平面向量复习讲义全
平面向量全部讲义
第一节平面向量的概念及其线性运算→ 例 3:化简 AC → -BD→ → → +CD -AB 得()A. AB →B. DA →C.BCD .01. 向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.例 4:(1)如图,在正六边形 ABCDEF 中, BA +CD + E F =()(2)零向量:长度为 0 的向量,其方向是任意的. (3)单位向量:长度等于 1 个单位的向量.A .0B . BEC . ADD . CF(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定: 0 与任一向量共线.(5)相等向量:长度相等且方向相同的向量. 1 2 (2)设 D ,E 分别是△ ABC 的边 AB ,BC 上的点,AD = AB ,BE = 2 3BC.若 D E =λ1 AB +λ2 AC(6)相反向量:长度相等且方向相反的向量.(λ1,λ2 为实数 ),则 λ1+λ2 的值为 ________.例 1.若向量 a 与 b 不相等,则 a 与 b 一定( )巩固练习: A .有不相等的模B .不共线C .不可能都是零向量D .不可能都是单位向量1.将 4(3a +2b )-2(b -2a )化简成最简式为 ______________.例 2..给出下列命题:①若 |a |=|b |,则 a =b ;②若 A ,B ,C ,D 是不共线的四点,则 AB = D C 等价于 四边形 → → → → → → +OB -OB ,OB 的关系是 ( ) A .平行B .重合C .垂直D .不确2.若|OA |=|OA |,则非零向量 OAABCD 为平行四边形;③若 a =b ,b =c ,则 a =c ;④a =b 等价于 |a |=|b |且 a ∥b ;⑤若 a ∥b ,b ∥c ,则 a ∥c .定 其中正确命题的序号是 ( ) 3.若菱形 ABCD 的边长为 2,则| AB -CB + C D |=________ A .②③B .①②C .③④D .④⑤4.D 是△ABC 的边 AB 上的中点,则向量 CD 等于( )CAA .- BC + 1 2BA B .- BC - 1 1 1 2 BAC . BC -2 BAD . B C +2BA2. 向量的线性运算5.若 A ,B ,C ,D 是平面内任意四点, 给出下列式子: ① AB +CD = B C + D A ;② AC + B D = B C + AD ;向量运算 定义 法则(或几何意义 ) 运算律③ AC - BD = DC + AB .其中正确的有 ()A .0 个B .1 个C .2 个D .3 个(1)交换律:a +b =b +a ;求两个向量和的运三角形法则 加法(2)结合律:算→ → → →=3a ,CB =2b ,求CD ,CE6.如图,在△ ABC 中,D ,E 为边 AB 的两个三等分点, CA .减法求 a 与 b 的相反向量-b 的和的运算平行四边形法则(a +b )+c = a +(b +c )a -b =a +(-b )1→ → → =AC +CB=-3a +2b ,∵D ,EDD 2 巩固练习 1。
最新平面向量全部讲义
第一节平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模. (2)零向量:长度为0的向量,其方向是任意的. (3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线. (5)相等向量:长度相等且方向相同的向量. (6)相反向量:长度相等且方向相反的向量.例1.若向量a 与b 不相等,则a 与b 一定( )A .有不相等的模B .不共线C .不可能都是零向量D .不可能都是单位向量例2..给出下列命题:①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB u u u r =DC u u ur 等价于四边形ABCD 为平行四边形;③若a =b ,b =c ,则a =c ;④a =b 等价于|a |=|b |且a ∥b ;⑤若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是( )A .②③B .①②C .③④D .④⑤CA2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则(1)交换律:a +b =b +a ; (2)结合律: (a +b )+c =a +(b +c )平行四边形法则减法求a 与b 的相反向量-b 的和的运算叫做a 与b 的差三角形法则a -b =a +(-b )数乘求实数λ与向量a 的积的运算(1)|λa |=|λ||a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0λ(μ a )=(λμ)a ; (λ+μ)a =λa +μa ; λ(a +b )=λa +λb 例3:化简AC -BD +CD -AB 得( ) A.AB B.DA C.BC D .0例4:(1)如图,在正六边形ABCDEF 中,BA u u u r +CD u u u r +EF u u u r=( )A .0B .BE u u u rC .AD u u u rD .CF u u u r(2)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE u u u r =λ1AB u u u r +λ2AC u u u r(λ1,λ2为实数),则λ1+λ2的值为________.巩固练习:1.将4(3a +2b )-2(b -2a )化简成最简式为______________.2.若|OA →+OB →|=|OA →-OB →|,则非零向量OA →,OB →的关系是( ) A .平行 B .重合 C .垂直 D .不确定3.若菱形ABCD 的边长为2,则|AB u u u r -CB u u ur +CD u u u r |=________4.D 是△ABC 的边AB 上的中点,则向量CD u u u r等于( )A .-BC u u u r +12BA u u u rB .-BC u u u r -12BA u u u r C .BC u u u r -12BA u u u rD .BC u u u r +12BA u u u r5.若A ,B ,C ,D 是平面内任意四点,给出下列式子:①AB u u u r +CD u u u r =BC u u u r +DA u u u r ;②AC u u u r +BD u u u r =BC u u u r +AD u u u r;③AC u u u r -BD u u u r =DC u u u r +AB u u u r.其中正确的有( )A .0个B .1个C .2个D .3个6.如图,在△ABC 中,D ,E 为边AB 的两个三等分点,CA →=3a ,CB →=2b ,求CD →,CE →. DD 12巩固练习 1。
八年级数学平面向量新课讲义完整版(全8讲)
八年级数学平面向量新课讲义完整版(全8
讲)
第一讲:向量的概念
- 向量的定义
- 向量的表示方法
- 向量的性质
第二讲:向量的运算
- 向量的加法
- 向量的减法
- 向量的数乘
第三讲:向量的模与方向角
- 向量的模的概念
- 向量的方向角的概念
- 向量的模与方向角的计算
第四讲:向量坐标表示与平行四边形法则
- 向量的坐标表示方法
- 矢量和坐标的关系
- 平行四边形法则的应用
第五讲:向量共线与定比分点
- 向量共线的概念
- 共线向量的判定方法
- 向量的定比分点
第六讲:向量的数量积
- 数量积的定义
- 数量积的性质
- 数量积的计算方法
第七讲:向量的坐标表示与夹角公式- 向量的坐标表示与数量积
- 夹角的概念与计算方法
- 向量间的夹角公式
第八讲:平面向量的应用
- 向量的投影
- 向量的位移
- 向量的垂直与平行
以上是八年级数学平面向量的新课讲义完整版,共8讲,内容
包括向量的概念、运算、模与方向角、坐标表示与平行四边形法则、共线与定比分点、数量积、坐标表示与夹角公式以及向量的应用。
通过学习这些内容,学生将能够掌握平面向量的基本概念和运算方法,并能够应用于实际问题的解决中。
(完整版)平面向量全部讲义
第一节平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.例1.若向量a与b不相等,则a与b一定()A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量例2..给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB=DC等价于四边形ABCD为平行四边形;③若a=b,b=c,则a=c;④a=b等价于|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c.其中正确命题的序号是()A.②③B.①②C.③④D.④⑤CA2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb例3:化简AC→-BD→+CD→-AB→得() A.AB→B.DA→C.BC→D.0例4:(1)如图,在正六边形ABCDEF中,BA+CD+EF=()A.0B.BE C.AD D.CF(2)设D,E分别是△ABC的边AB,BC上的点,AD=12AB,BE=23BC.若DE=λ1AB+λ2AC(λ1,λ2为实数),则λ1+λ2的值为________.巩固练习:1.将4(3a+2b)-2(b-2a)化简成最简式为______________.2.若|OA→+OB→|=|OA→-OB→|,则非零向量OA→,OB→的关系是() A.平行B.重合C.垂直D.不确定3.若菱形ABCD的边长为2,则|AB-CB+CD|=________4.D是△ABC的边AB上的中点,则向量CD等于()A.-BC+12BA B.-BC-12BA C.BC-12BA D.BC+12BA5.若A,B,C,D是平面内任意四点,给出下列式子:①AB+CD=BC+DA;②AC+BD=BC+AD;③AC-BD=DC+AB.其中正确的有()A.0个B.1个C.2个D.3个6.如图,在△ABC中,D,E为边AB的两个三等分点,CA→=3a,CB→=2b,求CD→,CE→.DD12巩固练习1。
最新平面向量复习讲义
平面向量复习一.向量有关概念:1.向量的概念:既有大小又有方向的量,注意向量和数量的区别。
向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。
2.零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; 3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||AB AB ±);4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 5.平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:∥,规定零向量和任何向量平行。
注:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线; 6.相反向量:长度相等方向相反的向量叫做相反向量。
a 的相反向量是-a 。
【练习】1、下列命题:(1)若a b =,则a b =。
(2)两个向量相等的充要条件是它们的起点相同,终点相同。
(3)若AB DC =,则ABCD 是平行四边形。
(4)若ABCD 是平行四边形,则AB DC =。
(5)若,a b b c ==,则a c =。
(6)若//,//a b b c ,则//a c 。
其中正确的是_______ 二.向量的表示方法:1.几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后; 2.符号表示法:用一个小写的英文字母来表示,如,,等;3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,j 为基底,则平面内的任一向量可表示为(),a xi y j x y =+=,称(),x y 为向量的坐标,=(),x y 叫做向量的坐标表示。
如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。
平面向量讲义
平面向量第一节 平面向量的概念及线性运算一、基础知识1.向量的有关概念(1)向量的定义及表示:既有大小又有方向的量叫做向量.以A 为起点、B 为终点的向量记作AB ―→,也可用黑体的单个小写字母a ,b ,c ,…来表示向量.(2)向量的长度(模):向量AB ―→的大小即向量AB ―→的长度(模),记为|AB ―→|. 2.几种特殊向量单位向量有无数个,它们大小相等,但方向不一定相同;与向量a 平行的单位向量有两个,即向量a |a |和-a|a |.3.向量的线性运算❷多个向量相加,利用三角形法则,应首尾顺次连接,a+b+c表示从始点指向终点的向量,只关心始点、终点.4.共线向量定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使得b =λa . 只有a ≠0才保证实数λ的存在性和唯一性.二、常用结论(1)若P 为线段AB 的中点,O 为平面内任一点,则OP ―→=12(OA ―→+OB ―→).(2)OA ―→=λOB ―→+μOC ―→(λ,μ为实数),若点A ,B ,C 三点共线,则λ+μ=1. 考点一 平面向量的有关概念[典例] 给出下列命题: ①若a =b ,b =c ,则a =c ;②若A ,B ,C ,D 是不共线的四点,则AB ―→=DC ―→是四边形ABCD 为平行四边形的充要条件; ③a =b 的充要条件是|a |=|b |且a ∥b ; ④若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是________.[解析] ①正确.∵a =b ,∴a ,b 的长度相等且方向相同,又b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c . ②正确.∵AB ―→=DC ―→,∴|AB ―→|=|DC ―→|且AB ―→∥DC ―→,又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形, 则AB ―→∥DC ―→且|AB ―→|=|DC ―→|,因此,AB ―→=DC ―→.③不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.④不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是①②. [解题技法] 向量有关概念的关键点 (1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等. (4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任意向量共线. [题组训练] 1.给出下列命题:①两个具有公共终点的向量,一定是共线向量;②λa =0(λ为实数),则λ必为零; ③λ,μ为实数,若λa =μb ,则a 与b 共线.其中错误的命题的个数为( ) A .0 B .1C .2 D .3解析:①错误,两向量共线要看其方向而不是起点或终点.②错误,当a =0时,不论λ为何值,λa =0.③错误,当λ=μ=0时,λa =μb =0,此时,a 与b 可以是任意向量.故错误的命题有3个,故选D.2.设a 0为单位向量,下列命题中:①若a 为平面内的某个向量,则a =|a |·a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0,假命题的个数是( )A .0B .1C .2D .3解析:向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.考点二 平面向量的线性运算[典例] (1)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB ―→=( ) A.34AB ―→-14AC ―→ B.14AB ―→-34AC ―→C.34AB ―→+14AC ―→ D.14AB ―→+34AC ―→ (2)如图,在直角梯形ABCD 中,DC ―→=14AB ―→,BE ―→=2EC ―→, 且AE ―→=r AB ―→+s AD ―→,则2r+3s =( )A .1B .2C .3D .4[解析] (1)作出示意图如图所示.EB ―→=ED ―→+DB ―→=12AD ―→+12CB ―→=12×12(AB ―→+AC ―→)+12(AB ―→-AC ―→)=34AB ―→-14AC ―→.故选A. (2)根据图形,由题意可得AE ―→=AB ―→+BE ―→=AB ―→+23BC ―→=AB ―→+23(BA ―→+AD ―→+DC ―→)=13AB ―→+23(AD ―→+DC ―→)=13AB ―→+23⎝⎛⎭⎫AD ―→+14AB ―→=12AB ―→+23AD ―→. 因为AE ―→=r AB ―→+s AD ―→,所以r =12,s =23,则2r +3s =1+2=3.[解题技法] 向量线性运算的解题策略(1)常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连的向量的和用三角形法则.(2)找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解. (3)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.(4)与向量的线性运算有关的参数问题,一般是构造三角形,利用向量运算的三角形法则进行加法或减法运算,然后通过建立方程组即可求得相关参数的值.[题组训练]1.设D 为△ABC 所在平面内一点,BC ―→=3CD ―→,则( )A .AD ―→=-13AB ―→+43AC ―→ B .AD ―→=13AB ―→-43AC ―→C .AD ―→=43AB ―→+13AC ―→ D .AD ―→=43AB ―→-13AC ―→解析: 由题意得AD ―→=AC ―→+CD ―→=AC ―→+13BC ―→=AC ―→+13AC ―→-13AB ―→=-13AB ―→+43AC ―→.2.在正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC ―→=λAM ―→+μAN ―→,则实数λ+μ=________. 解析:如图,∵AM ―→=AB ―→+BM ―→=AB ―→+12BC ―→=DC ―→+12BC ―→,①AN ―→=AD ―→+DN ―→=BC ―→+12DC ―→,②由①②得BC ―→=43AN ―→-23AM ―→,DC ―→=43AM ―→-23AN ―→,∴AC ―→=AB ―→+BC ―→=DC ―→+BC ―→=43AM ―→-23AN ―→+43AN ―→-23AM ―→=23AM ―→+23AN ―→,∵AC ―→=λAM ―→+μAN ―→,∴λ=23,μ=23,λ+μ=43.考点三 共线向量定理的应用[典例] 设两个非零向量a 与b 不共线,(1)若AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b ,求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 同向.[解] (1)证明:∵AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b ,∴BD ―→=BC ―→+CD ―→=2a +8b +3a -3b =5(a +b )=5AB ―→,∴AB ―→,BD ―→共线. 又∵它们有公共点B ,∴A ,B ,D 三点共线.(2)∵k a +b 与a +k b 同向,∴存在实数λ(λ>0),使k a +b =λ(a +k b ), 即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的非零向量,∴⎩⎪⎨⎪⎧ k -λ=0,λk -1=0,解得⎩⎪⎨⎪⎧ k =1,λ=1或⎩⎪⎨⎪⎧k =-1,λ=-1, 又∵λ>0,∴k =1.1.向量共线问题的注意事项(1)向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线.[题组训练]1.在四边形ABCD 中,AB ―→=a +2b ,BC ―→=-4a -b ,CD ―→=-5a -3b ,则四边形ABCD 的形状是( ) A .矩形 B .平行四边形C .梯形 D .以上都不对解析:选C 由已知,得AD ―→=AB ―→+BC ―→+CD ―→=-8a -2b =2(-4a -b )=2BC ―→,故AD ―→∥BC ―→.又因为AB ―→与CD ―→不平行,所以四边形ABCD 是梯形.2.已知向量e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,若向量a 与向量b 共线,则( ) A .λ=0 B .e 2=0C .e 1∥e 2 D .e 1∥e 2或λ=0解析:选D 因为向量e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,又因为向量a 和b 共线,存在实数k ,使得a =k b ,所以e 1+λe 2=2k e 1,所以λe 2=(2k -1)e 1,所以e 1∥e 2或λ=0.3.已知O 为△ABC 内一点,且AO ―→=12(OB ―→+OC ―→),AD ―→=t AC ―→,若B ,O ,D 三点共线,则t =( )A.14B.13C.12D.23解析:选B 设E 是BC 边的中点,则12(OB ―→+OC ―→)=OE ―→,由题意得AO ―→=OE ―→,所以AO ―→=12AE ―→=14(AB ―→+AC ―→)=14AB ―→+14t AD ―→,又因为B ,O ,D 三点共线,所以14+14t =1,解得t =13,故选B.4.