热力学第一章

合集下载

第一章 热力学第一定律

第一章 热力学第一定律

1.1.3 热力学的方法和局限性
热力学方法: •研究对象是大数量分子的集合体,研究宏观性质,所得结论具 有统计意义。 •只考虑变化前后的净结果,不考虑物质的微观结构和反应机理。 •能判断变化能否发生以及进行到什么程度,但不考虑变化所需 要的时间。
总结
4
§1.1 热力学概论
热力学概论 热平衡 基本概念 第一定律 准静态过程 焓 热容 理想气体 焦耳-汤姆逊 热化学 温度影响
Physical Chemistry of Metallurgy
冶金物理化学
第一章 热力学第一定律
第一章 热力学第一定律
热力学概论 热平衡 基本概念 第一定律 准静态过程 焓 热容 理想气体 焦耳-汤姆逊 热化学 温度影响
主要内容
1. 热力学概论 7. 热容
2. 热平衡和热力学第零定律 8. 热力学第一定律对理

V V ( m ) ( m ) T p R p T 2 T p p p T
总结
17
§1.3 热力学基本概念
热力学概论 热平衡 基本概念 第一定律 准静态过程 焓 热容 理想气体 焦耳-汤姆逊 热化学 温度影响
1.3.2 系统的性质
用宏观可测性质来描述系统的热力学状态,故这些性质又称 为热力学变量。可分为两类: (1)广度性质(extensive properties) 又称为容量性质,它的数值与系统的物质的量成正比,如体 积、质量、熵等。这种性质有加和性,在数学上是一次齐函数。 (2)强度性质(intensive properties) 它的数值取决于系统自身的特点,与系统的数量无关,不 具有加和性,如温度、压力等。它在数学上是零次齐函数。指 定了物质的量的容量性质即成为强度性质,或两个容量性质相 除得强度性质。

第一章热力学第一定律

第一章热力学第一定律
例1-1 在恒定外压 在恒定外压pex=500kPa条件下,将n=2 条件下, 条件下 mol理想气体,从始态 1=300K、p1=500kPa加 理想气体, 理想气体 从始态T 、 加 热到T 过程的体积功。 热到 2=350K、p2=500kPa。求:过程的体积功。 、 。
解:先求出两种状态下的始态和终态体积。再由恒压 先求出两种状态下的始态和终态体积。 体积功的计算方法计算体积功。 体积功的计算方法计算体积功。
V1=nRT1/p1=[2*8.314*300/(500*1000)]m3= 9.977*10-3m3 V2=nRT2/p2=[2*8.314*350/(500*1000)]m3= 1.164*10-2m3 恒压既p1=p2=pex W = -pex(V2-V1) = -[500*1000*(1.164*10-2-9.977*10-3)] = -832J
热量的符号: 热量的符号:Q 体系从环境吸热为Q>0,“+” 体系从环境吸热为 , 体系向环境放热为Q<0,“-” 体系向环境放热为 , 体系绝热,Q=0 体系绝热, 单位:国际单位( ), 焦耳( ), ),KJ 单位:国际单位(SI), 焦耳(J),
热容:一定量物质,温度升高 所吸收的 热容:一定量物质,温度升高1K所吸收的 热。 常用符号为C 常用符号为 摩尔热容:1mol物质的热容。 物质的热容。 摩尔热容: 物质的热容 表示符号为C 单位为J.mol-1.K-1 表示符号为 m,单位为 说明:热容为容量性质,随物质的量变化。 说明:热容为容量性质,随物质的量变化。 摩尔热容为强度性质, 摩尔热容为强度性质,其数值与温度 T有关。 有关。 有关
始态 终态 ——→ ( n,T1, P1, V1)——→ (n,T2, P2, V2) , , 途径 I 等T 等P ( n,T1, P2, V`2) , 途径 II

