2019年最新(统考)广东省高考考前冲刺数学(文)试卷及答案解析
2019年普通高等学校招生全国统一考试数学及详细解析(广东卷)
试卷类型:A2019年普通高等学校招生全国统一考试(广东卷)数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择)题两部分,满分150分.考试用时120分钟.第一部分 选择题(共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.( 1 ) 若集合}03|{},2|||{2=-=≤=x x x N x x M ,则M ∩N = ( )A .{3}B .{0}C .{0,2}D .{0,3}【答案】B解: ∵由2||≤x ,得22≤≤-x ,由032=-x x ,得30==x x 或, ∴M ∩N }0{=,故选B .( 2 ) 若i b i i a -=-)2(,其中a 、b ∈R ,i 是虚数单位,则22b a += ( )A .0B .2C .25 D .5【答案】D解: ∵ i b i i a -=-)2(,∴i b ai -=-2,⎩⎨⎧==21b a 即 ,522=+b a ,故选D .( 3 ) 93lim 23-+-→x x x =( )A .61-B .0C .61 D .31 【答案】A 解: 6131)3)(3(3933323lim lim lim-=-=-++=-+-→-→-→x x x x x x x x x ,故选A .( 4 ) 已知高为3的直棱锥C B A ABC '''-的底面是边长为1的正三角形 (如图1所示),则三棱锥ABC B -'的体积为 ( ) A .41B .21C .63D .43【答案】D解:∵ ,ABC B B 平面⊥'A'C'AC图1∴43343313131=⋅⋅='⋅=⋅=∆∆-'B B S h S ABC ABC ABC B V . 故选D.( 5 ) 若焦点在x 轴上的椭圆1222=+m y x 的离心率为21,则m=( ) A .3 B .23 C .38 D .32【答案】B解: ∵轴上焦点在x ,∴2=a ,∵ 21==a c e ,∴22=c , ∴23222=-==c a b m ,故选B .( 6 )函数13)(23+-=x x x f 是减函数的区间为( )A .),2(∞+B .)2,(∞-C .)0,(-∞D .(0,2)【答案】D解: ∵,63)(2x x x f -='20,063,0)(2<<<-<'x x x x f 解得即令,故选D .( 7 ) 给出下列关于互不相同的直线m 、l 、n 和平面α、β,的四个命题: ①若A l m =⊂αα ,,点m A ∉,则l 与m 不共面;②若m 、l 是异面直线, αα//,//m l , 且m n l n ⊥⊥,,则α⊥n ; ③若βα//,//m l , βα//,则m l //;④若=⊂⊂m l m l ,,αα点A ,ββ//,//m l ,则βα//. 其中为假命题的是A .①B .②C .③D .④ 【答案】C解:③是假命题,如右图所示满足βα//,//m l , βα//,但 m l \// ,故选C .( 8 ) 先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子 朝上的面的点数分别为X 、Y ,则1log 2=Y X 的概率为 ( )A .61 B .365 C .121 D .21 【答案】C解:满足1log 2=Y X 的X 、Y 有(1, 2),(2, 4),(3, 6)这3种情况,而总的可能数有36种,所以121363==P ,故选C .( 9 ) 在同一平面直角坐标系中,函数)(x f y =和)(x g y =的图像lαβm关于直线x y =对称.现将)(x g y =图像沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位,所得的图像是由两条线段组成的折线 (如图2所示),则函数)(x f 的表达式为A .⎪⎩⎪⎨⎧≤<+≤≤-+=20,2201,22)(x xx x x fB .⎪⎩⎪⎨⎧≤<-≤≤--=20,2201,22)(x xx x x fC .⎪⎩⎪⎨⎧≤<+≤≤-=42,1221,22)(x xx x x fD .⎪⎩⎪⎨⎧≤<-≤≤-=42,3221,62)(x xx x x f【答案】A解:将图象沿y 轴向下平移1个单位,再沿x 轴向右平移2个单位得下图A ,从而可以得到)(x g 的图象,故⎪⎩⎪⎨⎧≤<-≤≤-=32,4220,12)(x x x xx g ,∵函数)(x f y =和)(x g y =的图像关于直线x y =∴⎪⎩⎪⎨⎧≤<+≤≤-+=20,2201,22)(x x x x x f ,故选A .(也可以用特殊点检验获得答案)(10)已知数列{}n x 满足212x x =,)(2121--+=n n n x x x , ,4,3=n .若2lim =∞→n x x ,则=1xA .23B .3C .4D .5【答案】B解法一:特殊值法,当31=x 时,3263,1633,815,49,2365432=====x x x x x 由此可推测2lim =∞→n x x ,故选B .解法二:∵)(2121--+=n n n x x x ,∴)(21211-----=-n n n n x x x x ,21211-=-----n n n nx x x x 即, ∴{}n n x x -+1是以(12x x -)为首项,以21-为公比6的等比数列,令n n n x x b -=+1,则11111211)21()21(2)21)((x x x x q b b n n n n n -=-⋅-=--==---+-+-+=)()(23121x x x x x x n …)(1--+n n x x+-+-+-+=121211)21()21()2(x x x x …11)21(x n --+3)21(32)21(1)21(12111111x x x x n n ---+=--⎥⎦⎤⎢⎣⎡---+=∴2323)21(321111lim lim ==⎥⎦⎤⎢⎣⎡-+=-∞→∞→x x xx n x n x ,∴31=x ,故选B . 解法三:∵)(2121--+=n n n x x x ,∴0221=----n n n x x x ,∴其特征方程为0122=--a a ,解得 211-=a ,12=a ,nn n a c a c x 2211+=,∵11x x =,212x x =,∴3211x c -=,3212x c =,∴3)21(3232)21(3211111xx x x x n n n --+=+-⋅-=,以下同解法二.第二部分 非选择题(共100分)二.填空题:本大题共4小题目,每小题5分,共20分.(11)函数xex f -=11)(的定义域是 .【答案】)0,(-∞解:使)(x f 有意义,则01>-x e , ∴ 1<x e ,∴0<x ,∴)(x f 的定义域是)0,(-∞.(12)已知向量)3,2(=,)6,(x =,且b a //,则=x .【答案】4解:∵b a //,∴1221y x y x =,∴x 362=⋅,∴4=x .(13)已知5)1cos (+θx 的展开式中2x 的系数与4)45(+x 的展开式中3x 的系数相等,则=θcos. 【答案】22±解:4)45(+x 的通项为r r rx C )45(44⋅⋅-,1,34==-∴r r , ∴4)45(+x 的展开式中3x 的系数是54514=⋅C , 5)1cos (+θx 的通项为R R x C -⋅55)cos (θ,3,25==-∴R R ,∴5)1cos (+θx 的展开式中2x 的系数是,5cos 235=⋅θC∴ 21cos 2=θ,22cos ±=θ.(14)设平面内有n 条直线)3(≥n ,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用)(n f 表示这n 条直线交点的个数,则)4(f =____________;当4>n 时,=)(n f .(用n 表示)【答案】5,)2)(1(21-+n n解:由图B 可得5)4(=f ,由2)3(=f ,5)4(=f ,9)5(=f ,14)6(=f ,可推得∵n 每增加1,则交点增加)1(-n 个, ∴)1(432)(-++++=n n f2)2)(12(--+=n n)2)(1(21-+=n n .三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. ( 15 )(本小题满分12分)化简),,)(23sin(32)2316cos()2316cos()(Z k R x x x k x k x f ∈∈++--+++=πππ并求函数)(x f 的值域和最小正周期.【答案】解: )23sin(32)232cos()232cos()(x x k x k x f ++--+++=πππππ)23sin(32)23cos()23cos(x x x +++++=πππ)23sin(32)23cos(2x x +++=ππ]3sin )23sin(3cos)23[cos(4ππππx x +++= x 2cos 4=∴ ]4,4[)(-∈x f ,ππ==22T , ∴)(x f 的值域是]4,4[-,最小正周期是π.( 16 ) (本小题共14分)如图3所示,在四面体ABC P -中,已知6==BC PA ,342,8,10====PB AC AB PC .F 是线段PB 上一点,341715=CF ,点E 在线段AB 上,且PB EF ⊥. (Ⅰ)证明:CEF PB 平面⊥;(Ⅱ)求二面角F CE B --的大小.图BABPF E(Ⅰ)证明:在ABC ∆中, ∵,6,10,8===BC AB AC ∴,222AB BC AC =+∴△PAC 是以∠PAC 为直角的直角三角形, 同理可证,△PAB 是以∠PAB 为直角的直角三角形,△PCB 是以∠PCB 为直角的直角三角形. 在PCB Rt ∆中,∵,341715,342,6,10====CF PB BC PC ∴,CF PB BC PC ⋅=⋅ ∴,CF PB ⊥ 又∵,,F CF EF PB EF =⊥ ∴.CEF PB 平面⊥(II )解法一:由(I )知PB ⊥CE ,PA ⊥平面ABC∴AB 是PB 在平面ABC 上的射影,故AB ⊥CE ∴CE ⊥平面PAB ,而EF ⊂平面PAB , ∴EF ⊥EC ,故∠FEB 是二面角B —CE —F 的平面角, ∵EFB PAB ∆∆~∴35610cot tan ===∠=∠AP AB PBA FEB , ∴二面角B —CE —F 的大小为35arctan .解法二:如图,以C 点的原点,CB 、CA 为x 、y 轴,建立空间直角坐标系C -xyz ,则)0,0,0(C ,)0,8,0(A ,)0,0,6(B ,)6,8,0(P ,∵)6,0,0(=PA 为平面ABC 的法向量,)6,8,6(--=PB 为平面ABC 的法向量, ∴34343342636,cos -=⋅-=<PB PA , ∴二面角B —CE —F 的大小为34343arccos .(17 ) (本小题共14分)在平面直角坐标系xoy 中,抛物线2x y =上异于坐标原点O 的两不同动点A、B满足BO AO ⊥(如图4所示)(Ⅰ)求AOB ∆得重心G (即三角形三条中线的交点)的轨迹方程;(Ⅱ)AOB ∆的面积是否存在最小值?若存在,请求出 最小值;若不存在,请说明理由.y C解法一:(Ⅰ)∵直线AB 的斜率显然存在,∴设直线AB 的方程为b kx y +=,),(),,(2211y x B y x A ,依题意得0,,22=--⎩⎨⎧=+=b kx x y xy b kx y 得消去由,① ∴k x x =+21,② b x x -=21 ③∵OB OA ⊥,∴02121=+y y x x ,即 0222121=+x x x x ,④ 由③④得,02=+-b b ,∴)(01舍去或==b b ∴设直线AB 的方程为1+=kx y∴①可化为 012=--kx x ,∴121-=x x ⑤, 设AOB ∆的重心G 为),(y x ,则33021k x x x =++= ⑥ , 3232)(3022121+=++=++=k x x k y y y ⑦, 由⑥⑦得 32)3(2+=x y ,即3232+=x y ,这就是AOB ∆得重心G 的轨迹方程.(Ⅱ)由弦长公式得2122124)(1||x x x x k AB -+⋅+=把②⑤代入上式,得 41||22+⋅+=k k AB ,设点O 到直线AB 的距离为d ,则112+=k d ,∴ 24||212+=⋅⋅=∆k d AB S AOB ,∴ 当0=k ,AOB S ∆有最小值,∴AOB ∆的面积存在最小值,最小值是1 .解法二:(Ⅰ)∵ AO ⊥BO, 直线OA ,OB 的斜率显然存在, ∴设AO 、BO 的直线方程分别为kx y =,x ky 1-=, 设),(11y x A ,),(22y x B ,依题意可得由⎩⎨⎧==2xy kxy 得 ),(2k k A ,由⎪⎩⎪⎨⎧=-=21xy x ky 得 )1,1(2kk B -, 设AOB ∆的重心G 为),(y x ,则31321k k x x x -=++=① , 31302221k k y y y +=++= ②,由①②可得,3232+=x y ,即为所求的轨迹方程. (Ⅱ)由(Ⅰ)得,42||k k OA +=,4211||k k OB +=, ∴42421121||||21k k k k OB OA S AOB +⋅+⋅=⋅⋅=∆212122++=k k 12221=+≥, 当且仅当221kk =,即1±=k 时,AOB S ∆有最小值,∴AOB ∆的面积存在最小值,最小值是1 .解法三:(I )设△AOB 的重心为G(x , y ) ,A(x 1, y 1),B(x 2 , y 2 ),则⎪⎪⎩⎪⎪⎨⎧+=+=332121y y y x x x …(1) 不过∵OA ⊥OB ,∴1-=⋅OB OA k k ,即12121-=+y y x x , …(2) 又点A ,B 在抛物线上,有222211,x y x y ==, 代入(2)化简得121-=x x ,∴32332)3(31]2)[(31)(3132221221222121+=+⨯=-+=+=+=x x x x x x x x y y y , ∴所以重心为G 的轨迹方程为3232+=x y ,(II )22212122222122212222212121))((21||||21y y y x y x x x y x y x OB OA S AOB +++=++==∆, 由(I )得12212)1(2212221221662616261=⨯=+-=+⋅≥++=∆x x x x S AOB ,当且仅当6261x x =即121-=-=x x 时,等号成立,所以△AOB 的面积存在最小值,存在时求最小值1 .( 18 ) (本小题共12分)箱中装有大小相同的黄、白两种颜色的乒乓球,黄、白乒乓球的数量比为t s :.现从箱中每次任意取出一个球,若取出的是黄球则结束,若取出的是白球,则将其放回箱中,并继续从箱中任意取出一个球,但取球的次数最多不超过n 次.以ξ表示取球结束时已取到白球的次数. (Ⅰ)求ξ的分布列; (Ⅱ)求ξ的数学期望.【答案】解:(Ⅰ)取出黄球的概率是t s s A P +=)(,取出白球的概率是ts tA P +=)(,则 ts sP +==)0(ξ, 2)()1(t s st P +==ξ, 32)()2(t s st P +==ξ, ……, n n t s st n P )()1(1+=-=-ξ, nn t s st n P )()(1+==-ξ,∴ξ的分布列是(Ⅱ)++⨯++⨯++⨯=322)(2)(10t s st t s st t s s E ξ…n nn n t s t n t s st n )()()1(1+⨯++⨯-+- ①++++=+4332)(2)(t s st t s st E t s t ξ (11)11)()()1()()2(+++-+++-++-+n n n n n n t s nt t s st n t s st n ②①—②得++++++=+43322)()()(t s st t s st t s st E t s s ξ (11)11)()()1()()(+++-+-+--++++n n n n n n n n t s nt t s st n t s nt t s st∴ 11)()1()()()1(-++-++-+--=n nn n n n t s t n t s s nt t s t n s t E ξ∴ξ的数学期望是11)()1()()()1(-++-++-+--=n nn n n n t s t n t s s nt t s t n s t E ξ.( 19 ) (本小题共14分)设函数)(x f 在),(+∞-∞上满足)2()2(x f x f +=-,)7()7(x f x f +=-,且在闭区间[0,7]上,只有0)3()1(==f f . (Ⅰ)试判断函数)(x f y =的奇偶性;(Ⅱ)试求方程0)(=x f 在闭区间]2005,2005[-上的根的个数,并证明你的结论.【答案】 解:(Ⅰ)∵)2()2(x f x f +=-, ∴)52()32(+=-f f即 )5()1(f f =-,∵在[0,7]上,只有0)3()1(==f f , ∴0)5(≠f ,∴)1()1(f f ≠-,∴)(x f 是非奇非偶函数.(Ⅱ)由)2()2(x f x f +=-,令2-=x x ,得 )4()(x f x f -=,由)7()7(x f x f +=-,令3+=x x ,得 )10()4(x f x f +=-,∴)10()(x f x f +=,∴)(x f 是以10为周期的周期函数,由)7()7(x f x f +=-得,)(x f 的图象关于7=x 对称, ∴在[0,11]上,只有0)3()1(==f f , ∴10是)(x f 的最小正周期,∵在[0,10]上,只有0)3()1(==f f , ∴在每一个最小正周期内0)(=x f 只有两个根,∴在闭区间]2005,2005[-上的根的个数是802.( 20 ) (本小题共14分)在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB 、AD 边分别在x 轴、y 轴的正半轴上,A 点与坐标原点重合(如图5所示).将矩形折叠,使A 点落在线段DC 上. (Ⅰ)若折痕所在直线的斜率为k ,试写出折痕所在直线的方程;(Ⅱ)求折痕的长的最大值.。
2019年最新(统考)广东省高考考前冲刺数学试题(理)及答案解析
频数(人数)
频率
[60,70)
9
[70,80)
0.38
[80,90)
16
0.32
[90,100)
合计
1
(1)求出上表中的 的值;
(2)按规定,预赛成绩不低于90分的选手参加决赛,参加决赛的选手按照抽签方式决定出场顺序.已知高一二班有甲、乙两名同学取得决赛资格.
①求决赛出场的顺序中,甲不在第一位、乙不在最后一位的概率;
设函数 .
(Ⅰ)若函数 在区间 上是单调递增函数,求实数 的取值范围;
(Ⅱ)若函数 有两个极值点 ,且 ,求证: .
请考生在第22、23题任选一题作答,如果多做,则按所做的第一题计分。
作答时请写清题号。
22.(本小题满分10分)选修4-4:坐标系与参数方程
平面直角坐标系 中,曲线 .直线 经过点 ,且倾斜角为 .以 为极点,以 轴正半轴为极轴,建立极坐标系.
(1)写出曲线 的极坐标方程与直线 的参数方程;
(2)若直线 与曲线 相交于 两点,且 ,求实数 的值.
