=∠FDC.23.(10分)把一副三角板如图放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°,得到△D1CE1,这时AB与CD1相交于点O,与D1E1相交于点F.(1)在备用图中画出图形并标出相应的字母,并直接写出∠BOC的度数90度;(2)求线段AD1的长.【解答】解:(1)如图乙所示,∠BCO=60°﹣15°=45°,∠BOC=180°﹣45°﹣45°=90°;(2)如图乙所示,∵∠3=15°,∠E1=90°,∴∠1=∠2=75°,又∵∠B=45°,∴∠OFE1=∠B+∠1=45°+75°=120°;∴∠D1FO=60°,∵∠CD1E1=30°,∴∠4=90°,又∵AC=BC,∠A=45°即△ABC是等腰直角三角形.∴OA=OB=AB=3cm,∵∠ACB=90°,∴CO=AB=×6=3(cm),又∵CD1=7(cm),∴OD1=CD1﹣OC=7﹣3=4(cm),在Rt△AD1O中,AD1===5(cm).故答案为:90.24.(10分)某商场销售一种笔记本,进价为每本10元.试营销阶段发现:当销售单价为12元时,每天可卖出100本,如调整价格,每涨价1元,每天要少卖出10本.(1)写出商场销售这种笔记本,每天所得的销售利润y(元)与销售单价x(元)之间的函数关系式(x>12);(2)若该笔记本的销售单价高于进价且不超过15元,求销售单价为多少元时,该笔记本每天的销售利润最大?并求出最大值.【解答】解:(1)y=(x﹣10)[100﹣10(x﹣12)=(x﹣10)(100﹣10x+120)=﹣10x2+320x﹣2200;(2)y=﹣10x2+320x﹣2200=﹣10(x﹣16)2+360,由题意可得:10<x≤15,∵a=﹣10<0,对称轴为直线x=16,∴抛物线开口向下,在对称轴左侧,y随x的增大而增大,∴当x=15时,y取最大值为350元,答:销售单价为15元时,该文具每天的销售利润最大,最大值是350元.25.(10分)已知点A(﹣2,n)在抛物线y=x2+bx+c上.(1)若b=1,c=3,求n的值;(2)若此抛物线经过点B(4,n),且二次函数y=x2+bx+c的最小值是﹣4,请画出点P(x﹣1,x2+bx+c)的纵坐标随横坐标变化的图象,并说明理由.【解答】解:(1)∵b=1,c=3,A(﹣2,n)在抛物线y=x2+bx+c上.∴n=4+(﹣2)×1+3=5.(2)∵此抛物线经过点A(﹣2,n),B(4,n),∴抛物线的对称轴x==1,∵二次函数y=x2+bx+c的最小值是﹣4,∴抛物线的解析式为y=(x﹣1)2﹣4,令x﹣1=x′,∴点P(x﹣1,x2+bx+c)的纵坐标随横坐标变化的关系式为y=x′2﹣4,点P(x﹣1,x2+bx+c)的纵坐标随横坐标变化的如图:26.(12分)已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P是线段DE上一定点(其中EP<PD)(1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G.①求证:PG=PF;②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DF、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.【解答】解:(1)①∵∠GPF=∠HPD=90°,∠ADC=90°,∴∠GPH=∠FPD,∵DE平分∠ADC,∴∠PDF=∠ADP=45°,∴△HPD为等腰直角三角形,∴∠DHP=∠PDF=45°,在△HPG和△DPF中,∵,∴△HPG≌△DPF(ASA),∴PG=PF;②结论:DG+DF=DP,由①知,△HPD为等腰直角三角形,△HPG≌△DPF,∴HD=DP,HG=DF,∴HD=HG+DG=DF+DG,∴DG+DF=DP;(2)不成立,数量关系式应为:DG﹣DF=DP,如图,过点P作PH⊥PD交射线DA于点H,∵PF⊥PG,∴∠GPF=∠HPD=90°,∴∠GPH=∠FPD,∵DE平分∠ADC,且在矩形ABCD中,∠ADC=90°,∴∠HDP=∠EDC=45°,得到△HPD为等腰直角三角形,∴∠DHP=∠EDC=45°,且PH=PD,HD=DP,∴∠GHP=∠FDP=180°﹣45°=135°,在△HPG和△DPF中,∵∴△HPG≌△DPF,∴HG=DF,∴DH=DG﹣HG=DG﹣DF,∴DG﹣DF=DP.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

福建省福州市平潭城关教研片届九年级数学上学期期中试卷(含解析)新人教版【含解析】

福建省福州市平潭城关教研片届九年级数学上学期期中试卷(含解析)新人教版【含解析】

2016-2017学年福建省福州市平潭城关九年级(上)期中数学试卷一、选择题:共12小题,每题3分,共36分.1.若x2=1,则x的值为()A.1 B.﹣1 C.±1 D.02.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.如图,在半径为5cm的⊙O中,弦AB=8cm,OC⊥AB于点C,则OC=()A.3cm B.4cm C.5cm D.6cm4.已知⊙O的半径r=5cm,点A到圆心O的距离为8cm,则点A和⊙O的位置关系为()A.圆内 B.圆外 C.圆上 D.无法确定5.抛物线y=2(x+3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)6.抛物线y=x2+4x+4的对称轴是()A.直线x=4 B.直线x=﹣4 C.直线x=2 D.直线x=﹣27.某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x,那么x满足的方程是()A.100(1+x)2=81 B.100(1﹣x)2=81 C.100(1﹣x%)2=81 D.100x2=818.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是()A.y=3(x﹣1)2﹣2 B.y=3(x+1)2﹣2 C.y=3(x+1)2+2 D.y=3(x﹣1)2+29.如图,若一次函数y=ax+b的图象经过二、三、四象限,则二次函数y=ax2+bx的图象可能是()A .B .C .D .10.如图,AB 是⊙O 的直径, ==,∠COD=32°,则∠AEO 的度数是( )A .48°B .51°C .56°D .58°11.如图,将Rt △ABC 绕点A 按顺时针方向旋转一定角度得到Rt △ADE ,点B 的对应点D 恰好落在BC 边上,若DE=2,∠B=60°,则CD 的长为( )A .0.5B .1.5C .D .112.如图为二次函数y=ax 2+bx+c (a ≠0)的图象,则下列说法:①2a+b=0;②a+b+c >0;③当﹣1<x <3时,y >0;④﹣a+c <0.其中正确的个数为( )A .1B .2C .3D .4二、填空题:共6题,每小题4分,共24分.13.平面直角坐标系中,一点P (﹣2,3)关于原点的对称点P′的坐标是 .14.如果关于x 的方程x 2﹣2x+m=0(m 为常数)有两个相等实数根,那么m= .15.如图,四边形ABCD内接于⊙O,若∠A=90°,则∠BCD的度数是.16.在△ABC中,∠ABC=60°,∠ACB=80°,点O是内心,则∠BOC的度数为.17.在平面直角坐标系中,将点A(4,2)绕原点逆时针方向旋转90°后,其对应点A′的坐标为.18.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2014的横坐标为.三、解答题:共9题,共90分.19.解方程:(1)x2﹣x﹣1=0;(2)(x+4)2=5(x+4).20.已知一元二次方程x2﹣2x+m=0.(1)当一个根x=3时,求m的值和方程的另一个根;(2)若该方程一定有实数根,求m的取值范围.21.在长为8cm、宽为5cm的矩形的四个角上分别截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.22.在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.23.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积S△MCB.24.AB是⊙O的直径,∠DAB=22.5°,延长AB到点C,使得∠ACD=45°.(1)求证:CD是⊙O的切线;(2)若AB=2,求BC的长.25.中秋节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法.