二次函数与一元二次方程
二次函数与一元二次方程的求解方法
二次函数与一元二次方程的求解方法一、引言二次函数和一元二次方程是高中数学中重要的内容,它们在数学和现实生活中都有广泛的应用。
本文将详细介绍二次函数与一元二次方程的求解方法,包括求解一元二次方程的三种方法以及二次函数图像的特征。
二、二次函数的定义与图像二次函数是形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a≠0。
二次函数的图像是一条抛物线,开口方向由a的正负决定,抛物线的顶点坐标为(-b/2a,f(-b/2a))。
三、一元二次方程的三种求解方法1. 因式分解法一元二次方程的一种常见求解方法是因式分解法。
对于形如ax^2 + bx + c = 0的方程,首先通过因式分解将其表示为(a_1x + b_1)(a_2x +b_2) = 0的形式,然后令括号内的两个因式等于零,求解得到方程的根。
2. 公式法公式法是另一种求解一元二次方程的常用方法。
对于一元二次方程ax^2 + bx + c = 0,可以使用求根公式x = (-b±√(b^2-4ac))/(2a)来求解方程的根。
根的数量和性质取决于判别式D = b^2-4ac的值。
a) 当D > 0时,方程有两个不相等的实数根;b) 当D = 0时,方程有两个相等的实数根;c) 当D < 0时,方程没有实数根,但可以求得复数根。
3. 完全平方法完全平方法是求解一元二次方程的第三种方法。
对于方程ax^2 + bx + c = 0,可以将其转化为(a_1x+b_1)^2 = d的形式,然后利用完全平方公式求解方程根。
这种方法对于一些特殊的二次方程,如平方差或平方和等形式的方程,求解时更为方便。
四、二次函数的图像特征除了求解一元二次方程,我们还可以通过二次函数的图像来了解函数的性质。
1. 对称性二次函数的图像关于顶点对称,在顶点处取得最值,如果a > 0,则抛物线开口向上,顶点为最小值;如果a < 0,则抛物线开口向下,顶点为最大值。
二次函数与一元二次方程方程
二次函数与一元二次方程方程《深度探讨:二次函数与一元二次方程方程》一、引言在数学的世界里,二次函数与一元二次方程方程是非常重要的概念。
它们不仅在数学理论和实际问题中起着重要作用,还在生活中的方方面面有着广泛的应用。
本文将从深度和广度的角度对这两个概念进行全面评估,并撰写一篇有价值的文章,希望能够帮助读者更全面、深刻地理解这两个概念。
二、二次函数与一元二次方程方程的概念解析1. 二次函数的定义所谓二次函数,就是最高次项是二次项的函数。
一般来说,二次函数的一般形式可以表示为:f(x) = ax^2 + bx + c。
其中,a、b、c为常数,且a不等于0。
二次函数的图像通常是一个开口向上或向下的抛物线。
2. 一元二次方程方程的定义一元二次方程方程是指最高次项为二次项的方程。
一元二次方程方程的一般形式为:ax^2 + bx + c = 0。
其中,a、b、c为常数,且a不等于0。
一元二次方程方程的求解是数学上重要的课题,它涉及到方程的根与系数之间的关系。
三、从简到繁:二次函数与一元二次方程方程的关系在深入探讨二次函数与一元二次方程方程的关系之前,我们先从简单的实例开始。
以y = x^2为例,这是一个简单的二次函数。
当我们令y=0时,就得到了一个一元二次方程方程x^2 = 0。
通过这个简单的实例,我们可以看到二次函数与一元二次方程方程之间的密切联系。
四、深入探讨:二次函数与一元二次方程方程的求解1. 二次函数的求解对于二次函数f(x) = ax^2 + bx + c,其中a不等于0,我们可以通过多种方法来求解。
一种常用的方法是配方法,即通过将二次项化成完全平方的形式,然后进行转换和求解。
2. 一元二次方程方程的求解对于一元二次方程方程ax^2 + bx + c = 0,其中a不等于0,我们可以利用求根公式或配方法来求解方程的根。
然后根据根的情况,可以进一步讨论一元二次方程方程解的情况。
五、总结与回顾:二次函数与一元二次方程方程的应用与意义二次函数与一元二次方程方程在数学上有着非常重要的应用与意义。
二次函数与一元二次方程的关系
(2)取3和4的中间数3.5代入表达式 中试值.