已知O ,A ,B 三点不共线,P 为该平面内一点,且OP ―→=OA ―→+AB―→|AB ―→|,则( )A .点P 在线段AB 上B .点P 在线段AB 的延长线上C .点P 在线段AB 的反向延长线上D .点P 在射线AB 上解析:由OP ―→=OA ―→+AB ―→|AB ―→|,得OP ―→-OA ―→=AB ―→|AB ―→|,∴AP ―→=1|AB ―→|·AB ―→,∴点P 在射线AB 上,故选D.第二节 平面向量基本定理及坐标表示一、基础知识1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1e 2叫做表示这一平面内所有向量的一组基底. (1)基底e 1,e 2必须是同一平面内的两个不共线向量,零向量不能作为基底; (2)基底给定,同一向量的分解形式唯一;(3)如果对于一组基底e 1,e 2,有a =λ1e 1+λ2e 2=μ1e 1+μ2e 2,则可以得到⎩⎪⎨⎪⎧λ1=μ1,λ2=μ2.2.平面向量的坐标运算(1)向量的加法、减法、数乘向量及向量的模:设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.若a =b ,则x 1=x 2且y 1=y 2. (2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1), |AB ―→|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.当且仅当x 2y 2≠0时,a ∥b 与x 1x 2=y 1y 2等价.即两个不平行于坐标轴的共线向量的对应坐标成比例.考点一 平面向量基本定理及其应用[典例] 如图,以向量OA ―→=a ,OB ―→=b 为邻边作平行四边形OADB ,BM ―→=13BC ―→,CN―→=13CD ―→,用a ,b 表示OM ―→,ON ―→,MN ―→. [解] ∵BA ―→=OA ―→-OB ―→=a -b ,BM ―→=16BA ―→=16a -16b ,∴OM ―→=OB ―→+BM ―→=16a +56b .∵OD ―→=a +b ,∴ON ―→=OC ―→+13CD ―→=12OD ―→+16OD ―→=23OD ―→=23a +23b ,∴MN ―→=ON ―→-OM ―→=23a +23b -16a -56b =12a -16b .综上,OM ―→=16a +56b ,ON ―→=23a +23b ,MN ―→=12a -16b .[解题技法]1.平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.2.应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面向量的一组基底,基底可以有无穷多组.(2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算.[题组训练]1.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB ―→=a ,AC ―→=b ,则P Q―→=( )A.13a +13b B .-13a +13b C.13a -13b D .-13a -13b 解析:由题意知P Q ―→=PB ―→+B Q ―→=23AB ―→+13BC ―→=23AB ―→+13(AC ―→-AB ―→)=13AB ―→+13AC ―→=13a +13b .2.已知在△ABC 中,点O 满足OA ―→+OB ―→+OC ―→=0,点P 是OC 上异于端点的任意一点,且OP ―→=m OA ―→+n OB ―→,则m +n 的取值范围是________.解析:依题意,设OP ―→=λOC ―→ (0<λ<1),由OA ―→+OB ―→+OC ―→=0,知OC ―→=-(OA ―→+OB ―→), 所以OP ―→=-λOA ―→-λOB ―→,由平面向量基本定理可知,m +n =-2λ,所以m +n ∈(-2,0).考点二 平面向量的坐标运算[典例] 已知A (-2,4),B (3,-1),C (-3,-4).设AB ―→=a ,BC ―→=b ,CA ―→=c ,且CM ―→=3c ,CN ―→=-2b , (1)求3a +b -3c ;(2)求M ,N 的坐标及向量MN ―→的坐标.[解] 由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42). (2)设O 为坐标原点,∵CM ―→=OM ―→-OC ―→=3c ,∴OM ―→=3c +OC ―→=(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN ―→=ON ―→-OC ―→=-2b ,∴ON ―→=-2b +OC ―→=(12,6)+(-3,-4)=(9,2), ∴N (9,2),∴MN ―→=(9,-18). [变透练清]1.(变结论)本例条件不变,若a =m b +n c ,则m =________,n =________.解析:∵m b +n c =(-6m +n ,-3m +8n ),a =(5,-5),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.2.已知O 为坐标原点,向量OA ―→=(2,3),OB ―→=(4,-1),且AP ―→=3PB ―→,则|OP ―→|=________.解析:设P (x ,y ),由题意可得A ,B 两点的坐标分别为(2,3),(4,-1),由AP ―→=3PB ―→,可得⎩⎪⎨⎪⎧x -2=12-3x ,y -3=-3y -3,解得⎩⎪⎨⎪⎧x =72,y =0,故|OP ―→|=72.[解题技法]1.平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用“向量相等,则其坐标相同”这一原则,通过列方程(组)来进行求解. 2.向量坐标运算的注意事项(1)向量坐标与点的坐标形式相似,实质不同. (2)向量坐标形式的线性运算类似多项式的运算.(3)向量平行与垂直的坐标表达形式易混淆,需清楚结论推导过程与结果,加以区分. 考点三 平面向量共线的坐标表示[典例] 已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB ―→=2a +3b ,BC ―→=a +m b ,且A ,B ,C 三点共线,求m 的值. [解] (1)∵a =(1,0),b =(2,1),∴k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2),∵k a -b 与a +2b 共线,∴2(k -2)-(-1)×5=0,∴k =-12.(2)AB ―→=2(1,0)+3(2,1)=(8,3),BC ―→=(1,0)+m (2,1)=(2m +1,m ). ∵A ,B ,C 三点共线,∴AB ―→∥BC ―→,∴8m -3(2m +1)=0,∴m =32.[解题技法]1.平面向量共线的充要条件的2种形式(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0. (2)若a ∥b (b ≠0),则a =λb . 2.两个向量共线的充要条件的作用判断两个向量是否共线(或平行),可解决三点共线的问题;另外,利用两个向量共线的充要条件可以列出方程(组),求参数的值.[题组训练]1.已知向量a =(1,2),b =(-3,2),若(k a +b )∥(a -3b ),则实数k 的取值为( ) A .-13 B.13C .-3D .3解析:选A k a +b =k (1,2)+(-3,2)=(k -3,2k +2).a -3b =(1,2)-3(-3,2)=(10,-4), 则由(k a +b )∥(a -3b )得(k -3)×(-4)-10×(2k +2)=0,所以k =-13.2.已知在平面直角坐标系xOy 中,P 1(3,1),P 2(-1,3),P 1,P 2,P 3三点共线且向量OP 3―→与向量a =(1,-1)共线,若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则λ=( )A .-3B .3C .1D .-1解析:设OP 3―→=(x ,y ),则由OP 3―→∥a 知x +y =0,于是OP 3―→=(x ,-x ).若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则有(x ,-x )=λ(3,1)+(1-λ)(-1,3)=(4λ-1,3-2λ),即⎩⎪⎨⎪⎧4λ-1=x ,3-2λ=-x ,所以4λ-1+3-2λ=0,解得λ=-1,故选D.3.在梯形ABCD 中,AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________. 解析:∵在梯形ABCD 中,DC =2AB ,AB ∥CD ,∴DC ―→=2AB ―→. 设点D 的坐标为(x ,y ),则DC ―→=(4-x,2-y ),AB ―→=(1,-1), ∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 第三节 平面向量的数量积一、基础知识1.向量的夹角(1)定义:已知两个非零向量a 和b ,如图所示,作OA ―→=a ,OB ―→=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角,记作〈a ,b 〉.只有两个向量的起点重合时所对应的角才是两向量的夹角. (2)范围:夹角θ的范围是[0,π].当θ=0时,两向量a ,b 共线且同向;当θ=π2时,两向量a ,b 相互垂直,记作a ⊥b ;当θ=π时,两向量a ,b 共线但反向. 2.平面向量数量积的定义已知两个非零向量a 与b ,我们把数量|a ||b | cos θ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,其中θ是a 与b 的夹角.规定:零向量与任一向量的数量积为零. 3.平面向量数量积的几何意义 (1)一个向量在另一个向量方向上的投影设θ是a ,b 的夹角,则|b |cos θ叫做向量b 在向量a 的方向上的投影,|a |cos θ叫做向量a 在向量b 的方向上的投影.(2)a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 投影和两向量的数量积都是数量,不是向量. 4.向量数量积的运算律(1)交换律:a ·b =b ·a .(2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ). (3)分配律:(a +b )·c =a ·c +b ·c .向量数量积的运算不满足乘法结合律,即(a ·b )·c 不一定等于a ·(b ·c ),这是由于(a ·b )·c 表示一个与c 共线的向量,a ·(b ·c )表示一个与a 共线的向量,而c 与a 不一定共线.5.