直线与圆的方程习题汇编

合集下载

(完整版)全国高考数学直线与圆的方程试题汇编

(完整版)全国高考数学直线与圆的方程试题汇编

全国高考数学试题汇编——直线与圆的方程一、选择题:1.(全国Ⅱ卷文科3)原点到直线052=-+y x 的距离为( D )A .1B .3C .2D .52.(福建文科2)“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的( C )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.(四川理科4文科6)将直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位,所得到的直线为( A )A .1133y x =-+B .113y x =-+C .33y x =-D .113y x =+解析:本题有新意,审题是关键.旋转90︒则与原直线垂直,故旋转后斜率为13-.再右移1得1(1)3y x =--. 选A .本题一考两直线垂直的充要条件,二考平移法则.辅以平几背景之旋转变换.4.(全国I 卷理科10)若直线1x ya b+=通过点(cos sin )M αα,,则 ( B )A .221a b +≤B .221a b +≥C .22111a b+≤D .22111a b +≥ 5.(重庆理科7)若过两点P 2),P 2(5,6)的直线与x 轴相交于点P ,则点P 分有向线段12PP 所成的 比λ的值为( A )A .-13B .-15C .15D .13(重庆文科4)若点P 分有向线段AB 所成的比为-13,则点B 分有向线段PA 所成的比是( A )A .-32B .-12C .12D .36.(安徽理科8文科10)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( C )A .[B .(C .[D .( 7.(辽宁文、理科3)圆221x y +=与直线2y kx =+没有..公共点的充要条件是 ( C )A .(k ∈B .(,)k ∈-∞⋃+∞C .(k ∈D .(,)k ∈-∞⋃+∞8.(陕西文、理科5)0y m -+=与圆22220x y x +--=相切,则实数m 等于( C )A B . C .- D .-9.(安徽文科11)若A为不等式组0,0,2xyy x⎧⎪⎨⎪-⎩≤≥≤表示的平面区域,则当a从-2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为( C )A.34B.1C.74D.210.(湖北文科5)在平面直角坐标系xOy中,满足不等式组,1x yx⎧⎪⎨<⎪⎩≤的点(,)x y的集合用阴影表示为下列图中的( C )11.(辽宁文科9)已知变量x、y满足约束条件10,310,10,y xy xy x+-⎧⎪--⎨⎪-+⎩≤≤≥则z=2x+y的最大值为( B ) A.4 B.2 C.1 D.-412.(北京理科5)若实数x,y满足10x yx yx-+⎧⎪+⎨⎪⎩≥≥≤,则z=3x+y的最小值是( B )A.0 B.1 C.3D.9(北京文科6)若实数x,y满足10x yx yx-+⎧⎪+⎨⎪⎩≥≥≤,则z=x+2y的最小值是( A )A.0 B.21C.1 D.213.(福建理科8)若实数x、y满足错误!,则错误!的取值范围是( C )A.(0,1) B.(0,1]C.(1,+∞) D.[1,+∞)(福建文科10)若实数x、y满足20,0,2,x yxx-+⎧⎪>⎨⎪⎩≤≤则yx的取值范围是( D )A.(0,2)B.(0,2)C.(2,+∞) D.[2,+∞)14.(天津理科2文科3)设变量y x ,满足约束条件0121x y x y x y -⎧⎪+⎨⎪+⎩≥≤≥,则目标函数y x z +=5的最大值为A .2B .3C .4D .5 ( D )15.(广东理科4)若变量x 、y 满足24025000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,则32z x y =+的最大值是( C )A .90B .80C .70D .4016.(湖南理科3)已知变量x 、y 满足条件1,0,290,x x y x y ⎧⎪-⎨⎪+-⎩≥≤≤则x+y 的最大值是( C )A .2B .5C .6D .8(湖南文科3)已知变量x 、y 满足条件120x y x y ⎧⎪⎨⎪-⎩≥≤≤,,,则x +y 是最小值是( C )A .4B .3C .2D .117.(全国Ⅱ卷理科5文科6)设变量x ,y 满足约束条件:,22,2y x x y x ⎧⎪+⎨⎪-⎩≥≤≥则y x z 3-=的最小值为( D )A .-2B 。

直线与圆的综合运用练习题

直线与圆的综合运用练习题

直线与圆的综合运用练习题直线与圆的关系是数学中的基础知识点,不仅在几何学中有广泛应用,而且在实际问题中也能发挥重要作用。

本文将给出一些直线与圆综合运用的练习题,帮助读者巩固和应用所学知识。

问题一:已知直线与圆的交点坐标,求直线方程和圆的方程。

解析:设已知直线方程为y = kx + b,圆的方程为(x - m)² + (y - n)² = r²。

设交点坐标为(x₁, y₁),代入直线方程得y₁ = kx₁ + b,代入圆的方程得(x₁ - m)² + (kx₁ + b - n)² = r²。

化简后即可得到直线方程和圆的方程。

问题二:已知直线与圆的交点坐标,求该直线过圆心的垂线方程。

解析:设已知直线方程为y = kx + b,圆心坐标为(m, n)。

由于直线过圆心的垂线与直线的斜率为k的负倒数,故直线过圆心的垂线的斜率为-1/k。

设垂线方程为y = mkx + c,代入圆心坐标(m, n)得c = n -k*m。

因此,该直线过圆心的垂线方程为y = -x/k + (n - k*m)。

问题三:已知直线与圆的交点坐标,求直线与圆的切线方程。

解析:设已知直线方程为y = kx + b,圆的方程为(x - m)² + (y - n)² = r²。

通过求导可得直线的斜率为k。

根据切线的性质,直线与圆的切线垂直于通过切点与圆心的半径。

设直线与圆的切点坐标为(x₁, y₁),圆心坐标为(m, n),切线方程为y = mx + c。

由于切线垂直于半径,故直线与切线的斜率乘积为-1,即k * m = -1。

代入切点坐标(x₁, y₁)和圆心坐标(m, n)可得c = y₁ - m*x₁。

因此,直线与圆的切线方程为y = -1/k * x + (y₁ - m*x₁)。

问题四:已知圆的半径和切点坐标,求切线方程。

解析:设圆的方程为(x - m)² + (y - n)² = r²,切点坐标为(x₁, y₁)。

直线与圆的方程练习题

直线与圆的方程练习题

直线与圆的方程练习题直线与圆是解析几何中的基本概念,掌握它们的方程及其应用是解题的关键。

下面将以几道习题为例,来进行练习。

1. 已知直线L过点A(3,4),斜率为2,求直线L的方程。

解析:由题目可知,直线L经过点A(3,4),斜率为2。

我们可以运用直线的点斜式来求解。

直线的点斜式方程为:y - y₁ = m(x - x₁)其中m为直线的斜率,(x₁, y₁)为直线上的已知点。

代入已知条件,得到直线L的方程为:y - 4 = 2(x - 3)化简得:y - 4 = 2x - 6最终方程为:y = 2x - 22. 已知圆O的圆心为(2,3),半径为5,求圆O的方程。

解析:圆的方程可以通过圆心和半径来确定。

我们可以利用圆的标准方程来求解。

圆的标准方程为:(x - a)² + (y - b)² = r²其中(a,b)为圆心的坐标,r为圆的半径。

代入已知条件,得到圆O的方程为:(x - 2)² + (y - 3)² = 5²化简得:(x - 2)² + (y - 3)² = 25最终方程为:x² - 4x + y² - 6y + 5 = 03. 已知直线L的方程为2x - 3y + 7 = 0,圆O的方程为x² + y² - 6x + 4y + 3 = 0,求直线L与圆O的交点坐标。

解析:直线与圆的交点坐标可以通过联立直线与圆的方程求解。

我们可以通过消元法来求解。

将直线L的方程转化为一般形式:2x - 3y = -7代入圆O的方程,得到联立方程组:x² + y² - 6x + 4y + 3 = 02x - 3y = -7通过联立方程组,我们可以求得直线L与圆O的交点坐标。

