高考理科数学临考练兵测试题(一)
2019年普通高等学校招生全国统一考试 高考模拟调研卷理科数学(一)
2019年普通高等学校招生全国统一考试高考模拟调研卷理科数学(一)2019年普通高等学校招生全国统一考试高考模拟调研卷-理科数学(一)本试卷共4页,满分150分,考试时间120分钟。
第Ⅰ卷一、选择题(共12小题,每小题5分,共60分)1.已知集合A={x|-3x+2≤0},B={x|x²-x≥0},则A∩B的取值范围是(B)[-1,0)2.设复数z满足z+2i=1+i,则z的值为(C)2/3-4i/33.一组数据:1,3,5,7,9,11,则这组数据的方差是(B)104.若二项式(ax+3)的展开式的常数项为160,则实数a的值为(C)35.若函数f(x)=a+x-log₅3的零点落在区间(k,k+1)(k∈Z)内,若2a=3,则k的值为(D)16.设p:4>2;q:log₂x -17.设等差数列{an}的前n项和为Sn,公差为3,a₅=14,若Sm+2=Sm+37,则m的值为(B)68.宋元时期数学名著《算术启蒙》中关于“松竹并生”的问题:a≤b。
松长四尺,竹长一尺,松日自半,竹日自倍,松竹何日而长等。
如图是根据此问题设计的一个程序框图,若输入a=4,b=1,则输出的n=2.9.函数f(x)=3cosx-xe,x∈[-π/2,π/2]的图象大致是(D)10.若存在实数x,y满足不等式组{x-2y-2≥0.x+3y-2≥0.2x+y-9≤0.y=logₐx},则实数a的取值范围是{a|a≥2}11.已知函数f(x)=x³-3x²+2x+1,g(x)=x³-2x²-5x+6,则f(x)与g(x)的零点个数之和为(C)412.已知函数f(x)=sinx+cosx,g(x)=2cosx,则f(x)与g(x)的零点个数之和为(A)3注:第11、12题已被删除。
1)过抛物线y=-2px(p>0)的焦点F的直线l(斜率小于0)交该抛物线于P,Q两点,已知PQ=5FQ(Q在x轴下方),且三角形POQ(O为坐标原点)的面积为10,则p的值为(A)22.(解析:由于Q在x轴下方,所以PQ=5FQ=5p,设P(x1,y1),Q(x2,y2),则有y1=-2px1,y2=-2px2,又F(0,-p),所以PQ=|y2-y1|=2p|x2-x1|=5p,即|x2-x1|=2.5,又由于三角形POQ面积为10,所以|y1-y2|*x1/2=10,解得x1=5,x2=2.5,代入y1=-2px1中可得p=22.)2)若函数f(x)=e^(ax+3),函数y=f(f(x))-2有5个不同的零点,则实数a的取值范围是(B)(-e,e)。
高考数学(理科)模拟试卷及答案3套
高考数学(理科)模拟试卷及答案3套模拟试卷一试卷满分:150分一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项填涂在答题卡......上) 1. 2020i = ( )A .1B .1-C .iD .i -2.设i 为虚数单位,复数()()12i i +-的实部为( )A.2B.-2C. 3D.-3 3.若向量,)()3,(R x x a∈=ρ,则“4=x ”是“5=a ρ”的()A.充分而不必要条件B.必要而不充分条件 C 充要条件 D.既不充分也不必要条件 4.下列函数中,在区间(0,+∞)上单调递增的是( )A. B. C.x y 21log = D.5.已知)cos(2)2cos(απαπ+=-,且31)tan(=+βα,则βtan 的值为( ) .A 7- .B 7.C 1.D 1-6.将函数()()()sin 20f x x ϕϕ=+<<π的图象向右平移4π个单位长度后得到函数()sin 26g x x π⎛⎫=+ ⎪⎝⎭的图象,则函数()f x 的一个单调减区间为( )A .5,1212ππ⎡⎤-⎢⎥⎣⎦ B .5,66ππ⎡⎤-⎢⎥⎣⎦ C .5,36ππ⎡⎤-⎢⎥⎣⎦ D .2,63ππ⎡⎤⎢⎥⎣⎦ 7. 如图,在平行四边形ABCD 中,11,,33AE AB CF CD G ==为EF 的中点,则DG =u u u r ( )A .1122AB AD -u u u r u u u r B .1122AD AB -u u u r u u u r C. 1133AB AD -u u u r u u u r D .1133AD AB -u u ur u u u r8. 执行如图所示的程序框图,则输出的a 值为( )A .3-B .13 C.12- D .2 9. 公元前5世纪下半叶开奥斯地方的希波克拉底解决了与化圆为方有关的化月牙形为方.如图,以O 为圆心的大圆直径为4,以AB 为直径的半圆面积等于AO 与BO 所夹四分之一大圆的面积,由此可知,月牙形区域的面积与△AOB 的面积相等.现在在两个圆所覆盖的区域内随机取一点,则该点来自于阴影部分的概率是( )A .384ππ++ B .684ππ++ C. 342ππ++ D .642ππ++10.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,在x 轴上F 的右侧有一点A ,以FA 为直径的圆与椭圆在x轴上方部分交于M 、N 两点,则||||||FM FN FA +等于( )A . 22a b -B 22a b +C 222a b -D 222a b +11. 已知函数21181,2,log 2)(21≤≤<≤⎪⎩⎪⎨⎧+=x x x x f x,若))(()(b a b f a f <=,则ab 的最小值为 A.22B.21C.42D.3512. 已知双曲线C :)0,0(12222>>=-b a by a x ,过其右焦点F 作渐近线的垂线,垂足为B ,交y 轴于点C ,交另一条渐近线于点A ,并且点C 位于点A ,B 之间.已知O 为原点,且a OA 35||=,则=||||FC FAA.45 B.34C.23D.25二、填空题: 本题共4小题,每小题5分,共20分.将答案填在答题卡横线上。
2023届高考理科数学模拟试卷一(含答案及解析)
2023届高考理科数学模拟试题一(含答案及解析)本卷分选择题和非选择题两部分,满分150分,考试时间120分钟。
注意事项:1. 考生务必将自己的姓名、准考证号用黑墨水钢笔、签字笔写在答题卷上;2. 选择题、填空题每小题得出答案后,请将答案填写在答题卷相应指定位置上,答在试题卷上不得分;3. 考试结束,考生只需将答题卷交回。
参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 是锥体的高 如果事件A 、B 互斥,那么()()()P A B P A P B +=+ 如果事件A 、B 相互独立,那么()()()P A B P A P B *=*第一部分 选择题(共40分)一、选择题(本大题共8小题,每小题5分,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 已知复数1z i =+,则2z= A . i 2-B .i 2C .i -1D .i +12. 设全集,U R =且{}|12A x x =->,{}2|680B x x x =-+<,则()U C A B =A .[1,4)-B .(2,3)C .(2,3]D .(1,4)-3. 椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A .14B .12C . 2D .4 4. ABC ∆中,3A π∠=,3BC =,AB =,则C ∠=A .6πB .4π C .34π D .4π或34π5. 已知等差数列{}n a 的前n 项和为n S ,且2510,55S S ,则过点(,)n P n a 和2(2,)n Q n a(n N +)的直线的斜率是A .4B .3C .2D .16.已知函数),2[)(+∞-的定义域为x f ,且1)2()4(=-=f f )()(x f x f 为'的导函数,函数)(x f y '=的图象如图所示, 则平面区域⎪⎩⎪⎨⎧<+≥≥1)2(00b a f b a 所围成的面积是A .2B .4C .5D .87. 一台机床有13的时间加工零件A ,其余时间加工零件B , 加工A 时,停机的概率是310,加工B 时,停机的概率是25,则这台机床停机的概率为( )A . 1130B .307 C .107 D .1018. 在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数()f x 的图象恰好通过()n n N +∈个整点,则称函数()f x 为n 阶整点函数。
高考数学理科模拟试卷一含答案
不妨设y1>0,y2<0,则
tan∠ACF=====,
tan∠BCF=-=-,
∴tan∠ACF=tan∠BCF,所以∠ACF=∠BCF.…8分
(Ⅱ)如(Ⅰ)所设y1>0,tan∠ACF=≤=1,当且仅当y1=p时取等号,
此时∠ACF取最大值,∠ACB=2∠ACF取最大值,
(Ⅱ)建立如图所示的坐标系D—xyz,不妨设AD=2,则
D(0,0,0),A(2,0,0),B(2,,0),
C(0,,0),S(0,0,2),E(1,0,1).
=(2,,0),=(1,0,1),=(2,0,0),=(0,-,2).
设m=(x1,y1,z1)是面BED的一个法向量,则
即
因此可取m=(-1,,1).…8分
并且A(,p),B(,-p),|AB|=2p.…12分
21.解:
(Ⅰ)f(x)=-lnx-ax2+x,
f(x)=--2ax+1=-.…2分
令Δ=1-8a.
当a≥时,Δ≤0,f(x)≤0,f(x)在(0,+∞)单调递减.…4分
当0<a<时,Δ>0,方程2ax2-x+1=0有两个不相等的正根x1,x2,
14.在具有5个行政区域的地图(如图)上,给这5个区域着色共使用了4种不同的颜色,相邻区域不使用同一颜色,则有种不同的着色方法。
15.椭圆 的左、右焦点分别为F1,F2,过F2作 轴的垂线与椭圆的一个交点为P,若 ,则椭圆的离心率 。
16.在 中, 边上的高为 则AC+BC=。
三、解答题:大本题共6小题,共70分,
不妨设x1<x2,
则当x∈(0,x1)∪(x2,+∞)时,f(x)<0,当x∈(x1,x2)时,f(x)>0,
高考数学临考练兵测试题13 文
频率组距0.0375 0.012550 55 60 65 70 75 体重高考数学临考练兵测试题13 文第I 卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填在答题卡上 1、设集合2{0}A x x =->1,2{log 0}B x x =>,则AB =A.{}|x x >1B.{}|x x >0C.{}|x x <-1D. {}|x x x <->1或12、设复数212,2z i z z =+-则等于A .3B .-3C .3iD .3i -3、若等差数列{}n a 的前n 项和为n S ,且236a a +=,则4S 的值为 A. 9 B.10 C.11 D. 124、为了了解我校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1︰2︰3,第2小组的频数为12,则抽取的学生人数为A. 46B. 48C. 50D.605、若一个圆台的的正视图如图所示,则其侧面积...等于 A .6 B .6π C .35π D .65π6、设x 、y 满足约束条件04312x y x x y ≥⎧⎪≥⎨⎪+≤⎩则11y x ++取值范围是A.1,52⎡⎤⎢⎥⎣⎦B. []1,3C. [1,5]D.[]1,5-7、函数()2sin(2)f x x ϕ=+的图像如图所示,πϕπ-<<,则ϕ的值为A .3π-B .6π-C .233ππ--或D .566ππ--或8、以下命题中:①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样。
②由3sin 2y x =的图像向右平移3π个单位长度可以得到函数()3sin 23f x x π⎛⎫=-⎪⎝⎭的图像。
③在回归直线方程122.0ˆ+=x y中,当变量x 每增加一个单位时,变量yˆ增加0.2单位。
理科数学高考模拟试题
普通高等学校招生全国统一考试模拟试题(含答案)理科数学第I 卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题列出的四个选项中,只有一项符合题目要求)1.已知全集R U =,集合{}Z x x x A ∈≤≤=,72和{}51<<-=x x B 的关系的韦恩(venn )图如图所示,则阴影部分所表示的集合为( ). A .{}76≤≤x x B .{}50≤≤x x C .{}4,3,2 D .{}7,6,52.i 为虚数单位,复数z 满足iiz -=1,那么z 对应复平面内的点在( )象限. A .第一 B .第二 C .第三 D .第四3.设数列⎭⎬⎫⎩⎨⎧n a n 是公差为d 的等差数列,前n 项和为n S ,若12,363==a a ,则=8S ( )A .10B .11C .12D .13 4.已知一几何体的三视图如图所示,则该几何体的 体积是( )A .6B .9C .12D .18 5.︒︒︒160cos 80cos 40cos =( )A .81B .81-C .41D .41-6.下列程序框图中,输出的A 的值( )A .128 B .129 C .131 D .1347.已知双曲线12222=-b y a x 的离心率为332,则双曲线的两渐近线的夹角为( )A .6π B .4π C .3π D .2π8.若()f x 是R 上周期为5的奇函数,且满足(1)1f =,(2)2f =,则=+)3()4(f f ( )A. 7B. 5 C .-2 D .-39. 如图所示,点A (1,0),B 是曲线132+=x y 上一点,向矩形OABC 内随机投一点,则该点落在图中阴影内的概率为( ) A .21B .32C .73 D .94 10.已知函数()()()⎩⎨⎧≤<<=0,210,log 3x x x x f x ,若()()41=x f f ,则=x ( )A .31B .91C .-9D . -211.已知不等式组220,22,22x y x y ⎧+-≥⎪⎪≤⎨⎪≤⎪⎩表示平面区域Ω,过区域Ω中的任意一个点P ,作圆221x y +=的两条切线且切点分别为,A B ,当APB ∠最大时,PB PA •的值为( ) A .32 B .2C .52 D .3 12.定义在(0,)2π上的函数()f x ,()'f x 是它的导函数,且恒有()()'tan f x f x x >⋅成立.则( )A .)3()6(3ππf f <B .)1(1cos 2)6(3f f ⋅>πC .)4(2)6(6ππf f >D .)3()4(2ππf f > 第II 卷(非选择题,共90分)二、填空题(本题共4小题,每小题5分,共20分)13. 4)31(xx -的展开式中常数项为 .(用数字表示) 14.若等比数列{}n a 的各项均为正数,且510119122a a a a e +=,则++21ln ln a a …=20ln a ________.15.若圆C :02422=++-+m y x y x 与y 轴交于B A ,两点,且︒=∠120ACB ,则实数m 的值为 .16.已知函数x x f lg )(=,)()(,0b f a f b a =>>,则)12)(1(++b a 的最小值等于 .三、解答题:(本大题共5小题,共70分,解答应写出文字说明,证明过程和清算步骤)17.(本题满分12分)在ABC ∆中,已知内角C B A 、、所对的边分别为c b a 、、,向量),sin 2,3(B m -=)2cos ,12cos 2(2B Bn -=,且m //n ,B 为锐角. (I )求角B 的大小; (II )设2b =,求ABC ∆的面积ABC S ∆的最大值.18.(本题满分12分)在直角梯形ABCP 中,AP BC //,AB AP ⊥,==BC AB,221=AP D 为AP 的中点,,,E F G 分别为PC PD CB 、、的中点,将PCD ∆沿CD 折起,使点P 在平面ABCD 上的射影为点D ,如图:(I )求证:AP //平面EFG .(II )求二面角E FG D --的余弦值.19.(本题满分12分)某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.(I )从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率. (II )从合唱团中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望E ξ.1231020 30 40 50 参加人数 活动次数20.(本小题满分12分)已知顶点在坐标原点,焦点在x 轴正半轴的抛物线上有一点1()2A m ,,A 点到抛物线焦点的距离为1.(I )求该抛物线的方程;(II )设00(,)M x y 为抛物线上的一个定点,过M 作抛物线的两条互相垂直的弦MP ,MQ ,求证:PQ 恒过定点00(2,)x y +-.21.(本小题满分12分)设a 为实数,函数()22x f x e x a =-+,x R ∈. (I )求()f x 的单调区间与极值;(II )求证:当ln 21a >-且0x >时,221x e x ax >-+.请考生在22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-1:几何证明选讲.如图,⊙O 内切△ABC 的边于AC AB F E D =,,,,连接AD 交⊙O 于点H ,直线HF 交BC 的延长线于点G . (I )证明:圆心O 在直线AD 上; (II )证明:点C 是线段GD 的中点.23.(本小题满分10分)选修4-4:坐标系与参数方程选讲.已知在直角坐标系x0y 中,曲线1C:sin cos x y θθθθ⎧=+⎪⎨=-⎪⎩(θ为参数),在以平面直角坐标系的原点)为极点,x 轴的正半轴为极轴,取相同单位长度的极坐标系中,曲线2C :sin()16πρθ+=.(I )求曲线1C 的普通方程和曲线2C 的直角坐标方程;(II )曲线1C 上恰好存在三个不同的点到曲线2C 的距离相等,分别求这三个点的极坐标.24.(本小题满分10分)选修4-5:不等式选讲.已知函数()|1||22|.f x x x =-++(I )解不等式()5f x >; (II )若不等式()()f x a a <∈R 的解集为空集,求a 的取值范围. B G CDH FAOE普通高等学校招生全国统一考试模拟试题理科数学答案一、选择题。
