决胜2019届高考数学(文)一轮复习专题卷 专题02 常用逻辑用语 Word版含解析
2019届高考文科数学一轮复习讲义:第1章 集合与常用逻辑用语 全套打包可编辑
第一章集合与常用逻辑用语§1.1集合及其运算1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法2.3.集合的基本运算知识拓展1.若有限集合A中有n个元素,则集合A的子集个数为2n,真子集的个数为2n-1.2.A⊆B⇔A∩B=A⇔A∪B=B.3.A∩(∁U A)=∅;A∪(∁U A)=U;∁U(∁U A)=A.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)任何一个集合都至少有两个子集.(×)(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.(×)(3)若{x2,1}={0,1},则x=0,1.(×)(4){x|x≤1}={t|t≤1}.(√)(5)对于任意两个集合A,B,关系(A∩B)⊆(A∪B)恒成立.(√)(6)若A∩B=A∩C,则B=C.(×)题组二教材改编2.已知U={α|0°<α<180°},A={x|x是锐角},B={x|x是钝角},则∁U(A∪B)=________. 答案{x|x是直角}3.已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为________.答案 2解析 集合A 表示以(0,0)为圆心,1为半径的单位圆,集合B 表示直线y =x ,圆x 2+y 2=1与直线y =x 相交于两点⎝⎛⎭⎫22,22,⎝⎛⎭⎫-22,-22,则A ∩B 中有两个元素. 题组三 易错自纠4.已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m 等于( ) A .0或 3 B .0或3 C .1或 3 D .1或3或0答案 B解析 A ={1,3,m },B ={1,m },A ∪B =A ,故B ⊆A ,所以m =3或m =m ,即m =3或m =0或m =1,其中m =1不符合题意,所以m =0或m =3,故选B.5.已知集合A ={x |x 2-2x -3≤0},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是____________. 答案 (3,+∞)解析 A ={x |x 2-2x -3≤0}={x |-1≤x ≤3}, ∵A ⊆B ,B ={x |x <a },∴a >3.6.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =________. 答案 0或98解析 若a =0,则A =⎩⎨⎧⎭⎬⎫23,符合题意;若a ≠0,则由题意得Δ=9-8a =0,解得a =98.综上,a 的值为0或98.题型一 集合的含义1.设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________. 答案 1解析 ∵3∈B ,又a 2+4≥4,∴a +2=3,∴a =1. 经检验,a =1符合题意.2.若A ={2,3,4},B ={x |x =n ·m ,m ,n ∈A ,m ≠n },则集合B 中的元素个数是( ) A .2 B .3 C .4 D .5 答案 B解析 B ={x |x =n ·m ,m ,n ∈A ,m ≠n }={6,8,12}.思维升华 (1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合.(2)集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.题型二集合的基本关系典例(1)设A,B是全集I={1,2,3,4}的子集,A={1,2},则满足A⊆B的集合B的个数是() A.5 B.4 C.3 D.2答案 B解析∵{1,2}⊆B,I={1,2,3,4},∴满足条件的集合B有{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个.(2)已知集合A={x|x2-2 019x+2 018<0},B={x|x<a},若A⊆B,则实数a的取值范围是________________________________________________________________________.答案[2 018,+∞)解析由x2-2 019x+2 018<0,解得1<x<2 018,故A={x|1<x<2 018}.又B={x|x<a},A⊆B,如图所示,可得a≥2 018.引申探究本例(2)中,若将集合B改为{x|x≥a},其他条件不变,则实数a的取值范围是____________.答案(-∞,1]解析A={x|1<x<2 018},B={x|x≥a},A⊆B,如图所示,可得a≤1.思维升华(1)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、维恩(Venn)图等来直观解决这类问题.跟踪训练(1)已知集合A={x∈R|x2+x-6=0},B={x∈R|ax-1=0},若B⊆A,则实数a的值为()A.13或-12B.-13或12C.13或-12或0 D.-13或12或0答案 D解析由题意知,A={2,-3}.当a=0时,B=∅,满足B⊆A;当a ≠0时,ax -1=0的解为x =1a,由B ⊆A ,可得1a =-3或1a =2,∴a =-13或a =12.综上可知,a 的值为-13或12或0.(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是____________. 答案 (-∞,4]解析 当B =∅时,有m +1≥2m -1,则m ≤2; 当B ≠∅时,若B ⊆A ,如图,则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围是(-∞,4].