人教版九年级上第21章一元二次方程同步练习题含答案

合集下载

人教版数学九年级上册第21章一元二次方程单元训练题含答案

人教版数学九年级上册第21章一元二次方程单元训练题含答案

人教版数学九年级上册第21章一元二次方程单元训练题含答案一、选择题1.一元二次方程x2-2(3x-2)+(x+1)=0的普通方式是( )A.x2-5x+5=0 B.x2+5x-5=0C.x2+5x+5=0 D.x2+5=02.关于x的方程(m-3)xm2-2m-1-mx+6=0是一元二次方程,那么它的一次项系数是( )A.-1 B.1C.3 D.3或-13.关于x的方程ax2+bx+c=0,有以下说法:①假定a≠0,那么方程必是一元二次方程;②假定a=0,那么方程必是一元一次方程,那么上述说法( ) A.①②均正确B.①②均错误C.①正确,②错误D.①错误,②正确4.以下说法中,正确的有( )①假定x2=9,那么x是9的平方根;②x=3不是方程x2=3的根;③x2-12=0的根是x=±23;④x2-4x+4=(x-2)2.A.1个B.2个C.3个D.4个5.关于x的一元二次方程x2+ax-1=0的根的状况是( )A .没有实数根B .只要一个实数根C .有两个相等的实数根D .有两个不相等的实数根6.关于恣意实数a 、b ,定义f(a ,b)=a 2+5a -b ,如f(2,3)=22+5×2-3,假定f(x,2)=4,那么实数x 的值是( ) A .1或-6 B .-1或6 C .-5或1D .5或17. 假定关于x 的方程(a -2)x 2-2ax +a +2=0是一元二次方程,那么a( ) A .等于2 B .等于-2 C .等于0 D .不等于2 8. 用配方法解方程3x 2-6x +1=0,配方后失掉的方程是( ) A .(x -3)2=13 B .3(x -1)2=13C .(3x -1)2=1 D .(x -1)2=239. 假定方程3x 2-4x -4=0的两个实数根区分为x 1,x 2,那么x 1+x 2=( ) A .-4 B .3 C .-43 D.4310. 某商品的原价为289元,经过延续两次降价后售价为256元,设平均每次降价的百分率为x ,那么下面所列方程中正确的选项是( ) A .289(1-x)2=256 B .256(1-x)2=289C.289(1-2x)=256 D.256(1-2x)=289二、填空题11.把一元二次方程x2-6x+4=0化成(x+n)2=m的方式时,m=,n =.12.x=1是一元二次方程x2+ax+b=0的一个根,那么代数式a2+b2+2ab的值是.13.关于x2-x-6=0与2x+m =1x-3有一个解相反,那么m=.14.关于x的一元二次方程kx2-2x+1=0有实数根,那么k的取值范围是.15.当x=-1 时,代数式8-2x2-4x有值,其值为.三、解答题16.用恰当的方法解以下方程:(1)x2-10x+25=7;(2)3x(x-1)=2-2x;(3)3x2-10x+6=0.17.解方程2x2-23x=22,有一位同窗解答如下:解:∵a=2,b=-23,c=22,∴b2-4ac=(-23)2-4×2×22=12-82·2=-4<0.故原方程无实数根.请剖析以上解答有无错误,如有错误,指出错误的中央,并写出正确解答进程.18. 某一个一元二次方程被墨水染成为:■x2+■x+6=0,小明、小亮回想说:请依据上述对话,求出方程的另一个解.19.阅读题例,解答下题:例:解方程:x2-|x|-2=0.解:(1)当x≥0,x2-x-2=0,解得x1=-1(不合题意,舍去),x2=2;(2)当x<0,x2+x-2=0,解得x1=1(不合题意,舍去),x2=-2.综上所述,原方程的解是x=2或x=-2.依照上例解法,解方程x2+2|x+2|-4=0.20.关于x的方程x2-(3k+1)x+2k2+2k=0.(1)求证:无论k取何实数值,方程总有实数根;(2)假定等腰△ABC的一边长为a=6,另两边长b、c恰恰是这个方程的两个根,求此三角形的周长.参考答案;一、1---10 AACCD ADDD二、11. 5 -312. 113. -814. k≤1且k≠015. 最大 10三、16. 解:(1)x 2-10x +25=7,(x -5)2=7,x -5=±7,x 1=5+7,x 2=5-7;(2)方程变形得:3x(x -1)+2(x -1)=0,因式分解得:(x -1)(3x +2)=0,可得x -1=0,3x +2=0,解得:x 1=1,x 2=-23;(3)∵a =3,b =-10,c =6,∴b 2-4ac =(-10)2-4×3×6=100-72=28>0,∴x =10±276,∴x =5+73或x =5-73.17. 解:错在c 的符号上c =-22, ∵a =2,b =-23,c =-22,∴Δ=b 2-4ac =(-23)2-4×2×(-22)=12+16=28>0, ∴x =23±282×2=23±272×2=3±72=6±142.即x 1=6+142,x 2=6-142. 18. 解:设二次项系数为a ,那么一次项系数为a 2,∴方程为ax 2 +a 2 x +6=0,∵方程的一个根为x =3,那么有9a +3a 2 +6=0,即a 2 +3a +2=0,配方得(a +32)2=14,解得a 1 =-1,a 2 =-2,又由于二次项系数小于-1,∴a =-2.∴当a =-2时,方程为-2x 2 +4x +6=0,化简得:x 2-2x -3=0,配方得(x -1)2=4,解得x 1 =-1,x 2 =3.∴方程的另一个解为-1.19. 解:x +2≥0,x≥-2时,方程变形得:x 2+2(x +2)-4=0⇒x 2+2x =0⇒x(x +2)=0⇒x 1=0,x 2=-2.当x <-2时,x 2-2(x +2)-4=0⇒x 2-2x -8=0.(x +2)(x -4)=0⇒x 1=-2(舍去),x 2=4(舍去),综上所述:原方程的解是x 1=0或x 2=-2.20. 解:(1)∵b 2-4ac =[-(3k +1)]2-4(2k 2+2k)=9k 2+6k +1-8k 2-8k =k 2-2k +1=(k -1)2,∵(k -1)2≥0,∴b 2-4ac≥0,即无论k 取任何实数值,方程总有实数根;(2) ①当等腰三角形的底边长为a 时,∴方程有两个相等的实数根,∴(k -1)2=0,∴k =1,方程变形为:x 2-4x +4=0,解得x 1=x 2=2,由于2+2<6,故此三角形不存在; ②当等腰三角形的腰长为a 时,即方程的一个实数根为6,∴将x =6代入方程得,k 2-8k +15=0,∵Δ=4,∴k =8±42,∴k 1=5,k 2=3,当k =5时,方程变形为x 2-16x +60=0,∵Δ=16,∴x =16±162,∴x 1=10,x 2=6,∴三角形的三边为6,6,10,∴此三角形的周长为22;当k =3时,方程变形为:x 2-10x +24=0,∵Δ=4,∴x =10±42,∴x 1=4,x 2=6,∴三角形的三边为6,6,4,∴此三角形的周长为16.综上,三角形的周长为22或16.。

人教版九年级数学上册第二十一章 一元二次方程 同步单元练习题(含答案,教师版)

人教版九年级数学上册第二十一章 一元二次方程 同步单元练习题(含答案,教师版)

人教版九年级数学上册第二十一章 一元二次方程 同步单元练习题一、选择题1.下列方程是一元二次方程的是(C)A .x -1=2 B.3x -1=1 C .x 2+2x -1=0 D .x 2+3y =0 2.解方程(x -1)2-3(x -1)=0的最适当的方法是(D)A .直接开平方法B .配方法C .公式法D .因式分解法3.已知m 是方程x 2-x -1=0的一个根,则代数式m 2-m 的值等于(C)A .-1B .0C .1D .24.下列一元二次方程中,有两个不相等实数根的是(B)A .x 2+9=6xB .x 2-x =1C .x 2+2=2xD .(x -1)2+2=05.扬帆中学有一块长30 m ,宽20 m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为x m ,则可列方程为(D)A .(30-x)(20-x)=34×20×30B .(30-2x)(20-x)=14×20×30 C .30x +2×20x =14×20×30 D .(30-2x)(20-x)=34×20×30 6.若关于x 的一元二次方程x 2+mx +m 2-3m +3=0的两根互为倒数,则m 的值等于(B)A .1B .2C .1或2D .07.我们知道方程x 2+2x -3=0的解是x 1=1,x 2=-3,现给出另一个方程(2x +3)2+2(2x +3)-3=0,它的解是(D)A .x 1=1,x 2=3B .x 1=1,x 2=-3C .x 1=-1,x 2=3D .x 1=-1,x 2=-3二、填空题8.一元二次方程(x +1)(x +3)=9的一般形式是x 2+4x -6=0,二次项系数为1,一次项系数为4,常数项为-6.9.已知一元二次方程x 2-3x -2=0的两个实数根为x 1,x 2,则(x 1-1)(x 2-1)的值是-4.10.中国“一带一路”给沿线国家和地区带来很大的经济效益,沿线某地区居民2018年人均年收入20000元,到2020年人均年收入达到39 200元.则该地区居民年人均收入平均增长率为40%.(用百分数表示)11.若方程(a -1)xa 2+1+3x =1是关于x 的一元二次方程,则a 的值是-1.12.若方程(k -1)x 2+2x -2=0有两个实数根,则k 的取值范围是k ≥12且k ≠1. 13.已知三角形的两边长分别为4和7,第三边的长是方程x 2-10x +21=0的解,则此三角形的周长是18.14.若(a 2+b 2)2-3(a 2+b 2)-4=0,则代数式a 2+b 2的值为4.15.已知α,β是方程x 2+3x +1=0的两个根,则(1+5α+α2)(1+5β+β2)的值为4.16.《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多12步三、解答题17.解下列一元二次方程:(1)(2x +3)2-81=0;解:(2x +3)2=81.x 1=3,x 2=-6.(2)x 2-6x -2=0;解:(x -3)2=11.x 1=3+11,x 2=3-11.(3)x 2+22x -6=0;解:∵a =1,b =22,c =-6,Δ=b 2-4ac =(22)2-4×1×(-6)=32,∴x =-22±322=-22±422=-2±2 2. ∴x 1=2,x 2=-3 2.(4)5x(3x +2)=6x +4.解:(3x +2)(5x -2)=0. x 1=-23,x 2=25. 18.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB ,BC 各为多少米?解:设AB 的长度为x 米,则BC 的长度为(100-4x)米.根据题意,得(100-4x)x =400.解得x 1=20,x 2=5.当x =20时,100-4x =20;当x =5时,100-4x =80>25,不合题意,应舍去.∴AB =20,BC =20.答:羊圈的边长AB ,BC 分别是20米,20米.19.已知关于x 的一元二次方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根x 1,x 2.(1)求k 的取值范围;(2)若x 1+x 2=3,求k 的值及方程的根.解:(1)∵方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,∴Δ=[-(2k +1)]2-4×1×(k 2+1)>0.整理,得4k -3>0,解得k>34. (2)由根与系数的关系知x 1+x 2=2k +1.又∵x 1+x 2=3,∴2k +1=3.解得k =1,满足k>34, ∴原方程为x 2-3x +2=0.∴x 1=1,x 2=2.20.已知关于x 的一元二次方程x 2-6x +m +4=0有两个实数根x 1,x 2.(1)求m 的取值范围;(2)若x 1,x 2满足3x 1=|x 2|+2,求m 的值.解:(1)∵关于x 的一元二次方程x 2-6x +m +4=0有两个实数根x 1,x 2,∴Δ=(-6)2-4(m +4)=20-4m ≥0.解得m ≤5.(2)∵关于x 的一元二次方程x 2-6x +m +4=0有两个实数根x 1,x 2,∴x 1+x 2=6①,x 1x 2=m +4②.∵3x 1=|x 2|+2,∴x 1>0.当x2≥0时,有3x1=x2+2③,联立①③,解得x1=2,x2=4.∴8=m+4.∴m=4,满足m≤5;当x2<0时,有3x1=-x2+2④,联立①④,解得x1=-2,x2=8(不合题意,舍去).∴m的值为4.21.HW公司2018年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2 800万块,生产了2 800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.解:(1)设2018年甲类芯片的产量为x万块,由题意,得x+2x+(x+2x)+400=2 800.解得x=400.答:2018年甲类芯片的产量为400万块.(2)2018年丙类芯片的产量为3x+400=1 600(万块),设丙类芯片的产量每年增加的数量为y万块,则1 600+1 600+y+1 600+2y=14 400.解得y=3 200.∴丙类芯片2020年的产量为1 600+2×3 200=8 000(万块).2018年HW 公司手机产量为2 800÷10%=28 000(万部),则400(1+m%)2+2×400(1+m%-1)2+8 000=28 000×(1+10%).设m%=t ,400(1+t)2+2×400(1+t -1)2+8 000=28 000×(1+10%).整理得3t 2+2t -56=0.解得t =4或t =-143(舍去). ∴t =4.∴m%=4.∴m =400.答:丙类芯片2020年的产量为8 000万块,m =40022.如图,在△ABC 中,∠C =90°,AC =16 cm ,BC =8 cm ,一动点P 从点C 出发沿着CB 边以2 cm/s 的速度运动,另一动点Q 从点A 出发沿着AC 边以4 cm/s 的速度运动,P ,Q 两点同时出发,运动时间为t s.(1)若△PCQ 的面积是△ABC 面积的14,求t 的值; (2)△PCQ 的面积能否与四边形ABPQ 面积相等?若能,求出t 的值;若不能,说明理由.解:(1)根据题意,得S △PCQ =12×2t(16-4t),S △ABC =12×8×16=64. ∵△PCQ 的面积是△ABC 面积的14, ∴12×2t(16-4t)=64×14. 整理,得t 2-4t +4=0,解得t =2.答:当t =2 s 时,△PCQ 的面积为△ABC 面积的14. (2)△PCQ 的面积不能与四边形ABPQ 面积相等.理由如下:当△PCQ 的面积与四边形ABPQ 面积相等时,则S △PCQ =12S △ABC ,即12×2t(16-4t)=64×12, 整理,得t 2-4t +8=0.∵Δ=(-4)2-4×1×8=-16<0,∴此方程没有实数根.∴△PCQ 的面积不能与四边形ABPQ 面积相等.。

人教版九年级数学上册 第21章《一元二次方程》单元同步练习(有答案)

人教版九年级数学上册  第21章《一元二次方程》单元同步练习(有答案)