23.(本小题满分10分)选修4-5:不等式选讲
已知函数 .
(1)当 时,求不等式 的解集;
(2)若不等式 对任意实数 恒成立,求 的取值范围.
高考理科数学考前冲刺题(答案)
一、选择题
题号
1
2
3
4
13.设 (其中 为自然对数的底数),则 的图
象与直线 , 所围成图形的面积为.
14.已知 是等差数列,若 ,则 的值是.
15.四面体的顶点和各棱中点共10个点,则由这10点构成的直线中,有对异面直线.
16.已知函数 有3个零点,则实数 的取值范围是.
2019届广东省普通高等学校招生全国统一考试模拟试卷(二)文科数学(解析版)
2019年广东省高考数学二模试卷(文科)一、选择题(本大题共12小题,共60.0分)1.设i为虚数单位,则复数z=i(2-i)的共轭复数=()A. B. C. D.2.已知集合A={x|-1<x<6},集合B={x|x2<4},则A∩(∁R B)=()A. B. C. D.3.在样本的频率直方图中,共有9个小长方形,若中间一个长方形的面积等于其他8个小长方形面积的和的,且样本容量为200,则中间一组的频数为()A. B. C. 40 D. 504.设向量与向量垂直,且=(2,k),=(6,4),则下列下列与向量+共线的是()A. B. C. D.5.设S n为等差数列{a n}的前n项和,若公差d=1,S9-S4=10,则S17=()A. 34B. 36C. 68D. 726.某几何体的三视图如图所示,三个视图都是半径相等的扇形,若该几何体的表面积为,则其体积为()A.B.C.D.7.阿基米德(公元前287年-公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴与短半轴的乘积.若椭圆C的对称轴为坐标轴,焦点在y轴上,且椭圆的离心率为,面积为12π,则椭圆C的方程为()A. B. C. D.8.函数f(x)在(-∞,+∞)单调递增,且为奇函数.已知f(1)=2,f(2)=3,则满足-3<f(x-3)<2的x的取值范围是()A. B. C. D.9.某轮胎公司的质检部要对一批轮胎的宽度(单位:mm)进行质检,若从这批轮胎中随机选取3个,至少有2个轮胎的宽度在195±3内,则称这批轮胎基本合格.已知这批轮胎的宽度分别为195,196,190,194,200,则这批轮胎基本合格的概率为()A. B. C. D.10.函数的部分图象不可能为()A.B.C.D.11.若函数f(x)=x3-ke x在(0,+∞)上单调递减,则k的取值范围为()A. B. C. D.12.已知直线x=2a与双曲线C:(a>0,b>0)的一条渐近线交于点P,双曲线C的左、右焦点分别为F1,F2,且cos∠PF2F1=-,则双曲线C的离心率为()A. B. C. 或 D. 或二、填空题(本大题共4小题,共20.0分)13.若函数f(x)=log2(x+a)的零点为-2,则a=______.14.若x,y满足约束条件,则的最大值为______.15.在四棱锥P-ABCD中,PA与矩形ABCD所在平面垂直,AB=3,AD=,PA=,则直线PC与平面PAD所成角的正切值为______.16.在数列{a n}中,a n+1=2(a n-n+3),a1=-1,若数列{a n-pn+q)为等比数列,其中p,q为常数,则a p+q=______.三、解答题(本大题共7小题,共82.0分)17.在△ABC中,AC=3,C=120°.(1)若AB=7,求BC边的长;(2)若cos A=sin B,求△ABC的面积.18.《最强大脑》是江苏卫视推出的大型科学竞技真人秀节目.节目筹备组透露挑选选手的方式:不但要对选手的空间感知、照相式记忆能力进行考核,而且要让选手经过名校最权威的脑力测试,120分以上才有机会入围.某重点高校准备调查脑力测试成绩是否与性别有关,在该高校随机抽取男、女学生各100名,然后对这200名学生进行脑力测试.规定:分数不小于120分为“入围学生”,分数小于120分为“未入围学生”.已知男生入围24人,女生未入围80人.(1)根据题意,填写下面的2×2列联表,并根据列联表判断是否有90%以上的把握认为脑力测试后是否为“入围学生”与性别有关.(2)用分层抽样的方法从“入围学生”中随机抽取11名学生.(ⅰ)求这11名学生中女生的人数;(ⅱ)若抽取的女生的脑力测试分数各不相同(每个人的分数都是整数),求这11名学生中女生测试分数的平均分的最小值.附:K2=,其中n=a+b+c+d.19.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面A1B1C1,AC⊥AB,AC=AB=4,AA1=6,点E,F分别为CA1与AB的中点.(1)证明:EF∥平面BCC1B1.(2)求三棱锥B1-AEF的体积.20.在平面直角坐标系xOy中,直线y=kx+1与抛物线C:x2=4y交于A,B两点.(1)证明:△AOB为钝角三角形.(2)若直线l与直线AB平行,直线l与抛物线C相切,切点为P,且△PAB的面积为16,求直线l的方程.21.已知函数f(x)=x2-(a+1)x+a ln x.(1)当a=-4时,求f(x)的单调区间;(2)已知a∈(1,2],b∈R,函数g(x)=x3+bx2-(2b+4)x+ln x.若f(x)的极小值点与g(x)的极小值点相等,证明:g(x)的极大值不大于.22.在平面直角坐标系xOy中,以坐标原点O为极点,x轴为正半轴建立极坐标系,已知曲线C的极坐标方程为ρ2-4ρcosθ-6ρsinθ+12=0.(1)求曲线C的直角坐标方程;(2)过曲线C上一动点P分别作极轴、直线ρcosθ=-1的垂线,垂足分别为M,N,求|PM|+|PN|的最大值.23.设函数f(x)=|x+1|+|2-x|-k.(1)当k=4时,求不等式f(x)<0的解集;(2)若不等式对x∈R恒成立,求k的取值范围.答案和解析1.【答案】D【解析】解:∵z=i(2-i)=1+2i,∴.故选:D.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.2.【答案】C【解析】解:B={x|x2<4}={x|-2<x<2},则∁R B={x|x≥2或x≤-2},则A∩(∁R B)={x|2≤x<6},故选:C.求出集合B的等价条件,结合补集交集的定义进行求解即可.本题主要考查集合的基本运算,求出集合的等价条件以及利用交集补集的定义是解决本题的关键.3.【答案】D【解析】解:在样本的频率直方图中,共有9个小长方形,中间一个长方形的面积等于其他8个小长方形面积的和的,且样本容量为200,设其他8组的频率数和为m,则由题意得:m+m=200,解得m=150,∴中间一组的频数为=50.故选:D.设其他8组的频率数和为m,则由题意得:m+m=200,由此能求出中间一组的频数.本题考查频数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.4.【答案】B【解析】解:∵;∴;∴k=-3;∴;∴;∴(-16,-2)与共线.故选:B.根据即可得出,从而得出k=-3,从而可求出,从而可找出与共线的向量.考查向量垂直的充要条件,向量坐标的加法和数量积的运算,共线向量基本定理.5.【答案】C【解析】解:因为数列{a n}是等差数列,且S9-S4=10,所以10=5a1+(36d-6d)=5(a1+6d)=5a7,所以a7=2,所以a9=a7+2d=2+2=4,S17===17a9=17×4=68.故选:C.数列{a n}是等差数列,S9-S4=10=5a1+(36d-6d)=5(a1+6d)=5a7,所以a7=2,所以a9=a7+2d=2+2=4,S17===17a9,将a9代入可得S17.本题考查了等差数列的前n项和公式,通项公式,属于基础题.6.【答案】A【解析】解:将三视图还原可知该几何体为球体的,S=3×+=,r=,几何体的体积为:=.故选:A.首先把几何体的三视图进行转换,进一步利用表面积公式的应用求出结果.本题考查的知识要点:三视图和几何体的转换,几何体的体积公式和面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.7.【答案】A【解析】解:由题意可得:,解得a=4,b=3,因为椭圆的焦点坐标在y轴上,所以椭圆方程为:.故选:A.利用已知条件列出方程组,求出a,b,即可得到椭圆方程.本题考查椭圆飞简单性质的应用,考查转化思想以及计算能力.8.【答案】A【解析】解:∵f(x)是奇函数,且(1)=2,f(2)=3,∴f(-2)=-3,则不等式-3<f(x-3)<2等价为f(-2)<f(x-3)<f(1),∵f(x)是增函数,∴-2<x-3<1得1<x<4,即x的取值范围是(1,4),故选:A.根据函数奇偶性和单调性的性质将不等式进行转化求解即可.本题主要考查不等式的求解,结合函数奇偶性和单调性的性质进行转化是解决本题的关键.9.【答案】C【解析】解:某轮胎公司的质检部要对一批轮胎的宽度(单位:mm)进行质检,从这批轮胎中随机选取3个,至少有2个轮胎的宽度在195±3内,则称这批轮胎基本合格.这批轮胎的宽度分别为195,196,190,194,200,基本事件总数n==10,至少有2个轮胎的宽度在195±3内包含的基本事件个数m==7,∴这批轮胎基本合格的概率为p==.故选:C.基本事件总数n==10,至少有2个轮胎的宽度在195±3内包含的基本事件个数m=C =7,由此能求出这批轮胎基本合格的概率.本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.10.【答案】B【解析】解:A.由图象知函数的周期T=2π,则=2π得ω=1,此时f(x)=2sin(x-)=-2cosx为偶函数,对应图象为A,故A图象可能B.由图象知函数的周期T=-(-)==,即=,得ω=±3,当ω=3时,此时f(x)=2sin(3x-),f()=2sin(3×-)=2sin≠-2,即B图象不可能,当ω=-3时,此时f(x)=2sin(-3x+),f()=2sin(-3×+)=-2sin≠-2,即B图象不可能,C.由图象知函数的周期T=4π,则=4π得ω=±,当ω=时,此时f(x)=2sin (x-π)=-2sin x,f(π)=-2sin=-1,即此时C图象不可能,当ω=-时,此时f(x)=2sin(-x-π)=2sin x,f(π)=2sin=-1,即此时C图象可能,D.由图象知函数的周期=-=,即t=π,则=π得ω=2,此时f(x)=2sin(2x-),f ()=2sin(2×-)=2sin=2,即D图象可能,综上不可能的图象是B,故选:B.根据三角函数的图象判断周期性性以及对称轴是否对应即可得到结论.本题主要考查三角函数图象的识别和判断,利用周期性求出ω以及利用特殊值进行验证是解决本题的关键.注意本题的ω有可能是复数.11.【答案】C【解析】解:∵函数f(x)=x3-ke x在(0,+∞)上单调递减,∴f′(x)=3x2-ke x≤0在(0,+∞)上恒成立,∴k在(0,+∞)上恒成立,令g(x)=,x>0,则,当0<x<2时,g′(x)>0,此时g(x)单调递增,x>2时,g′(x)<0,g(x)单调递减故当x=2时,g(x)取得最大值g(2)=,则k,故选:C.令f′(x)≤0在(0,+∞)上恒成立得k在(0,+∞)上恒成立,求出右侧函数的最大值即可得出k的范围.本题考查了导数与函数单调性的关系,函数恒成立问题,属于中档题.12.【答案】B【解析】解:双曲线C的左、右焦点分别为F1(-c,0),F2(c,0),cos∠PF2F1=-,可得sin∠PF2F1==,即有直线PF2的斜率为tan∠PF2F1=,由直线x=2a与双曲线C :(a>0,b>0)的一条渐近线y=x交于点P,可得P(2a,2b),可得=,即有4b2=15(4a2-4ac+c2)=4(c2-a2),化为11c2-60ac+64a2=0,由e=可得11e2-60e+64=0,解得e=或e=4,由2a-c>0,可得c<2a,即e<2,可得e=4舍去.故选:B.设出双曲线的焦点,求得一条渐近线方程可得P的坐标,求得直线PF2的斜率,由两点的斜率公式和离心率公式,可得所求值.本题考查双曲线的方程和性质,主要是渐近线方程和离心率的求法,考查方程思想和运算能力,属于中档题.13.【答案】3【解析】解:根据题意,若函数f(x)=log2(x+a)的零点为-2,则f(-2)=log2(a-2)=0,即a-2=1,解可得a=3,故答案为:3根据题意,由函数零点的定义可得f(-2)=log2(a-2)=0,解可得a的值,即可得答案.本题考查函数的零点,关键是掌握函数零点的定义,属于基础题.14.【答案】【解析】解:设z=,则k得几何意义为过原点得直线得斜率,作出不等式组对应得平面区域如图:则由图象可知OA的斜率最大,由,解得A (3,4),则OA 得斜率k=,则的最大值为.故答案为:.设z=,作出不等式组对应得平面区域,利用z 得几何意义即可得到结论.本题主要考查直线斜率的计算,以及线性规划得应用,根据z 的几何意义,利用数形结合是解决本题的关键. 15.【答案】【解析】解:∵在四棱锥P-ABCD 中,PA 与矩形ABCD 所在平面垂直, ∴CD ⊥AD ,CD ⊥PA ,∵AD∩PA=A ,∴CD ⊥平面PAD , ∴∠CPD 是直线PC 与平面PAD 所成角, ∵AB=3,AD=,PA=,∴直线PC 与平面PAD 所成角的正切值: tan ∠CPD===.故答案为:.推导出CD ⊥AD ,CD ⊥PA ,从而CD ⊥平面PAD ,进而∠CPD 是直线PC 与平面PAD 所成角,由此能求出直线PC 与平面PAD 所成角的正切值.本题考查线面角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理推论证能力、运算求解能力,是中档题. 16.【答案】-2【解析】解:数列{a n }中,a n+1=2(a n -n+3),a 1=-1, 若数列{a n -pn+q )为等比数列, 则:,所以:a n+1-p (n+1)+q=2(a n -pn+q )解得:p=2,q=2,故:数列{a n -pn+q}是以-1+2-2=-1为首项,2为公比的等比数列. 所以:, 整理得:.故:a p+q =a 4=-8+8-2=-2, 故答案为:-2首先求出数列的通项公式,进一步求出结果.本题考查的知识要点:数列的通项公式的求法及应用,主要考察学生的运算能力和转换能力,属于基础题型.17.【答案】解:(1)由余弦定理得AB 2=BC 2+AC 2-2BC ×AC ×cos C ,代入数据整理得BC 2+3BC -40=0,解得BC =5(BC =-8舍去). (2)由cos A = sin B 及C =120°, 得cos (60°-B )= sin B , 展开得cos B +sin B - sin B =0,即sin B =cos B ,tan B ==, 所以B =30°.从而A =60°-B =30°, 即A =B =30°, 所以BC =AC =3.故△ABC 的面积为×3×3×sin120°=. 【解析】(1)直接利用余弦定理和一元二次方程的解的应用求出结果. (2)利用三角函数关系式的变换和三角形的面积公式的应用求出结果.本题考查的知识要点:三角函数关系式的变换,正弦定理余弦定理和三角形面积的应用,主要考察学生的运算能力和转换能力,属于基础题型.【答案】解:(1)填写列联表如下:…(4分)因为K2的观测值k==<2.706,…(6分)所以没有90%以上的把握认为脑力测试后是否为“入围学生”与性别有关…(7分)(2)(ⅰ)这11名学生中,被抽到的女生人数为20×=5…(9分)(ⅱ)因为入围的分数不低于120分,且每个女生的测试分数各不相同,每个人的分数都是整数,所以这11名学生中女生的平均分的最小值为×(120+121+122+123+124)=122…(12分)【解析】(1)由题意填写列联表,计算观测值,对照临界值得出结论;(2)(ⅰ)根据分层抽样原理计算被抽到的女生人数;(ⅱ)由题意计算所求平均分的最小值.本题考查了列联表与独立性检验的应用问题,也考查了分层抽样原理与平均数的计算问题,是基础题.19.【答案】(1)证明:如图,连接BC1.(1分)在三棱柱ABC-A1B1C1中,E为AC1的中点.(2分)又因为F为AB的中点,所以EF∥BC1.(3分)又EF⊄平面BCC1B1,BC1⊂平面BCC1B1,所以EF∥平面BCC1B1.(5分)(或先证面面平行,再证线面平行,也是常见的方法,阅卷时应同样给分.)(2)解:因为AC⊥AB,AA1⊥AC,AA1∩AB=A,所以AC⊥平面ABB1A1,(7分)又AC=4,E为A1C的中点,所以E到平面ABB1A1的距离为:×4=2.(9分)因为△AB1F的面积为:×2×6=6,(10分)所以==×2×6=4.(12分)【解析】(1)连接BC1.证明EF∥BC1,然后证明EF∥平面BCC1B1.(2)说明AC⊥平面ABB1A1,求出E到平面ABB1A1的距离,通过=求解体积即可.本题考查直线与平面平行的判断定理以及性质定理的应用,几何体的体积的求法,考查空间想象能力以及计算能力.20.【答案】(1)证明:设A(x1,y1),B(x2,y2),联立,得x2-4kx-4=0,(1分)则x1x2=-4,(2分)所以y1y2==1,(3分)从而•=x1x2+y1y2=-3<0,(4分)则∠AOB为钝角,故△AOB为钝角三角形.(5分)(得到x1x2,y1y2的值分别给(1分);若只是得到其中一个,且得到•=-3<0,可以共给(3分)).(2)解:由(1)知,x1+x2=4k,y1+y2=k(x1+x2)+2=4k2+2,(6分)则|AB|=y1+y2+p=4k2+4.(7分)由x2=4y,得y=,y'=,设P(x0,y0),则x0=2k,y0=k2,则点P到直线y=kx+1的距离d==.(9分)从而△PAB的面积S=d|AB|=2(k2+1)=16,(10分)解得k=±,(11分)故直线l的方程为y=±x-3.(12分)【解析】(1)设A(x1,y1),B(x2,y2),联立,得x2-4kx-4=0,利用韦达定理以及向量的数量积证明△AOB为钝角三角形.(2)求出|AB|=y1+y2+p=4k2+4,结合函数的导数,利用斜率关系,求出点P到直线y=kx+1的距离,写出|AB|,利用△PAB的面积,转化求解即可.本题考查直线与抛物线的位置关系的综合应用,函数的导数的应用,考查转化思想以及计算能力.21.【答案】(1)解:当a=-4时,f(x)=x2+3x-4ln x,定义域为(0,+∞).f'(x)=x+3-=.当x>1时,f'(x)>0,f(x)单调递增,则f(x)的单调递增区间为(1,+∞);当0<x<1时,f'(x)<0,f(x)单调递减,则f(x)的单调递减区间为(0,1).(2)证明:f'(x)==,g'(x)=3x2+2bx-(2b+4)+=.令p(x)=3x2+(2b+3)x-1.因为a∈(1,2],所以f(x)的极小值点为a,则g(x)的极小值点为a,所以p(a)=0,即3a2+(2b+3)a-1=0,即b=,此时g(x)的极大值为g(1)=1+b-(2b+4)=-3-b=-3-=a--.因为a∈(1,2],所以a-≤3-=.故g(x)的极大值不大于.【解析】(1)当a=-4时,f(x)=x2+3x-4ln x,定义域为(0,+∞).f'(x)=x+3-=.即可得出单调区间.(2)f'(x)=,g'(x)=3x2+2bx-(2b+4)+=.令p(x)=3x2+(2b+3)x-1.由a∈(1,2],可得f(x)的极小值点为a,则g(x)的极小值点为a,可得p(a)=0,b=,此时g(x)的极大值为g(1)=1+b-(2b+4)代入利用函数的单调性即可得出.本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、转化方法,考查了推理能力与计算能力,属于难题.22.【答案】解:(1)由ρ2-4ρcosθ-6ρsinθ+12=0,得x2+y2-4x-6y+12=0,即(x-2)2+(y-3)2=1,此即为曲线C的直角坐标方程.(2)由(1)可设P的坐标为(2+cosα,3+sinα),0≤α<2π,则|PM|=3+sinα,又直线ρcosθ=-1的直角坐标方程为x=-1,所以|PN|=2+cosα+1=3+cosα,所以|PM|+|PN|=6+sin(α+),故当α=时,|PM|+|PN|取得最大值为6+.【解析】(1)由ρ2-4ρcosθ-6ρsinθ+12=0,得x2+y2-4x-6y+12=0,即(x-2)2+(y-3)2=1,此即为曲线C的直角坐标方程.(2)由(1)可设P的坐标为(2+cosα,3+sinα),0≤α<2π,求出|PM|和|PN|后相加,用三角函数的性质求得最大值.本题考查了简单曲线的极坐标方程,属中档题.23.【答案】解:(1)k=4时,函数f(x)=|x+1|+|2-x|-4,不等式f(x)<0化为|x+1|+|2-x|<4,当x<-1时,不等式化为-x-1+2-x<4,解得-<x<-1,当-1≤x≤2时,不等式化为x+1+2-x=3<4恒成立,则-1≤x≤2,当x>2时,不等式化为x+1+x-2<4,解得2<x<,综上所述,不等式f(x)<0的解集为(-,);(2)因为f(x)=|x+1|+|2-x|-k≥|x+1+2-x|-k=3-k,所以f(x)的最小值为3-k;又不等式对x∈R恒成立,所以3-k≥,所以,解得k≤1,所以k的取值范围是(-∞,1].【解析】(1)k=4时,利用分类讨论思想求出不等式f(x)<0的解集,再求它们的并集;(2)利用绝对值不等式的性质求出f(x)的最小值,再把不等式化为3-k≥,求出不等式的解集即可.本题考查了不等式恒成立应用问题,也考查了含有绝对值的不等式解法与应用问题,是中档题.。