题型三 集合的基本运算命题点1 集合的运算典例 (1)(2017·全国Ⅰ)已知集合A ={x |x <1},B ={x |3x <1},则( ) A .A ∩B ={x |x <0} B .A ∪B =R C .A ∪B ={x |x >1} D .A ∩B =∅答案 A解析 ∵B ={x |3x <1},∴B ={x |x <0}.又A ={x |x <1},∴A ∩B ={x |x <0},A ∪B ={x |x <1}. 故选A.(2)(2018届广东珠海二中月考)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( ) A .A ∩B =∅ B .A ⊆B C .B ⊆A D .A ∪B =R 答案 D解析 ∵A ={x |x >2或x <0},∴A ∪B =R . 命题点2 利用集合的运算求参数典例 (1)设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是( ) A .-1<a ≤2 B .a >2 C .a ≥-1 D .a >-1 答案 D解析 因为A ∩B ≠∅,所以集合A ,B 有公共元素,作出数轴,如图所示,易知a >-1.(2)集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2 D .4 答案 D解析 由题意可得{a ,a 2}={4,16},∴a =4.(3)设集合A ={0,-4},B ={x |x 2+2(a +1)x +a 2-1=0,x ∈R }.若A ∩B =B ,则实数a 的取值范围是______. 答案 (-∞,-1]∪{1}解析 因为A ={0,-4},所以B ⊆A 分以下三种情况:①当B =A 时,B ={0,-4},由此可知,0和-4是方程x 2+2(a +1)x +a 2-1=0的两个根,由根与系数的关系,得⎩⎪⎨⎪⎧Δ=4(a +1)2-4(a 2-1)>0,-2(a +1)=-4,a 2-1=0,解得a =1; ②当B ≠∅且B A 时,B ={0}或B ={-4}, 并且Δ=4(a +1)2-4(a 2-1)=0, 解得a =-1,此时B ={0}满足题意; ③当B =∅时,Δ=4(a +1)2-4(a 2-1)<0, 解得a <-1.综上所述,所求实数a 的取值范围是(-∞,-1]∪{1}.思维升华 (1)一般来讲,集合中的元素若是离散的,则用维恩(Venn)图表示;集合中的元素若是连续的,则用数轴表示,此时要注意端点的情况.(2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化.跟踪训练 (1)(2017·天津)设集合A ={1,2,6},B ={2,4},C ={x ∈R |-1≤x ≤5},则(A ∪B )∩C 等于( ) A .{2} B .{1,2,4}C .{1,2,4,6}D .{x ∈R |-1≤x ≤5}答案 B解析 A ∪B ={1,2,4,6}.又C ={x ∈R |-1≤x ≤5},则(A ∪B )∩C ={1,2,4}, 故选B.(2)已知集合A ={x |x 2-x -12≤0},B ={x |2m -1<x <m +1},且A ∩B =B ,则实数m 的取值范围为( ) A .[-1,2)B .[-1,3]C .[2,+∞)D .[-1,+∞)答案 D解析 由x 2-x -12≤0,得(x +3)(x -4)≤0,即-3≤x ≤4,所以A ={x |-3≤x ≤4}.又A ∩B =B ,所以B ⊆A .①当B =∅时,有m +1≤2m -1,解得m ≥2; ②当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上,m 的取值范围为[-1,+∞).题型四 集合的新定义问题典例 若集合E ={(p ,q ,r ,s )|0≤p <s ≤4,0≤q <s ≤4,0≤r <s ≤4且p ,q ,r ,s ∈N },F ={(t ,u ,v ,w )|0≤t <u ≤4,0≤v <w ≤4且t ,u ,v ,w ∈N },用card(X )表示集合X 中的元素个数,则card(E )+card(F )等于( )A .200B .150C .100D .50 答案 A解析 在集合E 中,当s =1时,p =q =r =0,此时只有1个元素;当s =2时,p ,q ,r ∈{0,1},此时有2×2×2=8(个)元素;当s =3时,p ,q ,r ∈{0,1,2},此时有3×3×3=27(个)元素;当s =4时,p ,q ,r ∈{0,1,2,3},此时有4×4×4=64(个)元素,故card(E )=1+8+27+64=100.在集合F 中,(t ,u )的取值可能是(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共10种可能.同理,(v ,w )也有10种可能,故card(F )=10×10=100,∴card(E )+card(F )=200. 思维升华 解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,应用到具体的解题过程之中.(2)用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素.跟踪训练 定义一种新的集合运算△:A △B ={x |x ∈A ,且x ∉B }.若集合A ={x |x 2-4x +3<0},B ={x |2≤x ≤4},则按运算△,B △A 等于( ) A .{x |3<x ≤4} B .{x |3≤x ≤4} C .{x |3<x <4} D .{x |2≤x ≤4}答案 B解析 A ={x |1<x <3},B ={x |2≤x ≤4},由题意知,B △A ={x |x ∈B ,且x ∉A }={x |3≤x ≤4}.1.已知集合A ={1,2,3},B ={2,3},则( ) A .A =BB .A ∩B =∅C.A B D.B A答案 D2.