高考数学(理科)模拟试题含答案(一)精编版
高考数学(理科)模拟试题含答案(一)精编版高考理科数学模拟试题精编(一)注意事项:1.作答选择题时,在答题卡上涂黑对应选项的答案信息点。
如需改动,先擦干净再涂其他答案。
不得在试卷上作答。
2.非选择题用黑色钢笔或签字笔作答,写在答题卡指定区域内。
如需改动,先划掉原答案再写新答案。
不得用铅笔或涂改液。
不按要求作答无效。
3.答题卡需整洁无误。
考试结束后,交回试卷和答题卡。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.设全集Q={x|2x²-5x≤0,x∈N},且P⊆Q,则满足条件的集合P的个数是()A。
3B。
4C。
7D。
82.若复数z=m(m-1)+(m-1)i是纯虚数,其中m是实数,则z=()A。
iB。
-iC。
2iD。
-2i3.已知等差数列{an}的公差为5,前n项和为Sn,且a1,a2,a5成等比数列,则S6=()A。
80B。
85C。
90D。
954.XXX每天上学都需要经过一个有交通信号灯的十字路口。
已知十字路口的交通信号灯绿灯亮的时间为40秒,黄灯5秒,红灯45秒。
如果XXX每天到路口的时间是随机的,则XXX上学时到十字路口需要等待的时间不少于20秒的概率是()A。
4/5B。
3/4C。
2/3D。
3/56.已知p:a=±1,q:函数f(x)=ln(x+a²+x²)为奇函数,则p 是q成立的()A。
充分不必要条件B。
必要不充分条件C。
充分必要条件D。
既不充分也不必要条件7.(省略了一个选项) 327.(1+x²+4x)²的常数项为()A。
120B。
160C。
200D。
2408.我们可以用随机模拟的方法估计π的值,如图所示的程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为521,则由此可估计π的近似值为()A。
3.119B。
高考数学临考练兵测试题30 文
O 2x1x y x12 高考数学临考练兵测试题30 文第Ⅰ卷 选择题一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}21M x x =∈≤Z ,{}12N x x =∈-<<R ,则MN =( )A . {}1,0,1-B .{}0,1C .{}1,0-D .{}12.已知复数1iz i=+,则复数z 的模为( ) A .2B .2C .12D .12+12i 3.一个几何体的三视图如右图所示(单位长度:cm ), 则此几何体的体积是( ) A .1123cm B .32243cm C .963cmD .2243cm4.在一盒子里装有i 号球i 个(1i =,2,3),现从盒子 中每次取一球,记完号码后放回,则两次取出的球的号码 之积为6的概率是( ) A .12B .15C .13D .165.下列说法中,正确的是( ) A .命题“若22am bm <,则a b <”的逆命题是真命题B .命题“x R ∃∈,02>-x x ”的否定是:“x R ∀∈,02≤-x x ” C .命题“p 或q ”为真命题,则命题“p ”和命题“q ”均为真命题D .已知R x ∈,则“1x >”是“2x >”的充分不必要条件6.已知函数32()f x x bx cx =++的图象如图所示,则2221x x +等于( )A .32B .34 C .38D .3167.已知O 为坐标原点,点A ),(y x 与点B 关于x 轴对称,(0,1)j =,则满足不等式20OA j AB +⋅≤的点A 的集合用阴影表示为( )8.已知1)1,1(=f ,*),(N n m f ∈(m 、*)N n ∈,且对任意m 、*N n ∈都有: ①2),()1,(+=+n m f n m f ;②)1,(2)1,1(m f m f =+.给出以下三个结论:(1)9)5,1(=f ;(2)16)1,5(=f ;(3)26)6,5(=f . 其中正确的个数为( ) A .3 B .2C .1D .0第Ⅱ卷 非选择题二、填空题:本大题共6个小题,每小题5分,共30分. 9.已知(,0)2πα∈-,3sin 5α=-,则cos()πα-= . 10.阅读如图所示的程序框图,运行相应的程序,如果 输入100,则输出的结果为 , 如果输入2-,则输出的结果为 .11.已知直线220x y -+=经过椭圆22221(0)x y a b a b+=>>的一个顶点和一个焦点,那么这个椭圆的方程为 ,离心率为_______.12.已知△ABC 的三边长分别为7AB =,5BC =, 6CA =,则AB BC ⋅的值为________. 13.从某校随机抽取了100名学生,将他们的体重(单位:kg )数据绘制成频率分布直方图(如图),由图中数据可知m 数是 .14.已知数列{}n a 满足122a =,1n a +的通项公式为 ,na n的最小值为 .三、解答题:本大题共6个小题,共80分.解答题应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知函数23cos sin sin 3)(2-+=x x x x f ()R x ∈. (Ⅰ)求)4(πf 的值;(Ⅱ)若)2,0(π∈x ,求)(x f 的最大值;(Ⅲ)在ABC ∆中,若B A <,21)()(==B f A f ,求ABBC 的值.16.(本小题满分13分)已知数列{}n a 的各项均为正数,其前n 项和为n S ,且满足)(2*2N n a a S n n n ∈+=. (Ⅰ)求321,,a a a ;(Ⅱ)求数列{}n a 的通项公式;(Ⅲ)若1()2n an b n =,求数列}b {n 的前n 项和n T .17.(本小题满分14分)如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD=DC ,E ,F 分别是AB ,PB 的中点.(Ⅰ)求证://EF 平面PAD ; (Ⅱ)求证:EF CD ⊥;(Ⅲ)若G 是线段AD 上一动点,试确定G 点位置,使GF ⊥平面PCB ,并证明你的结论.18.(本小题满分13分)已知椭圆C 中心在原点,焦点在x 轴上,焦距为2,短轴长为3 (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :()0y kx m k =+≠与椭圆交于不同的两点M N 、(M N 、不是椭圆的左、右顶点),且以MN 为直径的圆经过椭圆的右顶点A . 求证:直线l 过定点,并求出定点的坐标.19.(本小题满分14分)已知函数ln ()()a xf x a R x+=∈. (Ⅰ)若4=a ,求曲线)(x f 在点))(,(e f e 处的切线方程; (Ⅱ)求)(x f 的极值;(Ⅲ)若函数)(x f 的图象与函数1)(=x g 的图象在区间],0(2e 上有公共点,求实数a 的取值范围.20.(本小题满分13分)如图111(,)P x y ,222(,)P x y ,,(,)n n n P x y ,12(0,)n y y y n N *<<<<∈是曲线2:3(0)C y x y =≥上的n 个点,点(,0)(1,2,3,,)i i A a i n =在x 轴的正半轴上,1i i i A A P -∆是正三角形(0A 是坐标原点) .(Ⅰ)求123,,a a a ;(Ⅱ)求出点n A (,0)(*)n a n N ∈的横坐标n a 关于n 的表达式.参考答案二、填空题:本大题共6个小题,每小题5分,共30分. 注:两空的题第1个空3分,第2个空2分.三、解答题:本大题共6个小题,共80分.解答题应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)解:(Ⅰ)234cos4sin4sin 3)4(2-+=ππππf 21=. ……………4分 (Ⅱ)2)2cos 1(3)(x x f -=+232sin 21-x x x 2cos 232sin 21-= )32sin(π-=x . ……………6分20π<<x , 32323πππ<-<-∴x . ∴当232x ππ-=时,即125π=x 时,)(x f 的最大值为1. …………8分 (Ⅲ) )32sin()(π-=x x f , 若x 是三角形的内角,则π<<x 0,∴35323π<π-<π-x .令21)(=x f ,得21)32sin(=π-x ,∴632π=π-x 或6532π=π-x ,解得4π=x 或127π=x . ……………10分由已知,B A ,是△ABC 的内角,B A <且21)()(==B f A f ,∴4π=A ,127π=B ,∴6π=--π=B A C . ……………11分又由正弦定理,得221226sin 4sinsin sin ==ππ==C A AB BC . ……………13分16.(本小题满分13分)解:(Ⅰ)3,2,1321===a a a . ……………3分 (Ⅱ) n n n a a S +=22, ①12112---+=n n n a a S , (n ≥2 ) ② ……………5分①—②即得 0))(1(11=+----n n n n a a a a , ……………6分因为01≠+-n n a a , 所以n a a a n n n ==--所以,11(n ∈*N )…………8分(Ⅲ)nn n b )21(=n n T )21(n )21(2212⨯+⋯+⨯+=, 132)21(n )21(2)21(21+⨯+⋯+⨯+=n n T . 两式相减得,112221)21(n )21()21(2121+++-=⨯-+⋯++=n n n n n T所以 nn nT 222+-=. ……………13分17.(本小题满分14分)(Ⅰ)证明:E,F 分别是,AB PB 的中点,//.EF AP ∴,EF PAD AP PAD ⊄⊂又平面平面,//EF PAD ∴平面. ……………………4分 (Ⅱ)证明:四边形ABCD 为正方形,AD CD ∴⊥.PD ABCD ⊥又平面,=PD CD AD PD D ∴⊥,且.CD PAD ∴⊥平面, PA PAD ⊂又平面, CD PA ∴⊥. //EF PA 又,EF CD ∴⊥. ……………………8分 (Ⅲ)解:G 是AD 的中点时,.GF PCB ⊥平面证明如下: ……………………9分取PC 中点H ,连结DH ,HF . ,.PD DC DH PC =∴⊥又,,.BC PDC BC DH DH PCB ⊥∴⊥∴⊥平面平面1////,2HF BC DG DGFH ==∴四边形为平行四边形,//DH GF ∴,.GF PCB ∴⊥平面 ……………………14分18.(本小题满分13分)解: (Ⅰ)设椭圆的长半轴为a ,短半轴长为b ,半焦距为c ,则22222,2,c b a b c =⎧⎪=⎨⎪=+⎩解得2,a b =⎧⎪⎨=⎪⎩ ∴ 椭圆C 的标准方程为 22143x y +=. ………………… 4分 (Ⅱ)由方程组22143x y y kx m⎧⎪+=⎨⎪=+⎩ 消去y ,得()2223484120k x kmx m +++-=. ………………… 6分 由题意△()()()22284344120km km=-+->,整理得:22340k m +-> ① ………………7分 设()()1122,,M x y N x y 、,则122834kmx x k+=-+, 212241234m x x k -=+ . ………………… 8分 由已知,AM AN ⊥, 且椭圆的右顶点为A (2,0), ∴()()1212220x x y y --+=.………………… 10分即 ()()()2212121240k x x km x x m ++-+++=,也即 ()()22222412812403434m km k km m k k--+⋅+-⋅++=++, 整理得2271640m mk k ++=. 解得2m k =- 或 27km =-,均满足① ……………………… 11分 当2m k =-时,直线l 的方程为 2y kx k =-,过定点(2,0),不符合题意舍去;当27k m =-时,直线l 的方程为 27y k x ⎛⎫=- ⎪⎝⎭,过定点2(,0)7,故直线l 过定点,且定点的坐标为2(,0)7. ……………………… 13分19.(本小题满分14分)解:(Ⅰ) ∵4=a , ∴x x x f 4ln )(+=且ee f 5)(=. ……………………… 1分 又∵22ln 3)4(ln )4(ln )(xxx x x x x x f --='+-'+=', ∴223ln 4()e f e e e --'==-. ……………………… 3分 ∴)(x f 在点))(,(e f e 处的切线方程为:)(452e x ee y --=-,即0942=-+e y e x . ……………………… 4分(Ⅱ))(x f 的定义域为),0(+∞,2)(ln 1)(xa x x f +-=',……………………… 5分 令0)(='x f 得ae x -=1.当),0(1ae x -∈时,0)(>'xf ,)(x f 是增函数;当),(1+∞∈-aex 时,0)(<'x f ,)(x f 是减函数; …………………… 7分∴)(x f 在ae x -=1处取得极大值,即11)()(--==a ae ef x f 极大值.……… 8分(Ⅲ)(i )当21e ea<-,即1->a 时,由(Ⅱ)知)(x f 在),0(1ae -上是增函数,在],(21e e a -上是减函数,∴当ae x -=1时,)(xf 取得最大值,即1max )(-=a e x f .又当ae x -=时,0)(=xf ,当],0(aex -∈时,0)(<x f ,当],(2e ex a-∈时,],0()(1-∈a e x f ,所以,)(x f 的图像与1)(=x g 的图像在],0(2e 上有公共点, 等价于11≥-a e ,解得1≥a ,又因为1->a ,所以1≥a . ……………… 11分(ii )当21e ea ≥-,即1-≤a 时,)(x f 在],0(2e 上是增函数,∴)(x f 在],0(2e 上的最大值为222)(e ae f +=, ∴原问题等价于122≥+ea,解得22-≥e a , 又∵1-≤a ∴无解综上,a 的取值范围是1≥a . ……………… 14分20.(本小题满分13分)解:(Ⅰ)1232,6,12a a a ===. …………………………… 6分 (Ⅱ)依题意11(,0),(,0)n n n n A a A a --,则12n n n a a x -+=,n y =在正三角形1n n n P A A -中,有11||)n n n n n y A A a a --==-. 1)n n a a -=-. 1n n a a -∴-= ………………………… 8分2211122()(2,*)n n n n n n a a a a a a n n N ---∴-+=+≥∈ ①,同理可得2211122()(*)n n n n n n a a a a a a n N +++-+=+∈ ②.②-①并变形得1111()(22)0(2,*)n n n n n a a a a a n n N +-+--+--=≥∈ 11n n a a +->,11220n n n a a a +-∴+--=11()()2(2,*)n n n n a a a a n n N +-∴---=≥∈ .∴数列{}1n n a a +-是以214a a -=为首项,公差为2的等差数列. ………… 10分12(1),(*)n n a a n n N +∴-=+∈ ,n a ∴12132431()()()()n n a a a a a a a a a -=+-+-+-++-,2(123)n =++++2n n =+.(1)(*)n a n n n N ∴=+∈…………… 13分。
高三下学期数学(理科)模拟考试卷-附参考答案