对水库中某种鲜鱼进行捕捞销售,第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如下:假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出.(1)求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)(2)在第几天y取得最大值,最大值是多少?26.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A 在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),抛物线在x轴下方的部分沿x轴翻折得到与原抛物线剩余的部分组成如图所示的图形,若直线y=kx+1与这个图形只有两个公共点,请求出此时k的取值范围.2016-2017学年福建省福州市平潭城关教研片九年级(上)期中数学试卷参考答案与试题解析一、选择题:共12小题,每题3分,共36分.1.若x2=1,则x的值为()A.1 B.﹣1 C.±1 D.0【考点】平方根.【分析】根据平方根的定义解答.【解答】解:∵(±1)2=1,∴x=±1.故选C.2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:C.3.如图,在半径为5cm的⊙O中,弦AB=8cm,OC⊥AB于点C,则OC=()A.3cm B.4cm C.5cm D.6cm【考点】垂径定理;勾股定理.【分析】连接OB,构建直角△OCB,根据垂径定理得:BC=AB=×8=4,利用勾股定理可求OC的长.【解答】解:如图,连接OB,∵OC⊥AB,∴BC=AB=×8=4,∵OB=5,由勾股定理得:OC===3cm;故选A.4.已知⊙O的半径r=5cm,点A到圆心O的距离为8cm,则点A和⊙O的位置关系为()A.圆内 B.圆外 C.圆上 D.无法确定【考点】点与圆的位置关系.【分析】直接根据点与圆的位置关系即可得出结论.【解答】解:∵⊙O的半径r=5cm,点A到圆心O的距离为8cm,5cm<8cm,∴点A在圆外.故选B.5.抛物线y=2(x+3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)【考点】二次函数的性质.【分析】已知抛物线的顶点式,可直接写出顶点坐标.【解答】解:由y=3(x+3)2+1,根据顶点式的坐标特点可知,顶点坐标为(﹣3,1),故选C.6.抛物线y=x2+4x+4的对称轴是()A.直线x=4 B.直线x=﹣4 C.直线x=2 D.直线x=﹣2【考点】二次函数的性质.【分析】根据抛物线y=ax2+bx+c的对称轴公式为x=﹣,此题中的a=1,b=4,将它们代入其中即可.【解答】解:x=﹣=﹣=﹣2.故选D.7.某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x,那么x满足的方程是()A.100(1+x)2=81 B.100(1﹣x)2=81 C.100(1﹣x%)2=81 D.100x2=81【考点】由实际问题抽象出一元二次方程.【分析】若两次降价的百分率均是x,则第一次降价后价格为100(1﹣x)元,第二次降价后价格为100(1﹣x)(1﹣x)=100(1﹣x)2元,根据题意找出等量关系:第二次降价后的价格=81元,由此等量关系列出方程即可.【解答】解:设两次降价的百分率均是x,由题意得:x满足方程为100(1﹣x)2=81.故选:B.8.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是()A.y=3(x﹣1)2﹣2 B.y=3(x+1)2﹣2 C.y=3(x+1)2+2 D.y=3(x﹣1)2+2【考点】二次函数图象与几何变换.【分析】根据图象向下平移减,向右平移减,可得答案.【解答】解:抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是y=3(x﹣1)2﹣2,故选:A.9.如图,若一次函数y=ax+b的图象经过二、三、四象限,则二次函数y=ax2+bx的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数图象与系数的关系.【分析】直接利用一次函数图象经过的象限得出a,b的符号,进而结合二次函数图象的性质得出答案.【解答】解:∵一次函数y=ax+b的图象经过二、三、四象限,∴a<0,b<0,∴二次函数y=ax2+bx的图象可能是:开口方向向下,对称轴在y轴右侧,故选:D.10.如图,AB是⊙O的直径, ==,∠COD=32°,则∠AEO的度数是()A.48° B.51° C.56° D.58°【考点】圆周角定理;圆心角、弧、弦的关系.【分析】可求得∠BOC=∠EOD=∠COD=32°,继而可求得∠AOE的度数;然后再根据等腰三角形的性质和三角形内角和定理来求∠AEO的度数.【解答】解:∵==,∠COD=32°,∴∠BOC=∠EOD=∠COD=32°,∴∠AOE=180°﹣∠EOD﹣∠COD﹣∠BOC=84°.又∵OA=OE,∴∠AEO=∠OAE,∴∠AEO=×=48°.故选:A.11.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若DE=2,∠B=60°,则CD的长为()A.0.5 B.1.5 C.D.1【考点】旋转的性质;含30度角的直角三角形.【分析】先在直角三角形ABC中,求出AB,BC,然后判断出BD=AB=1,简单计算即可.【解答】解:由旋转得,DE=BC,AD=AB,∠B=∠ADE,∴在Rt△ADE中,DE=2,∠ADE=60°,∴AB=1,BC=2,∵∠B=60°,∴BD=AB=1,∴CD=BC﹣BD=2﹣1=1,故选D.12.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①2a+b=0;②a+b+c>0;③当﹣1<x<3时,y>0;④﹣a+c<0.其中正确的个数为()A.1 B.2 C.3 D.4【考点】抛物线与x轴的交点;二次函数图象与系数的关系.【分析】根据函数的开口方向,对称轴以及与y轴的交点确定a,b,c的符号,从而判断④;根据对称轴的位置判断①;根据x=1时的纵坐标的位置判断②;根据二次函数图象落在x轴上方的部分对应的自变量x的取值,判断③.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)的开口向下,∴a<0,∵函数与y轴的正半轴相交,∴c>0,∴﹣a+c>0,故④错误;②∵二次函数与x轴的交点的坐标为(﹣1,0),(3,0),∴对称轴为x═1,即﹣=1,∴b=﹣2a,即2a+b=0,故①正确;③∵函数的顶点在第一象限,∴x=1时,y=a+b+c>0,故②正确;④∵二次函数与x轴的交点的坐标为(﹣1,0),(3,0),图象开口向下,∴当﹣1<x<3时,y>0.故③正确.所以正确的个数为3个,故选C.二、填空题:共6题,每小题4分,共24分.13.平面直角坐标系中,一点P(﹣2,3)关于原点的对称点P′的坐标是(2,﹣3).【考点】关于原点对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),从而可得出答案.【解答】解:根据中心对称的性质,得点P(﹣2,﹣3)关于原点对称点P′的坐标是(2,﹣3).故答案为:(2,﹣3).14.如果关于x的方程x2﹣2x+m=0(m为常数)有两个相等实数根,那么m= 1 .【考点】根的判别式.【分析】本题需先根据已知条件列出关于m的等式,即可求出m的值.【解答】解:∵x的方程x2﹣2x+m=0(m为常数)有两个相等实数根∴△=b2﹣4ac=(﹣2)2﹣4×1•m=04﹣4m=0m=1故答案为:115.如图,四边形ABCD内接于⊙O,若∠A=90°,则∠BCD的度数是90°.【考点】圆内接四边形的性质.【分析】直接根据圆内接四边形的性质即可得出结论.【解答】解:∵四边形ABCD内接于⊙O,∴∠C+∠A=180°.∵∠A=90°,∴∠C=180°﹣90°=90°.故答案为:90°.16.在△ABC中,∠ABC=60°,∠ACB=80°,点O是内心,则∠BOC的度数为110°.【考点】三角形的内切圆与内心.【分析】根据内心的概念和角平分线的定义解答即可.【解答】解:∵点O是△ABC的内心,∴∠ABO=∠OBC=∠ABC,∠OCB=∠OCA=∠ACB,∴∠OBC=40°,∠ACB=30°,∴∠BOC=180°﹣∠OBC﹣∠OCB=110°.故答案为:110°.17.在平面直角坐标系中,将点A(4,2)绕原点逆时针方向旋转90°后,其对应点A′的坐标为(﹣2,4).【考点】坐标与图形变化-旋转.【分析】建立网格平面直角坐标系,然后确定出点A与A′的位置,再写出坐标即可.【解答】解:如图A′的坐标为(﹣2,4).故答案为:(﹣2,4).18.