(2017·浙江)已知集合P={x|-1<x<1},Q={x|0<x<2},则P∪Q等于()A.(-1,2) B.(0,1)C.(-1,0) D.(1,2)答案 A解析∵P={x|-1<x<1},Q={x|0<x<2},∴P∪Q={x|-1<x<2}.故选A.3.(2016·四川)设集合A={x|-2≤x≤2},Z为整数集,则集合A∩Z中元素的个数是() A.3 B.4 C.5 D.6答案 C解析由题意可知,A∩Z={-2,-1,0,1,2},则A∩Z中的元素的个数为5.故选C. 4.(2017·吉林大学附中模拟)若集合A={x∈N|5+4x-x2>0},B={x|x<3},则A∩B等于() A.∅B.{1,2}C.[0,3) D.{0,1,2}答案 D解析由A中不等式变形,得(x-5)(x+1)<0,x∈N,解得-1<x<5,x∈N,即A={0,1,2,3,4},∵B={x|x<3},∴A∩B={0,1,2}.5.(2017·潍坊调研)已知全集U=R,集合A={1,2,3,4,5},B={x∈R|x≥2},则图中阴影部分所表示的集合为()A.{0,1} B.{1}C.{1,2} D.{0,1,2}答案 B解析因为A∩B={2,3,4,5},而图中阴影部分为集合A去掉A∩B部分,所以阴影部分所表示的集合为{1}.6.已知集合M={1,2,3,4},则集合P={x|x∈M,且2x∉M}的子集的个数为()A.8 B.4 C.3 D.2答案 B解析由题意得P={3,4},∴集合P有4个子集.7.(2017·全国Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B等于() A.{1,-3} B.{1,0} C.{1,3} D.{1,5}答案 C解析∵A∩B={1},∴1∈B.∴1-4+m =0,即m =3.∴B ={x |x 2-4x +3=0}={1,3}.故选C.8.已知集合A ={x |-1<x <0},B ={x |x ≤a },若A ⊆B ,则a 的取值范围为( ) A .(-∞,0] B .[0,+∞) C .(-∞,0) D .(0,+∞)答案 B解析 用数轴表示集合A ,B (如图),由A ⊆B ,得a ≥0.9.已知集合P ={x |x 2-2x ≥0},Q ={x |1<x ≤2},则(∁R P )∩Q =________.答案 (1,2)解析 ∵P ={x |x ≥2或x ≤0},∁R P ={x |0<x <2}, ∴(∁R P )∩Q ={x |1<x <2}.10.若{3,4,m 2-3m -1}∩{2m ,-3}={-3},则m =______. 答案 1解析 由集合中元素的互异性,可得⎩⎪⎨⎪⎧m 2-3m -1=-3,2m ≠-3,2m ≠3,2m ≠4,所以m =1.11.(2018·衡水模拟)若集合A ={y |y =lg x },B ={x |y =x },则集合A ∩B =________. 答案 [0,+∞)解析 集合A ={y |y =lg x }={y |y ∈R }=R , B ={x |y =x }={x |x ≥0},则集合A ∩B ={x |x ≥0}=[0,+∞).12.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是________. 答案 [1,+∞)解析 由题意知,A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ).由A ⊆B ,画出数轴,如图所示,得c ≥1.13.(2017·黄山二模)已知集合A ={-2,-1,0,1,2},∁R B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x -1x +2≥0,则A ∩B 等于( ) A .{-1,0,1} B .{-1,0} C .{-2,-1,0} D .{0,1,2}答案 C解析 ∵集合A ={-2,-1,0,1,2},∁R B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x -1x +2≥0={x |x <-2或x ≥1}, ∴B ={x |-2≤x <1},则A ∩B ={-2,-1,0}.14.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =______,n =________. 答案 -1 1解析 A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1},由A ∩B =(-1,n ),可知m <1, 则B ={x |m <x <2},画出数轴,可得m =-1,n =1.15.设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,且k +1∉A ,那么称k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个. 答案 6解析 依题意可知,由S 的3个元素构成的所有集合中,不含“孤立元”时,这三个元素一定是连续的三个自然数.故这样的集合共有6个.16.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪6x +1≥1,x ∈R ,B ={x |x 2-2x -m <0},若A ∩B ={x |-1<x <4},则实数m 的值为______. 答案 8 解析 由6x +1≥1,得x -5x +1≤0, ∴-1<x ≤5,∴A ={x |-1<x ≤5}.又∵B ={x |x 2-2x -m <0},A ∩B ={x |-1<x <4}, ∴4是方程x 2-2x -m =0的根, 即42-2×4-m =0,解得m =8. 此时B ={x |-2<x <4},符合题意, 故实数m 的值为8.§1.2命题与量词、基本逻辑联结词1.命题的概念能够判断真假的语句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.