平面向量数量积的性质设a ,b 为两个非零向量,e 是与b 同向的单位向量,θ是a 与e 的夹角,则 (1)e ·a =a ·e =|a |cos θ.(2)a ⊥b ⇔a ·b =0.(3)当a 与b 同向时,a ·b =|a||b|;当a 与b 反向时,a ·b =-|a||b|. 特别地,a ·a =|a|2或|a|=a ·a .(4)cos θ=a ·b|a ||b |.(5)|a ·b |≤|a||b|.6.平面向量数量积的坐标表示已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则(1)|a |=x 21+y 21; (3)a ⊥b ⇔x 1x 2+y 1y 2=0;(2)a ·b =x 1x 2+y 1y 2;_ (4)cos θ=x 1x 2+y 1y 2x 21+y 21 x 22+y 22.二、常用结论汇总1.平面向量数量积运算的常用公式(1)(a +b )·(a -b )=a 2-b 2;(2)(a ±b )2=a 2±2a ·b +b 2. 2.有关向量夹角的两个结论(1)两个向量a 与b 的夹角为锐角,则有a ·b >0,反之不成立(因为夹角为0时不成立); (2)两个向量a 与b 的夹角为钝角,则有a ·b <0,反之不成立(因为夹角为π时不成立).考点一 平面向量的数量积的运算[典例] (1)若向量m =(2k -1,k )与向量n =(4,1)共线,则m ·n =( ) A .0 B .4C .-92D .-172(2)在如图所示的平面图形中,已知OM =1,ON =2,∠MON =120°,BM ―→=2MA ―→,CN ―→=2NA ―→,则BC ―→·OM ―→的值为( )A .-15B .-9C .-6D .0[解析] (1)∵向量m =(2k -1,k )与向量n =(4,1)共线,∴2k -1-4k =0,解得k =-12,∴m =⎝⎛⎭⎫-2,-12,∴m ·n =-2×4+⎝⎛⎭⎫-12×1=-172. (2)法一:如图,连接MN .∵BM ―→=2MA ―→,CN ―→=2NA ―→,∴AM AB =AN AC =13.∴MN ∥BC ,且MN BC =13.∴BC ―→=3MN ―→=3(ON ―→-OM ―→).∴BC ―→·OM ―→=3(ON ―→·OM ―→-OM ―→2)=3(2×1×cos 120°-12)=-6.法二:在△ABC 中,不妨设∠A =90°,取特殊情况ON ⊥AC ,以A 为坐标原点,AB ,AC所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,因为∠MON =120°,ON =2,OM =1,所以O ⎝⎛⎭⎫2,32,C ⎝⎛⎭⎫0,332,M ⎝⎛⎭⎫52,0,B ⎝⎛⎭⎫152,0.故BC ―→·OM ―→=⎝⎛⎭⎫-152,332·⎝⎛⎭⎫12,-32=-154-94=-6.[解题技法] 求非零向量a ,b 的数量积的策略(1)若两向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,则需要通过平移使它们的起点重合,再计算.(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出向量a ,b ,然后根据平面向量的数量积的定义进行计算求解.(3)若图形适合建立平面直角坐标系,可建立坐标系,求出a ,b 的坐标,通过坐标运算求解. [题组训练]1.已知矩形ABCD 中,AB =2,BC =1,则AC ―→·CB ―→=( ) A .1 B .-1C.6D .2 2 解析:选B 设AB ―→=a ,AD ―→=b ,则a ·b =0,∵|a |=2,|b |=1,∴AC ―→·CB ―→=(a +b )·(-b )=-a ·b -b 2=-1.2.已知向量a ,b 满足a ·(b +a )=2,且a =(1,2),则向量b 在a 方向上的投影为( ) A.55 B .-55C .-255 D .-355解析:由a =(1,2),可得|a |=5,由a ·(b +a )=2,可得a ·b +a 2=2, ∴a ·b =-3,∴向量b 在a 方向上的投影为a ·b |a |=-355.3.在△ABC 中,已知AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,M 为BC 上的一点,且AM ―→=λAB ―→+μAC ―→(λ,μ∈R),且AM ―→·BC ―→=0,则 λμ的值为________.解析:法一:∵BC ―→=AC ―→-AB ―→,AM ―→·BC ―→=0,∴(λAB ―→+μAC ―→)·(AC ―→-AB ―→)=0,∵AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,∴-λ|AB ―→|2+μ|AC ―→|2=0,即-4λ+μ=0,∴λμ=14.法二:根据题意,建立如图所示的平面直角坐标系,则A (0,0),B (0,2),C (1,0),所以AB ―→=(0,2),AC ―→=(1,0),BC ―→=(1,-2).设M (x ,y ),则AM ―→=(x ,y ),所以AM ―→·BC ―→=(x ,y )·(1,-2)=x -2y =0,所以x =2y ,又AM ―→=λAB ―→+μAC ―→,即(x ,y )=λ(0,2)+μ(1,0)=(μ,2λ),所以x =μ,y =2λ,所以λμ=12y 2y =14.考点二 平面向量数量积的性质考法(一) 平面向量的模[典例] (1)已知非零向量a ,b 满足a ·b =0,|a |=3,且a 与a +b 的夹角为π4,则|b |=( )A .6B .32C .2 2D .3(2)已知向量a ,b 为单位向量,且a ·b =-12,向量c 与a +b 共线,则|a +c |的最小值为( )A .1 B.12C.34 D.32[解析] (1)∵a ·b =0,|a |=3,∴a ·(a +b )=a 2+a ·b =|a ||a +b |cos π4,∴|a +b |=32,将|a +b |=32两边平方可得,a 2+2a ·b +b 2=18,解得|b |=3,(2)∵向量c 与a +b 共线,∴可设c =t (a +b )(t ∈R),∴a +c =(t +1)a +t b ,∴(a +c )2=(t +1)2a 2+2t (t +1)·a ·b +t 2b 2,∵向量a ,b 为单位向量,且a ·b =-12,∴(a +c )2=(t +1)2-t (t +1)+t 2=t 2+t +1≥34,∴|a +c |≥32,∴|a +c |的最小值为32,考法(二) 平面向量的夹角[典例] (1)已知平面向量a ,b 的夹角为π3,且|a |=1,|b |=12,则a +2b 与b 的夹角是( )A.π6B.5π6C.π4D.3π4(2)已知向量a =(1,3),b =(3,m )且b 在a 方向上的投影为-3,则向量a 与b 的夹角为________. [解析] (1)因为|a +2b |2=|a |2+4|b |2+4a ·b =1+1+4×1×12×cos π3=3,所以|a +2b |= 3.又(a +2b )·b =a ·b +2|b |2=1×12×cos π3+2×14=14+12=34,所以cos 〈a +2b ,b 〉=(a +2b )·b |a +2b ||b |=343×12=32,所以a +2b 与b 的夹角为π6.(2)因为b 在a 方向上的投影为-3,所以|b |cos 〈a ,b 〉=-3,又|a |=12+(3)2=2,所以a ·b =|a ||b |cos 〈a ,b 〉=-6,又a ·b =3+3m ,所以3+3m =-6,解得m =-33,则b =(3,-33),所以|b |=32+(-33)2=6,所以cos 〈a ,b 〉=a ·b|a ||b |=-62×6=-12,因为0≤〈a ,b 〉≤π,所以a 与b 的夹角为2π3.考法(三) 平面向量的垂直[典例] (1)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2C.3π4D .π(2)已知向量AB ―→与AC ―→的夹角为120°,且|AB ―→|=3,|AC ―→|=2.若AP ―→=λAB ―→+AC ―→,且AP ―→⊥BC ―→,则实数λ的值为________.[解析] (1)设a 与b 的夹角为θ,因为|a |=223|b |,(a -b )⊥(3a +2b ), 所以(a -b )·(3a +2b )=3|a |2-2|b |2-a ·b =83|b |2-2|b |2-223|b |2cos θ=0,解得cos θ=22,因为θ∈[0,π],所以θ=π4. (2)由AP ―→⊥BC ―→,知AP ―→·BC ―→=0,即AP ―→·BC ―→=(λAB ―→+AC ―→)·(AC ―→-AB ―→)=(λ-1)AB ―→·AC ―→-λAB ―→2+AC ―→2=(λ-1)×3×2×⎝⎛⎭⎫-12-λ×9+4=0,解得λ=712. [解题技法]1.利用坐标运算证明两个向量的垂直问题若证明两个向量垂直,先根据共线、夹角等条件计算出这两个向量的坐标;然后根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.[题组训练]1.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( ) A .-4 B .-3C .-2 D .-1解析: ∵(m +n )⊥(m -n ),∴(m +n )·(m -n )=m 2-n 2=(λ+1)2+1-(λ+2)2-4=0,解得λ=-3.故选B. 2.已知非零向量a ,b 的夹角为60°,且|b |=1,|2a -b |=1,则|a |=( ) A.12B .1C. 2 D .2 解析: ∵非零向量a ,b 的夹角为60°,且|b |=1,∴a ·b =|a |×1×12=|a |2,∵|2a -b |=1,∴|2a -b |2=4a 2-4a ·b +b 2=4|a |2-2|a |+1=1,∴4|a |2-2|a |=0,∴|a |=12,故选A.3.已知向量a ,b 满足|a |=1,|b |=2,a +b =(1,3),记向量a ,b 的夹角为θ,则t a n θ=________. 解析:∵|a |=1,|b |=2,a +b =(1,3),∴(a +b )2=|a |2+|b |2+2a ·b =5+2a ·b =1+3,∴a ·b =-12,∴cosθ=a ·b|a |·|b |=-14,∴sin θ=1-⎝⎛⎭⎫-142=154,∴t a n θ=sin θc os θ=-15. 第四节 平面向量的综合应用 考点一 平面向量与平面几何[典例] 在平行四边形ABCD 中,|AB ―→|=12,|AD ―→|=8.