九年级数学第21章《一元二次方程》单元同步练习一、选择题:1、若x1,x2是一元二次方程x2+10x+16=0的两个根,则x1+x2的值是()A.﹣10 B. 10 C.﹣16 D.162、已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A.6 B.5 C.4 D.33、下列方程有两个相等的实数根的是()A. x2+x+1=0B.4 x2+2x+1=0C. x2+12x+36=0D. x2+x-2=04、若0是关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的一根,则m值为()A.1B.0C.2D.1或25、某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.8 D.66、我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.10% C.12% D.11%7、已知一元二次方程x2-8x+12=0 的两个解恰好是等腰△ABC的底边长和腰长,则△ABC 的周长为()A.14B.10C.11D.14或108、某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=15二、填空题:9、若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为.10、若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是.11、某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为 .12、若3是关于x的方程x2+kx-6=0的一个根,则k=________.13、若一元二次方程式x2﹣8x﹣3×11=0的两根为a、b,且a>b,则a﹣2b= .14、三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的解,则此三角形周长是.三、解答题:15、解一元二次方程:(1)x2﹣5x﹣6=0(因式分解法)(2)2x2﹣4x﹣1=0(公式法)(3)2(x-3)2=x2-9 (4) 4y2=8y+116、在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.8 32 29.6 28 …售价x(元/千克)…22.6 24 25.2 26 …(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?17、如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?18、为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元)成一次函数关系.(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?19、某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?20、在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1:2,且里程数之比为2:1.为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.参考答案一、选择题:1、A2、B3、C4、C5、D6、B7、A8、A二、填空题:9、110、 511、 80(1+x)2=10012、-113、1714、13三、解答题:15、(1)x 1=6,x 2=﹣1; (2)x=2±√62. (3)x 1=3, x 2=9 (4)y=2±√5216、(1) 当天该水果的销售量为33千克.(2) 如果某天销售这种水果获利150元,那么该天水果的售价为25元.17、所围矩形猪舍的长为10m 、宽为8m .18、(1) 年销售量y 与销售单价x 的函数关系式为y=﹣10x+1000.(2) 该设备的销售单价应是50万元/台.19、(1)每天完成200平方米(2)人行道宽为2米20、(1) 原计划今年1至5月,道路硬化的里程数至少是40千米.(2) a=10.。

人教版九年级数学上册:一元二次方程同步练习 (含答案)

人教版九年级数学上册:一元二次方程同步练习 (含答案)

第二十一章 一元二次方程21.1 一元二次方程知识点1.只含有 个未知数,并且未知数的 方程叫一元二次方程.2.一元二次方程的一般形式是 ,其中二次项为 ,一次项 ,常数项 ,二次项系数 ,一次项系数 .3.使一元二次方程左右两边 叫一元二次方程的解。

一.选择题1.下列方程是一元二次方程的是( )A .x-2=0B .x 2-4x-1=0C .x 2-2x-3D .xy+1=02.下列方程中,是一元二次方程的是( )A .5x+3=0B .x 2-x (x+1)=0C .4x 2=9D .x 2-x 3+4=03.关于x 的方程013)2(22=--+-x x a a 是一元二次方程,则a 的值是( )A .a=±2B .a=-2C .a=2D .a 为任意实数4.把一元二次方程4)3()1(2+-=-x x x 化成一般式之后,其二次项系数与一次项分别是( )A .2,-3B .-2,-3C .2,-3xD .-2,-3x5.若关于x 的一元二次方程x 2+5x+m 2-1=0的常数项为0,则m 等于( )A .1B .2C .1或-1D .06.把方程2(x 2+1)=5x 化成一般形式ax 2+bx+c=0后,a+b+c 的值是( )A .8B .9C .-2D .-17.(2013•安顺)已知关于x 的方程x 2-kx-6=0的一个根为x=3,则实数k 的值为( )A .1B .-1C .2D .-28.(2013•牡丹江)若关于x 的一元二次方程为ax 2+bx+5=0(a ≠0)的解是x=1,则2013-a-b 的值是( )A .2018B .2008C .2014D .2012二.填空题9.当m= 时,关于x 的方程5)3(72=---x x m m 是一元二次方程;10.若方程kx 2+x=3x 2+1是一元二次方程,则k 的取值范围是 .11.方程5)1)(13(=+-x x 的一次项系数是 .12.(2012•柳州)一元二次方程3x 2+2x-5=0的一次项系数是 .13.关于x 的一元二次方程3x (x-2)=4的一般形式是 .14.(2005•武汉)方程3x 2=5x+2的二次项系数为 ,一次项系数为 .15.(2007•白银)已知x=-1是方程x 2+mx+1=0的一个根,则m= .16.(2010•河北)已知x=1是一元二次方程x 2+mx+n=0的一个根,则m 2+2mn+n 2的值为 .17.(2013•宝山区一模)若关于x 的一元二次方程(m-2)x 2+x+m 2-4=0的一个根为0,则m 值是 .18.已知关于x 的一元二次方程ax 2+bx+c=0(a ≠0)有一个根为1,一个根为-1,则a+b+c= ,a-b+c= .三.解答题19.若(m+1)x |m|+1+6-2=0是关于x 的一元二次方程,求m 的值.20.(2013•沁阳市一模)关于x 的方程(m 2-8m+19)x 2-2mx-13=0是否一定是一元二次方程?请证明你的结论.21.一元二次方程0)1()1(2=++++c x b x a 化为一般式后为01232=-+x x ,试求0222=-+c b a 的值的算术平方根.21.1 一元二次方程知识点1.一,最高次数是2的整式。

人教版 九年级数学 第21章 一元二次方程 同步训练(含答案)

人教版 九年级数学 第21章 一元二次方程 同步训练(含答案)

人教版九年级数学第21章一元二次方程同步训练一、选择题1. 已知关于x的一元二次方程x2+mx-8=0的一个实数根为2,则另一实数根及m的值分别为()A. 4,-2B. -4,-2C. 4,2D. -4,22. 一元二次方程x(x-2)=2-x的根是()A. -1B. 2C. 1和2D. -1和23. 2018·福建已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和-1都是关于x的方程x2+bx+a=0的根D.1和-1不都是关于x的方程x2+bx+a=0的根4. 下列一元二次方程中,没有实数根的是()A.x2-2x=0 B.x2+4x-1=0C.2x2-4x+3=0 D.3x2=5x-25. 某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A. 10.8(1+x)=16.8B. 16.8(1-x)=10.8C. 10.8(1+x)2=16.8D. 10.8[(1+x)+(1+x)2]=16.86. 若方程(x+3)2=m的解是有理数,则实数m不能..取下列四个数中的()A.1 B.4 C.14 D.127. 某专卖店销售一种机床,三月份每台售价为2万元,共销售60台.根据市场调查知:这种机床每台售价每增加0.1万元,每个月就会少售出1台.四月份该专卖店想将销售额提高25%,则这种机床每台的售价应定为()A.3万元B.5万元C.8万元D.3万元或5万元8. 在一幅长为80 cm,宽为50 cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5400 cm2,设金色纸边的宽为x cm,那么x满足的方程是()A.x2+130x-1400=0 B.x2+65x-350=0C.x2-130x-1400=0 D.x2-65x-350=0二、填空题9. 填空:(1)x2+4x+(____)=(x+____)2;(2)x2+(____)x+254=⎝⎛⎭⎪⎫x-522;(3)x2-73x+(______)=(x-______)2;(4)x2-px+(______)=(x-______)2.10. 用配方法解方程x2-2x-5=0时,将方程化为(x-m)2=n的形式,则m=________,n=________.11. 根据一元二次方程根的定义,解答下列问题:一个三角形两边的长分别为3 cm和7 cm,第三边的长为a cm,且整数a满足a2-10a+21=0,求这个三角形的周长.解:由题意可得4<a<10.(第一步)∵a是整数,∴a可取5,6,7,8,9.(第二步)当a=5时,代入a2-10a+21=52-10×5+21≠0,故a=5不是方程的根.同理可知a=6,a=8,a=9都不是方程的根,只有a=7是方程的根.(第三步) ∴这个三角形的周长是3+7+7=17(cm).上述过程中,第一步的根据是________________________________,第三步应用了____________的数学思想,确定a的值是根据______________.12. 2018·内江已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)2+b(x+1)+1=0的两根之和为________.13. 如图,在一张矩形纸板的四个角上分别剪掉2个小正方形和2个矩形(阴影部分即剪掉的部分),剩余的部分可以折成一个有盖的长方体盒子(纸板的厚度忽略不计).若矩形纸板的长、宽分别为40 cm和30 cm,且折成的长方体盒子的表面积为950 cm2,则此长方体盒子的体积为________cm3.14. 在△ABC中,BC=2,AB=2 3,AC=b,且关于x的方程x2-4x+b=0有两个相等的实数根,则AC边上的中线长为________.三、解答题15. 某地区2014年投入教育经费2900万元,2016年投入教育经费3509万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率.(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2018年需投入教育经费4250万元.如果按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费是否能达到4250万元?请说明理由.(参考数据: 1.21=1.1, 1.44=1.2, 1.69=1.3, 1.96=1.4)16. 已知关于x的一元二次方程x2-(k+3)x+3k=0.(1)求证:不论k取何实数,该方程总有实数根;(2)若等腰三角形ABC的一边长为2,另两边长恰好是方程的两个根,求△ABC 的周长.17. 已知:如图,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm.点P从点A 开始沿AB边向点B以1 cm/s的速度运动,同时点Q从点B开始沿BC边向点C以2 cm/s的速度运动.当一个点到达终点时,另一点也随之停止运动,设运动的时间为x s (x>0).(1)求经过几秒后,△PBQ 的面积等于6 cm 2. (2)求经过几秒后,PQ 的长度等于5 cm .(3)在运动过程中,△PBQ 的面积能否等于8 cm 2?如果能,求出运动时间;如果不能,请说明理由.人教版 八年级数学 第21章 一元二次方程 同步训练-答案一、选择题1. 【答案】D 【解析】设方程x 2+mx -8=0的两根分别为x 1,2,根据根与系数关系有x 1+2=-m ,2x 1=-8,解得x 1=-4,m =2.2. 【答案】D 【解析】x(x -2)=2-x ⇒x(x -2)+(x -2)=0⇒(x -2)(x +1)=0⇒x 1=2,x 2=-1.3. 【答案】D[解析] ∵关于x 的一元二次方程(a +1)x 2+2bx +(a +1)=0有两个相等的实数根,∴⎩⎨⎧a +1≠0,Δ=(2b )2-4(a +1)2=0, ∴b =a +1或b =-(a +1).当b =a +1时,有a -b +1=0,此时-1是方程x 2+bx +a =0的根; 当b =-(a +1)时,有a +b +1=0,此时1是方程x 2+bx +a =0的根. ∵a +1≠0,∴a +1≠-(a +1),∴1和-1不都是关于x 的方程x 2+bx +a =0的根.4. 【答案】C5. 【答案】C【解析】∵设平均年增长率为x ,2014年为10.8万人次,则2015年为10.8(1+x)万人次,2016年为10.8(1+x)2万人次,∴根据题意得,10.8(1+x)2=16.8.6. 【答案】D7. 【答案】D [解析] 设这种机床每台的售价定为x 万元, 则x ⎝ ⎛⎭⎪⎫60-x -20.1=2×60×(1+25%), 解得x 1=3,x 2=5.8. 【答案】B二、填空题9. 【答案】(1)42 (2)-5 (3)4936 76(4)p 24 p 210. 【答案】16 [解析] x 2-2x -5=0,x 2-2x =5,x 2-2x +1=5+1,(x -1)2=6,所以m =1,n =6.11. 【答案】三角形任意两边之和大于第三边,任意两边之差小于第三边分类讨论 方程根的定义12. 【答案】1[解析] 设x +1=t ,方程a (x +1)2+b (x +1)+1=0的两根分别是x 3,x 4, ∴at 2+bt +1=0.由题意可知:t 1=1,t 2=2, ∴t 1+t 2=3, ∴x 3+x 4+2=3, ∴x 3+x 4=1.13. 【答案】1500[解析] 设剪掉的小正方形的边长为x cm.根据题意,得2x 2+2×20x =30×40-950,整理,得x2+20x-125=0.解得x1=5,x2=-25(不合题意,舍去).当x=5时,长方体盒子的体积为x(30-2x)·(20-x)=5×(30-2×5)×(20-5)=1500,即此时长方体盒子的体积1500 cm3.故答案为1500.14. 【答案】2[解析] 因为关于x的方程x2-4x+b=0有两个相等的实数根,所以Δ=(-4)2-4b=16-4b=0,得AC=b=4.因为BC=2,AB=2 3,所以BC2+AB2=AC2,所以△ABC为直角三角形,AC为斜边,则AC边上的中线长为斜边的一半,为2.三、解答题15. 【答案】解:(1)设2014年至2016年该地区投入教育经费的年平均增长率为x,(1分) 由题意得:2900(1+x)2=3509,(3分)解得x1=0.1,x2=-2.1(不符合题意舍去).(4分)答:2014年至2016年该地区投入教育经费的年平均增长率为10%.(5分) (2)按10%的增长率,到2018年投入教育经费为3509(1+10%)2=4245.89(万元).(7分)因为4245.89<4250,(8分)所以教育经费不能达到4250万元.答:按此增长率到2018年该地区投入的教育经费不能达到4250万元.(9分) 16. 【答案】解:(1)证明:∵Δ=b2-4ac=[-(k+3)]2-4·3k=(k-3)2≥0,∴不论k取何实数,该方程总有实数根.(2)当△ABC的底边长为2时,方程有两个相等的实数根,则(k-3)2=0,解得k=3,方程为x2-6x+9=0,解得x1=x2=3,此时三角形的三边长分别为2,3,3,故△ABC的周长为2+3+3=8;当△ABC的一腰长为2时,方程有一根为2,把x=2代入方程,得22-2(k+3)+3k=0,解得k =2,方程为x 2-5x +6=0,解得x 1=2,x 2=3,此时三角形的三边长分别为2,2,3,故△ABC 的周长为2+2+3=7. 综上,△ABC 的周长为8或7.17. 【答案】解:由题意得AP =x cm ,BP =(5-x )cm ,BQ =2x cm. (1)∵△PBQ 的面积为6 cm 2, ∴12BP ·BQ =6,即12·(5-x )·2x =6, 整理,得x 2-5x +6=0,解得x 1=2,x 2=3. 答:经过2 s 或3 s 后,△PBQ 的面积等于6 cm 2. (2)在Rt △PBQ 中,BP 2+BQ 2=PQ 2.当PQ =5 cm 时,(5-x )2+(2x )2=52,整理,得5x 2-10x =0,解得x 1=0(舍去),x 2=2.答:经过2 s 后,PQ 的长度等于5 cm. (3)不能.理由:假设△PBQ 的面积为8 cm 2, 则12·(5-x )·2x =8. 整理,得x 2-5x +8=0.∵Δ=b 2-4ac =25-32=-7<0, ∴方程无实数根,∴△PBQ 的面积不能等于8 cm 2.。

人教版初中九年级数学上册第二十一章《一元二次方程》经典练习卷(含答案解析)

人教版初中九年级数学上册第二十一章《一元二次方程》经典练习卷(含答案解析)