全称量词与全称命题(1)全称量词:短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号“∀”表示.(2)全称命题:含有全称量词的命题.(3)全称命题的符号表示:形如“对M中的所有x,p(x)”的命题,用符号简记为“∀x∈M,p(x)”.3.存在量词与存在性命题(1)存在量词:短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号“∃”表示.(2)存在性命题:含有存在量词的命题.(3)存在性命题的符号表示:形如“存在集合M中的元素x,q(x)”的命题,用符号简记为∃x∈M,q(x).(4)全称命题与存在性命题的否定4.基本逻辑联结词(1)命题中的“且”、“或”、“非”叫做逻辑联结词.(2)命题真值表知识拓展1.含有逻辑联结词的命题真假的判断规律(1)p∨q:p,q中有一个为真,则p∨q为真,即有真为真.(2)p∧q:p,q中有一个为假,则p∧q为假,即有假即假.(3)綈p:与p的真假相反,即一真一假,真假相反.2.含有一个量词的命题的否定的规律是“改量词,否结论”.3.命题的否定和否命题的区别:命题“若p,则q”的否定是“若p,则綈q”,否命题是“若綈p,则綈q”.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)命题“3≥2”是真命题.(√)(2)命题p和綈p不可能都是真命题.(√)(3)若命题p,q中至少有一个是真命题,则p∨q是真命题.(√)(4)“全等三角形的面积相等”是特称命题.(×)(5)命题綈(p∧q)是假命题,则命题p,q中至少有一个是真命题.(×)题组二教材改编2.已知p:2是偶数,q:2是质数,则命题綈p,綈q,p∨q,p∧q中真命题的个数为() A.1 B.2C.3 D.4答案 B解析p和q显然都是真命题,所以綈p,綈q都是假命题,p∨q,p∧q都是真命题.3.命题“正方形都是矩形”的否定是_________________________________________.答案存在一个正方形,这个正方形不是矩形题组三 易错自纠4.命题“全等三角形的面积一定都相等”的否定是( ) A .全等三角形的面积不一定都相等 B .不全等三角形的面积不一定都相等 C .存在两个不全等三角形的面积相等 D .存在两个全等三角形的面积不相等 答案 D解析 命题是省略量词的全称命题,易知选D. 5.下列命题中, 为真命题的是( ) A .∀x ∈R ,-x 2-1<0 B .∃x ∈R ,x 2+x =-1 C .∀x ∈R ,x 2-x +14>0D .∃x ∈R ,x 2+2x +2<0 答案 A6.若“∀x ∈⎣⎡⎦⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________. 答案 1解析 ∵函数y =tan x 在⎣⎡⎦⎤0,π4上是增函数, ∴y max =tan π4=1.依题意知,m ≥y max ,即m ≥1. ∴m 的最小值为1.题型一 含有逻辑联结词的命题的真假判断1.设命题p :函数y =log 2(x 2-2x )的单调增区间是[1,+∞),命题q :函数y =13x+1的值域为(0,1),则下列命题是真命题的为( ) A .p ∧q B .p ∨q C .p ∧(綈q ) D .綈q答案 B解析 函数y =log 2(x 2-2x )的单调增区间是(2,+∞),所以命题p 为假命题. 由3x >0,得0<13x+1<1,所以函数y =13x +1的值域为(0,1),故命题q 为真命题.所以p∧q为假命题,p∨q为真命题,p∧(綈q)为假命题,綈q为假命题.故选B. 2.(2017·山东)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2.下列命题为真命题的是()A.p∧q B.p∧(綈q)C.(綈p)∧q D.(綈p)∧(綈q)答案 B解析∵x>0,∴x+1>1,∴ln(x+1)>ln 1=0.∴命题p为真命题,∴綈p为假命题.∵a>b,取a=1,b=-2,而12=1,(-2)2=4,此时a2<b2,∴命题q为假命题,∴綈q为真命题.∴p∧q为假命题,p∧(綈q)为真命题,(綈p)∧q为假命题,(綈p)∧(綈q)为假命题.故选B.3.已知命题p:若平面α⊥平面β,平面γ⊥平面β,则有平面α∥平面γ.命题q:在空间中,对于三条不同的直线a,b,c,若a⊥b,b⊥c,则a∥c.对以上两个命题,有以下命题:①p∧q为真;②p∨q为假;③p∨q为真;④(綈p)∨(綈q)为假.其中正确的是________.(填序号)答案②解析命题p是假命题,这是因为α与γ也可能相交;命题q也是假命题,这两条直线也可能异面,相交.思维升华“p∨q”“p∧q”“綈p”等形式命题真假的判断步骤(1)确定命题的构成形式;(2)判断其中命题p、q的真假;(3)确定“p∧q”“p∨q”“綈p”等形式命题的真假.题型二含有一个量词的命题命题点1全称命题、存在性命题的真假典例(2017·韶关二模)下列命题中的假命题是()A.∀x∈R,2x-1>0 B.∀x∈N+,(x-1)2>0C.∃x∈R,lg x<1 D.∃x∈R,tan x=2答案 B解析当x∈N+时,x-1∈N,可得(x-1)2≥0,当且仅当x=1时取等号,故B不正确;易知A,C ,D 正确,故选B.命题点2 含一个量词的命题的否定典例 (1)命题“∀x ∈R ,⎝⎛⎭⎫13x>0”的否定是( ) A .∃x ∈R ,⎝⎛⎭⎫13x <0 B .∀x ∈R ,⎝⎛⎭⎫13x≤0 C .∀x ∈R ,⎝⎛⎭⎫13x <0 D .∃x ∈R ,⎝⎛⎭⎫13x ≤0答案 D解析 全称命题的否定是存在性命题,“>”的否定是“≤”.(2)(2017·河北五个一名校联考)命题“∃x ∈R,1<f (x )≤2”的否定形式是( ) A .∀x ∈R,1<f (x )≤2 B .∃x ∈R,1<f (x )≤2 C .