高三下学期数学(理科)模拟考试卷-附参考答案注意事项:1.答卷前,考生务必将自己的姓名、班级和考号填写在答题卡上.2.回答选择题时,则选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,则将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项是符合题目要求的.1.已知集合{}{220,M xx x N x y =--<==∣∣,则M N ⋃=( ) A.(],e ∞- B.()0,2 C.(]1,e - D.()1,2- 2.已知复数z 满足()12i 34i z -=-,则z 的共轭复数z =( )A.12i --B.12i -+C.12i -D.12i +3.2023年3月24日是第28个“世界防治结核病日”,我国的宣传主题是“你我共同努力,终结结核流行”,呼吁社会各界广泛参与,共同终结结核流行,维护人民群众的身体健康.已知某种传染疾病的患病率为5%,通过验血诊断该病的误诊率为2%,即非患者中有2%的人诊断为阳性,患者中有2%的人诊断为阴性.若随机抽取一人进行验血,则其诊断结果为阳性的概率为( )A.0.46B.0.046C.0.68D.0.0684.过抛物线2:4C y x =焦点F 的直线交抛物线C 于()()1122,,,A x y B x y 两点,以线段AB 为直径的圆的圆心为1O ,半径为r ,点1O 到C 的准线l 的距离与r 的积为25,则()12r x x +=( )A.40B.30C.25D.205.根据《民用建筑工程室内环境污染控制标准》,文化娱乐场所室内甲醛浓度30.1mg /m为安全范围.已知某新建文化娱乐场所施工中使用了甲醛喷剂,处于良好的通风环境下时,则竣工1周后室内甲醛浓度为36.25mg /m ,3周后室内甲醛浓度为31mg /m ,且室内甲醛浓度()t ρ(单位:3mg /m )与竣工后保持良好通风的时间t (*t ∈N )(单位:周)近似满足函数关系式()eat bt ρ+=,则该文化娱乐场所的甲醛浓度若要达到安全开放标准,竣工后至少需要放置的时间为( ) A.5周 B.6周 C.7周 D.8周6.在轴截面顶角为直角的圆锥内,作一内接圆柱,若圆柱的表面积等于圆锥的侧面积,则圆柱的底面半径与圆锥的底面半径的比值为( )A.14 B.4 C.12 D.27.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,点M 是双曲线右支上一点,且12MF MF ⊥,延长2MF 交双曲线C 于点P .若12MF PF =,则双曲线C 的离心率为( )8.在ABC 中90,4,,A AB AC P Q ===是平面ABC 上的动点,且2AP AQ PQ ===,M 是边BC 上一点,则MP MQ ⋅的最小值为( )A.1B.2C.3D.4二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列结论正确的有( )A.若随机变量,ξη满足21ηξ=+,则()()21D D ηξ=+B.若随机变量()23,N ξσ~,且(6)0.84P ξ<=,则(36)0.34P ξ<<=C.若样本相关系数r 的绝对值越接近1,则成对样本数据的线性相关程度越强D.按从小到大顺序排列的两组数据:甲组:27,30,37,,40,50m ;乙组:24,,33,44,48,52n .若这两组数据的第30百分位数、第50百分位数都分别对应相等,则67m n +=10.2022年12月,神舟十四号返回舱成功着陆,返回舱是宇航员返回地球的座舱,返回舱的轴截面可近似看作是由半圆和半椭圆(都包含,M N 点)组成的“曲圆”,半圆的圆心在坐标原点,半圆所在的圆过椭圆的焦点()0,3F ,椭圆的短轴长等于半圆的直径,如图,在平面直角坐标系中下半圆与y 轴交于点G .若过原点O 的直线与上半椭圆交于点A ,与下半圆交于点B ,则( )A.椭圆的离心率为12B.AFG 的周长为6+C.ABF 面积的最大值是92D.线段AB长度的取值范围是6,3⎡+⎣11.如图,四棱柱1111ABCD A B C D -的底面是边长为1AA ⊥底面ABCD ,三棱锥1A BCD -的体积是3,底面ABCD 和1111A B C D 的中心分别是O 和1,O E 是11O C 的中点,过点E 的平面α分别交11111,,BB B C C D 于点,,F N M ,且BD ∥平面,G α是线段MN 上任意一点(含端点),P 是线段1A C 上任意一点(含端点),则( )A.侧棱1AAB.四棱柱1111ABCD A B C D -的外接球的表面积是40πC.当1125B F BB =时,则平面α截四棱柱所得的截面是六边形 D.PO PG +的最小值是512.已知()()e e ,, 1.01,1e 1e 0.9911a bc d a b c d c d a b >>==-=-=++,则( )A.0a b +>B.0c d +>C.0a d +>D.0b c +>三、填空题:本题共4小题,每小题5分,共20分.13.在平面直角坐标系xOy 中角α的顶点为O ,始边与x 轴的非负半轴重合,终边与圆229x y +=相交于点5t ⎛⎫ ⎪ ⎪⎝⎭,则sin 22πα⎛⎫+= ⎪⎝⎭__________. 14.已知多项式5625601256(2)(1)x x a a x a x a x a x -+-=+++++,则1a =__________.15.已知函数()()2e 2ln x f x k x x x =+-和()2e xg x x=,若()g x 的极小值点是()f x 的唯一极值点,则实数k 的最大值为__________.16.“0,1数列”是每一项均为0或1的数列,在通信技术中应用广泛.设A 是一个“0,1数列”,定义数列()f A :数列A 中每个0都变为“1,0,1”,A 中每个1都变为“0,1,0”,所得到的新数列.例如数列:1,0A ,则数列():0,1,0,1,0,1f A .已知数列1:1,0,1,0,1A ,且数列()1,1,2,3,k k A f A k +==,记数列k A 的所有项之和为k S ,则1k k S S ++=__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)如图,在平面四边形ABCD中3,,sin AC AB DAC BAC BAC ∠∠∠====.(1)求边BC ; (2)若23CDA π∠=,求四边形ABCD 的面积. 18.(本小题满分12分)在各项均为正数的数列{}n a 中()21112,2n n n n a a a a a ++==+. (1)求数列{}n a 的通项公式; (2)若n b =,数列{}n b 的前n 项和为n S ,证1n S <19.(本小题满分12分)2023年3月某学校举行了普通高中体育与健康学业水平合格性考试,考试分为体能测试和技能测试,其中技能测试要求每个学生在篮球运球上篮、羽毛球对拉高远球和游泳3个项目中任意选择一个参加.某男生为了在此次体育学业考试中取得优秀成绩,决定每天训练一个技能项目.第一天在3个项目中任意选一项开始训练,从第二天起,每天都是从前一天没有训练的2个项目中任意选一项训练.(1)若该男生进行了3天训练,求第三天训练的是“篮球运球上篮”的概率;(2)设该男生在考前最后6天训练中选择“羽毛球对拉高远球”的天数为X ,求X 的分布列及数学期望. 20.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12,,F F P 是椭圆上一动点(与左、右顶点不重合),12PF F的内切圆半径的最大值是312.(1)求椭圆C 的方程;(2)过()4,0H 作斜率不为0的直线l 交椭圆于,A B 两点,过B 作垂直于x 轴的直线交椭圆于另一点Q ,连接AQ ,设ABQ 的外心为G ,求证:2AQ GF 为定值.21.(本小题满分12分)在三棱台111A B C ABC -中1AA ⊥平面111111,2,1,ABC AB AC AA A B AB AC ====⊥,E F 分别是1,BC BB 的中点,D 是棱11A C 上的动点.(1)求证:1AB DE ⊥(2)若D 是线段11A C 的中点,平面DEF 与11A B 的交点记为M ,求平面AMC 与平面AME 夹角的余弦值.22.(本小题满分12分)已知函数()ln 1f x x ax =-+有两个零点12,x x ,且122x x >. (1)求实数a 的取值范围;(2)证明:222112e x x x x ⎛⎫⋅+>⎪⎝⎭参考答案1.【答案】C 解析:2201,2M xx x =--<=-∣,由1ln 0x -,得0e x <,则{0,e]N x y ===∣,所以(]1,e M N ⋃=-.故选C.2.【答案】C 解析:因为()12i 34i 5z -=-==,可得()()()512i 512i 12i 12i 12i z +===+--+,所以12i z =-.故选C. 3.【答案】D 解析:设随机抽取一人进行验血,其诊断结果为阳性为事件A ,设随机抽取一人为患者为事件B ,随机抽取一人为非患者为事件B ,则()()()()()0.980.050.020.95P A P A B P B P A B P B =+=⨯+⨯=∣∣0.068.故选D.4.【答案】A 解析:由抛物线的性质知,点1O 到C 的准线l 的距离为12AB r =,依题意得2255r r =⇒=,又点1O 到C 的准线l 的距离为()121252x x r ++==,则有128x x +=,故()1240r x x +=.故选A.5.【答案】B 解析:由题意可知()()()()32341e6.25,3e 1,e 125a ba b a ρρρρ++======解得2e 5a=.设该文化娱乐场所竣工后放置0t 周后甲醛浓度达到安全开放标准,则()()0001102e e e6.255t a t at b a b t ρ--++⎛⎫==⋅=⨯ ⎪⎝⎭0.1,整理得01562.52t -⎛⎫ ⎪⎝⎭.设1562.52m -⎛⎫= ⎪⎝⎭ 因为455562.522⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,所以415m <-<,即56m <<,则011t m --,即0t m 故竣工后至少需要放置的时间为6周.故选B.6.【答案】D 解析:设圆柱和圆锥底面半径分别为,r R ,因为圆锥轴截面的顶角为直,设圆柱高为h ,则,h R r h R r R R-==-,由题意得()222R r r R r πππ⨯=+⨯-,解得2r R=.故选D .7.【答案】D 解析:设1(2)MF t t a =>,由双曲线的定义可得22MF t a =-,又21PF MF t == 则12PF t a =+,由12MF MF ⊥,可得22211||MF MP PF +=,即222(22)(2)t t a t a +-=+,解得3t a =.又2221221MF MF F F +=,即222(3)4a a c +=即c =,所以c e a ==.故选D.8.【答案】B 解析:取PQ 的中点N ,则,MP MN NP MQ MN NQ MN NP =+=+=-,可得()()2221,MP MQ MN NP MN NP MN NP MN MN MA AN MA AN ⋅=+⋅-=-=-=+-当且仅当点N 在线段AM 上时,则等号成立,故|||||||||||3|MN MA AN MA -=-显然当AM BC ⊥时,则MA 取到最小值|||||3||233|MN MA ∴--=故21312MP MQ MN ⋅=--=.故选B.9.【答案】BC 解析:对于A ,由方差的性质可得()()()224D D D ηξξ==,故A 错误;对于B ,由正态密度曲线的对称性可得(36)(6)0.50.34P P ξξ<<=<-=,故B 正确;对于C ,由样本相关系数知识可得,样本相关系数r 的绝对值越接近1,则成对样本数据的线性相关程度越强,故C 正确;对于D ,甲组:第30百分位数为30,第50百分位数为372m +,乙组:第30百分位数为n ,第50百分位数为33447722+=,则30,3777,22n m =⎧⎪⎨+=⎪⎩解得30,40,n m =⎧⎨=⎩故70m n +=,故D 错误.故选BC. 10.【答案】BD 解析:由题知,椭圆中的几何量3b c ==,所以a =则离心率2c e a ===故A 不正确;因为3AB OB OA OA =+=+由椭圆性质可知332OA ,所以6332AB +故D 正确;设,A B 到y 轴的距离分别为12,d d则()1212113222ABFAOFOBFSSSd OF d OF d d =+=⋅+⋅=+当点A在短轴的端点处时,则12,d d 同时取得最大值3,故ABF 面积的最大值是9,故C 不正确;由椭圆定义知2AF AG a +==AFG 的周长6AFGCFG =+=+B 正确.故选BD.11.【答案】BCD 解析:对于选项A ,因为三棱锥1A BCD -的体积111323V AA=⨯⨯=解得1AA=A错误;对于选项B,外接球的半径满足22221440R AB AD AA=++=故外接球的表面积2440S Rππ==,故选项B正确;对于选项D,因为BD∥平面1111,,BD B D B Dα⊄∥平面α,所以11B D∥平面α,又平面1111A B C D⋂平面11,MN B Dα=⊂平面1111A B C D,所以11B D MN∥,又因为四边形1111A B C D是正方形1111A CB D⊥,所以11AC MN⊥,因为侧棱1AA⊥底面1111,A B C D MN⊂底面1111A B C D 所以1AA MN⊥,又1111AC AA A⋂=,所以MN⊥平面11AAC C,垂足是E,故对任意的G,都有PG PE,又因为1111114OO O E AC===,故215PO PG PO PE OE OO++==,故选项D正确;对于选项C,如图,延长MN交11A B的延长线于点Q,连接AQ交1BB于点F,在平面11CC D D内作MH AF∥交1DD于点H,连接AH,则平面α截四棱柱所得的截面是五边形AFNMH,因为1112B Q B N AB==,所以此时1113B FBB=,故11113B FBB<<时截面是六边形,1113B FB<时截面是五边形,故选项C正确.故选BCD.12.【答案】AD 解析:对于A,e e1.010,1,111a ba ba b==>∴>->-++令()e(1)1xf x xx=>-+则()2e1)xxf xx=+'所以()f x在()1,0-上单调递减,在()0,∞+上单调递增,且()01f=,又()1 1.01f>故01,10a b<<-<<令()()()()()()ln ln2ln1ln1,1,1h x f x f x x x x x=--=-++-+∈-,则()2112220111h xx x x-=-+=-<+-+-',所以()h x在()1,1-上单调递减,且()()00,1,0h b=∈-()()()()()()ln ln0,,,f b f b f b f b f af b a b∴-->∴>-∴>-∴>-即0a b+>,故选项A 正确;对于B ,()()1e 1e 0.990,1,1c d c d c d -=-=>∴<< 令()()1e (1)x g x x x =-<,则()e x g x x '=-,所以()g x 在(),0∞-上单调递增,在()0,1上单调递减,且()01g =,又()10.99g -<,故01,10c d <<-<<.令()()()()()()()ln ln 2ln 1ln 1,1,1m x g x g x x x x h x x =--=-++-+=∈-,所以()m x 在()1,1-上单调递减,且()()()()()()00,0,1,ln ln 0,m c g c g c g c g c =∈∴--<∴<- ()(),g d g c d c ∴<-∴<-,即0c d +<,故选项B 错误;对于C ,()()()()()()()11100,0.99,1,0,101f xg a a g a g d g x f a =∴-==>-∈-∴->- 又()g x 在(),0∞-上单调递增 ,0a d a d ∴->∴+< 故选项C 错误;对于D ,由C 可知 ()()(),0,1g b g c b ->-∈ 又()g x 在()0,1上单调递减,b c ∴-< 即0b c +>,故选项D 正确.故选AD.13.【答案】35- 解析:因为角α的终边与圆229x y +=相交于点t ⎫⎪⎪⎝⎭,所以cos 3α=÷=223sin 2cos22cos 12125πααα⎛⎫+==-=⨯-=- ⎪⎝⎭⎝⎭. 14.【答案】74 解析:对于5(2)x -,其二项展开式的通项为515C (2)r r r r T x -+=-,令51r -=,得4r =,故4455C (2)80T x x =-=,对于6(1)x -,其二项展开式的通项为616C (1)k k k k T x -+=- 令61k -=,得5k =,故5566C (1)6T x x =-=-,所以180674a =-=.15.【答案】2e 4 解析:由()2e x g x x =可得()()22442e e e 2x x x x x x x g x x x'-⋅-⋅==,当0x <或2x >时,则()0g x '>,当02x <<时,则()0g x '<,所以()g x 的极小值点是2.由()()2e 2ln xf x k x x x=+-可得()()()()432e 2e 12,0,xx x x k f x k x x x x x x ∞-⎛⎫⎛⎫=+-='--∈+ ⎪ ⎪⎝⎭⎝⎭,因为()f x 的唯一极值点为2,所以3e 0x k x x -或3e 0x k x x -恒成立,所以2e x k x 或2e xk x在()0,∞+上恒成立,因为()2e xg x x=在()0,2上单调递减,在()2,∞+上单调递增,当x ∞→+时,则()g x ∞→+,所以2e x k x 在()0,∞+上恒成立,则()2min e ()24k g x g ==.16.【答案】1103k -⨯ 解析:设数列k A 中0的个数为,1k a 的个数为k b ,则112,2k k k k k k a a b b a b ++=+=+,两式相加,得()113k k k k a b a b +++=+,又115,a b +=∴数列{}k k a b +是以5为首项,3为公比的等比数列153k k k a b -∴+=⨯两式相减,得17.【答案】解:(1)因为sin 14BAC BAC ∠∠=为锐角,所以cos 14BAC ∠==.因为3AC AB ==,在ABC 中由余弦定理得2222cos BC AC AB AC AB BAC ∠=+-⋅⋅即279231BC =+-=,得1BC =. (2)在ADC 中由正弦定理得sin sin CD AC DAC ADC∠∠==,所以1CD =.在ADC 中由余弦定理得222cos 2AD CD AC ADC AD CD ∠+-=⋅,即211722AD AD+--=,解得2AD =.因为121331273,12sin 214423ABCACDSS π=⨯⨯⨯==⨯⨯⨯=所以34ABCACDABCD S SS=+==四边形. 18.