当x=3.5时,y=3.52-2×3.5- 6=-0.75<0;
当x=4时,y>0,在3.5<x<4 范围内,
y随x的增大而增大,∴3.5<x2 <4.
• (3)取3.5和4的中间数3.75代入表达式 中试值.
• 当x=3.75时,y=3.752-2×3.75-6 =0.562 5>0; • 当x=3.5时,y<0.在3.5<x<3.75范 围内,
b2-4ac=0
有一个
有两个相等的实数根
b2-4ac<0
没有公共点
没有实数根
二次函数y=ax2+bx+c与x轴交点的横坐标就是 方程ax2+bx+c=0的根。
1 (中考·柳州)小兰画了一个函数y=x2+ax+b的图象 如图,则关于x的方程x2+ax+b=0的解是( D ) A.无解 B.x=1 C.x=-4 D.x=-1或x=4
• 2.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A (﹣1,p),B(4,q)两点,则关于x的不等式mx+n >ax2+bx+c的解集是 x<-1或x>4 .
• 3.二次函数y=x2+bx的图象如图,对称轴为直 线x=1,若关于x的一元二次方程x2+bx﹣t=0 (t为实数)在﹣1<x<4的范围内有解,则t的取
知识点 1 二次函数与一元二次方程的关系
二次函数y =x2+x-2,y=x2-6x+9,y =x2–x+1的图象如图所示.
(1)每个图象与x轴有几个交点? (2)一元二次方程 x2+x-2=0 ,x2-6x+9=0有几个根?
《二次函数与一元二次方程》资料二次函数与一元二次方程知识点
二次函数与一元二次方程知识点
1.二次函数与一元二次方程的关系(二次函数与x 轴交点情况):
一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.
图像与x 轴的交点个数:
① 当240b ac ∆=->时,图像与x 轴交于两点()()1200A x B x ,
,,12()x x ≠,其中12x x ,是一元二次方程()200ax bx c a ++=≠的两根. 12x x ,和的一半恰好是对称轴的横坐标.
② 当0∆=时,图像与x 轴只有一个交点;
③ 当0∆<时,图像与x 轴没有交点.
当0a >时,图像落在x 轴的上方,无论x 为任何实数,都有0y >;
当0a <时,图像落在x 轴的下方,无论x 为任何实数,都有0y <.
2. 抛物线2y ax bx c =++的图像与y 轴一定相交,交点坐标为(0,)c ;
3. 二次函数常用解题方法总结:
(1)求二次函数的图像与x 轴的交点坐标,需转化为一元二次方程;
(2)求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;或者依据函数特点确定自变量能使函数取得最大值的值,并将其带入到表达式中求出最值;
(3)根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a , b ,c 的符号判断图象的位置,要数形结合;
(4)二次函数与一次函数的交点,可通过联立方程求解,从而求出交点坐标。
二次函数与一元二次方程
二次函数与一元二次方程【知识梳理】(一)二次函数与一元二次方程的关系一元二次方程ax 2+bx+c=0(a ≠0)的解的情况等价于抛物线y=ax 2+bx+c(c ≠0)与直线y=0(即x 轴)的公共点的个数。
抛物线y=ax 2+bx+c(a ≠0)与x 轴的公共点有三种情况:两个公共点(即有两个交点),一个公共点,没有公共点,因此有:(1)抛物线y=ax 2+bx+c 与x 轴有两个公共点(x 1,0)(x 2,0)即:一元二次方程ax 2+bx+c=0有两个不等实根△=b 2-4ac >0。