若点M ,N 满足BM ―→=3MC ―→,DN ―→=2NC ―→,则AM ―→·NM ―→=( )A .20B .15C .36D .6[解析] 法一:由BM ―→=3MC ―→,DN ―→=2NC ―→知,点M 是BC 的一个四等分点,且BM =34BC ,点N 是DC 的一个三等分点,且DN =23DC ,所以AM ―→=AB ―→+BM ―→=AB ―→+34AD ―→,AN ―→=AD ―→+DN ―→=AD ―→+23AB ―→,所以NM ―→=AM ―→-AN ―→=AB ―→+34AD ―→-⎝⎛⎭⎫AD ―→+23AB ―→=13AB ―→- 14AD ―→,所以AM ―→·NM ―→=⎝⎛⎭⎫AB ―→+34AD ―→·⎝⎛⎭⎫13AB ―→-14AD ―→=13⎝⎛⎭⎫AB ―→+34AD ―→·⎝⎛⎭⎫AB ―→-34AD ―→= 13⎝⎛⎭⎫AB ―→2-916AD ―→2=13⎝⎛⎭⎫144-916×64=36,故选C.法二:不妨设∠DAB 为直角,以AB 所在直线为x 轴,AD 所在直线为y 轴建立如图所示的平面直角坐标系.则M (12,6),N (8,8),所以AM ―→=(12,6),NM ―→=(4,-2),所以AM ―→·NM ―→=12×4+6×(-2)=36,故选C.[题组训练]1.若O 为△ABC 所在平面内任一点,且满足(OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,则△ABC 的形状为( ) A .等腰三角形 B .直角三角形C .正三角形 D .等腰直角三角形解析:选A 由(OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,得CB ―→·(AB ―→+AC ―→)=0,∵AB ―→-AC ―→=CB ―→, ∴(AB ―→-AC ―→)·(AB ―→+AC ―→)=0,即|AB ―→|=|AC ―→|,∴△ABC 是等腰三角形.2.已知P 为△ABC 所在平面内一点,AB ―→+PB ―→+PC ―→=0,|AB ―→|=|PB ―→|=|PC ―→|=2,则△ABC 的面积等于( )A. 3 B .23C .3 3 D .4 3解析:由|PB ―→|=|PC ―→|得,△PBC 是等腰三角形,取BC 的中点D ,连接PD (图略),则PD ⊥BC ,又AB ―→+PB ―→+PC ―→=0,所以AB ―→=-(PB ―→+PC ―→)=-2PD ―→,所以PD =12AB =1,且PD ∥AB ,故AB ⊥BC ,即△ABC 是直角三角形,由|PB ―→|=2,|PD ―→|=1可得|BD ―→|=3,则|BC ―→|=23,所以△ABC 的面积为12×2×23=2 3.3.如图,在扇形OAB 中,OA =2,∠AOB =90°,M 是OA 的中点,点P 在弧AB 上,则PM ―→·PB ―→的最小值为________.解析:如图,以O 为坐标原点,OA ―→为x 轴的正半轴,OB ―→为y 轴的正半轴建立平面直角坐标系,则M (1,0),B (0,2),设P (2cos θ,2sin θ),θ∈⎣⎡⎦⎤0,π2,所以PM ―→·PB ―→=(1-2cos θ,-2sin θ)·(-2cos θ,2-2sin θ)=4-2cos θ- 4sin θ=4-2(cos θ+2sin θ)=4-25sin(θ+φ)⎝⎛⎭⎫其中sin φ=55,c os φ=255,所以PM ―→·PB ―→的最小值为4-2 5.答案:4-2 5考点二 平面向量与解析几何[典例] 已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. [解] (1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x .则t a n x =-33.又x ∈[0,π],所以x =5π6. (2)f (x )=a ·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x =23cos ⎝⎛⎭⎫x +π6. 因为x ∈[0,π],所以x +π6∈⎣⎡⎦⎤π6,7π6,从而-1≤cos ⎝⎛⎭⎫x +π6≤32. 于是,当x +π6=π6,即x =0时,f (x )取到最大值3;当x +π6=π,即x =5π6时,f (x )取到最小值-2 3.[题组训练]1.已知向量OA ―→=(k,12),OB ―→=(4,5),OC ―→=(10,k ),且A ,B ,C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________.解析:∵AB ―→=OB ―→-OA ―→=(4-k ,-7),BC ―→=OC ―→-OB ―→=(6,k -5),且AB ―→∥BC ―→,∴(4-k )(k -5)+6×7=0,解得k =-2或k =11.由k <0,可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.2.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP ―→·FP ―→的最大值为________.解析:由题意,得F (-1,0),设P (x 0,y 0),则有x 204+y 203=1,解得y 20=3⎝⎛⎭⎫1-x 204,因为FP ―→=(x 0+1,y 0),OP ―→=(x 0,y 0),所以OP ―→·FP ―→=x 0(x 0+1)+y 20=x 20+x 0+3⎝⎛⎭⎫1-x 204=x 204+x 0+3,对应的抛物线的对称轴方程为x 0=-2,因为-2≤x 0≤2,故当x 0=2时,OP ―→·FP ―→取得最大值224+2+3=6.考点三 平面向量与三角函数[典例] 已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A ―→+PB ―→+PC ―→|的最大值为( )A .6B .7C .8D .9[解析] 由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,知线段AC 为圆的直径,设圆心为O ,故P A ―→+PC ―→=2PO ―→=(-4,0),设B (a ,b ),则a 2+b 2=1且a ∈[-1,1],PB ―→=(a -2,b ),所以P A ―→+PB ―→+PC ―→=(a -6,b ).故|P A ―→+PB ―→+PC ―→|=-12a +37,所以当a =-1时,|P A ―→+PB ―→+PC ―→|取得最大值49=7.[解题技法]平面向量与三角函数的综合问题的解题思路(1)若给出的向量坐标中含有三角函数,求角的大小,解题思路是运用向量共线或垂直的坐标表示,或等式成立的条件等,得到三角函数的关系式,然后求解.(2)若给出的向量坐标中含有三角函数,求向量的模或者向量的其他表达形式,解题思路是利用向量的运算,结合三角函数在定义域内的有界性或基本不等式进行求解.[题组训练]1.已知a =(cos α,sin α),b =(cos(-α),sin(-α)),那么a ·b =0是α=k π+π4(k ∈Z)的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:∵a ·b =cos α·cos(-α)+sin α·sin(-α)=cos 2α-sin 2α=cos 2α,若a ·b =0,则cos 2α=0,∴2α=2k π±π2(k ∈Z),解得α=k π±π4(k ∈Z).∴a ·b =0是α=k π+π4(k ∈Z)的必要不充分条件.故选B.2.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n = (cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角A ,B 的大小分别为( )A.π6,π3B.2π3,π6C.π3,π6D.π3,π3解析:选C 由m ⊥n ,得m ·n =0,即3cos A -sin A =0,由题意得cos A ≠0,∴t a n A =3,又A ∈(0,π),∴A =π3.又a cos B +b cos A =2R sin A cos B +2R sin B cos A =2R sin(A +B )=2R sin C =c (R 为△ABC 外接圆半径),且a cos B +b cos A =c sin C ,所以c =c sin C ,所以sin C =1,又C ∈(0,π),所以C =π2,所以B =π-π3-π2=π6.。
(完整word)平面向量讲义(知识点+例题),推荐文档
一、向量的概念与线性运算考点一: 向量及与向量相关的基本概念题型1. 概念判析例1、判断下列各命题是否正确(1)零向量没有方向 (2)若==则(3)单位向量都相等 (4) 向量就是有向线段(5)两相等向量若共起点,则终点也相同 (6)若b a ρρ=,c b ρρ=,则c a ρρ=;(7)若b a ρρ//,c b ρρ//,则c a ρρ//(8)若四边形ABCD 是平行四边形,则==,A(9) b a ρρ=的充要条件是||||b a ρρ=且b a ρρ//;考点二: 向量的加、减法题型1: 考查加法、减法运算及相关运算律例2、化简)()(---题型2: 结合图型考查向量加、减法例3、在ABC ∆所在的平面上有一点P ,满足PA PB PC AB ++=u u u r u u u r u u u r u u u r ,则PBC ∆与ABC ∆的面积之比是( )A .13B .12C .23D .34例4、如图,在ΔABC 中,D 、E 为边AB 的两个三等分点,CA→ =3a ,CB → =2b ,求CD→ ,CE → .B D E考点三: 向量数乘运算及其几何意义题型1: 三点共线问题例5、设21,e e 是不共线的向量,已知向量2121212,3,2e e e e e k e -=+=+=,若A 、B 、D 三点共线,求k 的值。
例6、已知A 、B 、C 、P 为平面内四点,求证:A 、B 、C 三点在一条直线上的充要条件是存在一对实数m 、n ,使PC → =mP A → +nPB→ ,且m+n=1。
二、平面向量的基本定理与坐标表示考点一: 平面向量基本定理题型1. 利用一组基底表示平面内的任一向量例7、在△OAB 中,21,41==,AD 与BC 交于点M ,设=a r ,=b r ,用a r ,b r 表示OM 。
例8、若已知1e 、2e 是平面上的一组基底,则下列各组向量中不能作为基底的一组是 ( )A .1e 与—2eB .31e 与22eC .1e +2e 与1e —2eD .1e 与21e例9、在△ABC 中,已知 AM ︰AB =1︰3, AN ︰AC =1︰4,BN 与CM 交于点P ,且 , AC AB a b ==u u u r r u u u r r ,试 用, a b r r 表示AP u u u r考点二: 平面向量的坐标表示与运算题型1: 向量加、减、数乘的坐标运算例10、已知A (—2,4)、B (3,—1)、C (—3,—4)且3=,2=,求点M 、N 的坐标及向量的坐标.例11、若A(0, 1), B(1, 2), C(3, 4) 则-2= 例12、若M(3, -2) N(-5, -1) 且 21=MN , 求P 点的坐标;考点三: 向量平行的充要条件题型1: 平行、共线问题例13、已知向量(1sin ,1)θ=-a ,1(,1sin )2θ=+b ,若a ∥b ,则锐角θ等于()A .30︒B . 45︒C .60︒D .75︒例14、若向量a ρ=(-1,x)与b ρ=(-x, 2)共线且方向相同,求x例15、已知点O(0,0),A(1,2),B(4,5)及t +=,求(1)t 为何值时,P 在x 轴上?P 在y 轴上?P 在第二象限。