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2014的横坐标为10070 .【考点】规律型:点的坐标;坐标与图形变化-旋转.【分析】首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案.【解答】解:由题意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的横坐标为:10,B4的横坐标为:2×10=20,∴点B2014的横坐标为:×10=10070.故答案为:10070.三、解答题:共9题,共90分.19.解方程:(1)x2﹣x﹣1=0;(2)(x+4)2=5(x+4).【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】(1)公式法求解可得;(2)因式分解法求解可得.【解答】解:(1)∵a=1,b=﹣1,c=﹣1,∴△=1﹣4×1×(﹣1)=5>0,则x=;(2)∵(x+4)2﹣5(x+4)=0,∴(x+4)(x﹣1)=0,则x+4=0或x﹣1=0,解得:x=﹣4或x=1.20.已知一元二次方程x2﹣2x+m=0.(1)当一个根x=3时,求m的值和方程的另一个根;(2)若该方程一定有实数根,求m的取值范围.【考点】根与系数的关系;根的判别式.【分析】(1)将x=3代入方程求出m的值,再利用根与系数的关系即可求出另一根;(2)根据方程有两个实数根,得到根的判别式的值大于等于0,列出关于m的不等式,求出不等式的解集即可得到m的范围.【解答】解:(1)将x=3代入方程得:9﹣6+m=0,即m=﹣3,∴方程为x2﹣2x﹣3=0,设另一根为a,∴3+a=2,即a=﹣1,则m的值为﹣3,方程另一根为﹣1.(2)∵该方程一定有实数根,∴△=4﹣4m≥0,解得:m≤1.故m的取值范围是m≤1.21.在长为8cm、宽为5cm的矩形的四个角上分别截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.【考点】一元二次方程的应用.【分析】等量关系为:矩形面积﹣四个全等的小正方形面积=矩形面积×80%,列方程即可求解.【解答】解:设小正方形的边长为xcm,由题意得8×5﹣4x2=80%×5×8,40﹣4x2=32,4x2=8,x2=2.解得:x1=,x2=﹣,经检验x1=符合题意,x2=﹣不符合题意,舍去;所以x=.答:截去的小正方形的边长为cm.22.在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.【考点】作图-旋转变换.【分析】(1)根据网格结构找出点B、C的对应点B1、C1的位置,然后与点A顺次连接即可;(2)以点B向右3个单位,向下5个单位为坐标原点建立平面直角坐标系,然后写出点A、C的坐标即可;(3)根据网格结构找出点A、B、C关于原点的对称点A2、B2、C2的位置,然后顺次连接即可.【解答】解:(1)△AB1C1如图所示;(2)如图所示,A(0,1),C(﹣3,1);(3)△A2B2C2如图所示,B2(3,﹣5),C2(3,﹣1).23.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积S△MCB.【考点】二次函数综合题.【分析】(1)将已知的三点坐标代入抛物线中,即可求得抛物线的解析式.(2)可根据抛物线的解析式先求出M和B的坐标,由于三角形MCB的面积无法直接求出,可将其化为其他图形面积的和差来解.过M作ME⊥y轴,三角形MCB的面积可通过梯形MEOB 的面积减去三角形MCE的面积减去三角形OBC的面积求得.【解答】解:(1)依题意:,解得∴抛物线的解析式为y=﹣x2+4x+5(2)令y=0,得(x﹣5)(x+1)=0,x1=5,x2=﹣1,∴B(5,0).由y=﹣x2+4x+5=﹣(x﹣2)2+9,得M(2,9)作ME⊥y轴于点E,可得S△MCB=S梯形MEOB﹣S△MCE﹣S△OBC=(2+5)×9﹣×4×2﹣×5×5=15.24.AB是⊙O的直径,∠DAB=22.5°,延长AB到点C,使得∠ACD=45°.(1)求证:CD是⊙O的切线;(2)若AB=2,求BC的长.【考点】切线的判定;圆周角定理.【分析】(1)连接DO,由三角形的外角与内角的关系易得∠DOC=∠C=45°,故有∠ODC=90°,即CD是圆的切线.(2)由1知,CD=OD=AB,由弦切角定理可得∠CDB=∠A,故有△ADC∽△DBC,得到CD2=CB•CA=CB(CB+AB)而求得BC的值.【解答】(1)证明:连接DO,∵AO=DO,∴∠DAO=∠ADO=22.5°.∴∠DOC=45°.又∵∠ACD=2∠DAB,∴∠ACD=∠DOC=45°.∴∠ODC=90°.又 OD是⊙O的半径,∴CD是⊙O的切线.(2)解:连接DB,∵直径AB=2,△OCD为等腰直角三角形,∴CD=OD=,OC==2,∴BC=OC﹣OB=2﹣.25.中秋节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法.对水库中某种鲜鱼进行捕捞销售,第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如下:假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出.(1)求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)(2)在第几天y取得最大值,最大值是多少?【考点】二次函数的应用.【分析】(1)根据收入=捕捞量×单价﹣捕捞成本,列出函数表达式;(2)将实际转化为求函数最值问题,从而求得最大值.【解答】解:(1)由题意,得y=20×﹣(5﹣)×=﹣2x2+40x+14250;(2)∵﹣2<0,y=﹣2x2+40x+14250=﹣2(x﹣10)2+14450,又∵1≤x≤20且x为整数,∴当1≤x≤10时,y随x的增大而增大;当10≤x≤20时,y随x的增大而减小;当x=10时即在第10天,y取得最大值,最大值为14450.26.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A 在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),抛物线在x轴下方的部分沿x轴翻折得到与原抛物线剩余的部分组成如图所示的图形,若直线y=kx+1与这个图形只有两个公共点,请求出此时k的取值范围.【考点】二次函数综合题.【分析】(1)将k=1代入抛物线解析式和直线解析式,联立方程组,即可求出交点A、B的坐标;(2)过点P做y轴平行线,将三角形ABP分割成两个小三角形,以PF为底,则两个三角形高的和为AB两点的水平距离,即可求出三角形面积;(3)将图形折叠,求出直线与翻折后的抛物线相切的情况,联立方程组,求出k值,结合k>0,即可求出k的取值范围.【解答】解:(1)当k=1时,抛物线的解析式为y=x2﹣1,直线的解析式为y=x+1,联立直线与抛物线,得:,解得x1=﹣1,x2=2,当x=﹣1时,y﹣x+1=0;当x=2时,y=x+1=3,∴A(﹣1,0),B(2,3);(2)设P(x,x2﹣1)如下图,过点P作PF∥y轴,交直线AB于F,则F(x,x+1),PF=y F﹣y P=(x+1)﹣(x2﹣1)=﹣x2+x+2,S△ABP=S△PFA+S△PFB=PF(x F﹣x A)+PF(x B﹣x F)PF,S△ABP=(﹣x2+x+2)=﹣(x﹣)2+∵当x=时,y P=()2﹣1=﹣,∴△ABP面积的最大值为,此时点P的坐标(,﹣);(3)如下图:令二次函数y=0,x2+(k﹣1)x﹣k=0,即:(x+k)(x﹣1)=0,x=k,或x=1,C(k,0),D(1,0),直线y=kx+1过(0,1),将抛物线y=x2+(k﹣1)x﹣k关于x轴对称,得:y=﹣x2﹣(k﹣1)x+k联立直线y=kx+1,得:x2+(2k﹣1)x+1﹣k=0△=(2k﹣1)2﹣4(1﹣k)=0得:k=﹣(舍)或k=,∵k>0,∴0<k<。

2016-2017学年度最新人教版九年级数学初三第一学期期中测试题及答案

2016-2017学年度最新人教版九年级数学初三第一学期期中测试题及答案
2016-2017学年度九年级数学第一学期期中测试题
一选择题:本大题同12小题,每小题3分,共36分。
1.在下列电视台的图标中,是中心对称图形的是()
2.A(2,-3)关于原点对称的点在()
A.第一象限B.第二象限C.第三象限D.第三象限
3.下列方程是关于x的一元二次方程的是()
A.ax2+bx+c=0 B. C.x2+2x=x2-1 D.3(x+1)2=2(x+1)
A.2个B.3个C.4个D.5个
二填空题:本大题6小题,每小题3分,共18分。
13.设x1,x2是一元二次方程x2-5x-1=0的两实数根,则x1+x2的值为.