2019广东高考文科数学试卷及答案解析【word版】
2019年普通高等学校招生全国统一考试(广东卷)数学 (文科) 一、选择题{}{}{}{}{}{}1.2,3,4,0,2,3,5,()..0,2.2,3.3,4.3,5M N M N A B C D ===已知集合则答案:B2.(34)25,()..34.34.34.34z i z z A i B iC iD i-==---+-+已知复数满足则答案:D 2525(34)25(34):=34,.34(34)(34)25i i z i D i i i ++===+--+提示故选 3.(1,2),(3,1),()..(2,1).(2,1).(2,0).(4,3)a b b a A B C D =-=--已知向量则答案:B284.,04,2().03.7.8.10.11x y x y x z x y y A B C D +≤⎧⎪≤≤=+⎨⎪≤≤⎩若变量满足约束条件则的最大值等于 答案:C提示:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10. 选C. 5.下列函数为奇函数的是( ).A.x x212- B.x x sin 3 C.1cos 2+x D.xx 22+答案:A111:()2,(),()22(),222(), A.x x xx x x f x f x R f x f x f x --=--=-=-=-∴提示设则的定义域为且为奇函数故选6.1000,,40,()..50.40.25.20:1000:25.40A B C D C=为了解名学生的学习情况采用系统抽样的方法从中抽取容量为的样本则分段的间隔为答案提示分段的间隔为7.,,,,,,sin sin ().....::,,,sin ,sin ,sin sin .sin sin ABC A B C a b c a b A B A B C D Aa ba b A B a b A B A B∆≤≤=∴≤⇔≤在中角所对应的边分别为则“”是“”的充分必要条件充分非必要条件必要非充分条件非充分非必要条件答案提示由正弦定理知都为正数22228.05,11().165165....05,50,160,16(5)21(16)5,x y x y k k k k A B C D k k k k k k <<-=-=--<<∴->->+-=-=-+若实数满足则曲线与曲线的实半轴长相等虚半轴长相等离心率相等焦距相等答案:D提示:从而两曲线均为双曲线,又故两双曲线的焦距相等,选D.1234122334141414149.,,,,,//,,()...//..l l l l l l l l l l A l l B l l C l l D l l ⊥⊥⊥若空间中四条两两不同的直线满足则下列结论一定正确的是与既不垂直也不平行与的位置关系不确定答案:D1212122212310.,,=,,,,z z z ωωωωωωωω*对任意复数定义其中是的共轭复数对任意复数有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真A.1B.2C.3D.412312313231323123123123121312131231231231231231:()()()()()();()()()()()()();(),()()(),,;Bz z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z ++++=+=+=+====≠答案提示:①*===*+*,故①是真命题②**+*,②对③左边=*=右边*左边右边③错 ④左边=2122121,,,z z z z z z z ==≠*右边=*左边右边故④不是真命题.综上,只有①②是真命题,故选B.二、填空题(一)必做题(11-13)''142511.53(0,2)_______.:520:5,5,25,520.12.,,,d,e ________.2:542:105x x x y e x y y e y y x x y a b c a C P C ==-+-++==-∴=-∴+=-++====曲线在点处的切线方程为答案提示所求切线方程为即从字母中任取两个不同字母,则取到字母的概率为答案提示13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.212223242525242322212152:5:log log log log log ,log log log log log ,25log ()5log 410,5.S a a a a a S a a a a a S a a S =++++=++++∴===∴=答案提示设则2121214.()2cos sin cos =1.,,_____________.C C x C C ρθθρθ=坐标系与参数方程选做题在极坐标系中,曲线与的方程分别为与以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系则曲线与交点的直角坐标为 2221212:(1,2):2cos sin 2cos =sin ,2,1,,(1,2).C y x C x C C ρθθρθρθ===∴答案提示由得()故的直角坐标方程为:的直角坐标方程为:交点的直角坐标为15.()1,,2,,___________.:3:, 3.ABCD E AB EB AE AC DE F CDF AEF CDF CD EB AECDFAEF AEF AE AE=∆=∆∆+∆∆∴===∆几何证明选讲选做题如图在平行四边形中点在上且与交于点的周长则的周长答案的周长提示显然的周长三、解答题16.(本小题满分12分) 已知函数()sin(),3f x A x x R π=+∈,且532()122f π=(1) 求A 的值;(2) 若()()3,(0,)2f f πθθθ--=∈,求()6f πθ-5533232:(1)()sin()sin ,2 3.12123422(2)(1):()3sin(),3()()3sin()3sin()333(sin cos cos sin )3(sin()cos cos()sin )33336sin cos3sin 333sin ,(0,),32f A A A f x x f f πππππππθθθθππππθθθθπθθπθθ=+==∴=⋅==+∴--=+--+=+--+-===∴=∈解由得又6cos 36()3sin()3sin()3cos 3 6.66323f θππππθθθθ∴=∴-=-+=-==⨯=17. 某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.:(1)2030,401921.-=解这名工人年龄的众数为极差为 (2)茎叶图如下:()2222222(1928329330531432340)3:30,20120:(11)3(2)3(1)504132102011(121123412100)25212.62020+⨯+⨯+⨯+⨯+⨯+=⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+⎣⎦=+++++=⨯=年龄的平均数为故这名工人年龄的方差为18.2,,,1, 2.3://,,,,,.(1):;(2).ABCD PD ABCD AB BC PC EF DC E F PD PC EF P AD M MF CF CF MDF M CDE ⊥===⊥⊥-如图四边形为矩形平面作如图折叠折痕其中点分别在线段上沿折叠后点叠在线段上的点记为并且证明平面求三棱锥的体积1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 000:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2222221333132,=,,,,2442833336()(),44211362.338216CDE M CDE CDE CF DE DE PE S CD DE P CP MD ME DE PE DE V S MD ∆-∆=∴=∴==⋅==-=-=-=∴=⋅=⋅⋅=即{}{}222119.,(3)3()0,.(1);(2);n n n n n n a n S S S n n S n n n N a a *-+--+=∈设各项均为正数的数列的前项和为且满足求的值求数列的通项公式(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a221111*********2221:(1)1:(1)320,60,(3)(2)0,0,2, 2.(2)(3)3()0,:(3)()0,0(),0,30,,2,(1)(1)n n n n n n n n n n n n S S S S S S S S a S n n S n n S S n n a n N S S S n n n a S S n n n n *-=---⨯=+-=∴+-=>∴==⎡⎤-+--+=+-+=⎣⎦>∈∴>+>∴=+⎡∴≥=-=+--+-⎣解令得即即由得从而当时12211222,221,2().313(3):,()(),221644111111113(1)2(21)44()()()24411111111144(1)()(1)4444111(1)(1)n k k n a a n n N k k k N k k k k a a k k k k k k k k k k a a a a **⎤=⎦==⨯∴=∈∈+>+-=-+∴==⋅<⋅+++-+⎡⎤⎢⎥=⋅=⋅-⎢⎥⎡⎤⎢⎥-+--⋅+-⎢⎥⎣⎦⎣⎦∴+++++又解法一当时(1)1111111()()11111141223(1)444444111111().11434331(1)44111111:(),.(1)2(21)(21)(21)22121(:)n n k k a a n n n n a a k k k k k k +⎡⎤⎢⎥<-+-++-⎢⎥⎢⎥-----+-⎣⎦=-=-<+-+-=<=-++-+-+解法二以下略注解法二的放缩没有解法一的精确,在使用中第一项不放缩时才能得到答案22220022222520.:1(0)(5,0),.3(1);(2)(,),,.55:(1)5,,3,954,31.94(2),,4x y C a b a b C P x y C P C P c c e a b a c a a x y C x y +=>>====∴==-=-=∴+=已知椭圆的一个焦点为离心率为求椭圆的标准方程若动点为椭圆外一点且点到椭圆的两条切线相互垂直求点的轨迹方程解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个002200222000022222000000(3,2),(3,2).(),(),194(94)18()9()40,,0,(18)()36()4(94)0,4()4y y k x x x y y k x x y k x k y kx x y kx k y kx y kx k y kx -±±-=-=-++=⎡⎤++-+--=∆=⎣⎦⎡⎤----+=--⎣⎦,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:依题意即:即22222000001220220022(94)0,4(9)240,,1,:1,913,(3,2),(3,2),13.k y x k x y k y k k x x y P x y +=-∴--+-=∴=-=--∴+=-±±∴+=两切线相互垂直即显然这四点也满足以上方程点的轨迹方程为'22'2'':(1)()2,20:44,1,0,()0,()(,).1,2011,(,11),()0,(),(11,11),()0,(),(11,)f x x x a x x a a a f x f x a x x a a x a f x f x x a a f x f x x a =++++=∆=-∴≥∆≤∴≥-∞+∞<++=-±-∈-∞--->∴∈----+-<∈-+-+∞解方程的判别式当时此时在上为增函数当时方程的两根为当时此时为增函数当时此时为减函数当时',()0,(),,1,()(,),1,()(,11),(11,),()(11,11).f x f x a f x a f x a a f x a a >≥-∞+∞<-∞----+-+∞----+-此时为增函数综上时在上为增函数当时的单调递增区间为的单调递减区间为3200121.()1().3(1)();111(2)0,(0,)(,1),()=().222f x x x ax a R f x a x f x f =+++∈<∈已知函数求函数的单调区间当时试讨论是否存在使得3232000033220002000000200000111111(2):()()1()()()12332221111()()()3222111111()()()()()322422211111()()()(4236122122f x f x x ax a x x a x x x x x x a x x x x x a x ⎡⎤-=+++-+++⎢⎥⎣⎦⎡⎤⎡⎤=-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=-+++-++-⎢⎥⎣⎦=-+++++=-解法一2000020020014712)111(0,)(,1),()(),222114147120(0,)(,1).220,1416(712)4(2148)0,14221487214872148:,0,,8447+2148,01,7214x x a x f x f x x a a a a a a ax x a +++∴∈=+++=<∴∆=-+=->-±--±--+-=>∴--<<<-若存在使得必须在上有解方程的两根为只能是依题意即000002574811,492148121,,12127+2148155=,,,,424425557111(,)(,),(0,)(,1)()().124412222257511(,][,0),(0,)(,1)(1212422a a a a a x a a x f x f a x f x <∴<-<-<<---=-≠-∴∈----∈=⎧⎫∈-∞---∈⎨⎬⎩⎭即又由得故欲使满足题意的存在则当时存在唯一的满足当时不存在使1)().2f =00:0,110,()3,111,(1)()(0,1),111(0,)(,1),()=();222()30,()(0,11),(11,1),5111),()(0,),(,1),422a a i a a f x x f x f ii a f x a a a f x <∴-+->≤--+-≤∈-<<-+--+-=-解法二若从而由知在区间上是减函数故此时不存在使得若则函数在区间上递减在区间上递增若则在上递减在上递增显然此时不存在满足题意的000000;512)3,111,,(11,1),4212525255(1)()0,0,,;222412124513)0,011,,(0,11),421775(0)()0,0,,2224124x a a x x a a f f a a x a a x x a a f f a -<<-<-+-<∈-+-->+>>--<<--<<<-+-<∈-+-->--><--若则若题意中的存在则故只需即则故时存在满足题意的若则若题意中的存在则故只需即则故000007.12:25557111(,)(,),(0,)(,1)()().1244122222575111(,][,0),(0,)(,1)()().12124222a x a x f x f a x f x f <<-∴∈----∈=⎧⎫∈-∞---∈=⎨⎬⎩⎭时存在满足题意的综上所述当时存在唯一的满足当时不存在使。
广州市2019年高三考前冲刺数学文科试题解析卷
最大面积 为 3 × 22 × 6 = 3 3,
42
4
故可得周长 l 为定值,面积 s 为定值,故选 B.
6
【点睛】本题主要考查了利用平面几何的知识解决立体几何,考查学生的空间想象能力,属于中档题.
9.如图,正方体 ABCD − A1B1C1D1的对角线 BD1上存在一动点 P,过点 P 作垂直于平面 BB1D1D 的直线,与 正方体表面相交于 M,N 两点.设 BP = x,ΔBMN 的面积为 S,则当点 P 由点 B 运动到 BD1的中点时,函数 S = fx 的图象大致是( )
3
为 S = 1 × MN × BP = 1 × 2
2
2
6x2 =
3
6 3
x2x
>
0,故选
D.
10.已知双曲线xa22
−
y2 b2
=
1(a,b>0)的左焦点F1,过点F1作倾斜角为
30°的直线与圆x2
+
y2
=
b2相交的弦长
为 3a,则双曲线的离心率为( )
A.
21 3
B.
7 3
C.
5
D.
5 5
【答案】A
可得平面α与其他各面的交线都与此平面的对角线平行,即 EF//A1B 等
设 EF
A1B
=
λ,则 B1E
A1B1
=
B1E
=
λ,∴ NE
B1D1
=
A1E A1B1
=
1
−
λ,
∴EF + NE = 2λ + 21 − λ = 2,同理可得六边形其他相邻两边的和为 2, ∴六边形的周长 l 为定值 3 2.