首先,将直线L的方程中的x表示为y的函数:x = (3y - 7) / 2将x代入圆O的方程中,得到二次方程:(3y - 7)² / 4 + y² - 6(3y - 7)/2 + 4y + 3 = 0化简得:(9y² - 42y + 49 + 4y² - 12y - 42 + 16y + 12) / 4 + y² - 6(3y - 7)/2 + 4y + 3 = 0整理得:13y² - 36y + 30 = 0通过求解二次方程,我们可以得到y的值,再带入x = (3y - 7) / 2,即可求得直线L与圆O的交点坐标。

直线和圆的方程精选练习题

直线和圆的方程精选练习题

直线和圆的方程精选练习题1.直线x+3y-3=的倾斜角是多少?答:倾斜角为π/6.2.若圆C与圆(x+2)+(y-1)=1关于原点对称,则圆C的方程是什么?答:圆C的方程为(x-2)^2+(y+1)^2=1.3.直线ax+by+c同时要经过第一、第二、第四象限,则a、b、c应满足什么条件?答:ab0.4.直线3x-4y-9=与圆x+y=4的位置关系是什么?答:相交但不过圆心。

5.已知直线ax+by+c=(abc≠0)与圆x+y=1相切,则三条边长分别为a、b、c的三角形是什么类型的?答:是锐角三角形。

6.过两点(-1,1)和(3,9)的直线在x轴上的截距是多少?答:截距为2/5.7.点(2,5)到直线y=2x的距离是多少?答:距离为1/√5.8.由点P(1,3)引圆x+y=9的切线的长度是多少?答:长度为2.9.如果直线ax+2y+1=与直线x+y-2=互相垂直,那么a的值等于多少?答:a的值等于-1/3.10.若直线ax+2y+2=与直线3x-y-2=平行,那么系数a等于多少?答:a的值等于-3/2.11.直线y=3x绕原点按逆时针方向旋转30度后所得直线与圆(x-2)^2+y^2=33的位置关系是什么?答:直线与圆相交,但不过圆心。

12.若直线ax+y+1=与圆x^2+y^2-2x=相切,则a的值为多少?答:a的值为-1.13.圆O1:x^2+y^2-4x+6y=0和圆O2:x^2+y^2-6x=0交于A、B两点,则AB的垂直平分线的方程是什么?答:垂直平分线的方程为2x-y-5=0.14.以点(1,3)和(5,-1)为端点的线段的中垂线的方程是什么?答:中垂线的方程为2x+y=7.15.过点(3,4)且与直线3x-y+2平行的直线的方程是什么?答:由于两条直线平行,所以它们的斜率相同。

直线3x-y+2的斜率为3,所以过点(3,4)且与直线3x-y+2平行的直线的斜率也是3.带入点(3,4)和斜率3,可以得到直线的方程为y-4=3(x-3),即y=3x-5.16.直线3x-2y+6在x、y轴上的截距分别是多少?答:当x=0时,直线3x-2y+6的方程化为-2y+6=0,解得y=3,所以直线在y轴上的截距是3.当y=0时,直线3x-2y+6的方程化为3x+6=0,解得x=-2,所以直线在x轴上的截距是-2.17.三点(2,-3)、(4,3)和(5,k)在同一条直线上,求k的值。

圆与直线的方程练习题

圆与直线的方程练习题

圆与直线的方程练习题一、选择题1. 已知圆的方程为x^2 + y^2 = 4,则该圆的半径为()。

A. 1B. 2C. 4D. 82. 直线y = 2x + 1的斜率为()。

A. 0B. 1C. 2D. 1A. y = 3x + 2B. y = 3x 2C. x = 3D. y = 24. 若圆C的方程为(x 1)^2 + (y + 2)^2 = 16,则圆心坐标为()。

A. (1, 2)B. (1, 2)C. (2, 1)D. (2, 1)5. 两条平行线的斜率分别为2和2,则这两条直线()。

A. 相交B. 平行C. 重合D. 垂直二、填空题1. 已知直线l的斜率为3,且过点(2, 1),则直线l的方程为______。

2. 圆心在原点,半径为5的圆的方程为______。

3. 若直线y = kx + b与圆x^2 + y^2 = 4相切,则k的取值范围为______。

4. 两条直线y = 2x + 3和y = 0.5x + 1的交点坐标为______。

5. 已知点A(3, 4)和B(2, 6),则线段AB的中点坐标为______。

三、解答题1. 已知圆的方程为(x 2)^2 + (y + 3)^2 = 25,求该圆的半径和圆心坐标。

2. 求过点(1, 2)和(3, 4)的直线方程。

3. 已知直线y = 3x 2和圆x^2 + y^2 = 16,求直线与圆的交点坐标。

4. 证明:若两条直线分别垂直于同一条直线,则这两条直线平行。

5. 设圆C的方程为x^2 + y^2 + Dx + Ey + F = 0,已知圆心在x轴上,半径为3,求圆C的方程。

四、应用题1. 在平面直角坐标系中,点A(1, 2)到直线y = x + 3的距离是多少?2. 一圆的圆心位于直线y = 2x + 1上,且与直线y = 2x 1相切,圆的半径为2,求该圆的方程。

3. 两条直线l1:2x + 3y + 1 = 0和l2:4x y 5 = 0相交于点P,求点P的坐标。

直线与圆的方程复习(含答案)

直线与圆的方程复习(含答案)

,解得
k
=
3
所以
y x
的最大值为
3 ,最小值为 -
3
(2) 令 x = 3 cos θ + 2 , y = 3 sin θ
得 x + y = 3 (sin θ + cos θ)+ 2
因为 sin θ + cos θ = 2 sinèæçççθ + π4 øö÷÷÷Î éêë- 2, 2ùúû
所以 x + y 的最大值为 2 + 6 ,最小值为 2 - 6
sinPAM = PM =
2
=2
AM (3 + 1)2 +(3 -1)2 2
所以 PAM = 45
即 PAQ = 90
(2) 过 A(a,b)作 AD,AE 分别与圆 M 相切于 D,E 两点
因为 DAE ³ BAC
所以要使圆 M 上存在两点 B,C,使得 BAC = 60 ,只要作 DAE ³ 60
+
1 2
ö÷÷ø÷2
+ æèçççy
+
1 2
öø÷÷÷2
=
5 4
10.解:由题意得,(x - 2)2 + y2 = 3
(1)

y x
=
k
,则 y = kx
,是一条恒过点 (0, 0)
的直线
画图可知,它与圆 (x
- 2)2
+
y2
=
3
的两条切线的斜率就是
y x
的最大值和最小值
所以
(2k)2
k2 +1
=
3
从而 a = 2 , c = 5 , b2 = c2 - a2 = 1