物理化学课件 第一章 热力学

物理化学课件 第一章 热力学
第一章 热力学第一定律和热化学
The first law of themodynamics and thermochemistry
第一节 热力学概论
一. 热力学
热力学(Thermodynamics): 研究宏观系统各种过程中能量相互转换所遵循的规 律的科学, 化学热力学:
热力学应用于化学及其相关的过程 主要原理:
内容:通过导热壁分别与第三个物体达热平衡的任意两个物 体彼此间也必然达热平衡。
定律延伸:任一热力学均相体系,在平衡态各自存在一个称 之为温度的状态函数,对所有达热平衡的均相体系,其温 度相同。
温标:a)摄氏温标 以水为基准物,规定水的凝固为零点, 水的沸点与冰点间距离的1/100为1℃。
b)理想气体温标 以低压气体为基准物质,规定水的三相点 为273.16K,温度计中低压气体的压强为 pr
平衡态公理: 一个孤立体系,在足够长的时间内必将趋于唯一的
平衡态,而且永远不能自动地离开它。
四、状态和状态函数
(一)状态 —系统所有性质的综合表现 ➢系统处于确定的状态,系统所有性质具有确定值;
➢系统所有性质具有确定值,系统状态就确定了;
➢系统的性质是相互关联的,通常采用容易直接测量 的强度性质和必要的广度性质来描述系统所处状态。
五、过程与途径
过程:系统从始态到终态发生的变化 途径:系统完成一个过程的具体方式和步骤
过程 -系统从始态到终态状态随发生的一系列变化
➢ 化学变化过程 按变化的性质分 ➢ 物理过程
p、V、T变化过程
相变化过程
过程按变化的条件分: 等温(T = 0) 等容(V = 0)
表述为热力学第一定律(相变和化学反应热效应)、热力 学第二定律(方向、限度和平衡)、热力学第三定律(熵)

第一章热力学第一定律

第一章热力学第一定律

经验 总结 总结归纳提高 引出或定义出 解决 的 能量效应(功与热) 过程的方向与限度 即有关能量守恒 和物质平衡的规律 物质系统的状态变化 第一章 热力学第一定律 §1.1 热力学基本概念1.1.1 热力学的理论基础和研究方法1、热力学理论基础热力学是建立在大量科学实验基础上的宏观理论,是研究各种形式的能量相互转化的规律,由此得出各种自发变化、自发进行的方向、限度以及外界条件的影响等。

⇨ 热力学四大定律:热力学第一定律——Mayer&Joule :能量守恒,解决过程的能量衡算问题(功、热、热力学能等);热力学第二定律——Carnot&Clousius&Kelvin :过程进行的方向判据; 热力学第三定律——Nernst&Planck&Gibson :解决物质熵的计算;热力学第零定律——热平衡定律:热平衡原理T 1=T 2,T 2=T 3,则T 1= T 3。

2、热力学方法——状态函数法⇨ 热力学方法的特点: ①只研究物质变化过程中各宏观性质的关系,不考虑物质的微观结构;(p 、V 、T etc ) ②只研究物质变化过程的始态和终态,而不追究变化过程中的中间细节,也不研究变化过程的速率和完成过程所需要的时间。

⇨ 局限性:不知道反应的机理、速率和微观性质。

只讲可能性,不讲现实性。

3、热力学研究内容热力学研究宏观物质在各种条件下的平衡行为:如能量平衡,化学平衡,相平衡等,以及各种条件对平衡的影响,所以热力学研究是从能量平衡角度对物质变化的规律和条件得出正确的结论。

热力学只能解决在某条件下反应进行的可能性,它的结论具有较高的普遍性和可靠性,至于如何将可能性变为现实性,还需要动力学方面知识的配合。

1.1.2 热力学的基本概念1、系统与环境⇨ 系统(System ):热力学研究的对象(微粒组成的宏观集合体)。

在科学研究时必须先确定研究对象,把一部分物质与其余部分分开,这种分离可以是实际的,也可以是想象的。

第一章热力学第一定律

第一章热力学第一定律

第一章热力学第一定律本章主要内容1.1热力学概论1.2热力学第一定律1.3 可逆过程和最大功1.4 焓1.5 热容1.6 热力学第一定律对理想气体的应用1.7实际气体1.8热化学1.9化学反应热效应的求算方法1.10反应热与温度的关系——基尔霍夫定律§1.1热力学概论1.1.1热力学的研究对象(1)研究热、功和其他形式能量之间的相互转换及其转换过程中所遵循的规律;(2)研究各种物理变化和化学变化过程中所发生的能量效应;(3)研究化学变化的方向和限度。

1.1.2 热力学的方法和局限性热力学方法:热力学在解决问题是使用严格的数理逻辑推理方法,其研究对象是大量质点的集合体,所观察的是宏观系统的平均行为,并不考虑个别分子或质点,所得结论具有统计意义。