一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AMAF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM B解析:B【分析】 设正方形的边长为1,AF =AM =x ,根据勾股定理即可求出答案.【详解】解:设正方形的边长为1,AF =AM =x ,则BE =EF =12,AE =x+12, 在Rt △ABE 中,∴AE 2=AB 2+BE 2,∴(x +12)2=1+(12)2, ∴x 2+x -1=0,∴AM 的长为x 2+x -1=0的一个正根,故选:B .【点睛】本题考查一元二次方程,解题的关键是根据勾股定理列出方程,本题属于中等题型. 2.用配方法转化方程2210xx +-=时,结果正确的是( ) A .2(1)2x += B .2(1)2x -= C .2(2)3x += D .2(1)3x +=A 解析:A【分析】方程两边都加上一次项系数的一半,利用完全平方公式进行转化,即可得到答案.【详解】解:2210x x +-=2212x x ++=∴2(1)2x +=,故选:A .【点睛】此题考查一元二次方程的配方法,掌握配方法是计算方法是解题的关键.3.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( )A .10B .17C .20D .17或20B 解析:B【分析】根据第三边是方程x 2﹣17x +70=0的根,首先求出方程的根,再利用三角形三边关系求出即可.【详解】解:∵217700x x -+=,∴(10)(7)0x x --=,∴110x =,27x =,∵4610+=,无法构成三角形,∴此三角形的周长是:46717++=.故选B .【点睛】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,正确利用因式分解法解一元二次方程可以大大降低计算量.4.一元二次方程2610x x +-=配方后可变形为( )A .()2310x +=B .()238x +=C .()2310x -=D .()238x -=A 解析:A【分析】方程常数项移到右边,两边加上一次项系数一半的平方即可得到结果.【详解】解:∵x 2+6x-1=0,∴x 2+6x=1,∴x 2+6x+9=10,∴(x+3)²=10,故选:A .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.5.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B .1k ≥-C .0k ≠D .1k >-且0k ≠D【分析】根据一元二次方程根的判别式得到关于k 的不等式,然后求解不等式即可.【详解】是一元二次方程,0k ∴≠.有两个不相等的实数根,则Δ0>,2Δ24(1)0k =-⨯-⨯>,解得1k >-.1k ∴>-且0k ≠.故选D【点睛】本题考查一元二次方程ax 2+bx +c =0(a ≠0)根的判别式:(1)当△=b 2﹣4ac >0时,方程有两个不相等的实数根;(2)当△=b 2﹣4ac =0时,方程有有两个相等的实数根;(3)当△=b 2﹣4ac <0时,方程没有实数根.6.等腰三角形的底边长为6,腰长是方程28150x x -+=的一个根,则该等腰三角形的周长为( )A .12B .16C .l2或16D .15B解析:B【分析】利用因式分解法解方程求出x 的值,再根据等腰三角形的概念和三角形三边关系确定出三角形三边长度,继而得出答案.【详解】解:∵x 2-8x+15=0,∴(x-3)(x-5)=0,则x-3=0或x-5=0,解得x 1=3,x 2=5,①若腰长为3,此时三角形三边长度为3、3、6,显然不能构成三角形,舍去; ②若腰长为5,此时三角形三边长度为5、5、6,可以构成三角形,所以该等腰三角形的周长为5+5+6=16,故选:B .【点睛】本题主要考查等腰三角形的概念、三角形三边的关系、解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.7.方程(2)2x x x -=-的解是( )A .2B .2-,1C .1-D .2,1-D【分析】先移项得到x(2﹣x)+(2﹣x)=0,然后利用因式分解法解方程.【详解】解:x(2﹣x)+(2﹣x)=0,(2﹣x)(x+1)=0,2﹣x=0或x+1=0,所以x1=2,x2=﹣1.故选:D.【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).8.一元二次方程x2=4x的解是()A.x=4 B.x=0 C.x=0或-4 D.x=0或4第II卷(非选择题)请点击修改第II卷的文字说明参考答案D解析:D【分析】先移项,利用因式分解法解一元二次方程.【详解】解:x2=4xx2-4x=0x(x-4)=0x=0或x=4,故选:D.【点睛】此题考查解一元二次方程,直接开平方法,配方法,公式法,因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.9.下列方程中,有两个不相等的实数根的是()A.x2=0 B.x﹣3=0 C.x2﹣5=0 D.x2+2=0C解析:C【分析】利用直接开平方法分别求解可得.解:A .由x 2=0得x 1=x 2=0,不符合题意;B .由x ﹣3=0得x =3,不符合题意;C .由x 2﹣5=0得x 1=x 2=,符合题意; D .x 2+2=0无实数根,不符合题意;故选:C .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.10.已知方程2202030x x +-=的根分别为a 和b ,则代数式2a a 2020a b ++的值为( )A .0B .2020C .1D .-2020A 解析:A【分析】将a 代入方程,可得2202030a a +-=,即220302a a =-,代入要求的式子,即可得到3+ab ,而a 、b 是方程的两个根,根据韦达定理,可求出ab 的值,即可求出答案.【详解】解:∵方程2202030x x +-=的根分别为a 和b∴2202030a a +-=,即220302a a =-∴2a a 2020a b ++=32020a -+ab+2020a=3+ab∵ab=-3∴2a a 2020a b ++=32020a -+ab+2020a=3+ab=3-3=0故选:A .【点睛】本题主要考查一元二次方程的解以及韦达定理,熟练解代入方程以及观察式子特点,抵消部分式子是解决本题的关键. 二、填空题11.已知x a =是方程2350x x --=的根,则代数式234a a -++的值为________.-1【分析】利用x=a 是方程x2-3x-5=0的根得到a2-3a=5然后利用整体代入的方法计算代数式的值【详解】解:∵x=a 是方程x2-3x-5=0的根∴a2-3a-5=0∴a2-3a=5∴故答案为解析:-1【分析】利用x=a 是方程x 2-3x-5=0的根得到a 2-3a=5,然后利用整体代入的方法计算代数式的值.【详解】解:∵x=a 是方程x 2-3x-5=0的根,∴a 2-3a-5=0,∴a 2-3a=5,∴()223434541a a a a -++=--+=-+=-.故答案为-1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.解方程:268x x +=-解:两边同时加_________,得26x x ++________8=-+________则方程可化为(_______)2=________两边直接开平方得_____________即_________或_____________所以1x =__________,2x =___________.999x+31x+3=±1x+3=1x+3=-1-2-4【分析】根据配方法求解即可【详解】解:两边同时加9得99则方程可化为1两边直接开平方得x+3=±1即x+3=1或x+3=-1所以-2-4故答案解析:9 9 9 x+3 1 x+3=±1 x+3=1 x+3=-1 -2 -4【分析】根据配方法求解即可.【详解】解:两边同时加9,得26x x ++98=-+9,则方程可化为()23x +=1,两边直接开平方得x+3=±1,即x+3=1或x+3=-1,所以1x =-2,2x =-4.故答案为:9;9;9;x+3;1;x+3=±1;x+3=1;x+3=-1;-2;-4.【点睛】本题考查了配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.13.将方程2630x x +-=化为()2x h k +=的形式是______.【分析】将方程常数项移到方程右边左右两边都加上9左边化为完全平方式右边合并即可得到所求的结果【详解】∵∴∴∴故答案为:【点睛】考查了解一元二次方程-配方法利用此方法解方程时首先将二次项系数化为1常数解析:()2312x +=【分析】将方程常数项移到方程右边,左右两边都加上9,左边化为完全平方式,右边合并即可得到所求的结果.【详解】∵2630x x +-=∴263x x +=∴26939x x+++=∴()2312x+= 故答案为:()2312x+=【点睛】考查了解一元二次方程-配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个常数,开方即可求出解.14.将一元二次方程(32)(1)83x x x -+=-化成一般形式是_____.【分析】先计算多项式乘以多项式并移项再合并同类项即可【详解】故答案为:【点睛】此题考查一元二次方程的一般形式掌握多项式乘以多项式合并同类项计算法则是解题的关键解析:23710x x -+=【分析】先计算多项式乘以多项式,并移项,再合并同类项即可.【详解】(32)(1)83x x x -+=-23322830x x x x +---+=23710x x -+=故答案为:23710x x -+=.【点睛】此题考查一元二次方程的一般形式,掌握多项式乘以多项式,合并同类项计算法则是解题的关键.15.若一元二次方程ax 2﹣bx ﹣2016=0有一根为x =﹣1,则a +b =_____.2016【分析】将x=-1代入ax2﹣bx ﹣2016=0得到a+b ﹣2016=0然后将a+b 当作一个整体解答即可【详解】解:把x =﹣1代入一元二次方程ax2﹣bx ﹣2016=0得:a+b ﹣2016=解析:2016.【分析】将x=-1代入ax 2﹣bx ﹣2016=0得到a +b ﹣2016=0,然后将a+b 当作一个整体解答即可.【详解】解:把x =﹣1代入一元二次方程ax 2﹣bx ﹣2016=0得:a +b ﹣2016=0,即a +b =2016.故答案是2016.【点睛】本题主要考查了一元二次方程的解,理解一元二次方程的解的概念是解答本题的关键. 16.如图,要设计一幅宽20cm ,长30cm 的图案,其中有两横彩条、一竖彩条,横、竖彩条的宽度比为1:3,如果要使彩条所占面积是图案面积的19%,竖彩条的宽度为________.3cm 【分析】设横彩条的宽度是xcm 竖彩条的宽度是3xcm 根据如果要使彩条所占面积是图案面积的19可列方程求解【详解】解:设横彩条的宽度是xcm 竖彩条的宽度是3xcm 则(30-3x )(20-2x )=解析:3cm【分析】设横彩条的宽度是xcm ,竖彩条的宽度是3xcm ,根据“如果要使彩条所占面积是图案面积的19%”,可列方程求解.【详解】解:设横彩条的宽度是xcm ,竖彩条的宽度是3xcm ,则(30-3x )(20-2x )=20×30×(1-19%),解得x 1=1,x 2=19(舍去).所以3x=3.答:竖彩条的宽度是3cm .故答案为:3cm【点睛】本题考查一元二次方程的应用,解题的关键是理解题意,学会正确寻找等量关系,构建方程解决问题.17.若a 是方程210x x ++=的根,则代数式22020a a --的值是________.2021【分析】把x=a 代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a 代入已知方程,并求得a 2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x 2+x+1=0,得a 2+a+1=0,解得a 2+a=-1,所以2020-a 2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.18.已知x 1和x 2是方程2x 2-5x+1=0的两个根,则1212x x x x +的值为_____.5【分析】直接根据根与系数的关系求出再代入求值即可【详解】解:∵x1x2是方程2x2-5x+1=0的两个根∴x1+x2=-∴故答案为:5【点睛】本题考查了根与系数的关系:若x1x2是一元二次方程ax解析:5【分析】直接根据根与系数的关系,求出12x x +,12x x 再代入求值即可.【详解】解:∵x 1,x 2是方程2x 2-5x+1=0的两个根,∴x 1+x 2=--55-=22,121=2x x . ∴121252==512x x x x + 故答案为:5.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a. 19.已知a ,b 是一元二次方程22310x x +-=的两实数根,则11a b+=________.3【分析】根据方程的系数结合根与系数的关系可得出a+b=-ab=-将其代入中即可求出结论【详解】解:∵是方程的两根故答案为:3【点睛】本题考查了根与系数的关系牢记两根之和等于-两根之积等于是解题的关键解析:3【分析】根据方程的系数结合根与系数的关系,可得出a+b=-32,ab=-12,将其代入11a b a b ab ++=中即可求出结论.【详解】解:∵a ,b 是方程22310x x +-=的两根, 32a b ∴+=-,12ab =-, 3112312a b a b ab -+∴+===-. 故答案为:3.【点睛】 本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于c a”是解题的关键. 20.如图,世纪广场有一块长方形绿地,AB =18m ,AD =15m ,在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,则x =_____.【分析】由在绿地中开辟三条宽为xm 的道路后剩余绿地的面积为144m2即可得出关于x 的一元二次方程此题得解【详解】解:设道路的宽为xm 根据题意得:(18﹣2x )(15﹣x )=144解得:或(舍去)答: 解析:3【分析】由在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,即可得出关于x 的一元二次方程,此题得解.【详解】解:设道路的宽为xm ,根据题意得:(18﹣2x )(15﹣x )=144,解得:13x =或221x =(舍去),答:道路的宽为3m .故答案为:3.【点睛】此题考查一元二次方程的应用,根据题意找出等量关系,正确列方程是解题的关键.三、解答题21.解方程:2250x x +-=.解析:1216,16x x =-=-【分析】利用配方法解方程.【详解】2250x x +-=225x x +=2(1)6x +=1x =-±∴1211x x =-=-【点睛】此题考查解一元二次方程的方法—配方法,将等式变形为平方形式是解题的关键. 22.(1)用配方法解:221470x x --=;(2)用因式分解法解:()()222332x x -=-.解析:(1)1x =,2x =2)x 1=1,x 2=-1. 【分析】(1)先移项,把二次项系数化为1,再把方程两边同时加上一次项系数一半的平方,进而开平方解方程即可得答案;(2)先根据完全平方公式把方程两边展开,再移项整理成一元二次方程的一般形式,再利用因式分解法解方程即可得答案.【详解】(1)221470x x --=移项得:2x 2-14x=7,二次项系数化为1得:x 2-7x=72, 配方得:x 2-7x+27()2=72+27()2,即(x-72)2=634,开平方得:x-72=,解得:1x =272x -=. (2)()()222332x x -=-展开得:4x 2-12x+9=9x 2-12x+4移项、合并得:5x 2-5=0,分解因式得(x+1)(x-1)=0,解得:x 1=1,x 2=-1.【点睛】本题考查配方法及因式分解法解一元二次方程,熟练掌握解方程的步骤是解题关键. 23.解方程:(1)23620x x -+=(2)222(3)9x x -=-解析:(1)13x =,233x =;(2)x=3或x=9. 【分析】(1)根据公式法即可求出答案;(2)根据因式分解法即可求出答案.【详解】解:(1)∵3x 2-6x+2=0,∴a=3,b=-6,c=2,∴△=36-24=12,∴6363x ±±==∴1x =2x = (2)∵2(x-3)2=x 2-9,∴2(x-3)2=(x-3)(x+3),∴(x-3)[(2(x-3)-(x+3)]=0,∴(x-3)(x-9)=0∴x-3=0,x-9=0∴x=3或x=9.【点睛】本题考查解一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.24.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元:如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买了这种服装x 件.(1)填空:解析:(1)①80;②74;③25x ≥(2)20件【分析】(1)①如果一次性购买不超过10件,单价为80元;②用单价80元减去(13-10)×2,得出答案即可;③求出单价恰好是50元时的购买件数,即可分析得到;(2)根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.【详解】解:(1)①∵如果一次性购买不超过10件,单价为80元,故填:80;②80-(13-10)×2=74,故填:74;③设购买a 件时,单价恰好是50元,80-(a -10)×2=50,解得:a =25,而题目中“单价不得低于50元”,∴25x ≥时,单价是50元,故填:25x ≥;(2)因为1200>800,所以一定超过了10件,设购买了x 件这种服装且多于10件,根据题意得出:[80-2(x -10)]x =1200,解得:x 1=20,x 2=30,当x =20时,80-2(20-10)=60元>50元,符合题意;当x =30时,80-2(30-10)=40元<50元,不合题意,舍去;答:购买了20件这种服装.【点睛】此题主要考查了一元二次方程的应用,根据已知得出每件服装的单价是解题关键. 25.计算题(1)解方程:2690x x ++= (2)解不等式组:3152(2)7x x x ->⎧⎨+<+⎩解析:(1)123x x ==-; (2)23x <<【分析】(1)利用因式分解法求解即可.(2)分别求出两个不等式的解集,最后找出公共部分即可.【详解】解:(1)2690x x ++=因式分解得:()230x +=解得:123x x ==-. (2)()31512272x x x ->⎧⎨+<+⎩ 解不等式1得:2x >解不等式2得:3x <∴不等式组的解集是23x <<.【点睛】本题考察解一元二次方程和一元一次不等式组,解题的关键是:(1)用因式分解法求解一元二次方程(2)不等式组解集的确定,原则是“同大取大,同小取小,大小小大中间找,大大小小找不到”.26.解方程:212270x x -+=解析:13x =,29x =.【分析】利用因式分解法解此一元二次方程,即可求解.【详解】解:212270x x -+=分解因式,得(3)(9)0x x --=,则30x -=或90x -=,∴13x =,29x =.【点睛】本题考查了解一元二次方程,熟练掌握一元二次方程的解法并能结合方程特点选择适当的解法是解题的关键.27.解方程(1)2420x x -+=(2)()255210x x ++= (3)2560x x -+=(4)()3133x x x +=+解析:(1)1222x x ==2)121x x ==-;(3)1232x x ==,;(4)1211x x =-=, 【分析】(1)直接利用配方法解方程得出答案即可;(2)方程整理后,利用利用配方法解方程得出答案即可;(3)利用分解因式法解方程即可;(4)方程整理后,利用提取公因式法分解因式进而解方程即可.【详解】(1)2420x x -+=,移项得:242x x -=-,配方得:24424x x -+=-+,即2(2)2x -=,开方得:2x -=,解得:1222x x ==(2)()255210x x ++=,整理得:2210x x ++=,即2(1)0x +=,∴121x x ==-;(3)2560x x -+=,因式分解得:()()320x x --=,∴30x -=,20x -=,∴1232x x ==,;(4)()3133x x x +=+,整理得:()()110x x x +-+=,因式分解得:()()110x x +-=,∴10x +=,10x -=, ∴1211x x =-=,. 【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.28.阅读下列材料:对于任意的正实数a ,b ,总有2a b ab +≥成立(当且仅当a b =时,等号成立),这个不等式称为“基本不等式”利用“基本不等式”可求一些代数式的最小值.例如:若0x >,求式子1x x +的最小值. 解:∵0x >,∴112212x x x x+≥⋅==,∴1x x +的最小值为2.(1)若0x >,求9x x+的最小值; (2)已知1x >,求2251x x x -+-的最小值. (3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,AOB 、COD △的面积分别为4和9,求四边形ABCD 面积的最小值.解析:(1)6;(2)4;(3)25.【分析】(1)将原式变形为9x x +≥ (2)结合阅读材料将原式变形为()411x x -+-后即可确定最小值; (3)设S △BOC =x ,已知S △AOB =4,S △COD =9,则由等高三角形可知:BOC AOB COD AOD S S S S =△△△△,用含x 的式子表示出36AOD S x =△,再按照题中所给公式求得最小值,加上常数即可. 【详解】解:(1)∵0x >,∴9x x +≥又∵6=, ∴96x x+≥ ∴9x x+的最小值为6; (2)∵1x >∴10x ->, ∴222521411x x x x x x -+-++=--()2141x x -+=-()411x x =-+-≥∵∴22541x x x -+≥- ∴2251x x x -+-的最小值为4. (3)设(0)BOC S x x =>△,则由等高三角形可知:BOC AOB COD AODS S S S =△△△△ ∴49AOD x S =△,即36AOD S x=△, ∴四边形ABCD 面积364913x x =+++≥,∵13=25,当且仅当x=6时,取等号,∴四边形ABCD面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用,同时本题还考查了等高三角形的在面积计算中的应用.对不能直接应用公式的,需要正确变形才可以应用,本题中等难度略大.。