【答案】解:(1)()()()211112,20n n n n n n n n a a a a a a a a ++++=+∴-+=,则120n n a a +-=或10n n a a ++= 10,2n n n a a a +>∴=∴数列{}n a 为等比数列,公比为12,2,a =∴数列{}n a 的通项公式为2n n a =.(2)证明:由(1)得112,2n n n n a a ++==则n b ======∴数列{}n b 的前n项和为11n S n =+-=-1n S ∴<当2n时,则10,n n n S S b --===>∴当*n ∈N 时,则{}n S 为递增数列1n S S ∴n S1n S <19.【答案】解:(1)当第一天训练的是“篮球运球上篮”且第三天训练的也是“篮球运球上篮”为事件A ;当第一天训练的不是“篮球运球上篮”且第三天训练的是“篮球运球上篮”为事件B . 由题知,3天的训练过程中总共的可能情况为32212⨯⨯=种 所以,()()12112111,126126P A P B ⨯⨯⨯⨯==== 所以,第三天训练的是“篮球运球上篮”的概率()()13P P A P B =+=.(2)由题知,X 的可能取值为0,1,2,3考前最后6天训练中所有可能的结果有53296⨯=种当0X =时,则第一天有两种选择,之后每天都有1种选择,所以,()5521210329648P X ⨯====⨯; 当1X=时,则共有24444220+++++=种选择,所以()20519624P X ===; 当3X =时,则共有844824+++=种选择,所以()2413964P X ===; 所以()()()()5025210139648P X P X P X P X ==-=-=-=== 所以,X 的分布列为所以()1012324824484E X =⨯+⨯+⨯+⨯=. 20.【答案】解:(1)由题意知1,22c a c a =∴=,又222b a c =-,则,b =设12PF F 的内切圆半径为r ,则()()()121212112222PFF SPF PF F F r a c r a cr =++⋅=+⋅=+⋅. 故当12PF F 面积最大时,则r 最大,即点P 位于椭圆短轴顶点时r = )a c bc +=,把2,a c b ==代入,解得2,1a b c === 所以椭圆C 的方程为22143x y +=.(2)由题意知,直线AB 的斜率存在且不为0,设直线AB 的方程为4x ty =+代入椭圆方程得()()()222223424360,Δ(24)1443414440t y ty t t t +++==-+=-> 设()()1122,,,A x y B x y ,则1212222436,3434t y y y y t t -+==++ 因此可得1223234x x t +=+ 所以AB 中点的坐标为221612,3434t t t -⎛⎫ ⎪++⎝⎭因为G 是ABQ 的外心,所以G 是线段AB 的垂直平分线与线段BQ 的垂直平分线的交点,由题意可知,B Q 关于x 轴对称,故()22,Q x y -AB 的垂直平分线方程为2216123434tt x y t t ⎛⎫--=+ ⎪++⎝⎭ 令0y =,得2434x t =+,即24,034G t ⎛⎫⎪+⎝⎭,所以2222431,3434t GF t t =-=++ 又AQ ==221234t t ==+ 故24AQ GF =,所以2AQGF 为定值,定值为4. 21.【答案】解:(1)证明:取线段AB 的中点G ,连接1,A G EG ,如图所示 因为,E G 分别为,BC AB 的中点,所以EG AC ∥在三棱台111A B C ABC -中11AC AC ∥ 所以,11EG AC ∥,且11D A C ∈ 故1,,,E G A D 四点共面.因为1AA ⊥平面,ABC AG ⊂平面ABC ,所以1AA AG ⊥ 因为1111111,,AA A B AG AG A B AA AG ===⊥∥ 所以四边形11AA B G 是正方形,所以11AB AG ⊥. 又1111111111,,,AB AC AC AG A AC AG ⊥⋂=⊂平面1A DEG 所以1AB ⊥平面1A DEG .因为DE ⊂平面1A DEG ,所以1AB DE ⊥.(2)延长EF 与11C B 相交于点Q ,连接DQ ,则11DQ A B M ⋂=. 因为,F E 分别为1BB 和BC 的中点1B Q BE ∥,所以111B Q B FBE BF== 则11112B Q BE BC B C ===,所以,1B 为1C Q 的中点. 又因为D 为11A C 的中点,且11A B DQ M ⋂=,则M 为11A C Q 的重心 所以1112233A M AB == 因为1AA ⊥平面,ABC AC ⊂平面ABC ,所以1AA AC ⊥.因为11111,AB AC AC AC ⊥∥,所以1AB AC ⊥. 又因为1111,,AA AB A AA AB ⋂=⊂平面11AA B B 所以AC ⊥平面11AA B B ,所以1,,AC AB AA 两两垂直以A 为原点,1,,AC AB AA 所在直线分别为,,x y z 轴建立如图所示空间直角坐标系则()()()()20,0,0,0,2,0,2,0,0,1,1,0,0,,13A B C E M ⎛⎫ ⎪⎝⎭所以()()22,0,0,0,,1,1,1,03AC AM AE ⎛⎫=== ⎪⎝⎭. 设平面AMC 的法向量为()1,,n a b c =则1120,20,3n AC a n AM b c ⎧⋅==⎪⎨⋅=+=⎪⎩取3b =-,则()10,3,2n =-. 设平面AME 的法向量为()2,,n x y z =则220,20,3n AE x y n AM y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩取3y =-,可得()23,3,2n =-. 所以,12121213cos ,2213n n n n n n ⋅===⨯ 故平面AMC 与平面AME 夹角的余弦值为22. 22.【答案】解:(1)()ln 1f x x ax =-+的定义域为()()110,,ax f x a x x∞-+=='- 当0a 时,则()0f x '>恒成立,所以()f x 在()0,∞+上单调递增,()f x 不可能有两个零点,故舍去;当0a >时,则令()0f x '>,解得10x a <<,令()0f x '<,解得1x a> 所以()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ∞⎛⎫+ ⎪⎝⎭上单调递减 所以max 11()ln f x f a a ⎛⎫==⎪⎝⎭. 要使()f x 有两个零点,则max 1()ln 0f x a=>,解得01a <<. 又22111444242ln 10,ln 1110e e e e a f a f a a a a a a ⎛⎫⎛⎫=-⋅+=-<=-+<-+=-< ⎪ ⎪⎝⎭⎝⎭所以当01a <<时,则()f x 在11,e a ⎛⎫ ⎪⎝⎭和214,a a ⎛⎫⎪⎝⎭上各有一个零点21,,x x 且122x x >,所以1122ln 10,ln 10,x ax x ax -+=⎧⎨-+=⎩由fx 的单调性知,当()21,x x x ∈时,则()0f x > 当()1,x x ∞∈+时,则()0f x <.因为2212x x x <<,所以()220f x >,即()2222ln 221ln 1x ax x ax -+>-+ 所以2ln2ax <,而22ln 1x ax +=,即2ln 1ln2x +<,所以220ex <<,而22ln 1x a x +=.令()ln 12,0,e x h x x x +⎛⎫=∈ ⎪⎝⎭,则()221ln 1ln x x h x x x -'--== 因为20,e x ⎛⎫∈ ⎪⎝⎭,所以2ln ln 0ex ->->,所以()0h x '> 所以()h x 在20,e ⎛⎫⎪⎝⎭上单调递增所以()2ln2eln22e 2eh x h ⎫<==⎪⎭,所以eln20,2a ⎛⎫∈ ⎪⎝⎭.(2)因为1220x x >>,所以22211212e e 2x x x x x x ⎛⎫⋅+⋅ ⎪⎝⎭,当且仅当12x x =时取等号 而1220x x >>,故222112e e x xx x ⎛⎫⋅+>⋅⎪⎝⎭要证222112e x x x x ⎛⎫⋅+>⎪⎝⎭2e 42⋅,即证1228e x x ,即证1228ln ln e x x 即证12ln ln 3ln22x x +-.设12x t x =,因为1220x x >>,所以2t > 由(1)得1122ln 1,ln 1,x ax x ax +=⎧⎨+=⎩,两式作差,化简得21ln ln ln 1,ln 1ln 11t tx x t t t =-=-+-- 所以122ln ln ln ln 21tx x t t +=+--. 令()2ln ln 2,21tg t t t t =+->-,则()2212ln (1)t t t g t t t '--=-. 令()212ln t t t t ϕ=--,则()()2222ln ,20t t t t tϕϕ'=---''=>,易知()t ϕ'在()2,∞+上单调递增故()()222ln20t ϕϕ'>'=->,所以()t ϕ在()2,∞+上单调递增,所以()()234ln20t ϕϕ>=->所以()g t 在()2,∞+上单调递增,所以()()23ln22g t g >=-,即12ln ln 3ln22x x +>-得证.所以不等式222112e x x x x ⎛⎫⋅+> ⎪⎝⎭.。
高考数学(理科)模拟试题(一).doc
高考数学(理科)模拟试题(一)第Ⅰ卷(选择题 共40分)一、选择题(每小题5分,满分40分)1. 设方程20x px q --=的解集为A ,方程20x qx p +-=的解集为B,若{}1A B ⋂=,则p+q= ( )A 、2B 、0C 、1D 、-1 2. 已知()513cos απ-=-,且α是第四象限的角,则()2sin πα-+=( ) A 1213- B 1213 C 1312± D 5123. 已知x a a a xlog 10=<<,则方程的实根个数是 ( )A 、1个B 、2个C 、3个D 、1个或2个或3个4.实数0=a 是直线12=-ay x 和122=-ay x 平行的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件 5.平面上有一个△ABC 和一点O,设c OC ,b OB ,OA ===a ,又OA 、BC 的中点分别为D 、E ,则向量DE 等于( ) A .)(++21B)(++-21 C )(+-21 D )(++216. 函数x x x y sin cos -=在下面哪个区间内是增函数( )A 、)23,2(ππ B 、)2,(ππ C 、)25,23(ππ D 、)3,2(ππ 7.点P(x,y)是椭圆12222=+by a x ()b a 0>>上的任意一点,21F ,F 是椭圆的两个焦点,且∠︒≤90PF F 21,则该椭圆的离心率的取值范围是 ( ) A. 22e 0≤< B. 1e 22<≤ C. 1e 0<< D. 22e =第Ⅱ卷二、填空题(每小题5分,满分30分)9.复数21i i-+(i 是虚数单位)的实部为10.在10)x 1)(x 1(+-的展开式中, 5x 的系数是 11. 函数()sin()(0,0,||)2f x A x A πωϕωϕ=+>><的部分图象如图1所示,则()f x = 12. 程序框图(如图2)的运算结果为 13. 从以下两个小题中选做一题(只能做其中一个,做两个按得分最低的记分).(1)自极点O 向直线l 作垂线,垂足是H(3,2(π), 则直线l 的极坐标方程为 。
高考数学临考练兵测试题4 理
y 32高考数学临考练兵测试题4 理第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.) 1. 设集合1|22A x x ⎧⎫=-<<⎨⎬⎩⎭,{}|1B x x =≤,则A B = A . B .C . 1|12x x ⎧⎫-<≤⎨⎬⎩⎭D .2. 下列说法中,正确的是 A .命题“若22am bm <,则a b <”的逆命题是真命题B .命题“x R ∃∈,02>-x x ”的否定是:“x R ∀∈,02≤-x x ” C .命题“p 或q ”为真命题,则命题“p ”和命题“q ”均为真命题D .已知R x ∈,则“1x >”是“2x >”的充分不必要条件3. 已知回归方程 1.515y x ∧=- 则A. y =1.5x -15B. 15是回归系数a C . 1.5是回归系数a D. x =10时,y =0 4. 求曲线2y x =与y x =所围成图形的面积,其中正确的是 A .120()S x x dx =-⎰B .120()S x x dx =-⎰C .12()S yy dy =-⎰D .1()S y y dy =⎰5. 在ABC ∆中,若,2,3==∠b A π33=ABC S ∆,则cB A cb a sin sin sin ++++的值为A. 74B.3574 C.3394 D. 3214 6. 在ABC ∆中,M 是BC 的中点,1AM =,点P 在AM 上且满足2AP PM =,则()PA PB PC ⋅+等于A. 49-B. 43- C. 3 D. 497. 图中的阴影部分由底为1,高为1的等腰三角DM BA图1 图2 图3形及高为2和3的两矩形所构成.设函数()(0)S S a a=≥是图中阴影部分介于平行线0y=及y a=之间的那一部分的面积,则函数()S a的图象大致为8. 下图展示了一个由区间(0,1)到实数集R的映射过程:区间(0,1)中的实数m对应数轴上的点M(如图1);将线段AB围成一个圆,使两端点A、B恰好重合(从A到B是逆时针,如图2);再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1)(如图3),图3中直线AM与x轴交于点,0N n,则m的象就是n,记作f m n.则下列命题中正确的是A.114f⎛⎫=⎪⎝⎭B.()f x是奇函数C.()f x在其定义域上单调递增D.()f x的图象关于y轴对称第Ⅱ卷(非选择题共110分)二、填空题(考生注意:本大题共8小题,每小题5分,满分35分.其中9—13题为必做题,14—16题为选做题,每个考生从14-16这三个题中选做两个计入总分,如果多做,则按选做题的第一、二个题计分.)9. 在平面直角坐标系xOy 中,设D 是由不等式组⎪⎩⎪⎨⎧≥≤-+≥+-00101y y x y x 表示的区域,E 是到原点的距离不大于1的点构成的区域,向E 中随机投一点,则所投点落在D 中的概率是.10. 如图给出的是计算191242++++的值的程序框图,其中判断框内应填 .11. 把边长为1的正方形ABCD 沿对角线BD 折起形成三棱锥C ABD -的主视图与俯视图如图所示,则左视图的面积为12. 已知等差数列}{n a 的前n 项和为n S ,若1)1(5)1(232=-+-a a ,1)1(5)1(201032010-=-+-a a ,则=+20102a a =2011S13. 在平面直角坐标系xOy 中,O 为坐标原点.定义11,P x y 、22,Q x y 两点之间的“直角距离”为1212(,)d P Q x x y y .若点1,3A -,则(,)d A O = ;已知点1,0B ,点M 是直线30(0)kxykk上的动点,(,)d B M 的最小值为 .14.如图,半径为2的⊙O 中,90AOB ∠=︒,D 为OB 的中点,AD 的延长线交⊙O 于点E ,则线段DE 的长为15. 已知曲线C 的极坐标方程为θρcos 2=,则曲线C 上的点到直线t t y tx (21⎩⎨⎧=+-=为参数)的距离的最大值为 .16. 目标函数是单峰函数,若用分数法需要从12个试验点中找出最佳点,则前两个试验点放在因素范围的位置为A BODE三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.)17. (本小题满分12分)已知函数23cos sin sin 3)(2-+=x x x x f ()R x ∈. (1)若)2,0(π∈x ,求)(x f 的最大值;(2)在ABC ∆中,若B A <,21)()(==B f A f ,求ABBC 的值18. (本小题满分12分)某地区举办科技创新大赛,有50件科技作品参赛,大赛组委会对这50件作品分别 从“创新性”和“实用性”两项进行评分,每项评分均按等级采用5分制,若设“创新性”得分为x ,“实用性”得分为y ,统计结果如下表:(1)求“创新性为4分且实用性为3分”的概率; (2)若“实用性”得分的数学期望为16750,求a 、b 的值.19. (本小题满分12分)已知正方形ABCD 的边长为1,AC BD O =.将正方形ABCD 沿对角线BD 折起,使1AC =,得到三棱锥A —BCD ,如图所示. (1)求证:AO BCD ⊥平面;(2)求二面角A BC D --的余弦值.20. (本小题满分13分)某电视生产企业有A 、B 两种型号的电视机参加家电下乡活动,若企业投放A 、B 两种型号电视机的价值分别为a 、b 万元,则农民购买电视机获得的补贴分别为1,ln(1)10a mb +万元(m >0且为常数).已知该企业投放总价值为10万元的A 、B 两种型号的电视机,且A 、B 两种型号的投放金额都不低于1万元.(1)请你选择自变量,将这次活动中农民得到的总补贴表示为它的函数,并求其定义域; (2)求当投放B 型电视机的金额为多少万元时,农民得到的总补贴最大?21. (本小题满分13分)给定椭圆2222:1(x y C a a b +=>b >0),称圆心在原点O ,半径为22a b +的圆是椭圆C的“准圆”。
新高考数学理科预冲刺测试题(附答案)
新高考数学理科预冲刺测试题(附答案)
一、单选题
1.复数(i为虚数单位),则z等于()
A.B.C.D.