优点:只须知道宏观系统变化的始终态及外部条件,无须知道物质的微观结构和变化的细节即可进行有关的定量计算。

局限性:(1)对所得的结论只知其然而不知所以然;(2)不能给出变化的实际过程,没有时间的概念,也不能推测实际进行的可能性。

(3)只能适应用于人们所了解的物质世界,而不能任意推广到整个宇宙。

1.1.3 几个基本概念:1、系统与环境系统(System)——把一部分物质与其余分开作为研究对象,这这种被划定的研究对象称为系统,亦称为物系或系统。

环境(surroundings)——与系统密切相关、有相互作用或影响所能及的部分称为环境。

(1)敞开系统(open system) -系统与环境之间既有物质交换,又有能量交换。

(2)封闭系统(closed system)-系统与环境之间无物质交换,但有能量交换。

(3)孤立系统(isolated system )-系统与环境之间既无物质交换,又无能量交换,故又称为隔离系统。

有时把封闭系统和系统影响所及的环境一起作为孤立系统来考虑。

2、状态与状态性质(1)热力学系统的所有物理性质和化学性质的综合表现称为状态,而描述状态的的性质被称为状态性质(或热力学性质)一般用宏观可测性质来描述系统的热力学状态,故这些性质又称为热力学变量。

第1章 热力学第一定律

第1章 热力学第一定律

§ 1.5 定容及定压下的热
U、H、U、 H、Qp、QV的区别与联系
1.哪个是状态函数? U、H 2.哪个能测量? ΔU、ΔH、Qp、QV 3.有何关系?W’=0时ΔU=Q ,ΔH=Q V p
§ 1.6 热容 1. 定容热。 δQ 注意:Wf=0,无相变、无 C= dT 化学变化的封闭系统。
2.可逆过程
可逆过程是一个极限的理想过程。
研究可逆过程的用处:
(1)确定提高实际过程的效率的可能性。
(2)求解重要热力学函数的变化值。
2.可逆过程





几种典型的可逆过程 可逆膨胀和可逆压缩:力平衡 可逆传热:热平衡 可逆相变:相平衡 可逆化学反应:A+B C
§ 1.4 体积功 3.可逆相变的体积功
§ 1.2 几个基本概念
1.系统和环境
在研究时被划分出来作为研究对象的 物体称为系统(System);系统以外与 系统有相互作用的周围部分称为环境 (Surroundings)。
1.系统和环境
系统分类
(1)敞开系统
(2)密闭(封闭)系统 (3)隔绝(孤立)系统
与环境的关系
物质交换 能量交换
√ × ×



1)三种不同过程的功相同么? 三种不同过程的内能变化相同么? 三种不同过程的热相同么? 2)哪种过程的功最大?
1.体积功 例: H2(1000Pa,3m3)
等温压缩 W=?
1molH2(3000Pa,1m3)
1)一次压缩? 2)等温可逆压缩?
1)一次膨胀:W=-2000 J 反向(一次压缩):W逆=(-3000)*(1-3)=6000 J 所以,在环境中留下了影响。 2)可逆膨胀:W=-3296 J 反向(可逆压缩):W逆=3296 J 所以,在环境中没有留下影响。

第一章—热力学第一定律

第一章—热力学第一定律

相变过程:物质从一个相转移到另一相。
如非特别指明,相变过程一般发生在恒温条件下。
相变过程伴随吸收或放出热量-相变焓(热)。
标准相变焓(热):
trs
H
m
相变前后物质温度相同且均处于标准状态时 的焓差。
标准摩尔蒸发焓
vap
H

m

H
m
(
g
)

H
m
(l
)
标准摩尔熔化焓

fus
H

m
标准摩尔升华焓

sub
H
m
1.6 标准相变焓
思考:温度对相变焓的影响如何?
1.6 标准相变焓
思考:压力对相变焓的影响如何?
? 某温度下,
trs H m


trs
H
m
一般情况下,压力对凝聚态的相变影响较小;
当涉及气相时,压力对物质的焓影响显著。
1.6 标准相变焓
例题: 1molH 2O(l) 373K,101325Pa1molH 2O(g) 373K,0Pa
1

dH
d
即单位反应进度的反应焓变。
使用摩尔反应焓时,应注明反应方程式。
1.7 标准生成焓和标准燃烧焓
2.标准摩尔反应焓
例如
r
H

m


B
B
H

m
(B)
H2 (g, p ) I2 (g, p ) 2HI (g, p )
r
H
m
(298
5
K
)