(2)抛物线y=ax 2+bx+c 与x 轴只有一个公共点时,此公共点即:为顶点(2b a -,0)一元二次方程ax 2+bx+c=0有两个相等实根,122bx x a ==-240b ac -=(3)抛物线y =ax 2+bx +c 与x 轴没有公共点一元二次方程ax 2+bx+c=0没有实数根△=b 2-4ac <0.(二)二次函数关系式的确定⑴设一般式:y =ax 2+bx +c(a≠0).若已知条件是图象上三个点的坐标,则设一般式y =ax 2+bx +c (a ≠0),将已知条件代入,求出a ,b ,c 的值.⑵设顶点式:y =a(x -h)2+k(a≠0).若已知条件是图象顶点及另一点,则设顶点式y =a (x -h )2+k (a ≠0).,将已知条件代人,求解并化为一般形式.:⑶设交点式(或两点式):y =a(x -x 1)(x -x 2)(a ≠0).若已知条件是图象与x 轴的两个交点及另一点,则设交点式y =a (x -x 1)(x -x 2)(a ≠0).将已知条件代人,求解并化为一般形式.【考点剖析】考点一 二次函数与方程例1.小兰画了一个函数y=x 2+ax+b 的图象如图,则关于x 的方程x 2+ax+b=0的解是( )A . 无解B .x=1C .x=-4D .x=-1或x=4例2.已知抛物线y=x 2﹣4x +m ﹣1.(1)若抛物线与x 轴只有一个交点,求m 的值;(2)若抛物线与直线y=2x ﹣m 只有一个交点,求m 的值.例3.如图,二次函数y=x 2﹣6x+5的图象交x 轴于A 、B 两点,交y 轴于点C ,则△ABC 的面积为 .例3图 变1图【变式练习】1.已知二次函数y=-x 2+2x+m 的部分图象如图所示,则关于x 的一元二次方程022=++-m x x 的解为 。
二次函数与一元二次方程
二次函数与一元二次方程二次函数与一元二次方程是高中数学的重要内容之一。
本文将从概念解释、性质讨论以及实际应用等方面来探讨二次函数与一元二次方程的相关知识。
一、二次函数的定义和性质二次函数是形如y = ax^2 + bx + c的函数,其中a、b、c为常数且a≠0。
其中,a决定了抛物线的开口方向及大小,a>0时抛物线开口向上,a<0时抛物线开口向下;b决定了抛物线在x轴的位置,负责平移抛物线;c决定了抛物线与y轴的截距,负责上下平移。
二次函数的图象一定是一个抛物线,还可以根据抛物线的顶点、焦点等性质进行分类和推导。
例如,顶点坐标为(h,k),则对称轴方程为x = h;当a>0时,抛物线的最小值为k,焦点坐标为(h,k+p);当a<0时,抛物线的最大值为k,焦点坐标为(h,k-p)。
二、一元二次方程的定义和性质一元二次方程是形如ax^2 + bx + c = 0的方程,其中a、b、c为已知数且a≠0。
一元二次方程在数学中具有广泛的应用,解一元二次方程的过程就是求解方程的根,即方程等式两边相等的值。
一元二次方程的解可以分为三种情况:①当b^2 - 4ac > 0时,方程有两个不相等的实数根;②当b^2 - 4ac = 0时,方程有两个相等的实数根;③当b^2 - 4ac < 0时,方程无实数根,但有复数根。
三、二次函数与一元二次方程的关系二次函数和一元二次方程有着密切的联系。
对于任意给定的二次函数y = ax^2 + bx + c,我们可以用x代入函数中,得到一元二次方程ax^2 + bx + c = 0,即将二次函数转化为一元二次方程。
反之,对于一元二次方程ax^2 + bx + c = 0,我们可以通过求解方程的根,得到二次函数的图象的相关信息。
例如,根据二次函数的顶点和焦点的性质,可以通过一元二次方程的解来确定抛物线的开口方向、抛物线与x轴的交点等。
四、二次函数与一元二次方程的应用二次函数与一元二次方程在实际问题中有着广泛的应用。
二次函数与一元二次方程、不等式
第1课时 二次函数与一元二次方程、 不等式
1.一元二次不等式的概念 只含有一个未知数,并且未知数的最高次数是2的不等 式,称为一元二次不等式. 一元二次不等式的一般形式是: ax2+bx+c>0(a≠0)或ax2+bx+c<0(a≠0).
【思考】 (1)不等式x2+ 2 >0是一元二次不等式吗?