14.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为.
15.圆的两条平行弦的长分别为6、8,若圆的半径为5,则这两条平行弦之间的距离为.
(1)如图2,固定△ABC,将△A/B/C绕点C旋转,当点A/恰好落在AB边上时,
①∠CA/B/=;旋转角ɑ=(00<ɑ<900),线段A/B/与AC的位置关系是;
②设△A/BC的面积为S1,△AB/C的面积为S2,则S1与S2的数量关系是什么?证明你的ON,OP=PN=4,PQ//MO交ON于点Q.若在射线OM上存在点F,使 ,请直接写出相应的OF的长.
第5题图第6题图
6.如图,CE是圆O的直径,⊙O的直径,AB为⊙O的弦,EC⊥AB,垂足为D,下面结论正确的有( )
①AD=BD;②弧AC=弧BC;③弧AE=弧BE;④OD=CD.
A.1个B.2个C.3个D.4个
7.如图,⊙O的两条弦AE、BC相交于点D,连接AC、BE、OA、OB,若∠ACB=600.则下列结论正确的是()

福州市教育教学质量监控体系的研究课题度九年级上期中数学试卷含详细答案doc

福州市教育教学质量监控体系的研究课题度九年级上期中数学试卷含详细答案doc

“福州市教育教学质量监控体系旳研究”课题—第一学期期中测试九年级数学试卷第Ⅰ卷一、选择题(每题4分,共40分)1.下列各式中,属于最简二次根式旳是( )A .21x +B .y x xC .12D .1122.两圆旳半径R 、r 分别3和1,且圆心距d =4,则两圆旳位置关系是( )A .外切B .内切C .外离D .相交3.有关x 旳一元二次方程x 2-3x +2-m 2=0旳根旳状况是( )A .有两个不相等旳实根B .有两个相等旳实根C .无实数根D .不能拟定4.如图,⊙O 旳直径为10 cm ,弦AB 为8 cm ,则圆心O 到弦AB 旳距离是( )A .6 cmB .5 cmC .4 cmD .3 cm5.下列美丽旳图案,既是轴对称图形又是中心对称图形旳个数是( )A .1个B .2个C .3个D .4个6.如果21-x 故意义,则x 旳取值范畴是( )A .x >2B .x ≥2C .x <2D .x ≤27.一元二次方程032=-x x 旳解是( )A .x =0B .x =3C .01=x ,32-=xD .01=x ,32=x8.某工厂今年产值为a ,筹划此后每年平均增长m %,那么两年后旳产值是( )A .2a (1+m %)B .a (1+m %)2C .a +2m %D .a +2a (1+m %)9.如图所示旳图形(1)是两个同底旳圆锥摞在一起,可以看作是图(2)中直角三角形ABC ( )A .绕AC 旋转一周得到B .绕AB 旋转一周得到C .绕BC 旋转一周得到D .绕CD 旋转一周得到10.如图,边长为1旳正方形ABCD 绕点A 逆时针旋转30°到正方形A B 1C 1D 1,图中阴影部分旳面积为( )A .12B .33C .1-33D .1-34第Ⅱ卷二、填空题(每题4分,共40分)11.计算(5-26)(5+26)=__________________;12.若方程x 2-m =0有整数根,则m 旳值可以是_________(只填一种);13.在平面直角坐标系中,点A 旳坐标为(-2,3),则点A 有关原点对称点A ′旳坐标是__________;14.已知三角形旳三边分别是18cm ,8cm ,32cm ,则它旳周长是________ cm ;15.如图A 、B 、C 、D 、E 均在⊙O 上,且AC 为⊙O 旳直径,则∠A +∠B +∠C =_________°;16.如图为了绿化环境,在四边形空地旳四个角划出四个半径为1旳扇形空地进行绿化,则绿化旳总面积是___________;17.如图,PT 切⊙O 于点T ,直径BA 旳延长线交PT 于点P ,若PT =4,PO =5,则⊙O旳半径是__________;18.如图所示,圆弧BC 所对旳圆心角度为60°,OB =6 cm ,则扇形OBC 旳面积为_____ cm 2.19.如果一元二次方程(m -2)x 2+6x +m 2-4=0有一种根为0,则m =________;20.如图,如果正方形ABCD 旋转后能与正方形CDEF 重叠,那么图形所在平面内,可作为旋转中心旳点有__________个;三、解答题(第21题10分,第22~26题,每题12分,共70分)21.(112315420 (2)化简:232327363y x x xy x xy . 22.解方程: (1)3(x -2)=5x (x -2). (2)x 2-4x +2=0.23.如图所示,已知P 是正方形ABCD 内一点,P A =1,PB =2,PC =3,以点B 为旋转中心,将△ABP 顺时针方向旋转,使点A 与点C 重叠,这时P 点旋转到G 点.(1)请画出旋转后旳图形,你能说出此时△ABP 以点B 为旋转中心转了多少度吗?(2)求证:△PGC是直角三角形.24.某种商品,按标价销售每件可赚钱50元,平均每天销售24件,根据市场信息,若每件降价2元,则每天可多销售6件,如果经销商想保证每天赚钱2160元,同步考虑但是分增长营业员旳工作量,即每天销售不超过100件,每件商品应降价多少元?25.如图(1)已知△ABC内接于⊙O,AB为直径,∠CAE=∠B.(1)试证明AE与⊙O相切于点A;(2)如图(2),若AB不是直径,其她条件不变,那么AE与否仍是与⊙O相切于点A?阐明理由.26.如图,菱形ABCD中,对角线AC=1,BD3(1)在DB上有一动点P,以D为圆心,DP为半径画弧MN,分别交DA、DC于点M、N (M、N可以和A、C重叠).作⊙Q与AB,BC,MN都相切,设⊙Q旳半径为R,DP旳长为y,求y与R之间旳函数关系式;(2)以D为圆心,DA为半径作扇形DAC,请问在菱形DABC中,除去扇形DAC后剩余部分内,与否可以做出一种圆,使所得旳圆是以扇形DAC为侧面旳圆锥旳底面?若存在,求这个圆旳面积;若不存在,请阐明理由.(图(2)备用)“福州市教育教学质量监控体系旳研究”课题—第一学期期中测试九年级数学答案第Ⅰ卷一、选择题1.A2.A3.A4.D5.C6.A7.D8.B9.B10.C第Ⅱ卷二、填空题11.1;12.答案不唯一;13.(2,-3);14.215.90°;16.π;17.3;18.6π;19.-2;20.3三、解答题21.(1)原式=32335254⨯分=45-------------------5分(2)原式=233336xy xy x x xy x -+---------8分=532xy x -----------------10分22.解:(1)原方程化为:(x -2)(5x -3)=0---------4分 ∴ x 1=2,x 2=35-------------------6分(2)∵ a =1,b =-4,c =2b 2-4ac =(-4)2-4×1×2=8>0---------------8分 482221x --±±⨯()==-----------------10分∴ x 1=22+,x 2=22-------------------12分23.解:(1)画图对旳---------------3分△ABP 以点B 为旋转中心转了90°---6分(2)由于∠PBG =90°,BP =BG =2∴ PG =22------------9分又∵ PC =3,GC =P A =1,∴ PG 2+GC 2=PC 2即△PGC 为直角三角形-------------12分24.解:设每件商品应降价x 元,依题意---------2分 502462x x ⎛⎫⎪⎝⎭-+⨯()=2----6分整顿得:x 2-42x +320=0(x -10)(x -32)=0∴ x 1=10,x 2=32--------------------10分∵ 当x 1=10时,24+6×102=54<100当x2=32时,24+6×322=120>100(不合舍去)∴x=10答:每件商品应降价10元-----------------12分25.证明:(1)∵AB是直径∴∠ACB=90°---------3分又∵∠CAE=∠B∴∠EAB=∠EAC+∠CAB=∠B+∠CAB=90°∴AE与⊙O相切于点A-------6分(2)AE仍是⊙O旳切线----------7分过点A作直径AD,连接DC则∠ACD=90°,∠B=∠D-------10分∴∠EAD=∠EAC+∠CAD=∠B+∠CAD=∠D+∠CAD=90°∴AE仍是⊙O旳切线-------------12分26.解:(1)设⊙Q与AB边相切于点E,连接QE.则∠QEB=90°,QE=R,DQ=y+R,BQ=3y R--∵AC=1,DB=3∴∠ABC=60°,∠DBA=30°--------3分在Rt△QEB中,QE=12 BQ∴R=132y R--()∴y=33R---------------5分(2)由(1)可得∠ADC =60°,AD =1 于是ADC l 扇形=3π------------6分 设以扇形DAC 为侧面旳圆锥旳底面半径为r ,则,23r ππ= ∴ r =16------------------8分 根据(1)y 33R ,∵ y =AD =1 即 133R ∴ 31R -分 ∵ 311232132306R r -----() 即 R >r∴ 存在一种圆,它旳面积是236r ππ=-----------------12分。