∃x ∈R ,f (x )≤1或f (x )>2 D .∀x ∈R ,f (x )≤1或f (x )>2 答案 D解析 存在性命题的否定是全称命题,原命题的否定形式为“∀x ∈R ,f (x )≤1或f (x )>2”. 思维升华 (1)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每一个元素x ,证明p (x )成立;要判断存在性命题是真命题,只要在限定集合内找到一个x =x 0,使p (x 0)成立. (2)对全称(存在性)命题进行否定的方法①找到命题所含的量词,没有量词的要结合命题的含义先加上量词,再改变量词; ②对原命题的结论进行否定.跟踪训练 (1)下列命题中的真命题是( ) A .∃x ∈R ,使得sin x +cos x =32B .∀x ∈(0,+∞),e x >x +1C .∃x ∈(-∞,0),2x <3xD .∀x ∈(0,π),sin x >cos x 答案 B解析 ∵sin x +cos x =2sin ⎝⎛⎭⎫x +π4≤2<32,故A 错误;设f (x )=e x -x -1,则f ′(x )=e x -1, ∴f (x )在(0,+∞)上为增函数,又f (0)=0, ∴∀x ∈(0,+∞),f (x )>0, 即e x >x +1,故B 正确;当x <0时,y =2x 的图象在y =3x 的图象上方,故C 错误;∵当x ∈⎝⎛⎭⎫0,π4时,sin x <cos x ,故D 错误.故选B.(2)(2017·福州质检)已知命题p :“∃x ∈R ,e x -x -1≤0”,则綈p 为( )A .∃x ∈R ,e x -x -1≥0B .∃x ∈R ,e x -x -1>0C .∀x ∈R ,e x -x -1>0D .∀x ∈R ,e x -x -1≥0 答案 C解析 根据全称命题与存在性命题的否定关系,可得綈p 为“∀x ∈R ,e x -x -1>0”,故选C.题型三 含参命题中参数的取值范围典例 (1)已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数,若p ∧q 是真命题,则实数a 的取值范围是________________. 答案 [-12,-4]∪[4,+∞)解析 若命题p 是真命题,则Δ=a 2-16≥0, 即a ≤-4或a ≥4;若命题q 是真命题, 则-a4≤3,即a ≥-12.∵p ∧q 是真命题,∴p ,q 均为真, ∴a 的取值范围是[-12,-4]∪[4,+∞).(2)已知f (x )=ln(x 2+1),g (x )=⎝⎛⎭⎫12x-m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是________________. 答案 ⎣⎡⎭⎫14,+∞解析 当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时, g (x )min =g (2)=14-m ,由f (x )min ≥g (x )min ,得0≥14-m ,所以m ≥14.引申探究本例(2)中,若将“∃x 2∈[1,2]”改为“∀x 2∈[1,2]”,其他条件不变,则实数m 的取值范围是________________. 答案 ⎣⎡⎭⎫12,+∞解析 当x ∈[1,2]时,g (x )max =g (1)=12-m ,由f (x )min ≥g (x )max ,得0≥12-m ,∴m ≥12.思维升华 (1)已知含逻辑联结词的命题的真假,可根据每个命题的真假,利用集合的运算求解参数的取值范围.(2)对于含量词的命题中求参数的取值范围的问题,可根据命题的含义,利用函数值域(或最值)解决.跟踪训练 (1)已知命题“∃x ∈R ,使2x 2+(a -1)x +12≤0”是假命题,则实数a 的取值范围是( )A .(-∞,-1)B .(-1,3)C .(-3,+∞)D .(-3,1)答案 B解析 原命题的否定为∀x ∈R,2x 2+(a -1)x +12>0,由题意知,其为真命题,即Δ=(a -1)2-4×2×12<0,则-2<a -1<2,即-1<a <3.(2)已知p :∃x ∈R ,mx 2+1≤0,q :∀x ∈R ,x 2+mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是( ) A .[2,+∞)B .(-∞,-2]C .(-∞,-2]∪[2,+∞)D .[-2,2]答案 A解析 依题意知,p ,q 均为假命题.当p 是假命题时,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,则有Δ=m 2-4≥0,m ≤-2或m ≥2.因此由p ,q 均为假命题,得⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2.常用逻辑用语考点分析 有关命题及其真假判断或求参数的取值范围、量词等问题几乎在每年高考中都会出现,多与函数、数列、立体几何、解析几何等知识相结合,难度中等偏下.解决这类问题应熟练把握各类知识的内在联系. 一、命题的真假判断典例1 (1)(2017·江西红色七校联考)已知函数f (x )=⎩⎪⎨⎪⎧3x ,x <0,m -x 2,x ≥0,给出下列两个命题:命题p :∃m ∈(-∞,0),方程f (x )=0有解,命题q :若m =19,则f (f (-1))=0,则下列命题为真命题的是( ) A .p ∧q B .(綈p )∧q C .p ∧(綈q )D .(綈p )∧(綈q )(2)(2018届全国名校大联考)已知命题p :∀x ∈R,3x <5x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( ) A .p ∧qB .(綈p )∧qC .p ∧(綈q )D .