【解析】原不等式转化为(x-2a)(x+a)<0. 对应的一元二次方程的根为x1=2a,x2=-a. ①当a>0时,x1>x2, 不等式的解集为{x|-a<x<2a}; ②当a=0时,原不等式化为x2<0,无解;
③当a<0时,x1<x2,不等式的解集为{x|2a<x<-a}. 综上,当a>0时,原不等式的解集为{x|-a<x<2a}; 当a=0时,原不等式的解集为∅; 当a<0时,原不等式的解集为{x|2a<x<-a}.
(2)当Δ =0时,不等式ax2+bx+c≥0(a>0)与ax2+bx+c≤0 (a>0)的解集分别是什么? 提示:R,{x|x=x1}
【素养小测】
1.思维辨析(对的打“√”,错的打“×”) (1)mx2-5x<0是一元二次不等式. ( ) (2)若方程ax2+bx+c=0(a<0)没有实数根,则不等式ax2+ bx+c>0的解集为R. ( )
(3)设二次方程f(x)=0的两解为x1,x2,则一元二次不等 式f(x)>0的解集不可能为{x|x1<x<x2}. ( ) (4)不等式ax2+bx+c≤0(a≠0)或ax2+bx+c≥0(a≠0)的 解集为空集,则函数f(x)=ax2+bx+c无零点. ( )
二次函数与一元二次方程
二次函数与一元二次方程二次函数与一元二次方程二次函数与一元二次方程二次函数与不等式二次函数与方程和不等式综合知识点1 二次函数与一元二次方程二次函数y =ax 2+bx +c 与一元二次方程ax 2+bx +c =0的关系.(1)一般地,二次函数y =ax 2+bx +c 的图象与x 轴交点的横坐标就是一元二次方程ax 2+bx +c =0的根;当二次函数y =ax 2+bx +c 的函数值为0 时,相应的自变量的值即是一元二次方程ax 2+bx +c =0的根;(2)若抛物线y =ax 2+bx +c 与x 轴的两个交点坐标分别为(1,0x ),2(,0)x ,那么对应方程ax 2+bx +c =0的两个根即为 12,x x ,结合一元二次方程根与系数关系可知12,b x x a +=-12c x x a⋅=(3)二次函数与x 轴的交点情况和一元二次方程根的情况的关系具体见下表:二次函数y =ax 2+bx +c 与x 轴交点情况a >0两个交点 一个交点 没有交点a <0两个交点一个交点没有交点24b ac -的值240b ac ->240b ac -=240b ac -<一元二次ax 2+ bx +c =0根的情况有两个不相等的实根有两个相等的实根没有实根例1.当a<0时,方ax2+bx+c=0无实数根,则二次函数y=ax2+bx+c的图象一定在()A. x轴上方B. x轴下方C. y轴右侧D. y轴左侧例2.已知二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点。
(1)求C1的顶点坐标;(2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(−3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;例3.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)方程ax2+bx+c=0的两个根是;(2)不等式ax2+bx+c>0的解集是;(3)y随x的增大而减小的自变量x的取值范围是。
二次函数与一元二次方程和不等式的关系
二次函数与一元二次不等式的关系一、二次函数与一元二次方程的关系:一元二次方程ax 2+bx +c =0就是二次函数y =ax 2+bx +c (a ≠0)当y = 0时x 的情况,抛物线y=ax 2+bx+c 与轴交点的的个数和方程ax 2+bx +c =0的的个数有关。
(1)△=b 2-4ac >0有个交点有实根;(2)△=b 2-4ac =0有个交点有实根;(3)△=b 2-4ac <0交点实根.练习:1、抛物线y =x 2-x -6与x 轴的交点坐标是___________,与y 轴的交点坐标是________;2、抛物线y =3x +2x +1与x 轴的交点个数是()A 、1个;B 、2个;C 、没有;D 、无法确定3.如图,抛物线y =ax +bx +c (a >0)的对称轴是直线x =1,且经过点22y3P3–1O 1xP (3,0),则方程ax 2+bx +c =0(a >0)的根为:。