2.平面的法向量,平面的法向量,则下列命题正确的是()A.、平行B.、垂直C.、重合D.、不垂直
3.运行如图所示程序,其中算术运算符MOD是用来求余数,若输入和的值分别为和,则输出的值是
A.B.C.D.
4.函数的图象大致为
A.B.
C.D.
5.复数在复平面内对应的点位于
A.第一象限B.第二象限C.第三象限D.第四象限
6.已知实数满足则的最大值为()
A.1B.11C.13D.17
7.定义平面向量之间的一种运算“”如下:对任意的,,令.下面说法错误的是
A.若共线,则
B.
C.对任意的
D.
8.设函数的最大值为,最小值为,则()
A.B.
C.D.
9.《算法统宗》中有一图形称为“方五斜七图”,注曰:方五斜七者此乃言其大略矣,内方五尺外方七尺有奇.实际上,这是一种开平方的近似计算,即用 7 近似表示,当内方的边长为5 时,外方的边长为,略大于7.如图所示,在外方内随机取一点,则此点取自内方的概率为()。
2023年高考数学理科模拟卷01(解析版)--2023年高考数学压轴题专项训练(全国通用)
2023年高考模拟卷(一)理科数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}2|230A x x x =∈--≤N ,2023{R |log 0}B x x =∈≤,则A B = ()A .](0,1B .[0,1]C .{1}D .∅【答案】C【详解】由2230x x --≤,解得13x -≤≤,又因为x N ∈,所以{}0,1,2,3A =,又由2023log 0x ≤,可得20232023log log 1x ≤,解得01x <≤,所以{R |01}B x x =∈<≤,所以A B = {1},故选:C.2.a b >的一个充要条件是()A .11a b <B .22ac bc >C .22log log a b >D .1.7 1.7a b>A B.CD.4.将顶点在原点,始边为x轴非负半轴的锐角α的终边绕原点逆时针转过π4后,交单位圆于点3,5P y⎛⎫- ⎪⎝⎭,那么cosα的值为()A.210B.25C.7210D.9210个问题“今有女子善织,日自倍,五日织五尺.问日织几何?”译文是“今有一女子很会织布,每日加倍增长,5天共织5尺,问每日各织布多少尺?”,则该女子第二天织布()A .531尺B .1031尺C .1516尺D .516尺两地参加志愿者活动,每小组均要求既要有女生又要有男生,则不同的分配方案有()种.A .20B .4C .60D .80【答案】C【详解】先安排2名男生,保证每个小组都有男生,共有2种分配方案;再安排5名女生,若将每个女生随机安排,共有5232=种分配方案,若女生都在同一小组,共有2种分配方案,故保证每个小组都有女生,共有52230-=种分配方案;所以共有23060⨯=种分配方案.故选:C.7.法国数学家加斯帕尔·蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆.我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆()2222:10x y C a b a b +=>>的蒙日圆方程为2222x y a b +=+,现有椭圆222:116x y C a +=的蒙日圆上一个动点M ,过点M 作椭圆C 的两条切线,与该蒙日圆分别交于P ,Q 两点,若MPQ 面积的最大值为41,则椭圆C 的长轴长为()A .5B .10C .6D .12由MPQ 面积的最大值为41,得24116a +=,得5a =,故椭圆C 的长轴长为10.故选:B8.已知函数()sin()(0)f x x ωϕω=+>是在区间π5π,1836⎛⎫⎪⎝⎭上的单调减函数,其图象关于直线π36x =-对称,且f (x )的一个零点是7π72x =,则ω的最小值为()A .2B .12C .4D .8即()824m n ω=-+,m ∈Z ,n ∈Z .根据06ω<≤或1212ω≤≤,可得4ω=,或12ω=,所以ω的最小值为4.故选:C.9.在“2,3,5,7,11,13,17,19”这8个素数中,任取2个不同的数,则这两个数之和仍为素数的概率是()A .328B .528C .17D .31410.已知函数()()31f x a x x =-++的图象过点()0,1与93,4⎛⎫⎪⎝⎭,则函数()f x 在区间[]1,4上的最大值为()A .32B .73C .54D .85若三棱锥-P ABC 体积的最大值是O 的表面积是()A .100πB .160πC .200πD .320π12.若存在[)1,x ∞∈+,使得关于x 的不等式11e x ⎛⎫+≥ ⎪⎝⎭成立,则实数a 的最小值为()A .2B .1ln2C .ln21-D .11ln2-第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.()22051001i12i i1i⎡⎤-⎛⎫+⋅+-=⎢⎥⎪+⎝⎭⎢⎥⎣⎦____________【答案】12i+##2i1+14.已知,x y都是正数,且2x y+=,则4121x y+++的最小值为__________.【答案】95##1.815.21x x +-展开式中2x 的系数为【答案】3-【详解】()31x -的展开式的通项为:()313C 1rr rr T x -+=⋅-,()()()()33321112x x xx x -=++--,取2r =和1r =,计算得到系数为:()()212133C 12C 13⋅-+⨯⋅-=-.故答案为:3-.16.已知圆224x y +=上有且仅有四个点到直线1250x y c -+=的距离为1,则实数c 的取值范围是__________三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.已知正项数列{}n a 的前n 项和为n S ,11a =,数列是公差为1的等差数列.(1)求数列{}n a 的通项公式;(2)记数列11n n a a +⎧⎫⎨⎩⎭的前n 项和为n T ,若存在*N n ∈,使得223n T λλ<-成立,求λ的取值范围.当2n ≥时,121n n n a S S n -=-=-,当n =1时,11a =满足上式,故21n a n =-.(2)令111111(21)(21)22121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭,则111111111123352121221n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ,因为111111*********(21)(23)n n T T n n n n +⎛⎫⎛⎫-=---=> ⎪ ⎪++++⎝⎭⎝⎭,所以()1min 13n T T ==,即22133λλ->,解得13λ<-或1λ>,故λ的取值范围为()()1,1,3-∞-⋃+∞.18.如图,在三棱台111ABC A B C -中,面11AAC C ABC ⊥面,145ACA ACB ∠=∠=,124A C BC ==(1)证明:111BC A B ⊥;(2)792,72AC =1AC ,求二面角11ABC B --的余弦值.【详解】(1)在平面11AC C A 中过点C 作AC 的垂线CD ,在平面ABC 中过点C 作AC 的垂线CE ,面11AA C C ⊥面ABC ,CD AC ⊥,CD ⊂面11AAC C ,且面11AA C C 面ABC AC =,故CD ⊥面ABC ,CE ⊂ 面ABC ,所以CD CE ⊥,故AC ,CE ,CD 三条两两垂直,建立以点C 为坐标原点,直线CA ,CE ,CD 分别为x ,y ,z 轴的空间直角坐标系,知识竞赛,学校设置项目A“地震逃生知识问答”和项目B“火灾逃生知识问答”.甲、乙两班每班分成两组,每组参加一个项目,进行班级对抗赛.每一个比赛项目均采取五局三胜制(即有一方先胜3局即获胜,比赛结束),假设在项目A中甲班每一局获胜的概率为23,在项目B中甲班每一局获胜的概率为12,且每一局之间没有影响.(1)求乙班在项目A中获胜的概率;(2)设乙班获胜的项目个数为X.求X的分布列及数学期望.所以乙班获胜的项目个数的数学期望为115 16220.已知对称轴都在坐标轴上的椭圆C过点1,24A ⎛⎫⎪ ⎪⎝⎭与点()2,0B ,过点()1,0的直线l 与椭圆C 交于P ,Q 两点,直线BP ,BQ 分别交直线3x =于E ,F 两点.(1)求椭圆C 的标准方程;(2)PE QF ⋅是否存在最小值?若存在,求出最小值;若不存在,请说明理由..已知函数.f x的单调区间;(1)讨论()f x的零点个数解:(2)当0m≥时,试判断函数()请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.在平面直角坐标系xOy 中,曲线C 的参数方程为cos sin cos sin x y αααα=-⎧⎨=+⎩(α为参数),以O为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为πcos 6ρθ⎛⎫+= ⎪⎝⎭.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)P 为l 上一点,过P 作曲线C 的两条切线,切点分别为A ,B ,若3APB π∠≥,求点P 横坐标的取值范围.1sin ,2APO ∴∠≥∴在Rt OAP △中,||2||22OP OA ∴≤=,22(323)22x x ∴+-≤,两边平方得解得353522x -+≤≤,3⎡-(1)若1a =,解不等式()9f x ≥;(2)当()0a t t =>时,()f x的最小值为3,若正数m ,n 满足m n t +=,证明:6≤.。
【高考冲刺】普通高等学校招生全国统一考试高考模拟卷(一)-理科数学(附答案及答题卡)
! "
!
*!,!$解析%易得中间的那份为"#个面包(设最小的一份为'!(公差为4(根据题
意(于是有*"#0
!'!
0%4"0
!'!
0&4"+6
! )
/'!
0
!'!
04"(解
得
'!
/
' %
!故
选 ,!
$!-!$解析%依题意(5/%(%&6/"0
' "
/
$ "
(故
6/((故/"6/
( %
将点
#!"(%"代入可得
将0#%1 折成直二面角%+15+#!如图"!若折叠后#$% 两点间的距离为6$则6
的最小值为
!
三解答题解答应写出文字说明证明过程或演算步骤 !5!本小题满分!#分
设0#%1 的内角#$%$1 所对的边分别为'$($7$已知':27%)!#7+(":27#! !"求角# 的大小!"若')($%1 边上的中线#/ )#槡#$求0#%1 的面积!
!"设函数2!$"),!$"*' $+' $当')!时$函数2!$"的最小值为@$且=#*#!4)
@!=$$$4$$"$求 =*4 的最小值!
数学 !理科"试题 第"!页 !共"页"
"#!$年普通高等学校招生全国统一考试考前演练!一"
高考数学临考练兵测试题17 理
高考数学临考练兵测试题17 理第Ⅰ卷(选择题,共60分)一、本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项是符合题目要求的、 1.已知集合},1|{},lg |{2+=∈==∈=x y R y N x y R x M 集合N M = ( )A .),0(+∞B .[)+∞,1C .),(+∞-∞D .(]1,02.若复数3()1x iz x R i i+=∈-,为虚数单位是实数,则x 的值为( )A .-3B .3C .0D .3 3.1a =“”是“函数()f x x a =-在区间[1,)+∞上为增函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.ABC ∆的三内角,,A B C 所对边的长分别为,,a b c 设向量(,)p a c b =+,(,)q b a c a =--,若//p q ,则角C 的大小为( )A .6πB .3π C .2πD .23π5.如右下图是向阳中学筹备2011年元旦晚会举办的选拔主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为 ( ) A .84,4.84 B .84,1.6 C .85,1.6 D .85,8 6.下列命题中,正确的是 ( )A .直线l ⊥平面α,平面β//直线l ,则α⊥βB .平面α⊥β,直线m β⊥,则m //αC .直线l 是平面α的一条斜线,且l ⊂β,则α与β必不垂直 网D .一个平面内的两条直线与另一个平面内的两条直线分别平行,则这两个平面平行7.关于x 的一元二次方程2210x tx a a ++++-=对任意a R ∈无实根,求实数t 的取值范围是( )A .]32,32[- B .]32,32(-C .)32,32[- D .)32,32(-椭圆形区域半椭圆围成的区域等腰三角形两腰与半圆围成的区域圆形区域A B DC8.一个不透明圆锥体的正视图和侧视图(左视图)为两全等的正三角形.若将它倒立放在桌面上,则该圆锥体在桌面上从垂直位置倒放到水平位置的过程中(含起始位置和最终位置),其在水平桌面上正投影不可能是()9.设()f x'是函数()f x的导函数,将()y f x=和()y f x'=的图象画在同一个直角坐标系中,不可能正确的是()10.已知函教)0,0)(sin()(>>+=ωϕωAxAxf的图象与直线()y b b A=<<的三个相邻交点的横坐标分别是2,4,8,则)(xf的单调递增区间是()A.[]Zkkk∈+,36,6ππB.[]Zkkk∈-,6,36C.[]Zkkk∈+,36,6D.[]63,6,k k k Zππ-∈11.设m为实数,若22250{()|30}{()|25}x yx y x x y x y x ymx y-+⎧⎪-∈⊆+⎨⎪+⎩R,,、,≥≥≤≥,则m的最大值是()A.43B.34C.23D.3212.过双曲线22221x ya b-=(0,0a b>>)的左焦点1F作x轴的垂线交双曲线于点P,2F为右焦点,若1245F PF∠=,则双曲线的离心率为()A .221+B .21+C .2D .2第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。
高考数学(理科)模拟试卷及答案3套
x2
x1
1
.
x2
选考题:请考生在第 22、 23 题中任选一题作答。如果多做,则按所做的第一题计分。 22. (选修 4-4 :坐标系与参数方程) (10 分)
在直角坐标系 xOy 中,曲线 C 的参数方程是
x 1 2 cos
( 为参数),以该直角坐标系的原点
y 2 sin
O 为极点, x 轴的正半轴为极轴建立极坐标系,直线 l 的极坐标方程为 3 sin
76516
70436
若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形
势一定是(
)
A.计算机行业好于化工行业
B .建筑行业好于物流行业
C.机械行业就业最困难
D.营销行业比贸易行业就业困难
9. 右图是某三棱锥的三视图,其中网格纸上小正方形的边长为
1,则该三棱锥的体积
60o ?若存在,求出
CP
的值;若不存在,请说明理由
.
CB
21. ( 12 分)已知函数 f ( x) 1 ax2 x 2a2 ln x (a 0) . 2
( 1)讨论 f ( x) 的单调性;
( 2)当 a
1
时,设 f (x) 的两个极值点为
3
x1 , x2 ,证明 :
f ( x1 ) x1
f ( x2 ) < 1
uuur uuur 2ED ,则 AE BE
(
) A. 4
9
2
B
.