九年级数学上学期期中试卷(含解析)新人教版15

九年级数学上学期期中试卷(含解析)新人教版15

2016-2017学年福建省莆田二十五中九年级(上)期中数学试卷一、选择题(每小题4分,共40分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列方程中一定是关于x的一元二次方程是()A.x2﹣3x+1=0 B. =0 C.ax2+bx+c=0 D.x+3=43.方程x2﹣5x=0的根是()A.x1=0,x2=5 B.x1=0,x2=﹣5 C.x=0 D.x=54.为执行“两免一补”政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500x2=3600 B.2500(1+x)2=3600C.2500(1+x%)2=3600 D.2500(1+x)+2500(1+x)2=36005.如图,∠A是⊙O的圆周角,∠A=40°,则∠BOC的度数为()A.50° B.80° C.90° D.120°6.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC是()A.4 B.5 C.6 D.87.对于抛物线y=﹣(x﹣5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3) D.开口向上,顶点坐标(﹣5,3)8.已知⊙O的半径为4cm,如果圆心O到直线l的距离为5cm,那么直线l与⊙O的位置关系()A.相交 B.相离 C.相切 D.不确定9.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象可能是()A.B.C.D.10.如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A.6cm B. cm C.8cm D. cm二、填空题(每小题4分,共24分)11.一元二次方程(1+3x)(x﹣3)=2x2+1化为一般形式为.12.点A(2,3)与点B关于原点对称,则B点的坐标.13.抛物线y=x2﹣2x+3的顶点坐标是.14.如果一个扇形的圆心角为120°,半径为2,那么该扇形的弧长为.15.一个半径为2cm的圆内接正六边形的面积等于.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是.三、解答题17.解方程:(1)x2﹣2x﹣8=0(2)x2+2x﹣99=0(配方法)18.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:△ABC关于原点中心对称的△A1B1C1.(2)△A1B1C1中各个顶点的坐标.19.已知二次函数的顶点坐标为(1,4),且其图象经过点(﹣2,﹣5),求此二次函数的解析式.20.已知关于x的一元二次方程x2﹣4x+m﹣1=0有两个相等的实数根,求m的值及方程的根.21.如图,AB,BC,CD分别与⊙O相切于E,F,G,且AB∥CD,BO=6cm,CO=8cm.求BC的长.22.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.求证:BC是⊙O切线.23.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?24.如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.(1)求抛物线的解析式;(2)求点D的坐标;(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.2016-2017学年福建省莆田二十五中九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形,是中心对称图形.故正确.故选:D.2.下列方程中一定是关于x的一元二次方程是()A.x2﹣3x+1=0 B. =0 C.ax2+bx+c=0 D.x+3=4【考点】一元二次方程的定义.【分析】根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证.【解答】解:A、2﹣3x+1=0是一元二次方程,故A正确;B、是分式方程,故B错误;C、a=时是一元一次方程,故C错误;D、是一元一次方程,故D错误;故选:A.3.方程x2﹣5x=0的根是()A.x1=0,x2=5 B.x1=0,x2=﹣5 C.x=0 D.x=5【考点】解一元二次方程-因式分解法.【分析】观察发现此题用因式分解法比较简单,在提取x后,左边将变成两个式子相乘为0的情况,让每个式子分别为0,即可求出x.【解答】解:因式分解得:x(x﹣5)=0,x=0或x﹣5=0,解得:x=0或x=5.故选A.4.为执行“两免一补”政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500x2=3600 B.2500(1+x)2=3600C.2500(1+x%)2=3600 D.2500(1+x)+2500(1+x)2=3600【考点】由实际问题抽象出一元二次方程.【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这两年投入教育经费的年平均增长百分率为x,然后用x表示2008年的投入,再根据“2008年投入3600万元”可得出方程.【解答】解:依题意得2008年的投入为2500(1+x)2,∴2500(1+x)2=3600.故选:B.5.如图,∠A是⊙O的圆周角,∠A=40°,则∠BOC的度数为()A.50° B.80° C.90° D.120°【考点】圆周角定理.【分析】由∠A是⊙O的圆周角,∠A=40°,根据圆周角定理,即可求得∠BOC的度数.【解答】解:∵∠A是⊙O的圆周角,∠A=40°,∴∠BOC=2∠A=80°.故选B.6.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC是()A.4 B.5 C.6 D.8【考点】垂径定理;勾股定理.【分析】根据垂径定理求出BC,根据勾股定理求出OC即可.【解答】解:∵OC⊥AB,OC过圆心O点,∴BC=AC=AB=×16=8,在Rt△OCB中,由勾股定理得:OC===6,故选C.7.对于抛物线y=﹣(x﹣5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3) D.开口向上,顶点坐标(﹣5,3)【考点】二次函数的性质.【分析】二次函数的一般形式中的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k).抛物线的开口方向有a的符号确定,当a>0时开口向上,当a<0时开口向下.【解答】解:∵抛物线y=﹣(x﹣5)2+3,∴a<0,∴开口向下,∴顶点坐标(5,3).故选:A.8.已知⊙O的半径为4cm,如果圆心O到直线l的距离为5cm,那么直线l与⊙O的位置关系()A.相交 B.相离 C.相切 D.不确定【考点】直线与圆的位置关系.【分析】由题意得出d>r,根据直线和圆的位置关系的判定方法判断即可.【解答】解:∴⊙O的半径为4cm,如果圆心O到直线l的距离为5cm,∴4<5,即d>r,∴直线l与⊙O的位置关系是相离.故选B9.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【解答】解:A、由抛物线可知,a<0,x=﹣<0,得b>0,由直线可知,a>0,b>0,故本选项错误;B、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a>0,b>0,故本选项错误.故选:B.10.如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A.6cm B. cm C.8cm D. cm【考点】弧长的计算;勾股定理.【分析】因为圆锥的高,底面半径,母线构成直角三角形,则留下的扇形的弧长==12π,所以圆锥的底面半径r==6cm,所以圆锥的高===3cm.【解答】解:∵从半径为9cm的圆形纸片剪去圆周的一个扇形,∴剩下的扇形的角度=360°×=240°,∴留下的扇形的弧长==12π,∴圆锥的底面半径r==6cm,∴圆锥的高===3cm.