人教版初中数学九年级上册第二十一章《配方法解一元二次方程》 同步练习题(解析版)

人教版初中数学九年级上册第二十一章《配方法解一元二次方程》  同步练习题(解析版)

九年级上册第二十一章?配方法解一元二次方程?同步练习题一、选择题〔每题只有一个正确答案〕1.用配方法解方程x2−4x−2=0变形后为()A.(x−2)2=6B.(x−4)2=6C.(x−2)2=2D.(x+2)2=62.将方程x2+8x+9=0左边变成完全平方式后,方程是〔〕A.(x+4)2=7B.(x+4)2=25C.(x+4)2=−9D.(x+4)2=−7 3.假设方程x2﹣8x+m=0可以通过配方写成〔x﹣n﹣2=6的形式,那么x2+8x+m=5可以配成〔〕A.﹣x﹣n+5﹣2=1B.﹣x+n﹣2=1C.﹣x﹣n+5﹣2=11D.﹣x+n﹣2=11 4.对二次三项式x2-10x+36,小聪同学认为:无论x取什么实数,它的值都不可能等于11;小颖同学认为:可以取两个不同的值,使它的值等于11.你认为( )A.小聪对,小颖错B.小聪错,小颖对C.他们两人都对D.他们两人都错5.假如一元二次方程x2-ax+6=0经配方后,得〔x+3﹣2=3,那么a的值为〔〕A.3 B.-3 C.6 D.-6二、填空题6.方程x2﹣2x﹣2﹣0的解是____________.7.总结配方法解一元二次方程的步骤是:(1)化二次项系数为__________;(2)移项,使方程左边只有__________项;(3)在方程两边都加上__________平方;(4)用直接开平方法求出方程的根.8.〔1〕x2+6x+9=(x+____)2,〔2〕x2-_______+p24=(x−p2)2.9.把一元二次方程3x2-2x-3=0化成3(x+m)2=n的形式是____________;假设多项式x2-ax+2a-3是一个完全平方式,那么a=_________.10.x²-3x+____=(x-___)².三、解答题11.解方程:x2−2x=4﹣12.用配方法解方程:2x2−3x+1=0﹣13.用配方法说明:不管x取何值,代数式2x2+5x-1的值总比代数式x2+7x-4的值大,并求出两代数式的差最小时x的值.14.关于x的一元二次方程kx2+2x﹣1=0有实数根,第 1 页〔1〕求k的取值范围;〔2〕当k=2时,请用配方法解此方程.15.大家知道在用配方法解一般形式的一元二次方程时,都要先把二次项系数化为1,再进展配方.现请你先阅读如下方程〔1〕的解答过程,并按照此方法解方程〔2〕.方程〔1〕2x2−2√2x−3=0.解:2x2−2√2x−3=0,(√2x)2−2√2x+1=3+1,(√2x−1)2=4,√2x−1=±2,x1=−√22,x2=3√22.方程〔2〕3x2−2√6x=2.参考答案1.A【解析】【分析】在此题中,把常数项-2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.【详解】把方程x2-4x-2=0的常数项移到等号的右边,得到x2-4x=2,方程两边同时加上一次项系数一半的平方,得到x2-4x+4=2+4,配方得〔x-2〕2=6.应选:A【点睛】配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1;〔3〕等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.2.A【解析】【详解】﹣x2+8x+9=0﹣﹣x2+8x=−9﹣﹣x2+8x+16=−9+16﹣﹣(x+4)2=7.应选A.【点睛】配方法的一般步骤:〔1〕将常数项移到等号右边;〔2〕将二次项系数化为1;〔3〕等式两边同时加上一次项系数一半的平方.3.D【解析】分析:方程x2﹣8x+m=0可以配方成〔x﹣n〕2=6的形式,把x2﹣8x+m=0配方即可第 1 页得到一个关于m的方程,求得m的值,再利用配方法即可确定x2+8x+m=5配方后的形式.详解:∵x2﹣8x+m=0,∴x2﹣8x=﹣m,∴x2﹣8x+16=﹣m+16,∴〔x﹣4〕2=﹣m+16,依题意有:n=4,﹣m+16=6,∴n=4,m=10,∴x2+8x+m=5是x2+8x+5=0,∴x2+8x+16=﹣5+16,∴〔x+4〕2=11,即〔x+n〕2=11.应选D.点睛:考察理解一元二次方程﹣配方法,配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1;〔3〕等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.D【解析】【分析】通过配方写成完全平方的形式,用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.再说明他的说法错误.【详解】当x2-10x+36=11时;x2-10x+25=0﹣﹣x-5﹣2=0﹣x1=x2=5﹣所以他们两人的说法都是错误的,应选D.【点睛】此题考察了配方法解一元二次方程,纯熟掌握配方法的一般步骤是解题的关键.配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1﹣﹣3〕等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.D【解析】【分析】可把〔x+3〕2=3按完全平方式展开,比照即可知a的值.【详解】根据题意,〔x+3〕2=3可变为:x2+6x+6=0,和一元二次方程x2-ax+6=0比拟知a=-6.应选:D【点睛】此题考核知识点:此题考察了配方法解一元二次方程,是根底题.6.x1﹣1﹣√3﹣x2﹣1﹣√3【解析】分析: 首先把常数-2移到等号右边,再两边同时加上一次项系数一半的平方,把左边配成完全平方公式,再开方,解方程即可.详解:x2-2x-2=0,移项得:x2-2x=2,配方得:x2-2x+1=2+1,〔x-1〕2=3,两边直接开平方得:x-1=±√3,那么x1=√3+1,x2=-√3+1.故答案为:x1=1+√3,x2=1-√3.点睛: 此题主要考察了配方法解一元二次方程,配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1;〔3〕等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 7.1二次项及一次一次项系数一半的【解析】分析:根据配方法的步骤解方程即可.详解:总结配方法解一元二次方程的步骤是:(1)化二次项系数为1;(2)移项,使方程左边只有二次项及一次项;(3)在方程两边都加上一次项系数一半的平方;(4)用直接开平方法求出方程的根.点睛:此题考察了配方法,配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1;〔3〕等式两边同时加上一次项系数一半的平方,选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.第 3 页8.3 px【解析】【详解】根据完全平方公式得,x 2+6x +9=(x +3)2﹣x 2-px +p 24=(x −p 2)2. 故答案为3﹣px .9.3(x −13)2=103﹣2或6.【解析】【分析】首先把一元二次方程3x 2-2x -3=0提出3,然后再配方即可;【详解】根据题意,一元二次方程3x 2-2x -3=0化成,括号里面配方得,,即; ∵多项式x 2-ax+2a -3是一个完全平方式,,∴解得a=2或6.故答案为﹣(1). 3(x −13)2=103﹣ (2). 2或6.【点睛】此题考察了配方法解一元二次方程,解题的关键是纯熟掌握用配方法解一元二次方程的步骤.10. 94, 32 【解析】分析:根据配方法可以解答此题.详解:∵x 2﹣3x +94=〔x ﹣32〕2, 故答案为:94,32.点睛:此题考察了配方法的应用,解题的关键是纯熟掌握配方法.11.x 1=1+√5,x 2=1−√5.【解析】【分析】第 5 页两边都加1,运用配方法解方程.【详解】解:x 2−2x +1=5,(x −1)2=5,x −1=±√5,所以x 1=1+√5,x 2=1−√5.【点睛】此题考核知识点:解一元二次方程. 解题关键点:掌握配方法.12.x 1=12,x 2=1.【解析】【分析】利用配方法得到〔x ﹣34〕2=116,然后利用直接开平方法解方程即可.【详解】x 2﹣32x =﹣12, x 2﹣32x +916=﹣12+916, 〔x ﹣34〕2=116x ﹣34=±14, 所以x 1=12,x 2=1. 【点睛】此题考察理解一元二次方程﹣配方法:将一元二次方程配成〔x +m 〕2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.13.详见解析.【解析】【分析】用求差法比拟代数式2x 2+5x-1的值总与代数式x 2+7x-4的大小,即2x 2+5x-1-〔x 2+7x-4〕=2x 2+5x-1-x 2-7x+4=x 2-2x+3=〔x-1〕2+2;当x=1时,两代数式的差最小为2.【详解】解:2x 2+5x-1-〔x 2+7x-4〕=2x 2+5x-1-x 2-7x+4=x 2-2x+3=〔x-1〕2+2,∵〔x-1〕2≥0,∴〔x-1〕2+2>0,即2x 2+5x-1-〔x 2+7x-4〕>0,∴不管x 取任何值,代数式2x 2+5y-1的值总比代数式x 2+7x-4的值大,当x=1时,两代数式的差最小为2.【点睛】此题考核知识点:配方.解题关键点:用求差法和配方法比拟代数式的大小.14.〔1〕k ≥﹣1且k ≠0;〔2〕x 1=√3−12,x 2=−√3−12. 【解析】试题分析:﹣1〕当k =0时,是一元一次方程,有解;当k ≠0时,方程是一元二次方程,因为方程有实数根,所以先根据根的判别式﹣≥0,求出k 的取值范围;﹣2〕当k =2时,把k 值代入方程,用配方法解方程即可.解:〔1〕∵一元二次方程kx 2+2x ﹣1=0有实数根,∴22+4k ≥0,k ≠0,解得,k ≥﹣1且k ≠0;〔2〕当k=2时,原方程变形为2x 2+2x ﹣1=0,2〔x 2+x 〕=1,2〔x 2+x +〕=1+,2〔x +〕2=,〔x +〕2=x +=±, x 1=,x 2=. 15.x 1=√6+2√33 ,x 1=√6−2√33. 【解析】【分析】参照范例的步骤和方法进展分析解答即可.【详解】原方程可化为:(√3x)2−2×√3×√2x +(√2)2=2+(√2)2,﹣ (√3x −√2)2=4,∴ √3x−√2=±2,∴x1=√6+2√33,x2=√6−2√33.【点睛】读懂范例中的解题方法和步骤是解答此题的关键.第 7 页。

九年级数学上册《第二十一章一元二次方程》同步练习题及答案(人教版)

九年级数学上册《第二十一章一元二次方程》同步练习题及答案(人教版)

九年级数学上册《第二十一章一元二次方程》同步练习题及答案(人教版) 班级姓名学号一、单选题1.方程x2=4x的根是()A.4 B.-4 C.0或4 D.0或-42.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0B.1x2+1x=2C.x2+2x=x2−1D.3(x+1)2=2(x+1)3.若x=1是方程x2+ax﹣2=0的一个根,则a的值为()A.0 B.1 C.2 D.34.如果一个一元二次方程的根是x1=x2=2,那么这个方程可以是()A.x2=4 B.x2+4=0C.x2+4x+4=0 D.x2-4x+4=05.已知关于x的方程ax2+bx+c=0,若a+b+c=0,则该方程一定有一个根为()A.-1 B.0 C.1 D.1或-16.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1C.k≤5,且k≠1 D.k>57.已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或108.定义:cx2+bx+a=0是一元二次方程ax2+bx+c=0的倒方程.则下列四个结论:①如果x=2是x2+2x+c=0的倒方程的解,则c=−54;②如果ac<0,那么这两个方程都有两个不相等的实数根;③如果一元二次方程ax2−2x+c=0无实数根,则它的倒方程也无实数根;④如果一元二次方程ax2+bx+c=0有两个不相等的实数根,则它的倒方程也有两个不相等的实数根. 其中正确的有()A.1个B.2个C.3个D.4个二、填空题9.写一个以5,﹣2为根的一元二次方程(化为一般形式).10.一元二次方程x2-3x=0的较大的根为。