9
2 C .9
D .4 9
6. 数列 an 满足 an 1
2n 2 an
N
, a1
3 ,则 a2019
(
高考数学(理科)模拟试卷及答案3套
高考数学(理科)模拟试卷及答案3套模拟试卷一第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5,6}U =,集合{1,3,5}P =,{1,2,4}Q =,则()U P Q =U ð( ) A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}2.在复平面内,复数12iiz +=对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知双曲线22221(0,0)x y a b a b-=>>的焦距为( ) A .2B .4C .6D .84.已知变量x ,y 满足约束条件236133x y y x x y +≤⎧⎪≤+⎨⎪-≤⎩,则目标函数2z x y =+的最小值为( )A .9-B .7-C .5-D .3-5.将函数2sin(2)6πy x =+的图像向左平移π6个单位,得到函数()y f x =的图像,则下列关于函数()y f x =的说法正确的是( )A .()f x 是奇函数B .()f x 的周期是π2C .()f x 的图像关于直线12πx =对称 D .()f x 的图像关于点π(),04-对称 6.中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如右图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、万位……用纵式表示,十位、千位、十万位……用横式表示,则56846可用算筹表示为( )A .B .C .D .7.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A .22π3B .42π3C .22πD .42π8.德国大数学家高斯年少成名,被誉为数学届的王子,19岁的高斯得到了一个数学史上非常重要的结论,就是《正十七边形尺规作图之理论与方法》,在其年幼时,对123100++++L 的求和运算中,提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也称之为高斯算法.现有函数2()(0)36057xf x m m =>+,则(1)(2)(3)(2018)f f f f m +++++L 等于( )A .20183m + B .240363m + C .40366m + D .240376m +9.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若ABC △的面积138cos S C =-,且2a =,3b =,则c =( )A .2B .5C .6D .710.函数2()22xxf x x -=--的图象大致为( )A .B .C .D .11.设O 为坐标原点,P 是以F 为焦点的抛物线22(0)y px p =>上任意一点,M 是线段PF 上的点,且||2||PM MF =,则直线OM 的斜率的最大值为( )A .22B .23C .33D .112.已知11,10(1)(),01x f x f x x x ⎧--<<⎪+=⎨⎪≤<⎩,若方程()21f x ax a -=-有唯一解,则实数a 的取值范围是( )A .2(,)3+∞B .2[,)3+∞C .2{8}[,)3-+∞UD .2{8}(,)3-+∞U第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.已知平面向量(2,1)=-a ,(1,)x =b ,若∥a b ,则x =________. 14.5(3)(2)x y x y -+的展开式中,含24x y 项的系数为_______.(用数字作答)15.若圆22:480C x y x +-+=,直线1l 过点(1,0)-且与直线2:20l x y -=垂直,则直线1l 截圆C 所得的弦长为_______.16.瑞士著名数学家欧拉在研究几何时曾定义欧拉三角形,ABC △的三个欧拉点顶点与垂心连线的中点构成的三角形称为ABC △的欧拉三角形如图,111A B C △是ABC △的欧拉三角形(H 为ABC △的垂心).已知3AC =,2BC =,tan 22ACB ∠=,若在ABC △内部随机选取一点,则此点取自阴影部分的概率为_______.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)已知数列{}n a 的前n 项和n S ,满足2n n S a n =-,记1n n b a =+. (1)求1b ,2b ,3b ;(2)判断数列{}n b 是否为等比数列,并说明理由; (3)求数列{}n a 的通项公式.18.(12分)如图,在直三棱柱111ABC A B C -中,AC AB ⊥,4AC AB ==,16AA =,点E ,F 分别为1CA 和AB 的中点.(1)证明:EF ∥平面11BCC B ;(2)求1B F 与平面AEF 所成角的正弦值.19.(12分)已知点00(,)M x y 为椭圆22:12x C y +=上任意一点,直线00:22l x x y y +=与圆22(1)6x y -+=交于A ,B 两点,点F 为椭圆C 的左焦点.(1)求椭圆C 的离心率及左焦点F 的坐标; (2)求证:直线l 与椭圆C 相切;(3)判断AFB ∠是否为定值,并说明理由.20.(12分)已知函数321()ln 2f x x x ax ax =+-,a ∈R . (1)当0a =时,求()f x 的单调区间;(2)若函数()()f x g x x=存在两个极值点1x ,2x ,求12()()g x g x +的取值范围.21.(12分)有一名高二学生盼望2020年进入某名牌大学学习,假设该名牌大学有以下条件之一均可录取:①2020年2月通过考试进入国家数学奥赛集训队(集训队从2019年10月省数学竞赛一等奖中选拔):②2020年3月自主招生考试通过并且达到2020年6月高考重点分数线,③2020年6月高考达到该校录取分数线(该校录取分数线高于重点线),该学生具备参加省数学竞赛、自主招生和高考的资格且估计自己通过各种考试的概率如下表.若该学生数学竞赛获省一等奖,则该学生估计进入国家集训队的概率是0.2.若进入国家集训队,则提前录取,若未被录取,则再按②、③顺序依次录取:前面已经被录取后,不得参加后面的考试或录取.(注:自主招生考试通过且高考达重点线才能录取) (1)求该学生参加自主招生考试的概率;(2)求该学生参加考试的次数X 的分布列及数学期望; (3)求该学生被该校录取的概率.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,曲线C 的参数方程为126126x m my m m ⎧=+⎪⎪⎨⎪=-⎪⎩(m 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为πcos()13ρθ+=. (1)求曲线C 的普通方程以及直线l 的直角坐标方程; (2)已知点()2,0M ,若直线l 与曲线C 交于P ,Q 两点,求11MP MQ+的值.23.(10分)【选修4-5:不等式选讲】 函数21()(1)4f x x =+.(1)证明:()|()2|2f x f x +-≥; (2)若存在x ∈R ,1x ≠-,使得21[()]|1|4()f x m m f x +≤--成立,求m 的取值范围.答案第Ⅰ卷一、选择题:1.【答案】C2.【答案】D3.【答案】B4.【答案】B5.【答案】D6.【答案】B 7.【答案】B8.【答案】A9.【答案】C10.【答案】B11.【答案】A12.【答案】D第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.【答案】12-14.【答案】110-15.【答案】.【答案】764三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)12b =,24b =,38b =;(2)是等比数列,见解析;(3)21nn a =-.【解答】(1)令1n =,则1121S a =-,故11a =, ∵2n n S a n =-,∴112(1)(2)n n S a n n --=--?,∴[]11122(1)221(2)n n n n n n n S S a a n a n a a n ----==----=--?, ∴121(2)n n a a n -=+?. ∴21213a a =+=,∴1112b a =+=,2214b a =+=,3318b a =+=. (2)数列{}n b 是等比数列.证明如下: ∵1n n b a =+,121n n a a +=+,∴1111(21)2(1)2n n n n n b a a a b ++=+=++=+=,又120b =?,∴数列{}n b 是首项为2,公比为2的等比数列.(3)由(2)知1222n nnb-=?,又1n nb a=+,∴121nn na b=-=-.18.【答案】(1)证明见解析;(2)130.【解答】(1)证明:∵直三棱柱111ABC A B C-中,AC AB⊥,∴可以以1A为顶点建立空间坐标系如图,∵4AC AB==,16AA=,点E,F分别为1CA和AB的中点,取11B C中点D,∴1(0,0,0)A,(2,2,0)D,(2,0,3)E,(0,2,6)F,在111A B CRt△中,111A DB C⊥,∴1A D⊥平面11BCC B,∴1A Du u u u r为平面11BCC B的一个法向量,而(2,2,3)EF=-u u u r,1(2,2,0)A D=u u u u r,∴1440EF A D⋅=-+=u u u r u u u u r,∴1EF A D⊥u u u r u u u u r,又EF⊄平面11BCC B,∴EF∥平面11BCC B.(2)易知(0,0,6)A,1(0,4,0)B,∴(0,2,0)AF=u u u r,1(0,2,6)B F=-u u u u r,设(,,)x y z=n是平面AEF的一个法向量,则20AF y⋅==u u u rn,2230EF x y z⋅=-++=u u u rn,取1x=,则0y=,23z=,即2(1,0,)3=n,设1B F与平面AEF所成角为θ,则111130sin|cos,|||||||13403B FB FB Fθ⋅=<>===⨯u u u u ru u u u ru u u u rnnn,故1B F 与平面AEF所成角的正弦值为65. 19.【答案】(1)2e =,(1,0)F -;(2)证明见解析;(3)是为定值,见解析. 【解答】(1)由题意a =1b =,1c ==,所以离心率2c e a ==,左焦点(1,0)F -. (2)由题知,220012x y +=,即220022x y +=, 当00y =时,直线l方程为x =x =l 与椭圆C 相切,当00y ≠时,由2201222x y x x y y ⎧+=⎪⎨⎪+=⎩,得22220000(2)4440y x x x x y +-+-=,即22002220x x x y -+-=,所以22220000(2)4(22)4880Δx y x y =---=+-=,故直线l 与椭圆C 相切. (3)设11(,)A x y ,22(,)B x y ,当00y =时,12x x =,12y y =-,1x =2222211111(1)(1)6(1)240FA FB x y x x x ⋅=+-=+-+-=-=u u u r u u u r,所以FA FB ⊥u u u r u u u r,即90AFB ∠=︒,当00y ≠时,由2200(1)622x y x x y y ⎧-+=⎨+=⎩,得22220000(1)2(2)2100y x y x x y +-++-=,则20012202(2)1y x x x y ++=+,21222101y x x y -=+, 220000121212222200005441()4222x x x x y y x x x x y y y y --+=-++=+, 因为1122121212(1,)(1,)1FA FB x y x y x x x x y y ⋅=+⋅+=++++u u u r u u u r2222220000000022200042084225445(2)100222222y y x y x x x y y y y -++++--+-++=+==+++.所以FA FB ⊥u u u r u u u r,即90AFB ∠=︒,故AFB ∠为定值90︒.20.【答案】(1)函数()f x 在1(0,)e 递减,在1(,)e+∞递增;(2)(,3ln 4)-∞--. 【解答】(1)当0a =时,()ln f x x x =,()ln 1f x x '=+, 令()0f x '<,解得10x e <<;令()0f x '>,解得1x e>, 故函数()f x 在1(0,)e递减,在1(,)e+∞递增.(2)2()1()ln 2f xg x x ax ax x ==+-(0)x >,21()ax ax g x x -+'=,由题意知:1x ,2x 是方程()0g x '=的两个不相等的正实根, 即1x ,2x 是方程210ax ax -+=的两个不相等的正实根,故21212401010Δa a x x x x a ⎧⎪=->⎪+->⎨⎪⎪=>⎩,解得4a >, ∵221211122211()()()ln ln 22t a g x g x ax ax x ax ax x =+=-++-+ 21212121211[2]()ln(())ln 122a x x x x a x x x x a a =+--++=---, 是关于a 的减函数,故()(4)3ln 4t a t <=--,故12()()g x g x +的范围是(,3ln 4)-∞--. 21.【答案】(1)0.9.(2)分布列见解析;数学期望3.3;(3)0.838.【解答】(1)设该学生参加省数学竞赛获一等奖、参加国家集训队的事件分别为A ,B , 则()0.5P A =,()0.2P B =,1()()P P A P AB =+10.50.5(10.2)0.9=-+⨯-=. 即该学生参加自主招生考试的概率为0.9.(2)该该学生参加考试的次数X 的可能取值为2,3,4,(2)()()0.50.20.1P X P A P B ===⨯=;(3)()10.50.5P X P A ===-=; (4)()()0.50.80.4P X P A P B ===⨯=.所以X 的分布列为()20.130.540.4 3.3E X =⨯+⨯+⨯=.(3)设该学生自主招生通过并且高考达到重点分数线录取,自主招生未通过但高考达到该校录取分数线录取的事件分别为C ,D .()0.1P AB =,()0.90.60.90.486P C =⨯⨯=,()0.90.40.70.252P D =⨯⨯=,所以该学生被该校录取的概率为2()()()0.838P P AB P C P D =++=.22.【答案】(1)2233144x y -=,20x --=;(2.【解答】(1)将126126x m my m m ⎧=+⎪⎪⎨⎪=-⎪⎩两式相加,可得4x y m +=,两式相减,可得13x y m -=,整理可得2233144x y -=, 故曲线C 的普通方程为2233144x y -=, 依题意,得直线l:1(cos )122ρθθ-=,即cos sin 2ρθθ-=, 所以直线l 的直角坐标方程为20x --=.(2)设直线2:12x l y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),代入2233144x y -=中,得23160t ++=,(243162400Δ=-⨯⨯=>,设P ,Q 对应的参数分别为1t ,2t,则12t t +=-12163t t =,所以121211MP MQ t t MP MQ MP MQ t t +++===⋅. 23.【答案】(1)证明见解析;(2)1m ≤02m ≤≤或1m ≥+ 【解答】(1)∵21()(1)04f x x =+≥, ∴()|()2||()||2()||()[2()]||2|2f x f x f x f x f x f x +-=+-≥+-==. (2)当1x ≠-时,21()(1)04f x x =+>,所以1[()]14()y f x f x =+≥=,当且仅当1()4()f x f x =,1x =±因为存在x R ∈,1x ≠-,使得21[()]|1|4()f x m m f x +≤--成立,所以2|1|1m m --≥,所以1m ≤-02m ≤≤或1m ≥模拟试卷二一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|650A x x x =-+≤,{|B x y ==,A B =I ( )A .[)1,+∞B .[]1,3C .(]3,5 D .[]3,52.34i 34i12i 12i+--=-+( ) A .4-B .4C .4i -D .4i3.如图1为某省2019年14~月快递业务量统计图,图2是该省2019年14~月快递业务收入统计图,下列对统计图理解错误的是( )A .2019年14~月的业务量,3月最高,2月最低,差值接近2000万件B .2019年14~月的业务量同比增长率超过50%,在3月最高C .从两图来看2019年14~月中的同一个月快递业务量与收入的同比增长率并不完全一致D .从14~月来看,该省在2019年快递业务收入同比增长率逐月增长 4.已知两个单位向量12,e e ,满足12|2|3e e -=,则12,e e 的夹角为( )A .2π3B .3π4C .π3D .π45.函数1()cos 1x x e f x x e +=⋅-的部分图象大致为( )A .B .C .D .6.已知斐波那契数列的前七项为1、1、2、3、5、8、13.大多数植物的花,其花瓣数按层从内往外都恰是斐波那契数,现有层次相同的“雅苏娜”玫瑰花3朵,花瓣总数为99,假设这种“雅苏娜”玫瑰花每层花瓣数由内向外构成斐波那契数列,则一朵该种玫瑰花最可能有( )层. A .5B .6C .7D .87.如图,正方体1111ABCD A B C D -中,点E ,F 分别是AB ,11A D 的中点,O 为正方形1111A B C D 的中心,则( )A .直线EF ,AO 是异面直线B .直线EF ,1BB 是相交直线C .直线EF 与1BC 所成的角为30︒D .直线EF ,1BB 所成角的余弦值为3 8.执行如图所示的程序框图,输出的S 的值为( )A .0B .2C .4D .2-9.已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,且在区间[1,2]上是减函数,令ln 2a =,121()4b -=,12log 2c =,则()f a ,()f b ,()f c 的大小关系为( )A .()()()f b f c f a <<B .()()()f a f c f b <<C .()()()f c f b f a <<D .()()()f c f a f b <<10.