5.已知抛物线y =x 2-6x +a 的顶点在x 轴上,则a =;若抛物线与x 轴有两个交点,则a 的范围是;与x 轴最多只有一个交点,则a 的范围是 .26.已知抛物线y =x +px +q 与x 轴的两个交点为(-2,0),(3,0),则p =,q = .27.抛物线y =ax +bx +c (a ≠0)的图象全部在x 轴下方的条件是()A .a <0 b -4ac≤0 B .a <0 b -4ac >022C .a >0 b -4ac >0 D .a <0 b -4ac <022二、二次函数与一元二次不等式的关系:一元二次不等式ax 2+bx +c >0就是二次函数y =ax 2+bx +c (a ≠0)当函数y 的值0时的情况。
1.利用抛物线图象求解一元二次方程及二次不等式(1)方程ax +bx +c =0的根为___________;(2)不等式ax +bx +c >0的解集为________;(3)不等式ax +bx +c <0的解集为________;2222、已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,当y <0时,x 的取值范围是()A .-1<x <3B .x >3C .x <-1D .x >3或x <-13.二次函数y=ax +bx +c (a ≠0,a ,b ,c 为常数)图象如图所示,根据图象解答问题(1)写出方程ax 2+bx +c =0的两个根_________2(2)写出不等式ax +bx +c >0的解集_________2-1O 3xyx =1O 3x(3)若方程ax +bx +c =k 有两个不相等的实数根,求k 的取值范围?4.解下列不等式(1)2x 2-x -1>0;(2)2x 2-x -1< 0;(3)3+2x -x 2≥0;(4)x 2+3>2x ;(5)-2x 2-5x +3>0;25.已知关于x 的不等式x 2-ax +2a > 0在R 上恒成立,则实数a 的取值范围是________.116.一元二次不等式ax 2+bx +2>0的解集是(-,),则a +b 的值是________.2311【解析】由已知得方程ax 2+bx +2=0的两根为-,.23b 11-=-+a 23则211=(-)×a 23⎧⎪a =-12,解得⎨⎪b =-2,⎩∴a +b =-14.⎧⎨⎩。
九年级数学二次函数与一元二次方程的关系
y=ax2+bx+c的图象 方程ax2+bx+c=0的
和x轴交点
根
b2-4ac
函数的图象
有两个交点
方程有两个不相等 的实数根
b2-4ac > 0
y .o . x
y
只有一个交点
方程有两个相等 的实数根
b2-4ac = 0
o
x
没有交点
y
方程没有实数根 b2-4ac < 0 o
x
中考链接: (2009肇庆市)已知一元二次方程x²+px+q+1=0=的一根为 2.
一元二次方程ax2+bx+c=0的根的判别式△ =b2-4ac.
(1)当△=b2-4ac>0时
抛物线y=ax2+bx+c与x轴有两个交点;
(2)当△=b2-4ac=0时
抛物线y=ax2+bx+c与x轴只有一个交点;
(3)当△=b2-4ac<0时
抛物线y=ax2+bx+c与x轴没有公共点.
探究点三:二次函数图像与系数之间的关系
方程可以看成是对于二次函数y= ax2+bx+c(a≠0), 当y=0时,函数即可化为一元二次方程ax2+bx+c=0,这 时方程的根就是抛物线与x轴交点的横坐标
y=ax2+bx+c的 方程ax2+bx+c=0
图象和x轴交点
的根
b2-4ac
有两个交点
只有一个
交点
方程有两个 不相等的实 数根 方程有两个 相等的实数 根
图象与x轴有两个交点;
(2)△=b2-4ac=62-4×(-1) ×(-9)=0,函 数的图象与x轴有一个交点; (3)△=b2-4ac=62-4×3×11=-96<0,函 数的图象与x 轴没有交点。
二次函数与一元二次方程
二次函数与一元二次方程二次函数和一元二次方程是高中数学中常见的概念。
它们在数学中具有重要的地位和应用价值。