51.8KJ
/
mol
1.7 标准生成焓和标准燃烧焓

第一章热力学第一定律及热化学

第一章热力学第一定律及热化学
3.体系的边界可以是多种多样: 可以是实际的, 也可以 是假象的(如刚性壁, 活动壁, 绝热壁, 半透壁等) ;
4. 不同体系有不同的环境, 常用热源这一概念描述;
5.体系可以是多种多样的: 单组分, 多组分, 固体, 液体, 气体, 化学反应体系, 单相, 多相。
第一章 热力学第一定律及热化学
物理化学电子教案
第一章 热力学第一定律及热化学
物理化学电子教案
状态函数
热力学性质是描述系统状态的, 是系统状态的单 值函数, 即当系统处于一定的状态时, 系统的这些 热力学性质有唯一的确定值.
这种函数有两个重要的特征:
★ 这些函数值只取决于系统当前所处的状态,与 历史无关;
★ 热力学函数的改变值只决定于系统状态变 化的始、终态,与过程变化所经历的具体途径无关.
δw = p·dV + (X·dx + Y·dy + Z·dz…… )
=δwe +δwf 或 功 = 强度因素 ×广度因素
式中δwe 为体积功, δwf 为非体积功.
第一章 热力学第一定律及热化学
物理化学电子教案
热、功符号规定:
系统吸热为“+”、系统放热为“-”
系统对环境作功为“+”、环境对系统作功为 “-” 热、功的单位: 焦耳(J)
2
2
2
W e ,31p 外 d V 1(p d p )d V 1p d V
对理想气体:
W V2
e
V1
nRdT VnRlT nV2
V
V1
第一章 热力学第一定律及热化学
物理化学电子教案
④ 恒压膨胀过程 (p1 = p2 = p外 = 常数)
2
W e,41p 外 d V p (V 2 V 1)p V

第一章 热力学第一定律

第一章 热力学第一定律

1.1.2.3 过程和途径
1.过程:当体系的状态发生变化时,状态变 化的经过,强调变化的方式 2.途径:完成变化的具体步骤,强调经由路 径的不同
注: 过程和途径不是严格区分的两个概念, 不强调方式和路径的时候可通用
几种常见的过程
• 等/定温过程:体系始态、终态及过程中的温度等于环境 温度且为常数。 T始=T终=T体=T环=常数 • 等/定压过程:体系始态、终态及过程中的压力等于环境 压力且为常数。 p始=p终=p体=p环=常数 • 等/定容过程:在变化过程中,体系的容积始终保持不变。 V体=常数

二次恒外压压缩
体系返回原状态,体系虽然恢复原 态,但环境失去功,得到热
等温可逆膨胀
V2 WⅣ nRT ln V1
W WⅣ WⅣ 0 , 又U Q W 0, 则Q 0
等温可逆压缩 V1 WⅣ nRT ln V2
体系循原过程返回,不仅体系恢复原态,而且未给 环境留下功热转化的痕迹,即环境也恢复原状态
1.1.3.1 能量守恒定律
1840年左 右,焦耳 发现了热 功当量
1.1.3.1 能量守恒定律
热功当量
升高相同的温度
状态1 加热 W=0 状态2 热 功 当 量
Q=0
Q=0
机械功 电功
1.1.3.1 能量守恒定律
电量热法
1.1.3.1 能量守恒定律
机械量热法
1.1.3.1 能量守恒定律
到1850年,科学界公认能量守恒定律是自然界的普 遍规律之一。
1.1.3.3 “热一”数学表达 式
Q
W
W
U1
Q
U2
U2-U1 = Q+W
1.1.3.3 “热一”数学表达式

第一章 热力学第一定律

第一章  热力学第一定律

第一章 热力学第一定律核心内容:能量守恒 ΔU=Q+W主要内容:三种过程(单纯pVT 变化、相变、化学反应)W 、Q 、ΔU 、ΔH 的计算一、内容提要1.热力学第一定律与状态函数(1)热力学第一定律: ΔU=Q+W (封闭系统) 用途:可由ΔU ,Q 和W 中的任意两个量求第三个量。

(2)关于状态函数(M )状态函数:p 、V 、T 、U 、H 、S 、A 、G ……的共性: ①系统的状态一定,所有状态函数都有定值;②系统的状态函数变化值只与始终态有关,而与变化的途径无关。

用途:在计算一定始终态间的某状态函数增量时,为了简化问题,可以撇开实际的复杂过程,设计简单的或利用已知数据较多的过程进行计算。

ΔM (实)=ΔM (设)。

这种方法称为热力学的状态函数法。

③对于循环过程,系统的状态函数变化值等于零,即ΔM =0。

此外,对于状态函数还有如下关系:对于组成不变的单相封闭系统,任一状态函数M 都是其他任意两个独立自变量(状态函数)x 、y 的单值函数,表示为M=M(x 、y),则注意:因为W 和Q 为途径函数,所以Q 和W 的计算必须依照实际过程进行。