已知点2F 是双曲线22:193x yC -=的右焦点,动点A 在双曲线左支上,点B 为圆22:(2)1E x y ++=上一点,则2||||AB AF +的最小值为( )A .9B .8C .53D .6311.如图,已知P ,Q 是函数()sin()f x A x ωϕ=+π(0,0,||)2A ωϕ>><的图象与x 轴的两个相邻交点,R 是函数()f x 的图象的最高点,且3RP RQ ⋅=uu r uu u r,若函数()g x 的图象与()f x 的图象关于直线1x =对称,则函数()g x 的解析式是( ) A .ππ()3sin()24g x x =+ B .ππ()3sin()24g x x =- C .ππ()2sin()24g x x =+ D .ππ()2sin()24g x x =-12.已知三棱锥P ABC -满足PA ⊥底面ABC ,在ABC △中,6AB =,8AC =,AB AC ⊥,D 是线段AC 上一点,且3AD DC =.球O 为三棱锥P ABC -的外接球,过点D 作球O 的截面,若所得截面圆的面积的最小值与最大值之和为40π,则球O 的表面积为( ) A .72π B .86πC .112πD .128π二、填空题:本大题共4小题,每小题5分.13.已知曲线()(1)ln f x ax x =-在点(1,0)处的切线方程为1y x =-,则实数a 的值为 . 14.已知等差数列{}n a 的前n 项和为n S ,满足711S S =,且10a >,则n S 最大时n 的值是 . 15.《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、異、震、坎、离、良、兑八卦),每一卦由三根线组成(“”表示一根阳线,“”表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为 .16.点A ,B 是抛物线2:2(0)C y px p =>上的两点,F 是拋物线C 的焦点,若120AFB ∠=︒,AB 中点D 到抛物线C 的准线的距离为d ,则||dAB 的最大值为 .三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)ABC △的内角,,A B C 所对的边分别为,,a b c ,已知22()23sin a c b ab C +=+. (1)求B 的大小;(2)若8b =,a c >,且ABC △的面积为33,求a .18.(12分)如图所示的多面体ABCDEF 中,四边形ABCD 是边长为2的正方形,ED FB ∥,12DE BF =,AB FB =,FB ⊥平面ABCD .(1)设BD 与AC 的交点为O ,求证:OE ⊥平面ACF ; (2)求二面角E AF C --的正弦值.19.(12分)设椭圆2222:1(0)x y C a b a b +=>>的左焦点为1F ,右焦点为2F ,上顶点为B ,3O 是坐标原点,且1||||6OB F B ⋅=.(1)求椭圆C 的方程;(2)已知过点1F 的直线l 与椭圆C 的两交点为M ,N ,若22MF NF ⊥,求直线l 的方程.20.(12分)已知函数1π()4cos()23xf x x e =--,()f x '为()f x 的导数,证明:(1)()f x '在区间[π,0]-上存在唯一极大值点; (2)()f x 在区间[π,0]-上有且仅有一个零点.21.(12分)11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地—安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮).在相同的条件下,每轮甲乙两人站在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得1-分;两人都命中或都未命中,两人均得0分.设甲每次投球命中的概率为12,乙每次投球命中的概率为23,且各次投球互不影响. (1)经过1轮投球,记甲的得分为X ,求X 的分布列;(2)若经过n 轮投球,用i p 表示经过第i 轮投球,累计得分,甲的得分高于乙的得分的概率. ①求1p ,2p ,3p ;②规定00p =,经过计算机计算可估计得11(1)i i i i p ap bp cp b +-=++≠,请根据①中1p ,2p ,3p 的值分别写出a ,c 关于b 的表达式,并由此求出数列{}n p 的通项公式.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】已知平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线1C 方程为2sin ρθ=,2C的参数方程为1122x t y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数).(1)写出曲线1C 的直角坐标方程和2C 的普通方程;(2)设点P 为曲线1C 上的任意一点,求点P 到曲线2C 距离的取值范围.23.(10分)【选修4-5:不等式选讲】 已知0a >,0b >,23a b +=.证明:(1)2295a b +≥; (2)3381416a b ab +≤.答 案一、选择题:1.【答案】D2.【答案】D3.【答案】D4.【答案】C5.【答案】B6.【答案】C 7.【答案】C8.【答案】B9.【答案】C10.【答案】A11.【答案】C12.【答案】C二、填空题:本大题共4小题,每小题5分.13.【答案】214.【答案】915.【答案】31416.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)π3;(2)5+【解析】(1)由()22sin a c b C +=+,得2222sin a c ac b C ++=+,所以2222sin a c b ac C +-+=,即()2cos 1sin ac B C +=,所以有()sin cos 1sin C B B C +=,因为(0,π)C ∈,所以sin 0C >,所以cos 1B B +=,cos 2sin 16πB B B ⎛⎫-=-= ⎪⎝⎭,所以1sin 2π6B ⎛⎫-= ⎪⎝⎭, 又0πB <<,所以ππ5π666B -<-<,所以6ππ6B -=,即π3B =.(2)因为11sin 22ac B ac ==12ac =, 又22222cos ()3b a c ac B a c ac =+-=+-=2()3664a c +-=,所以10a c +=,把10c a =-代入到12()ac a c =>中,得5a =.18.【答案】(1)证明见解析;(2 【解析】(1)证明:由题意可知:ED ⊥平面ABCD ,从而EDA EDC ≅Rt Rt △△, ∴EA EC =,又O 为AC 中点,∴DE AC ⊥,在EOF △中,3OE OF EF ===,∴222OE OF EF +=,∴OE OF ⊥,又AC OF O =I ,∴OE ⊥平面ACF . (2)ED ⊥面ABCD ,且DA DC ⊥,如图以D 为原点,DA ,DC ,DE 方向建立空间直角坐标系,从而(0,0,1)E ,(2,0,0)A ,(0,2,0)C ,(2,2,2)F ,(1,1,0)O ,由(1)可知(1,1,1)EO =-uu u r是面AFC 的一个法向量,设(,,)x y z =n 为面AEF 的一个法向量,由22020AF y z AE x z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩n n uu u r uu u r ,令1x =,得(1,2,2)=-n , 设θ为二面角E AF C --的平面角,则||3|cos ||cos ,|||||EO EO EO θ⋅=<>==⋅n n n uu u ruu u r uu u r 6sin θ∴=,∴二面角E AF C --619.【答案】(1)22132x y +=;(2)210x y ±+=. 【解析】(1)设椭圆C 的焦距为2c ,则33c a =,∴3a c =, ∵222a b c =+,∴2b c =,又16OB F B ⋅OB b =,1F B a =,∴6ab =266c =1c =,∴3a =2b =22132x y +=.(2)由(1)知1(1,0)F -,2(1,0)F ,设直线l 方程为1x ty =-,由221132x ty x y =-⎧⎪⎨+=⎪⎩,得22(23)440t y ty +--=,设11(,)M x y ,22(,)N x y ,则122423t y y t +=+,122423y y t -=+, ∵22MF NF ⊥,∴220F M F N ⋅=uuuu r uuu r,∴1212(1)(1)0x x y y --+=,∴1212(11)(11)0ty ty y y ----+=,∴21212(1)2()40t y y t y y +-++=,∴22224(1)8402323t t t t -+-+=++,∴22t =,∴t =.∴l 的方程为10x ±+=.20.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)由题意知:()f x 定义域为(,)-∞+∞,且1π()2sin()23x f x x e '=---.令1π()2sin()23xg x x e =---,[π,0]x ∈-,1π()cos()23xg x x e '=---,[π,0]x ∈-.∵xy e =-在[π,0]-上单调递减,1πcos()23y x =--在[π,0]-上单调递减,()g x '在[π,0]-上单调递减.又π(0)cos()103g '=---<,ππππ1(π)cos()023g e e-'-=----=->, ∴0(π,0)x ∃∈-,使得0()0g x '=,∴当0[π,)x x ∈-时,()0g x '>;当0(,0]x x ∈时,()0g x '<, 即()g x 在区间0[π,)x -上单调递增;在0(,0]x 上单调递减,则0x x =为()g x 唯一的极大值点,即()f x '在区间[π,0]-上存在唯一的极大值点0x .(2)由(1)知1π()2sin()23xf x x e '=---,且()f x '在区间[π,0]-存在唯一极大值点,()f x '在0[π,)x -上单调递增,在0(,0]x 上单调递减,而ππππ1(π)2sin()1023f e e-'-=----=->, π(0)2sin()1103f '=---=>,故()f x '在[π,0]-上恒有()0f x '>,∴()f x 在[π,0]-上单调递增,又ππππ1(π)4cos()023f e e --=---=-<,π(0)4cos()1103f =--=>, 因此,()f x 在[π,0]-上有且仅有一个零点.21.【答案】(1)见解析;(2)①116P =,2736P =,343216P =;②6(1)7a b =-,1(1)7c b =-,11(1)56n n P =-. 【解析】(1)X 的可能取值为1-,0,1.121(1)(1)233P x =-=-⨯=,12121(0)(1)(1)23232P x ==⨯+-⨯-=,121(1)(1)236P x ==⨯-=.∴X 的分布列为(2)①由(1)知,116P =, 经过两轮投球甲的累计得分高有两种情况:一是两轮甲各得1分; 二是两轮有一轮甲得0分,有一轮甲得1分, ∴12211117C ()()662636P =⨯+=, 经过三轮投球,甲的累计得分高有四种情况:一是三轮甲各得1分;二是三轮有两轮各得1分,一轮得0分;三是1轮得1分,两轮各得0分;四是两轮各得1分,1轮得1-分,∴322122233331111111()C ()()C ()()C ()()6626263P =+++.②由11i i i i P aP bP cP +-=++,知1111i i i a cP P P b b+-=+--, 将00P =,116P =,2736P =,343216P =代人,求得617a b =-,117c b =-, ∴6(1)7a b =-,1(1)7c b =-,∴116177i i i P P P +-=+,∴117166i i i P P P +-=-.∴111()6i i i i P P P P +--=-, ∵1016P P -=,∴1{}n n P P --是等比数列,首项和公比都是16. 116n n n P P --=,∴01021111(1)1166()()()(1)15616n n n n n P P P P P P P P --=+-+-++-==--L . 22.【答案】(1)()2121:1x y C +-=,20C y -=;(2)[. 【解析】(1)1C 的直角坐标方程()2211x y +-=,2C 0y -+=. (2)由(1)知,1C 为以(0,1)为圆心,1r =为半径的圆,1C 的圆心(0,1)到2C 的距离为13311231d -+-==<+,则1C 与2C 相交,P 到曲线2C 距离最小值为0,最大值为312d r ++=, 则点P 到曲线2C 距离的取值范围为[310,]2+. 23.【答案】(1)证明见解析;(2)证明见解析.【解析】证明:(1)∵0a >,0b >,23a b +=,∴320a b =->,302b <<, ∴222222699(32)51295()555a b b b b b b +=-+=-+=-+≥, ∴当65b =,3325a b =-=时,22a b +的最小值为95, ∴2295a b +≥.(2)∵0a >,0b >,23a b +=, ∴322ab ≥,908ab <≤,当且仅当322a b ==时,取等号,∴334a b ab +22(4)ab a b =+2[(2)4]ab a b ab =+-22819(94)94()4()168ab ab ab ab ab =-=-=--, ∴98ab =时,334a b ab +的最大值为8116,∴3381416a b ab +≤. 模拟试卷二一、选择题(本大题共12小题,共60.0分) 1. i 2020=( )A. 1B. -1C. iD. -i 2. 已知集合A ={x |0<log 2x <2},B ={y |y =3x +2,x ∈R },则A ∩B =( )A. (1,4)B. (2,4)C. (1,2)D. (1,+∞) 3. 若a =ln2,,的大小关系为( )A. b <c <aB. b <a <cC. a <b <cD. c <b <a 4. 当0<x <1时,则下列大小关系正确的是( )A. x 3<3x <log 3xB. 3x <x 3<log 3 xC. log 3 x <x 3<3xD. log 3 x <3x <x 3 5. 已知cos (-α)=2cos (π+α),且tan (α+β)=,则tanβ的值为( )A. -7B. 7C. 1D. -16.将函数f(x)=sin(2x+φ)(0<φ<π)的图象向右平移个单位长度后得到函数的图象,则函数f(x)的一个单调减区间为()A. B. C. D.7.设向量=(1,-2),=(a,-1),=(-b,0),其中O为坐标原点,a>0,b>0,若A,B,C三点共线,则+的最小值为()A. 4B. 6C. 8D. 98.若数列{a n}满足-=d(n∈N*,d为常数),则称数列{a n}为调和数列.已知数列{}为调和数列,且x1+x2+…+x20=200,则x5+x16=()A. 10B. 20C. 30D. 409.设函数f(x)=x2+2cos x,x∈[-1,1],则不等式f(x-1)>f(2x)的解集为()A. (-1,)B. [0,)C. (]D. [0,]10.设椭圆的左焦点为F,在x轴上F的右侧有一点A,以FA为直径的圆与椭圆在x轴上方部分交于M、N两点,则的值为()A. B. C. D.11.已知向量、、满足,,,E、F分别是线段BC、CD的中点.若,则向量与向量的夹角为()A. B. C. D.12.已知变量x1,x2∈(0,m)(m>0),且x1<x2,若x1<x2恒成立,则m的最大值为()A. eB.C.D. 1二、填空题(本大题共4小题,共20.0分)13.已知数列{a n}满足a1=1,前n项和未s n,且s n=2a n(n≥2,n∈N*),则{a n}的通项公式a n=______.14.已知边长为3的正△ABC三个顶点都在球O的表面上,且OA与平面ABC所成的角为30°,则球O的表面积为______.15.公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现0.618就是黄金分割,这是一个伟大的发现,这一数值也表示为a=2sin18°,若a2+b=4,则=______.16.如图,已知双曲线C:-=1(a>0,b>0)的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P,Q,若∠PAQ=60°,且=3,则双曲线的离心率为______.三、解答题(本大题共7小题,共82.0分)17.已知△ABC的内角A,B,C的对边分别为a,b,c满足.(1)求A.(2)若△ABC的面积,求△ABC的周长.18.棋盘上标有第0,1,2,…,100站,棋子开始时位于第0站,棋手抛掷均匀硬币走跳棋游戏.若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到跳到第99站或第100站时,游戏结束.设棋子跳到第n站的概率为P n.(1)当游戏开始时若抛掷均匀硬币3次后求棋手所走站数之和X的分布列与数学期望;(2)证明:;(3)求P99,P100的值.19.如图,已知平面BCC1B1是圆柱的轴截面(经过圆柱的轴截面)BC是圆柱底面的直径,O为底面圆心,E为母线CC1的中点,已知AB=AC=AA1=4(1)求证:B1O⊥平面AEO(2)求二面角B1-AE-O的余弦值.20.椭圆C焦点在y轴上,离心率为,上焦点到上顶点距离为2-.(Ⅰ)求椭圆C的标准方程;(Ⅱ)直线l与椭圆C交与P,Q两点,O为坐标原点,△OPQ的面积S△OPQ=1,则||2+||2是否为定值,若是求出定值;若不是,说明理由.21.已知函数f(x)=e x cos x-x sinx,g(x)=sin x-e x,其中e为自然对数的底数.(1)∀x1∈[-,0],∃x2∈[0,],使得不等式f(x1)≤m+g(x2)成立,试求实数m的取值范围;(2)若x>-1,求证:f(x)-g(x)>0.22.在平面直角坐标系中,已知直线l的参数方程为(t为参数),以原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程ρ=4cosθ.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)直线l与曲线C交于A、B两点,点P(1,2),求|PA|+|PB|的值.23.已知函数f(x)=|2x+1|+|x-4|.(1)解不等式f(x)≤6;(2)若不等式f(x)+|x-4|<a2-8a有解,求实数a的取值范围.答案1.【答案】A2.【答案】B3.【答案】A4.【答案】C5.【答案】B6.【答案】A7.【答案】C8.【答案】B9.【答案】B10.【答案】A11.【答案】A12.【答案】A13.【答案】14.【答案】16π15.【答案】16.【答案】17.