(完整版)高中数学平面向量讲义
平面向量 (学生专用 )专题六平面向量一. 基本知识【1】向量的基本看法与基本运算(1)向量的基本看法:①向量:既有大小又有方向的量向量不能够比较大小,但向量的模能够比较大小.②零向量:长度为0 的向量,记为0 ,其方向是任意的,0 与任意向量平行③单位向量:模为 1 个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量uuur r uuur r r uuur uuur uuur(2)向量的加法:设AB a, BC b ,则a+ b = AB BC = AC① 0 a a 0 a ;②向量加法满足交换律与结合律;uuur uuur uuur uuur uuur uuurAB BC CD L PQ QR AR ,但这时必定“首尾相连”.(3)向量的减法:①相反向量:与 a 长度相等、方向相反的向量,叫做 a 的相反向量②向量减法:向量 a 加上b的相反向量叫做 a 与b的差,③作图法: a b 能够表示为从 b 的终点指向a的终点的向量( a 、b有共同起点)(4)实数与向量的积:实数λ与向量a的积是一个向量,记作λa,它的长度与方向规定以下:(Ⅰ)a a ;(Ⅱ)当0 时,λ a 的方向与 a 的方向相同;当0 时,λa 的方向与 a 的方向相反;当0 时,a0 ,方向是任意的(5)两个向量共线定理:向量b与非零向量 a 共线有且只有一个实数,使得b= a (6)平面向量的基本定理:若是e1, e2是一个平面内的两个不共线向量,那么对这一平面内的任向来量 a ,有且只有一对实数 1 ,2使:a1e12e2,其中不共线的向量e1 , e2叫做表示这一平面内所有向量的一组基底【2】平面向量的坐标表示第1页(1) 平面向量的坐标表示 :平面内的任向来量rr r rr 。
a 可表示成 axi yj ,记作 a =(x,y) (2)平面向量的坐标运算:rrr rx 1 x 2 , y 1 y 2①若 ax 1 , y 1 , bx 2 , y 2 ,则 a buuur②若 A x 1 , y 1 , B x 2 , y 2 ,则 AB x 2 x 1 , y 2 y 1r =(x,y) ,则 r x, y)③若 a a =(r r r r x 1 y 2 x 2 y 1 0④若 ax 1 , y 1 , b x 2 , y 2 ,则 a // b r r r r y 1 y 2⑤若 a x 1 , y 1 , b x 2 , y 2 ,则 a b x 1 x 2r r y 1 y 2⑥若 a b ,则 x 1 x 2【3】平面向量的数量积(1)两个向量的数量积:已知两个非零向量r rr r r rr ra 与b ,它们的夹角为 ,则 a · b =︱ a ︱·︱ b ︱ cos 叫做 a 与 b 的数量积(或内积)r r规定 0 arr rrr= a b(2)向量的投影: ︱ b ︱ cosr ∈ R ,称为向量 b 在 a 方向上的投影 投影的绝对值称| a |为射影(3)数量积的几何意义:r r r r ra ·b 等于 a 的长度与 b 在 a 方向上的投影的乘积(4)向量的模与平方的关系:r r r 2 r 2 a a a | a |(5)乘法公式成立:r r rrr 2 r 2 r 2 r 2 r r 2 r 2r r r 2r 2 r r r 2a b a ba b ab ; a ba 2ab ba2a b b(6)平面向量数量积的运算律:①交换律成立:rrr r a bb a②对实数的结合律成立: r r r r r r Ra ba b a b③分配律成立:r r r r r r r r r r a b c a cb c c a b第 2页特别注意:( 1)结合律不成立:r r r r r r ab c a b c ;r rrrr r ( 2)消去律不成立 a ba c 不能够获取b c(rr=0r r r r3) a b 不能够获取 a =0 或 b=0(7)两个向量的数量积的坐标运算:rrrry 1 y 2已知两个向量 a ( x 1, y 1), b ( x 2 , y 2 ) ,则 a · b= x 1 x 2r r uuur r uuur r ( 8 ) 向 量 的 夹 角 : 已 知 两 个 非 零 向 量 a 与 b , 作 OA = a ,OB = b , 则 ∠ AOB= (0 0180 0 ) 叫做 向量r 与 r 的夹角abr r r rx 1 x 2 y 1 y 2a ? bcos= cosa ,br r = 2222a ? bx 1y 1x 2y 2当且仅当两个非零向量rrr rra 与b 同方向时, θ =0 ,当且仅当 a 与 b 反方向时θ=180 ,同时 0 与其他任何非零向量之间不谈夹角这一问题r r 0则称 r r r r (9)垂直 :若是 a 与 b 的夹角为 90 a 与 b 垂直,记作 a ⊥ b( 10)两个非零向量垂直的充要条件: a ⊥ ba ·b = Ox xy y20 平面向量1 21数量积的性质二. 例题解析【模块一】向量的基本运算【例 1】给出以下六个命题:①两个向量相等,则它们的起点相同,终点相同;rr r r ②若 a b ,则 ab ③在平行四边形 ABCD 中必然有uuur uuurAB DC ;ur r r ur ur ur r r r r r r④若 m n, n p ,则 m p ; ⑤若 a // b , b // c , 则 a // cr r r r r r r⑥任向来量与它的相反以下不相等. ⑦已知向量 a 0 ,且 a b 0 ,则 b 0r r r r r r r r r r r r⑧ a b 的充要条件是 a b 且 a // b ;⑨若 a 与 b 方向相同,且 a b ,则 ab ;⑩由于零向量的方向不确定,故零向量不与任意向量平行; 其中正确的命题的序号是第 3页r rr r ruur【例 2】已知向量 a, b 夹角为 45 ,且 a 1, 2a b10 ;求 b 的值 .uur uur r rr r【变式 1】若 a 2 , b 3 , a b3 求 a b 的值 .【变式 2】设向量 a , b 满足 | a|=|b |=1 及 | 3a-2 b|=3 ,求 | 3a+b| 的值r r r rrr r r【例 3】已知向量 a 、 b 的夹角为 60o , |a| 3, | b |2 ,若 (3a 5b) (ma b) ,求 m 的值.rrr r r r【例 4】若向量 a1,2 , b1, 1 求 2a b 与 a b 的夹角 .【 变 式】 设 x, y R, 向 量 a x,1 ,b 1, y , c2, 4 , 且 a c,b // c, 则 a b_______()A . 5B . 10C . 2 5D . 10【例 5】已知两个非零向量r rr r rra,b 满足 a ba b ,则以下结论必然正确的选项是( )r r r rr r DA a // bB a b Ca br r r r a b a b【变式 1】设 a , b 是两个非零向量 . ()A .若 | a +b |=| a |-| b |, 则 a ⊥ bB .若 a ⊥b , 则| a +b |=| a |-| b |C .若 | a +b |=| a |-| b |, 则存在实数 λ, 使得 a =λbD .若存在实数 λ, 使得 a =λb , 则| a +b |=| a |-| b |第 4页r r r r r r【变式 2】若平面向量a, b满足 : 2a b 3 ;则 agb 的最小值是_____【例 6】设0,rcosr13 2, a,sin ,b,22r r r r (1)证明 a b a b ;(2)r r r r的值 .当 2a b a2b时求角r rr ra b)【例 7】设a、b都是非零向量 , 以下四个条件中 , 使r r成立的充足条件是(| a ||b |r r r r r r r rr r A.a b B.a // b C.a 2b D.a // b且| a | | b |【模块二】向量与平面几何【例 1】在△ ABC中, A 90o AB 1, ACuuur uuur 2 ,设P、Q满足 AP AB ,uuur1uuurRuuur uuur2 ,则AQ AC ,BQ CP=()A 1B2C4D2 333第5页AB2uuur uuur uuur uuur 【变式 1】已知△ ABC为等边三角形,设 P、Q满足AP AB AQ 1AC,,uuur uuur 3,则R BQ CP=()2A 1B12C 1 10D 3 2 2222uuur uuur【例 2】在△ ABC中 ,AB=2,AC=3,ABgBC = 1则 BC ___ .()A.3B.7C.2 2D.23uuur uuur uuur【变式 1】若向量BA2,3 , CA4,7 ,则 BC()A.2, 4B.2,4C.6,10D.6, 10【例 3 】若等边ABC 的边长为2 3 ,平面内一点M 满足CM 1CB2CA ,则63MA? MB________.第6页平面向量 (学生专用 )uuur r uuur r r r r r2 ,则【例 4】ABC 中, AB 边上的高为 CD ,若CB a,CA b, a b0,| a |1,|b | uuurAD()A.1r1rB.2r2rC.3r3rD.4r4r a b a b a b5a b 3333555uuur3【例5】在平面直角坐标系中,O (0,0), P(6,8) ,将向量 OP按逆时针旋转后 , 得向量4 uuurOQ ,则点 Q 的坐标是()A.( 7 2,2) B. (72,2)C.( 4 6, 2)D.( 46, 2)uuur uuur【例 6】在ABC中, M是 BC的中点, AM=3, BC=10,则AB AC =______________.【例 7】在平行四边形中, ∠A= 3, 边、的长分别为2、1.若、分别是边、ABCD AB AD M N BC CD上的点,且满足| BM|| CN | ,则AM AN 的取值范围是_________ .| BC || CD |,【例 8】如图 ,在矩形 ABCD 中, AB 2 ,BC2,点E为 BC 的中点,点F在边 CD uuur uuur uuur uuur上, 若AB g AF 2 ,则 AE g BF 的值是____.第7页平面向量 (学生专用 )9 】已知正方形ABCD 的边长为1, 点 E 是 AB 边上的动点uuur uuur【例, 则DE CB的值为uuur uuur________; DE DC 的最大值为________.【例 10】已知直角梯形ABCD 中,AD// BC ,ADC 900, AD2, BC 1 , P 是腰uuur uuurDC 上的动点,则PA3PB 的最小值为___________uuur uuur uuur【例 11】如图,在VABC中,AD AB , BC 3 BD ,AD 1 ,uuur uuur3.则 AC gAD【例 12】 (15)uuur uuur1uuur1uuur3uuur 在四边形 ABCD中,AB = DC =( 1,1),uuur BA uuur BC uuur BD ,BA BC BD则四边形ABCD的面积是第8页平面向量 (学生专用 ) uuur uuur【例 13】在VABC中,若AB2,3 , AC 6, 4 ,则 VABC 面积为【例 14】( 2012 年河北二模)在VABC中,AB 边上的中线CD=6 ,点 P 为 CD 上(与 C,D )uuur uuur uuur不重合的一个动点,则PA PB .PC的最小值是A 2B 0C -9D -18第9页。