故选B.二、填空题(每小题4分,共24分)11.一元二次方程(1+3x)(x﹣3)=2x2+1化为一般形式为x2﹣8x﹣4=0 .【考点】一元二次方程的一般形式.【分析】把方程展开,移项、合并同类项后再根据一元二次方程的一般形式进行排列各项即可.【解答】解:(1+3x)(x﹣3)=2x2+1,可化为:x﹣3+3x2﹣9x=2x2+1,化为一元二次方程的一般形式为x2﹣8x﹣4=0.12.点A(2,3)与点B关于原点对称,则B点的坐标(﹣2,﹣3).【考点】关于原点对称的点的坐标.【分析】直接利用关于原点对称点的性质进而得出答案.【解答】解:点A(2,3)与点B关于原点对称,则B点的坐标:(﹣2,﹣3).故答案为:(﹣2,﹣3).13.抛物线y=x2﹣2x+3的顶点坐标是(1,2).【考点】二次函数的性质.【分析】已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【解答】解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,∴抛物线y=x2﹣2x+3的顶点坐标是(1,2).故答案为:(1,2).14.如果一个扇形的圆心角为120°,半径为2,那么该扇形的弧长为.【考点】弧长的计算.【分析】根据弧长公式可得.【解答】解:根据题意,扇形的弧长为=,故答案为:.15.一个半径为2cm的圆内接正六边形的面积等于6cm2.【考点】正多边形和圆.【分析】设O是正六边形的中心,AB是正六边形的一边,OC是边心距,则△OAB是正三角形,△OAB的面积的六倍就是正六边形的面积.【解答】解:如图所示:设O是正六边形的中心,AB是正六边形的一边,OC是边心距,∠AOB=60°,OA=OB=2cm,则△OAB是正三角形,∴AB=OA=2cm,OC=OA•sin∠A=2×=(cm),∴S△OAB=AB•OC=×2×=(cm2),∴正六边形的面积=6×=6(cm2).故答案为:6cm2.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是π+2.【考点】旋转的性质;扇形面积的计算.【分析】在△ABC中,BC=2,AC=2,根据勾股定理得到AB的长为4.求出∠CAB、∠CBA,顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是两个扇形的面积+△A′BC″的面积.根据扇形的面积公式可以进行计算.【解答】解:∵在Rt△ACB中,BC=2,AC=2,∴由勾股定理得:AB=4,∴AB=2BC,∴∠CAB=30°,∠CBA=60°,∴∠ABA′=120°,∠A″C″A′=90°,S=++×2×2=π+2,故答案为:π+2.三、解答题17.解方程:(1)x2﹣2x﹣8=0(2)x2+2x﹣99=0(配方法)【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)因式分解法求解可得;(2)配方法求解可得.【解答】解:(1)∵(x+2)(x﹣4)=0,∴x+2=0或x﹣4=0,解得:x=﹣2或x=4;(2)x2+2x=99,x2+2x+1=99+1,即(x+1)2=100,∴x+1=10或x+1=﹣10,解得:x=9或x=﹣11.18.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:△ABC关于原点中心对称的△A1B1C1.(2)△A1B1C1中各个顶点的坐标.【考点】作图-旋转变换.【分析】(1)根据关于原点对称的点的坐标特征写出A1、B1、C1点的坐标,然后描点即可;(2)由(1)可得)△A1B1C1中各个顶点的坐标.【解答】解:(1)如图,(2)A1(1,﹣3),B1(6,﹣1),C1(3,﹣1).19.已知二次函数的顶点坐标为(1,4),且其图象经过点(﹣2,﹣5),求此二次函数的解析式.【考点】待定系数法求二次函数解析式.【分析】已知二次函数的顶点坐标为(1,4),设抛物线的顶点式为y=a(x﹣1)2+4(a≠0),将点(﹣2,﹣5)代入求a即可.【解答】解:设此二次函数的解析式为y=a(x﹣1)2+4(a≠0).∵其图象经过点(﹣2,﹣5),∴a(﹣2﹣1)2+4=﹣5,∴a=﹣1,∴y=﹣(x﹣1)2+4=﹣x2+2x+3.20.已知关于x的一元二次方程x2﹣4x+m﹣1=0有两个相等的实数根,求m的值及方程的根.【考点】根的判别式.【分析】首先根据原方程根的情况,利用根的判别式求出m的值,即可确定原一元二次方程,进而可求出方程的根.【解答】解:由题意可知△=0,即(﹣4)2﹣4(m﹣1)=0,解得m=5.当m=5时,原方程化为x2﹣4x+4=0.解得x1=x2=2.所以原方程的根为x1=x2=2.21.如图,AB,BC,CD分别与⊙O相切于E,F,G,且AB∥CD,BO=6cm,CO=8cm.求BC的长.【考点】切割线定理.【分析】根据切线长定理和平行线的性质定理得到△BOC是直角三角形.再根据勾股定理求出BC的长.【解答】解:∵AB,BC,CD分别与⊙O相切于E,F,G;∴∠CBO=∠ABC,∠BCO=∠DCB,∵AB∥CD,∴∠ABC+∠DCB=180°,∴∠CBO+∠BCO=∠ABC+∠DCB=(∠ABC+∠DCB)=90°.∴cm.22.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.求证:BC是⊙O切线.【考点】切线的判定.【分析】如图,连接OD.欲证BC是⊙O切线,只需证明OD⊥BC即可.【解答】证明:如图,连接OD.设AB与⊙O交于点E.∵AD是∠BAC的平分线,∴∠BAC=2∠BAD,又∵∠EOD=2∠EAD,∴∠EOD=∠BAC,∴OD∥AC.∵∠ACB=90°,∴∠BDO=90°,即OD⊥BC,又∵OD是⊙O的半径,∴BC是⊙O切线.23.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?【考点】二次函数的应用.【分析】(1)根据销售额=销售量×销售单价,列出函数关系式;(2)用配方法将(1)的函数关系式变形,利用二次函数的性质求最大值;(3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值.【解答】解:(1)由题意得出:w=(x﹣20)∙y=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,故w与x的函数关系式为:w=﹣2x2+120x﹣1600;(2)w=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.(3)当w=150时,可得方程﹣2(x﹣30)2+200=150.解得 x1=25,x2=35.∵35>28,∴x2=35不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.24.如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.(1)求抛物线的解析式;(2)求点D的坐标;(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由OA的长度确定出A的坐标,再利用对称性得到顶点坐标,设出抛物线的顶点形式y=a(x﹣2)2+3,将A的坐标代入求出a的值,即可确定出抛物线解析式;(2)设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,确定出直线AC解析式,与抛物线解析式联立即可求出D的坐标;(3)存在,分两种情况考虑:如图所示,当四边形ADMN为平行四边形时,DM∥AN,DM=AN,由对称性得到M(3,),即DM=2,故AN=2,根据OA+AN求出ON的长,即可确定出N的坐标;当四边形ADM′N′为平行四边形,可得三角形ADQ全等于三角形N′M′P,M′P=DQ=,N′P=AQ=3,将y=﹣代入得:﹣=﹣x2+3x,求出x的值,确定出OP的长,由OP+PN′求出ON′的长即可确定出N′坐标.【解答】解:(1)设抛物线顶点为E,根据题意OA=4,OC=3,得:E(2,3),设抛物线解析式为y=a(x﹣2)2+3,将A(4,0)坐标代入得:0=4a+3,即a=﹣,则抛物线解析式为y=﹣(x﹣2)2+3=﹣x2+3x;(2)设直线AC解析式为y=kx+b(k≠0),将A(4,0)与C(0,3)代入得:,解得:,故直线AC解析式为y=﹣x+3,与抛物线解析式联立得:,解得:或,则点D坐标为(1,);(3)存在,分两种情况考虑:①当点M在x轴上方时,如答图1所示:四边形ADMN为平行四边形,DM∥AN,DM=AN,由对称性得到M(3,),即DM=2,故AN=2,∴N1(2,0),N2(6,0);②当点M在x轴下方时,如答图2所示:过点D作DQ⊥x轴于点Q,过点M作MP⊥x轴于点P,可得△ADQ≌△NMP,∴MP=DQ=,NP=AQ=3,将y M=﹣代入抛物线解析式得:﹣=﹣x2+3x,解得:x M=2﹣或x M=2+,∴x N=x M﹣3=﹣﹣1或﹣1,∴N3(﹣﹣1,0),N4(﹣1,0).