【答案】解:(1),由正弦定理可得:,∴,∴,且A∈(0,π),∴,(2),∴bc=12,又a2=b2+c2-2b cos A,∴9=(b+c)2-3bc,∴,即△ABC的周长为.18.【答案】解:(1)解:由题意得X的可能取值为3,4,5,6,P(X=3)=()3=,P(X=4)==,P(X=5)==,P(X=6)=()3=.∴的分布列如下:X 3 4 5 6 P∴.(2)证明:棋子先跳到第n-2站,再掷出反面,其概率为,棋子先跳到第n-1站,再掷出正面,其概率为,∴,即,∴..(3)解:由(2)知数列{P n-P n-1}(n≥1)是首项为{P n-P n-1}(n≥1),,公比为的等比数列.∴,由此得到,由于若跳到第99站时,自动停止游戏,故.19.【答案】证明:(1)依题意可知,AA1⊥平面ABC,∠BAC=90°,如图建立空间直角坐标系A-xyz,因为AB=AC=AA1=4,则A(0,0,0),B(4,0,0),E(0,4,2),B1(4,0,4),C(0,4,0),O(2,2,0),(2分)=(-2,2,-4),=(2,-2,-2),=(2,2,0),(3分)•=(-2)×2+2×(-2)+(-4)×(-2)=0,∴⊥,∴B1O⊥EO,=(-2)×2+2×2+(-4)×0=0,∴⊥,∴B1O⊥AO,(5分)∵AO∩EO=O,AO,EO⊂平面AEO,∴B1O⊥平面AEO.(6分)(2)由(1)知,平面AEO的法向量为=(-2,2,-4),(7分)设平面B1AE的法向量为=(x,y,z),,则,令x=2,则=(2,2,-2),(10分)∴cos<>===,∴二面角B1-AE-F的余弦值为.(12分)20.【答案】解:(Ⅰ)由题意可得,解得,可得b2=a2-c2=1,即有椭圆C的标准方程为:;(Ⅱ)设P(x1,y1),Q(x2,y2)(1)当l斜率不存在时,P,Q两点关于x轴对称,S△OPQ=|x1|•|y1|=1,又,解得,||2+||2=2(x12+y12)=2×(+2)=5;(2)当直线l的斜率存在时,设直线l的方程为y=kx+m,由题意知m≠0,将其代入,得(k2+4)x2+2kmx+m2-4=0,即有,则,O到PQ距离,则,解得k2+4=2m2,满足△>0,则,即有||2+||2=(x12+y12)(x22+y22)===-3+8=5,综上可得||2+||2为定值5.21.【答案】解:(1)f′(x)=e x cos x-e x sin x-sin x-x cosx;∵;∴cos x≥0,sin x≤0,e x>0;∴e x cos x-e x sin x-sin x-x cosx>0;即f′(x)>0;∴f(x)在上单调递增;∴f(x)的最大值为f(0)=1;,设h(x)=g′(x),则:;∵;∴;∴h′(x)<0;∴h(x)在[0,]上单调递减;∴h(x)的最大值为h(0)=;∴h(x)<0,即g′(x)<0;∴g(x)在[0,]上单调递减;∴g(x)的最大值为g(0)=;根据题意知,f(x)max≤m+g(x)max;∴;∴;∴实数m的取值范围为;(2);设F(x)=e x-(x+1),则F′(x)=e x-1;∴x∈(-1,0)时,F′(x)<0,x∈(0,+∞)时,F′(x)>0;∴F(x)在(-1,+∞)上的最小值为F(0)=0;∴F(x)≥0;∴e x≥x+1在x∈(-1,+∞)上恒成立;;∴①,x=0时取“=”;∴;==;;∴,该不等式和不等式①等号不能同时取到;∴;∴f(x)-g(x)>0.22.【答案】解:(1)∵直线l的参数方程为(t为参数),由得,∴l的普通方程为:,∵C的极坐标方程是ρ=4cosθ,∴ρ2=4ρcosθ,∴x2+y2=4x,∴C的直角坐标方程为:x2+y2-4x=0.(2)将l的参数方程代入C的直角坐标方程,得:,∴,∴,∴t1,t2同号,∴.23.【答案】解:(1)由已知得当时,不等式f(x)≤6化为-3x+3≤6,解得x≥-1,所以取;当时,不等式f(x)≤6化为x+5≤6,解得x≤1,所以取;当x>4时,不等式f(x)≤6化为3x-3≤6,解得x≤3,不合题意,舍去;综上知,不等式f(x)≤6的解集为[-1,1].(2)由题意知,f(x)+|x-4|=|2x+1|+|2x-8|≥|(2x+1)-(2x-8)|=9,当且仅当-≤x≤4时取等号;由不等式f(x)+|x-4|<a2-8a有解,则a2-8a>9,即(a-9)(a+1)>0,解得a<-1或a>9;所以a的取值范围是(-∞,-1)∪(9,+∞).。
高考数学临考练兵测试题15 理
高考数学临考练兵测试题15 理一、选择题(本大题共12小题,每小题5分,共60分) 1.若复数11iz i-=+,则z 等于( ) A .-iB .iC .2iD .1+i2.已知集合{}{}3,1,2,3,4A x x B =<=,则B A C R )( =( ) A .{}4B .{}4,3C .{}4,3,2D .{}4,3,2,1 3.已知函数)(x f 是定义在区间)0](,[>-a a a 上的奇函数,若()()2g x f x =+, 则()g x 的最大值与最小值之和为( )(A )0 (B )2 (C )4 (D )不能确定4.已知α为第三象限角,则2α所在的象限是( )A .第一或第二象限 B.第二或第三象限 C.第一或第三象限 D.第二或第四象限5.平行四边形ABCD 中,A C 为一条对角线,若=(2,4),=(1,3),则·等于 ( )A .6B .8C .-8D .-66.给出下列命题:(1)三点确定一个平面;(2)在空间中,过直线外一点只能作一条直线与该直线平行;(3)若平面α上有不共线的三点到平面β的距离相等,则//αβ;(4)若直线a b c 、、满足,a b a c ⊥⊥、则//b c .其中正确命题的个数是( )A .0个B .1个C .2个D .3个 7.在等比数列{}n a 中,若公比1q >,且28466,5a a a a =+=,则57a a =( ) (A )56 (B )65 (C )32 (D )238.右图是2008年底CCTV 举办的全国钢琴、小提琴大赛比赛现场上七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.5;1.6B.85;1.6C.85;0.4D.5;0.49.已知ABC ∆中,,,A B C 的对边分别为,,a b c ,62a c ==+,75A =,则b =( )A.2 B .4+23 C .4—23 D .62- 10.设命题:.001:,11:<<<>ab abq b a b a p 则若则给出以下3个复合命题,①p ∧q ;②p ∨q ;③⌝p ∧⌝q.其中真命题个数 ( ) A .0个B .1个C .2个D .3个11.一个几何体的三视图如右图所示,其中正视图中△ABC 是边长为2的正三角形,俯视图为正六边形,那么该几何体的侧视图的面积为( ).A .12B .32C .23D .6 12.过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是 ( ) A 2 B 3 C 510二、填空题(本大题共4个小题,每小题4分,共16分)13.已知圆22:30(,C x y bx ay a b +++-=为正实数)上任意一点关于直线:20l x y ++=的对称点都在圆C 上,则13a b+的最小值为 。
高考数学临考练兵测试题1 理 新人教A版
高考数学临考练兵测试题1 理新人教A版一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.设A、B为非空集合,定义集合A*B为如图非阴影部分表示的集合,若{|A x y=={|3,0},xB y y x==>则A*B=()A.(0,2)B.(1,2)C.[0,1]∪[2,+∞) D.[0,1]∪(2,+∞)2.等比数列}{na首项与公比分别是复数2(i i+是虚数单位)的实部与虚部,则数列}{na 的前10项的和为()A.20B.1210-C.20-D.i2-3.把函数)||,0)(sin(πφωφω<>+=xy的图象向左平移6π个单位,再将图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)所得的图象解析式为 xsiny=,则()A.62πφω==,B.32π-=φ=ω,C.621π=φ=ω,D.1221π=φ=ω,4.已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积最大(柱体体积=底面积⨯高)时,其高的值为()A.B.C.3D5.设2554log4,(log3),log5a b c===,则()A.a c b<<B.b c a<<C.a b c<<D.b a c<<6.设221:200,:0,||2xp x x qx---><-则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知A、B、C是锐角△ABC的三个内角,向量(sin,1)(1,)p A q cosB=-=,则p q与的夹角是()A.锐角B.钝角C.直角D.不确定8.若函数3()63(0,1)f x x bx b=-+在内有极小值,则实数b的取值范围是()A.(0,1)B.(—∞,1)C.(0,+∞)D.(0,12)9.如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角A B三角形的直角边长为1,那么这个几何体的表面积为 ( ) A .233+ B.3C .61 D .23 10.设,x y 满足约束条件220840,0,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩若目标函数(0,0)z abx y a b =+>>的最大值为8,则a b +的最小值为( )A .2B .4C .6D .8二、填空题(每小题5分,满分25分)11.在△ABC 中,A=120°,b=1sin sin sin a b cA B C++++= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标版高考精选预测(一)第I 卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填在答题卡上 1.311ii-- = A .i B .i - C .i 2 D .i 2-2.圆心在y 轴上,半径为1A .()1222=-+y x C .()1322=-+y x 3.已知圆锥的母线长为2面积..等于 A .π B . π2 4.右图是统计高三年级1000输出的结果是720A .0.28 B .0.38 5.若2sin sin 3=⎪⎭⎫⎝⎛++a a πA .1B .7C .6. 7.32,则展开式中x 的系数为D .40 8.已知函数)24tan(ππ-=x y 的部分图像如右图所示,则⋅=A .1B .2C .3D .49.已知O 为坐标原点,双曲线()0,012222>>=-b a by a x的右焦点为F ,以OF 为直径作圆交双曲线的渐近线于异于原点O 的点P ,若0)(=⋅+,则双曲线的离心率e =A .2B . 3C .2D .310.已知()31+=mx x g ,()x xx f -=33,若对任意的[]2,11-∈x ,总存在[]2,12-∈x , 使得()()21x f x g =,则m 的取值范围是第II 卷二、填空题:本大题共5小题,每小题5分,共2511.设△ABC 的内角C B A ,,所对的边长分别为c b a ,,,且a 则BAtan tan 的值为 . 12..丙二人13.z y x ++=,其中14.k 的值 15.考生注意:请在下列两题中任选一题作答,如果多做,则按所做的第一题评分. A .(不等式选做题)不等式2313x a a --≤-对任意实数x 恒成立,则实数a 的取 值范围为 .B .(坐标系与参数方程选做题)在极坐标系中,直线l 的极坐标方程为3)6sin(=-πθρ,极坐标为)3,2(π的点A 到直线l 上点的距离的最小值为 .三、解答题:本大题共6小题,满分75分。
解答须写出文字说明,证明过程和演算步骤。
16.(本小题满分12分)已知各项均为正数的数列{}n a 的首项11=a ,且1l o g l o g 212+=+n n a a ,数列{}n n a b -是等差数列,首项为1,公差为2,其中*∈N n . (1)求数列{}n a 的通项公式; (2)求数列{}n b 的前n 项和n S .第8题图17.(本小题满分12分)已知函数()a x a x x f -+=2cos 22sin 3在6π=x 处取到极值.(1)当20π≤≤x 时,求函数()x f 的最小值;(2)若函数()ϕ+=x f y ⎪⎭⎫⎝⎛<<20πϕ的图像关于原点对称,求ϕ的值.18.(本小题满分121==AB PA ,直线PD λ=()10<<λ.(1)若EF ∥平面PAC (2)当BE19.(本小题满分12分)小明打算从A 组和B 组两组花样滑冰动作中选择一组参加比赛。
已知小明选择A 组动作的概率是选择B 组动作的概率的3倍,若小明选择A 组动作并正常发挥可获得10分,没有正常发挥只能获得6分;若小明选择B 组动作则一定能正常发挥并获得8分。
据平时训练成绩统计,小明能正常发挥A 组动作的概率是0.8.(1)求小明选择A 组动作的概率;(2)设x 表示小明比赛时获得的分数,求x 的期望.20.(本小题满分13分)已知函数x e x x x f ⋅+-=)33()(2的定义域为[]()N t t ∈-,2,设()n t f m f ==-)(,2.(1)若函数()x f 在[]t ,2-上为单调函数,求t 的值; (2)求证:m n >;(3)当t 取哪些值时,方程())(R m m x f ∈=在[]t ,2-上有三个不相等的实数根?并求出相应的实数m 的取值范围.21.(本小题满分14分)在平面直角坐标系XOY 中,已知定点),0(a A ,),0(a B -,M ,N 是x 轴上两个不同的动点,且)0,(42≠∈=⋅a R a a ,直线AM 与直线BN 交于C 点.(1)求点C 的轨迹方程;(2)若存在过点)1,0(-且不与坐标轴垂直的直线l 与点C 的轨迹交于不同的两点E .F ,且AF AE =,求实数a 的取值范围.参考答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共5小题,每小题5分,共25分. 11、4 12、41 13、36 14、-1或1 15、 A.4≥a 或1-≤a B.2 三、解答题:本大题共6小题,满分75分。
解答须写出文字说明,证明过程和演算步骤。
16、解:(1)由题可得:21=+nn a a ,∴ 数列{}n a 是以1为首项,2为公比的等比数列。
∴12-=n n a .……………………………………6分 (2)由题知:=-a b n n∴(12212-++=S n .…………12分17、解:(1)()x f '=32 由06=⎪⎭⎫⎝⎛'πf 得a,当20≤≤x 时,67626π≤+≤x , .…………………………………6分 (2)()()ϕϕ+-=+-x f x f 恒成立。
⎪⎭⎫ ⎝⎛++-=⎪⎭⎫⎝622sin 6πϕx 展开得:062sin 2cos =⎪⎭⎫⎝⎛+⋅πϕx ,………………………8分 ∴Z k k ∈=+,62ππϕ,………………10分∴125πϕ=…………………………12分 18、解:(1)∵平面PBC 平面PAC=AC ,EF ⊆平面PBC ,若EF ∥平面PAC ,则EF ∥PC ,又F 是PB 的中点,∴E 为BC 的中点,∴21=λ…………………5分 (2)以A 为坐标原点,分别以AD 、AB 、AP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则P (0,0,1),B (0,1,0),F (0,21,21), D (3,0,0), 设a BE =,则E (a ,1,0)平面PDE 的法向量=1n ()3,3,1a -,平面ADE 的法向量()1,0,02=n ,22=,(),2233132=+-+⇒a 解得23-=a 或23+=a (舍去),∴当BE=23-时,二面角A DE P --的大小为45°………………………12分 19、解:(1)设小明选择A 组动作的概率为P (A ),选择B 组动作的概率为P(B),由题知P(A)=3P(B),P(A)+P(B)=1,解得P(A)=0.75…………………………5分 (2)由题知x 的取值为6,8,10.P ()6=x =0.75×0.2=0.15, P ()8=x =0.25, P ()10=x =0.75×0.8=0.6,……10分其分布列为故Ex =8.9………………………………………………………………………12分 20、解:(1)())(,)1(x f e x x x f x ∴-=' 在()),1(,0,+∞∞-上递增,在()1,0上递减, 所以,0≤t 又∵N t ∈,故0=t 。
………………………4分(2)因为f (x )在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,所以f (x )在x =1处取得极小值f (1)=e.又f (-2)=13e2<e ,所以f (x )定在x =-2处取得最小值,从而当t N ∈时,f (-2)<f (t ),即m <n …………………………………8分 (3)由(1)知f (x )在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,故当t =0或t =1时,方程f (x )-m =0在[-2,t ]最多只有两个实数根,所以t ≥2,且t ∈N……………………………………………………………………………………10分当t ≥2,且t ∈N 时,方程f (x )-m =0在[-2,t ]上有三个不等实根, 只需满足m ∈(m ax (f (-2),f (1)),min(f (0),f (t )))即可.因为f (-2)=13e 2,f (0)=3,f (1)=e ,f (2)=e 2,且f (t )≥f (2)=e 2>3=f (0),因而f (-2)<f (1)<f (0)<f (2)≤f (t ), 所以f (1)<m <f (0),即e<m <3,即实数m 的取值范围是(e,3)………………………………………………13分 21、解:(1)设点)0,(),0,(),,(n N m M y x C .由M C A ,,三点共线得:x ay m a -=- 由N C B ,,三点共线得:xay n a +=以上两式相乘得:2222xa y mn a -=-,又∵24a =⋅得24a mn =, 化简得C 点轨迹方程为:)0(44222≠=+x a y x …………………………6分 (2)设直线l 方程为:),(),,(),0(12211y x F y x E k kx y ≠-=, 联立⎩⎨⎧=+-=222441ay x kx y 得()044841222=-+-+a kx x k ,由0)44)(41(464222>-+-=∆a k k 得014222>-+a k a .(1)…………8分 由AF AE =得=-+2121)(a y x 2222)(a y x -+,k -,化简得a ak 432-=.(2)……………………11分 31>a , 14分。