本文将探讨二次函数和一元二次方程的定义、特点、图像以及它们之间的关系。
一、二次函数的定义和特点二次函数是指一元二次方程的解所构成的函数。
一元二次方程的一般形式为:ax^2 + bx + c = 0,其中a、b、c为实数,且a≠0。
根据一元二次方程的解的性质,二次函数的定义域为实数集R,而值域则取决于抛物线的开口方向和顶点高低。
当a>0时,抛物线开口向上,最值在顶点处取得;当a<0时,抛物线开口向下,最值为负无穷或正无穷。
二次函数的图像是一个抛物线,其对称轴为x=-b/(2a),顶点坐标为(-b/(2a), f(-b/(2a)))。
根据顶点坐标和对称性,可以进一步得到二次函数的对称轴方程和顶点形式方程。
二、一元二次方程的定义和特点一元二次方程是指未知数只有一个,其次数为2的方程。
一元二次方程的一般形式为:ax^2 + bx + c = 0,其中a、b、c为实数,且a≠0。
一元二次方程的解为x=(-b±√(b^2-4ac))/2a,根据根的性质可知,一元二次方程的解的个数和判别式的大小有关。
当判别式大于0时,方程有两个不相等的实数解;当判别式等于0时,方程有两个相等的实数解;当判别式小于0时,方程无实数解。
一元二次方程在实际问题中有广泛的应用,如物体自由落体、抛体运动、二次函数的最值等等。
三、二次函数与一元二次方程的关系二次函数与一元二次方程之间存在紧密的联系。
一元二次方程的解对应于二次函数的零点,即二次函数与x轴的交点。
对于给定的二次函数y=ax^2+bx+c,可以通过求解一元二次方程ax^2+bx+c=0来确定二次函数的零点。
而解一元二次方程得到的解又可以构成一元二次函数的图象上的点。
具体而言,当一元二次方程有两个不相等的实数解时,也就是判别式大于0时,对应的二次函数与x轴有两个交点,即抛物线与x轴相交于两点;当一元二次方程有两个相等的实数解时,也就是判别式等于0时,对应的二次函数与x轴有一个交点,即抛物线与x轴相切于一个点;当一元二次方程无实数解时,也就是判别式小于0时,对应的二次函数与x轴没有交点,即抛物线不与x轴相交。
二次函数与1元二次方程
二次函数与1元二次方程二次函数与一元二次方程一、二次函数的概念1. 定义- 一般地,形如y = ax^2+bx + c(a,b,c是常数,a≠0)的函数,叫做二次函数。
其中x是自变量,a、b、c分别是二次函数的二次项系数、一次项系数和常数项。
- 例如y = 2x^2+3x - 1,这里a = 2,b = 3,c=-1。
二、二次函数的图象1. 二次函数y = ax^2+bx + c(a≠0)的图象是一条抛物线- 当a>0时,抛物线开口向上;当a < 0时,抛物线开口向下。
- 例如y=x^2,a = 1>0,其图象开口向上;y=-x^2,a=- 1<0,其图象开口向下。
2. 对称轴与顶点坐标- 对于二次函数y = ax^2+bx + c(a≠0),其对称轴公式为x =-(b)/(2a)。
- 顶点坐标为(-(b)/(2a),frac{4ac - b^2}{4a})。
- 例如对于二次函数y = 2x^2-4x + 1,a = 2,b=-4,c = 1。
对称轴为x =-(-4)/(2×2)=1,顶点纵坐标y=frac{4×2×1-(-4)^2}{4×2}=(8 - 16)/(8)=-1,顶点坐标为(1,-1)。
三、一元二次方程的概念1. 定义- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。
- 一般形式为ax^2+bx + c = 0(a,b,c是常数,a≠0)。
例如x^2+2x - 3 = 0,这里a = 1,b = 2,c=-3。
四、二次函数与一元二次方程的关系1. 二次函数y = ax^2+bx + c与一元二次方程ax^2+bx + c = 0(a≠0)的联系- 一元二次方程ax^2+bx + c = 0的解就是二次函数y = ax^2+bx + c的图象与x轴交点的横坐标。
- 当b^2-4ac>0时,一元二次方程有两个不相等的实数根,二次函数的图象与x轴有两个交点。
二次函数与一元二次方程
二次函数与一元二次方程二次函数和一元二次方程是高中数学中重要的概念,它们在数学和实际应用中都具有广泛的应用。
本文将介绍二次函数和一元二次方程的定义、性质以及它们之间的关系。