《直线和圆的方程》练习与答案

《直线和圆的方程》练习与答案

《直线和圆的方程》练习与答案一、单项选择题1.若过两点A (4,y ),B (2,-3)的直线的倾斜角为45°,则y 等于()A.-32B.32C.-1D.1答案C解析由已知,得y +34-2=tan 45°=1.故y =-1.2.直线2x +y +1=0与直线x -y +2=0的交点在()A.第一象限B.第二象限C.第三象限D.第四象限答案B解析x +y +1=0,-y +2=0,=-1,=1.∴交点(-1,1)在第二象限.3.已知直线l 经过第二、四象限,则直线l 的倾斜角α的取值范围是()A.0°≤α<90°B.90°≤α<180°C.90°<α<180°D.0°<α<180°答案C解析直线倾斜角α的取值范围是0°≤α<180°,又直线l 经过第二、四象限,所以直线l 的倾斜角α的取值范围是90°<α<180°.4.设点A 在x 轴上,点B 在y 轴上,AB 的中点是P (2,-1),则|AB |等于()A.5B.42C.25D.210答案C解析设A (x ,0),B (0,y ),由中点公式得x =4,y =-2,则由两点间的距离公式得|AB |=42+-22=20=2 5.5.已知直线2x +my -1=0与直线3x -2y +n =0垂直,垂足为(2,p ),则p +m +n 的值为()A.-6B.6C.4D.10答案A解析因为直线2x +my -1=0与直线3x -2y +n =0垂直,所以2×3+(-2)m =0,解得m =3,又垂足为(2,p ),p-1=0,p+n=0,=-1,=-8,则p+m+n=-1+3+(-8)=-6.6.设P,Q分别是3x+4y-10=0与6x+8y+5=0上的任意一点,则|PQ|的最小值为() A.3B.6C.95D.52答案D解析两条直线的方程分别为3x+4y-10=0与6x+8y+5=0,因为36=48≠-105,直线6x+8y+5=0可化为3x+4y+52=0,所以两平行线的距离即为|PQ|的最小值即d=|-10-52|32+42=52.二、多项选择题7.下列说法正确的是()A.直线x-y-2=0与两坐标轴围成的三角形的面积是2B.点(0,2)关于直线y=x+1的对称点为(1,1)C.过(x1,y1),(x2,y2)两点的直线方程为y-y1y2-y1=x-x1x2-x1D.经过点(1,1)且在x轴和y轴上截距都相等的直线方程为x+y-2=0答案AB解析A选项,直线在横、纵坐标轴上的截距分别为2,-2,所以围成三角形的面积是2,故正确;By=x+1上,且(0,2),(1,1)连线的斜率为-1,故正确;C选项,需要条件y2≠y1,x2≠x1,故错误;D选项,还有一条截距都为0的直线y=x,故错误.8.已知直线l:3x-y+1=0,则下列结论正确的是()A.直线l的倾斜角是π6B.若直线m:x-3y+1=0,则l⊥mC.点(3,0)到直线l的距离是2D.过(23,2)与直线l 平行的直线方程是3x -y -4=0答案CD解析对于A,直线l :3x -y +1=0的斜率k =tan θ=3,故直线l 的倾斜角是π3,故A 错误;对于B,直线l 的斜率k =3,直线m :x -3y +1=0的斜率k ′=33,kk ′=1≠-1,故直线l 与直线m 不垂直,故B 错误;对于C,点(3,0)到直线l 的距离d =|3×3-0+1|32+-12=2,故C 正确;对于D,过(23,2)与直线l 平行的直线方程是y -2=3(x -23),整理得3x -y -4=0,故D 正确.三、填空题9.已知点A (1,2),B (2,1),则线段AB 的长为________,过A ,B 两点直线的倾斜角为________.答案23π4解析根据两点之间的距离公式,得线段AB 的长为1-22+2-12=2,根据斜率公式,得过A ,B 两点直线的斜率为k AB =2-11-2=-1,又因为直线的倾斜角的范围为[0,π),所以过A ,B 两点直线的倾斜角为3π4.10.已知直线l 1经过点A (0,-1)和点-4a ,1l 2经过点M (1,1)和点N (0,-2).若l 1与l 2没有公共点,则实数a 的值为________.答案-6解析直线l 2经过点M (1,1)和点N (0,-2),∴2l k =1+21-0=3,∵直线l 1经过点A (0,-1)和点-4a ,1∴1l k =2-4a=-a 2,∵l 1与l 2没有公共点,则l 1∥l 2,∴-a2=3,解得a =-6.11.已知点O (0,0),A (4,0),B (0,4).若从点P (1,0)射出的光线经直线AB 反射后过点Q (-2,0),则反射光线所在直线的方程为____________;若从点M (m ,0),m ∈(0,4)射出的光线经直线AB 反射,再经直线OB 反射后回到点M ,则光线所经过的路程是________.(结果用m 表示)答案x -2y +2=02m 2+32解析设点P (1,0)关于直线AB 的对称点为P ′(x 0,y 0),直线AB :x +y -4=0,-1=-1,+y 0+02-4=0,解得x 0=4,y 0=3,故P ′(4,3),又Q (-2,0),∴直线P ′Q :y -0=3-04--2(x +2),即反射光线所在直线方程为x -2y +2=0.设点M (m ,0),m ∈(0,4)关于y 轴的对称点为P ″(-m ,0),关于直线AB 的对称点为P(x 1,y 1),-1=-1,+y 1+02-4=0,解得x 1=4,y 1=4-m ,故P (4,4-m ).故|P ″P|=4+m2+4-m2=2m 2+32.12.若动点A (x 1,y 1),B (x 2,y 2)分别在直线l 1:2x +y -7=0和l 2:2x +y -5=0上移动,则AB 的中点到原点的距离的最小值为________.答案655解析设AB 的中点坐标为(x ,y ),因为A (x 1,y 1),B(x 2,y 2),=x 1+x 22,=y 1+y 22,又A (x 1,y 1),B (x 2,y 2)分别在直线l 1:2x +y -7=0和l 2:2x +y -5=0上移动,x1+y1-7=0,x2+y2-5=0,两式相加得2(x1+x2)+(y1+y2)-12=0,所以4x+2y-12=0,即2x+y-6=0,即为AB中点所在直线方程,因此原点到直线2x+y-6=0的距离,即为AB的中点到原点的距离的最小值,由点到直线的距离公式,可得距离的最小值为|-6|4+1=655.四、解答题13.已知四边形ABCD的顶点A(m,n),B(5,-1),C(4,2),D(2,2),求m和n的值,使四边形ABCD为直角梯形.解(1)如图,当∠A=∠D=90°时,∵四边形ABCD为直角梯形,∴AB∥DC且AD⊥AB.∵kDC=0,∴m=2,n=-1.(2)如图,当∠A=∠B=90°时,∵四边形ABCD为直角梯形,∴AD∥BC,且AB⊥BC,∴kAD=kBC,kAB·kBC=-1.=2--14-5,·2--14-5=-1,解得m=165,n=-85.综上所述,m =2,n =-1或m =165,n =-85.14.已知直线l 过点(1,2),且在两坐标轴上的截距相等.(1)求直线l 的方程;(2)当直线l 的截距不为0时,求A (3,4)关于直线l 的对称点.解(1)当直线l 在两坐标轴上的截距相等且不为零时,可设直线l 的方程为x +y +b =0,将点(1,2)代入直线l 的方程,得1+2+b =0,解得b =-3,此时直线l 的方程为x +y -3=0;当直线l 过原点时,可设直线l 的方程为y =kx ,将点(1,2)代入直线l 的方程,得k =2,此时直线l 的方程为y =2x ,即2x -y =0.综上所述,直线l 的方程为x +y -3=0或2x -y =0.(2)当直线l 的截距不为0时,直线l 的方程为x +y -3=0,设点A 关于直线l 的对称点B 的坐标为(a ,b ),则线段AB 的中点为M 在直线l 上,则a +32+b +42-3=0,整理得a +b +1=0,又直线AB ⊥l ,且直线l 的斜率为-1,所以直线AB 的斜率为k AB =b -4a -3=1,整理得b =a +1,+b +1=0,=a +1,=-1,=0,因此,点A (3,4)关于直线l 的对称点为(-1,0).15.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0.求:(1)顶点C 的坐标;(2)直线BC 的方程.解(1)因为AC 边上的高BH 所在直线方程为x -2y -5=0,所以k AC =-2,又因为点A (5,1),所以AC 边所在直线方程为2x +y -11=0.又因为AB 边上的中线CM 所在直线方程为2x -y -5=0,x +y -11=0,x -y -5=0,=4,=3,所以C (4,3).(2)设B (m ,n ),则AB 的中点MCM 上,所以2×5+m 2-1+n2-5=0,即2m -n -1=0.又点B (m ,n )在高BH 所在直线上,所以m -2n -5=0.-2n -5=0,m -n -1=0,=-1,=-3.所以B (-1,-3).所以直线BC 的方程为y +33+3=x +14+1,即6x -5y -9=0.。