11.把方程3x (x ﹣1)=2﹣2x 化成一元二次方程的一般形式为12.若一元二次方程ax 2﹣bx ﹣2015=0有一根为x=﹣1,则a+b= .13.已知 {x =−2y =3是方程x ﹣ky=1的解,那么k= . 三、解答题14.已知x=1是方程x 2﹣5ax+a 2=0的一个根,求代数式3a 2﹣15a ﹣7的值.15.若关于x 的二次方程(m+1)x 2+5x+m 2﹣3m=4的常数项为0,求m 的值.16.已知关于x 的方程(k ﹣1)(k ﹣2)x 2+(k ﹣1)x+5=0.求:(1)当k 为何值时,原方程是一元二次方程;(2)当k 为何值时,原方程是一元一次方程;并求出此时方程的解.17.阅读下题的解答过程,请判断其是否有错,若有错误,请你写出正确的m 值.已知m 是关于x 的方程mx 2﹣2x+m=0的一个根,求m 的值.解:把x=m 代入原方程,化简得m 2=m ,两边同除以m ,得m=1把m=1代入原方程检验,可知m=1符合题意.18.关于x 的一元二次方程x 2﹣3x+k =0有实数根.(1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程(m ﹣1)x 2+x+m ﹣3=0与方程x 2﹣3x+k =0有一个相同的根,求此时m 的值.19.已知关于x 的一元二次方程x 2+(m ﹣2)x +m ﹣3=0.(1)求证:无论m 取何值,方程总有实数根.(2)设该方程的两个实数根分别为x 1,x 2,且2x 1+x 2=m +1,求m 的值.1.C2.D3.B4.D5.C6.B7.B8.C9.x2-3x-10=0(不唯一)10.x=311.3x2−x−2=012.201513.k=﹣114.解:∵x=1是方程x2﹣5ax+a2=0的一个根∴1﹣5a+a2=0.∴a2﹣5a=﹣1∴3a2﹣15a﹣7=3(a2﹣5a)﹣7=3×(﹣1)﹣7=﹣10,即3a2﹣15a﹣7=﹣10.15.解:∵关于x的二次方程(m+1)x2+5x+m2﹣3m﹣4=0的常数项为0∴m2﹣3m﹣4=0,即(m﹣4)(m+1)=0解得:m=4或m=﹣1当m=﹣1时,方程为5x=0,不合题意;则m的值为4.16.解:(1)依题意得:(k﹣1)(k﹣2)≠0解得k≠1且k≠2;(2)依题意得:(k﹣1)(k﹣2)=0,且k﹣1≠0所以k﹣2=0解得k=2所以该方程为x+5=0解得x=﹣5.17.解:错误,由于关于x的方程不一定是一元二次方程此时,方程为﹣2x=0∴x=0,符合题意当m ≠0时∴m 3﹣2m+m=0∴m (m 2﹣1)=0∴m 2﹣1=0∴m=±1综上所述,m=0或±1.18.(1)解:根据题意得△=(-3)2-4k ≥0,解得k ≤ 94(2)解:满足条件的k 的最大整数为2,此时方程变形为方程x 2-3x+2=0,解得x 1=1,x 2=2 当相同的解为x=1时,把x=1代入方程得m-1+1+m-3=0,解得m= 32当相同的解为x=2时,把x=2代入方程得4(m-1)+2+m-3=0,解得m=1,而m-1≠0 不符合题意,舍去,所以m 的值为 3219.(1)证明:∵Δ=(m −2)2−4(m −3)=m 2−4m +4−4m +12=m 2−8m +16=(m −4)2≥0 ∴无论m 取何值,此方程总有实数根;(2)解:∵该方程的两个实数根分别为x 1,x 2∴{x 1+x 2=−(m −2)=2−m 2x 1+x 2=m +1,且 x 1x 2=m −3 解得 {x 1=2m −1x 2=3−3m∴(2m −1)(3−3m)=m −3∴6m −3−6m 2+3m =m −3 即 6m 2−8m =0∴m(6m −8)=0∴解得 m =0 或 m =43。

人教版九年级上册数学第二十一章 一元二次方程单元练习题附答案教师版

人教版九年级上册数学第二十一章 一元二次方程单元练习题附答案教师版

人教版九年级上册数学第二十一章一元二次方程单元练习题附答案一、单选题1.已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是().A.a<2 B.a>2C.a<2且a≠1D.a<-2【答案】C2.若α、β是方程x2+2x﹣2007=0的两个实数根,则α2+3α+β的值()A.2007B.2005C.﹣2007D.4010【答案】B3.一元二次方程x2-kx-1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断【答案】A4.用配方法解方程时,原方程应变形为()A.B.C.D.【答案】C5.方程-x2+3x=1用公式法求解,先确定a,b,c的值,正确的是()A.a=-1,b=3,c=-1B.a=-1,b=3,c=1C.a=-1,b=-3,c=-1D.a=1,b=-3,c=-1【答案】A6.下列方程中,有两个不相等实数根的是().A.x2-4x+4=0B.x2+3x-1=0C.x2+x+1=0D.x2-2x+3=0【答案】B7.关于x的一元二次方程kx2-2x-1=0有实数根,则k的取值范围是()A.k>-1或k≠0B.k≥-1C.k≤-1或k≠0D.k≥-1且k≠0【答案】D8.参加一次活动的每个人都和其他人各握了一次手,所有人共握手10次,有多少人参加活动?设有x人参加活动,可列方程为()A.12x(x−1)=10B.x(x−1)=10C.12x(x+1)=10D.2x(x−1)=10【答案】A9.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32−x)(20−x)=32×20−570B.32x+2×20x=32×20−570C.32x+2×20x−2x2=570D.(32−2x)(20−x)=570【答案】D10.直角三角形两条直角边的和为7,面积是6,则斜边长是()A.√37B.5C.√38D.7【答案】B二、填空题11.已知(x2+y2+1)(x2+y2+2)=6,则x2+y2的值为。

人教版初中九年级数学上册第二十一章《一元二次方程》习题(含答案解析)

人教版初中九年级数学上册第二十一章《一元二次方程》习题(含答案解析)