一、二次函数的定义和性质二次函数是指形如 y = ax^2 + bx + c 的函数,其中 a、b、c 是常数(a ≠ 0),x 是自变量,y 是因变量。
二次函数的图像是一个抛物线,开口方向取决于二次项系数 a 的正负。
二次函数的主要性质包括:1. 零点:即函数图像与 x 轴的交点。
二次函数的零点可以通过求解一元二次方程得到。
2. 对称轴:二次函数图像的对称轴是一个垂直于 x 轴的直线,它通过抛物线的顶点。
3. 最值点:当二次项系数 a > 0 时,抛物线开口朝上,顶点为最小值点;当 a < 0 时,抛物线开口朝下,顶点为最大值点。
4. 单调性:当二次项系数 a > 0 时,二次函数在对称轴两侧递增;当 a < 0 时,二次函数在对称轴两侧递减。
二、一元二次方程的定义和解法一元二次方程是指形如 ax^2 + bx + c = 0 的方程,其中 a、b、c 是已知系数,x 是未知数。
解一元二次方程的常用方法有因式分解法、配方法和求根公式法。
1. 因式分解法:当一元二次方程可以因式分解为 (px + q)(rx + s) = 0 时,其中 p、q、r、s 是已知系数,x 是未知数。
根据因式零乘法,方程的解为 x = -q/p或 x = -s/r。
2. 配方法:当一元二次方程无法直接因式分解时,可以使用配方法将方程转化为完全平方形式,进而求解方程。
配方法的步骤包括:将一元二次方程写成 a(x + b)^2 + c = 0 的形式,其中 a、b、c 是已知系数,x 是未知数。
通过配方、整理和解方程的步骤,可以求得方程的解。
3. 求根公式法:对于一元二次方程 ax^2 + bx + c = 0,其中 a、b、c 是已知系数,x是未知数。
一元二次方程与二次函数的知识点汇总
一、一元二次方程(1)一元二次方程的一般形式:y=ax ²+bx+c (a ≠0)(2)一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法(3)一元二次方程解法的选择顺序是:先特殊后一般,如没有要求,一般不用配方法。
(4)一元二次方程的根的判别式:ac b 42-=∆当Δ>0时⇔方程有两个不相等的实数根;当Δ=0时⇔方程有两个相等的实数根;当Δ< 0时⇔方程没有实数根,无解;当Δ≥0时⇔方程有两个实数根(或有实数根)(5)求根公式(6)一元二次方程根与系数的关系:若21,x x 是一元二次方程ax ²+bx+c=0的两个根,那么:a b x x -=+21,ac x x =⋅21 (7)以两个数21,x x 为根的一元二次方程(二次项系数为1)是:0)(21212=++-x x x x x x二、列方程(组)解应用题的一般步骤1、审题:2、设未知数;3、找出相等关系,列方程(组);4、解方程(组);5、检验6、作答;三、一次函数直线位置与k ,b 的关系:K 决定图像趋势(1)k >0直线上升趋势,y 随x 的增大而增大——撇(2)k <0直线下降趋势,y 随x 的增大而减小——捺b 决定与y 轴的交点(3)b >0直线与y 轴交点在x 轴的上方;(4)b =0直线过原点;(5)b <0直线与y 轴交点在x 轴的下方;四、抛物线位置与a ,b ,c 的关系:(1)a 决定抛物线的开口方向(a >0向上,a <0向下),a 决定抛物线的开口大小、a 的绝对值相等,函数图像的形状相同。
(2)c 决定抛物线与y 轴交点的位置: c>0⇔图像与y 轴交点在x 轴上方;c=0⇔图像过原点;c<0⇔图像与y 轴交点在x 轴下方;(3)a ,b 决定抛物线对称轴的位置:a ,b 同号,对称轴在y 轴左侧;b =0,对称轴是y 轴; a ,b 异号。
对称轴在y 轴右侧;(左同右异)五、用待定系数法求二次函数的解析式①一般式:y=ax ²+bx+c.已知图像上三点或三对x 、y 的值,通常选择一般式. ②顶点式:y=a (x-h )²-k.已知图像的顶点或对称轴,通常选择顶点式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关系如图所示,关系式为:h=-5t2+40t
1.何时小球离地面的高度是60m?
h
100
分别从数和形的角度,如何解答?