直线和圆习题大全

直线和圆习题大全

辅导题目之二1.已知直线:40l x y -+=与圆()()22:112C x y -+-=,则C 上各点到l 的距离的最大值与最小值之差为 。

2.已知直线0323=-+y x 和圆422=+y x ,则此直线与已知圆的位置关系是__________。

3.圆222430x y x y +++-=上到直线10x y ++= )个.4.求直线l :022=--y x 被圆9)3(22=+-y x C :所截得的弦长为5.对于任意实数a ,点P )2,(a a -与圆C :122=+y x 的位置关系是 ( )6.两圆221:2220C x y x y +++-=,222:4210C x y x y +--+=的公切线有且仅有( )条;7.已知圆C 的方程为2282120x y x y +--+=,求过圆内一点(30),的最长弦和最短弦所在的直线方程,并求这个最长弦和最短弦的长度.8.若圆042222=-+-+m mx y x 与圆08442222=-+-++m my x y x 相切,求实数m 的取值集合。

9.已知直线0125=++a y x 与圆0222=+-y x x 相切,则a 的值为 .10.过点P(-1,6)且与圆4)2()3(22=-++y x 相切的直线方程是________________.11.求圆()()22114x y -+-=关于直线:220l x y --=对称的圆的方程。

12.设直线03=+-y ax 与圆4)2()1(22=-+-y x 相交于A 、B 两点,且弦AB 的长为32,则=a .13.求经过点(2,1)A -,和直线1=+y x 相切,且圆心在直线x y 2-=上的圆的方程.14.一动点到(4,0)A -的距离是到(2,0)B 的距离的2倍,则动点的轨迹方程( ).15.点(3,3)A -发出的光线l 射到x 轴上被x 轴反射,反射光线与圆22:4470C x y x y +--+=相切,则光线l 所在直线方程为____ __。

直线和圆的方程测试题

直线和圆的方程测试题

直线和圆的方程测试题1. 直线方程部分1.1 点斜式方程直线L通过已知点P(x₁, y₁)且斜率为k,求直线L的方程。

解析:直线L的点斜式方程为:y - y₁ = k(x - x₁)1.2 斜截式方程直线L的斜截式方程为y = kx + b,已知直线L经过点P(x₁, y₁),求直线L的方程。

解析:直线L的斜率k可通过已知点P(x₁, y₁)和直线方程的斜率形式得到。

将已知点P(x₁, y₁)代入直线方程中,得到方程:y₁ = kx₁ + b从而求解得到斜截式方程y = kx + b。

2. 圆方程部分2.1 标准方程圆C的圆心为点O(h, k),半径为r,求圆C的方程。

解析:圆C的标准方程为:(x - h)² + (y - k)² = r²2.2 一般方程圆C的圆心为点O(h, k),半径为r,求圆C的一般方程。

解析:一般方程形式为:x² + y² + Dx + Ey + F = 0带入圆心坐标O(h, k),得到方程:(x - h)² + (y - k)² = r²展开并整理,可得一般方程。

3. 测试题部分测试题一:已知圆C的圆心为O(-2, 3),半径为5,请写出圆C的标准方程和一般方程。

解析:圆C的标准方程为:(x - (-2))² + (y - 3)² = 5²展开并整理得到:x² + y² + 4x - 6y - 12 = 0因此,圆C的一般方程为:x² + y² + 4x - 6y - 12 = 0测试题二:已知直线L通过点P(3, 4)且斜率为 -2,请写出直线L的点斜式方程和斜截式方程。

解析:直线L的点斜式方程为:y - 4 = -2(x - 3)直线L的斜截式方程为:y = -2x + b为了求解斜截式方程中的截距b,将已知点P(3, 4)代入斜截式方程中得:4 = -2(3) + b求解得到b = 10因此,直线L的斜截式方程为:y = -2x + 10通过以上题目和解析,我们掌握了直线和圆的方程及其不同形式的表示方法。

20道直线与圆的方程特训题(含详细的答案解析)

20道直线与圆的方程特训题(含详细的答案解析)