广东省2019年高考[文数]考试真题与答案解析
,则C.185 cm在[-π,π]的图像大致为.....某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…生中用系统抽样方法等距抽取名学生进行体质测验.若46号学生被抽到,则下面学生中被抽到的是C .A =1A 112A+10.双曲线C :的一条渐近线的倾斜角为130°,则C 的离心率为22221(0,0)x y a b a b-=>>A .2sin40°B .2cos40°C .D .1sin50︒1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-,则=14bcA .6B .5C .4D .312.已知椭圆C 的焦点为,过F 2的直线与C 交于A ,B 两点.若12(1,0),(1,0)F F -,,则C 的方程为22||2||AF F B =1||||AB BF =A .B .C .D .2212x y +=22132x y +=22143x y +=22154x y +=二、填空题本题共4小题,每小题5分,共20分。
13.曲线在点处的切线方程为___________.2)3(e xy x x =+(0,0)14.记S n 为等比数列{a n }的前n 项和.若,则S 4=___________.13314a S ==,15.函数的最小值为___________.3π()sin(2)3cos 2f x x x =+-16.已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距离均为,那么P 到平面ABC 的距离为___________.3三、解答题共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
2019年最新广东省高考数学三模试卷(文科)及答案解析
广东省高考数学三模试卷(文科)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A={x|lgx≥0},B={x|x≤1},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B2.若复数z满足(1+2i)z=(1﹣i),则|z|=()A.B.C.D.3.一个总体中有100个个体,随机编号为0,1,2,3,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k号码的个位数字相同,若m=6,则在第7组中抽取的号码是()A.66 B.76 C.63 D.734.在函数y=xcosx,y=e x+x2,,y=xsinx偶函数的个数是()A.3 B.2 C.1 D.05.直线l:x﹣2y+2=0过椭圆的一个顶点.则该椭圆的离心率为()A.B.C.D.6.已知数列{a n}满足a1=1,a n﹣a n﹣1=n(n≥2),则数列{a n}的通项公式a n=()A.B.C.n2﹣n+1 D.n2﹣2n+27.如图是计算+++…+的值的一个程序框图,其中在判断框中应填入的条件是()A .i <10B .i >10C .i <20D .i >208.已知,且α为第二象限角,则=( )A .B .C .D .9.一个几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .cm 3 B . cm 3 C . cm 3 D .7cm 310.在△ABC 中,,则边AC 上的高为( )A .B .C .D .11.在球内有相距1cm 的两个平行截面,截面面积分别是5πcm 2和8πcm 2,球心不在截面之间,则球面的面积是( )A .36πcm 2B .27πcm 2C .20πcm 2D .12πcm 212.已知函数f (x )=满足条件,对于∀x 1∈R ,存在唯一的x 2∈R ,使得f(x 1)=f (x 2).当f (2a )=f (3b )成立时,则实数a+b=( )A.B.﹣C.+3 D.﹣+3二、填空题:本大题共4小题,每小题5分13.已知x,y满足不等式,则函数z=2x+y取得最大值等于.14.在△ABC中,若,则cos∠BAC的值等于.15.以﹣=﹣1的焦点为顶点,顶点为焦点的椭圆方程为.16.已知函数f(x)=sin(ωx+φ)(ω>0),若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则ω的最小值为.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.已知等差数列{a n}的前n项和S n满足S3=6,S5=15.(Ⅰ)求{a n}的通项公式;(Ⅱ)设,求数列{b n}的前n项和T n.18.某市组织高一全体学生参加计算机操作比赛,等级分为1至10分,随机调阅了A、B两所学校各60名学生的成绩,得到样本数据如表:B校样本数据统计表:(Ⅱ)从A校样本数据成绩分别为7分、8分和9分的学生中按分层抽样方法抽取6人,若从抽取的6人中任选2人参加更高一级的比赛,求这2人成绩之和大于或等于15的概率.19.如图,ABCD是平行四边形,已知,BE=CE,平面BCE⊥平面ABCD.(Ⅰ)证明:BD⊥CE;(Ⅱ)若,求三棱锥B﹣ADE的高.20.已知点P1(﹣2,3),P2(0,1),圆C是以P1P2的中点为圆心,|P1P2|为半径的圆.(Ⅰ)若圆C的切线在x轴和y轴上截距相等,求切线方程;(Ⅱ)若P(x,y)是圆C外一点,从P向圆C引切线PM,M为切点,O为坐标原点,且有|PM|=|PO|,求使|PM|最小的点P的坐标.21.已知函数f(x)=(a﹣)x2+lnx,g(x)=f(x)﹣2ax(a∈R).(1)当a=0时,求f(x)在区间[,e]上的最大值和最小值;(2)若对∀x∈(1,+∞),g(x)<0恒成立,求a的取值范围.[选修4-1:几何证明选讲]22.如图所示,AB为⊙O的直径,BC、CD为⊙O的切线,B、D为切点.(1)求证:AD∥OC;(2)若⊙O的半径为1,求AD•OC的值.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ﹣4=0.(Ⅰ)把C1的参数方程化为极坐标方程;(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).[选修4-5:不等式选讲]24.已知a>0,b>0,且a+b=1.(Ⅰ)求ab的最大值;(Ⅱ)求证:.参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A={x|lgx≥0},B={x|x≤1},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【考点】集合的包含关系判断及应用.【分析】由lgx≥0,解得x≥1,再利用集合运算性质即可得出.【解答】解:由lgx≥0,解得x≥1.∴A=[1,+∞).又B={x|x≤1},∴A∩B={1}≠∅,A∪B=R,故选:B.2.若复数z满足(1+2i)z=(1﹣i),则|z|=()A.B.C.D.【考点】复数求模.【分析】由(1+2i)z=(1﹣i),得,然后利用复数代数形式的乘除运算化简,再根据复数求模公式则答案可求.【解答】解:由(1+2i)z=(1﹣i),得=,则|z|=.故选:C.3.一个总体中有100个个体,随机编号为0,1,2,3,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k号码的个位数字相同,若m=6,则在第7组中抽取的号码是()A.66 B.76 C.63 D.73【考点】系统抽样方法.【分析】根据总体的容量比上样本的容量求出间隔k的值,再根据系统抽样方法的规定,求出第7组中抽取的号码是:m+60的值.【解答】解:由题意知,间隔k==10,∵在第1组随机抽取的号码为m=6,6+7=13,∴在第7组中抽取的号码63.故选C.4.在函数y=xcosx,y=e x+x2,,y=xsinx偶函数的个数是()A.3 B.2 C.1 D.0【考点】函数奇偶性的判断.【分析】根据函数奇偶性的定义分别进行判断即可.【解答】解:①f(﹣x)=﹣xcos(﹣x)=﹣xcosx=﹣f(x),则y=xcosx是奇函数,不满足条件.②当x=1时,f(1)=e+1,当x=﹣1时,f(﹣1)=+1≠f(1),则y=e x+x2,不是偶函数,不满足条件.③由x2﹣2>0得x>或x<﹣,此时f(﹣x)=lg=lg,则y=lg,是偶函数,④f(﹣x)=﹣xsin(﹣x)=xsinx=f(x),则y=xsinx是偶函数,满足条件.故偶函数的个数为2个,故选:B.5.直线l:x﹣2y+2=0过椭圆的一个顶点.则该椭圆的离心率为()A.B.C.D.【考点】椭圆的简单性质.【分析】求出直线在y轴上的截距,可得b=1,求得a和c,运用离心率公式计算即可得到所求值.【解答】解:直线l:x﹣2y+2=0过点(0,1),由题意可得b=1,则椭圆方程为+y2=1,即有a=,b=1,c==2,即有e===.故选:D.6.已知数列{a n}满足a1=1,a n﹣a n﹣1=n(n≥2),则数列{a n}的通项公式a n=()A.B.C.n2﹣n+1 D.n2﹣2n+2【考点】数列递推式.【分析】利用数列的递推关系式,通过累加法求解即可.【解答】解:数列{a n}满足:a1=1,a n﹣a n﹣1=n(n≥2,n∈N*),可得a1=1a2﹣a1=2a3﹣a2=3a4﹣a3=4…a n﹣a n﹣1=n以上各式相加可得:a n=1+2+3+…+n=n(n+1),故选:A.7.如图是计算+++…+的值的一个程序框图,其中在判断框中应填入的条件是()A .i <10B .i >10C .i <20D .i >20【考点】程序框图.【分析】根据算法的功能是计算+++…+的值,确定终止程序运行的i=11,由此可得判断框中应填入的条件.【解答】解:根据算法的功能是计算+++…+的值,∴终止程序运行的i=11,∴判断框中应填入的条件是:i >10或i ≥11. 故选:B .8.已知,且α为第二象限角,则=( )A .B .C .D .【考点】三角函数的化简求值.【分析】由题意和同角三角函数基本关系和二倍角公式可得tan2α,再由两角和的正切公式代入计算可得.【解答】解:∵,且α为第二象限角, ∴cosα=﹣=﹣,∴tanα==﹣,∴tan2α==﹣,∴==﹣,故选:D.9.一个几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.cm3 B.cm3C.cm3D.7cm3【考点】由三视图求面积、体积.【分析】由三视图知该几何体是棱长为2的正方体截取三棱锥,由三视图求出几何元素的长度,由柱体、锥体体积公式求出几何体的体积.【解答】解:根据三视图可知几何体是棱长为2的正方体截取三棱锥A﹣BCD,其中B、D分别中点,则BC=CD=1,且AC⊥平面BCD,∴几何体的体积V==(cm3),故选:A..10.在△ABC中,,则边AC上的高为()A.B.C.D.【考点】三角形中的几何计算.【分析】由点B向AC作垂线,交点为D,设AD=x,则CD=4﹣x,利用勾股定理可知BD==进而解得x的值,再利用勾股定理求得AD.【解答】解:由点B向AC作垂线,交点为D.设AD=x,则CD=4﹣x,∴BD==,解得x=∴BD==故选B11.在球内有相距1cm的两个平行截面,截面面积分别是5πcm2和8πcm2,球心不在截面之间,则球面的面积是()A.36πcm2B.27πcm2C.20πcm2D.12πcm2【考点】球内接多面体.【分析】画出图形,求出两个截面圆的半径,即可解答本题.【解答】解:由题意画轴截面图,截面的面积为5π,半径为,截面的面积为8π的圆的半径是2,设球心到大截面圆的距离为d,球的半径为r,则5+(d+1)2=8+d2,∴d=1,∴r=3,∴球面的面积是4πr2=36π故选:A.12.已知函数f(x)=满足条件,对于∀x1∈R,存在唯一的x2∈R,使得f (x1)=f(x2).当f(2a)=f(3b)成立时,则实数a+b=()A.B.﹣C.+3 D.﹣+3【考点】分段函数的应用.【分析】根据条件得到f(x)在(﹣∞,0)和(0,+∞)上单调,得到a,b的关系进行求解即可.【解答】解:若对于∀x1∈R,存在唯一的x2∈R,使得f(x1)=f(x2).∴f(x)在(﹣∞,0)和(0,+∞)上单调,则b=3,且a<0,由f(2a)=f(3b)得f(2a)=f(9),即2a2+3=+3=3+3,即a=﹣,则a+b=﹣+3,故选:D.二、填空题:本大题共4小题,每小题5分13.已知x,y满足不等式,则函数z=2x+y取得最大值等于12 .【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合求出最值即可.【解答】解:由约束条件作出可行域如图,由图可知,使目标函数z=2x+y取得最大值时过点B,联立,解得,故z的最大值是:z=2×5+2=12,故答案为:12.14.在△ABC中,若,则cos∠BAC的值等于.【考点】平面向量数量积的运算.【分析】由已知向量的坐标求出的坐标,再求出•,||,||,代入数量积求夹角公式得答案【解答】解:∵,∴=+=(1,﹣2),∴•=2×1+(﹣1)×(﹣2)=4,||==,||==,∴cos∠BAC===,故答案为:.15.以﹣=﹣1的焦点为顶点,顶点为焦点的椭圆方程为.【考点】椭圆的标准方程.【分析】由题意设所求的椭圆方程为,且,由此能求出所求的椭圆的方程.【解答】解:∵﹣=﹣1的标准方程为,∴该双曲线的焦点坐标为F1(0,﹣4),F2(0,4),顶点坐标为A1(0,﹣2),A2(0,2),由题意设所求的椭圆方程为,且,∴b2=42﹣=4,∴所求的椭圆的方程为.故答案为:.16.已知函数f(x)=sin(ωx+φ)(ω>0),若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则ω的最小值为 4 .【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由条件利用函数y=Asin(ωx+φ)的图象变换规律,终边相同的角的特征,求得ω的最小值.【解答】解:函数f(x)=sin(ωx+φ)(ω>0),把f(x)的图象向左平移个单位所得的图象为y=sin[ω(x+)+φ]=sin(ωx++φ),把f(x)的图象向右平移个单位所得的图象为y=sin[ω(x﹣)+φ]=sin(ωx﹣+φ),根据题意可得,y=sin(ωx++φ)和y=sin(ωx﹣+φ)的图象重合,故+φ=2kπ﹣+φ,求得ω=4k,故ω的最小值为4,故答案为:4.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.已知等差数列{a n}的前n项和S n满足S3=6,S5=15.(Ⅰ)求{a n}的通项公式;(Ⅱ)设,求数列{b n}的前n项和T n.【考点】数列的求和;等差数列的通项公式.【分析】(I)利用等差数列的前n项和公式即可得出.(II)利用“错位相减法”与等比数列的前n项和公式即可得出.【解答】解:(I)设等差数列{a n}的公差为d,∵S3=6,S5=15.∴=6,=15,解得a1=d=1.∴a n=1+(n﹣1)=n.(II)=,∴数列{b n}的前n项和T n=++…+,=++…++,∴S n=+…+﹣=﹣=1﹣.∴S n=2﹣.18.某市组织高一全体学生参加计算机操作比赛,等级分为1至10分,随机调阅了A、B两所学校各60名学生的成绩,得到样本数据如表:B校样本数据统计表:(Ⅱ)从A校样本数据成绩分别为7分、8分和9分的学生中按分层抽样方法抽取6人,若从抽取的6人中任选2人参加更高一级的比赛,求这2人成绩之和大于或等于15的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(Ⅰ)分别求出A校样本的平均成绩、方差和B校样本的平均成绩、方差,从而得到两校学生的计算机成绩平均分相同,A校学生的计算机成绩比较稳定,总体得分情况比较集中,(Ⅱ)根据分成抽样求出故抽取的7分有4人即为A,B,C,D,8分和9分的学生中各为1人,记为a,b,一一列举所有的基本事件,再找到满足条件的基本事件,根据概率公式计算即可.【解答】解:(Ⅰ)从A校样本数据的条形图知:成绩分别为4分、5分、6分、7分、8分、9分的学生分别有:6人、15人、21人、12人、3人、3人A校样本的平均成绩为:=(4×6+5×15+6×21+7×12+8×3+9×3)=6(分),A校样本的方差为S A2=[6(4﹣6)2+15(5﹣6)2+21(6﹣6)2+12(7﹣6)2+3(8﹣6)2+3(9﹣6)2]=1.5.从B校样本数据统计表知:B校样本的平均成绩为:=(4×9+5×12+6×21+7×9+8×6+9×3=6(分),B校样本的方差为S B2=[9(4﹣6)2+12(5﹣6)2+21(6﹣6)2+9(7﹣6)2+6(8﹣6)2+3(9﹣6)2]=1.8.∵=,S A2<S B2,∴两校学生的计算机成绩平均分相同,A校学生的计算机成绩比较稳定,总体得分情况比较集中.(Ⅱ)A校样本数据成绩分别为7分、8分和9分的学生中按分层抽样方法抽取6人,由于7分、8分、9分的学生分别有12人,3人,3人,故抽取的7分有6×=4人即为A,B,C,D,8分和9分的学生中各为1人,记为a,b,故从抽取的6人中任选2人参加更高一级的比赛,共有AB,AC,AD,BC,BD,CD,Aa,Ba,Ca,Da,Ab,Bb,Cb,Db,ab共有15种,其中2人成绩之和大于或等于15的分的有Aa,Ba,Ca,Da,Ab,Bb,Cb,Db,ab共9种,故这2人成绩之和大于或等于15的概率P==19.如图,ABCD是平行四边形,已知,BE=CE,平面BCE⊥平面ABCD.(Ⅰ)证明:BD⊥CE;(Ⅱ)若,求三棱锥B﹣ADE的高.【考点】平面与平面垂直的性质.【分析】(I)根据勾股定理的逆定理可证BD⊥BC,由面面垂直的性质可得BD⊥平面EBC,故BD⊥CE;(II)取BC中点F,连接EF,DF,AF.则EF⊥平面ABCD,利用勾股定理求出EF,AF,DF,AE,DE,得出V E﹣ABD,S△ADE,根据等体积法计算棱锥的高.【解答】证明:(I)∵四边形ABCD是平行四边形,∴CD=AB=4,∵BC=2,BD=2,∴BD2+BC2=CD2,∴BD⊥BC,又平面BCE⊥平面ABCD,平面BCE∩平面ABCD=BC,BD⊂平面ABCD,∴BD⊥平面BCE,∵CE⊂平面BCE,∴BD⊥CE.(II)取BC的中点F,连接EF,DF,AF.∵EB=EC,∴EF⊥BC,∵平面EBC⊥平面ABCD,平面EBC∩平面ABCD=BC,∴EF⊥平面ABCD.∵BE=CE=,BC=2,∴EF=,DF==,AF==,∴DE==,AE==.∴V E﹣ABD===2.cos∠AED==,∴sin∠AED=.∴S△ADE===.设B到平面ADE的高为h,则V B﹣ADE===2,∴h=.∴三棱锥B﹣ADE的高位.20.已知点P1(﹣2,3),P2(0,1),圆C是以P1P2的中点为圆心,|P1P2|为半径的圆.(Ⅰ)若圆C的切线在x轴和y轴上截距相等,求切线方程;(Ⅱ)若P(x,y)是圆C外一点,从P向圆C引切线PM,M为切点,O为坐标原点,且有|PM|=|PO|,求使|PM|最小的点P的坐标.【考点】直线和圆的方程的应用.【分析】(Ⅰ)求出圆心与半径,可得圆C的方程,再分类讨论,设出切线方程,利用直线是切线建立方程,即可得出结论;(Ⅱ)先确定P的轨迹方程,再利用要使|PM|最小,只要|PO|最小即可.【解答】解:(Ⅰ)∵点P1(﹣2,3),P2(0,1),圆C是以P1P2的中点为圆心,|P1P2|为半径的圆∴C(﹣1,2),|P1P2|=∴圆C的方程为(x+1)2+(y﹣2)2=2,当切线过原点时,设切线方程为y=kx,则=,∴k=2±,即切线方程为y=(2±)x.当切线不过原点时,设切线方程为x+y=a,则=,∴a=﹣1或a=3,即切线方程为x+y+1=0或x+y﹣3=0.