(綈p )∧(綈q )解析 (1)因为3x >0,当m <0时,m -x 2<0, 所以命题p 为假命题;当m =19时,因为f (-1)=3-1=13,所以f (f (-1))=f ⎝⎛⎭⎫13=19-⎝⎛⎭⎫132=0, 所以命题q 为真命题,逐项检验可知,只有(綈p )∧q 为真命题,故选B. (2)若x =0,则30=50=1,∴p 是假命题, ∵方程x 3=1-x 2有解,∴q 是真命题, ∴(綈p )∧q 是真命题. 答案 (1)B (2)B 二、求参数的取值范围典例2 (1)已知命题p :∀x ∈[0,1],a ≥e x ,命题q :∃x ∈R ,x 2+4x +a =0,若命题“p ∧q ”是真命题,则实数a 的取值范围是__________.(2)已知函数f (x )=x +4x ,g (x )=2x +a ,若∀x 1∈⎣⎡⎦⎤12,3,∃x 2∈[2,3]使得f (x 1)≥g (x 2),则实数a 的取值范围是________.解析 (1)命题“p ∧q ”是真命题,p 和q 均是真命题. 当p 是真命题时,a ≥(e x )max =e ; 当q 为真命题时,Δ=16-4a ≥0,a ≤4, 所以a ∈[e,4].(2)∵x ∈⎣⎡⎦⎤12,3,∴f (x )≥2x ·4x=4,当且仅当x =2时,f (x )min =4,当x ∈[2,3]时,g (x )min =22+a =4+a ,依题意知f (x )min ≥g (x )min ,即4≥a +4,∴a ≤0. 答案 (1)[e,4] (2)(-∞,0]1.已知命题p :“x >3”是“x 2>9”的充要条件,命题q :“a 2>b 2”是“a >b ”的充要条件,则下列判断正确的是( ) A .p ∨q 为真 B .p ∧q 为真 C .p 真q 假 D .p ∨q 为假答案 D解析∵p假,q假,∴p∨q为假.2.设命题p:函数y=sin 2x的最小正周期为π2;命题q:函数y=cos x的图象关于直线x=π2对称,则下列判断正确的是()A.p为真B.綈q为假C.p∧q为假D.p∨q为真答案 C解析函数y=sin 2x的最小正周期为2π2=π,故命题p为假命题;x=π2不是y=cos x的对称轴,故命题q为假命题,故p∧q为假.故选C.3.(2018·唐山一模)已知命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=log a(x -1)的图象过点(2,0),则下列判断正确的是()A.p假q真B.p真q假C.p假q假D.p真q真答案 A解析对∀x∈N,x3≥x2,∴p假,又当x=2时,f(2)=log a1=0,∴f(x)的图象过点(2,0),∴q真.4.(2017·豫西五校联考)若定义域为R的函数f(x)不是偶函数,则下列命题中一定为真命题的是()A.∀x∈R,f(-x)≠f(x)B.∀x∈R,f(-x)=-f(x)C.∃x∈R,f(-x)≠f(x)D.∃x∈R,f(-x)=-f(x)答案 C解析由题意知∀x∈R,f(-x)=f(x)是假命题,则其否定为真命题,∃x∈R,f(-x)≠f(x)是真命题,故选C.5.(2017·安庆二模)设命题p:∃x∈(0,+∞),x+1x>3;命题q:∀x∈(2,+∞),x2>2x,则下列命题为真的是()A.p∧(綈q) B.(綈p)∧q C.p∧q D.(綈p)∨q 答案 A解析对于命题p,当x=4时,x+1x=174>3,故命题p为真命题;对于命题q,当x=4时,24=42=16,即∃x∈(2,+∞),使得2x=x2成立,故命题q为假命题,所以p∧(綈q)为真命题,故选A.6.已知命题p :∃α∈R ,cos(π-α)=cos α;命题q :∀x ∈R ,x 2+1>0,则下列结论正确的是( ) A .p ∧q 是真命题 B .p ∧q 是假命题 C .綈p 是真命题 D .綈q 是真命题答案 A解析 对于p :取α=π2,则cos(π-α)=cos α,所以命题p 是真命题;对于命题q :因为x 2≥0,所以x 2+1>0,所以q 是真命题. 由此可得p ∧q 是真命题. 7.下列命题中,真命题是( ) A .∃x ∈R ,e x ≤0 B .∀x ∈R,2x >x 2C .a +b =0的充要条件是ab=-1D .“a >1,b >1”是“ab >1”的充分条件 答案 D解析 因为y =e x >0,x ∈R 恒成立,所以A 不正确; 因为当x =-5时,2-5<(-5)2,所以B 不正确;“ab=-1”是“a +b =0”的充分不必要条件,C 不正确; 当a >1,b >1时,显然ab >1,D 正确.8.命题p :∀x ∈R ,ax 2+ax +1≥0,若綈p 是真命题,则实数a 的取值范围是( ) A .(0,4]B .[0,4]C .(-∞,0]∪[4,+∞)D .(-∞,0)∪(4,+∞)答案 D解析 因为命题p :∀x ∈R ,ax 2+ax +1≥0, 所以綈p :∃x ∈R ,ax 2+ax +1<0,则a <0或⎩⎪⎨⎪⎧a >0,Δ=a 2-4a >0,解得a <0或a >4. 9.命题“∃n ∈N ,n 2>2n ”的否定是________________. 答案 ∀n ∈N ,n 2≤2n10.已知函数f (x )的定义域为(a ,b ),若“∃x ∈(a ,b ),f (x )+f (-x )≠0”是假命题,则f (a +b )=________. 答案 0解析 若“∃x ∈(a ,b ),f (x )+f (-x )≠0”是假命题,则“∀x ∈(a ,b ),f (x )+f (-x )=0”是真命题,即f (-x )=-f (x ),则函数f (x )是奇函数,则a +b =0,即f (a +b )=f (0)=0.11.以下四个命题:①∀x ∈R ,x 2-3x +2>0恒成立;②∃x ∈Q ,x 2=2;③∃x ∈R ,x 2+1=0;④∀x ∈R,4x 2>2x -1+3x 2.其中真命题的个数为________.答案 0解析 ∵x 2-3x +2=0的判别式Δ=(-3)2-4×2>0,∴当x >2或x <1时,x 2-3x +2>0才成立,∴①为假命题;当且仅当x =±2时,x 2=2,∴不存在x ∈Q ,使得x 2=2,∴②为假命题;对∀x ∈R ,x 2+1≠0,∴③为假命题;4x 2-(2x -1+3x 2)=x 2-2x +1=(x -1)2≥0,即当x =1时,4x 2=2x -1+3x 2成立,∴④为假命题.