圆与直线方程的训练题一.选择题(共20小题)1.圆(x+1)2+y2=2的圆心到直线y=x+3的距离为()A.1 B.2 C.D.22.圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=()A.﹣ B.﹣C.D.23.已知两点P(4,0),Q(0,2),则以线段PQ为直径的圆的方程是()A.(x+2)2+(y+1)2=5 B.(x﹣2)2+(y﹣1)2=10C.(x﹣2)2+(y﹣1)2=5 D.(x+2)2+(y+1)2=104.圆心在直线y=x上,经过原点,且在x轴上截得弦长为2的圆的方程为()A.(x﹣1)2+(y﹣1)2=2 B.(x﹣1)2+(y+1)2=2C.(x﹣1)2+(y﹣1)2=2或(x+1)2+(y+1)2=2 D.(x﹣1)2+(y+1)2=2或(x+1)2+(y﹣1)2=25.已知圆x2+y2+2x﹣2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是()A.﹣2 B.﹣4 C.﹣6 D.﹣86.直线x+y=1与圆x2+y2﹣2ay=0(a>0)没有公共点,则a的取值范围是()A.(0,)B.(,)C.(,)D.(0,)7.直线l:x=my+2与圆M:x2+2x+y2+2y=0相切,则m的值为()A.1或﹣6 B.1或﹣7 C.﹣1或7 D.1或﹣8.圆(x﹣1)2+y2=1与圆x2+(y﹣1)2=2的位置关系为()A.外离 B.外切 C.相交 D.内切9.圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣3)2=9的位置关系为()A.外切 B.相交 C.内切 D.相离10.已知圆C1:x2+y2=1,圆C2:x2+y2+4x﹣6y+4=0,则圆C1与圆C2的位置关系是()A.外离 B.相切 C.相交 D.内含11.若圆O1:(x﹣3)2+(y﹣4)2=25和圆O2:(x+2)2+(y+8)2=r2(5<r<10)相切,则r等于()A.6 B.7 C.8 D.912.直线x﹣y+3=0被圆(x+2)2+(y﹣2)2=2截得的弦长等于()A.B.C.2D.13.在直角坐标系中,直线x+y+3=0的倾斜角是()A.B.C.D.14.直线AB的斜率为2,其中点A(1,﹣1),点B在直线y=x+1上,则点B的坐标是()A.(4,5)B.(5.7)C.(2,1)D.(2,3)15.直线L1:ax+3y+1=0,L2:2x+(a+1)y+1=0,若L1∥L2,则a的值为()A.﹣3 B.2 C.﹣3或2 D.3或﹣216.已知直线l1:x+y=0,l2:2x+2y+3=0,则直线l1与l2的位置关系是()A.垂直 B.平行 C.重合 D.相交但不垂直17.若直线ax﹣y+1=0与直线2x+y+2=0平行,则a的值为()A.﹣2 B.﹣1 C.D.118.已知点(a,2)(a>0)到直线l:x﹣y+3=0的距离为1,则a=()A.B.C.D.19.点(2,1)到直线3x﹣4y+2=0的距离是()A.B.C.D.20.在直角坐标系xOy中,已知点A(4,2)和B(0,b)满足|BO|=|BA|,那么b的值为()A.3 B.4 C.5 D.6参考答案与试题解析一.选择题(共20小题)1.(2016•北京)圆(x+1)2+y2=2的圆心到直线y=x+3的距离为()A.1 B.2 C.D.2【解答】解:∵圆(x+1)2+y2=2的圆心为(﹣1,0),∴圆(x+1)2+y2=2的圆心到直线y=x+3的距离为:d==.故选:C.2.(2016春•金昌校级期末)圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=()A.﹣ B.﹣C.D.2【解答】解:圆x2+y2﹣2x﹣8y+13=0的圆心坐标为:(1,4),故圆心到直线ax+y﹣1=0的距离d==1,解得:a=,故选:A.3.(2016•长沙模拟)已知两点P(4,0),Q(0,2),则以线段PQ为直径的圆的方程是()A.(x+2)2+(y+1)2=5 B.(x﹣2)2+(y﹣1)2=10C.(x﹣2)2+(y﹣1)2=5 D.(x+2)2+(y+1)2=10【解答】解:∵圆的直径为线段PQ,∴圆心坐标为(2,1)半径r===∴圆的方程为(x﹣2)2+(y﹣1)2=5.故选:C.4.(2016•平度市一模)圆心在直线y=x上,经过原点,且在x轴上截得弦长为2的圆的方程为()A.(x﹣1)2+(y﹣1)2=2 B.(x﹣1)2+(y+1)2=2C.(x﹣1)2+(y﹣1)2=2或(x+1)2+(y+1)2=2 D.(x﹣1)2+(y+1)2=2或(x+1)2+(y﹣1)2=2【解答】解:画出圆A满足题中的条件,有两个位置,当圆心A在第一象限时,过A作AC⊥x轴,又|OB|=2,根据垂径定理得到点C为弦OB的中点,则|OC|=1,由点A在直线y=x上,得到圆心A的坐标为(1,1),且半径|OA|=,则圆A的标准方程为:(x﹣1)2+(y﹣1)2=2;当圆心A′在第三象限时,过A′作A′C′⊥x轴,又|OB′|=2,根据垂径定理得到点C′为弦OB′的中点,则|OC′|=1,由点A′在直线y=x上,得到圆心A′的坐标为(﹣1,﹣1),且半径|OA′|=,则圆A′的标准方程为:(x+1)2+(y+1)2=2,综上,满足题意的圆的方程为:(x﹣1)2+(y﹣1)2=2或(x+1)2+(y+1)2=2.故选C5.(2016•贵州校级模拟)已知圆x2+y2+2x﹣2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是()A.﹣2 B.﹣4 C.﹣6 D.﹣8【解答】解:圆x2+y2+2x﹣2y+a=0 即(x+1)2+(y﹣1)2=2﹣a,故弦心距d==.再由弦长公式可得2﹣a=2+4,∴a=﹣4,故选:B.6.(2016•扬州校级一模)直线x+y=1与圆x2+y2﹣2ay=0(a>0)没有公共点,则a的取值范围是()A.(0,)B.(,)C.(,)D.(0,)【解答】解:把圆x2+y2﹣2ay=0(a>0)化为标准方程为x2+(y﹣a)2=a2,所以圆心(0,a),半径r=a,由直线与圆没有公共点得到:圆心(0,a)到直线x+y=1的距离d=>r=a,当a﹣1>0即a>1时,化简为a﹣1>a,即a(1﹣)>1,因为a>0,无解;当a﹣1<0即0<a<1时,化简为﹣a+1>a,即(+1)a<1,a<=﹣1,所以a的范围是(0,﹣1)故选A7.(2016•佛山模拟)直线l:x=my+2与圆M:x2+2x+y2+2y=0相切,则m的值为()A.1或﹣6 B.1或﹣7 C.﹣1或7 D.1或﹣【解答】解:圆M:x2+2x+y2+2y=0,即(x+1)2+(y+1)2=2,表示以M(﹣1,﹣1)为圆心,半径等于的圆.再根据圆心到直线l:x﹣my﹣2=0的距离等于半径,可得=,求得m=1,或m=﹣7,故选:B.8.(2016•枣庄一模)圆(x﹣1)2+y2=1与圆x2+(y﹣1)2=2的位置关系为()A.外离 B.外切 C.相交 D.内切【解答】解:这两个圆(x﹣1)2+y2=1与圆x2+(y﹣1)2=2的圆心分别为(1,0)、(0,1);半径分别为1、.圆心距为,大于半径之差而小于半径之和,可得两个圆相交,故选:C.9.(2016春•漳州期末)圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣3)2=9的位置关系为()A.外切 B.相交 C.内切 D.相离【解答】解:圆C(x+2)2+y2=4的圆心C(﹣2,0),半径r=2;圆M(x﹣2)2+(y﹣3)2=9的圆心M(2,3),半径R=3.∴|CM|==5=R+r=3+2=5.∴两圆外切.故选:A.10.(2016春•厦门期末)已知圆C1:x2+y2=1,圆C2:x2+y2+4x﹣6y+4=0,则圆C1与圆C2的位置关系是()A.外离 B.相切 C.相交 D.内含【解答】解:圆C1:x2+y2=1,表示以C1(0,0)为圆心,半径等于1的圆.圆C2:x2+y2+4x﹣6y+4=0,即(x+2)2+(y﹣3)2=9,表示以C2(﹣2,3)为圆心,半径等于3的圆.∴两圆的圆心距d==,∵3﹣1<<3+1,故两个圆相交.故选:C.11.(2016春•承德期末)若圆O1:(x﹣3)2+(y﹣4)2=25和圆O2:(x+2)2+(y+8)2=r2(5<r<10)相切,则r等于()A.6 B.7 C.8 D.9【解答】解:圆(x﹣3)2+(y﹣4)2=25的圆心M(3,4)、半径为5;圆(x+2)2+(y+8)2=r2的圆心N(﹣2,﹣8)、半径为r.若它们相内切,则圆心距等于半径之差,即=|r﹣5|,求得r=18或﹣8,不满足5<r<10.若它们相外切,则圆心距等于半径之和,即=|r+5|,求得r=8或﹣18(舍去).故选:C.12.(2016•马鞍山)直线x﹣y+3=0被圆(x+2)2+(y﹣2)2=2截得的弦长等于()A.B.C.2D.【解答】解:连接OB,过O作OD⊥AB,根据垂径定理得:D为AB的中点,根据(x+2)2+(y﹣2)2=2得到圆心坐标为(﹣2,2),半径为.圆心O到直线AB的距离OD==,而半径OB=,则在直角三角形OBD中根据勾股定理得BD==,所以AB=2BD=故选D.13.(2016•衡阳校级模拟)在直角坐标系中,直线x+y+3=0的倾斜角是()A.B.C.D.【解答】解:直线x+y+3=0斜率等于﹣,设此直线的倾斜角为θ,则tanθ=﹣,又0≤θ<π,∴θ=,故选D.14.(2016•长沙校级模拟)直线AB的斜率为2,其中点A(1,﹣1),点B在直线y=x+1上,则点B的坐标是()A.(4,5)B.(5.7)C.(2,1)D.(2,3)【解答】解:根据题意,点B在直线y=x+1上,设B的坐标为(x,x+1),则直线AB的斜率k===2,解可得x=4,即B的坐标为(4,5),故选:A.15.(2016•衡阳校级模拟)直线L1:ax+3y+1=0,L2:2x+(a+1)y+1=0,若L1∥L2,则a 的值为()A.﹣3 B.2 C.﹣3或2 D.3或﹣2【解答】解:直线L1:ax+3y+1=0的斜率为:,直线L1∥L2,所以L2:2x+(a+1)y+1=0的斜率为:所以=;解得a=﹣3,a=2(舍去)故选A.16.(2016•马鞍山)已知直线l1:x+y=0,l2:2x+2y+3=0,则直线l1与l2的位置关系是()A.垂直 B.平行 C.重合 D.相交但不垂直【解答】解:由直线l1:x+y=0,l2:2x+2y+3=0,可得斜率都等于﹣1,截距不相等.∴l1∥l2.故选:B.17.(2016•海南校级模拟)若直线ax﹣y+1=0与直线2x+y+2=0平行,则a的值为()A.﹣2 B.﹣1 C.D.1【解答】解:∵直线ax﹣y+1=0与直线2x+y+2=0平行,∴,解得a=﹣2,故选:A.18.(2016春•新疆期末)已知点(a,2)(a>0)到直线l:x﹣y+3=0的距离为1,则a=()A.B.C.D.【解答】解:由点到直线的距离公式得:=,∵a>0,∴a=.故选C.19.(2016•衡阳校级模拟)点(2,1)到直线3x﹣4y+2=0的距离是()A.B.C.D.【解答】解:点(2,1)到直线3x﹣4y+2=0的距离d==.故选A.20.(2016•北京)在直角坐标系xOy中,已知点A(4,2)和B(0,b)满足|BO|=|BA|,那么b的值为()A.3 B.4 C.5 D.6【解答】解:∵点A(4,2)和B(0,b)满足|BO|=|BA|,∴b2=42+(2﹣b)2,∴b=5.故选:C.。