综上知,切线方程为y=(2±)x或x+y+1=0或x+y﹣3=0;(Ⅱ)因为|PO|2+r2=|PC|2,所以x12+y12+2=(x1+1)2+(y1﹣2)2,即2x1﹣4y1+3=0.要使|PM|最小,只要|PO|最小即可.当直线PO垂直于直线2x﹣4y+3=0时,即直线PO的方程为2x+y=0时,|PM|最小,此时P点即为两直线的交点,得P点坐标(﹣,).21.已知函数f(x)=(a﹣)x2+lnx,g(x)=f(x)﹣2ax(a∈R).(1)当a=0时,求f(x)在区间[,e]上的最大值和最小值;(2)若对∀x∈(1,+∞),g(x)<0恒成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值.【分析】(1)求出f(x)的导数,通过讨论b的范围,确定函数的单调区间,从而求出函数的最大值和最小值;(2)求出g(x)的导数,通过讨论a的范围,确定函数的单调区间,从而求出a的范围.【解答】解:(1)函数的定义域为(0,+∞),当a=0时,,;当,有f'(x)>0;当,有f'(x)<0,∴f(x)在区间[,1]上是增函数,在[1,e]上为减函数,又,,,∴,.(2),则g(x)的定义域为(0,+∞),.①若,令g'(x)=0,得极值点x1=1,,当x2>x1=1,即时,在(0,1)上有g'(x)>0,在(1,x2)上有g'(x)<0,在(x2,+∞)上有g'(x)>0,此时g(x)在区间(x2,+∞)上是增函数,并且在该区间上有g(x)∈(g(x2),+∞),不合题意;当x2≤x1=1,即a≥1时,同理可知,g(x)在区间(1,+∞)上,有g(x)∈(g(1),+∞),也不合题意;②若,则有2a﹣1≤0,此时在区间(1,+∞)上恒有g'(x)<0,∴g(x)在(1,+∞)上是减函数;要使g(x)<0在此区间上恒成立,只须满足,∴a的范围是,综合①②可知,当时,对∀x∈(1,+∞),g(x)<0恒成立.[选修4-1:几何证明选讲]22.如图所示,AB为⊙O的直径,BC、CD为⊙O的切线,B、D为切点.(1)求证:AD∥OC;(2)若⊙O的半径为1,求AD•OC的值.【考点】圆的切线的性质定理的证明.【分析】(1)要证明AD∥OC,我们要根据直线平行的判定定理,观察已知条件及图形,我们可以连接OD,构造出内错角,只要证明∠1=∠3即可得证.(2)因为⊙O的半径为1,而其它线段长均为给出,故要想求AD•OC的值,我们要将其转化用半径相等或相关的线段积的形式,结合(1)的结论,我们易证明Rt△BAD∽Rt△ODC,根据相似三角形性质,不们不难得到转化的思路.【解答】解:(1)如图,连接BD、OD.∵CB、CD是⊙O的两条切线,∴BD⊥OC,∴∠2+∠3=90°又AB为⊙O直径,∴AD⊥DB,∠1+∠2=90°,∴∠1=∠3,∴AD∥OC;(2)AO=OD,则∠1=∠A=∠3,∴Rt△BAD∽Rt△ODC,AD•OC=AB•OD=2.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ﹣4=0.(Ⅰ)把C1的参数方程化为极坐标方程;(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【考点】简单曲线的极坐标方程.【分析】(Ⅰ)把把C1的参数方程先消去参数化为直角坐标方程,再化为极坐标方程.(Ⅱ)把曲线C2的极坐标方程化为直角坐标方程,先求出它们的交点的直角坐标,再把它化为极坐标.【解答】解:(Ⅰ)把C1的参数方程(t为参数),先消去参数化为直角坐标方程为x=y2,化为极坐标方程为ρcosθ=(ρsinθ)2.(Ⅱ)曲线C2的极坐标方程为ρ2+2ρcosθ﹣4=0化为直角坐标方程为x2+y2+2x﹣4=0,即(x+1)2+y2=5,由,求得或,C1与C2交点的直角坐标为(1,1)或(1,﹣1),再把它们化为极坐标为(,)或(,).[选修4-5:不等式选讲]24.已知a>0,b>0,且a+b=1.(Ⅰ)求ab的最大值;(Ⅱ)求证:.【考点】不等式的证明.【分析】(Ⅰ)由a>0,b>0,运用均值不等式a+b≥2,可得ab的最小值;(Ⅱ)将不等式的左边化为ab+++,运用均值不等式和对勾函数的单调性,即可得证.【解答】解:(Ⅰ)由a>0,b>0,1=a+b≥2,即有0<ab≤,当且仅当a=b=时,ab取得最大值;(Ⅱ)证明:由(Ⅰ)可得a,b>0,且0<ab≤,(a+)(b+)=ab+++≥+4+2=6+=,当且仅当a=b=时,等号成立.。
2019年最新(统考)广东省高考考前冲刺数学试题(文)及答案解析
③若一个命题的逆命题为真,则它的否命题一定为真.
A.3 B.2 C.1 D.0
4.某校为了解学生学习的情况,采用分层抽样的方法从高一 人、高二 人、高三 人中,抽取 人进行问卷调查.已知高二被抽取的人数为 ,那么 ()
A. B. C. D.
A. B. C. D.
7.双曲线 的一条渐近线与圆
相切,则此双曲线的离心率为( )
A.2 B. C. D.
8.某空间几何体的三视图如图所示(图中小正方形的边长为 ),则这个几何体的体积是()
A.16 B.32 C. D.
9.已知函数 的值域为 ,则实数 的取值范围是( )
A. B.
C. D.
10.在等腰直角△ABC中,AC=BC,D在AB边上且满足: ,
5.《算法通宗》是我国古代内容丰富的数学名书,书中有如下问题:“远望巍巍塔七层,红灯向下倍加增,共灯三百八十一,请问塔顶几盏灯?”其意思为“一座塔共七层,从塔顶至塔底,每层灯的数目都是上一层的2倍,已知这座塔共有381盏灯,请问塔顶有几盏灯?”()
A.3B.4C.5D.6
6.若执行如图所示的程序框图,输出 的值为()
A. B. C. D.
二、填空题:本大题4小题,每小题5分,满分20分
13.已知实数 满足条件 ,则 的最小值为.
14.已知向量 ,且 ,则 =.
15.正四棱锥 的体积为 ,底面边长为 ,则正四棱锥 的内切球的表面积是.
16.设 为数列 的前 项和,若 ,
则S10=.
三.解答题:本大题共8小题,满分70分,解答须写出文字说明、证明过程或演算步骤
17.(本小题满分12分)在 中,三个内角 的对边分别为 ,
2019年广东省高考文科数学试题与答案
2019年广东省高考文科数学试题与答案(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2B .3C .2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512- (512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此. 此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-. 若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长 度为26 cm ,则其身高可能是 A .165 cm B .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x++在[-π,π]的图像大致为A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A.8号学生B.200号学生C.616号学生D.815号学生7.tan255°=A.-2-3B.-2+3C.2-3D.2+38.已知非零向量a,b满足a=2b,且(a-b)⊥b,则a与b的夹角为A.π6B.π3C.2π3D.5π69.如图是求112122++的程序框图,图中空白框中应填入A.A=12A+B.A=12A+C.A=112A+D.A=112A+10.双曲线C:22221(0,0)x ya ba b-=>>的一条渐近线的倾斜角为130°,则C的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
2019年广东普通高等学校招生统一考试数学试卷(附解答)
2019年广东普通高等学校招生统一考试数 学 试 题说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.三角函数的积化和差公式)]sin()[sin(21cos sin βαβαβα-++=)]sin()[sin(21sin cos βαβαβα--+=)]cos()[sin(21cos cos βαβαβα-++=)]cos()[cos(21sin sin βαβαβα--+-=正棱台、圆台的侧面积公式S台侧=21(c ′+c )l其中c ′、c 分别表示上、下底面周长,lV=h S S S S )(31+'+'其中S ′、S 分别表示上、下底面积,h 表示高.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式31--x xA .{x|x<1}B .{x|xC .{x|x<1或x>3}D .{x|1<x<3}2.若一个圆锥的轴截面是等边三角形,其面积为3π B.33π6πD.9π3.极坐标方程ρ2cos2θA B C .椭圆 D4.若定义在区间(-1,0)内的函数f(x)=log2a(x+1)满足f(x)>0,则aA .(0,21) 21] 21,+∞) D.(0,+∞) 5.已知复数z=i 62+,则argZ1是A .3πB.35π C.6π611π6.函数y=2-x+1(x>0)A .y=log211-x ,x y=-log211-x ,xC.y=log211-x ,x∈(1,2)D.y=-log211-x ,x∈(1,2]7.若0<α<β<4π,sinα+cosα=a,sinβ+cosβ=b,则A .a>b B.a<bab<1 ab>28.在正三棱柱ABC —A 1B1C1中,若AB=2BB1,则AB 1与C1B所成的角的大小A .60° 45° 120°9.设f(x)、g(x①若f(x)单调递增,g(x)单调递增,则f(x)-g(x ②若f(x)单调递增,g(x)单调递减,则f(x)-g(x ③若f(x)单调递减,g(x)单调递增,则f(x)-g(x ④若f(x)单调递减,g(x)单调递减,则f(x)-g(xA . ①③10.对于抛物线y2=4x上任意一点Q ,点P (a ,0)都满足|PQ|≥|a|,则a 的A .(-∞,0)B .(-∞,2)C .[0,2]D .(0,11记三种盖法屋顶面积分别为P1、P2、P3.若屋顶斜面与水平面所成的角都是α,则A .P 3>P 2>P 1 P 3>P 2=P 1P 3=P2>P1 D.P 3=P 2=P 112.如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为A B.24(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.已知甲、乙两组各有8人,现从每组抽取4人进行计算机知识竞赛,比赛人员的组 成共有 种可能(用数字作答)14.双曲线116922=-y x 的两个焦点为F1、F2,点P 在双曲线上,若PF1⊥PF2,则点P 到x轴的距离为15.设{an}是公比为q的等比数列,Sn是它的前n项和.若{Sn}是等差数列,则q=16.圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为 三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)求函数y=(sinx+cosx)2+2cos2x的最小正周期. 18.(本小题满分12分)已知等差数列前三项为a,4,3a,前n项的和为Sn,Sk =2550. (Ⅰ)求a及k的值;(Ⅱ)求)111(lim 21nn S S S +++∞→ 19.(本小题满分12分)如图,在底面是直角梯形的四棱锥S—ABCD 中,∠ABC=90°,SA⊥面ABCD ,SA =AB =BC=1,AD=21. (Ⅰ)求四棱锥S —ABCD 的体积;(Ⅱ)求面SCD 与面SBA 所成的二面角的正切值. 20.(本小题满分12分)设计一幅宣传画,要求画面面积为4840 cm 2,画面的宽与高的比为λ(λ<1),画面的上、下各留8cm空白,左、右各留5cm空白.怎样确定画面的高与宽尺寸,能使宣传画所用纸张面积最小?如果要求λ∈]43,32[,那么λ为何值时,能使宣传画所用纸张面积最小?21.(本小题满分14分)已知椭圆1222=+y x 的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相 交于A 、B 两点,点C 在右准线l 上,且BC∥xAC 经过线段EF 的中点.22.(本小题满分14分) 设f(x)是定义在R 上的偶函数,其图象关于直线xx1,x2∈[0,21],都有f(x1+x2)=f(x1)·f(x2),且f (1)=a>0. (Ⅰ)求f)41(),21(f ;(Ⅱ)证明f(x)是周期函数; (Ⅲ)记an=f(2n+n21),求)(ln lim n n a ∞→.参考答案一、选择题1.C 2.A 3.D 4.A 5.B 6.A 7.B 8.B 9.C 10.B 11.D 12.D 二、填空题13.4900 14.51615.1 16.2n (n -1) 三、解答题17.解:y=(sinx+cosx)2+2cos2x=1+sin2x+2cos2x=sin2x+cos2x+2 5分=2)42sin(2++πx 8分所以最小正周期T=π. 10分 18.解:(Ⅰ)设该等差数列为{an},则a 1=a,a2=4,a3=3a,Sk=2550. 由已知有a +3a =2×4,解得首项a 1=a=2,公差d =a 2-a1=2. 2分 代入公式S k=k·a1+d k k ⋅-2)1(得255022)1(2=⋅-+⋅k k k ∴k2+k-2550=0解得k =50,k =-51(舍去)∴a =2,k =50. 6分 (Ⅱ)由d n n a n S n ⋅-+⋅=2)1(1得S n=n(n+1), )11-1()31-21()21-11( )1(132121111121++++=+++⨯+⨯=+++n n n n S S S n111+-=n 9分 1)111(lim )111(lim 21=+-=+++∴∞→∞→n S S S n n n 12分19.解:(Ⅰ)直角梯形ABCD 的面积是M 底面=AB AD BC ⋅+)(21=43125.01=⨯+ 2分∴四棱锥S —ABCD 的体积是414313131=⨯⨯=⨯⨯=底面M SA V 4分(Ⅱ)延长BA 、CD 相交于点E ,连结SE ,则SE 是所求二面角的棱 6分 ∵AD∥BC,BC=2AD∴EA=AB=SA,∴SE⊥SB∵SA⊥面ABCD ,得面SEB ⊥面EBC ,EB 是交线.又BC⊥EB,∴BC⊥面SEB ,故SB 是SC 在面SEB 上的射影, ∴CS ⊥SE,所以∠BSC是所求二面角的平面角 10分 ∵SB=SB BC BC AB SA ⊥==+,1,222∴tg∠BSC=22=SB BC 即所求二面角的正切值为2212分 20.解:设画面高为xcm,宽为λxcm,则λx2=4840 1分 设纸张面积为S ,则有S=(x+16)(λx+10)=λx2+(16λ+10)x+160, 3分 将x=λ1022代入上式得S=5000+44)58(10λλ+5分当8)185(85,5==λλλ即时,S 取得最小值, 此时,高:x=884840=λc m,宽:λx=558885=⨯cm 8分 如果λ∈[43,32],可设433221≤≤λλ ,则由S 的表达式得S(λ1)-S(λ2)=44)5858(102211λλλλ--+=)58)((104421121λλλλ-- 10分由于058,85322121 λλλλ-≥故 因此S(λ1)-S(λ2)<0,所以S (λ)在区间[43,32]内单调递增. 从而,对于λ∈[43,32],当λ=32时,S (λ)取得最小值答:画面高为88λ∈[43,32],当λ=32时,所用纸张面积最小. 12分 21.证明:依设,得椭圆的半焦距c=1,右焦点为F (1,0),右准线方程为x=2,点E 的坐标为(2,0),EF 的中点为N (23,0) 3分 若AB 垂直于x 轴,则A (1,y1),B(1,-y1),C(2,-y1), ∴AC 中点为N (23,0),即AC 过EF 中点N. 若AB 不垂直于x 轴,由直线AB 过点F ,且由BC ∥x 轴知点B 不在x 轴上,故直线AB 的方程为y=k(x-1),k≠0.记A (x1,y1)和B(x2,y2),则C (2,y2)且x1,x2满足二次方程1)1(2222=-+x k x 即(1+2k2)x2-4k2x+2(k2-1)=0,∴x1+x2=22212221)1(2,214k k x x k k +-=+ 10分又x21=2-2y21<2,得x1-23≠0, 故直线AN ,CN 的斜率分别为k1=32)1(2231111--=-x x k x y )1(2232222-=-=x k y k ∴k1-k2=2k·32)32)(1()1(1121-----x x x x∵(x1-1)-(x2-1)(2x1-3) =3(x1+x2)-2x1x2-4=0)]21(4)1(412[2112222=+---+k k k k∴k1-k2=0,即k1=k2,故A 、C 、N 三点共线.所以,直线AC 经过线段EF 的中点N. 14分。
2019年全国统一高考数学试卷(文科)以及答案解析(全国1卷)
绝密★启用前2019年高考普通高等学校招生全国统一考试(全国1卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=,则|z|=()A.2B.C.D.12.(5分)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6}B.{1,7}C.{6,7}D.{1,6,7} 3.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cm B.175cm C.185cm D.190cm5.(5分)函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生7.(5分)tan255°=()A.﹣2﹣B.﹣2+C.2﹣D.2+8.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为()A.B.C.D.9.(5分)如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+10.(5分)双曲线C:﹣=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C 的离心率为()A.2sin40°B.2cos40°C.D.11.(5分)△ABC的内角A,B,C的对边分别为a,b,c.已知a sin A﹣b sin B=4c sin C,cos A =﹣,则=()A.6B.5C.4D.312.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=1二、填空题:本题共4小题,每小题5分,共20分。
广东省2019届普通高等学校招生全国统一考试文科数学模拟(一)试题(解析版)