第1讲 平面向量-讲义版
课程主题:平面向量【知识点】 一.基本概念概念 定 义表示方法向量(矢量) 既有大小又有方向的量叫做向量向量的大小叫做向量的长度(或模)AB 或a零向量长度为0的向量叫做零向量,其方向是任意的。
规定:零向量与任一向量平行(与任何向量是共线向量)、但与任意向量都不垂直零向量、单位向量的定义都只是限制了大小.单位向量 长度等于1个单位长度的向量,叫做单位向量e平行向量方向相同或相反的非零向量叫做平行向量,也叫做共线向量,任一组平行向量都可以平移到同一条直线上a 与b 共线记作b a //相等向量长度相等且方向相同的向量注:共线向量不一定是相等向量,而相等向量一定是共线向量a 与b 是相等向量记作b a =相反向量 长度相等且方向相反的向量a 的相反向量记作a -二.平面向量的线性运算 1、向量的加法:求两个向量的和⎩⎨⎧平行四边形法则三角形法则2、向量的减法:一个向量减去另一个向量,相当于加上这个向量的相反数,即)(→→→→-+=-b a b a .→→→=+AC BC AB →→→=+OC OB OA →→→-=OA OB AB→a→b→→+ba ABCA BBAOO→a→a→b→b→→+ba →→-ba 课程类型: 1对1课程 ☐ Mini 课程 ☐ MVP 课程注:向量加减法满足交换律和结合律律:交换律:→→→→+=+a b b a 结合律:)()(→→→→→→++=++c b a c b a . 3、平面向量的数乘(1)数乘的定义:实数λ与向量→a 的乘积,结果仍是一个向量→→=a b λ. ①大小:长度|λ→a |=|λ||→a |;②方向:λ→a 与→a 的方向关系:→→→→⇒⎪⎪⎩⎪⎪⎨⎧==<>a b b //0000,,方向相反,方向相同λλλ. (2)运算定律:→→=a u a u )()(λλ; →→→+=+a u a a u λλ)(; →→→→+=+b a b a λλλ)(. (3)数乘的应用:判断两个向量是否共线.向量共线的充要条件 :向量与非零向量→a 共线的充要条件是有且只有一个实数λ,使得→→=a b λ (4)三点共线:若→→=AC AB λ,则A 、B 、C 三点共线,(1)OP xOA yOB x y =++=u u u r u u u r u u u r,则B A P 、、三点共线三.平面向量基本定理与坐标表示1、平面向量基本定理:在平面内任取一点O ,作→→=1e OA ,→→=2e OB 为两个不共线的向量,则平面内任意 向量→a ,有且只有一对实数),(21λλ,使得→a →→+=2211e e λλ. (1)称不共线的向量→→21,e e 为表示这一平面内所有向量的一组基底. (2)基底不唯一,关键是不共线.(3)给定基底→→21,e e ,可将任一向量→a 在→→21,e e 的情况下分解. (4)基底给定时,分解形式唯一. 2、平面向量的坐标表示:(1)把一个向量分解为两个互相垂直的向量,叫做把向量正交分解. 取平行于x 正半轴的单位向量→i ,平行于y 正半轴的单位向量→j为一组基底,则对于平面内的任一个向量→a ,由平面向量基本定理可知,有且只有唯一实数对),(y x ,使→a →→+=j y i x ,把),(y x 称作向量→a 的(直角坐标),记为→a ),(y x =.(2)在平面直角坐标系内,一个平面向量与一对实数是一一对应的. (3)向量的坐标表示:①向量→a ),(y x =表示从点)0,0(指向点),(y x 的向量.②空间中两点坐标),(11b a A ),(,22b a B ),(,1212b b a a AB --=→则. (4)平面向量坐标的加减、数乘运算:),(11y x a =→,),(22y x b =→,①两个向量和与差的坐标分别等于这两个向量相应坐标的和与差,即),(2121y y x x b a ±±=±→→. ②实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标,即),(11y x a λλλ=→. (5)平面向量共线的坐标表示:设),(11y x a =→),(22y x b =→)()(λλλ===-⇔=∈∃⇔≠→←→→→→212112210,0//y y x x y x y x b a R b b a 使得【课堂演练】题型一 平面向量基本概念及线性运算 考点1 辨析平面向量的概念例1 下列有关平面向量的说法中,正确的个数是( ) (1)共线向量就是在同一条直线上的向量.(2)若两个向量不相等,则它们的终点不可能是同一点. (3)与已知向量共线的单位向量是唯一的.(4)若=,则A 、B 、C 、D 四点构成平行四边形. A .0 B .1 C .2 D .3练1 下列有关平面向量的说法中,正确的个数是( ) (1)若与共线, 与共线,则与共线. (2)若m m =,则=. (3)若a n a m =,则n m =.(4)若a 与b 不共线,则a 与b 都不是零向量. A .0 B .1 C .2 D .3考点2 平面向量的线性运算 1、加减法例2 =++++)()( .CBDAO练2 如图,正六边形ABCDEF 中,下列四个命题中正确的个数为( )(1)CB DC AD AB ++= (2)BA BF AF -= (3)2=+(4)22+= A .1 B .2C .3D .4例3 已知AD AB AC 与为的和向量,且==,,则=AB ,=AD .练3 如图所示,平行四边形ABCD 的对角线AC 与BD 相交于点O ,点M 是线段OD 的中点,设==,,则= .(结果用,表示) 2、数乘例4 =--+)32(3)(2 .练4 -++)34(2)2(3b .练5 =-+--+)3)(32()2)((n m n m .练6 如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,λ=+,则=λ .练7 已知223-=,则C B A ,,三点的关系为 .ABDECF考点3 向量共线定理及其应用例5 已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A 、C ),则=AP ( )A .),()(10,AD AB ∈+λλ B .),()(220,BC AB ∈+λλC .),()(10,AD -AB ∈λλD .),()(220,BC -AB ∈λλ练8 已知平面内有一点P 及一个ABC ∆,若,PB PA AB PC =++则( ) A .点P 在ABC △外部 B ..点P 在线段AB 上C .点P 在线段BC 上D .点P 在线段AC 上例6 设21,e e 是两个不共线的向量,2121212,3,2e e CD e e CB e k e AB -=+=+=,若A 、B 、D 三点共线,求k 的值..练9 如图,在平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且BD BN 31=,求证:C N M ,,三点共线.练10 已知两不共线的向量b a ,,若对非零实数n m ,有b n a m +与b a 2-共线,则=nm( ) A .2- B .2C .21-D .21题型二 平面向量基本定理及坐标表示 考点1 平面向量基本定理的应用 1、基底向量例7 已知21,e e 是平面内的一组基底,下列哪组向量不能构成一组基底( ) A .21e e +和21e e - B .2123e e -和1264e e - C .213e e +和123e e -D .2e 和12e e -练11 已知)4,3(=a ,能与a 构成基底的是( ) A .)54,53( B .)53,54(C .)54,53(--D .)34,1(--练12 在下列向量中,可以把向量)2,3(=a 表示出来的是( ) A .)2,1(),0,0(21==e e B .)2,5(),2,1(21-=-=e e C .)10,6(),5,3(21==e e D .)3,2(),3,2(21-=-=e e2、用已知向量表示未知向量例8 已知在ABC △中,D 是BC 的中点,请用向量AB ,AC 表示AD .例9 如图,向量OC OB OA ,,终点在同一条直线上,且CB -3=AC ,设r OC q OB p OA ===,,,则下列等式中成立的是( )A .q p r 2321+-= B .q p r 2+-= C .q p r 2123-=D .p q r 2+-=练13 在平行四边形ABCD 中,=,=,3=,M 为BC 中点,则= .考点2 坐标运算例10 已知向量),2,1(),1,3(-=-=则23--的坐标是( ) A .)1,7( B .)1,7(--C .)1,7(-D .)1,7(-例11 已知)5,4(=AB ,)3,2(A ,则点B 的坐标是 .练14 若物体受三个力)2,1(1=F ,)3,2(2-=F ,)4,1(3--=F ,则合力的坐标为 .练15 已知)2,1(A ,)2,3(B ,向量)23,2(--+=y x x a 与相等,求y x ,的值.考点3 平面向量共线的坐标表示例12 已知2(2,1),(3,2),3A B AM AB --=u u u u r u u u r,则点M 的坐标是( )A .)21,21(-- B .)1,34(-- C .)0,31(D .)51,0(-例13 已知),1,(),3,1(-=-=x b a 且∥,则x 等于( ) A .3 B .3-C .31 D .31-练16 已知向量),1(),6,2(λ-==,若∥,则=λ .【课后巩固1】1.设与是两个不共线向量,且向量λ+与)2(a b --共线,则λ=( ) A .0 B .1-C .2-D .12-2.已知下列命题中真命题的个数是( ) (1)若R k ∈,且=k ,则0=k 或=, (2)若0=⋅,=则或=,(3)若不平行的两个非零向量b a ,b a =,则0)((=-⋅+b , (4)若与平行,则b a =⋅. A .0B .1C .2D .33.=--+)3(4)(2b a b a .4.设D 为ABC ∆所在平面内一点3BC CD =u u u r u u u r,则( )A .3431+-= B .3431-= C .AC AB AD 3134+= D .AC AB AD 3134-=5.设E D ,分别是ABC △的边BC AB ,上的点,21=,32=, 若12DE AB AC λλ=+u u u r u u u r u u u r(21λλ,为实数),则21λλ+的值为 .6.设向量,不平行,向量+λ与2+平行,则实数=λ .7.