⎰-=21V V a m bdV p W ,其中p amb 为环境压力。

Q 由热容计算或由热力学第一定律求得。

dy y M dx x M dM xy ⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂=)(1循环关系式-=⎪⎭⎫⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂xM y M y y x x M )(22尤拉关系式xy My x M ∂∂∂=∂∂∂1(p 1,V 1,T 1) (p'1,V 1,T 2) 2(p 2,V 2,T 2) (p 1,V'1,T 2) VT 将热力学第一定律应用于恒容或恒压过程,在非体积功为零(即w'=0)的情况下有:Q V =ΔU ,Q p =ΔH (H 的定义:H=U+pV )。

此时,计算Q v 、Q p 转化为计算ΔU 、ΔH ,由于U 、H 的状态函数性质,可以利用上面提到的状态函数法进行计算。

第一章 热力学第一定律

第一章 热力学第一定律
再让体系沿途径 (II) 由 B A,每经过这样一次 循环(A B A),体系状态不变,而环境得 到了多余的能量。如此往复不断地循环,岂不构 成第一类永动机?— 这违反热力学第一定律。
结论:
• 任意一体系发生状态变化时,其能量的 变化值与状态变化的途径无关,即其能 量的变化值只取决于体系的始态(A) 和终态(B)的能位差。
2. 它不能从逻辑上或其他理论方法来加 以证明(不同于定理)。
20 世纪初,又发现了热力学第三定 律。虽然其作用远不如第一、第二 定律广泛,但对化学平衡的计算具 有重大的意义。
三、化学热力学
热力学在化学过程中的应用构成“化学 热力学”,其研究对象和内容:
1. 判断某一化学过程能否进行(自发); 2. 在一定条件下,确定被研究物质的稳定性; 3. 确定从某一化学过程所能取得的最大产量的条
3. 化学平衡:
• 体系各部(包括各相内)的组成不随时 间而变化,处于化学动态平衡(包括相 平衡)。
§1.3 热力学第一定律
一、能量守恒原理
能量不能无中生有,也不能无形消灭, 这一原理早就为人们所认识。但直到十 九世纪中叶以前,能量守恒这一原理还 只是停留在人们的直觉之上,一直没有 得到精确的实验证实。
b. 其研究对象是有足够大量质点的体系, 得到物质的宏观性质(故无需知物质 的结构),因而对体系的微观性质, 即个别或少数分子、原子的行为,热 力学无法解答。
c. 热力学所研究的变量中,没有时间 的概念,不涉及过程进行的速度问 题。热力学无法预测过程什么时候 发生、什么时候停止。(这对实用 的化学反应来讲显然是不够的,需 用化学动力学来解决)。
上 述 A→C→B 途 径 包 含 A→C 恒 压 、 C→B 恒温两个过程;而其中的任一过程, 如A→C 恒压过程,又可由不同的途径达 到(尤其在化学反应,如A→C 的恒压反 应中,赫斯定律)。

第一章 热力学第一定律

第一章 热力学第一定律



四、可逆过程与体积功
2、理想气体的定温膨胀(压缩)次数与功值关系
T1=300K p1=5大气压
n=1mol
p p1
T2=300K p2=1大气压
n=1mol
p 1 V1
1次膨胀
W p(V2 V1) 0.8RT
p2 V1 p2 V 2 V2 V


四、可逆过程与体积功 p
p1 p1V1
CV
QV
dT
Cp
Q p
dT

U CV dT T V
H Cp dT T p
QV
U QV CV dT
T1
T2
Qp
H Q p C p dT
T1
T2


六、热 容
1mol物质的定容摩尔热容可写作CV,m,CV=nCV,m。 1mol物质的定压摩尔热容可写作Cp,m,Cp=nCp,m。


六、热 容
4、求热公式
a、Q n Cm dT
T1
T2
b、Q UV n CV ,m dT nCV ,m T
T1
T2
c、Q H p n C p ,m dT nC p ,m T
T1
T2
例题四