2021年普通高等学校招生全国统一考试广东省文科数学模拟试卷〔一〕一、选择题:本大题共12 个小题,每题 5 分,共 60 分. 在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.集合,,那么〔〕A. B. C. D.【答案】 D【解析】【分析】先求出集合,再求两集合的交集即可.【详解】在集合中,得,即,在集合中在上递增,且,所以,即,那么.应选: D.【点睛】此题考查了集合的交集及其运算,也考查了指数函数的单调性,属于根底题.2.复数〔为虚数单位〕的虚部为〔〕A. B. C. D.【答案】 A【解析】【分析】利用复数代数形式的乘除运算化简即可得答案.【详解】=,所以z的虚部为.应选: A【点睛】此题考查复数代数形式的乘除运算,考查了复数的根本概念,属于根底题.3.双曲线的焦点坐标为〔〕A. B. C. D.【答案】 A【解析】【分析】将双曲线化成标准方程,可得,,即可得焦点坐标.【详解】将双曲线化成标准方程为:,得,,所以,所以,又该双曲线的焦点在x 轴上,所以焦点坐标为.应选: A【点睛】此题考查双曲线的简单性质,将双曲线的方程化为标准形式是关键,属于根底题.4.假设,那么〔〕A. B. C. D.【答案】 B【解析】【分析】由三角函数的诱导公式和倍角公式化简即可.【详解】因为,由诱导公式得,所以.应选: B【点睛】此题考查了三角函数的诱导公式和倍角公式,灵活掌握公式是关键,属于根底题.5.函数在上单调递减,且当时,,那么关于的不等式的解集为〔〕A. B. C. D.【答案】 D【解析】【分析】当时,由=,得,由函数单调性的性质,即可得的解集 . 【详解】当时,由= ,得或〔舍〕,又因为函数在上单调递减,所以的解集为.应选: D【点睛】此题考查函数的单调性的应用,关键是理解函数单调性的性质,属于根底题.6.某几何体的三视图如下图,那么该几何体的体积为〔〕A. 2B. 4C. 6D. 8【答案】 B【解析】【分析】由三视图可知该几何体的直观图,从而求出几何体的体积.【详解】由三视图可知几何体为边长为 2 的正方体的一半,做出几何体的直观图如下图,故几何体的体积为23= 4.应选: B.,属于中档【点睛】此题考查了由三视图求几何体的体积,根据三视图判断几何体的形状是解题的关键题.7.设x1= 18,x2= 19,x3= 20,x4= 21,x5= 22,将这 5 个数依次输入如下图的程序框图运行,那么输出S的值及其统计意义分别是〔〕A. S= 2,这 5 个数据的方差B. S=2,这 5 个数据的平均数S 10,这5个数据的方差 D.S 10,这5个数据的平均数C. ==【答案】 A【解析】【分析】根据程序框图,得输出的S 是5 个数据的方差,先求这 5 个数的均值,然后代入方差公式计算即可.【详解】根据程序框图,输出的S 是 x1= 18, x2= 19, x3=20 , x4=21, x5= 22 这 5 个数据的方差,因为,∴由方差的公式S=.应选: A .【点睛】此题通过循环结构的程序框图考查了均值和方差,属于根底题.8.的内角所对的边分别是. ,那么的取值范围为〔〕A. B. C. D.【答案】 D【解析】【分析】由余弦定理化简,得,再由根本不等式求解即可.【详解】因为,得,所以,所以当且仅当取等号,且为三角形内角,所以.应选: D【点睛】此题考查余弦定理解三角形和根本不等式的应用,属于根底题.9.,,三点不共线,且点满足,那么〔〕A. B.C. D.【答案】 A【解析】【分析】运用向量的减法运算,把等式中的向量换为表示,整理后可求结果。
2019年广东高考文科数学试卷及答案解析【word版】
高考数学精品复习资料2019.520xx 年普通高等学校招生全国统一考试(广东卷)数学 (文科)一、选择题{}{}{}{}{}{}1.2,3,4,0,2,3,5,()..0,2.2,3.3,4.3,5M N M N A B C D ===I 已知集合则答案:B2.(34)25,()..34.34.34.34z i z z A iB iC iD i-==---+-+已知复数满足则答案:D 2525(34)25(34):=34,.34(34)(34)25i i z i D i i i ++===+--+提示故选 3.(1,2),(3,1),()..(2,1).(2,1).(2,0).(4,3)a b b a A B C D =-=--已知向量则答案:B284.,04,2().03.7.8.10.11x y x y x z x y y A B C D +≤⎧⎪≤≤=+⎨⎪≤≤⎩若变量满足约束条件则的最大值等于 答案:C提示:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10. 选C. 5.下列函数为奇函数的是( ).A.x x212-B.x x sin 3C.1cos 2+xD.xx 22+ 答案:A111:()2,(),()22(),222(), A.x xx x x x f x f x R f x f x f x --=--=-=-=-∴提示设则的定义域为且为奇函数故选6.1000,,40,()..50.40.25.20:1000:25.40A B C D C=为了解名学生的学习情况采用系统抽样的方法从中抽取容量为的样本则分段的间隔为答案提示分段的间隔为7.,,,,,,sin sin ().....::,,,sin ,sin ,sin sin .sin sin ABC A B C a b c a b A B A B C D Aa ba b A B a b A B A B∆≤≤=∴≤⇔≤Q 在中角所对应的边分别为则“”是“”的充分必要条件充分非必要条件必要非充分条件非充分非必要条件答案提示由正弦定理知都为正数22228.05,11().165165....05,50,160,16(5)21(16)5,x y x y k k k k A B C D k k k k k k <<-=-=--<<∴->->+-=-=-+Q 若实数满足则曲线与曲线的实半轴长相等虚半轴长相等离心率相等焦距相等答案:D提示:从而两曲线均为双曲线,又故两双曲线的焦距相等,选D.1234122334141414149.,,,,,//,,()...//..l l l l l l l l l l A l l B l l C l l D l l ⊥⊥⊥若空间中四条两两不同的直线满足则下列结论一定正确的是与既不垂直也不平行与的位置关系不确定答案:D1212122212310.,,=,,,,z z z ωωωωωωωω*对任意复数定义其中是的共轭复数对任意复数有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真命题的个数是( )A.1B.2C.3D.412312313231323123123123121312131231231231231231:()()()()()();()()()()()()();(),()()(),,;Bz z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z ++++=+=+=+====≠答案提示:①*===*+*,故①是真命题②**+*,②对③左边=*=右边*左边右边③错 ④左边=2122121,,,z z z z z z z ==≠*右边=*左边右边故④不是真命题.综上,只有①②是真命题,故选B.二、填空题(一)必做题(11-13)''142511.53(0,2)_______.:520:5,5,25,520.12.,,,d,e ________.2:542:105x x x y e x y y e y y x x y a b c a C P C ==-+-++==-∴=-∴+=-++====曲线在点处的切线方程为答案提示所求切线方程为即从字母中任取两个不同字母,则取到字母的概率为答案提示13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.212223242525242322212152:5:log log log log log ,log log log log log ,25log ()5log 410,5.S a a a a a S a a a a a S a a S =++++=++++∴===∴=答案提示设则2121214.()2cos sin cos =1.,,_____________.C C x C C ρθθρθ=坐标系与参数方程选做题在极坐标系中,曲线与的方程分别为与以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系则曲线与交点的直角坐标为2221212:(1,2):2cos sin 2cos =sin ,2,1,,(1,2).C y x C x C C ρθθρθρθ===∴答案提示由得()故的直角坐标方程为:的直角坐标方程为:交点的直角坐标为15.()1,,2,,___________.:3:, 3.ABCD E AB EB AE AC DE F CDF AEF CDF CD EB AECDF AEF AEF AE AE=∆=∆∆+∆∆∴===∆:几何证明选讲选做题如图在平行四边形中点在上且与交于点的周长则的周长答案的周长提示显然的周长三、解答题16.(本小题满分12分) 已知函数()sin(),3f x A x x R π=+∈,且532()122f π= (1) 求A 的值;(2) 若()()3,(0,)2f f πθθθ--=∈,求()6f πθ-5533232:(1)()sin()sin ,2 3.12123422(2)(1):()3sin(),3()()3sin()3sin()333(sin cos cos sin )3(sin()cos cos()sin )33336sin cos3sin 333sin ,(0,),32f A A A f x x f f πππππππθθθθππππθθθθπθθπθθ=+==∴=⋅==+∴--=+--+=+--+-===∴=∈Q 解由得又6cos 36()3sin()3sin()3cos 3 6.66323f θππππθθθθ∴=∴-=-+=-==⨯=17. 某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.:(1)2030,401921.-=解这名工人年龄的众数为极差为 (2)茎叶图如下:()2222222(1928329330531432340)3:30,20120:(11)3(2)3(1)504132102011(121123412100)25212.62020+⨯+⨯+⨯+⨯+⨯+=⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+⎣⎦=+++++=⨯=年龄的平均数为故这名工人年龄的方差为18.2,,,1, 2.3://,,,,,.(1):;(2).ABCD PD ABCD AB BC PC EF DC E F PD PC EF P AD M MF CF CF MDF M CDE ⊥===⊥⊥-如图四边形为矩形平面作如图折叠折痕其中点分别在线段上沿折叠后点叠在线段上的点记为并且证明平面求三棱锥的体积1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 000:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴I I Q Q 解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2222221333132,=,,,,2442833336()(),44211362.338216CDE M CDE CDE CF DE DE PE S CD DE P CP MD ME DE PE DE V S MD ∆-∆=∴=∴==⋅==-=-=-=∴=⋅=⋅⋅=即{}{}222119.,(3)3()0,.(1);(2);n n n n n n a n S S S n n S n n n N a a *-+--+=∈设各项均为正数的数列的前项和为且满足求的值求数列的通项公式 (3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a Λ221111*********2221:(1)1:(1)320,60,(3)(2)0,0,2, 2.(2)(3)3()0,:(3)()0,0(),0,30,,2,(1)(1)n n n n n n n n n n n n S S S S S S S S a S n n S n n S S n n a n N S S S n n n a S S n n n n *-=---⨯=+-=∴+-=>∴==⎡⎤-+--+=+-+=⎣⎦>∈∴>+>∴=+⎡∴≥=-=+--+-⎣Q Q 解令得即即由得从而当时12211222,221,2().313(3):,()(),221644111111113(1)2(21)44()()()24411111111144(1)()(1)4444111(1)(1)n k k n a a n n N k k k N k k k k a a k k k k k k k k k k a a a a **⎤=⎦==⨯∴=∈∈+>+-=-+∴==⋅<⋅+++-+⎡⎤⎢⎥=⋅=⋅-⎢⎥⎡⎤⎢⎥-+--⋅+-⎢⎥⎣⎦⎣⎦∴+++++L 又解法一当时(1)1111111()()11111141223(1)444444111111().11434331(1)44111111:(),.(1)2(21)(21)(21)22121(:)n n k k a a n n n n a a k k k k k k +⎡⎤⎢⎥<-+-++-⎢⎥⎢⎥-----+-⎣⎦=-=-<+-+-=<=-++-+-+L 解法二以下略注解法二的放缩没有解法一的精确,在使用中第一项不放缩时才能得到答案22220022222520.:1(0)(5,0),.3(1);(2)(,),,.55:(1)5,,3,954,31.94(2),,4x y C a b a b C P x y C P C P c c e a b a c a a x y C x y +=>>====∴==-=-=∴+=已知椭圆的一个焦点为离心率为求椭圆的标准方程若动点为椭圆外一点且点到椭圆的两条切线相互垂直求点的轨迹方程解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个002200222000022222000000(3,2),(3,2).(),(),194(94)18()9()40,,0,(18)()36()4(94)0,4()4y y k x x x y y k x x y k x k y kx x y kx k y kx y kx k y kx -±±-=-=-++=⎡⎤++-+--=∆=⎣⎦⎡⎤----+=--⎣⎦,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:依题意即:即22222000001220220022(94)0,4(9)240,,1,:1,913,(3,2),(3,2),13.k y x k x y k y k k x x y P x y +=-∴--+-=∴=-=--∴+=-±±∴+=Q 两切线相互垂直即显然这四点也满足以上方程点的轨迹方程为'22'2'':(1)()2,20:44,1,0,()0,()(,).1,2011,(,11),()0,(),(11,11),()0,(),(11,)f x x x a x x a a a f x f x a x x a a x a f x f x x a a f x f x x a =++++=∆=-∴≥∆≤∴≥-∞+∞<++=-±-∈-∞--->∴∈----+-<∈-+-+∞解方程的判别式当时此时在上为增函数当时方程的两根为当时此时为增函数当时此时为减函数当时',()0,(),,1,()(,),1,()(,11),(11,),()(11,11).f x f x a f x a f x a a f x a a >≥-∞+∞<-∞----+-+∞----+-此时为增函数综上时在上为增函数当时的单调递增区间为的单调递减区间为3200121.()1().3(1)();111(2)0,(0,)(,1),()=().222f x x x ax a R f x a x f x f =+++∈<∈U 已知函数求函数的单调区间当时试讨论是否存在使得3232000033220002000000200000111111(2):()()1()()()12332221111()()()3222111111()()()()()322422211111()()()(4236122122f x f x x ax a x x a x x x x x x a x x x x x a x ⎡⎤-=+++-+++⎢⎥⎣⎦⎡⎤⎡⎤=-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=-+++-++-⎢⎥⎣⎦=-+++++=-解法一2000020020014712)111(0,)(,1),()(),222114147120(0,)(,1).220,1416(712)4(2148)0,14221487214872148:,0,,8447+2148,01,7214x x a x f x f x x a a a a a a ax x a +++∴∈=+++=<∴∆=-+=->-±--±--+-=>∴--<<<-U U Q Q 若存在使得必须在上有解方程的两根为只能是依题意即000002574811,492148121,,12127+2148155=,,,,424425557111(,)(,),(0,)(,1)()().124412222257511(,][,0),(0,)(,1)(1212422a a a a a x a a x f x f a x f x <∴<-<-<<---=-≠-∴∈----∈=⎧⎫∈-∞---∈⎨⎬⎩⎭U U U U U 即又由得故欲使满足题意的存在则当时存在唯一的满足当时不存在使1)().2f =00:0,110,()3,111,(1)()(0,1),111(0,)(,1),()=();222()30,()(0,11),(11,1),5111),()(0,),(,1),422a a i a a f x x f x f ii a f x a a a f x <∴-+->≤--+-≤∈-<<-+--+-=-Q U 解法二若从而由知在区间上是减函数故此时不存在使得若则函数在区间上递减在区间上递增若则在上递减在上递增显然此时不存在满足题意的000000;512)3,111,,(11,1),4212525255(1)()0,0,,;222412124513)0,011,,(0,11),421775(0)()0,0,,2224124x a a x x a a f f a a x a a x x a a f f a -<<-<-+-<∈-+-->+>>--<<--<<<-+-<∈-+-->--><--若则若题意中的存在则故只需即则故时存在满足题意的若则若题意中的存在则故只需即则故000007.12:25557111(,)(,),(0,)(,1)()().1244122222575111(,][,0),(0,)(,1)()().12124222a x a x f x f a x f x f <<-∴∈----∈=⎧⎫∈-∞---∈=⎨⎬⎩⎭U U U U U 时存在满足题意的综上所述当时存在唯一的满足当时不存在使。
广州市2019届高考数学(文科)冲刺题(二)含答案
wxckt@
王新敞 特级教师 源头学子小屋
wxckt@
新疆奎屯
· 2007·
新疆奎屯
· 2007·
2
9.如图,四棱锥 P ABCD 的底面 ABCD 为矩形, AB 2 2 , BC 2 ,点 P 在底面的 射影在直线 AC 上, E, F 分别是 AB, BC 的中点. (1)证明:直线 DE 平面 PAC ; (2)在 PC 边上是否存在点 M ,使得 FM ∥平面 PDE ?
2019 年广州市高考备考冲刺阶段数学学科训练材料 (文科)
说明: 1.本训练题共 32 题,请各校教师根据本校学生的实际情况选择使用. 2.本训练题仅供本市高三学生考前冲刺训练用,希望在 5 月 31 日之前完成. 3. 本训练题与市高三高考模拟、 一测、 二测等数学试题在内容上相互配套, 互为补充. 四 套试题覆盖了高中数学的主要知识和方法. 因此, 希望同学们在 5 月 31 日至 6 月 6 日之间, 安排一段时间,对这四套试题进行一次全面的回顾总结,同时,将高中数学课本中的基本知 识(如概念、定理、公式等)再复习一遍. 希望同学们保持良好的心态,在高考中稳定发挥,考取理想的成绩.
n 1
7.设等比数列 an 的前 n 项和为 Sn 2 (1)求 r 的值; (2)设 bn
r (r 为常数).
1 1 , Tn 为数列 bn 的前 n 项和,求正整数 k ,使得 n N * , 均有 an n n 1
Tk Tn .