80
60
40
2.一元二次方程ax2+bx+c=m可以看 20
作什么?
0 2468 t
探究三
1.你能利用二次函数的图象估计一元二次方程 x2+2x-10=0的根吗?
(1)用描点法作二次函数 y=x2+2x-10的图象; (2)观察估计二次函数 y=x2+2x-10的图象与 x轴的交点的横坐标;
求x为何值时, 一次函数y= ax+b的值
为m.(a,b, m是常数)
从“数”上看
求方程ax+b=m(a,b, m是常数)的解.
复习旧知
(1)解方程:3x+2=﹣1
(2)当自变量x是何值时,一次函数y =3x+2的值为﹣1?
y 3 y =3x+2
2
1
-2 -1 O -1
1 2 3x y =-1
复习旧知
A.有两个不相等的实数根 B.有两个异号的实数根
C.有两个相等的实数根 y
3
D.没有实数根
O
x
应用新知
3.已知y=ax2+bx+c的图象如图所示,
a_<__0, b_< _0, c_>__0, abc_>__0
b = 2a, 2a-b_=__0, 2a+b__<___0 b2-4ac__>___0
a+b+c__<___0,
a-b+c__>__0
-2 -1 0 1
4a-2b+c__>___0
归纳总结
本节课你学到了什么?
达标测试
探究二
二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示.
y=x2+2x
y=x2-2x+1
y=x2-2x+2
(1)每个图象与x轴(直线y=0)有几个交点? (2)一元二次方程? x2+2x=0,x2-2x+1=0有几个根?解方程验证一 下一元二次方程x2-2x+2=0有根吗?
2.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应 值如表,则方程ax2+bx+c=0的一个解8
6.19
6.20
y
-0.03 -0.01
0.02
0.04
A.-0.01<x<0.02 C.6.18<x<6.19
B.6.17<x<6.18 D.6.19<x<6.20
应用新知
1.已知二次函数y=kx2-7x-7的图象和x轴有交点,则 k的取值范围是( B )
A.
k 7 4
B.k ≥ 7 且k≠0
4
C.k ≥ 7
4
D.k 7且k≠0
4
应用新知
2.二次函数 y ax2 bx c的图象如图所示,那么关于x的 一元二次方程 ax2 bx c 3 0 的根的情况是( C )
关系如图所示,那么
(1)h和t的关系式是什么? (2)小球经过多少秒后落地?你有 几种求解方法?与同伴进行交流.
h
100
80
60 40 20
0 2468 t
探究一
抛物线与坐标轴的位置关系:
问题1:抛物线与y轴一定有交点吗?画画图进行思考。
问题2:抛物线与x轴一定有交点吗?画画图,看看有 哪些情况?
一次函数与一元一次方程的关系:
求方程ax+b=m(a,b,m是 从“形”上看 常数,a≠0)的解.
求直线y= ax+b与直线 y= m交点的横坐标。
(a,b,m是常数,a≠0)
情境问题
我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)
的关系可用公式h=-5t2+v0t+h0表示,其中h0(m)是抛出时的 高度,v0(m/s)是抛出时的速度.一个小球从地面以40m/s的 速度竖直向上抛出起,小球的高度h(m)与运动时间t(s)的
(3)二次函数y=ax2+bx+c的图象和x轴(直线y=0)交点的坐标与 一元二次方程ax2+bx+c=0的根有什么关系?
探究三
我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)
的关系可用公式h=-5t2+v0t+h0表示,其中h0(m)是抛出时的 高度,v0(m/s)是抛出时的速度.一个小球从地面以40m/s的 速度竖直向上抛出起,小球的高度h(m)与运动时间t(s)的
动脑、动口、动手!!!
3.7二次函数与一元二次方程
学习目标
1.从数和形的角度理解二次函数与一元二次方程的关 系.
2.会用判别式判断二次函数的图象与x轴交点的情况.
复习旧知
(1)解方程:3x+2=﹣1
(2)自变量x是何值时,一次函数y =3x+2的值为﹣1?
这两个问题有什么关系?
一次函数与一元一次方程的关系: