艺术生高考数学复习学案(1-36)
艺术生高考数学总复习第六章不等式推理与证明第5节合情推理与演绎推理课件
A.只需要按开关 A,C 可以将四盏灯全部熄灭 B.只需要按开关 B,C 可以将四盏灯全部熄灭 C.按开关 A,B,C 可以将四盏灯全部熄灭 D.按开关 A,B,C 无法将四盏灯全部熄灭
[解析] D [根据题意,按开关 A ,2,3,4 号灯熄灭,1 号灯亮;按 开关 B ,1,2 号灯熄灭,3,4 号灯亮;按开关 C ,则 2,3,4 号灯熄灭,1
∴第五个不等式为 1+212+312+412+512+612<161.
答案:1+212+312+412+512+612<161
考点一 归纳推理(多维探究) [命题角度 1] 数式的归纳 1.(2016·山东卷)观察下列等式: sinπ3-2+sin23π-2=43×1×2; sinπ5-2+sin25π-2+sin35π-2+sin45π-2 =43×2×3;
复习课件
艺术生高考数学总复习第六章不等式推理与证明第5节合情推理与演绎推 理课件
2021/4/17
艺术生高考数学总复习第六章不等式推理与证明第5节合情 推理与演绎推理课件
高考总复习 第六章 不等式、推理与证明
第5节 合情推理与演绎推理
理
类比推理
定义
由某类事物的部分对象具有 由两类对象具有某些类似特
D.没有出错
解析:A [要分析一个演绎推理是否正确,主要观察所给的大
前提、小前提和推理形式是否都正确,只有这几个方面都正确,才能
得到这个演绎推理正确.本题中大前提:任何实数的平方都大于 0,
是不正确的.]
2.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推
理得:若定义在 R 上的函数 f(x)满足 f(-x)=f(x),记 g(x)为 f(x)的导
2022艺术生高考数学专题讲义:考点30 数列的通项
考点三十数列的通项知识突围合抱之木,生于毫末1.数列{a n}的前n项和S nS n=a1+a2+a3+…+a n2.数列的通项a n与前n项和S n的关系a n= S1 (n=1)S n-S n-1(n≥2)3.根据a n与a n+1(或a n与a n-1)的递推关系求通项公式(1)若已知数列的首项a1(或某一项),且从第2项(或某一项)开始的任一项a n。
与它的前一项a n-1(或前几项)间的关系可以用一个公式来表示,那么该公式就叫作这个数列的递推公式.递推公式也是给出数列的一种方(2)数列的第n项a n与项数n之间的函数关系可以用一个公式a n=f(n)来表示,那么a n就是数列的通项公式注:①并非所有的数列都有通项公式。
②有的数列可能有不同形式的通项公式。
③数列的通项是一种特殊的函数关系式。
④注意区别数列的通项公式和递推公式几种常见的数列的通项公式的求法。
题型突围纸上得来终觉浅,绝知此事要躬行.一.公式法例1.等差数列a n是递减数列,且a2⋅a3⋅a4=48,a2+a3+a4=12,则数列的通项公式是()A.a n=2n-12B.a n=2n+4C.a n=-2n+12D.a n=-2n+10方法总结当已知数列为等差或等比数列时,可直接利用等差或等比数列的通项公式,只需求得首项及公差公比。
【题型练1-1】(2015福建)等差数列a n中,a2=4,a4+a7=15.(Ⅰ)求数列a n的通项公式;(Ⅱ)设b n=2a n-2+n,求b1+b2+b3+⋅⋅⋅+b10的值.【题型练1-2】(2015北京)已知等差数列{a n}满足a1+a2=10,a4-a3=2.(Ⅰ)求{a n}的通项公式;(Ⅱ)设等比数列{b n}满足b2=a3,b3=a7.问:b6与数列{a n}的第几项相等?【题型练1-3】(2018全国卷Ⅲ)等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.【题型练1-4】(2017新课标Ⅰ)记S n为等比数列{a n}的前n项和,已知S2=2,S3=-6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列。
三角恒等变换(和差公式、倍角公式、升降幂公式、辅助角公式)(学生版) 2025年高考数学一轮复习学案
第02讲三角恒等变换(和差公式、倍角公式、升降幂公式、辅助角公式)(14类核心考点精讲精练)1. 5年真题考点分布2. 命题规律及备考策略【命题规律】本节内容是新高考卷的必考内容,设题稳定,难度较中等或偏难,分值为5-11分【备考策略】1.推导两角差余弦公式,理解两角差余弦公式的意义2.能从两角差的余弦公式推导出两角和与差的正弦、余弦、正切公式3.能推导二倍角的正弦、余弦、正切公式,能运用公式解决相关的求值与化简问题【命题预测】本节内容是新高考卷的必考内容,一般会考查两角和与差的正弦、余弦、正切公式及倍角公式变形应用和半角公式变形应用,需加强复习备考1.正弦的和差公式()βαsinβααβ=sin++sincoscos ()ββαsinααβ-=sincoscossin-2.余弦的和差公式()βαβαβαsin sin cos cos cos -=+()βαβαβαsin sin cos cos cos +=-3.正切的和差公式()βαβαβαtan tan 1tan tan tan -+=+()βαβαβαtan tan 1tan tan tan +-=-4.正弦的倍角公式⇒=αααcos sin 22sin ααα2sin 21cos sin =5.余弦的倍角公式()()αααααααsin cos sin cos sin cos 2cos 22-+=-=升幂公式:αα2sin 212cos -=,1cos 22cos 2-=αα降幂公式:22cos 1sin 2αα-=,22cos 1cos 2αα+=6.正切的倍角公式ααα2tan 1tan 22tan -=7.半角公式(1)sin α2=(2)cos α2=(3)tan α2=±=sin α1+cos α=1-cos αsin α.以上称之为半角公式,符号由α2所在象限决定.8.万能公式22222tan1tan 2tan222sin cos tan 1tan1tan 1tan 222x x x x x x xxx -===++-9.和差化积与积化和差公式sin sin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=2sin cos sin()sin()A B A B A B =++-2cos cos cos()cos()A B A B A B =++-2sin sin cos()cos()A B A B A B =--+10.推导公式2)cos (sin )cos (sin 22=-++αααα11.辅助角公式x b x a y cos sin +=,)0(>a )sin(22ϕ++=⇒x b a y ,其中a b =ϕtan ,)2,2(ππϕ-∈1.(福建·高考真题)sin15cos 75cos15sin105°°+°°等于( )A .0B .12C .1D2.(全国·高考真题)o o o o sin 20cos10cos160sin10-=A.BC .12-D .123.(2020·全国·高考真题)已知πsin sin =31q q æö++ç÷èø,则πsin =6q æö+ç÷èø( )A .12BC .23D4.(2024·全国·高考真题)已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 1αβ+,则sin()αβ+=.1.(2024高三·全国·专题练习)sin 435=o .2.(23-24高三下·山东菏泽·阶段练习)已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点(P -,则πsin 6αæö-=ç÷èø( )A .12-B .12C D .13.(2024高三·全国·专题练习)化简:ππsin cos cos sin 33æöæö+-+=ç÷ç÷èøèøαααα.4.(2024·河南·三模)若1sin()6αβ-=,且tan 2tan αβ=,则sin()αβ+=( )A B C .23D .125.(2024·云南·模拟预测)若πsin sin 3q q æö++=ç÷èøπsin 6q æö+=ç÷èø( )A .12B C .13D1.(高考真题)()sin163sin223sin253sin313 °°+°°=A .12B .12-C D .2.(2024·全国·高考真题)已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=( )A .3m-B .3m-C .3m D .3m3.(2023·全国·高考真题)已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+=( ).A .79B .19C .19-D .79-1.(2024·山东枣庄·模拟预测)已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点ππcos ,sin 33P æöç÷èø,则πcos 6αæö-=ç÷èø( )A .0B .12C D 2.(2024·宁夏石嘴山·三模)已知35=cos α,π0,2αæö∈ç÷èø,12sin 13β=,π,π2βæö∈ç÷èø,则()cos αβ-=( )A .3365B .5665C .6365D .1665-3.(2024·四川宜宾·模拟预测)若πcos cos 13ααæö-+=-ç÷èø,则πcos 6αæö-=ç÷èø( )A .BCD .4.(23-24高三下·江苏扬州·开学考试)已知()1cos 3αβ+=,1tan tan 4αβ=,则()cos 22αβ-=( )A .3181B .59C .3181-D .59-5.(2024·全国·模拟预测)已知π,02q æö∈-ç÷èø,32tan 25sin2q q =,则πcos 4q æö-=ç÷èø( )A B C .D .1.(2019·全国·高考真题)tan255°=A .-2B .-C .2D .2.(重庆·高考真题)若11tan ,tan()32ααβ=+=,则tan =βA .17B .16C .57D .563.(2024·全国·高考真题)已知cos cos sin ααα=-πtan 4αæö+=ç÷èø( )A .1+B .1C D .14.(2020·全国·高考真题)已知2tan θ–tan(θ+π4)=7,则tan θ=( )A .–2B .–1C .1D .25.(2022·全国·高考真题)若sin()cos()sin 4παβαβαβæö+++=+ç÷èø,则( )A .()tan 1αβ-=B .()tan 1αβ+=C .()tan 1αβ-=-D .()tan 1αβ+=-1.(2024·山西吕梁·二模)已知角α的顶点在原点,始边在x 轴的正半轴上,终边经过点(),则tan π6αæö-=ç÷èø( )A .B .CD 2.(2024·重庆·三模)已知ππcos 3cos 44ααæöæö-=+ç÷ç÷èøèø,则tan α=( )A .2B .12C .3D .133.(2024·江苏·模拟预测)若3sin 4cos 5αα+=,则πtan 4αæö+=ç÷èø( )A .7-B .7C .17D .17-4.(2024·福建泉州·模拟预测)已知()()()1sin 2cos ,tan 2αβαβαβ-=+-=,则tan tan αβ-=( )A .35B .53C .45D .655.(2024·贵州黔东南·二模)已知0παβ<<<,且()()sin 2cos αβαβ+=+,sin sin 3cos cos 0αβαβ-=,则()tan αβ-=( )A .1-B .C .12-D .121.(2024·四川·模拟预测)已知π,π2αæö∈ç÷èø,π1sin 65αæö+=ç÷èø,则sin α=( )A B C D2.(浙江·高考真题)若0<α<,﹣<β<0,cos (+α)=,cos (﹣)=,则cos (α+)=( )A .B .﹣C .D .﹣3.(23-24高三下·浙江金华·阶段练习)已知()1cos 3αβ-=,1sin sin 12αβ=-,则22cos sin αβ-=( )A .12B .13C .16D .184.(22-23高一下·江西景德镇·期中)已知()0,πα∈,ππ,22βæö∈-ç÷èø满足π1sin 33αæö+=ç÷èø,πcos 6βæö-ç÷èø则()sin 2αβ+=( )A B C D .1.(2024·河北石家庄·三模)已知角,αβ满足()1tan ,2sin cos sin 3αβαβα==+,则tan β=( )A .13B .16C .17D .22.(2024·山西·三模)若()sin 2αβα=-=,且π3π,π,π,42αβéùéù∈∈êúêúëûëû,则()cos αβ+=( )A B C D3.(2024·重庆·模拟预测)已知,αβ都是锐角,1cos sin()7ααβ=+cos 2β的值为( )A .12-B .12C .D1.(23-24高三上·贵州铜仁·阶段练习)已知sin αβ=α和β均为钝角,则αβ+的值为( )A .π4B .5π4C .5π4或7π4D .7π42.(2024高三·全国·专题练习)已知()1tan 2αβ-=,1tan 7β=-,且α,(0,)βπ∈,则2αβ-=( )A .34π-B .4πC .34πD .4π-3.(22-23高三·全国·期末)已知()()π0,cos 2cos 212cos cos 2αβαβαβαβ<<<++=-++,则( )A .π6αβ+=B .π3αβ+=C .π6βα-=D .π3βα-=1.(2023高三·全国·专题练习)已知cos α=sin β=,且0,2παæö∈ç÷èø,0,2πβæö∈ç÷èø,则αβ+的值是( )A .34πB .4πC .74πD .54π2.(22-23高三上·山东青岛·期中)已知ππ4α££,3ππ2β££,4sin 25α=,()cos αβ+=则βα-=( )A .3π4B .π4C .5π4D .π23.(2024·吉林长春·模拟预测)已知cos 2α=()sin αβ+=π0,2αéù∈êúëû,π,02βéù∈-êúëû,则αβ-=( )A .π4B .3π4C .5π4D .π4或3π41.sin15cos15=o o ( )A .14B .14-C D .2.(2024·河南·二模)已知1sin cos 3x x +=,则πcos 22x æö-=ç÷èø( )A .35-B .35C .89D .89-3.(2024·四川自贡·三模)已知角α满足1cos 23sin 2αα-=,则sin 2α=( )A.BC .35-D .351.(2024·山东济南·三模)若sin cos αα-=,则tan α=( )A .1B .1-C .2D .2-2.(2024·山东·模拟预测)已知4sin25α=-,则tan2πtan 4αα=æö+ç÷èø( )A .4B .2C .2-D .4-1.(山东·高考真题)已知3cos 4x =,则cos 2x =( )A .14-B .14C .18-D .182.(2022·北京·高考真题)已知函数22()cos sin f x x x =-,则( )A .()f x 在,26ππæö--ç÷èø上单调递减B .()f x 在,412ππæö-ç÷èø上单调递增C .()f x 在0,3πæöç÷èø上单调递减D .()f x 在7,412ππæöç÷èø上单调递增3.(2021·全国·高考真题)22π5πcoscos 1212-=( )A .12BCD4.(全国·高考真题)函数44()cos sin f x x x =-的最小正周期是A .2πB .πC .2πD .4π1.(2020·全国·高考真题)若2sin 3x =-,则cos 2x =.2.