(完整版)直线和圆的方程单元测试题含答案解析.docx

(完整版)直线和圆的方程单元测试题含答案解析.docx

完美 WORD 格式 .整理《直线与圆的方程》练习题1一、选择题1.方程 x2+y2+2ax-by+c=0 表示圆心为 C( 2, 2),半径为 2 的圆,则 a、 b、c 的值依次为( B )( A)2、 4、 4;( B)-2 、 4、4;( C) 2、 -4 、 4;( D) 2、-4 、 -42.点 (1,1) 在圆 ( x a ) 2( y a ) 2 4 的内部,则a的取值范围是(A)(A)1a1(B)0a1(C)a1或 a 1 (D) a 13.自点A(1,4 ) 作圆 (x 2 ) 2( y 3 ) 21的切线,则切线长为(B)(A)5(B) 3(C)10(D) 54.已知 M (-2,0), N (2,0),则以 MN为斜边的直角三角形直角顶点P 的轨迹方程是 ( D )(A)x 2y 22(B)x 2y 24(C)x 2y 22(x 2 )(D)x 2y 24( x2)5.若圆 x2y 2(1)x2y0 的圆心在直线x 1 左边区域,则的取值范围是2(C)A. (0,+)B.1,+1(1,∞ )D. R C. (0, )56. . 对于圆x2y121上任意一点P( x, y),不等式x y m0 恒成立,则m的取值范围是BA .( 2 1,+ )B .2,C.( 1,+ )D.1,+ 1 +7. 如下图,在同一直角坐标系中表示直线y =ax与=+,正确的是 (C)y x a完美 WORD 格式 .整理8. 一束光线从点A( 1,1)出发,经x轴反射到圆 C : ( x 2)2( y 3) 2 1 上的最短路径是( A)A. 4B. 5C.32 1D.269.直线 3 x y 230 截圆x2+y2=4得的劣弧所对的圆心角是( C )A、B、C、D、643210. 如图,在平面直角坐标系中,Ω是一个与 x 轴的正半轴、 y 轴的正半轴分别相切于点C、 D的定圆所围成的区域( 含边界 ) ,、、、是该圆的四等分点.若点 (, ) 、点′( ′,y′)A B C D P x yP x满足 x≤ x′且 y≥ y′,则称 P优于 P′.如果Ω中的点 Q满足:不存在Ω中的其它点优于Q,那么所有这样的点组成的集合是劣弧()QA. ABB. BCC. CDD. DA[ 答案 ]D[ 解析 ]首先若点M 是Ω 中位于直线右侧的点,则过,作与BD平行的直线交于AC M ADC一点 N,则 N 优于 M,从而点 Q必不在直线 AC右侧半圆内;其次,设 E 为直线 AC左侧或直线 AC 上任一点,过 E 作与 AC平行的直线交AD于 F.则 F 优于 E,从而在 AC左侧半圆内及 AC上( A 除外 ) 的所有点都不可能为Q,故 Q点只能在 DA上.二、填空题11. 在平面直角坐标系xoy中,已知圆x2y2 4 上有且仅有四个点到直线12x 5 y c 0 的距离完美 WORD 格式 .整理为 1,则实数 c 的取值范围是( 13,13).12. 圆:x2y 24x 6 y0和圆: x 2y26x 0 交于 A, B 两点,则AB的垂直平分线的方程是3x y9013. 已知点 A(4,1) , B(0,4) ,在直线L: y=3x-1 上找一点P,求使 |PA|-|PB|最大时P的坐标是( 2,5 )14. 过点A( - 2,0)22→→的直线交圆 x + y =1交于 P、Q两点,则 AP· AQ的值为________.[ 答案 ]3[ 解析 ]设 PQ的中点为 M,|OM|= d,则| PM|=| QM|= 1-d2AM|2→=2,|= 4-d .∴|AP|4-d-2→221-d, | AQ|= 4-d+ 1-d,∴→·→= |→||→|cos0 °= ( 4-2- 1-2)(4-2+1-2) = (4 -2) - (1 -d2) = 3.AP AQ AP AQ d d d d d15. 如图所示,已知A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是________.[ 答案 ]210[ 解析 ]点P关于直线AB的对称点是 (4,2),关于直线的对称点是 ( - 2,0) ,从而所求路OB程为(4 + 2) 2+ 22= 2 10.三.解答题16. 设圆 C满足:①截y 轴所得弦长为2;②被x轴分成两段圆弧,其弧长之比为3: 1;③圆心到直线 l : x 2 y 0 的距离为5,求圆 C的方程.5解.设圆心为(a,b) ,半径为r ,由条件①:r 2a2 1 ,由条件②:r 22b2,从而有:2b2a21 .由条件③:| a2b | 5 | a 2b |2b 2 a 2 1 a 1 1 ,解方程组 2b | 可得:b 155| a 1或a1, 所 以 r 22b 22 . 故 所 求 圆 的 方 程 是 (x1)2 ( y 1)22 或b1(x 1)2 ( y1)2 2 .17. 已知ABC 的顶点 A 为( 3,- 1),AB 边上的中线所在直线方程为 6x 10 y 59 0 ,B的平分线所在直线方程为x 4y 10 0 ,求 BC 边所在直线的方程.解:设 B(4 y 1 10, y 1) ,由 AB 中点在 6x 10 y59 0 上,可得: 6 4y 17 10 y 1 159 0 , y 1 = 5 ,所以 B(10,5) .22设 A 点关于 x4 y 10 0 的对称点为 A'( x ', y') ,x3 4 y 4 10A (1,7) . 故 BC : 2x 9 y 650 .则有2 1 1 2y1x3 418. 已知过点 M3, 3 的直线 l 与圆 x 2y 2 4 y 21 0 相交于 A, B 两点,( 1)若弦 AB 的长为 2 15 ,求直线 l 的方程;( 2)设弦 AB 的中点为 P ,求动点 P 的轨迹方程.解 : ( 1 ) 若 直 线 l 的 斜 率 不 存 在 , 则 l 的 方 程 为 x3 , 此 时 有 y 24 y 12 0 , 弦| AB | | y A y B | 268 ,所以不合题意.故设直线 l 的方程为 y3 k x 3 ,即 kx y 3k3 0 .x 2y 220, 2 ,半径 r 5 .将圆的方程写成标准式得25,所以圆心圆心 0, 2 到直线 l 的距离 d| 3k 1|,因为弦心距、半径、弦长的一半构成直角三角形,k 213k2所以 152120 ,所以 k3 .k 225,即 k31所求直线 l 的方程为 3xy 12 0 .( 2 )设 P x, y ,圆心 O 1 0, 2 ,连接 O 1 P ,则 O 1 PAB .当 x 0 且 x3 时,kO PkAB1,又kABkMPy( 3),x( 3)1则有y2 y3 22x1,化简得x3 y 55......( 1)0 x 3222当 x0 或 x 3时, P 点的坐标为0, 2 , 0, 3 , 3, 2 , 3, 3 都是方程(1)的解,22所以弦 AB 中点 P 的轨迹方程为 x3 y5 5 .22219. 已知圆 O 的方程为 x 2+y 2= 1,直线 l 1 过点 A (3,0) ,且与圆 O 相切.(1) 求直线 l 1 的方程;(2) 设圆 O 与 x 轴交于 P ,Q 两点, M 是圆 O 上异于 P , Q 的任意一点,过点A 且与 x 轴垂直的直线为 l 2,直线 PM 交直线 l 2 于点 P ′,直线 QM 交直线 l 2 于点 Q ′. 求证:以 P ′Q ′为直径的圆 C 总过定点,并求出定点坐标[ 解析 ](1) ∵直线 l 1 过点(3,0) ,∴设直线 l 1 的方程为 y = ( x - 3) ,即 kx - -3 = 0,Aky k则圆心 O (0,0) 到直线 l 1 的距离为 d = |3 k | = 1,2k + 12解得 k =± 4 .∴直线 l 1 的方程为 y =±2 ( x - 3) .4(2) 在圆 O 的方程 x 2+ y 2= 1 中,令 y = 0 得, x =± 1,即 P ( - 1,0) , Q (1,0).又直线 l 2 过点tA 与 x 轴垂直,∴直线 l 2 的方程为 x = 3,设 M ( s , t ) ,则直线 PM 的方程为 y = s + 1( x + 1) .x = 3 4t解方程组y = t ( x + 1)得, P ′ 3, s + 1 .s + 12 t同理可得 Q ′ 3, s -1 .4t 2t∴以 P ′ Q ′为直径的圆 C 的方程为 ( x -3)( x - 3) + y - s +1 y - s -1 = 0,.专业资料分享.又 s 2+ t 2= 1,∴整理得 ( x 2+ y 2- 6x +1) +6s -2y =0, t2若圆 C 经过定点,则 y = 0,从而有 x - 6x + 1= 0,∴圆 C 总经过的定点坐标为 (3 ±22 ,0) .20. 已知直线 l :y=k (x+2 2 ) 与圆 O: x 2 y 2 4 相交于 A 、B 两点, O 是坐标原点,三角形 ABO 的面积为 S. ( 1)试将 S 表示成的函数 S ( k ),并求出它的定义域; ( 2)求 S 的最大值,并求取得最大值时k 的值 .【解】: : 如图 ,(1) 直线 l 议程 kx y2 2k 0( k 0),原点 O 到 l 的距离为 oc2 2 k 1 k2弦长 AB2 228K 2 OAOC2 421 K( 2) ABO 面积S1AB OC4 2 K 2 (1 K 2 )AB 0,1 K1( K0),1K 22S(k ) 4 2 k 2 (1 k 2 )( 1 k 1且K1 k 2(2)令11 t1,1 k 2t,2S(k )4 2 k 2 (1 k 2 )422t 2 3t 14 22(t3) 2 1 .1 k 248当 t=3时 ,13 , k 2 1 , k 3时,Smax241 k2 4 3321. 已知定点A( 0, 1),B( 0, -1 ),C(1, 0).动点P满足:AP BP k | PC |2.(1)求动点P的轨迹方程,并说明方程表示的曲线类型;(2)当kuuur uuur2 时,求| 2AP BP | 的最大、最小值.uuur( x, yuuur uuur(1x, y) .因为解:( 1)设动点坐标为P(x, y),则AP1) , BP ( x, y1) , PC AP BP k | PC |2,所以x2y2 1 k[( x 1)2y 2 ] . (1k) x2(1k ) y22kx k 1 0 .若 k1,则方程为 x 1 ,表示过点(1, 0)且平行于 y 轴的直线.若 k1,则方程化为 (x k )2y2(1)2.表示以 (k,0) 为圆心,以1为1k1k k1|1 k |半径的圆.( 2)当k 2 时,方程化为(x2) 2y21,uuur uuur uuur uuur9x29 y2 6 y 1 .因为 2AP BP(3x,3 y 1) ,所以| 2 AP BP |又 x2y24xuuur uuur6y26 .3 ,所以| 2 AP BP | 36x因为 ( x 2) 2y 21,所以令 x2cos, y sin,则 36x6y26 6 37 cos()46[46637, 46637] .uuur uuur46637337 ,所以 | 2AP BP |的最大值为最小值为4663737 3 .。