一、选择题1.方程22(1)10m x -+-=是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠±lB .m≥-l 且m≠1C .m≥-lD .m >-1且m≠1D 解析:D【分析】根据一元二次方程的定义及二次根式有意义的条件求解可得.【详解】∵方程22(1)10m x -+-=是关于x 的一元二次方程,∴210m -≠,解得1m ≠±,10m +≥,解得:1m ≥-,∴1m >-且1m ≠,故选:D .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.用配方法转化方程2210xx +-=时,结果正确的是( ) A .2(1)2x += B .2(1)2x -= C .2(2)3x += D .2(1)3x +=A 解析:A【分析】方程两边都加上一次项系数的一半,利用完全平方公式进行转化,即可得到答案.【详解】解:2210x x +-=2212x x ++=∴2(1)2x +=,故选:A .【点睛】此题考查一元二次方程的配方法,掌握配方法是计算方法是解题的关键.3.若x=0是关于x 的一元二次方程(a+2)x 2x+a 2+a-6=0的一个根,则a 的值是( )A .a ≠2B .a=2C .a=-3D .a=-3或a=2B解析:B【分析】将x=0代入方程中,可得关于a 的一元二次方程方程,然后解方程即可,注意a≥2这一隐含条件.【详解】解:将x=0代入(a+2)x 2- 2+a-6=0中,得: a 2+a-6=0,解得:a 1=﹣3,a 2=2,∵a+2≠0且a ﹣2≥0,即a≥2,∴a=2,故选:B .【点睛】本题考查一元二次方程方程的解、解一元二次方程、二次根式有意义的条件,理解方程的解的意义,熟练掌握一元二次方程的解法是解答的关键,注意隐含条件a≥0.4.某小区2018年屋顶绿化面积为22000m ,计划2020年屋顶绿化面积要达到22880m .设该小区2018年至2020年屋顶绿化面积的年平均增长率为x ,则可列方程为( )A .2000(12)2880x +=B .2000(1)2880x ⨯+=C .220002000(1)2000(1)2880x x ++++=D .22000(1)2880x +=D解析:D【分析】一般用增长后的量=增长前的量×(1+增长率),如果设绿化面积的年平均增长率为x ,根据题意即可列出方程.【详解】解:设平均增长率为x ,根据题意可列出方程为:2000(1+x )2=2880.故选:D .【点睛】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a (1+x )2=b (a <b );平均降低率问题,在理解的基础上,可归结为a (1-x )2=b (a >b ).5.一元二次方程2304y y +-=,配方后可化为( ) A .21()12y +=B .21()12y -=C .211()22y +=D .213()24y -=A 解析:A【分析】根据配方法解一元二次方程的步骤计算可得.【详解】解:∵2304y y +-=, ∴y 2+y=34, 则y 2+y+14=34+14, 即(y+12)2=1, 故选:A .【点睛】本题主要考查解一元二次方程-配方法,用配方法解一元二次方程的步骤:①把原方程化为ax 2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边; ③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.6.设m 、n 是一元二次方程2430x x -+=的两个根,则23m m n -+=( ) A .1-B .1C .17-D .17B 解析:B【分析】根据一元二次方程的根的定义、根与系数的关系即可得.【详解】由一元二次方程的根的定义得:2430m m -+=,即243m m -=-, 由一元二次方程的根与系数的关系得:441m n -+=-=, 则2234m m n m m m n -+=-++, ()()24m m m n =-++,34=-+,1=,故选:B .【点睛】本题考查了一元二次方程的根的定义、根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.7.若关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根,则a 的取值范围是( )A .a <-2B .a >-2C .-2<a <0D .-2≤a <0C解析:C【分析】由关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根可得2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭,解不等式即可求出a 的取值范围. 【详解】∵关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根, ∴2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭, 解得:a >−2,∵a <0,∴−2<a <0.故选C .【点睛】本题考查一元二次方程根的判别式,掌握根的判别式的应用为解题关键.8.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( ) A .3B .6C .8D .9D 解析:D【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论.【详解】解:260x x c -+=有两个相等的实根,2(6)40c ∴∆=--=,解得:9c =故选:D .【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.9.已知一元二次方程x 2﹣6x+c =0有一个根为2,则另一根及c 的值分别为( ) A .2,8B .3,4C .4,3D .4,8D解析:D【分析】设方程的另一个根为t ,根据根与系数的关系得到t +2=6,2t =c ,然后先求出t ,再计算c 的值.【详解】解:设方程的另一个根为t ,根据题意得t +2=6,2t =c ,解得t =4,c =8.故选:D .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a. 10.一元二次方程(x ﹣3)2﹣4=0的解是( ) A .x =5B .x =1C .x 1=5,x 2=﹣5D .x 1=1,x 2=5D 解析:D【分析】利用直接开平方法求解即可.【详解】解:∵(x ﹣3)2﹣4=0,∴(x ﹣3)2=4,则x ﹣3=2或x ﹣3=﹣2,解得x 1=5,x 2=1,故选:D .【点睛】本题考查了用直接开平方法解一元二次方程,掌握解法是关键.二、填空题11.把方程2230x x --=化为2()x h k +=的形式来求解的方法我们叫配方法,其中h ,k 为常数,那么本题中h k +的值是_________.3【分析】首先把常数项移到等号右边经配方h 和k 即可求得进而通过计算即可得到答案【详解】根据题意移项得配方得:即∴∴故答案是:3【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法解析:3【分析】首先把常数项移到等号右边,经配方,h 和k 即可求得,进而通过计算即可得到答案.【详解】根据题意,移项得223x x -=,配方得:22131x x -+=+,即2(1)4x -=,∴1h =-,4k =∴143h k +=-+=故答案是:3.【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法的性质,从而完成求解.12.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是________.且【分析】根据根的判别式及一元二次方程的定义解题即可【详解】∵关于x 的一元二次方程有两个不相等的实数根解得又∵该方程为一元二次方程且故答案为:且【点睛】本题主要考查根的判别式及一元二次方程的定义属于解析:1k ->且0k ≠.【分析】根据根的判别式及一元二次方程的定义解题即可.【详解】∵关于x 的一元二次方程有两个不相等的实数根,()224241440b ac k k ∴∆=-=-⨯-=+>,解得1k >-.又∵该方程为一元二次方程,0k ∴≠,1k ∴>-且0k ≠.故答案为:1k >-且0k ≠.【点睛】本题主要考查根的判别式及一元二次方程的定义,属于基础题,掌握根的判别式及一元二次方程的定义是解题的关键.13.将一元二次方程(32)(1)83x x x -+=-化成一般形式是_____.【分析】先计算多项式乘以多项式并移项再合并同类项即可【详解】故答案为:【点睛】此题考查一元二次方程的一般形式掌握多项式乘以多项式合并同类项计算法则是解题的关键解析:23710x x -+=【分析】先计算多项式乘以多项式,并移项,再合并同类项即可.【详解】(32)(1)83x x x -+=-23322830x x x x +---+=23710x x -+=故答案为:23710x x -+=.【点睛】此题考查一元二次方程的一般形式,掌握多项式乘以多项式,合并同类项计算法则是解题的关键.14.一元二次方程-+=(5)(2)0x x 的解是______________.x1=5x2=-2【分析】直接利用因式分解法得出方程的根【详解】解:∵(x-5)(x+2)=0∴x-5=0或x+2=0∴x1=5x2=-2故答案为:x1=5x2=-2【点睛】此题主要考查了一元二次方 解析:x 1=5,x 2=-2【分析】直接利用因式分解法得出方程的根.【详解】解:∵(x-5)(x+2)=0,∴x-5=0或x+2=0,∴x 1=5,x 2=-2,故答案为:x 1=5,x 2=-2.【点睛】此题主要考查了一元二次方程的解法,正确理解因式分解法解方程是解题关键. 15.若关于x 的一元二次方程()23x c -=有实根,则c 的值可以是_________________.(写出一个即可)1(答案不唯一)【分析】根据非负数的性质可得于是只要使c 的值非负即可【详解】解:若关于的一元二次方程有实根则所以的值可以是1(答案不唯一)故答案为:1(答案不唯一)【点睛】本题考查了一元二次方程的解解析:1(答案不唯一)【分析】根据非负数的性质可得0c ≥,于是只要使c 的值非负即可.【详解】解:若关于x 的一元二次方程()23x c -=有实根,则0c ≥,所以c 的值可以是1(答案不唯一).故答案为:1(答案不唯一).【点睛】本题考查了一元二次方程的解法,正确理解题意、掌握非负数的性质是关键. 16.已知实数a ,b 是方程210x x --=的两根,则11a b+的值为______.-1【分析】利用根与系数的关系得到a+b=1ab=-1再根据异分母分式加减法法则进行计算代入求值【详解】∵是方程的两根∴a+b=1ab=-1∴===-1故答案为:-1【点睛】此题考查一元二次方程根与解析:-1【分析】利用根与系数的关系得到a+b=1,ab=-1,再根据异分母分式加减法法则进行计算代入求值.【详解】∵a ,b 是方程210x x --=的两根,∴a+b=1,ab=-1,∴11a b+ =a b ab+ =11- =-1, 故答案为:-1.【点睛】此题考查一元二次方程根与系数的关系式,异分母分式的加减法计算法则.17.对于任意实数a 、b ,定义:a ◆b =a 2+ab +b 2.若方程(x ◆2)﹣5=0的两根记为m 、n ,则(m +2)(n +2)=_____.-1【分析】根据新定义可得出mn 为方程x2+2x−1=0的两个根利用根与系数的关系可得出m +n =−2mn =−1变形(m +2)(n +2)得到mn +2(m +n )+4然后利用整体代入得方法进行计算【详解】 解析:-1【分析】根据新定义可得出m 、n 为方程x 2+2x−1=0的两个根,利用根与系数的关系可得出m +n =−2、mn =−1,变形(m +2)(n +2)得到mn +2(m +n )+4然后利用整体代入得方法进行计算.【详解】解:∵(x ◆2)﹣5=x 2+2x +4﹣5,∴m 、n 为方程x 2+2x ﹣1=0的两个根,∴m +n =﹣2,mn =﹣1,∴(m +2)(n +2)=mn +2(m +n )+4=﹣1+2×(﹣2)+4=﹣1.故答案为﹣1.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系:若方程两根为x 1,x 2,则x 1+x 2=b a -,x 1•x 2=c a. 18.等腰三角形ABC 中,8BC =,AB 、AC 的长是关于x 的方程2100x x m -+=的两根,则m 的值是___.或【分析】等腰三角形ABC 中边可能是腰也可能是底应分两种情况进行讨论分别利用根与系数的关系三角形三边关系定理求得方程的两个根进而求得答案【详解】解:∵关于x 的方程∴∴∵是等腰三角形的长是关于x 的方程解析:25或16【分析】等腰三角形ABC 中,边BC 可能是腰也可能是底,应分两种情况进行讨论,分别利用根与系数的关系、三角形三边关系定理求得方程的两个根,进而求得答案.【详解】解:∵关于x 的方程2100x x m -+=∴1a =,10b =-,c m = ∴1210b x x a +=-=,12c x x m a == ∵ABC 是等腰三角形,AB 、AC 的长是关于x 的方程2100x x m -+=的两根 ∴①当8BC =为底、两根AB 、AC 均为等腰三角形的腰时,有1210AB AC x x +=+=且AB AC =即5AB AC ==,此时等腰三角形的三边分别为5、5、8,根据三角形三边关系定理可知可以构成三角形,则1225m x x AB AC ==⋅=;②当8BC =为腰、两根AB 、AC 中一个为腰一个为底时,有122810x x x +=+=,即22x =,此时此时等腰三角形的三边分别为2、8、8,根据三角形三边关系定理可知可以构成三角形,则1216m x x AB AC ==⋅=.∴综上所述,m 的值为25或16.故答案是:25或16【点睛】本题考查了一元二次方程根与系数的关系、等腰三角形的性质、三角形三边关系定理等,熟练掌握相关知识点是解题的关键.19.已知2x =是关于x 的方程220x x m ++=的一个根,则m =_________.-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程解这个方程即可【详解】已知是关于x 的方程的一个根故答案为:-8【点睛】本题考查一元二次方程的根问题掌握方程的根的性质会用方程的解代入构造解析:-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程,解这个方程即可【详解】已知2x =是关于x 的方程220x x m ++=的一个根,22220m +⨯+=8m =-故答案为:-8【点睛】本题考查一元二次方程的根问题,掌握方程的根的性质,会用方程的解代入构造参数方程是解题关键20.如图,世纪广场有一块长方形绿地,AB =18m ,AD =15m ,在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,则x =_____.【分析】由在绿地中开辟三条宽为xm 的道路后剩余绿地的面积为144m2即可得出关于x 的一元二次方程此题得解【详解】解:设道路的宽为xm 根据题意得:(18﹣2x )(15﹣x )=144解得:或(舍去)答: 解析:3【分析】由在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,即可得出关于x 的一元二次方程,此题得解.【详解】解:设道路的宽为xm ,根据题意得:(18﹣2x )(15﹣x )=144,解得:13x =或221x =(舍去),答:道路的宽为3m .故答案为:3.【点睛】此题考查一元二次方程的应用,根据题意找出等量关系,正确列方程是解题的关键.三、解答题21.新冠疫情蔓延全球,口罩成了人们的生活必须品.某商店销售一款口罩,每袋进价为12元,计划每袋售价大于12元但不超过20元,通过市场调查发现,这种口罩每袋售价为18元时,日均销售量为50袋,而当每袋售价提高1元时,日均销售量就减少5袋. (1)在每袋售价为18元的基础上,将这种口罩的售价每袋提高x 元,则日均销售量是_________袋;(用含x 的代数式表示)(2)经综合考察,要想使这种口罩每天赢利315元,该商场每袋口罩的销售价应定为多少元?解析:(1)505x -;(2)19元.【分析】(1)销售量=原来销售量-下降销售量,据此列式即可;(2)设这种口罩的售价每袋提高x 元,根据销售量×每袋利润=总利润列出方程求解即可.【详解】(1)∵每袋售价提高1元时,日均销售量就减少5袋,∴每天销量减少5x 袋,∵售价为18元时,日均销售量为50袋,∴将这种口罩的售价每袋提高x 元,则日均销售量是:505x -.故答案为:505x -(2)设这种口罩的售价每袋提高x 元,根据题意得:(1812)(505)315x x +--=,化简得:2430x x -+=,解得:121,3x x ==,当11x =时,每袋售价是:18119+=(元);当23x =时,每袋售价是:18321+=(元);∵计划每袋售价大于12元但不超过20元,∴23x =舍去.∴当1x =时,每袋售价是19元.答:该商场每袋口罩的售价应定为19元.【点睛】本题考查一元二次方程的应用,关键是根据售价和销售量的关系,以利润做为等量关系列方程求解.22.若a 为方程2(16x =的一个正根,b 为方程22113y y -+=的一个负根,求+a b 的值.解析:a+b= 5【分析】先求出2(16x =的根4x ,由a 为方程2(16x =的一个正根,得4a =+,再求22113y y -+=的根=1y ±b 为方程22113y y -+=的一个负根,得1b =+a b 即可.【详解】2(16x -=,4x -=±,4x ,a 为方程2(16x =的一个正根,4a =+,22113y y -+=,()2113y -=,1y -==1y ±b 为方程22113y y -+=的一个负根,1b =415a b +=+=.【点睛】本题考查一元二次方程的解法,会比较方程根的正负与大小,掌握一元二次方程的解法是解题关键.23.已知关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0.(1)求证:无论k 为何实数,方程总有实数根;(2)若此方程有两个根x 1,x 2,且x 12+x 22=8,求k 的值.解析:(1)见解析;(2)-1或13 【分析】(1)根据方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0计算判别式的值得到△=(k +1)2≥0,即可证明结论;(2)利用根与系数的关系得到x 1+x 2=31k k -,x 1x 2=()21k k -,再根据x 12+x 22=8得出(31k k -)2﹣2•()21k k-=8,解此方程即可求解. 【详解】(1)证明:关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0中,∵a =k ,b =﹣(3k ﹣1),c =2(k ﹣1),△()()231421k k k ⋅⋅=-﹣- 2296188k k k k ++=--221k k =++2(1)k =+,∴无论k 为任何实数,△0≥.∴无论k 为任何实数,方程总有实数根;(2)解:根据题意得x 1+x 2=31k k -,x 1x 2=()21k k -, ∵x 12+x 22=8,∴(x 1+x 2)2﹣2x 1x 2=8,∴(31k k -)2﹣2•()21k k-=8, 整理得3k 2+2k ﹣1=0,解得k 1=13,k 2=﹣1, 经检验k 1=13,k 2=﹣1为原方程的解, ∵k ≠0,∴k 的值为﹣1或13. 【点睛】 本题考查了根的判别式及根与系数关系,掌握一元二次方程根的判别式及根与系数的关系是解题的关键.24.火锅是重庆人民钟爱的美食之一;解放碑某老火锅店为抓住“十一黄金周”这个商机,通过网上广告宣传和实地派发传单等一系列促销手段吸引了不少本地以及外地游客,火锅店门庭若市.据店员统计;仅“十一黄金周”前来店内就餐选择红汤火锅和清汤火锅的游客共2500人,其中红汤火锅和清汤火锅的人均消费分别为80元和60元.(1)“十一”期间,若选择红汤火锅的人数不超过清汤火锅人数的1.5倍,求至少有多少人选择清汤火锅?(2)随着“十一”的结束,前来店内就餐的人数逐渐减少,据接下来的第二周统计数据显示,与(1)选择清汤火锅的人数最少时相比,选择红汤火锅的人数下降了a %,选择清汤火锅的人数不变,但选择红汤火锅的人均消费增长了a %,选择清汤火锅的人均消费增长了1%5a ,最终第二周两种火锅的销售总额与(1)中选择清汤火锅的人数最少时两种火锅的销售总额相等,求a 的值.解析:(1)至少有1000人选择清汤火锅;(2)a 的值为10【分析】(1)设有x 人选择清汤火锅,则有(2500﹣x )人选择红汤火锅,根据选择红汤火锅的人数不超过清汤火锅人数的1.5倍列出一元一次不等式,然后解不等式取其最小值即可; (2)根据第二周两种火锅的销售总额与(1)中选择清汤火锅的人数最少时两种火锅的销售总额相等列出关于a 的一元二次方程,然后解方程取其正值即可解答.【详解】解:(1)设有x 人选择清汤火锅,则有(2500﹣x )人选择红汤火锅,根据题意, 得:2500﹣x≤1.5x ,解得:x≥1000,答:至少有1000人选择清汤火锅;(2)根据题意,得:80(1+a%)×(2500﹣1000)(1﹣a%)+60(1+15a%)×1000=80×(2500﹣1000)+60×1000,整理,得:12x 2﹣120a=0,解得:a 1=10,a 2=0(不合题意,舍去),答:a 的值为10.【点睛】本题考查一元一次不等式的应用、一元二次方程的应用,解答的关键是理解题意,找准数量间的关系,正确列出不等式和方程.25.解下列方程:(1)2410x x --=;(2)(4)123x x x -=-.解析:(1)12x =22x =2)x 4=或x 3=-【分析】(1)利用配方法解方程;(2)利用因式分解法解方程.【详解】(1)2410x x --=2445x x +=-2(2)5x -=则2x -=解得12x =22x =(2)解:(4)3(4)0x x x -+-=,(4)(3)0x x -+=,则40x -=或30x +=,解得x 4=或x 3=-.【点睛】此题考查解一元二次方程:直接开平方法、配方法、公式法、因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.26.用适当的方法解方程:(l )2(3)26x x +=+(2)2810x x -+=.解析:(1)13x =-,21x =-;(2)1x =,24x =【分析】(1)用因式分解法求解可得;(2)用配方法求解即可.【详解】解:(1)∵(x+3)2-2(x+3)=0,∴(x+3)(x+1)=0,∴x+3=0或x+1=0,解得:x=-3或x=-1;(2)2810x x -+=281x x -=-28+1615x x -=2(4)15x -=4x -=∴1x =,24x =【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.27.定义:若关于x 的一元二次方程()200++=≠ax bx c a 的两个实数根1x ,()212x x x <,分别以1x ,2x 为横坐标和纵坐标得到点()12,M x x ,则称点M 为该一元二次方程的衍生点.(1)若关于x 的一元二次方程为()22210x m x m m --+-=.①求证:不论m 为何值,该方程总有两个不相等的实数根,并求出该方程的衍生点M 的坐标;②由①得到的衍生点M 在直线l :3y x =-+与坐标轴围成的区域上,求m 的取值范围.(2)是否存在b ,c ,使得不论()0k k ≠为何值,关于x 的方程20x bx c ++=的衍生点M 始终在直线()25y kx k =+-的图象?若有,求出b ,c 的值:若没有,说明理由. 解析:(1)①见解析,()1,M m m -;②12m ≤≤;(2)存在,12b =-,20c =【分析】(1)①根据根的判别式和衍生点的定义,即可得出结论;②先确定点出点M 在在直线y=x+1上,借助图象即可得出结论;(2)求出定点,利用根与系数的关系解决问题即可.【详解】解:(1)①()22210x m x m m --+-=,∵()()2221410m m m ⎡⎤∆=----=>⎣⎦, ∴不论x 为何值,该方程总有两个不相等的实数根,()22210x m x m m --+-=,解得:11x m =-,2x m =,方程()22210x m x m m --+-=的衍生点为()1,M m m -.②由①得,()1,M m m -,令1-=m x ,m y =,∴1y x =+,∴点M 在在直线1y x =+上,与y 轴交于A 点,当x=0时,y=1,∴()0,1A ,∵直线1l :3y x =-+与直线1y x =+交于B 点,解31y x y x =-+⎧⎨=+⎩, 解得12x y =⎧⎨=⎩,∴()1,2B ,∵点M 的在直线l :3y x =-+与坐标轴围成的区域上∴12m ≤≤;(2)存在.直线()()25210y kx k k x =+-=-+,过定点()2,10M ,∴20x bx c ++=两个根为12x =,210x =,∴210b +=-,210c ⨯=,∴12b =-,20c =.【点睛】本题考查了新定义,一元二次方程根的判别式,一元二次方程的根与系数的关系,两条直线相交问题,解题的关键是理解题意,学会用转化的思想思考问题.28.用一块边长为70cm 的正方形薄钢片制作一个长方体盒子.(1)如果要做成一个没有盖的长方体盒子,可先在薄钢片的四个角上截去四个相同的小正方形(如图①),然后把四边折合起来(如图②).当做成的盒子的底面积为2900cm 时,求该盒子的容积;(2)如果要做成一个有盖的长方体盒子,制作方案要求同时符合下列两个条件: ①必须在薄钢片的四个角上截去一个四边形(如图③阴影部分),②沿虚线折合后薄钢片即无空隙又不重叠地围成各盒面,求当底面积为2800cm 时,该盒子的高.解析:(1)18000cm 3;(2)15cm【分析】(1)根据图中给出的信息,设四个相同的小正方形边长为x ,先表示出盒子的正方形底面的边长,然后根据底面积=900即可得到方程,求解即可;(2)该盒子的高为y ,根据底面积为800列出方程,解之即可.【详解】解:(1)设四个相同的小正方形边长为x ,由题意可得:(70-2x )2=900,解得:x 1=20,x 2=50(舍),∴该盒子的容积为900×20=18000cm 3;(2)设该盒子的高为y , 根据题意得:()7027028002y y -⨯-=, 解得:y 1=15,y 2=55(舍), 因此当底面积是800平方厘米时,盒子的高是15厘米.【点睛】本题主要考查了一元二次方程的实际运用,只要搞清楚盒子底面各边的长和盒子的高的关系即可作出正确解答.。