(2024·北京顺义·三模)已知函数()22cossin 22x xf x =-,则( )A .()f x 为偶函数且周期为4πB .()f x 为奇函数且在ππ,412æö-ç÷èø上有最小值C .()f x 为偶函数且在π0,3æöç÷èø上单调递减D .()f x 为奇函数且π,04æöç÷èø为一个对称中心3.(2022·浙江·高考真题)若3sin sin 2παβαβ-=+=,则sin α=,cos 2β=.1.(浙江宁波·期末)12πsin 2=A B C .34D .142.(2024·浙江·模拟预测)若8tan 3cos αα=,则cos 2=α .3.(2024·浙江·三模)已知ππ1cos cos 23264q q æöæö+-=ç÷ç÷èøèø,则πcos 23q æö+=ç÷èø( )A .12-B .12C .D4.(2024·全国·模拟预测)已知,αβ为锐角,满足()1sin sin 9αβαβ+=+=-,则sin 2αβ+= ,()cos αβ-=.1.(2024·浙江绍兴·二模)若5π1sin 123αæö+=ç÷èø,则πcos 26αæö-=ç÷èø( )A B .C .79D .79-2.(2024·安徽合肥·三模)已知2sin 1αα=+,则πsin 26αæö-=ç÷èø( )A .18-B .78-C .34D .783.(2024·黑龙江哈尔滨·模拟预测)已知π1sin 35ααæö+=ç÷èø,则sin 26παæö-=ç÷èø .4.(2024·黑龙江·三模)已知()11cos ,sin sin 23αβαβ-==,则()cos 22αβ+=.5.(2024·湖南长沙·二模)已知 ππ12cos 2cos cos312124x x x æöæö+--=ç÷ç÷èøèø ,则 πcos 23x æö+=ç÷èø1.(2024高三·全国·专题练习)若1tan(π)2α-=,则tan 2α= .2.(2024·安徽合肥·三模)已知ππ20,,tan tan 243q q q æöæö∈+=-ç÷ç÷èøèø,则tan 2q = .3.(23-24高三上·广东湛江·阶段练习)已知π(0,)2q ∈,且sin sin 2sin cos qq q q=+,则tan q =( )A1B1C1D11.(2024高三·全国·专题练习)2π1tan 8πtan 8-=.2.(2024·辽宁沈阳·二模)已知()0,πa ∈,且1sin cos 5a a +=,则tan2a =( )A .127B .127-C .247D .247-3.(2024·全国·模拟预测)已知π0,2q æö∈ç÷èø,2π1sin 842q æö+=ç÷èøπtan 24q æö-=ç÷èø( )A .113B .1731C .3117D .131.(2023·全国·高考真题)已知α为锐角,cos αsin 2α=( ).A B C D 2.(2024·湖南邵阳·二模)已知α为锐角,若1sin 4α=,则2cos2α=( )A B C D 3.(2023·浙江·二模)数学里有一种证明方法叫做Proofwithoutwords ,也被称为无字证明,是指仅用图象而无需文字解释就能不证自明的数学命题,由于这种证明方法的特殊性,无字证时被认为比严格的数学证明更为优雅与有条理.如下图,点C 为半圆O 上一点,CH AB ^,垂足为H ,记COB q Ð=,则由tan BHBCH CHÐ=可以直接证明的三角函数公式是( )A .sin tan 21cos qq q =-B .sin tan 21cos qq q =+C .1cos tan2sin qq q-=D .1cos tan2sin qq q+=1.(2024·全国·模拟预测)已知角α是第二象限角,且终边经过点()3,4-,则tan 2α=( )A .3B .12C .2D .12或22.(2023·全国·模拟预测)已知α是锐角,1cos 3α=,则πcos 26αæö+=ç÷èø( )A .12B .12C -D 3.若3sin 5q =,5π3π2q <<,则tan cos 22q q+=( )A .3+B .3C .3D .31.(2024·全国·高考真题)函数()sin f x x x =在[]0,π上的最大值是 .2.(2020·北京·高考真题)若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为 .3.(全国·高考真题)设当x q =时,函数()sin 2cos f x x x =-取得最大值,则cos q = .4.(2024高三·湖北·二模)在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,1cos 3C =,8c =,则当a b +取得最大值时,sin A = .1.(2024·湖北·二模)函数()3cos 4sin f x x x =-,当()f x 取得最大值时,sin x =( )A .45B .45-C .35D .35-2.(2024·四川南充·二模)已知函数()3sin 4cos f x x x =+.设x q =时,()f x 取得最大值.则πcos 4q æö+=ç÷èø( )AB.CD.3.(2024·山东·模拟预测)若函数()()πcos sin 3f x x x ϕæö=-++ç÷èø的最大值为2,则常数ϕ的一个取值为 .4.(2024·河北保定·三模)已知锐角α,β(αβ¹)满足sin 2cos sin 2cos ααββ+=+,则sin()αβ+的值为( )ABC .35D .451.(21-22高三上·四川成都·阶段练习)已知α为锐角且tan 23tan 4απα=-æö+ç÷èø,则sin 22παæö+ç÷èø的值是 .2.(2023·江苏徐州·模拟预测)已知πsin(212α-ππtan()tan()312αα++=.1.(2022·四川眉山·模拟预测)若0,2παæö∈ç÷èø,2sin 2cos αα=,则cos 2α的值为( )A .35-B .12-C .0D .352.(2024高三·全国·专题练习)已知ππsin 2sin 44ααæöæö+=-ç÷ç÷èøèø,则πsin 24αæö-=ç÷èø( )A .BCD .1.(2024高三·全国·专题练习)已知43cos cos ,sin sin 55αβαβ+=-=-,则()tan αβ-的值为( )A .247-B .724-C .724D .2472.(2024·安徽阜阳·一模)已知()sin sin ,cos cos 0a b ab αβαβ+=+=¹,则()cos αβ-= ,()sin αβ+= .3.(2024·广东·一模)已知()2211cos cos ,sin 124αβαβ-=--=,则()cos 22αβ+=( )A .79-B .79C .29-D .291.(2024·山东·模拟预测)已知1sin cos cos sin 2x y x y +=,1cos 2cos 24x y -=,则()sin x y -=( )A .12B .14C .34-D .14-2.(2024·全国·模拟预测)已知角A ,B ,C 满足πA B C ++=,且cos cos cos 1A B C ++=,则(1cos A -)(1cos B -)(1cos C -)=( )A .0B .1CD1.(23-24高二上·湖南长沙·期末)函数()(1cos )f x x x =+的最大值为( )ABC .58D .942.(2024·新疆·一模)已知: ()()()sin 20sin 20sin 400q q q -+++-=o o o,则tan q =( )A.B.CD3.(2024·全国·模拟预测)已知角,αβ满足:()sin sin 5sin αβαβ+=-,其中π2πk αβ-¹+,π2πk α¹+,()π2πk k β¹+∈Z ,则tan 2tan2αβ=( )A .1B .32C .2D .524.(2024·辽宁丹东·一模)已知π(0,)2α∈1=,则sin 2α=( )ABCD1.(2024·安徽阜阳·一模)已知()sin sin ,cos cos 0a b ab αβαβ+=+=¹,则()cos αβ-= ,()sin αβ+= .2.(2024·重庆·三模)已知函数()f x 满足()1tan sin 2f x x=.若12x x 、是方程2202420240x x +-=的两根,则12()()f x f x += .3.(2024·湖北荆州·三模)设π02αβ<<<,tan tan m αβ=,()3cos 5αβ-=,若满足条件的α与β存在且唯一,则m =, tan tan αβ=.4.(2024·四川成都·三模)若ABC V 为锐角三角形,当2tan 9tan 17tan A B C ++取最小值时,记其最小值为m ,对应的tan A n =,则mn =.1.(2024·上海·高考真题)下列函数()f x 的最小正周期是2π的是( )A .sin cos x x +B .sin cos x x C .22sin cos x x+D .22sin cos x x-2.(2024·河北保定·二模)若154tan sin αα=,则cos2α=( )A .18B .18-C .78D .78-3.(2024·江苏徐州·模拟预测)已知2πsin2,0,34ααæö=∈ç÷èø,则πsin 4αæö+=ç÷èø( )A B .56C D 4.(2024·黑龙江哈尔滨·模拟预测)已知ππsin sin cos sin 63ααααæöæö+=-ç÷ç÷èøèø,则πtan 24αæö+=ç÷èø( )A .2B .2-C .2D .2-+5.(2024·江苏扬州·模拟预测)若ππ44αβ-<<<,且1cos sin 2αβ=,tan 2tan 3αβ=,则()cos αβ-=( )A B .C D .6.(2024·陕西·模拟预测)已知ππ,24αæö∈--ç÷èø,若3tan 2tan 24πααæö=-+ç÷èø,则2sin 22cos tan ααα+=( )A .185-B .25-C .25D .185二、填空题7.(2024·广东深圳·模拟预测)计算:()cos 72cos 36°-°= .8.(2024·上海·模拟预测)已知7cos 9α=-,3(π,π)2α∈,则cos 2α= .9.(2024·江苏苏州·三模)函数()|sin |cos f x x x =+的值域是.10.(2024·湖南·模拟预测)已知tan 3α=,tan()5αβ+=-,则tan(2)αβ+=.1.(2024·山东·模拟预测)已知π4cos cos 35ααæö--=ç÷èø,则πsin 26αæö+=ç÷èø( )A .725B .725-C .2425D .2425-2.(2024·河北衡水·三模)已知sin(3)sin()tan(2)tan m n αβαβαβα-=--=,,则m ,n 的关系为( )A .2m n=B .1m n m+=C .1m n m =-D .11m n m +=-3.(2024·安徽合肥·模拟预测)已知()()()cos 10cos 50cos 50ααα-+°°-°=+,则tan α=( )A B .C D .4.(2024·湖北襄阳·模拟预测)设,αβ∈R ,则“()()cos 2cos sin 2sin sin cos cos sin 4444ππππαββαββααααæöæöæöæö+++=+--+-ç÷ç÷ç÷ç÷èøèøèøèø”是“ππ8k α=+,()k ∈Z ”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要5.(2024·福建泉州·二模)若π3,0,,tan tan ,sin()25m αβαβαβæö∈=-=ç÷èø,且α与β存在且唯一,则tan tan m αβ+=( )A .2B .4C .12D .146.(2024·江苏南通·模拟预测)已知π02βα<<<,()4sin 5αβ-=,tan tan 2αβ-=,则sin sin αβ=( )A .12B .15C .25D7.(2024·山西吕梁·三模)设函数()sin 1f x x x =++.若存在实数,,a b ϕ使得()()1af x bf x ϕ+-=对任意x ∈R 恒成立,则a b -=( )A .1-B .0C .1D .1±8.(2024·重庆·模拟预测)(多选)在ABC V 中,若22sin sin 1A B +=,则下列说法正确的是( )A .sin cos A B=B .π2A B +=C .sin sin A B ×的最大值为12D .tan tan 1A B ×=9.(2024·山东菏泽·模拟预测)已知π,(0,)2a β∈,sin(2)2sin αββ+=,2tan 3α=,则tan()αβ+= .10.(2024·山东泰安·模拟预测)已知()()()cos 20cos 20cos 400q q q °-+°+-°-=,则tan q = .1.(2023·全国·高考真题)过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=( )A .1BCD2.(2021·北京·高考真题)函数()cos cos 2f x x x =-是A .奇函数,且最大值为2B .偶函数,且最大值为2C .奇函数,且最大值为98D .偶函数,且最大值为983.(2021·浙江·高考真题)已知,,αβg 是互不相同的锐角,则在sin cos ,sin cos ,sin cos αββg g α三个值中,大于12的个数的最大值是( )A .0B .1C .2D .34.(2020·全国·高考真题)已知πsin sin =31q q æö++ç÷èø,则πsin =6q æö+ç÷èø( )A .12BC .23D5.(2020·全国·高考真题)已知2tan θ–tan(θ+π4)=7,则tan θ=( )A .–2B .–1C .1D .26.(2020·浙江·高考真题)已知tan 2q =,则cos 2q =;πtan(4q -= .7.(2020·江苏·高考真题)已知2sin ()4πα+ =23,则sin 2α的值是 .8.(2020·全国·高考真题)若2sin 3x =-,则cos 2x =.9.(2019·全国·高考真题)已知α ∈(0,π2),2sin2α=cos2α+1,则sinα=A .15BCD10.(2019·江苏·高考真题)已知tan 2π3tan 4αα=-æö+ç÷èø,则πsin 24αæö+ç÷èø的值是 .11.(2019·北京·高考真题)函数f (x )=sin 22x 的最小正周期是.12.(2019·全国·高考真题)函数3π()sin(2)3cos 2f x x x =+-的最小值为 .13.(2018·全国·高考真题)已知51tan 45παæö-=ç÷èø,则tan α= .14.(2018·全国·高考真题)已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+ .15.(2018·全国·高考真题)若1sin 3α=,则cos2α=A .89B .79C .79-D .89-16.(2018·全国·高考真题)函数()2tan 1tan xf x x=+的最小正周期为A .4πB .2πC .πD .2π17.(2018·全国·高考真题)已知函数()222cos sin 2f x x x =-+,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为4。
2015艺术生高考数学[文理]复习学案(4)
一.填空题(5分*14)
1.下面四个命题:
①集合N中最小的数是1;②0是自然数;③ 是不大于3的自然数组成的集合;
④ ,则 其中正确命题的个数有个
2.若集合 中只有一个元素,则实数 =
3.集合 的真子集的个数有个
4.已知集合 ,集合 满足 ,则集合 有个.