8.在数列 an 中, a1 2 , an1 an n1 (2 )2n (n N ) ,其中 0 (1)求数列 an 的通项公式; (2)求数列 an 的前 n 项和 S n
广东省东莞市2019届高三下学期高考冲刺试题(最后一卷)数学(文)试题 含解析
东莞市2019届高三第二学期高考冲刺试题(最后一卷)文科数学试题 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|20},{|13},A x x x B x x =-<=<<则AB =( )A. ()01,B. ()12,C. ()23,D. ()03,【答案】B 【解析】 【分析】先求出集合A ,再根据集合交集的定义求出A B 即可.【详解】集合2{|20}{|02}A x x x x x =-<=<<,且{|13}B x x =<< 所以A B ={|12}x x <<故选:B【点睛】本题考查一元二次不等式的解法,以及求两个集合的交集,属于基础题.2.已知a 为实数,若复数()()12a i i +-为纯虚数,则a =( ) A. 12-B. 2C.12D. 2-【答案】D【解析】 【分析】根据复数的运算法则进行化简,结合复数是纯虚数,进行求解即可.【详解】()()12a i i +-=()212a a i ++-,∵复数是纯虚数,∴20a +=且120a -≠ 得2a =-且a ≠12,即2a =-, 故选:D .【点睛】本题主要考查复数的运算以及复数的概念,根据复数是纯虚数建立条件关系是解决本题的关键,属于基础题.3.如图为中国古代刘徽的《九章算术注》中研究“勾股容方”问题的图形,图中ABC ∆为直角三角形,四边形DEFC 为它的内接正方形,已知2BC =,4AC =,在ABC ∆上任取一点,则此点取自正方形DEFC 的概率为( )A.19B.29C.49D.59【答案】C 【解析】 【分析】由图形,结合已知条件,得DE ∥BC ,则AD DE AC CB =,设CD x =,即4=42x x-,解得x =43,由几何概型中的面积比可得.【详解】由图形得,ABC ∆为直角三角形,四边形DEFC 为它的内接正方形,已知2BC =,4AC =, 设CD =x ,由DE ∥BC 则有AD DE AC CB =,即442x x-=,解得x =43, 设在△ABC 上任取一点,则此点取自正方形DEFC 为事件A ,由几何概型中的面积比得:P (A )=S S ∆正方体=244319422⎛⎫ ⎪⎝⎭=⨯⨯. 故选:C .【点睛】本题考查了相似比及几何概型中的面积型,属于中档题.4.已知非零向量,m n 满足4n m =,且()2m n m ⊥+,则,m n 的夹角为( ) A.6π B.3π C.2π D.23π 【答案】D 【解析】 【分析】根据()2m m n ⊥+,得()20m m n ⋅+=,再根据4n m =进行数量积的运算即可求出cos ,m n 的值,根据向量夹角的范围即可求出夹角. 【详解】∵4n m =,且()2m m n ⊥+;∴()22222||cos ,0m m n m m n m m n m n ⋅+=+⋅=+=,且0,0m n ≠≠;∴2m n cos m,n 0+=;∴21cos ,2mm n n =-=-;又0,m n π≤…;∴2,3m n π=. 故选:D .【点睛】本题考查向量垂直的充要条件,向量数量积的运算及计算公式,以及向量夹角的范围,属于基础题.5.已知椭圆C :()222124x y a a +=>,直线:2l y x =-过C 的一个焦点,则C 的离心率为( )A.12B.13C.22D.23【答案】C 【解析】 【分析】直线:2l y x =-过C 的一个焦点,得2c =,利用椭圆的性质求出a ,解出离心率即可.【详解】椭圆C :()222124x y a a +=>,直线:2l y x =-过椭圆C 的一个焦点,可得2c =,则2222a b c +=,所以椭圆离心率为:2222c e a ===. 故选:C .【点睛】本题考查椭圆的简单性质的应用,属于基础题.6.己知()f x 是定义在R 上的偶函数,在区间(]0-∞,为增函数,且()30f =,则不等式(12)0f x ->的解集为( )A. ()10-,B. ()12-,C. ()02,D. ()2,+∞ 【答案】B 【解析】 【分析】结合函数的奇偶性与单调性得f (x )在[0,+∞)上为减函数,由f (3)=0,可得f (1﹣2x )>0⇒f (1﹣2x )>f (3)⇒|1﹣2x|<3,解得x 的取值范围即可.【详解】根据题意,因为f (x )是定义在R 上的偶函数,且在区间(一∞,0]为增函数, 所以函数f (x )在[0,+∞)上为减函数,由f (3)=0,则不等式f (1﹣2x )>0⇒f (1﹣2x )>f (3)⇒|1﹣2x|<3, 解可得:﹣1<x <2,即不等式的解集为(﹣1,2). 故选:B .【点睛】本题考查函数的奇偶性与单调性的综合应用,涉及不等式的解法,属于基础题.7.若曲线xy e =在0x =处的切线与ln y x b =+的切线相同,则b =( ) A. 2 B. 1 C. 1-D. e【答案】A 【解析】 【分析】求出xy e =的导数,得切线的斜率,可得切线方程,再设与曲线ln y x b =+相切的切点为(m ,n ),得ln y x b =+的导数,由导数的几何意义求出切线的斜率,解方程可得m ,n ,进而得到b 的值. 【详解】函数x y e =的导数为y '=e x,曲线xy e =在x =0处的切线斜率为k =0e =1,则曲线xy e =在x =0处的切线方程为y ﹣1=x ; 函数ln y x b =+的导数为y '=1x ,设切点为(m ,n ),则1m=1,解得m =1,n =2, 即有2=ln1+b ,解得b =2. 故选:A .【点睛】本题主要考查导数的几何意义,求切线方程,属于基础题.8.执行如图的程序框图,依次输入123451719202123x x x x x =====,,,,,则输出的S 值及其意义分别是( )A. 4S =,即5个数据的方差为4B. 4S =,即5个数据的标准差为4C. 20S =,即5个数据的方差为20D. 20S =,即5个数据的标准差为20 【答案】A 【解析】 【分析】根据程序框图,输出的S 是123451719202123x x x x x =====,,,,这5个数据的方差,先求这5个数的均值,然后代入方差公式计算即可.【详解】根据程序框图,输出的S 是123451719202123x x x x x =====,,,,这5个数据的方差,∵15x =(17+19+20+21+23)=20, ∴由方差的公式得S =15[(17﹣20)2+(19﹣20)2+(20﹣20)2+(21﹣20)2+(23﹣20)2]=4.故选:A .【点睛】本题通过程序框图考查了均值和方差,解决问题的关键是通过程序框图能得出这是一个求数据方差的问题,属于基础题.9.在长方体1111-ABCD A B C D 中,2AB =,BC =1CC =M 为1AA 的中点,则异面直线AC 与1B M 所成角的余弦值为( )A.6B.23C.34D.3【答案】B 【解析】 【分析】以D 为原点,以DA ,DC ,DD 1分别为x ,y ,z 轴,建立空间直角坐标系,利用向量法能求出异面直线AC 与B 1M 所成角的余弦值.【详解】以D 为原点,以DA ,DC ,DD 1分别为x ,y ,z 轴,建立空间直角坐标系, 则(2,0,0),(0, 2,0),A C 2,2,22),(2,0,2)B M ,∴1AC (2,2,0),B M (0,2,2)=-=-- ,设异面直线AC 与B 1M 所成角为θ, 则112cos 366||AC B AC B MM θ⋅===⋅⋅.∴异面直线AC 与B 1M 所成角的余弦值为23.故选:B .【点睛】本题考查了用向量法求异面直线所成角的余弦值,属于基础题.10.如图画出的是某几何体的三视图,网格纸上小正方形的边长为1,则该几何体的体积为( )A. 253πB.263πC. 223πD. 233π【答案】A 【解析】 【分析】由三视图还原原几何体,可知原几何体为球的组合体,是半径为2的球的34与半径为1的球的14,再由球的体积公式计算即可.【详解】由三视图还原原几何体,如图所示,可知原几何体为组合体,是半径为2的球的34与半径为1的球的14, 其球的组合体的体积33341425V 2143433πππ=⨯⨯+⨯⨯= . 故选:A .【点睛】本题考查了三视图还原原几何体的图形,求球的组合体的体积,属于中档题.11.在ABC ∆中,角A 、B 、C 的对边长分别a 、b 、c ,满足()22sin 340a a B B -+=,b =ABC △的面积为A.C.【答案】C 【解析】 【分析】由二次方程有解,结合三角函数性质可得只有△0=,此时可求B ,进而可求a ,然后结合余弦定理可求c ,代入1sin 2ABC S ac B ∆=可求. 【详解】把22(sin 3)40a a B B -+=看成关于a 的二次方程, 则2224(sin 3)164(33cos 4)B B sin B cos B B B =+-=++- 24(23cos 3)4(cos 2322)cos B B B B B =+-=+-4[2sin(2)2]06B π=+-…,故若使得方程有解,则只有△0=,此时6B π=,7b =代入方程可得,2440a a -+=, 2a ∴=,由余弦定理可得,2428cos3022c c+-︒=⨯,解可得,43c =∴111sin 24323222ABC S ac B ∆==⨯⨯=故选:C .【点睛】本题主要考查了一元二次方程的根的存在条件的灵活应用及同角平方关系,二倍角公式,辅助角公式及余弦定理的综合应用,属于中档试题.12.已知函数()2xf x e ax =-,对任意10x <,20x <,都有()()()()21210x x f x f x --<,则实数a 的取值范围是( )A. ,2e ⎛⎤-∞- ⎥⎝⎦ B. ,02e ⎡⎤-⎢⎥⎣⎦C. 0,2e ⎡⎤⎢⎥⎣⎦D. ,2e ⎛⎤-∞ ⎥⎝⎦ 【答案】D 【解析】 【分析】由题意将原问题转化为函数单调性的问题,利用导函数的符号结合题意确定实数a 的取值范围即可.【详解】由题意可知函数f (x )是(﹣∞,0)上的单调递减函数,且当x <0时,2()x f x e ax -=-,121()20x x xaxe f x ax e e '+=--=-…,可得:2axe x+1≥0,即12e x a x -… 恒成立, 令g (x )=xe x (x <0),则g'(x )=e x(x+1),据此可得函数g (x )在区间(﹣∞,﹣1)上单调递减,在区间(﹣1,0)上单调递增,函数g (x )的最小值为1(1)g e -=,则min 122x e xe -⎛⎫= ⎪⎝⎭ , 可得:实数a 的取值范围是e ,2⎛⎤-∞ ⎥⎝⎦.故选:D .【点睛】本题主要考查导函数研究函数的单调性,导函数研究函数的最值,恒成立问题的处理方法等知识,属于中档题.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知实数,x y 满足约束条件21052x y x y x y +-≥⎧⎪-≤⎨⎪-≥-⎩,则3z x y =-的最大值是____.【答案】11 【解析】 【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.【详解】由3z x y =-得1133y x z =-,作出不等式组对应的平面区域如图(阴影部分): 平移直线1133y x z =-,由图象可知当直线1133y x z =-经过点A 时,直线1133y x z =-的截距最小,此时z 最大,由2105x y x y +-=⎧⎨-=⎩,得A (2,﹣3).代入目标函数3z x y =-,得z =2﹣3×(﹣3)=11故答案为:11.【点睛】本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法,属于基础题.14.设θ为第二象限角,若1tan 42πθ⎛⎫+= ⎪⎝⎭,则cos θ =______.【答案】310【解析】 【分析】由tan 44tan ππθθ⎛⎫=+- ⎪⎝⎭可得tan θ,进而由22131sin tan cos sin cos θθθθθ⎧==-⎪⎨⎪+=⎩,结合θ为第二象限角即可得解.【详解】1tan 11442tan 144311tan 244tan tan tanππθππθθππθ⎛⎫+-- ⎪⎛⎫⎝⎭=+-===- ⎪⎛⎫⎝⎭+++ ⎪⎝⎭. 由22131sin tan cos sin cos θθθθθ⎧==-⎪⎨⎪+=⎩,结合θ为第二象限角,0cos θ<,可得310cos θ=. 故答案为:31010-. 【点睛】本题主要考查了两角和差的正切展开及同角三角函数关系,属于基础题.15.已知F 为抛物线C :24x y =的焦点,直线112y x =+与曲线C 相交于,A B 两点,O 为坐标原点,则OAB S ∆=________.【解析】 【分析】联立直线与抛物线,根据弦长公式以及点到直线的距离可得三角形的面积.【详解】联立24112x y y x ⎧=⎪⎨=+⎪⎩得2240x x --=,设()()1212A ,,B ,y x y x ,则12122,4x x x x +==-, 则||AB|=()221212114141654k x x x x =++-=++=, 点O 到直线112y x =+的距离AB 251125d S |AB |d 5221514O ∆===∴=⨯=⨯=+. 5【点睛】本题考查了抛物线的性质,直线与抛物线的位置关系,考查韦达定理,点到直线的距离公式及三角形的面积公式,属于中档题.16.已知四棱锥S ABCD -6的正方形,且四棱锥S ABCD -的顶点都在半径为2的球面上,则四棱锥S ABCD -体积的最大值为__________. 【答案】6. 【解析】 【分析】四棱锥的底面面积已经恒定,只有高不确定,只有当定点的射影为正方形ABCD 的中心M 时,高最大,从而使得体积最大.则利用球体的性质,求出高的最大值,即可求出最大体积. 【详解】因为球心O 在平面ABCD 的射影为正方形ABCD 的中心M ,,12AC MC AC ∴===, 则在Rt OMC ∆中,1,OM ==所以四棱锥S ABCD -的高的最大值为OM R +=3,此时四棱锥S ABCD -体积的为21363⨯⨯=【点睛】主要考查了空间几何体体积最值问题,属于中档题.这类型题主要有两个方向的解决思路,一方面可以从几何体的性质出发,寻找最值的先决条件,从而求出最值;另一方面运用函数的思想,通过建立关于体积的函数,求出其最值,即可得到体积的最值.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.设{}n a 是单调递增的等比数列,n S 为数列{}n a 的前n 项和.已知313S =,且13a +,23a ,35a +构成等差数列. (1)求n a 及n S ;(2)是否存在常数λ.使得数列{}n S λ+是等比数列?若存在,求λ的值;若不存在,请说明理由.【答案】(1)13-=n n a ,312n n S -=(2)存在常数12λ=.使得数列12n S ⎧⎫+⎨⎬⎩⎭是等比数列,详见解析 【解析】 【分析】(1)根据已知得到方程组,解方程组得q 的值,即得n a 及n S ;(2)假设存在常数λ.使得数列{}n S λ+是等比数列,由题得()()()24113λλλ+=+⋅+,解之即得λ,检验即得解.【详解】(1)由题意得1232131368a a a a a a ++=⎧⎨=++⎩∴23a =, 1310a a += ∴3310q q +=, 解得3q =或 13q =(舍) 所以2123--==n n n a a q,()11331132n n nS ⨯--==- .(2)假设存在常数λ.使得数列{}n S λ+是等比数列, 因为11S λλ+=+,24S λλ+=+,313S λλ+=+, 所以()()()24113λλλ+=+⋅+,解得12λ=,此时1322nn S +=11132231322nn n n S S --+==+()2n ≥, ∴存在常数12λ=.使得数列12n S ⎧⎫+⎨⎬⎩⎭是首项为11322a +=,公比为3等比数列 . 【点睛】本题主要考查等比数列的通项的求法,考查等比数列的前n 项和的求法,考查等比数列的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.如图,在四边形ABDE 中,//AB DE ,AB BE ⊥,点C 在AB 上,且AB CD ⊥,2AC BC CD ===,现将ACD 沿CD 折起,使点A 到达点P 的位置,且PE 22=(1)求证:平面PBC ⊥平面DEBC ; (2)求三棱锥P EBC -的体积. 【答案】(1)见解析; (223. 【解析】 【分析】(1)根据折叠前后关系得PC⊥CD,根据平几知识得BE//CD ,即得PC⊥BE,再利用线面垂直判定定理得EB⊥平面PBC ,最后根据面面垂直判定定理得结论,(2)先根据线面垂直EB⊥平面PBC 得高,再根据等积法以及三棱锥体积公式得结果.【详解】(1)证明:∵AB⊥BE,AB⊥CD,∴BE//CD, ∵AC⊥CD,∴PC⊥CD,∴PC⊥BE, 又BC⊥BE,PC∩BC=C, ∴EB⊥平面PBC ,又∵EB ⊂平面DEBC ,∴平面PBC ⊥平面DEBC ; (2)解法1:∵AB//DE,结合CD//EB 得BE=CD=2, 由(1)知EB⊥平面PBC ,∴EB⊥PB,由PE =2PB ==,∴△PBC 为等边三角形, ∴2323PBC S ∆==∴113233P EBC E PBC PBC V V S EB --∆==⋅= 23=. 解法2:∵AB//DE,结合CD//EB 得BE=CD=2, 由(1)知EB⊥平面PBC ,∴EB⊥PB,由PE 22= 得222PB PE EB =-=, ∴△PBC 为等边三角形,取BC 的中点O ,连结OP ,则3PO =,∵PO⊥BC,∴PO⊥平面EBCD ,∴211123332P EBC EBC V S PO -∆=⋅=⨯⨯233=.【点睛】垂直、平行关系证明中应用转化与化归思想常见类型.(1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.19.工厂质检员从生产线上每半个小时抽取一件产品并对其某个质量指标Y 进行检测,一共抽取了48件产品,并得到如下统计表.该厂生产的产品在一年内所需的维护次数与指标Y 有关,具体见下表.(1)以每个区间的中点值作为每组指标的代表,用上述样本数据估计该厂产品的质量指标Y 的平均值(保留两位小数);(2)用分层抽样的方法从上述样本中先抽取6件产品,再从6件产品中随机抽取2件产品,求这2件产品的指标Y 都在[]9.8?10.2,内的概率; (3)已知该厂产品的维护费用为300元/次,工厂现推出一项服务:若消费者在购买该厂产品时每件多加100元,该产品即可一年内免费维护一次.将每件产品的购买支出和一年的维护支出之和称为消费费用.假设这48件产品每件都购买该服务,或者每件都不购买该服务,就这两种情况分别计算每件产品的平均消费费用,并以此为决策依据,判断消费者在购买每件产品时是否值得购买这项维护服务?