人教版九年级上第21章一元二次方程同步练习题含答案

人教版九年级上第21章一元二次方程同步练习题含答案

人教版九年级上第21章一元二次方程同步练习题含答案同步练习一、选择题1.若25x 2=16,则x 的值为()A .45±B .54± C.1625± D .2516± 2.关于x 的方程x 2+2kx+k-1=0的根的情况描述正确的是( )A.k 为任何实数,方程都没有实数根B.k 为任何实数,方程都有两个不相等的实数根C.k 为任何实数,方程都有两个相等的实数根D.根据k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种3.方程:①21213x x -=,②2x 2-5xy+y 2=0,③7x 2+1=0,④202y =中一元二次方程是( ) A.①和② B .②和③ C .③和④ D .①和③4.某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x ,那么x 满足的方程是( )A .100(1+x )2=81B .100(1﹣x )2=81C .100(1﹣x%)2=81D .100x 2=815.现定义运算“★”,对于任意实数a ,b ,都有a ★b=a 2-3a+b ,如:3★5=32-3×3+5,若x ★2=6,则实数x的值是( )A 、-1B 、4C 、-1或4D 、1或-46.用配方法解一元二次方程x 2+4x-5=0,此方程可变形为( )A .(x-2)2=9B .(x+2)2=9C .(x+2)2=1D .(x-2)2=17.一元二次方程x 2+2=0的根的情况为( )A .没有实根B .有两个相等的实根C .有两个不等的实根D .有两个实根8.用配方法解方程x 2-2x-5=0时,原方程应变形为( )A .(x+1)2=6B .(x+2)2=9C .(x-1)2=6D .(x-2)2=99.已知a 是方程x 2+x-1=0的一个根,则22211a a a---的值为( ) A .152-+ B .152-± C .-1 D .1 10.若一元二次方程9x 2-12x-39996=0的两根为a ,b ,且a <b ,则a+3b 的值为( )A .136B .268C .7963 D .3923二、填空题11.已知关于x 的方程220x x a -+=有两个实数根,则实数a 的取值范围是 . 12.若x=2是关于x 的方程x 2-x-a 2+5=0的一个根,则a 的值为 .13.网购悄然盛行,我国2012年网购交易额为1.26万亿人民币,2014年我国网购交易额达到了2.8万亿人民币.如果设2013年、2014年网购交易额的平均增长率为x ,则依题意可得关于x 的一元二次方程为 .14.方程x 2﹣x ﹣=0的判别式的值等于 .15.若一元二次方程x 2﹣x+k=0有实数根,则k 的取值范围是 .16.设x 1,x 2是一元二次方程x 2-3x-2=0的两个实数根,则x 12+3x 1x 2+x 22的值为 .17.已知(x-1)2=ax 2+bx+c ,则a+b+c 的值为 .18.已知直角三角形两边x 、y 的长满足|x 2-4|+256y y -+=0,则第三边长为 .19.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为 .20.已知一元二次方程22310x x --=的两根为12x x ,,则=+2111x x ___________. 三、解答题21.已知关于x 的一元二次方程(a+c )x 2+2bx+(a -c )=0,其中a 、b 、c 分别为△ABC 三边的长.(1)如果x=-1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.22.已知关于x 的方程01)12(2=-+-+k x k kx 只有整数根,且关于y 的一元二次方程03)1(2=+--m y y k 有两个实数根1y 和2y .当k 为整数时,确定k 的值;在(1)的条件下,若2-≥m 且是整数,试求m 的最小值.23.已知关于x 的方程22(1)(1)0m x m x m --++=.(1)m 为何值时,此方程是一元一次方程?(2)m 满足什么条件时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项(用含m 的代数式表示).24.商场某种商品平均每天可销售30件,每件盈利50元。

九年级数学上册《第二十一章-一元二次方程》同步练习题含答案(人教版)

九年级数学上册《第二十一章-一元二次方程》同步练习题含答案(人教版)

九年级数学上册《第二十一章一元二次方程》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列方程是一元二次方程的是( )=0B.5x2−6y−3=0A.x2+3xC.ax2−x+2=0D.x2-5x=22.下列方程中,没有实数根的是 ( )A.x2−x−1=0B.x2+1=0C.−x2+x+2=0D.x2=−3x3.一元二次方程3x−2=x(2x−l)的一般形式是()A.2x2−3x−2=0B.2x2+3x−2=0C.2x2−4x−2=O D.2x2−4x+2=04.已知方程−2x2−7x+1=0的较小根为α,下面对α的估算正确的是()A.-5<α<-4 B.-4<α<-3C.-3<α<-2 D.-1<α<05.一元二次方程3x2﹣x﹣2=0的二次项系数、一次项系数、常数项分别是()A.3,﹣1,﹣2 B.3,1,﹣2 C.3,﹣1,2 D.3,1,26.若x=−1是一元二次方程ax2+bx+c=0的根,则下列式子成立的是()A.a+b+c=0B.a−b+c=0C.a+b−c=0D.−a+b+c=07.关于x的方程(a﹣1)x2﹣x﹣3=0是一元二次方程,则()A.a>1 B.a±0 C.a≠1 D.a=18.如图,某校劳动实践课程试验园地是长为20m,宽为18m的矩形,为方便活动,需要在园地中间开辟一横两纵共三条等宽的小道.如果园地余下的面积为306m2,则小道的宽为多少?设小道的宽为xm,根据题意,可列方程为()A.(20−2x)(18−x)=306B.(20−x)(18−2x)=306C.20×18−2×18x−20x+x2=306D.20×18−2×20x−18x+x2=306二、填空题9.当k= 时,关于x的方程x2+3x+k=0有一个根为0.10.把方程x(5x﹣4)+1=2化为一般形式,如果二次项系数为5,则一次项系数为.11.若一元二次方程的二次项系数为1,常数项为0,它的一个根为2,则该方程为。

人教版九年级数学上册第21章一元二次方程实际问题与一元二次方程同步训练题含答案

人教版九年级数学上册第21章一元二次方程实际问题与一元二次方程同步训练题含答案

人教版九年级数学上册第21章一元二次方程实际问题与一元二次方程同步训练题含答案同步训练题1. 小明家前年的日常开支为3.26万元,去年提高了x%,假设往年的提高率与去年相反,那么估量往年的日常开支为( )A .3.26(1+2x)万元B .3.26(1+2x%)万元C .3.26(1+x)2万元D .3.26(1+x%)2万元2. 某果园2021年水果产量为100吨,2021年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,那么依据题意可列方程为( )A .144(1-x)2=100B .100(1-x)2=144C .144(1+x)2=100D .100(1+x)2=1443. 某中学九年级(1)班在七年级时植树400棵,方案到往年毕业时,使植树总数到达1324棵,该班植树平均每年的增长率是( )A .10%B .100%C .20%D .231%4. 在某次聚会上,每两人都握了一次手,一切人共握手10次.设有x 人参与这次聚会,那么列出方程正确的选项是( )A .x(x -10)=10 B.x x -12=10 C .x(x +1)=10 D .x x +12=105. 一个多边形共有14条对角线,那么这个多边形的边数是( )A .6B .7C .8D .96. 要组织一次篮球联赛,赛制为单循环方式(每两队之间都赛一场),方案布置21场竞赛,那么参赛球队有( )A .5个B .6个C .7个D .8个7. 某校九年级毕业时,每个同窗都将自己的相片向全班其他同窗各送一张纪念,全班共送了2550张相片.假设全班有x名同窗,依据题意列方程为 .8. 某商品经过延续两次降价,销售单价由原来的125元降到80元,那么平均每次降价的百分率为 .9. 某种植物的主干长出a个支干,每个支干又长出异样数目的小分支,那么主干、支干和小分支的总数为 .10. 有一人患了流感,经过两轮后共有225人患上此病,求每轮传染中平均一人传染了几人?设每轮传染中平均一人传染了x人,那么可列方程11. 机械厂七月份消费零件50万个,第三季度消费零件196万个,设该厂八、九月份平均每月的增长率为x,那么x满足的方程是12. 有一人应用手机群发短信,取得信息的人也按他的发送人数群发该条短信,经过两轮短信的发送,共有90人手机上取得同一条信息,那么每轮发送短信一团体向团体发送短信.13. 某种电脑病毒传达速度十分快,假设一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识剖析,每轮感染中平均一台电脑会感染几台电脑?假定病毒得不到有效控制,三轮感染后,被感染的电脑会不会超越700台?14. 某商场往年2月份的营业额为400万元,3月份的营业额比2月份添加10%,5月份的营业额到达633.6万元,求3月份到5月份营业额的月平均增长率.15. 随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)树立稳步推进,拥有的养老床位数不时添加.该市的养老床位数从2021年底的2万个增长到2021年底的2.88万个.求该市这两年(从2021年底到2021年底)拥有的养老床位数的平均年增长率.16. 某电冰箱厂往年每个月的产量都比上个月增长了异样的百分数,该厂往年4月份的电冰箱产量为5万台,6月份比5月份多消费了12021台,求该厂往年产量的月增长率.17. 某农场去年种植了10亩地的南瓜,亩产量为2000kg,依据市场需求,往年该农场扩展了种植面积,并且全部种植了高产的新种类南瓜,南瓜种植面积的增长率是亩产量的增长率的2倍,往年南瓜的总产量为60000kg,求南瓜亩产量的增长率.18. 看以下一组数据:直线l 上有2个点,共有1条构成的线段.直线l 上有3个点,共有3条构成的线段.直线l 上有4个点,共有6条构成的线段.(1)直线l 上有n 个点(n 为正整数,n≥2),共有12n(n -1)条构成的线段; (2)假定直线l 上有n 个点构成的线段的条数为36条,那么直线l 上有多少个点? 参考答案:1---6 DDABB C7. x(x -1)=25508. 20%9. 1+a +a 210. 1+x +x(1+x)=225或(1+x)2=22511. 50+50(1+x)+50(1+x)2=19612. 913. 解:设一台电脑每轮感染给x 台电脑,由题意得:(1+x)2=81,解得x 1=8,x 2=-10(不合题意,舍去)故每轮感染中平均一台电脑会感染8台电脑.∵(1+x)3=(1+8)3=729>700,∴假定病毒得不到有效控制,三轮感染后,被感染的电脑会超越700台.14. 设3月份到5月份营业额的月平均增长率为x ,由题意,得:400×(1+10%)(1+x)2=633.6.解得:x 1=0.2=20%,x 2=-2.2(不合题意,舍去).答:3月份到5月份营业额的月平均增长率为20%.15. 解:设该市这两年(从2021年底到2021年底)拥有的养老床位数的平均年增长率为x ,由题意可列出方程2(1+x)2=2.88,解得x 1=0.2=20%,x 2=-2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.16. 解:设该厂往年产量的月增长率为x ,依据题意,得:5(1+x)2-5(1+x)=1.2,整理得:25x 2+25x -6=0,解得:x 1=15=20%,x 2=-65(不合题意,舍去) 答:该厂往年产量的月增长率为20%.17. 解:设南瓜亩产量的增长率为x ,那么种植面积的增长率为2x ,依题意,得 10(1+2x)·2021(1+x)=60000解这个方程,得x 1=0.5,x 2=-2(不合题意,舍去) 答:南瓜亩产量的增长率为50%.18. 解:依题意有12n(n -1)=36即n 2-n -72=0解得n 1=9,n 2=-8(舍去)答:直线l 上有9个点.。

九年级数学上册《第二十一章 一元二次方程》同步练习题附带答案(人教版)

九年级数学上册《第二十一章 一元二次方程》同步练习题附带答案(人教版)

九年级数学上册《第二十一章 一元二次方程》同步练习题附带答案(人教版)姓名 班级 学号一、选择题:1.下列方程是关于 x 的一元二次方程的是( )A .20ax bx c ++=B .2112x x +=C .2221x x x +=-D .()23(1)21x x +=+2.要使方程(a-3)x 2+(b+1)x+c=0是关于x 的一元二次方程,则( )A .a ≠0B .a ≠3C .a ≠3且b ≠-1D .a ≠3且b ≠-1且c ≠03.一元二次方程22(1)(1)1x a x x x -+=--化成一般式后,二次项系数为1,一次项系数为﹣1,则a 的值为( )A .﹣1B .1C .﹣2D .24.“读万卷书,行万里路.”某校为了丰富学生的阅历知识,坚持开展课外阅读活动,学生人均阅读量从七年级的每年100万字增加到九年级的每年121万字.设该校七至九年级人均阅读量年均增长率为x ,则可列方程为( )A .()21001121x +=B .()21001%121x +=C .()10012121x +=D .()()210010*********x x ++++=5.若 1x =- 是关于x 的一元二次方程 ()2200ax bx a ++=≠ 的一个根,则202122a b -+= ( )A .2025B .2023C .2019D .20176.方程230x +=的二次项系数与一次项系数及常数项之积为( )A .3B .CD .9- 7.若0x 是方程()2200ax x c a ++=≠的一个根,设2M ac =-,20(1)N ax =+则下列关于M与N 的关系正确的为( )A .M N =B .1M N =+C .3M N +=D .2M N = 8.若关于x 的方程()200ax bx c a ++=≠满足0a b c -+=,称此方程为“月亮”方程.已知方程()221999100a x ax a -+=≠是“月亮”方程,则22199919991a a a a +++的值为( ) A .-1B .2C .1D .-2 二、填空题: 9.将方程 22143x x x -+=- 化为一般形式为 .10.已知关于x 的方程(a ﹣1)x 2﹣2x+1=0是一元二次方程,则a 的取值范围是11.若关于x 的一元二次方程()221210m x x m -++-=的常数项为0,则m 的值是 . 12.某市从2020年开始大力发展旅游产业.据统计,该市2020年旅游收入约为2亿元.预计2022年旅游收入约达2.88亿元,设该市旅游收入的年平均增长率为x ,根据题意列出方程为 .13.若关于 x 的一元二次方程 ()2100mx nx m +-=≠ 的一个解是 1x = ,则 m n + 的值是 .三、解答题:14.若(m+1)x |m|+1+6x ﹣2=0是关于x 的一元二次方程,求m 的值.15.学完一元二次方程后,在一次数学课上,同学们说出了一个方程的特点:①它的一般形式为ax 2+bx+c=0(a 、b 、c 为常数,a ≠0)②它的二次项系数为5③常数项是二次项系数的倒数的相反数你能写出一个符合条件的方程吗?16.把方程(3x+2)(x ﹣3)=2x ﹣6,化成一般形式,并写出它的二次项系数,一次项系数和常数项.17.一元二次方程化为一般式后为 ,试求 a 2+b 2-c 2的值的算术平方根.18.完成下列问题:(1)已知x ,y 为实数,且 2y = ,求 23x y - 的值.(2)已知 m 是方程 2202110x x -+= 的一个根,求代数式 2120202m m m-++ 的值.参考答案:1.D 2.B 3.B 4.A 5.A 6.D 7.B 8.D9.230x x +-=10.a ≠111.-112.()221 2.88x +=13.114.解:由题意,得|m|+1=2,且m+1≠0解得m=115.解:由①知这是一元二次方程,由②③可确定 a c 、 ,而 b 的值不唯一确定,可为任意数,熟悉一元二次方程的定义及特征是解答本题的关键.这个方程是5x 2-2x - 15=0. 16.解:(3x+2)(x ﹣3)=2x ﹣63x 2﹣9x=0所以它的二次项系数是3,一次项系数是﹣9,常数项是017.解:a (x+1)2+b (x+1)+c=0化作一元二次方程的一般形式为ax 2+(2a+b)x+a+b+c=0又一般形式为3x 2+2x-1=0∴a=3,2a+b=2,a+b+c=-1解得,a=3,b=-4,c=0∴a 2+b 2-c 2=25,则其算术平方根是5.18.(1)解:由题意得, 5050x x --,∴52x y ==-,∴2310616x y -=+=(2)解:∵m 是方程 2202110x x -+= 的一个根∴2202110m m -+=∴220211m m =-211202022021120202m m m m m m -++=--++21111202112022m m m m +=++=+=+=。

九年级数学上册《第二十一章 解一元二次方程》同步练习题含答案(人教版)

九年级数学上册《第二十一章 解一元二次方程》同步练习题含答案(人教版)