5.已知 ,则集合M与P的关系是MP
15.已知集合 至多有一个元素,则a的取值范围.
16.已知函数 ,则 =
17.设 ,函数 在区间[ ]上的最大值与最小值之差为 ,则
18.函数 的最小值为=
三、解答题(每题14分,70分)
19.已知角 的终边过点P(-a,3a)(a≠0),求 的值
20.若 ,且 ,求由实数a组成的集合.
21.商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少.把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元.现在这种羊毛衫的成本价是100元/件,商场以高于成本价的相同价格(标价)出售.问:商场要获取最大利润,羊毛衫的标价应定为每件多少元?
17.已知集合A = ,B= ,A∩B={3,7},
求 。
18.已知集合 ,B= ,若 ,且
求实数a,b的值。
19.已知集合A= ,B={x|2<x<10},C={x|x<a},全集为实数集R.
(1)求A∪B,(CRA)∩B;(2)如果A∩C≠φ,求a的取值范围。
20.已知全集 ,A、B是U的子集,同时满足
③若A中有m个元素,B中有n个元素,则A×B中有几个元素?
17.已知: (1)求其定义域、值域;(2)试判断它的单调性,并给出证明;
18.某人开汽车沿一条直线以60km/h的速度从A地到150km远处的B地。在B地停留1h后,再以50km/h的速度返回A地,把汽车与A地的距离 (km)表示时间t(h)(从A地出发开始)的函数,并画出函数的图像。
2022版新高考数学总复习学案-第1课时-椭圆及其性质-含解析
椭圆[考试要求]1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用.2.掌握椭圆的定义、几何图形、标准方程及简单性质(范围、对称性、顶点、离心率).3.理解数形结合思想.4.了解椭圆的简单应用.1.椭圆的定义(1)平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.(2)集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.①当2a>|F1F2|时,M点的轨迹为椭圆;②当2a=|F1F2|时,M点的轨迹为线段F1F2;③当2a<|F1F2|时,M点的轨迹不存在.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)离心率e =ca ,且e ∈(0,1)a ,b ,c 的关系 c 2=a 2-b 2[常用结论]1.点P (x 0,y 0)和椭圆的位置关系 (1)点P (x 0,y 0)在椭圆内⇔(2)点P (x 0,y 0)在椭圆上⇔(3)点P (x 0,y 0)在椭圆外⇔2.焦点三角形如图,椭圆上的点P (x 0,y 0)与两焦点构成的△PF 1F 2叫做焦点三角形.设r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b 2=1(a >b >0)中:(1)当r 1=r 2,即点P 的位置为短轴端点时,θ最大; (2),当|y 0|=b ,即点P 的位置为短轴端点时,S 取最大值,最大值为bc .(3)a -c ≤|PF 1|≤a +c .(4)|PF 1|=a +ex 0,|PF 2|=a -ex 0. (5)当PF 2⊥x 轴时,点P 的坐标为.(6)4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos θ.3.椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边长,a 2=b 2+c 2.4.已知过焦点F 1的弦AB ,则△ABF 2的周长为4a .5.椭圆中点弦的斜率公式若M (x 0,y 0)是椭圆x 2a 2+y 2b 2=1(a >b >0)的弦AB (AB 不平行于对称轴)的中点,则有6.弦长公式:直线与圆锥曲线相交所得的弦长设直线l 与圆锥曲线C 的两个交点为A (x 1,y 1),B (x 2,y 2),若直线l 斜率为k ,则|AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]=1+1k 2|y 1-y 2|=⎝ ⎛⎭⎪⎫1+1k 2[(y 1+y 2)2-4y 1y 2].当直线l 的斜率不存在时,|AB |=|y 1-y 2|.一、易错易误辨析(正确的打“√”,错误的打“×”)(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( ) (2)椭圆上一点P 与两焦点F 1,F 2构成△PF 1F 2的周长为2a +2c (其中a 为椭圆的长半轴长,c 为椭圆的半焦距).( )(3)椭圆的离心率e 越大,椭圆就越圆.( )(4)关于x ,y 的方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( ) [答案] (1)× (2)√ (3)× (4)√ 二、教材习题衍生1.设P 是椭圆x 225+y 216=1上的点,若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )A .4B .5C .8D .10D [依椭圆的定义知:|PF 1|+|PF 2|=2×5=10.]2.若方程x 25-k +y 2k -3=1表示椭圆,则k 的取值范围是________.(3,4)∪(4,5)[由已知得⎩⎪⎨⎪⎧5-k >0,k -3>0,5-k ≠k -3.解得3<k <5且k ≠4.]3.已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为________.⎝ ⎛⎭⎪⎫152,1或⎝ ⎛⎭⎪⎫152,-1 [设P (x P ,y P ),x P >0,由题意知|F 1F 2|=2. 则S △PF 1F 2=12×|F 1F 2|×|y P |=1,解得|y P |=1. 代入椭圆的方程,得x 2P 5+14=1,解得x P =152, 因此点P 的坐标为⎝ ⎛⎭⎪⎫152,1或⎝ ⎛⎭⎪⎫152,-1.] 第1课时 椭圆及其性质考点一 椭圆的定义及其应用椭圆定义的应用类型及方法(1)探求轨迹:确认平面内与两定点有关的轨迹是否为椭圆.(2)应用定义转化:涉及焦半径的问题,常利用|PF 1|+|PF 2|=2a 实现等量转换.(3)焦点三角形问题:常把正、余弦定理同椭圆定义相结合,求焦点、三角形的面积等问题.[典例1] (1)已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为( )A.x 264-y 248=1B .x 248+y 264=1C.x248-y264=1 D.x264+y248=1(2)如图,椭圆x2a2+y24=1(a>2)的左、右焦点分别为F1,F2,点P是椭圆上的一点,若∠F1PF2=60°,那么△PF1F2的面积为()A.233B.332C.334D.433(3)设F1,F2分别是椭圆x225+y216=1的左、右焦点,P为椭圆上任意一点,点M的坐标为(6,4),则|PM|-|PF1|的最小值为________.(1)D(2)D(3)-5[(1)设圆M的半径为r,则|MC1|+|MC2|=(13-r)+(3+r)=16>8=|C1C2|,所以M的轨迹是以C1,C2为焦点的椭圆,且2a=16,2c=8,故所求的轨迹方程为x264+y248=1.(2)由题意知|PF1|+|PF2|=2a,|F1F2|2=4a2-16,由余弦定理得4a2-16=|PF1|2+|PF2|2-2|PF1||PF2|cos 60°,即4a2-16=(|PF1|+|PF2|)2-3|PF1||PF2|,∴|PF1||PF2|=163,∴S△PF1F2=12|PF1||PF2|sin 60°=433,故选D.(3)由题意知,点M在椭圆外部,且|PF1|+|PF2|=10,则|PM|-|PF1|=|PM|-(10-|PF2|)=|PM|+|PF2|-10≥|F2M|-10(当且仅当点P,M,F2三点共线时等号成立).又F2(3,0),则|F2M|=(6-3)2+(4-0)2=5.∴|PM |-|PF 1|≥-5,即|PM |-|PF 1|的最小值为-5.]点评:解答本例(3)的关键是差式(|PM |-|PF 1|)转化为和式(|PM |+|PF 2|-10).而转化的依据为|PF 1|+|PF 2|=2a .[跟进训练]1.已知A (-1,0),B 是圆F :x 2-2x +y 2-11=0(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为( )A.x 212+y 211=1 B .x 236-y 235=1 C.x 23-y 22=1D .x 23+y 22=1D [由题意得|P A |=|PB |,∴|P A |+|PF |=|PB |+|PF |=r =23>|AF |=2,∴点P 的轨迹是以A ,F 为焦点的椭圆,且a =3,c =1,∴b =2, ∴动点P 的轨迹方程为x 23+y 22=1,故选D.]2.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1⊥PF 2,若△PF 1F 2的面积为9,则b =________.3 [法一:设|PF 1|=r 1,|PF 2|=r 2,则⎩⎪⎨⎪⎧r 1+r 2=2a ,r 21+r 22=4c 2, 所以2r 1r 2=(r 1+r 2)2-(r 21+r 22)=4a 2-4c 2=4b 2,所以S △PF 1F 2=12r 1r 2=b 2=9,所以b =3.法二:∵PF 1⊥PF 2,∴∠F 1PF 2=90°, ∴S △PF 1F 2=b 2tan 45°=9,∴b 2=9,∴b =3.] 考点二 求椭圆的标准方程待定系数法求椭圆标准方程的一般步骤[典例2] (1)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点⎝ ⎛⎭⎪⎫-32,52,(3,5),则椭圆方程为________. (2)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆的标准方程为________.(3)已知中心在坐标原点的椭圆过点A (-3,0),且离心率e =53,则椭圆的标准方程为________.(1)y 210+x 26=1 (2)y 220+x 24=1 (3)x 29+y 24=1或y 2814+x 29=1 [(1)设椭圆方程为mx 2+ny 2=1(m ,n >0,m ≠n ).由⎩⎨⎧⎝ ⎛⎭⎪⎫-322m +⎝ ⎛⎭⎪⎫522n =1,3m +5n =1,解得m =16,n =110. ∴椭圆方程为y 210+x 26=1.(2)法一:椭圆y 225+x 29=1的焦点为(0,-4),(0,4),即c =4. 由椭圆的定义知, 2a =(3-0)2+(-5+4)2+(3-0)2+(-5-4)2,解得a =2 5.由c 2=a 2-b 2可得b 2=4, ∴所求椭圆的标准方程为y 220+x 24=1.法二:∵所求椭圆与椭圆y 225+x 29=1的焦点相同, ∴其焦点在y 轴上, 且c 2=25-9=16.设它的标准方程为y 2a 2+x 2b 2=1(a >b >0). ∵c 2=16,且c 2=a 2-b 2, 故a 2-b 2=16.①又点(3,-5)在所求椭圆上, ∴(-5)2a 2+(3)2b 2=1, 则5a 2+3b 2=1.②由①②得b 2=4,a 2=20, ∴所求椭圆的标准方程为y 220+x 24=1.(3)若焦点在x 轴上,由题知a =3,因为椭圆的离心率e =53,所以c =5,b =2,所以椭圆方程是x 29+y 24=1.若焦点在y 轴上,则b =3,a 2-c 2=9,又离心率e =c a =53,解得a 2=814,所以椭圆方程是y 2814+x29=1.]点评:利用待定系数法要先定形(焦点位置),再定量,即首先确定焦点所在位置,然后根据条件建立关于a ,b 的方程组.如果焦点位置不确定,可设椭圆方程为mx 2+ny 2=1(m >0,n >0,m ≠n )的形式.[跟进训练]1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为23,过F 2的直线l 交C 于A ,B 两点,若△AF 1B 的周长为12,则椭圆C 的标准方程为( )A.x 23+y 2=1 B .x 23+y 22=1 C.x 29+y 24=1D .x 29+y 25=1D [由椭圆的定义,知|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a ,所以△AF 1B 的周长为|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =12,所以a =3.因为椭圆的离心率e =c a =23,所以c =2,所以b 2=a 2-c 2=5,所以椭圆C 的方程为x 29+y 25=1,故选D.]2.(2020·通州模拟)设椭圆的对称轴为坐标轴,短轴的一个端点与两焦点是同一个正三角形的顶点,焦点与椭圆上的点的最短距离为3,则这个椭圆的方程为________,离心率为________.x 212+y 29=1或x 29+y 212=1 12 [焦点与椭圆的最短距离为a -c =3, a =2c ,∴c =3,a =23,b =3, ∴椭圆方程为x 212+y 29=1或x 29+y 212=1. 离心率e =c a =12.]考点三 椭圆的几何性质1.求椭圆离心率或其范围的方法解题的关键是借助图形建立关于a ,b ,c 的关系式(等式或不等式),转化为e 的关系式,常用方法如下:(1)直接求出a ,c ,利用离心率公式e =ca 求解.(2)由a与b的关系求离心率,利用变形公式e=1-b2a2求解.