【答案】(1)1007.;(2)15;(3)该服务值得购买 【解析】 【分析】(1)由样本数据能估计该厂产品的质量指标Y 的平均值指标.(2)由分层抽样法知,先抽取的件产品中,指标Y 在[9.8,10.2]内的有3件,记为A 1,A 2,A 3,指标Y 在(10.2,10.6]内的有2件,记为B 1,B 2,指标Y 在[9.4,9.8)内的有1件,记为C ,从6件产品中,随机抽取2件产品,共有基本事件15个,由此能求出指标Y 都在[9.8,10.2]内的概率. (3)不妨设每件产品的售价为x 元,假设这48件样品每件都不购买该服务,则购买支出为48x 元,其中有16件产品一年内的维护费用为300元/件,有8件产品一年内的维护费用为600元/件,由此能求出结果.【详解】(1)指标Y 的平均值=13296101041007666...⨯+⨯+⨯≈ (2)由分层抽样法知,先抽取的6件产品中,指标Y 在[9.4,9.8)内的有3件,记为123A A A 、、;指标Y 在(10.2,10.6]内的有2件,记为12B B 、:指标Y 在[9.4,9.8)内的有1件,记为C . 从6件产品中随机抽取2件产品,共有基本事件15个()12,A A 、()13,A A 、()11,A B 、()12,A B 、()1,A C 、()23,A A 、()21,A B 、()22,A B 、()2,A C 、()31,A B 、()32,A B 、()3,A C 、()12,B B 、()1,B C 、()2,B C .其中,指标Y 都在[]9.8,10.2内的基本事件有3个:()12,A A 、()13,A A 、()23,A A 所以由古典概型可知,2件产品的指标Y 都在[]9.8,10.2内的概率为31155P ==. (3)不妨设每件产品的售价为x 元,假设这48件样品每件都不购买该服务,则购买支出为48x 元.其中有16件产品一年内的维护费用为300元/件,有8件产品一年内的维护费用为600元/件,此时平均每件产品的消费费用为()14816300860020048x x η=⨯+⨯+⨯=+元; 假设为这48件产品每件产品都购买该项服务,则购买支出为()48100x +元,一年内只有8件产品要花费维护,需支出83002400⨯=元,平均每件产品的消费费用()148100830015048x x ξ⎡⎤=⨯++⨯=+⎣⎦元. 所以该服务值得消费者购买.【点睛】本题考查平均值、概率、平均每件产品的消费费用的求法,考查列举法、古典概型等基础知识,考查运算求解能力,属于基础题.20.已知过点()4,0D 的直线l 与椭圆22:14x C y +=交于不同的两点()()1122,,,A x y B x y ,其中120y y ≠,O 为坐标原点.(1)若10x =,求OAB ∆的面积;(2)在x 轴上是否存在定点T ,使得直线TA 与TB 的斜率互为相反数. 【答案】(1)45(2)在x 轴上存在定点(1,0)T ,使得直线TA 与TB 的斜率互为相反数. 【解析】 【分析】(1)由题意不妨设点A(0,1),写出直线AB 方程,与椭圆方程联立,得点B 坐标,根据面积公式即可得结果;(2)设过点D 的直线方程,与椭圆方程联立,用韦达定理0TA TB k k +=化简,即可得到定点T 的坐标.详解】(1)当10x =时,()0,1A 或()0,1A -,由对称性,不妨令()0,1A ,此时直线l :440x y +-=,联立2244044x y x y +-=⎧⎨+=⎩,消去x 整理得25830y y -+=, 解得11y =,285y =, 故83,55B ⎛⎫ ⎪⎝⎭.所以OAB ∆的面积为1841255⨯⨯=. (2)显然直线l的斜率不为0,设直线l :4x my =+,联立22444x my x y =+⎧⎨+=⎩,消去x 整理得()2248120m y my +++= 所以()226441240m m ∆=-⨯+>,即212m >,12284m y y m +=-+,122124y y m =+, 设(),0T t ,则()()()()1221121212TA TB y x t y x t y yk k x t x t x t x t -+-+=+=---- ()()()()12121224my y t y y x t x t +-+=--因为直线TA 与TB 的斜率互为相反数,所以0TA TB k k +=, 即()()()()12122228112824240444m t mmy y t y y m t m m m -+-+=⋅+-⋅==+++, 故1t =,故在x 轴上存在定点()1,0T ,使得直线TA 与TB 的斜率互为相反数.【点睛】本题考查直线与椭圆的位置关系以及曲线过定点问题,解决曲线过定点问题一般有两种方法:① 探索曲线过定点时,可设出曲线方程 ,然后利用条件建立等量关系进行消元,借助于曲线系的思想找出定点,或者利用方程恒成立列方程组求出定点坐标.② 从特殊情况入手,先探求定点,再证明与变量无关.21.已知2()(1)(1),[1,)xf x x e a x x =--+∈+∞. (1)讨论()f x 的单调性;(2)若()2ln f x a x ≥-+,求实数a 的取值范围.【答案】(Ⅰ)详见解析;(Ⅱ)12e a -≤. 【解析】 试题分析:(Ⅰ)由函数的解析式可得()'2xf x xe ax =- ()2xx e a =-,当2ea ≤时,()'0f x ≥,()f x 在[)1,+∞上单调递增;当2ea >时,由导函数的符号可知()f x 在()()1,2ln a 单调递减;在()()2,ln a +∞单调递增.(Ⅱ)构造函数()()()211xg x x e a x lnx =----,问题转化为()0g x ≥在[)1,x ∈+∞上恒成立,求导有()1'2xg x xe ax x =--,注意到()10g =.分类讨论:当12e a ->时,不满足题意. 当12e a -≤时,()'0g x >,()g x 在[)1,+∞上单调递增;所以()()10g x g ≥=,满足题意. 则实数a 的取值范围是12e a -≤. 试题解析:(Ⅰ)()'2xf x xe ax =- ()2xx e a =-,当2ea ≤时,[)1,x ∈+∞,()'0f x ≥.∴()f x 在[)1,+∞上单调递增; 当2ea >时,由()'0f x =,得()2x ln a =.当()()1,2x ln a ∈时,()'0f x <;当()()2,x ln a ∈+∞时,()'0f x >. 所以()f x 在()()1,2ln a 单调递减;在()()2,ln a +∞单调递增. (Ⅱ)令()()()211xg x x e a x lnx =----,问题转化为()0g x ≥在[)1,x ∈+∞上恒成立, ()1'2x g x xe ax x=--,注意到()10g =. 当12e a ->时,()'1210g e a =--<, ()()()()1'212121g ln a ln a ln a +=+-+,因为21a e +>,所以()211ln a +>,()()'210g ln a +>, 所以存在()()01,21x ln a ∈+,使()0'0g x =,当()01,x x ∈时,()'0g x <,()g x 递减, 所以()()10g x g <=,不满足题意.当12e a -≤时,()()1'1x g x xe e x x≥--- ()11xx e e x ⎡⎤=---⎣⎦, 当1x >时,()11xx e e ⎡⎤-->⎣⎦,101x<<, 所以()'0g x >,()g x 在[)1,+∞上单调递增;所以()()10g x g ≥=,满足题意. 综上所述:12e a -≤.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 选修4-4:坐标系与参数方程22.在直角坐标系xOy 中,直线1:2l x =,曲线2cos :22sin x C y ϕϕ=⎧⎨=+⎩(ϕ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系,点M 的极坐标为(3,)6π. (1)求直线1l 和曲线C 的极坐标方程; (2)在极坐标系中,已知射线2:(0)2l πθαα=<<与1l ,C 的公共点分别为A ,B ,且83OA OB ⋅=MOB ∆的面积.【答案】(1)直线1l : cos 2ρθ=;曲线C 的极坐标方程为4sin ρθ=;(2)332. 【解析】 【分析】(1)先根据22sin cos 1φφ+=,把曲线C 化为普通方程,再利用互化公式cos x ρθ=,sin y ρθ=,把直线2x =和曲线C 化为极坐标方程;(2)联立极坐标方程,并利用极径的几何意义,根据三角形面积公式可得. 【详解】解:(1)∵cos {sin x y ρθρθ==,∴直线2x =的极坐标方程是cos 2ρθ=,曲线C 的普通方程为22(2)4x y +-=,即2240x y y +-=. 所以曲线C极坐标方程为4sin ρθ=.(2)将θα=分别代入cos 2ρθ=,4sin ρθ=得:2cos A OA ρα==,4sin B OB ρα==.∴8tan OA OB α⋅==tan α=∵02πα<<,∴3πα=.∴23OB =3OM =,6MOB π∠=.所以1sin 2MOB S OM OB MOB ∆=∠113332322=⨯⨯=即AOB ∆33【点睛】本题考查了曲线的参数方程转化为普通方程,再转化为极坐标方程,利用极径的几何意义求三角形面积是解题的解题的关键.选修4-5:不等式选讲23.已知函数()()22R f x x a x a =-+-∈. (1)当2a =时,求不等式()2f x >的解集; (2)若[]2,1x ∈-时不等式()32f x x ≤-成立,求实数a 的取值范围.【答案】(1)2{|3x x <或2}x >;(2)空集. 【解析】 【分析】(1)通过零点法,分类讨论,去掉绝对值符号,然后求解不等式的解集.(2)当[2,1]x ∈-时,220x -<,化简()22f x x a x =-+-,由()32f x x ≤-得1x a -≤,即11a x a -≤≤+,推出结果即可.【详解】解:(1)不等式()2f x >,即2222x x -+->.可得22222x x x ≥⎧⎨-+->⎩,或122222x x x <<⎧⎨-+->⎩或12222x x x ≤⎧⎨--+>⎩,解得23x <或2x >,所以不等式的解集为2{|2}3x x x <>或.(2)当[2,1]x ∈-时,220x -<,所以()22f x x a x =-+-,由()32f x x ≤-得1x a -≤,即11a x a -≤≤+,则1211a a -≤-⎧⎨+≥⎩,该不等式无解, 所以实数a 的取值范围是空集(或者∅).【点睛】本题考查不等式的解法,恒成立条件的转化,考查计算能力.。
(精校版)2019年广东文数高考试题文档版(含答案解析)
绝密★启用前2019年普通高等学校招生全国统一考试(广东卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2B .3C .2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =ðA .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是a b c <<a c b <<c a b <<b c a <<A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x++在[—π,π]的图像大致为 A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2-3B .-2+3C .2-3D .2+38.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
2019年广东高考文科数学试卷及答案
答案: 1、C 2、C 3、B 4、B 5、D 6、C 7、D 8、B 9、A 10、D 11、A 12、B 13、生提供2019年广东高考文科数学试卷及答案更多高考分数线高考成绩查询高考志愿填报高考录取查询信息等信息请关注我们网站的更新
2019年 广 东 高 考 文 科 数 学 试 卷 及 答 案
高考可以说是人生中一个很重要的考试,它能决定许多考生的未来,所以大家可得牟足了劲,在高考这两天里全力冲刺 呀!店铺高考频道会及时为广大考生提供2019年广东高考文科数学试卷及答案,更多高考分数线、高考成绩查询、高考志愿填 报、高考录取查询信息等信息请关注我们网站的更新!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又∵ 底面 ,
∴ ,
则点 为 的外心,又因为 是直角三角形,
∴点 为 中点.
(2)证明:由(1)知,点 在底面的射影为点 ,点 为 中点,
于是 面 ,
∴ ,
∵在 中, , ,
∴ ,
又 ,∴ ,
从而 即 ,
由 , 得 面 ,
∴ .
(3)∵ ,
∴ 是平行四边形,
在 中,∵ ,∴ ,
由(2)知: 面 , ,
由 , ,
∴ ,
∴ ,
.
设点 到面 的距离为 ,由等体积法பைடு நூலகம்,
∴ ,
∴ .
即点 到面 的距离为1.
20题:
所以 .
又
.
所以 .
21.题:解:(Ⅰ)f(x)=(x﹣1)ex+ax2,
f′(x)=x(ex+2a),
①a≥0时,令f′(x)>0,解得:x>0,
令f′(x)<0,解得:x<0,
∴f(x)在(﹣∞,0)递减,在(0,+∞)递增;
A. B. C. D.
7.双曲线 的一条渐近线与圆
相切,则此双曲线的离心率为( )
A.2B. C. D.
8.某空间几何体的三视图如图所示(图中小正方形的边长为 ),则这个几何体的体积是()
A.16B.32C. D.
9.已知函数 的值域为 ,则实数 的取值范围是()
A. B.
C. D.
10.在等腰直角△ABC中,AC=BC,D在AB边上且满足: ,
5.《算法通宗》是我国古代内容丰富的数学名书,书中有如下问题:“远望巍巍塔七层,红灯向下倍加增,共灯三百八十一,请问塔顶几盏灯?”其意思为“一座塔共七层,从塔顶至塔底,每层灯的数目都是上一层的2倍,已知这座塔共有381盏灯,请问塔顶有几盏灯?”()
A.3B.4C.5D.6
6.若执行如图所示的程序框图,输出 的值为( )
广东省高考文科数学考前冲刺题
一、选择题:本大题共12小题,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求
1.已知全集 ,集合 , ,那么 =()
A. B. C. D.
2.已知复数 ,则 的共轭复数是( )
A. B. C. D.
3.下列说法中不正确的个数是( )
①“x=1”是“x2﹣3x+2=0”的必要不充分条件
19.(本小题满分12分)在四棱锥 中, , , 和 都是边长为2的等边三角形,设 在底面 的射影为 .
(1)求证: 是 中点;
(2)证明: ;
(3)求点 到面 的距离.
20.(本小题满分12分)已知椭圆E: 的一个焦点与短轴的两个端点是正三角形的三个顶点,点 在椭圆E上.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设不过原点O且斜率为 的直线l与椭圆E交于不同的两点A,B,线段AB的中点为M,直线OM与椭圆E交于C,D,证明: .
级中度污染
级重度污染
级严重污染
空气质量指数
频数
频率
该社团将该校区在 年连续 天的空气质量指数数据作为样本,绘制了如图的频率分布表,将频率视为概率.
估算得全年空气质量等级为 级良的天数为 天(全年以 天计算).
(Ⅰ)求 的值;
(Ⅱ)请在答题卡上将频率分布直方图补全(并用铅笔涂
黑矩形区域),并估算这 天空气质量指数监测数据的平均数.
21.(本小题满分12分)已知函数 .
(Ⅰ)讨论函数 的单调区间;
(Ⅱ)若 有两个零点,求 的取值范围.
请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时写清题号
22.(本小题满分10分)选修4-1:几何证明选讲
在平面直角坐标系 中,曲线 过点 ,其参数方程为 ( 为参数, ).以 为极点, 轴非负半轴为极轴,建立极坐标系,曲线 的极坐标方程为 .
若∠ACD=60°,则t的值为()
A. B. C. D.
11.设函数 是偶函数 的导函数, ,当 时, ,则使得 成立的 的取值范围是( )
A.(﹣∞,﹣2)∪(0,2)B.(﹣∞,﹣2)∪(2,+∞)
C.(﹣∞,﹣2)∪(﹣2,2)D.(0,2)∪(2,+∞)
12.抛物线 的焦点为 ,设 是抛物线上的两个动点,若 ,则 的最大值为()
②命题“∀x∈R,cosx≤1”的否定是“∃x0∈R,cosx0≥1”
③若一个命题的逆命题为真,则它的否命题一定为真.
A.3B.2C.1D.0
4.某校为了解学生学习的情况,采用分层抽样的方法从高一 人、高二 人、高三 人中,抽取 人进行问卷调查.已知高二被抽取的人数为 ,那么 ()
A. B. C. D.
②﹣ <a<0时,ln(﹣2a)<0,
令f′(x)>0,解得:x>0或x<ln(﹣2a),
令f′(x)<0,解得:ln(﹣2a)<x<0,
故f(x)在(﹣∞,ln(﹣2a))递减,在(ln(﹣2a),0)递增,在(0,+∞)递减;
③a=﹣ 时,ln1=0,f(x)在R递增;
④a<﹣ 时,ln(﹣2a)>0,
17.(本小题满分12分)在 中,三个内角 的对边分别为 ,
, .
(1)求角 的值;
(2)设 ,求 的面积 .
18.(本小题满分12分)某大学环保社团参照国家环境标准,制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过 ):
空气质量指数
空气质量等级
级优
级良
级轻度污染
二、填空题
13题:-6 ;14题: 15题: 16题:
三、解答题
17题:
∴ ,
∴ .
∴ .…………………8分
18题:
【解析】(Ⅰ) , ,又
故 , ------- 4分
(Ⅱ)补全直方图如图所示 -------8分
由频率分布直方图,可估算这 天空气质量指数监测数据的平均数为:
.-------12分
19题:解:(1)证明:∵ 和 都是等边三角形,
(Ⅰ)求曲线 的普通方程和曲线 的直角坐标方程;
(Ⅱ)已知曲线 与曲线 交于 、 两点,且 ,求实数 的值.
23.(本小题满分10分)选修4-4:坐标系与参数方程选讲
已知关于 的不等式 有解,记实数 的最大值为 .
(1)求 的值;
(2)正数 满足 ,求证: .
文科数学参考答案
一、选择题:
CCBDA CADBA BD
A. B. C. D.
二、填空题:本大题4小题,每小题5分,满分20分
13.已知实数 满足条件 ,则 的最小值为.
14.已知向量 ,且 ,则 =.
15.正四棱锥 的体积为 ,底面边长为 ,则正四棱锥 的内切球的表面积是.
16.设 为数列 的前 项和,若 ,
则S10=.
三.解答题:本大题共8小题,满分70分,解答须写出文字说明、证明过程或演算步骤