(完整版)直线与圆综合练习题含答案

(完整版)直线与圆综合练习题含答案

直线与圆的方程训练题一、选择题:1.直线1x =的倾斜角和斜率分别是( )A .B .C . ,不存在D . ,不存在 2.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b aB .1=-b aC .0=+b aD .0=-b a3.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x 5.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关系是( )A .平行B .垂直C .斜交D .与的值有关 6.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )A .4 BCD7.如果直线l 沿x 轴负方向平移3个单位再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是( )A .-13B .3-C .13D .38.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( )A .23 B .32 C .32- D . 23-9.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( ) A .360x y +-= B .320x y -+= C .320x y +-= D .320x y -+=10.若 为 圆的弦AB 的中点,则直线AB 的方程是( )A. 03=--y xB. 032=-+y xC. 01=-+y x D . 052=--y x11.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A .2 B .21+ C .221+D .221+ 12.在坐标平面内,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( )0135,1-045,10900180,,a b θ(2,1)P -22(1)25x y -+=A .1条B .2条C .3条D .4条 13.圆0422=-+x y x 在点)3,1(P 处的切线方程为( )A .023=-+y xB .043=-+y xC .043=+-y xD .023=+-y x14.直线032=--y x 与圆9)3()2(22=++-y x 交于,E F 两点,则∆EOF (O 是原点)的面积为( ) A.23 B.43C.52 D.55615.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( )A .03222=--+x y x B .0422=++x y xC .03222=-++x y xD .0422=-+x y x16.若过定点)0,1(-M 且斜率为k 的直线与圆05422=-++y x x 在第一象限内的部分有交点,则k 的取值范围是( )A. 50<<k B. 05<<-k C. 130<<k D. 50<<k 17.圆:06422=+-+y x y x 和圆:0622=-+x y x 交于,A B 两点,则AB 的垂直平分线的方程是( ) A.30x y ++= B .250x y --= C .390x y --= D .4370x y -+=18.入射光线在直线1:23l x y -=上,经过x 轴反射到直线2l 上,再经过y 轴反射到直线3l 上,若点P是1l 上某一点,则点P 到3l 的距离为( )A .6 B .3 C D 二、填空题:19.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________; 若3l 与1l 关于x 轴对称,则3l 的方程为_________; 若4l 与1l 关于x y =对称,则4l 的方程为___________;20.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________.21.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点一:直线的方程1.倾斜角和斜率例1在下列四个命题中,正确的为坐标平面内的任何一条直线均有倾斜角和斜率;直线的倾斜角的取值范围是(,;若一条直线的斜率为,则此直线的倾斜角为;若一条直线的倾斜角为,则此直线的斜率为.例2图中直线,,的斜率分别是,,,则,,的大小关系是:例3直线的倾斜角为例4已知两点,,则直线AB的斜率为例5若直线:,与直线:互相平行,则m 的值等于例6已知直线:与:垂直,则k的值是例7若三点,,共线,则m的值为例8若直线的倾斜角为,则实数a的值为例9已知两条直线和互相垂直,则等于例10已知过点,和,的直线与直线平行,则m的值为2.直线方程表达式例1过两点,的直线的倾斜角为°,则=例2斜率为,在y轴的截距为3的直线方程是例3直线和坐标轴所围成的三角形的面积是例4过点且与直线平行的直线方程是例5过点且斜率为的直线方程为例6过点,且在坐标轴上的截距相等的直线的一般方程为例7若直线l经过点,且垂直于直线,则直线l的方程是例8已知直线l经过点,且斜率为.求直线l的方程.求与直线l平行,且过点的直线方程.求与直线l垂直,且过点的直线方程.例9直线MN的斜率为2,其中点,点M在直线上,则M坐标为例10已知直线l过直线l1:3x﹣5y﹣10=0和l2:x+y+1=0的交点,且平行与l3:x+2y﹣5=0,求直线l的方程.1)求与点P(3,5)关于直线l:x-3y+2=0对称的点P′的坐标.2)已知直线l:y=-2x+6和点A(1,-1),过点A作直线l1与直线l相交于B点,且|AB|=5,求直线l1的方程.3.点到直线的距离、点到点的距离、平行线间的距离例1点和点的距离是例2点到直线的距离为例3圆的圆心到直线的距离为1,则例4已知直线与平行,则他们之间的距离是考点二:圆的方程例1圆(x-2)2+(y+3)2=1的圆心坐标是()例2圆C:x2+y2-2x+2y-2=0的圆心坐标为()A.(1,1)B.(1,-1)C.(-1,-1)D.(-1,1)例3以(1,-1)为圆心且与直线x+2=0相切的圆的方程为()例4以(-1,1)为圆心,半径为2的圆的标准方程是______ .例5过三点,,的圆交于轴于两点,则().例6若圆的半径为1,其圆心与点关于直线对称,则圆的标准方程为_______. 例7以点(5,4)为圆心且与x轴相切的圆的方程是()A.(x-5)2+(y-4)2=16B.(x+5)2+(y-4)2=16C.(x-5)2+(y-4)2=25D.(x+5)2+(y-4)2=25例8已知三点,,,,,则外接圆的圆心到原点的距离为例9已知A(-4,-5)、B(6,-1),则以线段AB为直径的圆的方程是()A.(x+1)2+(y-3)2=29 B.(x-1)2+(y+3)2=29C.(x+1)2+(y-3)2=116 D.(x-1)2+(y+3)2=116例11过三点O(0,0),A(1,1),B(4,2)的圆的方程是()A.x2+y2+8x-2y-20=0 B.x2+y2-4x+2y-20=0C.x2+y2-8x+6y=0 D.x2+y2-8x-6y=0例12已知圆C1:x2+y2-2x-4y+m=0,1)求实数m的取值范围;2)若直线l:x+2y-4=0与圆C相交于M、N两点,且OM⊥ON,求m的值;.