七、热力学第一定律的应用
1、理想气体的内能与焓
焦耳实验
T 0 ∴ Q0
能量交换 可 可 有 有
不能有 不能有
不能有


二、热力学基本概念
广度性质和强度性质有如下关系:
广度性质 =强度性质 广度性质
V Vm n
强度性质 广度性质=广度性质

第一章 热力学第一定律

第一章 热力学第一定律


在热力学中,体系与环境之间除热以外其余 各种形式被传递的能量都叫做功。用符号 “W”表示。
热和是与过程有关的函数,其微小变化不具 有全微分性质,不能全微分“d W”表示, 而要用“ W”表示。
功也是只有体系发生状态变化时才伴随发生, 没有过程就没有功。因此不能说体系中含有 多少功。
当体系从一个状态变化到另一个状态,我们 就可以说体系对环境作了多少功。
QP=H2 - H1=⊿H
•即:在封闭体系中,非体积功为零的等压 过程中,体系所吸收的热全部用来增加体 系的焓变 :
•QP=H2 - H1=⊿H
H≡U+ PV
与热力学能类似,焓的绝对值也不可知, 但我们只需要测定其变化量即可达到我们 的目的。
焓,也叫热函,是一个系统中的热力作用, 等于该系统内能加上其体积与外界作用于 该系统的压力的乘积的总和。
这些仅是字面上的解释,其真正的物理意 义目前还不是很清楚。
虽然焓真正的物理意义目前还不是很清楚, 但焓的使用比较丰富,比如键焓、燃烧焓、 生成焓、反应焓、溶解焓、稀释焓、蒸发焓、 气化焓等。
对于理想气体,有:
即:
QP= QV +⊿n(g) RT
⊿H =⊿U +⊿n(g) RT

已知,在373K和外压为100KPa时,可将 水蒸气近似看成理想气体,液态水的蒸发 热为40.66kJ/mol,请计算1mol液态水在上 述条件下完全蒸发为水蒸气时体系对环境 所做的功W,体系所吸收的热Q,体系的 热力学能变化⊿U,体系的焓变 ⊿H
第一章 化学热力学基础 1,2节
4学时
化学热力学的研究内容
研究化学变化的方向和限度及其伴随变化 过程中的能量的相互转换所遵循的规律;
1、化学反应中的热效应; 2、化学反应的方向和限度;

第一章_热力学第一定律

第一章_热力学第一定律

返回目录
退出
15
(3)化学变化过程: 化学反应 Zn+CuSO4 (aq) = Cu+ZnSO4 (aq)
ZnSO4 CuSO4
Zn
定温定压下在 烧杯中进行
Zn
ZnSO4
Cu
CuSO4
定温定压下在 原电池中进行
第一章 热力学第一定律
返回目录
退出
16
4. 热力学平衡系统
系统与环境间 无物质、能量的交换,系统各状 态性质均不随时间而变化时,称系统处于热力学 平衡。
第一章 热力学第一定律
返回目录
退出
18
§1.3 能量守恒——热力学第一定律
1.热力学能的概念 2.功和热的概念 3.热力学第一定律的数学表达式
第一章 热力学第一定律
返回目录
退出
19
能量守恒原理:
能量不能无中生有,也不会无形消失。
能量可以从一种形式转换成另一种形式,如热和 功的转换。但是,转换过程中,能量保持守恒。
W2
V1 pdV
V2
nRT
ln V1 V2
第一章 热力学第一定律
返回目录
退出
5
(3)在热力学研究中无时间概念,即不管(反应) 变化速率。
例如根据热力学计算,金刚石可自发地变成 石墨,但这个过程需用多少时间?发生变化的 根本原因和机理?热力学中无法知道。
这些特点既是热力学方法的优点,也是它 的局限性。
第一章 热力学第一定律
返回目录
退出
6
§1.2 几个基本概念
第一章 热力学第一定律
返回目录
退出
13
3.过程与途径
系统状态发生的一切变化为过程,变化的具体步 骤称为途径。可分为三类:

第一章 热力学第一定律

第一章 热力学第一定律

3、系统的性质(宏观性质)
(1)广度性质:与系统所含物质的量有关,具有 加和性。(如质量、体积等) (2)强度性质:与系统所含物质的量无关,不具有 加和性。(如温度、压力、密度等) 在一定条件下,广度性质可以转化为强度性质。
m V
第一章 热力学第一定律
二、状态与状态函数
1、状态:系统内所有宏观性质的总和。
第一章 热力学第一定律
§1-1 基本概念
一、系统与环境
1、概念:在热力学上将作为研究对象的那部分物质 称为系统;将与之有密切联系(即可能有 物质或能量交换)的其余部分称为环境。 系统
环境
第一章 热力学第一定律
说明:系统与环境的界面可以是实际存在的,
也可以无界面。
例如:以我们现在上课的教室为例
(1)如果以人为系统,则周围的空气就是环境; (系统与环境之间有界面) (2)如果以人和教室内的空气为系统,则教室外面的
U 1
B
U 2
循环都有多余的能量产生,违背
热力学第一定律。 所以 U 1 U 2
A
第一章 热力学第一定律 3、系统状态发生变化时,其内能的改变量是一定的, 但在实现这一状态变化的各个可能过程中,热和功可以 有不同的值。
例如:对于反应
Zn + CuSO4 = Cu + ZnSO4
每当有1mol 锌置换出1mol铜时,系统地内能减少249.4kJ。 即:U 249.4kJ / mol (1)途径Ⅰ:将锌片直接插入硫酸铜水溶液中; (2)途径Ⅱ:将锌片与铜片构成原电池。
2、符号规定:
(1)环境对系统做功时,W > 0; (2)系统向环境做功时,W < 0。
第一章 热力学第一定律
3、功的类型

第一章热力学第一定律

第一章热力学第一定律

显然 W4 > W3 > W2 > W1
使系统内压与外压处于无限接近的情况下,即 膨胀次数无限多,系统自始至终是对抗最大的阻力 情况下,所此过程所作的功为最大功 。这种过程 又称为准静态过程。
若采取与( 2 )、( 3 )、( 4 )过程相反的步 骤,将膨胀后的气体压缩到初始的状态,同理,由 于压缩过程不同,作的功亦不相同。
基本的定律,是人们长期实践和科学研究经验的归
纳和总结。
二、化学热力学研究的内容
将热力学的基本原理应用于化学现象及与化学有 关的物理现象的规律的研究,称为化学热力学。
热力学第一定律---计算化学变化中的热效应
热力学第二定律---计算变化的方向和限度,特 别是化学反应的可能性以及平衡条件的预示。 热力学第三定律---物质的熵的绝对值定律,解 决化学平衡中的计算。
(1)热力学能的绝对值尚无法确定,只能求出它 的变化值。 (2)热力学能是系统的性质,是状态函数。也是 系统的广度性质。
内能是温度体积(或压力)及物质的量的函数。
U f T , V , n U f T , p, n U f T , V U f T , p
U U dU dp dT T p p T U U dU dT dV T V V T
广度性质与强度性质之间的关系:
广度性质(体积V) 强度性质(摩尔体积Vm ) 广度性质(物质的量n)
m V
V Vm n
U Um n
S Sm n
三、热力学平衡态
当系统的性质不随时间而改变,则系统处于热力 学平衡态。包括下列平衡: 1. 热平衡(thermal equilibrium) 系统各部分温度相等。 2. 力学平衡(mechanical equilibrium) 系统各部的压力都相等,边界不再移动。

高等化工热力学-第一章

高等化工热力学-第一章

Since
ห้องสมุดไป่ตู้
dU CV dT CdT dH C P dT CdT H H 1 C (T T1 )
Therefore
m dT dt m T T1
m T T1 ln( ) m T0 T1
Integrating the above equation from t = 0 to arbitrary time t yields
d (mU ) dt
Q Ws [( H 1 u2 gz )m ] 2
d ( mU ) dt
[( H
1 u2 2
gz )m ] Q Ws
这就是敞开体系热力学第一定律的通用形式。
Problem
An insulated, electrically heated tank for hot water contains 190 kg of liquid water at 60 0C when a power outage occurs. If water is withdrawn from the tank at a steady rate of 0.2 kg/s, how long will it take for the temperature of the water in the tank to drop from 60 to 35 0C? Assume that cold water enters the tank at 10 0C, and Cv=Cp=C, independent of T and P. (一个保温很好、容量为190kg 的电热水器将水加热到60 0C 时,突然断电。如果此时电热水器以0.2 kg/s的质量流速放 出热水,问需要多长时间电热水器里面的水由60 0C 降到 35 0C?假设:电热水器进口的冷水温度为10 0C,水的CV = CP = C,与温度无关。)

高等工程热力学第1章

高等工程热力学第1章
下一章
26
回顾
★热力系统(热力系、系统、体系), 外界和边界
► 系统: 人为分割出来,作为热力学 研究对象的有限物质系统。
►外界: 与体系发生质、能交换的物系。 ► 边界:系统与外界的分界面(线)。
注意: 1)系统与外界的人为性;
2)外界与环境介质;
3)边界可以是:
a)刚性的或可变形的或有弹性的;
力平衡 相平衡
化学平衡
化学平衡
实现平衡的条件
相间物质的传递可以看作化学反应的特例
8
二、 平衡判据 1、平衡的普遍判据
孤立系统熵增原理 孤立系统熵增原理指出: 自发变化的方向 实现平衡的条件
E=常数是孤立系变化的约束条件;
V=常数及U=常数是简单可压缩孤立系约束条件:
9
2、定温、定容和定温、定压系统平衡判据
另一约束条件为V=常数,则
dAT ,V ≤ 0
定温定容系统过程进行的方向: dAT ,V < 0
实现平衡的条件: dAT .V = 0
同理
G = H - TS
dGT , p ≤ 0
自由焓(吉布斯函数)
定温定压系统过程的方向: dGT , p < 0
平衡的条件: dGT , p = 0
11
三、化学势 驱使物质改变的势叫化学势。
28
开口系(控制体积CV) —通过边界与外界有质量交换
绝热系 与外界无热量交换; 孤立系
与外界无任何形式的质能交换。
简单可压缩系
—由可压缩物质组成,无化学反应、与外界有交
换容积变化功的有限物质系统。
29
注意: 1)闭口系与系统内质量不变的区别; 2)开口系与绝热系的关系; 3)孤立系与绝热系的关系。

第一章 热力学第一定律

第一章 热力学第一定律
ΔV=0,W=0, 所以 ΔU=QV。 式子的物理意义是等容过程热等于过程的内能变化。QV是特定意
义的热。 【例题1 】一体系由A态变化到B态,沿途径I放热100J,对体系做
功50J,问:1、由A态沿途径II到B态,体系做功80J,则过程Q值为多 少?2、如果体系再由B态沿途径III回到A态,得到50J的功,体系是吸 热还是放热,Q值是多少?
A B C
根据途径的不同,过程可以分成以下几种
1、定温(等温)过程〖T〗--体系的始态温度等于终态的温度,且 一直等于环境的温度的过程。T始=T终=T环=常数
2、定压(等压)过程〖P〗--体系的始态压强等于终态的压强,且 一直等于环境的压强的过程。P始=P终=P环=常数
3、定容(等容)过程〖V〗--体系的始态体积等于终态的体积 的过程。V始=V终=常数,刚性密闭容器中发生的是这种过程。
1. 1. 状态函数的概念 2. 2. 热和功为什么是传递的能量 3. 3. 焓的物理意义 4. 4. 焦耳汤姆逊试验的含义以及实际气体过程的△H ,△U的
计算
(一)热力学概论
1-1 热力学的研究对象
把物理学中最基本的原理应用于研究化学现象以及与化学现象有关 的物理现象,则成为化学热力学,在化学界,也简称热力学。
描述状态性质的函数称为状态函数,也称状态变量,状态性质。
状态函数是状态的单值函数,系统的宏观性质(又叫热力学性质)
称为系统的状态函数 。如P,V,T,U,S,A,G等均称为系统的状态
函数。
反过来,状态函数的总和也就确定了体系的某一确定的状态。状态
和状态函数之间可以互为自变量和因变量。
体系的一些性质,其数值仅取决于体系所处的状态而与体系的历史
U1, U1+X U2, U2+X ΔU

第1章热力学第一定律

第1章热力学第一定律
数值。
由实验测得的定压热容,通常表示成温度
V

由实验获得的热容主要是定压热容Cp
而由理论求得的热容首先是定容热容Cv
Q H
CP


dT P T P
Q U
CV


d
T

T

V
V
热容的计算
各种物质定压热容Cp的数值经历多年的精密
实验测定,已积累了一个庞大的数据库,根据
Cp可计算不同温度下物质的H、S、G等热力学
定于系统的始态和终态,而与变化过程或途径无关。
3.系统的过程与途径
过程:系统由始态变化到终态的过渡。
途径:完成过程的具体步骤。系统由始态变
化到终态所经历的过程的总和。
系统的变化过程分为:
• P、V 、T变化过程;
• 相变化过程;
• 化学变化过程。
4. 体系的性质
用宏观可测性质来描述体系的热力学状态,
修《物性论》中“万物
皆不能无中生有,也不能
有中生无”如出一辙。)
第一定律的数学表达式:
UQW
物理意义:体系内能的增量等于体系吸收的热量减去体
系对环境作的功。包括体系和环境在内的能量守恒。
对微小变化:
dUQW
内能是状态函数,数学
上具有全微分性质,微
小变化可用dU表示;
Q和W不是状态函数,

pV
V
)


n
R
T
2
1
g
式中Δng为过程前后气体物质的量的增量。此式适合
于恒温、恒压化学反应或相变过程。
内能变化ΔU
(1)
U QV
式中Qv为恒容热。此式适合于封闭系统、W=0、
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档