∴①②③④均为假命题.故真命题的个数为0.12.已知命题“∀x ∈R ,x 2-5x +152a >0”的否定为假命题,则实数a 的取值范围是____________. 答案 ⎝⎛⎭⎫56,+∞解析 由“∀x ∈R ,x 2-5x +152a >0”的否定为假命题,可知原命题必为真命题,即不等式x 2-5x +152a >0对任意实数x 恒成立.设f (x )=x 2-5x +152a ,则其图象恒在x 轴的上方,故Δ=25-4×152a <0,解得a >56,即实数a 的取值范围为⎝⎛⎭⎫56,+∞.13.已知命题p :-4<x -a <4,命题q :(x -2)(3-x )>0,若綈p 是綈q 的充分不必要条件,则实数a 的取值范围是______.答案 [-1,6]解析 p :-4<x -a <4等价于a -4<x <a +4;q :(x -2)(3-x )>0等价于2<x <3.又綈p 是綈q 的充分不必要条件,即q 是p 的充分不必要条件,所以⎩⎪⎨⎪⎧ a -4≤2,a +4>3,或⎩⎪⎨⎪⎧a -4<2,a +4≥3,解得-1≤a ≤6. 14.下列结论:①若命题p:∃x∈R,tan x=1;命题q:∀x∈R,x2-x+1>0,则命题“p∧(綈q)”是假命题;②已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是ab=-3;③命题“若x2-3x+2=0,则x=1”的逆否命题是“若x≠1,则x2-3x+2≠0”.其中正确结论的序号为________.答案①③解析①中命题p为真命题,命题q为真命题,所以p∧(綈q)为假命题,故①正确;②当b=a=0时,有l1⊥l2,故②不正确;③正确,所以正确结论的序号为①③.15.已知命题p:∃x∈R,e x-mx=0,命题q:∀x∈R,x2+mx+1≥0,若p∨(綈q)为假命题,则实数m的取值范围是________.答案[0,2]解析若p∨(綈q)为假命题,则p假q真.由e x-mx=0,可得m=e xx,x≠0,设f(x)=e xx,x≠0,则f′(x)=x e x-e xx2=(x-1)e xx2,当x>1时,f′(x)>0,函数f(x)=e xx在(1,+∞)上是单调递增函数;当0<x<1或x<0时,f′(x)<0,函数f(x)=e xx在(0,1)和(-∞,0)上是单调递减函数,所以当x=1时,函数取得极小值f(1)=e,所以函数f(x)=e xx的值域是(-∞,0)∪[e,+∞),由p是假命题,可得0≤m<e.当命题q为真命题时,有Δ=m2-4≤0,即-2≤m≤2.所以当p∨(綈q)为假命题时,m的取值范围是0≤m≤2.16.已知函数f(x)=x2-x+1x-1(x≥2),g(x)=a x(a>1,x≥2).(1)若∃x∈[2,+∞),使f(x)=m成立,则实数m的取值范围为________________;(2)若∀x1∈[2,+∞),∃x2∈[2, +∞),使得f(x1)=g(x2),则实数a的取值范围为________________.答案(1)[3,+∞)(2)(1,3]解析(1)因为f(x)=x2-x+1x-1=x+1x-1=x-1+1x-1+1≥2+1=3,当且仅当x=2时等号成立,所以若∃x ∈[2,+∞),使f (x )=m 成立,则实数m 的取值范围为[3,+∞).(2)因为当x ≥2时,f (x )≥3,g (x )≥a 2,若∀x 1∈[2,+∞),∃x 2∈[2,+∞),使得f (x 1)=g (x 2),则⎩⎪⎨⎪⎧a 2≤3,a >1, 解得a ∈(1,3].§1.3 充分条件、必要条件与命题的四种形式1.充分条件、必要条件与充要条件 (1)“如果p ,则q ”形式的命题为真时,记作p ⇒q ,称p 是q 的充分条件,q 是p 的必要条件.(2)如果既有p ⇒q ,又有q ⇒p ,记作p ⇔q ,则p 是q 的充要条件,q 也是p 的充要条件. p 是q 的充要条件又常说成q 当且仅当p ,或p 与q 等价.2.命题的四种形式及真假关系互为逆否的两个命题等价(同真或同假);互逆或互否的两个命题不等价.知识拓展从集合的角度理解充分条件与必要条件若p 以集合A 的形式出现,q 以集合B 的形式出现,即A ={x |p (x )},B ={x |q (x )},则关于充分条件、必要条件又可以叙述为:(1)若A ⊆B ,则p 是q 的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A B,则p是q的充分不必要条件;(5)若A B,则p是q的必要不充分条件;(6)若A⊈B且A⊉B,则p是q的既不充分也不必要条件.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)命题“若p,则q”的否命题是“若p,则綈q”.(×)(2)当q是p的必要条件时,p是q的充分条件.(√)(3)当p是q的充要条件时,也可说成q成立当且仅当p成立.(√)(4)若p是q的充分不必要条件,则綈p是綈q的必要不充分条件.(√)题组二教材改编2.下列命题是真命题的是()A.矩形的对角线相等B.若a>b,c>d,则ac>bdC.若整数a是素数,则a是奇数D.命题“若x2>0,则x>1”的逆否命题答案 A3.“x-3=0”是“(x-3)(x-4)=0”的____________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)答案充分不必要题组三易错自纠4.命题“若x2>y2,则x>y”的逆否命题是()A.若x<y,则x2<y2B.若x≤y,则x2≤y2C.若x>y,则x2>y2D.若x≥y,则x2≥y2答案 B解析根据原命题和其逆否命题的条件和结论的关系,得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.5.