已知向量),2,1(),1,3(-=-=则23+-的坐标是( ) A .)7,11(- B .)11,7(-C .)7,11(D .)7,11(-8.已知向量)1,1(),4,2(-==,则=-b a 2( ) A .)7,5( B .)9,5(C .)7,3(D .)9,3(【课后巩固2】1.化简-+-= .2.-++)32(4)2(2b .3.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线交CD 于点F ,若===,,则( )A .2141+ B .3132+ C .4121+ D .3231+4.设,是向量,则b a =”是b a b a -=”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件5.已知点)2,3(),1,0(B A ,向量)3,4(--=,则向量=( ) A .)4,7(--B .)4,7(C .)4,1(-D .)4,1(6.已知平面向量,),,2(),2,1(m -==且b a ∥,则32+=( ) A .)10,5(-- B .)8,4(-- C .)6,3(-- D .)4,2(--7.若物体受三个力)3,1(1=F ,)3,1(),3,2(32--==F F ,则合力的坐标为 .8.已知)4,1(),3,2(-B A ,向量)1,3(-+-=y x x 与AB 相等,求y x ,的值.【课后巩固3】1.=++--+)2)(3())(2(b a n m b a n m .2.已知)1,3(=,)3,2(A ,则点B 的坐标是 .3.已知向量)2,3(),4,(-==m ,且∥,则=m .4.对任意向量b a ,,下列关系式中不恒成立的是( ) A b a b a ≤ B b a b a ≤-C .2)(b a =+D .22))((b -=-+5.如图ABC ∆中,2=,EC AE =2,BE CD P =I ,若(,)AP xAB y AC x y R =+∈u u u r u u u r u u u r,则x y += .6.已知B A 52),2,3(),3,2(=--,则点M 的坐标是( )A .)0,1(-B .)1,0(C .)0,1(D .)0,0(PDE-11- 学生姓名: 科目: 数学任课教师: 年级: 高三上课时间: 2017.11.11 16:00—18:00 7.已知),1,(),2,3(-=-=x 且∥,则x 等于( )A .3B .3-C .23D .23-8.已知向量)3,(3m =,)3,1(=,则“1=m ”是“b a ∥”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件、。
平面向量的复习讲义
平面向量【考点梳理】一、考试内容1.向量、向量的概念,向量的加法与减法,实数与向量的积。
2.平面向量的坐标表示,线段的定比分点。
3.平面向量的数量积,平面两点间的距离公式。
4.平移及平移公式。
三、考点简析1.平面向量知识结构表定理与公式①共线定理:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λ a ②平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的。
任一向量a ,有且只有一对实数λ1,λ2使a =λ1e 1+λ2e 2③两向量垂直的充要条件(i)a ⊥b ⇔a ·b =0 (ii)a ⊥b ⇔x 1·x 2+y 1·y 2=0(a =(x 1,y 1),b =(x 2,y 2))④三点共线定理:平面上三点A 、B 、C 共线的充要条件是:存在实数α、β,使=α+β,其中α+β=1,O 为平面内的任一点。
⑤数值计算公式两点间的距离公式:|21P P |=212212)()(y y x x -+-[P 1(11,y x ),P 2(x 2,y 2)] 线段的定比分点坐标公式:⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x [P 1 (x 1,y 1),P 2 (x 2,y 2),P(x,y), P P 1 =λ2PP ]中点坐标公式:⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x两向量的夹角(范围?)公式:cos θ=||||b a b a ⋅⋅=222221212121y x y x y y x x +⋅++ ⑥图形变换公式平移公式:若点P 0(x,y)按向量a =(h,k)平移至P(x ′,y ′),则⎩⎨⎧+=+=.''k y y h x x ⑦有关结论(i)平面内有任意三个点O ,A ,B 。
若M 是线段AB 的中点,则=21(+); 一般地,若P 是分线段AB 成定比λ的分点(即=λ,λ≠-1)则=λ+11+λλ+1,此即线段定比分点的向量式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
λ(μa)=_(λμ)a______;(λ+μ)a=___λa+μa__;λ(a+b)=__λa+λb_____。
(4)共线向量定理
a是一个非零向量,若存在唯一一个实数λ,使得b=λa,则向量b与非零向量a共线.(证明三点共线)三点 共线 共线。
注意:(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的`区别与联系,当两向量共线且有公共点时,才能得出三点共线.
(2)向量a、b共线是指存在不全为零的实数λ1,λ2,使λ1a+λ2b=0成立,若λ1a+λ2b=0,当且仅当λ1=λ2=0时成立,则向量a、b不共线.
例1.设两个非零向量a与b不共线,
(1)若 =a+b, =2a+8b, =3(a-b),求证:A、B、D三点共线;
(2)试确定实数k,使ka+b和a+kb共线.
例1如图,在△ABC中,E、F分别为AC、AB的
中点,BE与CF相交于G点,设 =a, =b,试用a,
b表示 .
用方程思想解决平面向量的线性运算问题:
例2如图所示,在△ABO中, = , = ,AD与BC相交于点M,设 =a, =b.试用a和b表示向量 .
解 设 =ma+nb,
则 = - =ma+nb-a=(m-1)a+nb.
4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;
5.平行向量(也叫共线向量):方向相同或相反的非零向量 、 叫做平行向量,记作: ∥ ,规定零向量和任何向量平行。
提醒:
①相等向量一定是共线向量,但共线向量不一定相等;
②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;
= - = - =-a+ b.
又∵A、M、D三点共线,∴ 与 共线.
∴存在实数t,使得 =t ,
即(m-1)a+nb=t .
∴(m-1)a+nb=-ta+ tb.
∴ ,消去t得,m-1=-2n,
即m+2n=1.
又∵ = - =ma+nb- a= a+nb,
= - =b- a=- a+b.
又∵C、M、B三点共线,∴ 与 共线.
三.平面向量的线性运算:
(1)向量加法:
①三角形法则:(“首尾相接,首尾连”),如图,已知向量a、b.在平面任取一点 ,作 =, =,则向量 叫做与的和,记作
定:a+ 0-= 0 + a=a,
当向量 与 不共线时, + 的方向不同向,且| + |<| |+| |;
当 与 同向时,则 + 、 、 同向,且| + |=| |+| |,
当 与 反向时,若| |>| |,则 + 的方向与 相同,且| + |=| |-| |;
若| |<| |,则 + 的方向与 相同,且| +b|=| |-| |.
结论:
②平行四边形法则:以同一起点的两个向量为邻边作平行四边形,则以公共起点为起点的对角线所对应向量就是和向量。
③加法的运算律
1)向量加法的交换律: + = +
2)向量加法的结合律:( + ) + = + ( + )
(2)向量减法:
向量减法的定义:向量a加上的b相反向量,叫做a与b的差.即:ab = a + (b)求两个向量差的运算叫做向量的减法.
1.用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算:
若b + x = a,则x叫做a与b的差,记作ab
③平行向量无传递性!(因为有 );
6.相反向量:长度相等方向相反的向量叫做相反向量。 的相反向量是- 。如
下列命题:(1)若 ,则 。(2)两个向量相等的充要条件是它们的起点相同,终点相同。(3)若 ,则 是平行四边形。(4)若 是平行四边形,则 。(5)若 ,则 。(6)若 ,则 。其中正确的是_______
4.平面向量的基本定理:
如果e1和e2是同一平面的两个不共线向量,那么对该平面的任一向量a,有且只有一对实数 、 ,使a= e1+ e2
我们把不共线的向量e1和e2叫做表示这一平面所有向量的一组基底。
向量的夹角:已知两个非零向量 、 ,作 , ,则∠AOB= ,叫向量 、 的夹角,当, 、 同向,当, 、 反向,当, 与 垂直,记作 ⊥ 。
∴存在实数t1,使得 =t1 ,
∴ a+nb=t1 ,
∴ ,消去t1得,4m+n=1.
由①②得m= ,n= ,∴ = a+ b.
课堂练习:
(1)若 ,则 ______
(答: );
(2)下列向量组中,能作为平面所有向量基底的是
(答:(4)(5))
二.向量的表示方法:
1.几何表示法:用带箭头的有向线段表示,如 ,注意起点在前,终点在后;
2.符号表示法:用一个小写的英文字母来表示,如 , , 等;
3.坐标表示法:在平面建立直角坐标系,以与 轴、 轴方向相同的两个单位向量 , 为基底,则平面的任一向量 可表示为 ,称 为向量 的坐标, = 叫做向量 的坐标表示。如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。
2用“相反向量”定义法作差向量,ab=a + (b)
课堂练习:
1.化简:① ___;② ____;③ _____
(答:① ;② ;③ );
2.若正方形 的边长为1, ,则 =_____
(3)向量数乘:数λ与向量a的积的运算
1..λa|=|λ|_|a|_______;
2.当λ>0时,λa的方向与a的方向___相同_;当λ<0时,λa的方向与a的方向相反____;当λ=0时,λa=0____
平面向量复习讲义
一.向量有ห้องสมุดไป่ตู้概念:
1.向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。
2.零向量:长度为0的向量叫零向量,记作: ,注意零向量的方向是任意的;
3.单位向量:长度为一个单位长度的向量叫做单位向量(与 共线的单位向量是 );
2.求作差向量:已知向量a、b,求作向量ab
∵(ab) + b = a + (b) + b = a + 0 = a
作法:在平面取一点O,
作 =a, =b则 =ab
即ab可以表示为从向量b的终点指向向量a的终点的向量.
由减向量的终点指向被减向量的终点。注意:此处减向量与被减向量的起点相同。
注意:1 表示ab. 强调:差向量“箭头”指向被减数