综上所述,满足条件的点N有四个:N1(2,0),N2(6,0),N3(﹣﹣1,0),N4(﹣1,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年福建省福州市平潭城关教研片九年级(上)期中数学试卷一、选择题:共12小题,每题3分,共36分.1.(3分)若x2=1,则x的值为()A.1 B.﹣1 C.±1 D.02.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)如图,在半径为5cm的⊙O中,弦AB=8cm,OC⊥AB于点C,则OC=()A.3cm B.4cm C.5cm D.6cm4.(3分)已知⊙O的半径r=5cm,点A到圆心O的距离为8cm,则点A和⊙O 的位置关系为()A.圆内B.圆外C.圆上D.无法确定5.(3分)抛物线y=2(x+3)2+1的顶点坐标是()A.(3,1) B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)6.(3分)抛物线y=x2+4x+4的对称轴是()A.直线x=4 B.直线x=﹣4 C.直线x=2 D.直线x=﹣27.(3分)某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x,那么x满足的方程是()A.100(1+x)2=81 B.100(1﹣x)2=81 C.100(1﹣x%)2=81 D.100x2=818.(3分)抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是()A.y=3(x﹣1)2﹣2 B.y=3(x+1)2﹣2 C.y=3(x+1)2+2 D.y=3(x﹣1)2+29.(3分)如图,若一次函数y=ax+b的图象经过二、三、四象限,则二次函数y=ax2+bx的图象可能是()A.B.C.D.10.(3分)如图,AB是⊙O的直径,==,∠COD=32°,则∠AEO的度数是()A.48°B.51°C.56°D.58°11.(3分)如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若DE=2,∠B=60°,则CD的长为()A.0.5 B.1.5 C.D.112.(3分)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①2a+b=0;②a+b+c>0;③当﹣1<x<3时,y>0;④﹣a+c<0.其中正确的个数为()A.1 B.2 C.3 D.4二、填空题:共6题,每小题4分,共24分.13.(4分)平面直角坐标系中,一点P(﹣2,3)关于原点的对称点P′的坐标是.14.(4分)如果关于x的方程x2﹣2x+m=0(m为常数)有两个相等实数根,那么m=.15.(4分)如图,四边形ABCD内接于⊙O,若∠A=90°,则∠BCD的度数是.16.(4分)在△ABC中,∠ABC=60°,∠ACB=80°,点O是内心,则∠BOC的度数为.17.(4分)在平面直角坐标系中,将点A(4,2)绕原点逆时针方向旋转90°后,其对应点A′的坐标为.18.(4分)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2014的横坐标为.三、解答题:共9题,共90分.19.(10分)解方程:(1)x2﹣x﹣1=0;(2)(x+4)2=5(x+4).20.(11分)已知一元二次方程x2﹣2x+m=0.(1)当一个根x=3时,求m的值和方程的另一个根;(2)若该方程一定有实数根,求m的取值范围.21.(10分)在长为8cm、宽为5cm的矩形的四个角上分别截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.22.(10分)在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC 中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.23.(12分)已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;.(2)求△MCB的面积S△MCB24.(12分)AB是⊙O的直径,∠DAB=22.5°,延长AB到点C,使得∠ACD=45°.(1)求证:CD是⊙O的切线;(2)若AB=2,求BC的长.25.(12分)中秋节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法.对水库中某种鲜鱼进行捕捞销售,第x 天(1≤x≤20且x为整数)的捕捞与销售的相关信息如下:假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出.(1)求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)(2)在第几天y取得最大值,最大值是多少?26.(13分)在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C 在点D的左侧),抛物线在x轴下方的部分沿x轴翻折得到与原抛物线剩余的部分组成如图所示的图形,若直线y=kx+1与这个图形只有两个公共点,请求出此时k的取值范围.2016-2017学年福建省福州市平潭城关教研片九年级(上)期中数学试卷参考答案与试题解析一、选择题:共12小题,每题3分,共36分.1.(3分)若x2=1,则x的值为()A.1 B.﹣1 C.±1 D.0【解答】解:∵(±1)2=1,∴x=±1.故选:C.2.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.3.(3分)如图,在半径为5cm的⊙O中,弦AB=8cm,OC⊥AB于点C,则OC=()A.3cm B.4cm C.5cm D.6cm【解答】解:如图,连接OB,∵OC⊥AB,∴BC=AB=×8=4,∵OB=5,由勾股定理得:OC===3cm;故选:A.4.(3分)已知⊙O的半径r=5cm,点A到圆心O的距离为8cm,则点A和⊙O 的位置关系为()A.圆内B.圆外C.圆上D.无法确定【解答】解:∵⊙O的半径r=5cm,点A到圆心O的距离为8cm,5cm<8cm,∴点A在圆外.故选:B.5.(3分)抛物线y=2(x+3)2+1的顶点坐标是()A.(3,1) B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)【解答】解:由y=3(x+3)2+1,根据顶点式的坐标特点可知,顶点坐标为(﹣3,1),故选:C.6.(3分)抛物线y=x2+4x+4的对称轴是()A.直线x=4 B.直线x=﹣4 C.直线x=2 D.直线x=﹣2【解答】解:x=﹣=﹣=﹣2.故选:D.7.(3分)某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x,那么x满足的方程是()A.100(1+x)2=81 B.100(1﹣x)2=81 C.100(1﹣x%)2=81 D.100x2=81【解答】解:设两次降价的百分率均是x,由题意得:x满足方程为100(1﹣x)2=81.故选:B.8.(3分)抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是()A.y=3(x﹣1)2﹣2 B.y=3(x+1)2﹣2 C.y=3(x+1)2+2 D.y=3(x﹣1)2+2【解答】解:抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是y=3(x﹣1)2﹣2,故选:A.9.(3分)如图,若一次函数y=ax+b的图象经过二、三、四象限,则二次函数y=ax2+bx的图象可能是()A.B.C.D.【解答】解:∵一次函数y=ax+b的图象经过二、三、四象限,∴a<0,b<0,∴二次函数y=ax2+bx的图象可能是:开口方向向下,对称轴在y轴左侧,故选:B.10.(3分)如图,AB是⊙O的直径,==,∠COD=32°,则∠AEO的度数是()A.48°B.51°C.56°D.58°【解答】解:∵==,∠COD=32°,∴∠BOC=∠EOD=∠COD=32°,∴∠AOE=180°﹣∠EOD﹣∠COD﹣∠BOC=84°.