已知圆C的圆心在x轴的正半轴上,点M(0,)在圆C上且圆心到直线的距离为,则圆C的方程为圆心在直线上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C的标准方程为1.点与圆的位置关系例1点()在圆-2y-4=0的内部,则的取值范围是_______例2点在圆的内部,则a的取值范围是_______2.直线与圆的位置关系①相离例1直线 到圆C : 距离最大值和最小值_______直线 分别与x 轴,y 轴交于A,B 两点,点P 在圆 上,则△ABP 面积的取值范围_______②相交例1:若圆x 2+y 2-2x -4y =0的圆心到直线x -y +a =0的距离为22,则a 的值为_______ (2018高考)直线 与圆 交于A,B 两点,则 已知直线l 过圆 的圆心,且与直线 垂直,则l 的方程是______ 例2:已知直线 与圆心为 的圆 相交于 两点,且 为等边三角形,则实数 _________.例3:圆的圆心到直线的距离为1,则________. 例4:若直线 与圆 始终有公共点,则实数 的取值范围是________例5:已知直线 与圆 相交于 两点,若 , 则 .例6:直线 与圆 交于 , 两点,则 ________ 例7:知直线 与圆 : 相交,截得的弦长为 .求圆C的方程;例8:设直线y=x+2a 与圆C :x 2+y 2-2ay-2=0相交于A ,B 两点,若 ,则圆C 的面积为_________例9:在平面直角坐标系xoy 中,已知圆 有且仅有三个点到直线12x-5y+c=0的距离为1,则实数c 的值是_________例10:若直线y=kx+1与圆x 2+y 2=1相交于P,Q 两点,且∠POQ=120°(其中O 为坐标原点),则k 的值为________若直线 与圆 相交于A,B 两点,且∠AOB °,O 为坐标原点,则r=过点P( 的直线l 与圆 有公共点,则直线l 的倾斜角的取值范围是 2228130x y x y +--+=10ax y +-=a =例11:若过点A(4,0)的直线l与曲线(x-2)2+y2=1有公共点,则直线l的斜率的取值范围为________例12:若直线x-y+m=0被圆(x-1)2+y2=5截得的弦长为23,则m的值为________例13:已知圆(x-2)2+(y+1)2=16的一条直径通过直线x-2y+3=0被圆所截弦的中点,则该直径所在的直线方程为________例14:已知圆O:x2+y2=4上到直线l:x+y=a的距离等于1的点至少有2个,则a的取值范围为________例15:过原点且与直线6x-3y+1=0平行的直线l被圆x2+(y-3)2=7所截得的弦长为________.例16:已知圆C的方程是x2+y2-8x-2y+8=0,直线y=a(x-3)被圆C截得的弦最短时,直线方程为________.例17:在平面直角坐标系xOy中,圆C:x2+y2+4x-2y+m=0与直线x-3y+3-2=0相切.1)求圆C的方程;2)若圆C上有两点M,N关于直线x+2y=0对称,且|MN|=23,求直线MN的方程.例3:已知直线l:x-y+6=0与圆x2+y2=12交于A,B两点,过A,B两点分别作直线l 的垂线与x轴交于C,D两点,则|CD|是________..③相切例1:以点(2,-1)为圆心且与直线x+y=6相切的圆的方程是________________.直线与圆相切,则b的值是____________例2:已知圆C的半径为2,圆心在x轴的正半轴上,直线3x+4y+4=0与圆C相切,则圆C的方程为___________.例3:平行于直线且与圆相切的直线的方程是________.例4:若圆C经过坐标原点和点(4,0),且与直线y=1相切,则圆C的方程是_________. 例5:已知直线:是圆的对称轴.过点作圆的一条切线,切点为,则________.例6:与圆x2+y2-4x+6y+3=0同圆心,且与直线x-2y-3=0相切的圆的方程________ A.x2+y2-4x+6y-8=0 B.x2+y2-4x+6y+8=0C.x2+y2+4x-6y-8=0 D.x2+y2+4x-6y+8=0例7:x2+y2+4x+2by+b2=0与x轴相切,则b=________.例8:过点P(3,1)作圆C:x2+y2-2x=0的两条切线,设切点分别为A,B,1)求切线的方程;2)求出直线AB的方程.例9:过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为________例10:已知过点(-2,0)的直线与圆C:x2+y2-4x=0相切于点P(P在第一象限内),则过点P且与直线3x-y=0垂直的直线l的方程为________例11:已知圆C:x2+y2-4x-6y+12=0,点A(3,5).1)求过点A的圆的切线方程;2)O点是坐标原点,连接OA,OC,求△AOC的面积S.轨迹方程例1:已知点M(-1,0),N(1,0),曲线E上任意一点到点M的距离是到点N距离的倍。

1)求曲线E的方程;2)点在曲线E上运动,则:i)求的最大值与最小值;ii)求的最大值与最小值.例2:已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.1)求M的轨迹方程;圆的方程综合问题例1.已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.1)求k的取值范围;2)若=12,其中O为坐标原点,求|MN|.例2.已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l 的右上方.1)求圆C的方程;2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.3.圆与圆的位置关系例1.圆x2+y2-2x-5=0和圆x2+y2+2x-4y-4=0的交点为A、B,则线段AB的垂直平分线方程为________A .x +y -1=0B .2x -y +1=0C .x -2y +1=0D .x -y +1=0例2.已知圆C 1:(x +1)2+(y -3)2=25,圆C 2与圆C 1关于直线3x-2y-4=0对称,则圆C 2的方程是________A .(x -3)2+(y -5)2=25B .(x -5)2+(y +1)2=25C .(x -1)2+(y -4)2=25D .(x -3)2+(y +2)2=25例3圆 : 和圆 : 相切,实数 的可能取值为 ________ 例4.已知圆 以原点为圆心,且与圆 外切,1)求圆 的方程;2)求直线 与圆 相交所截得的弦长.已知圆M : 截直线 所得线段的长度是 ,则圆M 与圆N : 的位置关系是若圆C 1: 与圆C 2: 外切,则m圆的方程的最值问题例1点P 是圆 上的动点,点Q , ,O 为坐标原点,则△OPQ 面积的最小值是考点三:圆的方程综合问题例1:在直角坐标系xOy 中,曲线y =x 2+mx –2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:1)能否出现AC ⊥BC 的情况?说明理由;2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.例2:在平面直角坐标系xOy 中,曲线与坐标轴的交点都在圆C 上. 1)求圆C 的方程; 2)若圆C 与直线交与A ,B 两点,且,求a 的值。

相关文档
最新文档