九年级数学上册《第二十一章解一元二次方程》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.关于x的方程x2+2x+m=0的根的情况为( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.由m的取值决定2.方程x2+5x=0的适当解法是()A.直接开平方法B.配方法C.因式分解法D.公式法3.已知x=1是一元二次方程mx2–2=0的一个解,则m的值是().A.√2B.2 C.±√2D.1或24.方程2x(x+1)=3(x+1)的根为( )A.x=32B.x=−1C.x1=−1,x2=23D.x1=−15.若关于x的方程kx2+(k+2)x+ k4=0有实数根,则实数k的取值范围是()A.k≥﹣1 B.k≥﹣1且k≠0C.k>﹣1且k≠0 D.k≤﹣16.已知x1,x2是一元二次方程x2+4x﹣3=0的两个实数根,则x1+x2﹣x1x2的值是()A.6 B.0 C.7 D.-17.已知方程x2-5x+2=0的两个解分别为x1、x2,则x1+x2-x1•x2的值为()A.-7 B.-3 C.7 D.38.用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可变形为()A.(x+ b2a )2=b2−4ac4a2B.(x+ b2a)2= 4ac−b24a2C.(x﹣b2a )2= b2−4ac4a2D.(x﹣b2a)2= 4ac−b24a2二、填空题9.方程3x2+6x=0的解是.10.代数式−x2−2x的最大值为.11.若m﹣n2=0,则m+2n的最小值是.12.已知关于x的一元二次方程x2−kx+36=0有两个相等的实数根,则k的值为.13.等腰三角形的两边恰为方程x2-7x+10= 0的根,则此等腰三角形的周长为三、解答题14.解方程:(1)4x2−1=0(2)3x(x−2)=(x−2)(3)x2−3x+2=0(4)(x+3)2=5+2x15.已知:a是不等式5(a−2)+8<6(a−1)+7的最小整数解,请用配方法解关于x的方程x2+2ax+ a+1=0 .16.小红认为:当b2﹣4ac≥0时,一元二次方程ax2+bx+c=0(a≠0)的求根公式是b±√b2−4ac2a.请你举出反例说明小红的结论是错误的.17.设一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则两根与方程系数之间有如下关系:x1+x2=-ba ,x1·x2=ca.根据该材料填空:已知x1、x2是方程x2+6x+3=0的两实数根,则x2x1+x1x2的值是多少?18.观察下表,确定一元二次方程x2﹣2x﹣2=0的一个近似根.x 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 x2﹣2x﹣2 ﹣1.79 ﹣1.56 ﹣1.31 ﹣1.04 ﹣0.75 ﹣0.44 ﹣0.11 0.2419.已知关于x的一元二次方程mx2-(m+2)x+2=0(m≠0)(1)求证:方程一定有两个实数根;(2)若此方程的两根为不相等的整数,求整数m的值.参考答案1.D2.C3.B4.D5.A6.D7.D8.A9.x1=0,x2=﹣210.111.-112.±1213.1214.1014.(1)解:4x2−1=0分解因式得:(2x+1)(2x−1)=0即:2x+1=0或2x−1=0∴x1=−12,x2=12;(2)解:3x(x−2)=(x−2)移项,分解因式得:(3x−1)(x−2)=0即:3x−1=0或x−2=0∴x1=13,x2=2;(3)解:x2−3x+2=0分解因式得:(x−1)(x−2)=0即:x−1=0或x−2=0∴x1=1,=2;(4)解:(x+3)2=5+2x化简得:x2+4x+4=0分解因式得:(x+2)2=0∴x1=x2=−2 .15.解:∵5(a−2)+8<6(a−1)+7;∴5a−10+8<6a−6+7;∴−a<3;∴a>−3;∵a是不等式5(a−2)+8<6(a−1)+7的最小整数解∴a=−2;∴关于x的方程x2−4x−1=0;∴x2−4x+4=5;∴(x−2)2=5;∴x−2=±√5;∴x1=2+√5,x2=2−√5 .16.解:如方程x2+5x+6=0(x+2)(x+3)=0∴x1=﹣2,x2=﹣3小红认为:当b2﹣4ac≥0时,一元二次方程ax2+bx+c=0(a≠0)的求根公式是b±√b2−4ac2a.则x=5±√52−4×1×62×1=5±12x=2和x=3这与上面的因式分解法求得的方程的解不一致故小红的结论是错误的.17.x2x1+x1x2的值是1018.解:y=x2﹣2x﹣2由二次函数的增减性,得x=2.7时,y=﹣0.11,x=2.8时,y=0.24x2﹣2x﹣2=0时,x≈2.73.19.(1)证明:∵一元二次方程mx2-(m+2)x+2=0(m≠0)∴Δ=[-(m+2)] 2-4×2m=m2+4m+4-8m=(m-2)2∵m≠0∴Δ=(m-2)2≥0∴方程一定有两个实数根;(2)解:由求根公式得,x1=1,x2= 2m∵方程的两根为不相等的整数,且m为整数是整数,而m≠0∴2m∴m=±1,±2,而当m=2时,x1=x2=1,(舍去)∴整数m为1,-1,-2故答案为:1,-1,-2。

九年级数学上册《第二十一章 解一元二次方程》同步练习题带答案(人教版)

九年级数学上册《第二十一章 解一元二次方程》同步练习题带答案(人教版)

九年级数学上册《第二十一章解一元二次方程》同步练习题带答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.方程x2=4x的解是()A.X=4 B.X=0 C.X1=0,X2=-4 D.X1=0,X2=42.一元二次方程x(x﹣2)=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3.将方程x2+8x+9=0左边变成完全平方式后,方程是:()A.(x+4)2=7 B.(x+4)2=25 C.(x+4)2=-9 D.(x+4)2=-74.已知关于x的一元二次方程中,有两个相等的实数根的方程是()A.x2+4=0 B.4x2﹣4x+1=0 C.x2+x+3=0 D.x2+2x﹣7=05.方程x2+2x-5=0经过配方后,其结果正确的是()A.(x+1)2=5B.(x−1)2=5C.(x+1)2=6D.(x−1)2=66.关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0C.k≠0 D.k≥﹣17.已知三角形两边长为4和7,第三边的长是方程x2−16x+55=0的一个根,则第三边长是()A.5 B.5或11 C.6 D.118.已知一元二次方程(a+1)x2﹣ax+a2﹣a﹣2=0的一个根与方程(a+1)x2+ax﹣a2+a+2=0的一个根互为相反数,那么(a+1)x2+ax﹣a2+a+2=0的根是()A.0,﹣23B.0,23C.﹣1,2 D.1,﹣2二、填空题9.解一元二次方程x2+2x-3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程10.若方程x2−2x−3=0两根为α、β,则α2+β2=.11.关于x的方程ax2+4x﹣2=0(a≠0)有实数根,那么负整数a= (一个即可).12.如果关于x的方程x2-x+k=0(k为常数)有两个相等的实数根,那么k= .13.关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则k的取值范围是.三、解答题14.解方程:(用适当的方法解方程) (1)解方程:x2﹣3x+2=0. (2)(2x-3)+2x(2x-3)=0 (3)3x2=2-5x15.已知:a、b是实数,且满足√a−32+|b+2|=0,求关于x的一元二次方程ax2+bx+12=0的根.16.已知关于x的一元二次方程x2+(2k+2)x+k2+2k=0.求证:无论k为何值,方程总有两个不相等的实数根.17.已知关于x的一元二次方程x2+(m+3)x+m+1=0.⑴求证:无论m取何值,原方程总有两个不相等的实数根;⑵若x1,x2是原方程的两根,且|x1−x2|=2√2,求m的值,并求出此时方程的两根.18.已知关于x的一元二次方程(m﹣2)x2+2mx+m+3=0 有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.19.已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根.(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的面积.参考答案1.D2.A3.A4.B5.C6.B7.A8.A9.x-1=0或x+3=010.1011.﹣212.1413.k<1且k≠0 14.(1)解:∵x2﹣3x+2=0∴(x﹣32)2= 14…∴x1=1,x2=2.(2)解:∵(2x-3)+2x(2x-3)=0 ∴(2x﹣3)(1+2x)=0∴x1= 32,x2=-12(3)解:a=3,b=5,c=-2∵b2-4ac=52-4×3×(-2)=49>0∴x=−5±√492×3x1=-2,x2= 1315.解:∵√a−32+|b+2|=0,√a−32≥0,|b+2|=≥0∴a−32=0,b+2=0∴a=32,b=−2∴原一元二次方程即为32x2−2x+12=0,整理得:3x2−4x+1=0∴(3x−1)(x−1)=0,x2=1.解得x1=1316.证明:∵a=1,b=2k+2,c=k2+2k∴Δ=(2k+2)2﹣4(k2+2k)=(4k2+8k+4)﹣(4k2+8k)=4∴Δ>0∴无论k取何值时,方程总有两个不相等实数根17.解:(1)证明:∵△=(m+3)2-4(m+1)=(m+1)2+4∵无论m取何值,(m+1)2+4恒大于0∴原方程总有两个不相等的实数根(2)∵x1,x2是原方程的两根∴x1+x2=-(m+3),x1•x2=m+1…5分∵|x1-x2|=2√2∴(x1-x2)2=(2√2)2∴(x1+x2)2-4x1x2=8∴[-(m+3)]2-4(m+1)=8∴m2+2m-3=0解得:m1=-3,m2=1当m=-3时,原方程化为:x2-2=0解得:x1=√2,x2=-√2当m=1时,原方程化为:x2+4x+2=0解得:x1=-2+√2,x2=-2-√218.(1)根据题意得m﹣2≠0且△=4m2﹣4(m﹣2)(m+3)>0解得m<6且m≠2;(2)m满足条件的最大整数为5,则原方程化为3x2+10x+8=0∴(3x+4)(x+2)=0,x2=﹣2.∴x1=﹣4319.(1)证明:x2−(m+2)x+(2m−1)=0其中:a=1,b=−(m+2),c=2m−1∴Δ=b2−4ac=[−(m+2)]2−4×1×(2m−1)=(m−2)2+4∴在实数范围内,m无论取何值,(m−2)2+4>0即Δ>0∴关于x的方程x2−(m+2)x+(2m−1)=0恒有两个不相等的实数根;(2)解:根据题意得:将x=1代入方程可得:12−(m+2)+(2m−1)=0解得m=2∴方程为x2−4x+3=0解得:x1=1或x2=3∴方程的另一个根为x=3;①当该直角三角形的两直角边是1、3时该直角三角形的面积为:12×1×3=32;②当该直角三角形的直角边和斜边分别是1、3时由勾股定理得该直角三角形的另一直角边为√32−12=2√2则该直角三角形的面积为12×1×2√2=√2;综上可得,该直角三角形的面积为32或√2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级上第21章一元二次方程同步练习题含
答案
一、选择题
1.若25x 2=16,则x 的值为()
A .45±
B .54± C.1625± D .2516
± 2.关于x 的方程x 2+2kx+k-1=0的根的情形描述正确的是( )
A.k 为任何实数,方程都没有实数根
B.k 为任何实数,方程都有两个不相等的实数根
C.k 为任何实数,方程都有两个相等的实数根
D.依照k 的取值不同,方程根的情形分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种
3.方程:①2
1213x x -=,②2x 2-5xy+y 2=0,③7x 2+1=0,④202y =中一元二次方程是( ) A.①和② B .②和③ C .③和④ D .①和③
4.某药品通过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x ,那么x 满足的方程是( )
A .100(1+x )2=81
B .100(1﹣x )2=81
C .100(1﹣x%)2=81
D .100x 2=81
5.现定义运算“★”,关于任意实数a ,b ,都有a ★b=a 2-3a+b ,如:3★5=32-3×3+5,若
x ★2=6,则实数x 的值是( )
A 、-1
B 、4
C 、-1或4
D 、1或-4
6.用配方法解一元二次方程x 2+4x-5=0,此方程可变形为( )
A .(x-2)2=9
B .(x+2)2=9
C .(x+2)2=1
D .(x-2)2=1
7.一元二次方程x 2+2=0的根的情形为( )
A .没有实根
B .有两个相等的实根
C .有两个不等的实根
D .有两个实根
8.用配方法解方程x 2-2x-5=0时,原方程应变形为( )
A .(x+1)2=6
B .(x+2)2=9
C .(x-1)2=6
D .(x-2)2=9
9.已知a 是方程x 2+x-1=0的一个根,则22211a a a
---的值为( )
A B C .-1 D .1 10.若一元二次方程9x 2-12x-39996=0的两根为a ,b ,且a <b ,则a+3b 的值为( )
A .136
B .268
C .
7963 D .3923
二、填空题
11.已知关于x 的方程220x x a -+=有两个实数根,则实数a 的取值范畴是 . 12.若x=2是关于x 的方程x 2-x-a 2
+5=0的一个根,则a 的值为 .
13.网购悄然盛行,我国2020年网购交易额为1.26万亿人民币,2020年我国网购交易额达到了2.8万亿人民币.假如设2020年、2020年网购交易额的平均增长率为x ,则依题意可得关于x 的一元二次方程为 .
14.方程x 2﹣x ﹣=0的判别式的值等于 .
15.若一元二次方程x 2﹣x+k=0有实数根,则k 的取值范畴是 .
16.设x 1,x 2是一元二次方程x 2-3x-2=0的两个实数根,则x 12+3x 1x 2+x 22的值为 .
17.已知(x-1)2=ax 2+bx+c ,则a+b+c 的值为 .
18.已知直角三角形两边x 、y 的长满足|x 2256y y -+,
则第三边长为 . 19.方程29180x x -+=的两个根是等腰三角形的底和腰,则那个三角形的周长
为 .
20.已知一元二次方程22310x x --=的两根为12x x ,,则
=+2
111x x ___________.
三、解答题
21.已知关于x 的一元二次方程(a+c )x 2+2bx+(a -c )=0,其中a 、b 、c 分别为△ABC 三
边的长.
(1)假如x=-1是方程的根,试判定△ABC 的形状,并说明理由;
(2)假如方程有两个相等的实数根,试判定△ABC 的形状,并说明理由;
(3)假如△ABC 是等边三角形,试求那个一元二次方程的根.
22.已知关于x 的方程01)12(2=-+-+k x k kx 只有整数根,且关于y 的一元二次方程03)1(2=+--m y y k 有两个实数根1y 和2y .
当k 为整数时,确定k 的值;
在(1)的条件下,若2-≥m 且是整数,试求m 的最小值.
23.已知关于x 的方程22
(1)(1)0m x m x m --++=.
(1)m 为何值时,此方程是一元一次方程?
(2)m 满足什么条件时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项(用含m 的代数式表示).
24.商场某种商品平均每天可销售30件,每件盈利50元。

为了尽快减少库存,商场决定采取适当的降价措施。

经调查发觉,每件商品每降价1元,商场平均每天可多售出2件。

设每件商品降价x 元。

据此规律,请回答:
(1)商场日销售量增加 件,每件商品盈利 元(用含x 的代数式表示);(2分)
(2)在上述条件不变、销售正常情形下,每件商品降价多少元时,商场日盈利可达到2100元?(6分)
25.2020年,东营市某楼盘以每平方米6500元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,通过连续两年下调后,2020年的均价为每平方米5265元.
(1)求平均每年下调的百分率;
(2)假设2021年的均价仍旧下调相同的百分率,张强预备购买一套100平方米的住房,他持有现金20万元,能够在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价运算)
参考答案
1.A .
2.B .
3.C .
4.B .
5.C .
6.B.
7.A .
8.C .
9.D .
10.A .
11.a≤1.
12.
13.1.26(1+x )2=2.8.
14.4
15.k≤
14. 16.7.
17.0.
18..
19.15
20.-3
21.(1) △ABC 是等腰三角形;理由见解析;(2)△ABC 是直角三角形;理由见解析;(3)x 1=0,x 2=-1.
22.(1)0=k 或1-=k .(2)-2或-1.
23.(1)m=1;(2)m ≠±1 ;21m -;-(m+1);m .
24.(1)2x 50-x (2)20
25.(1)平均每年下调的百分率为10% ;
(2)张强的愿望能够实现.。

相关文档
最新文档