(3)构造a,c的齐次式.离心率e的求解中可以不求出a,c的具体值,而是得出a与c的关系,从而求得e.2.利用椭圆几何性质求值或范围的思路(1)将所求问题用椭圆上点的坐标表示,利用坐标范围构造函数或不等关系.(2)将所求范围用a,b,c表示,利用a,b,c自身的范围、关系求解.椭圆中的基本量a,b,c[典例3-1]嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在西昌卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中轨道③所示,其近月点与月球表面距离为100千米,远月点与月球表面距离为400千米,已知月球的直径约为3 476千米,对该椭圆有四个结论:①焦距长约为300千米;②长轴长约为3988千米;③两焦点坐标约为(±150,0);④离心率约为75 994.则上述结论正确的是()A.①②④B.①③④C.①④D.②③④C[设该椭圆的半长轴长为a,半焦距长为c. 依题意可得月球半径约为12×3 476=1 738,a-c=100+1 738=1 838,a+c=400+1 738=2 138,2a=1 838+2 138=3 976,a=1 988,c =2 138-1 988=150,椭圆的离心率约为e =c a =1501 988=75994,可得结论①④正确,②错误;因为没有给坐标系,焦点坐标不确定,所以③错误.故选C.]点评:探求椭圆的长轴、短轴、焦距等问题,只要抓住题设中的信息,直译解方程即可.离心率[典例3-2] (1)(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点.若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( )A .1-32B .2- 3C .3-12D .3-1(2)已知F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,则椭圆的离心率的取值范围是________.(1)D (2)⎣⎢⎡⎭⎪⎫22,1 [(1)由题设知∠F 1PF 2=90°,∠PF 2F 1=60°,|F 1F 2|=2c ,所以|PF 2|=c ,|PF 1|=3c .由椭圆的定义得|PF 1|+|PF 2|=2a ,即3c +c =2a ,所以(3+1)c =2a ,故椭圆C 的离心率e =c a =23+1=3-1.故选D. (2)若存在点P ,则∠F 1BF 2≥90°(B 为短轴端点),即b ≤c <a ,即b 2≤c 2,∴a 2-c 2≤c 2,∴a 2≤2c 2,∴22≤e <1.]点评:与几何图形有关的离心率问题,常借助勾股定理、正(余)弦定理求解;对于(2)这种探索性问题常采用临界点法求解.与椭圆有关的最值(范围问题)[典例3-3] (1)(2017·全国卷Ⅰ)设A ,B 是椭圆C :x 23+y 2m =1长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0,3]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0,3]∪[4,+∞)(2)若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,若P 为椭圆上的任意一点,则OP →·FP→的最大值为( ) A .2B .3C .6D .8(1)A (2)C [(1)由题意知,当M 在短轴顶点时,∠AMB 最大.①如图1,当焦点在x 轴,即m <3时,a =3,b =m ,tan α=3m≥tan 60°=3,∴0<m ≤1.图1 图2②如图2,当焦点在y 轴,即m >3时,a =m ,b =3,tan α=m 3≥tan 60°=3,∴m ≥9. 综上,m 的取值范围(0,1]∪[9,+∞),故选A.(2)由题意知,O (0,0),F (-1,0),设P (x ,y ),则OP→=(x ,y ),FP →=(x +1,y ),∴OP →·FP →=x (x +1)+y 2=x 2+y 2+x .又∵x 24+y 23=1,∴y 2=3-34x 2,∴OP →·FP →=14x 2+x +3=14(x +2)2+2. ∵-2≤x ≤2,∴当x =2时,OP →·FP→有最大值6.] 点评:本例(1)的求解恰恰应用了焦点三角形中张角最大的情形,借助该临界点,然后数形结合求解;本例(2)的求解采用了先建模,再借助椭圆中变量x 的有界性解模的思路.1.(2021·全国统一考试模拟演练)椭圆x 2m 2+1+y 2m 2=1(m >0)的焦点为F 1,F 2,上顶点为A ,若∠F 1AF 2=π3,则m =( )A .1B . 2C . 3D .2C [a 2=m 2+1,b 2=m 2,则c 2=a 2-b 2=1,由题意b =3c ,则b 2=3c 2=3=m 2,又m >0,则m = 3.]2.(2020·攀枝花模拟)如图,椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过椭圆上的点P 作y 轴的垂线,垂足为Q ,若四边形F 1F 2PQ 为菱形,则该椭圆的离心率为( )A .2-12 B .3-12C .2-1D .3-1B [由题意,F 1(-c,0),F 2(c,0), 因为四边形F 1F 2PQ 为菱形,所以P (2c ,3c ),将点P 坐标代入x 2a 2+y 2b 2=1可得:4c 2a 2+3c 2b 2=1,整理得4c 4-8a 2c 2+a 4=0,所以4e 4-8e 2+1=0,因0<e <1,故e =3-12.]。
第04讲 对数与对数函数(含对数型糖水不等式的应用)(学生版) 备战2025年高考数学一轮复习学案
第04讲 对数与对数函数(含对数型糖水不等式的应用)(8类核心考点精讲精练)1. 5年真题考点分布2. 命题规律及备考策略【命题规律】本节内容是新高考卷的命题常考内容,设题多为函数性质或函数模型,难度中等,分值为5-6分【备考策略】1.理解对数的概念和运算性质,熟练指对互化,能用换底公式能将一般对数转化成自然对数或常用对数2.了解对数函数的概念,能画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点3.熟练掌握对数函数x y a log =0(>a 且)1≠a 与指数函数x a y =0(>a 且)1≠a 的图象关系【命题预测】本节内容通常会考查指对幂的大小比较、对数的运算性质、对数的函数模型等,需要重点备考复习1.对数的运算(1)对数的定义如果,那么把叫做以为底,的对数,记作N x a log =,其中叫做对数的底数,叫做真数(2)对数的分类一般对数:底数为,,记为N a log 常用对数:底数为10,记为,即:xx lg log 10=自然对数:底数为e (e ≈2.71828…),记为,即:x x e ln log =(3)对数的性质与运算法则①两个基本对数:①01log =a ,②1log =a a ②对数恒等式:①N a N a =log ,②N a Na =log 。
③换底公式:aba b a b b c c a ln ln lg lg log log log ===;推广1:对数的倒数式ab b a log 1log =1log log =⋅⇒a b b a 推广2:d d c b a c b a c b a c b a log log log log 1log log log =⇒=。
④积的对数:()N M MN a a a log log log +=;(01)xa N a a =>≠且x a N a N a 0,1a a >≠且lg N ln N⑤商的对数:N M NMa a alog log log -=;⑥幂的对数:❶b m b a ma log log =,❷b nb a a n log 1log =,❸b n mb a ma n log log =,❹mna ab b nm log log =2.对数函数(1)对数函数的定义及一般形式形如:()0,10log >≠>=x a a x y a 且的函数叫做对数函数(2)对数函数的图象和性质图象定义域:()∞+,0值域:R当1=x 时,0=y 即过定点()0,1当时,;当时,当时,;当时,性质在()∞+,0上为增函数(5)在()∞+,0上为减函数3.对数型糖水不等式(1) 设 n N +Î, 且 1n >, 则有 12log log (1)n n n n ++<+ (2) 设 1,0a b m >>>, 则有 log log ()a a m b b m +<+(3) 上式的倒数形式:设 1,0a b m >>>, 则有 log log ()b b ma a m +>+1.(2024·重庆·三模)已知2log 5,85ba ==,则ab =.1a >01a <<01x <<(,0)y Î-∞1x >(0,)y Î+∞1x >(,0)y Î-∞01x <<(0,)y Î+∞2.(2024·青海·模拟预测)若3log 5a =,56b =,则3log 2ab -=( )A .1B .-1C .2D .-23.(2024·四川·模拟预测)若实数m ,n ,t 满足57m n t ==且112m n+=,则t =( )A.B .12CD1.(2024·河南郑州·三模)已知log 4log 4a b b a +=,则22a b 的值为.2.(2024·全国·高考真题)已知1a >且8115log log 42a a -=-,则=a .3.(2024·辽宁丹东·一模)若23a=,35b =,54c =,则4log abc =( )A .2-B .12CD .11.(2024·河南·三模)函数()f x = )A .(,0]-∞B .(,1)-∞C .[0,1)D .[0,)+∞1.(2023·广东珠海·模拟预测)函数()lg(21)f x x =-的定义域是( )A .1,2æö-∞ç÷èøB .1,2æö+∞ç÷èøC .1,2æù-∞çúèûD .1,2éö+∞÷êëø2.(2024·青海海南·二模)函数()2lg 10()x f x x-=的定义域为( )A.(B.(,)-∞+∞U C.[D.(È1.(2024高三·全国·专题练习)已知函数① y =log ax ;② y =log bx ;③ y =log cx ;④ y =log dx 的大致图象如图所示,则下列不等关系正确的是( )A .a +c <b +aB .a +d <b +cC .b +c <a +dD .b +d <a +c2.(2024·广东深圳·二模)已知0a >,且1a ≠,则函数1log a y x a æö=+ç÷èø的图象一定经过( )A .一、二象限B .一、三象限C .二、四象限D .三、四象限3.(2024·陕西渭南·二模)已知直线240mx ny +-=(0m >,0n >)过函数()log 12a y x =-+(0a >,且1a ≠)的定点T ,则26m n+的最小值为 .1.(2024高三·全国·专题练习)在同一平面直角坐标系中,函数y =1x a,y =log a (x +12)(a >0,且a ≠1)的图象可能是( )A .B .C .D .2.(2024·全国·模拟预测)若函数()log 21(0a y x a =-+>,且1)a ≠的图象所过定点恰好在椭圆221(0,0)x y m n m n+=>>上,则m n +的最小值为 .1.(辽宁·高考真题)函数212log (56)y x x =-+的单调减区间为( )A .52,æö+∞ç÷èøB .(3)+∞,C .52æö-∞ç÷èø,D .()2-∞,2.(2024·江苏南通·模拟预测)已知函数()ln(2)f x ax =+在区间(1,2)上单调递减,则实数a 的取值范围是( )A .a<0B .10a -£<C .10a -<<D .1a ³-3.(2024·全国·高考真题)已知函数22,0()e ln(1),0x x ax a x f x x x ì---<=í++³î在R 上单调递增,则a 的取值范围是( )A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞4.(2024·北京·高考真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( )A .12122log 22y y x x ++<B .12122log 22y y x x ++>C .12212log 2y y x x +<+D .12212log 2y y x x +>+1.(23-24高三下·青海西宁·开学考试)已知函数()()2lg 1f x x ax =++在区间(),2-∞-上单调递减,则a 的取值范围为 .2.(2022高三·全国·专题练习)函数()()215log 232f x x x =-++的单调递减区间为 .3.(23-24高三上·甘肃白银·阶段练习)已知()()312,1log ,1a a x a x f x x x ì-+£=í>î是R 上的单调递减函数,则实数a 的取值范围为.1.(山东·高考真题)函数2()log 31()xf x =+的值域为( )A .(0,)+∞B .[0,)+∞C .(1,)+∞D .[1,)+∞2.(22-23高三上·河北·阶段练习)已知函数()()2lg 65f x ax x =-+的值域为R ,那么a 的取值范围是 .3.(23-24高一下·上海闵行·阶段练习)函数()[]212log 2,2,6y x x x =+-Î的最大值为 .1.(2024高三·全国·专题练习)函数()[]ln ,1,e f x x x x =+Î的值域为.2.(2023高一·全国·课后作业)函数()212log 617y x x =-+的值域是 .3.(2024高三·全国·专题练习)已知函数()()2log 14f x x x =££,则函数()()()221g x f x f x éù=++ëû的值域为 .1.(2024高三·全国·专题练习)已知函数)2()log f x x =-是奇函数,则=a.2.(23-24高一上·安徽阜阳·期末)若函数()()(e e ln 1x x m n f x x -=-++(m ,n 为常数)在[]1,3上有最大值7,则函数()f x 在[]3,1--上( )A .有最小值5-B .有最大值5C .有最大值6D .有最小值7-3.(2024·江苏泰州·模拟预测)已知函数()21log 1f x a b x æö=-+ç÷+èø,若函数()f x 的图象关于点()1,0对称,则log a b =( )A .-3B .-2C .12-D .13-1.(22-23高二下·江西上饶·阶段练习)已知函数())3ln3f x x x =--+,[2023,2023]x Î-的最大值为M ,最小值为m ,则M m += .2.(2024·宁夏银川·二模)若()1ln 1f x a b x++-=是奇函数,则b = .1.(2024·天津·高考真题)若0.30.34.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为( )A .a b c >>B .b a c >>C .c a b>>D .b c a>>2.(2022·天津·高考真题)已知0.72a =,0.713b æö=ç÷èø,21log 3c =,则( )A .a c b >>B .b c a >>C .a b c >>D .c a b>>3.(2022·全国·高考真题)设0.110.1e ,ln 0.99a b c ===-,则( )A .a b c <<B .c b a <<C .c<a<bD .a c b<<4.(2021·全国·高考真题)设2ln1.01a =,ln1.02b =,1c =.则( )A .a b c<<B .b<c<aC .b a c<<D .c<a<b1.(2021·天津·高考真题)设0.3212log 0.3,log 0.4,0.4a b c ===,则a ,b ,c 的大小关系为( )A .a b c <<B .c<a<bC .b<c<aD .a c b<<2.(2021·全国·高考真题)已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( )A .c b a<<B .b a c<<C .a c b <<D .a b c<<3.(2024·全国·模拟预测)若log 4a =,14log 7b =,12log 6c =,则( )A .a b c >>B .b c a >>C .c b a>>D .a c b>>4.(23-24高三上·河北保定·阶段练习)设3log 4a =,0.8log 0.7b =,511.02c =,则a ,b ,c 的大小关系为( )A .a c b <<B .a b c <<C .b a c<<D .c<a<b5.(2024·山西·二模)设202310121011a æö=ç÷èø,202510131012b æö=ç÷èø,则下列关系正确的是( )A .2e a b <<B .2e b a <<C .2e a b <<D .2e b a <<1.(2022·全国·统考高考真题)已知910,1011,89m m m a b ==-=-,则( )A .0a b>>B .0a b >>C .0b a >>D .0b a>>1. 比较大小: 7log 4 与 9log 6?2.(2024·重庆·模拟预测)设2024log 2023a =,2023log 2022b =,0.2024log 0.2023c =,则( )A .c<a<b B .b<c<a C .b a c<<D .a b c<<一、单选题1.(2024·河北衡水·三模)已知集合{}()11,2,3,4,51lg 12A B x x ìü==-£-£íýîþ,,则A B =I ( )A .11510x x ìü££íýîþB .{2,3,4}C .{2,3}D .11310x x ìü££íýîþ2.(2024·贵州贵阳·三模)已知()()40.34444,log ,log log a b a c a ===,则( )A .a b c>>B .a c b>>C .b c a>>D .c a b>>3.(2024·天津滨海新·三模)已知2log 0.42a =,0.4log 2b =,031log 0.4c =.,则( )A .a b c>>B .b a c>>C .c a b>>D .a c b>>4.(2024·江苏宿迁·三模)已知函数()f x 为R 上的奇函数,且当0x >时,22()log 13f x x =-,则(f =( )A .59B .59-C .49D .49-5.(2024·河北沧州·模拟预测)直线4x =与函数()()12log (1),log a f x x a g x x =>=分别交于,A B 两点,且3AB =,则函数()()()h x f x g x =+的解析式为( )A .()2log h x x =-B .()4log h x x =-C .()2log h x x=D .()4log h x x=6.(2024·江苏盐城·模拟预测)函数cos y x =与lg y x =的图象的交点个数是( )A .2B .3C .4D .67.(2024·四川成都·模拟预测)已知定义在R 上的奇函数()f x 满足(3)(1)f x f x +=-,且当(2,0)x Î-时,2()log (3)f x x =+,则(2021)(2024)f f -=( )A .1B .1-C .21log 3-D .21log 3--二、填空题8.(2024·湖北·模拟预测)若函数()()()2ln e R x f x a x x =--Î为偶函数,则=a.9.(2024·吉林·模拟预测)若函数()ln(1)f x ax =+在(1,2)上单调递减,则实数a 的取值范围为.10.(2024·四川成都·三模)函数()ln 2m x f x x -=+的图象过原点,且()()e e 2x x g x f x m l l --=++,若()6g a =,则()g a -=.一、单选题1.(2024·黑龙江·模拟预测)设函数()ln ||f x x a =-在区间(2,3)上单调递减,则a 的取值范围是( )A .(,3]-∞B .(,2]-∞C .[2,)+∞D .[3,)+∞2.(2024·山东菏泽·模拟预测)已知函数()()()2e 1ln 2013mx f x m x+=->-是定义在区间(),a b 上的奇函数,则实数b 的取值范围是( )A .(]0,9B .(]0,3C .20,3æùçúèûD .10,3æùçúèû3.(2024·河北·三模)已知(),,1,a b c Î+∞,8ln ln10a a =,7ln ln11b b =,6ln ln12cc =,则下列大小关系正确的是( )A .c b a>>B .a b c>>C .b c a>>D .c a b>>4.(2024·广西贵港·模拟预测)已知函数41()log (41)2xf x x =+-,若(1)(21)-£+f a f a 成立,则实数a 的取值范围为( )A .(,2]-∞-B .(,2][0,)-∞-È+∞C .4[2,]3-D .4(,2][,)3-∞-+∞U 5.(2024·湖北黄冈·模拟预测)已知7ln 5a =,2cos 5b =,25c =,则,,a b c 的大小关系为( )A .a b c >>B .b c a >>C .c b a >>D .c a b>>6.(2024·陕西安康·模拟预测)已知函数()13,4443log (4)1,4a x x f x x x ì-£ïï-=íï->ïî是R 上的单调函数,则实数a 的取值范围是( )A .()0,1B.(C.(D .()1,37.(2024·河北衡水·模拟预测)设0,1a a >≠,若函数())23log 1a x a f x a x a æö-=+ç÷-èø是偶函数,则=a ( )A .12B .32C .2D .38.(2024·湖北黄冈·二模)已知a b c d ,,,分别满足下列关系:1715161731615,log 16,log ,tan 162a b c d ====,则a b c d ,,,的大小关系为( )A .a b c d<<<B .c a b d <<<C .a c b d <<<D .a d b c<<<二、多选题9.(2024·山东菏泽·模拟预测)已知函数()0,01ln ,1x f x x x <<ì=í³î,若0a b >>,且1³ab ,则下列关系式一定成立的为( )A .()()b f a bf a =B .()()()f ab f a f b =+C .()()a f f a f b b æö³-ç÷èøD .()()()ln2f a b f a f b +<++三、填空题10.(2024·陕西西安·模拟预测)函数1log 2x a y x a -=++(0a >且1a ≠)的图象恒过定点(),k b ,若m n b k +=-且0m >,0n >,则91m n +的最小值为 .1.(2024·全国·高考真题)已知1a >且8115log log 42a a -=-,则=a .2.(2024·全国·高考真题)设函数()()ln()f x x a xb =++,若()0f x ³,则22a b +的最小值为( )A .18B .14C .12D .13.(2023·北京·高考真题)已知函数2()4log x f x x =+,则12f æö=ç÷èø.4.(2023·全国·高考真题)(多选)噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级020lgp p L p =´,其中常数()000p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级:声源与声源的距离/m 声压级/dB 燃油汽车1060~90混合动力汽车105060:电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为123,,p p p ,则( ).A .12p p ³B .2310p p >C .30100p p =D .12100p p £5.(2022·天津·高考真题)化简()()48392log 3log 3log 2log 2++的值为( )A .1B .2C .4D .66.(2022·浙江·高考真题)已知825,log 3a b ==,则34a b -=( )A .25B .5C .259D .537.(2022·全国·高考真题)若()1ln 1f x a b x ++-=是奇函数,则=a ,b = .8.(2021·天津·高考真题)若2510a b ==,则11a b+=( )A .1-B .lg 7C .1D .7log 109.(2021·全国·高考真题)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录表的数据V 满足5lg LV =+.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为( ) 1.259»)A .1.5B .1.2C .0.8D .0.610.(2020·全国·高考真题)已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b。
黑龙江艺术生高考数学复习资料-1集合基础
一、集合与简易逻辑:一、理解集合中的有关概念(1)集合中元素的特征: , , 。
(2)集合与元素的关系用符号 , 表示。
(3)常用数集的符号表示:自然数集 ;正整数集 、 ;整数集 ;有理数集 、实数集 。
(4)集合的表示法: , , 。
注意:区分集合中元素的形式:如:}12|{2++==x x y x A ;}12|{2++==x x y y B ;}12|),{(2++==x x y y x C }12|{2++==x x x x D ;},,12|),{(2Z y Z x x x y y x E ∈∈++==; }12|)',{(2++==x x y y x F ;},12|{2xy z x x y z G =++== (5)空集是指不含任何元素的集合。
(}0{、φ和}{φ的区别;0与三者间的关系) 空集是任何集合的子集,是任何非空集合的真子集。
注意:条件为B A ⊆,在讨论的时候不要遗忘了φ=A 的情况。
如:}012|{2=--=x ax x A ,如果φ=+R A ,求a 的取值。
二、集合间的关系及其运算(1)符号“∉∈,”是表示元素与集合之间关系的,立体几何中的体现 点与直线(面)的关系 ;符号“⊄⊂,”是表示集合与集合之间关系的,立体几何中的体现 面与直线(面)的关系 。
(2)_}__________{_________=B A ;____}__________{_________=B A ; _}__________{_________=A C U(3)对于任意集合B A ,,则:①A B B A ___;A B B A ___;B A B A ___;②⇔=A B A ;⇔=A B A ;⇔=U B A C U ;⇔=φB A C U ;③=B C A C U U ; )(B A C U =;(4)①若n 为偶数,则=n ;若n 为奇数,则=n ;②若n 被3除余0,则=n ;若n 被3除余1,则=n ;若n 被3除余2,则=n ;三、集合中元素的个数的计算:(1)若集合A 中有n 个元素,则集合A 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 。
艺术生高考数学复习资料.大纲人教版
艺术生高考数学复习资料1、1、1任意角一、【学习目标】1、将00—3600的角推广到任意角;2、理解任意角、象限角、终边相同的角的概念和含义;3、理解象限角集合、终边相同角集合、轴线角集合.<1>什么是角?角是怎么定义的?结论:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 如图所示,一条射线的端点是O,它从起始位置OA按逆时针方向旋转到终止位置OB,形成一个角∠α,射线OA、OB分别是角α的始边和终边.注意:为了简单起见,在不引起混淆的前提下,∠α可以简记为α.<2>什么是正角?什么是负角?什么是零度角?结论:按逆时针方向旋转形成的角是正角.按顺时针方向旋转所形成的角叫负角.一条射线没有做任何旋转,我们称为零角.<3>什么是任意角?结论:这样,我们把角分为了正角、负角、零度角,我们就把角的概念推广到了任意角. 如图所示.图1中的角是一个正角,它等于750;图2中的正角为2100,负角为-1500,-6600.<1>什么是象限角?结论:我们常在直角坐标系内讨论角,为了讨论问题方便,我们使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,我们就说这个角是第几象限角.例如,图中的300角、-1200角分别是第一象限角和第三象限角.<2>将角按照上述方法放在直角坐标系中,给定一个角,就有唯一的一条终边与之对应.反之,对于直角坐标系内任意一条射线OB,以它为终边的角是否唯一?如果不唯一,那么终边相同的角有什么关系?(终边相同的角.)结论:不难发现,在图中,如果-320的终边是OB,那么3280,-3920……角的终边都是OB,并且与-32角终边相同的这些角都可以表示成-32的角与k个(k∈Z)周角的和,如3280=-320+3600(这里k=1),-3920=-320-3600(这里k=-1).设S={β|β=-32+k360,k∈Z },则3280,-3920都是S的元素,-320也是S 的元素,这里k=0.因此所有与-320角终边相同的角,连同-320在内,都是集合S的元素;反过来,集合S的任一元素显然与-320角终边相同.一般地,我们有:所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k3600,k∈Z },即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.注意:①α为任意角;②k3600与α之间是“+”号,k3600-α可以理解为k3600+(-α).③相等的角,终边一定相同;终边相同的角不一定相等,中边相同的角有无数个,它们相差3600的整数倍;④k∈Z这一条件必不可少.练习一:教材例1、例2、例3例1.例1、在0360︒︒~X 围内,找出与95012'︒-角终边相同的角,并判定它是第几象限角.(注:0360︒︒-是指0360β︒︒≤<)例2、写出终边在y 轴上的角的集合.例3、写出终边直线在y x =上的角的集合S ,并把S 中适合不等式360α︒-≤720︒<的元素β写出来.练习二:教材第5页练习(1)、(2)(1)(口答)锐角是第几象限角?第一象限角一定是锐角吗?再分别就直角、钝角来回答这两个问题.(2)(回答)今天是星期三那么7()k k Z ∈天后的那一天是星期几?7()k k Z ∈天前的那一天是星期几?100天后的那一天是星期几?练习三:教材第5页练习(3)、(4)、(5). 【教学效果】:理解象限角、轴线角的概念. 3、知识点引申 <1>象限角集合第一象限角的集合为:{x|k3600<x<k3600+900,k ∈Z}; 第二象限角的集合为:{x|k3600+900<x<k3600+1800,k ∈Z} 第三象限角的集合为:{x|k3600+1800<x<k3600+2700,k ∈Z} 第四象限角的集合为:{x|k3600+2700<x<k3600+3600,k ∈Z} <2>轴线角的集合终边落在x 轴的非负半轴上的角的集合为{x|x=k3600,k ∈Z} 终边落在x 轴的非正半轴上的角的集合为{x|x=k3600+1800,k ∈Z} 终边落在x 轴上的角的集合为{x|x=k1800,k ∈Z}终边落在y 轴的非负半轴上的角的集合为{x|x=k3600+900,k ∈Z} 终边落在y 轴的非正半轴上的角的集合为{x|x=k3600—900,k ∈Z} 终边落在y 轴上的角的集合为{x|x=k1800+900,k ∈Z}【教学效果】:理解轴线角、象限角的集合,对以后的学习是很有用的.1、1、2弧度制一、【学习目标】1、理解弧度的概念,会熟练的进行角度与弧度的转换;2、能用弧度表示终边相同角的角;3、熟记并能熟练应用弧长公式、扇形面积公式. <1>什么叫角度制,请简要复述之.结论:角度制规定:将一个圆周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等. <2>什么叫做弧度制,请简要复述之.结论:长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写).如图所示:<3>半径为r 的圆的圆心与圆点重合,角α的始边与x 轴的非负半轴重合,交圆于点A ,终边与圆交于点B.请在下列表格中 填空.结论:我们知道,角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.<4>如果一个半径为r 的圆的圆心角α所对的弧长是l ,那么a 的弧度数是多少?结论:角α的弧度数的绝对值是:r l /=α,其中,l 是圆心角所对的弧长,r 是半径. 角的正负主要由角的旋转方向来决定 <5>熟记下列特殊角的弧度数:00,300,450,600,900,1200,1350,1500,1800,2100,2250,2400,2700,3000,3150,3300,3600 结论:角的概念推广以后,在弧度制下,角的集合与实数集R 之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.例1、按照下列要求,把'6730︒化成弧度:精确值;精确到0.001的近似值. 例2、将3.14rad 换算成角度(用度数表示,精确到0.001). 例4、利用计算器比较sin1.5和sin850的大小.注意:角度制与弧度制的换算主要抓住180rad π︒=,另外注意计算器计算非特殊角的方法.<6>利用弧度制证明下列关于扇形的公式:(1)l R α=; (2)20.5S R α=; (3)0.5S lR =.其中R 是半径,l 是弧长,(02)ααπ<<为圆心角,S 是扇形的面积. 训练题1、已知扇形的周长是6,面积是2,则扇形的中心角是多少?(2或4)2、已知扇形的周长为10cm ,面积为4cm 2,求扇形圆心角的弧度数.3、已知扇形的圆心角为72,半径等于200,求扇形的面积.4、与-15600终边相同的角的集合中,最小正角是多少?最大负角是多少?绝对值最小的角是多少?任意角的三角函数教学目的:1、 掌握任意角的正弦、余弦、正切的定义,;2、 掌握三角函数值的符号的确定方法;3、 记住三角函数的定义域、值域,诱导公式(一); 教学重点、难点重点:三角函数的定义,各三角函数值在每个象限的符号,特殊角的三角函数值难点:对三角函数的自变量的多值性的理解,三角函数的求值中符号的确定 教学过程: 一、复习引入:初中锐角的三角函数是如何定义的?在Rt △ABC 中,设A 对边为a ,B 对边为b ,C 对边为c ,锐角A 的正弦、余弦、正切依次为,,a b asinA cosA tanA c c b=== . 角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。
如何有效对高三艺体生进行数学复习
如何有效的对高三艺体生进行数学复习摘要:艺体生是高三学生中一个非常重要的群体。
他们在高三既要通过专业测试,又要复习所有高中阶段的文化课。
因专业培训和考试导致艺术考生在高三上学期基本无法在学校完成复习,下学期返校后的复习时间也被各种模拟考试切割的七零八落。
因此,这一部分特殊的考生如何在有限的时间提高复习效率,取得好的成绩便成为一个新的课题。
关键词:如何有效高三艺体生数学复习中图分类号:g63 文献标识码:a 文章编号:1673-9795(2013)04(c)-0165-01作为一名多年担任艺术班教学的数学教师,我认为占提高艺体生文化分空间最大的一科——数学对提高总成绩有着至关重要的作用!艺术生数学基础较差,学习能力较弱,为他们量身定制好的教学方法,使艺术生能接受数学,进而学好数学是关键。
结合自身教学实践,就如何做好高中艺体生的数学复习谈几点认识。
1 研究考试说明,试做高考题高三艺体生真正的学习文化课的时间是下学期不到三个月的时间。
在短短三个月时间里要像文化生那样按照复习资料全部复习一遍是不可能的。
这就需要我们合理安排时间、认真研究高考说明。
我认为首先应先通篇阅读考试说明,这样对高考内容有了大致的了解,这一过程也有稳定学生心态的作用。
其次学生可以试做一套高考题,最好是去年的。
这样学生对高考难度及自身水平有了正确的了解,方便自己制定合适的目标。
2 确定目标,稳定心态艺体生回校时间正处于而三轮复习的时候,时间紧迫,且任务繁重,学生不知如何下手,并处于紧张、恐惧、浮躁的状态。
艺体生普遍数学基础差,每个人的状况不同,因此有着显著的差异。
在短时间内提高数学成绩是不太容易的。
教师要制定出一套复习方案,应在保证学生原有水平基础上对其有所提高,确保艺术生得到正常的发挥,并在条件允许的情况下有更好的突破。
要让学生知道艺体生高考文化分数要求相对纯文化生还是要低一些,不需要像纯文化生全部都掌握,只要确定目标尽量把会的分都得到即可。
黑龙江艺术生高考数学复习资料-4向量基础
三、平面向量1.基本概念:向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。
2. 加法与减法的代数运算:(1)n n n A A A A A A A A 113221=+++- .(2)若a =(11,y x ),b =(22,y x )则a ±b =(2121,y y x x ±±). 向量加法与减法的几何表示:平行四边形法则、三角形法则。
以向量AB =a 、AD =b 为邻边作平行四边形ABCD ,则两条对角线的向量AC =a +b ,=b -a ,=a -b且有︱︱-︱︱≤︱±︱≤︱︱+︱︱.向量加法有如下规律:+=+(交换律); +(+c )=(+ )+c (结合律); +0= +(-)=0.3.实数与向量的积:实数λ与向量a 的积是一个向量。
(1)︱λa ︱=︱λ︱·︱a ︱;(2) 当λ>0时,λ与的方向相同;当λ<0时,λ与的方向相反;当λ=0时,λ=0.(3)若=(11,y x ),则λ·=(11,y x λλ). 两个向量共线的充要条件:(1) 向量b 与非零向量a 共线的充要条件是有且仅有一个实数λ,使得b =λa . (2) 若=(11,y x ),b =(22,y x )则∥b 01221=-⇔y x y x . 平面向量基本定理:若e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数1λ,2λ,使得a =1λe 1+ 2λe 2.4.P 分有向线段21P P 所成的比:设P 1、P 2是直线l 上两个点,点P 是l 上不同于P 1、P 2的任意一点,则存在一个实数λ使P P 1=λ2P P ,λ叫做点P 分有向线段21P P 所成的比。
当点P 在线段21P P 上时,λ>0;当点P 在线段21P P 或12P 的延长线上时,λ<0; 分点坐标公式:若P P 1=λ2P P ;21,,P P P 的坐标分别为(11,y x ),(y x ,),(22,y x );则⎩⎨⎧++=++=λλλλ112121x x x y y y (λ≠-1), 中点坐标公式:⎩⎨⎧+=+=222121x x x y y y .5. 向量的数量积: (1)向量的夹角:已知两个非零向量与b ,作=, =b ,则∠AOB=θ (001800≤≤θ)叫做向量与b 的夹角。
第04讲 导数与函数的极值、最值(学生版) 备战2025年高考数学一轮复习学案(新高考通用)
第04讲导数与函数的极值、最值(5类核心考点精讲精练)1. 5年真题考点分布2. 命题规律及备考策略【命题规律】本节内容是新高考卷的必考内容,设题稳定,难度较大,分值为5-13-15分【备考策略】1.借助函数的图象,了解函数在某点取得极值的必要条件和充分条件2能够利用导数求函数的极大值、极小值以及在给定闭区间上的最大值、最小值3体会导数与极大(小)值、最大(小)值的关系【命题预测】本节内容是新高考卷的必考内容,会结合导数来判断或证明函数的单调性,从而求得函数的极值或给定区间上的最值,热点内容,需综合复习1.函数的极值与导数(1)函数的极小值与极小值点若函数f (x )在点x =a 处的函数值f (a )比它在点x =a 附近其他点的函数值都小,0)(='a f ,而且在点x =a 附近的左侧0)(<'x f ,右侧0)(>'x f ,则点a 叫做函数的极小值点,f (a )叫做函数的极小值.(2)函数的极大值与极大值点若函数f (x )在点x =b 处的函数值f (b )比它在点x =b 附近其他点的函数值都大,0)(='b f ,而且在点x =b 附近的左侧0)(>'x f ,右侧0)(<'x f ,则点b 叫做函数的极大值点,f (b )叫做函数的极大值.(3)极值与导数的关系)(x f 是极值点0)(='⇒x f 0)(='x f ⇒/)(x f 是极值点,即:0)(='x f 是)(x f 为极值点的必要非充分条件2.函数的最值与导数(1)函数f (x )在[a ,b ]上有最值的条件如果在区间[a ,b ]上函数y =f (x )的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y =f (x )在[a ,b ]上的最大(小)值的步骤①求函数y =f (x )在(a ,b )内的极值;②将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.1.(2024·全国·高考真题)已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ³时,()0f x ³,求a 的取值范围.2.(2023·北京·高考真题)设函数3()e ax b f x x x +=-,曲线()y f x =在点(1,(1))f 处的切线方程为1y x =-+.