又∵OA=OE,∴∠AEO=∠OAE,∴∠AEO=×(180°﹣84°)=48°.故选:A.11.(3分)如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若DE=2,∠B=60°,则CD的长为()A.0.5 B.1.5 C.D.1【解答】解:由旋转得,DE=BC,AD=AB,∠B=∠ADE,∴在Rt△ADE中,DE=2,∠ADE=60°,∴AB=1,BC=2,∵∠B=60°,∴BD=AB=1,∴CD=BC﹣BD=2﹣1=1,故选:D.12.(3分)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①2a+b=0;②a+b+c>0;③当﹣1<x<3时,y>0;④﹣a+c<0.其中正确的个数为()A.1 B.2 C.3 D.4【解答】解:①∵二次函数y=ax2+bx+c(a≠0)的开口向下,∴a<0,∵函数与y轴的正半轴相交,∴c>0,∴﹣a+c>0,故④错误;②∵二次函数与x轴的交点的坐标为(﹣1,0),(3,0),∴对称轴为x═1,即﹣=1,∴b=﹣2a,即2a+b=0,故①正确;③∵函数的顶点在第一象限,∴x=1时,y=a+b+c>0,故②正确;④∵二次函数与x轴的交点的坐标为(﹣1,0),(3,0),图象开口向下,∴当﹣1<x<3时,y>0.故③正确.所以正确的个数为3个,故选:C.二、填空题:共6题,每小题4分,共24分.13.(4分)平面直角坐标系中,一点P(﹣2,3)关于原点的对称点P′的坐标是(2,﹣3).【解答】解:根据中心对称的性质,得点P(﹣2,﹣3)关于原点对称点P′的坐标是(2,﹣3).故答案为:(2,﹣3).14.(4分)如果关于x的方程x2﹣2x+m=0(m为常数)有两个相等实数根,那么m=1.【解答】解:∵x的方程x2﹣2x+m=0(m为常数)有两个相等实数根∴△=b2﹣4ac=(﹣2)2﹣4×1•m=04﹣4m=0m=1故答案为:115.(4分)如图,四边形ABCD内接于⊙O,若∠A=90°,则∠BCD的度数是90°.【解答】解:∵四边形ABCD内接于⊙O,∴∠C+∠A=180°.∵∠A=90°,∴∠C=180°﹣90°=90°.故答案为:90°.16.(4分)在△ABC中,∠ABC=60°,∠ACB=80°,点O是内心,则∠BOC的度数为110°.【解答】解:∵点O是△ABC的内心,∴∠ABO=∠OBC=∠ABC,∠OCB=∠OCA=∠ACB,∴∠OBC=40°,∠ACB=30°,∴∠BOC=180°﹣∠OBC﹣∠OCB=110°.故答案为:110°.17.(4分)在平面直角坐标系中,将点A(4,2)绕原点逆时针方向旋转90°后,其对应点A′的坐标为(﹣2,4).【解答】解:如图A′的坐标为(﹣2,4).故答案为:(﹣2,4).18.(4分)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2014的横坐标为10070.【解答】解:由题意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的横坐标为:10,B4的横坐标为:2×10=20,∴点B2014的横坐标为:×10=10070.故答案为:10070.三、解答题:共9题,共90分.19.(10分)解方程:(1)x2﹣x﹣1=0;(2)(x+4)2=5(x+4).【解答】解:(1)∵a=1,b=﹣1,c=﹣1,∴△=1﹣4×1×(﹣1)=5>0,则x=;(2)∵(x+4)2﹣5(x+4)=0,∴(x+4)(x﹣1)=0,则x+4=0或x﹣1=0,解得:x=﹣4或x=1.20.(11分)已知一元二次方程x2﹣2x+m=0.(1)当一个根x=3时,求m的值和方程的另一个根;(2)若该方程一定有实数根,求m的取值范围.【解答】解:(1)将x=3代入方程得:9﹣6+m=0,即m=﹣3,∴方程为x2﹣2x﹣3=0,设另一根为a,∴3+a=2,即a=﹣1,则m的值为﹣3,方程另一根为﹣1.(2)∵该方程一定有实数根,∴△=4﹣4m≥0,解得:m≤1.故m的取值范围是m≤1.21.(10分)在长为8cm、宽为5cm的矩形的四个角上分别截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.【解答】解:设小正方形的边长为xcm,由题意得8×5﹣4x2=80%×5×8,40﹣4x2=32,4x2=8,x2=2.解得:x1=,x2=﹣,经检验x1=符合题意,x2=﹣不符合题意,舍去;所以x=.答:截去的小正方形的边长为cm.22.(10分)在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC 中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.【解答】解:(1)△AB1C1如图所示;(2)如图所示,A(0,1),C(﹣3,1);(3)△A2B2C2如图所示,B2(3,﹣5),C2(3,﹣1).23.(12分)已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;.(2)求△MCB的面积S△MCB【解答】解:(1)依题意:,解得∴抛物线的解析式为y=﹣x2+4x+5(2)令y=0,得(x﹣5)(x+1)=0,x1=5,x2=﹣1,∴B(5,0).由y=﹣x2+4x+5=﹣(x﹣2)2+9,得M(2,9)作ME⊥y轴于点E,可得S=S梯形MEOB﹣S△MCE﹣S△OBC=(2+5)×9﹣×4×2﹣×5×5=15.△MCB24.(12分)AB是⊙O的直径,∠DAB=22.5°,延长AB到点C,使得∠ACD=45°.(1)求证:CD是⊙O的切线;(2)若AB=2,求BC的长.【解答】(1)证明:连接DO,∵AO=DO,∴∠DAO=∠ADO=22.5°.∴∠DOC=45°.又∵∠ACD=2∠DAB,∴∠ACD=∠DOC=45°.∴∠ODC=90°.又OD是⊙O的半径,∴CD是⊙O的切线.(2)解:连接DB,∵直径AB=2,△OCD为等腰直角三角形,∴CD=OD=,OC==2,∴BC=OC﹣OB=2﹣.25.(12分)中秋节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法.对水库中某种鲜鱼进行捕捞销售,第x 天(1≤x≤20且x为整数)的捕捞与销售的相关信息如下:假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出.(1)求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)(2)在第几天y取得最大值,最大值是多少?【解答】解:(1)由题意,得y=20×(950﹣10x)﹣(5﹣)×(950﹣10x)=﹣2x2+40x+14250;(2)∵﹣2<0,y=﹣2x2+40x+14250=﹣2(x﹣10)2+14450,又∵1≤x≤20且x为整数,∴当1≤x≤10时,y随x的增大而增大;当10≤x≤20时,y随x的增大而减小;当x=10时即在第10天,y取得最大值,最大值为14450.26.(13分)在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C 在点D的左侧),抛物线在x轴下方的部分沿x轴翻折得到与原抛物线剩余的部分组成如图所示的图形,若直线y=kx+1与这个图形只有两个公共点,请求出此时k的取值范围.【解答】解:(1)当k=1时,抛物线的解析式为y=x2﹣1,直线的解析式为y=x+1,联立直线与抛物线,得:,解得x1=﹣1,x2=2,当x=﹣1时,y﹣x+1=0;当x=2时,y=x+1=3,∴A(﹣1,0),B(2,3);(2)设P(x,x2﹣1)如下图,过点P作PF∥y轴,交直线AB于F,则F(x,x+1),PF=y F﹣y P=(x+1)﹣(x2﹣1)=﹣x2+x+2,S△ABP=S△PFA+S△PFB=PF(x F﹣x A)+PF(x B﹣x F)PF,S△ABP=(﹣x2+x+2)=﹣(x﹣)2+∵当x=时,y P=()2﹣1=﹣,∴△ABP面积的最大值为,此时点P的坐标(,﹣);(3)如下图:令二次函数y=0,x2+(k﹣1)x﹣k=0,即:(x+k)(x﹣1)=0,x=﹣k,或x=1,C(﹣k,0),D(1,0),直线y=kx+1过(0,1),将抛物线y=x2+(k﹣1)x﹣k关于x轴对称,得:y=﹣x2﹣(k﹣1)x+k联立直线y=kx+1,得:x2+(2k﹣1)x+1﹣k=0△=(2k﹣1)2﹣4(1﹣k)=0得:k=或k=﹣(舍弃),∵k>0,∴0<k<,∵直线y=kx+1经过点C(﹣k,0)时,k=1,∴由图象可知,0<k<或k>1时,直线y=kx+1与这个图形只有两个公共点.。

相关文档
最新文档