(1)求,a b 的值;(2)设函数()()g x f x '=,求()g x 的单调区间;(3)求()f x 的极值点个数.3.(2021·天津·高考真题)已知0a >,函数()x f x ax xe =-.(I )求曲线()y f x =在点(0,(0))f 处的切线方程:(II )证明()f x 存在唯一的极值点(III )若存在a ,使得()f x a b £+对任意x ÎR 成立,求实数b 的取值范围.1.(2024·湖南长沙·三模)已知函数()()1ln e xf x x ax x a=++(a<0).(1)求函数()f x 的极值;(2)若集合(){}1x f x ³-有且只有一个元素,求a 的值.2.(2024·浙江温州·三模)设函数()31ln 6f x x x x =-的导函数为()g x .(1)求函数()g x 的单调区间和极值;(2)证明:函数()f x 存在唯一的极大值点0x ,且032x >.(参考数据:ln20.6931»)3.(2024·陕西商洛·模拟预测)已知函数()ln ln 1f x x x x x =--+的导函数为()f x '.(1)证明:函数()f x 有且只有一个极值点;(2)若()()3e xxf x f x mx -£--'恒成立,求实数m 的取值范围.1.(2024·全国·高考真题)已知函数3()e x f x ax a =--.(1)当1a =时,求曲线()y f x =在点()1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.2.(2023·全国·高考真题)(1)证明:当01x <<时,sin x x x x 2-<<;(2)已知函数()()2cos ln 1f x ax x =--,若0x =是()f x 的极大值点,求a 的取值范围.3.(2023·全国·高考真题)已知函数1()ln(1)f x a x x æö=++ç÷èø.(1)当1a =-时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)是否存在a ,b ,使得曲线1y f x æö=ç÷èø关于直线x b =对称,若存在,求a ,b 的值,若不存在,说明理由.(3)若()f x 在()0,¥+存在极值,求a 的取值范围.4.(2021·全国·高考真题)设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点.(1)求a ;(2)设函数()()()x f x g x xf x +=.证明:()1g x <.1.(2024·陕西铜川·模拟预测)已知函数()()322312R h x x x x m m =+-+Î的一个极值为2-.(1)求实数m 的值;(2)若函数()h x 在区间3,2k éùêúëû上的最大值为18,求实数k 与m 的值.2.(2024·重庆·模拟预测)已知()()e ln 1xf x a x =+-(1)若()f x 在0x =处的切线平行于x 轴,求a 的值;(2)若()f x 存在极值点,求a 的取值范围.3.(2023·湖南郴州·一模)已知函数()()212ln 212f x x ax a x =+-+.(1)若曲线()y f x =在()()1,1f 处切线与x 轴平行,求a ;(2)若()f x 在2x =处取得极大值,求a 的取值范围.4.(2024·山东泰安·模拟预测)已知函数2e ()xf x x =,2()ln tg x t x x =+.(1)求函数()g x 单调区间;(2)若函数()()()H x f x g x =-在(0,2)有两个极值点,求实数t 的取值范围.1.(2024·安徽·三模)已知函数()()221e x f x x ax =--.(1)求曲线()y f x =在0x =处的切线方程;(2)若2e a =,求函数()f x 在[]1,3上的最值.2.(2024·广东东莞·模拟预测)已知函数()()()211ln R 2f x x a x a x a =+--Î.(1)求函数()f x 的单调区间;(2)当0a >时,求函数()f x 在区间[]1,e 上的最大值.1.(2024·山东泰安·三模)已知函数()()ln 0x f x x a a x æö=->ç÷èø.(1)讨论()f x 的最值;(2)若1a =,且()e x k xf x x-≤,求k 的取值范围.2.(2024·山西晋中·模拟预测)已知函数()πln sin sin 10f x x x =++.(1)求函数()f x 在区间[]1,e 上的最小值;(2)判断函数()f x 的零点个数,并证明.3.(2021·北京·高考真题)已知函数()232xf x x a-=+.(1)若0a =,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若()f x 在=1x -处取得极值,求()f x 的单调区间,以及其最大值与最小值.1.(2022·全国·高考真题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.2.(2024·海南·模拟预测)已知函数()2ln 1,f x x a x a =-+ÎR .(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)当0a >时,若函数()f x 有最小值2,求a 的值.3.(2024·四川·模拟预测)已知函数()e 2(0)x f x x ax a =->.(1)若函数()f x 在1x =处的切线与坐标轴围成的三角形的面积为e2,求a 的值;(2)若函数()f x 的最小值为e -,求a 的值.1.(2024·湖北武汉·模拟预测)已知函数()(0)axf x x =>.(1)求函数()f x 的单调区间;(2)若函数()f x 有最大值12,求实数a 的值.2.(2024·陕西西安·一模)已知函数23()e 232xa x f x x ax =---.(1)若()f x 在[0,)+¥上单调递增,求a 的取值范围;(2)若()y f x =的最小值为1,求a .3.(2024高三下·全国·专题练习)已知函数()()21ln 2f x x =-(1)若()f x 在()0,¥+上单调递减,求实数a 的取值范围;(2)若()f x 的最小值为6,求实数a 的值.4.(2024·全国·模拟预测)已知函数()e xax f x =和函数()ln xg x ax =有相同的最大值.(1)求a 的值;(2)设集合(){}A x f x b ==,(){}B x g x b ==(b 为常数).证明:存在实数b ,使得集合A B È中有且仅有3个元素.1.(2022·全国·高考真题)函数()()cos 1sin 1f x x x x =+++在区间[]0,2π的最小值、最大值分别为( )A .ππ22-,B .3ππ22-,C .ππ222-+,D .3ππ222-+,2.(2021·全国·高考真题)设0a ¹,若a 为函数()()()2f x a x a x b =--的极大值点,则( )A .a b<B .a b>C .2ab a <D .2ab a >3.(2024·全国·高考真题)(多选)设函数32()231f x x ax =-+,则( )A .当1a >时,()f x 有三个零点B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心4.(2022·全国·高考真题)已知1x x =和2x x =分别是函数2()2e x f x a x =-(0a >且1a ¹)的极小值点和极大值点.若12x x <,则a 的取值范围是.1.(2021·全国·高考真题)函数()212ln f x x x =--的最小值为 .2.(2023·全国·高考真题)(多选)若函数()()2ln 0b cf x a x a x x =++¹既有极大值也有极小值,则( ).A .0bc >B .0ab >C .280b ac +>D .0ac <3.(2024·全国·高考真题)(多选)设函数2()(1)(4)f x x x =--,则( )A .3x =是()f x 的极小值点B .当01x <<时,()2()f x f x <C .当12x <<时,4(21)0f x -<-<D .当10x -<<时,(2)()f x f x ->4.(2022·全国·高考真题)(多选)已知函数3()1f x x x =-+,则( )A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线一、单选题1.(2024·河北承德·二模)设a 为实数,若函数()32133f x x ax =-+在1x =处取得极小值,则=a ( )A .1B .12C .0D .1-2.(2024·重庆·模拟预测)若函数()2ln f x x x a x =-+有极值,则实数a 的取值范围是( )A .10,8æùçúèûB .10,8æöç÷èøC .1,8æö-¥ç÷èøD .1,8æù-¥çúèû二、多选题3.(2024·辽宁·模拟预测)已知函数()e xxf x =-,则下列说法正确的是( )A .()f x 的极值点为11,e æö-ç÷èøB .()f x 的极值点为1C .直线2214e ey x =-是曲线()y f x =的一条切线D .()f x 有两个零点三、填空题4.(2024·安徽·二模)已知函数()()()1sin 1cos f x x x x x =-++,当[]0,πx Î时()f x 的最大值与最小值的和为.四、解答题5.(2024·陕西铜川·模拟预测)已知函数()()()()ln 214e 2R xf x x a a x a =+-+-Î.(1)当0a =时,求()f x 的最大值;(2)若()()3e xg x f x a =+对定义域内任意实数x 都有()0g x £,求a 的取值范围.6.(2024·山东潍坊·二模)已知函数()()21e =--+x f x x ax b ,曲线()y f x =在点()()1,1f 处的切线方程为()e 23e y x =-+-.(1)求实数a ,b 的值;(2)求()f x 的单调区间和极值.7.(23-24高二下·广东佛山·阶段练习)已知函数()2()2e ,R xf x x x a a =-+Î.(1)若1a =,求函数()f x 在[0,3]x Î上的最大值和最小值;(2)讨论函数()f x 的单调性.8.(2024·河南·三模)已知函数()ln f x ax x =-,且()f x 在1x =处的切线方程是0x y b -+=.(1)求实数a ,b 的值;(2)求函数()f x 的单调区间和极值.9.(2022高三上·河南·专题练习)已知函数2()e x f x x mx =-.(1)求曲线()y f x =在(0,(0))f 处的切线方程;(2)若函数()()e x g x f x =-在0x =处取到极小值,求实数m 的取值范围.10.(2024·重庆·模拟预测)已知函数 ()25ln f x x x a x =-+在2x =时取得极值.(1)求实数a ;(2)若1,44x æöÎç÷èø,求()f x 的单调区间和极值.一、单选题1.(2024·福建泉州·一模)已知12,x x ,是函数3()(1)f x x x =--两个极值点,则( )A .122x x +=-B .121x x =+C .()()122f x f x +=-D .()()122f x f x +=2.(2024·广东深圳·模拟预测)已知函数()()sin cos exa x x f x x +=+在()0,π上恰有两个极值点,则实数a 的取值范围是( )A .π2e 0,2æöç÷ç÷ç÷èøB.π4e æöç÷ç÷èøC .π2e ,2æöç÷+¥ç÷ç÷èøD.π4e ,ö÷÷ø+¥二、多选题3.(2024·全国·模拟预测)设函数()23ln f x x x x=--,记()f x 的极小值点为1x ,极大值点为2x ,则( )A .123x x +=B .12x x <C .()f x 在()21,x x 上单调递减D .()()123ln2f x f x+=-4.(2024·重庆·三模)若函数()2ln 2f x a x x bx =-+既有极小值又有极大值,则()A .0ab <B .a<0C .2160b a +>D .4a b -<三、填空题5.(2024·新疆喀什·三模)已知函数()ln a xf x x=和())g x b x =(0b >)有相同的最大值.则ea b+的最小值为 .四、解答题6.(2024·广东茂名·二模)已知函数()e sin xf x x ax =-.(1)若曲线()y f x =在点()()0,0f 处的切线方程为0x y +=,求实数a 的值;(2)若32a =,求函数()f x 在区间π0,2éùêúëû上的最大值.7.(2024·河南开封·三模)已知函数()33ln f x x x =-,()f x '为()f x 的导函数.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)求函数()()()9g x f x f x x'=--的单调区间和极值.8.(2024·陕西西安·模拟预测)已知函数()ln f x ax x a =--,若()f x 的最小值为0,(1)求a 的值;(2)若()()g x xf x =,证明:()g x 存在唯一的极大值点0x ,且()014g x <.9.(2024·福建泉州·一模)设函数()ln f x ax a x =--.(1)讨论()f x 的单调性;(2)当0a >时,若2()()2a g x xf x x x =-+的值域为[0,)+¥,证明:2ln 2ln a a -=-.10.(2024·青海西宁·模拟预测)已知函数()2ln f x x ax x x=+-(1)当1a =时,求()f x 的零点;(2)若()f x 恰有两个极值点,求a 的取值范围.1.(2023·全国·高考真题)(多选)已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则( ).A .()00f =B .()10f =C .()f x 是偶函数D .0x =为()f x 的极小值点2.(2022·全国·高考真题)已知函数1()(1)ln f x ax a x x=--+.(1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围.3.(2020·北京·高考真题)已知函数2()12f x x =-.(Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值.4.(2019·全国·高考真题)已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.5.(2019·江苏·高考真题)设函数()()()(),,,R f x x a x b x c a b c =---Î,()f 'x 为f (x )的导函数.(1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427.6.(2018·全国·高考真题)已知函数()2sin sin 2f x x x =+,则()f x 的最小值是 .7.(2018·全国·高考真题)已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >;(2)若0x =是()f x 的极大值点,求a .8.(2018·北京·高考真题)设函数2()[(31)32]x f x ax a x a e =-+++.(Ⅰ)若曲线()y f x =在点(2,(2))f 处的切线斜率为0,求a ;(Ⅱ)若()f x 在1x =处取得极小值,求a 的取值范围.9.(2018·江苏·高考真题)若函数()()3221f x x ax a R =-+Î在()0,+¥内有且只有一个零点,则()f x 在[]1,1-上的最大值与最小值的和为 .10.(2017·山东·高考真题)已知函数()22cos f x x x =+,()()cos sin 22x g x e x x x =-+-,其中 2.71828e =L是自然对数的底数.(Ⅰ)求曲线()y f x =在点()(),f p p 处的切线方程;(Ⅱ)令()()()()h x g x af x a =-ÎR ,讨论()h x 的单调性并判断有无极值,有极值时求出极值.。
艺考生高中数学教案
艺考生高中数学教案
主题:数列的概念与性质
目标:通过本节课的学习,学生能够了解数列的概念、性质以及常见的数列类型,并能够应用数列的知识解决相关问题。
教学时间:1课时
教学地点:教室
教学目标:
1. 理解数列的基本概念和性质;
2. 掌握等差数列和等比数列的定义和性质;
3. 能够解决基础的数列相关问题。
教学内容:
1. 数列的概念和表示方法;
2. 数列的前n项和及通项公式;
3. 等差数列和等比数列的定义和性质;
4. 数列问题的解决方法。
教学步骤:
1. 引入:通过一个生活中的例子引入数列的概念,让学生理解数列是一组按照特定规律排列的数的集合。
2. 探究:学生自行探究等差数列和等比数列的定义和性质,教师引导学生思考数列之间的规律和关系,并帮助学生总结归纳。
3. 练习:学生进行相关习题练习,加深对等差数列和等比数列的理解和应用能力。
4. 总结:通过课堂讨论和总结,梳理数列的概念、常见性质和解题方法。
5. 作业:布置相关练习作业,巩固学生的学习成果。
教学资源:
1. 数学教材;
2. 习题练习册;
3. 多媒体教学设备。
评估方式:
1. 课堂练习成绩;
2. 学生表现和参与度;
3. 作业完成情况。
教学反思:
1. 教学设计是否合理和完整;
2. 学生理解和掌握程度;
3. 学生的学习兴趣和参与度。
扩展拓展:
1. 数列在生活中的应用;
2. 更复杂的数列类型和问题。
教案编写人:(姓名)
以上为本节课的高中数学教案范本,希望对您有所帮助!。
艺术生高中数学讲解教案
艺术生高中数学讲解教案
目标:学生能够理解几何中的艺术结构,掌握相关数学知识和技能
教学重点:平面几何的基本概念,几何图形的构造和性质
教学难点:抽象的几何结构和艺术形式的联系
教学内容:
1.引入:讲解几何和艺术之间的联系,介绍几何结构在艺术中的应用
2.讲解:通过讲解平面几何的基本概念,如点、线、面,以及几何图形的构造和性质,引
导学生理解几何结构在艺术中的表现形式
3.示范:展示一些艺术作品,分析其中的几何结构和构图原则,让学生感受几何艺术的美
感
4.练习:让学生通过练习几何题目,加深对几何结构的理解和掌握相关数学技能
5.总结:通过总结本节课的内容,强调几何结构与艺术作品之间的联系,并鼓励学生发现
和欣赏几何艺术中的美感
教学方法:讲授相结合、示范引导、练习巩固
教学工具:教学PPT、绘图工具、相关几何图形实物
扩展思考:要求学生通过观察周围的艺术作品,思考其中可能涉及的几何结构和构图原则,培养学生对艺术和数学的综合性思维能力
作业布置:让学生自选一个艺术作品,并分析其中的几何结构和构图原则,写一份结合数
学和艺术的分析报告
评价方式:以学生的作业表现和课堂表现为主要评价依据,注重学生对几何结构与艺术作
品之间联系的理解和应用能力。
高中艺术生数学课教案
高中艺术生数学课教案教学内容:平面几何教学目标:1.掌握平面图形的基本概念;2.能够运用平面几何知识解决实际问题;3.培养学生的空间想象能力。
教学重点:1.平面图形的性质和特点;2.平面几何知识的运用。
教学难点:1.空间想象能力的培养;2.实际问题的解决方法。
教学准备:1.教学用图形卡片;2.黑板和彩色粉笔;3.计算器。
教学步骤:一、导入活动(5分钟)1.利用教学用图形卡片展示不同的平面图形,让学生猜测图形的名称和性质;2.让学生描述某个平面图形的特点,引出平面图形的基本概念。
二、知识讲解(15分钟)1.讲解平行四边形、正方形、长方形等平面图形的性质和特点;2.讲解平面几何知识的基本概念和应用。
三、示范演练(20分钟)1.教师出示一道平面几何题目,让学生利用所学知识解答;2.学生进行个人或小组讨论,解答问题;3.教师进行讲解并解答疑问。
四、实践应用(15分钟)1.让学生在实际场景中应用平面几何知识,解决问题;2.学生进行操作和计算,展示解决问题的方法和过程。
五、课堂总结(5分钟)1.总结本节课学到的知识和技能;2.引导学生思考平面几何在日常生活中的应用。
六、作业布置(5分钟)1.布置相关练习题,巩固所学知识;2.鼓励学生多思考,勇于尝试解决问题。
教学反思:本节课通过导入活动引起学生兴趣,激发学习动力;知识讲解和示范演练让学生掌握了平面几何知识和解题方法;实践应用培养了学生的实际问题解决能力。
通过本节课的教学,学生不仅掌握了平面几何知识,还提升了空间想象能力和实践能力。
高考数学知识模块复习指导学案——极限(1)
高考数学知识模块复习指导学案——极限(1)
【学法旨要】
1.本章学习的目标是什幺?
(1)从数列的变化趋势理解数列极限的概念,会判断一些简单数列的极限,并了解数列极限的ε-N定义;掌握数列极限的四则运算法则,会用它求一些数列的极限.
(2)从函数的变化趋势理解函数的极限概念,知道基本初等函数在其定义域内每一点的极限值等于该点的函数值;掌握极限的四则运算法则;了解两个重要极限.
(3)了解函数在某一点处连续的意义和初等函数在定义域内每点处都连续;会从几何直观理解闭区间上连续函数有最大值与最小值.2.学好本章知识的关键在哪里?
学好本章的关键就在于理解数列极限和函数极限的概念.只有深刻理解概念,才能在此基础上解决有关极限的问题.【经点答疑】1.什幺是数列的极限?
在引入数列极限的精确定义之前,我们先看一句中国古语:”一尺之锤,日取其半,万世不竭.”这句话的意思是说:”有一根一尺长的木棒,每天截下前一天留下的一半,永远也截不完.”
我们来考察每天所剩余的木棒长度如何随着天数的改变而变化.因为日取其半,所以第1 天剩余的木棒长度为,第2 天截下尺的一半,所以剩余的木棒长度为,依此类推,第n 天剩余的木棒长度为
这个式子反映了每天所剩余的木棒长度随着天数改变而变化的规律.它具有这样的变化趋势:当天数n 无限增大时,剩余木棒长度以0 为极。
艺术生高考数学复习学案(1-36)
§1集合〔1〕【根底知识】集合中元素与集合之间的关系:文字描述为和符号表示为和常见集合的符号表示:自然数集 正整数集 整数集有理数集 实数集集合的表示方法1 2 3集合间的根本关系:1相等关系:_________A B B A ⊆⊆⇔且 2子集:A 是B 的子集,符号表示为______或B A ⊇ 3 真子集:A 是B 的真子集,符号表示为_____或____不含任何元素的集合叫做,记作,并规定空集是任何集合的子集,是任何非空集合的【根本训练】1.以下各种对象的全体,可以构成集合的是(1)某班身高超过1.8m 的女学生;〔2〕某班比拟聪明的学生;〔3〕本书中的难题 〔4〕使232x x -+最小的x 的值2. 用适当的符号(,,,,)∈∉=⊂⊃填空:___;Q π{}3.14____Q ; *___;N N {}{}21,____21,x x k k Z x x k k z =+∈=-∈3.用描述法表示以下集合: 由直线1y x =+上所有点的坐标组成的集合;4.假设A B B ⋂=,那么____A B ;假设A B B ⋃=那么_____;_____A B A B A B ⋂⋃5.集合{}{}35,A x x B x x a =-<=<,且A B ⊆,那么a 的范围是【典型例题讲练】例1 设集合11,,,2442k k M x x k Z N x x k Z ⎧⎫⎧⎫==+∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭,那么_______M N练习: 设集合11,,,3663k k P x x k Z Q x x k Z ⎧⎫⎧⎫==+∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭,那么______P Q 例2集合{}2210,,A x ax x x R a =++=∈为实数。
(1) 假设A 是空集,求a 的取值范围;(2) 假设A 是单元素集,求a 的取值范围;(3) 假设A 中至多只有一个元素,求a 的取值范围; 练习:数集1,,a P b b ⎧⎫=⎨⎬⎩⎭,数集{}20,,Q a b b =+,且P Q =,求,a b 的值【【课堂小结】集合的概念及集合元素的三个特性【课堂检测】1. 设全集,U R =集合{}1M x x =>,{}21P x x =>,那么______M P2. 集合{}{}2320,10,P x x x Q x mx =-+==-=假设P Q ⊇,那么实数m 的值是3.集合A 有n 个元素,那么集合A 的子集个数有个,真子集个数有个4.集合A ={-1,3,2m -1},集合B ={3,2m }.假设B A ⊆,那么实数m = . 5.含有三个元素的集合2{,,1}{,,0},b a a a b a=+求20042005a b +的值.§2集合〔2〕【典型例题讲练】 例3 集合{}23100A x x x =--≤(1) 假设{},121B A B x m x m ⊆=+≤≤-,XX 数m 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 已知函数在时有最大值2,求的值.
a ax x x f -++-=12)(210≤≤x a §16函数与方程(2)
【典型例题讲练】
例1 (1)若方程的两根均大于1,求实数的取值范围.
0422=+-mx x m (2)设是关于的方程的两根,且,求实数的取值βα、x 012=+-ax x 21,10<<<<βαa 范围.
练习 关于的方程的根都是正实数,求的取值x 0122=+-x ax a 范围.
例2 某种商品在近30天内每件的销售价(元)与时间(天)的函数关系近P t 似满足,商品的日销售量(件)与时间(天)的函数关
)
,3025(,100)
,241(,20{
N t t t N t t t P ∈≤≤+-∈≤≤+=Q t 系近似满足,求这种商品日销售金额的最大值,并指出日),301(40N t t t Q ∈≤≤+-=销售金额最大的一天是30天中第几天?
练习 把长为12厘米的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是_
__________
例2 某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本,若每辆车投入成本增加的比例为(0<<1),则出厂价相应提
x x
高比例0.75,同时预计年销售量增加的比例为0.6,已知年利润=(出厂价-投入x x
成本)*年销售量.
(1)写出本年度预计的年利润与投入成本增加的比例的关系式;
y x
(2)为使本年度利润比上年有所增加,问投入成本增加的比例应在什么范
x
围内?
例3 上因特网的费用由两部分组成:电话费和上网费,以前某地区上因特
网的费用为:电话费0.12元/3分钟;上网费0.12元/分钟.根据信息产业部调整因特网资费的要求,该地区上因特网的费用调整为电话0.16元/3分钟;上网费为每月不超过60小时,以4元/小时计算,超过60小时部分,以8元/小时计算.
(1)根据调整后的规定,将每月上因特网的费用表示为上网时间(小时)的函数(每月按30天算);
(2)某网民在其家庭经济预算中一直有一笔每月上因特网60小时的费用开支,资费调整后,若要不超过其家庭经济预算中的上因特网费的支出,该网民现在每月可上网多少小时?进一步从经济角度分析调整前后对网民的利弊.
【课堂小结】
解应用题的基本步骤:1审题,明确题意;2分析,建立数学模型;3利用数学方法解答得到的数学模型;4转译成具体应用题的结论.
【课后作业】
1.某村计划建造一个室内面积为800平方米的矩形蔬菜温室,在温室内,沿左、右两侧与后侧内墙各保留1米的通道,沿前侧内墙保留3米的空地,当矩形
值。