设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案 C解析x>y⇏x>|y|(如x=1,y=-2),但当x>|y|时,能有x>y.∴“x>y”是“x>|y|”的必要不充分条件.6.已知p:x>a是q:2<x<3的必要不充分条件,则实数a的取值范围是________.答案(-∞,2]解析由已知,可得{x|2<x<3} {x|x>a},∴a≤2.题型一命题及其关系1.某食品的广告词为“幸福的人们都拥有”,这句话的等价命题是()A.不拥有的人们会幸福B.幸福的人们不都拥有C.拥有的人们不幸福D.不拥有的人们不幸福答案 D2.原命题为“△ABC中,若cos A<0,则△ABC为钝角三角形”,关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是()A.真,真,真B.假,假,真C.真,真,假D.真,假,假答案 B解析若cos A<0,A为钝角,则△ABC为钝角三角形,所以原命题为真,则逆否命题也为真;△ABC为钝角三角形,可能是B或者C为钝角,A可能为锐角,cos A>0.所以逆命题为假,则否命题也为假.故选B.3.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是____________.答案若方程x2+x-m=0没有实根,则m≤0思维升华(1)写一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例即可.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.题型二充分必要条件的判定典例(1)“0≤m≤1”是“函数f(x)=cos x+m-1有零点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析方法一若0≤m≤1,则0≤1-m≤1,∴cos x=1-m有解.要使函数f(x)=cos x+m-1有零点,只需|m-1|≤1,解得0≤m≤2,故选A.方法二函数f(x)=cos x+m-1有零点,则|m-1|≤1,解得0≤m≤2,∵{m|0≤m≤1} {m|0≤m≤2}.∴“0≤m≤1”是“函数f(x)=cos x+m-1”有零点的充分不必要条件.(2)已知条件p:x>1或x<-3,条件q:5x-6>x2,则綈p是綈q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析由5x-6>x2,得2<x<3,即q:2<x<3.所以q⇒p,p⇏q,所以綈p⇒綈q,綈q⇏綈p,所以綈p是綈q的充分不必要条件,故选A.思维升华充分条件、必要条件的三种判定方法(1)定义法:根据p⇒q,q⇒p进行判断,适用于定义、定理判断性问题.(2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母范围的推断问题.(3)等价转化法:根据一个命题与其逆否命题的等价性,进行判断,适用于条件和结论带有否定性词语的命题.跟踪训练(1)(2018届莆田一中月考)王安石在《游褒禅山记》中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”,请问“有志”是到达“奇伟、瑰怪,非常之观”的()A.充要条件B.既不充分也不必要条件C.充分不必要条件D.必要不充分条件答案 D解析非有志者不能至,是必要条件;但“有志”也不一定“能至”,不是充分条件.(2)设a,b∈R,则“(a-b)a2<0”是“a<b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析 若“(a -b )a 2<0”,则“a <b ”,是真命题;而若“a <b ”,则“(a -b )a 2<0”当a =0时不成立,是假命题.故选A.题型三 充分必要条件的应用典例 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.解 由x 2-8x -20≤0,得-2≤x ≤10,∴P ={x |-2≤x ≤10}.由x ∈P 是x ∈S 的必要条件,知S ⊆P .则⎩⎪⎨⎪⎧ 1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3].引申探究若本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件.解 若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,方程组无解, 即不存在实数m ,使x ∈P 是x ∈S 的充要条件.思维升华 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.跟踪训练 (1)(2017·山西五校联考)已知p :(x -m )2>3(x -m )是q :x 2+3x -4<0的必要不充分条件,则实数m 的取值范围为________.答案 (-∞,-7]∪[1,+∞)解析 p 对应的集合A ={x |x <m 或x >m +3},q 对应的集合B ={x |-4<x <1},由p 是q 的必要不充分条件可知,B A ,∴m ≥1或m +3≤-4,即m ≥1或m ≤-7.(2)设n ∈N +,一元二次方程x 2-4x +n =0有整数根的充要条件是n =________.答案 3或4解析 由Δ=16-4n ≥0,得n ≤4,又n ∈N +,则n =1,2,3,4.当n =1,2时,方程没有整数根;当n =3时,方程有整数根1,3,当n =4时,方程有整数根2.综上可知,n =3或4.等价转化思想在充要条件中的应用典例 已知p :⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0(m >0),綈p 是綈q 的必要不充分条件,则实数m 的取值范围为________.思想方法指导 等价转化思想是指在解题中将一些复杂的、生疏的问题转化成简单的、熟悉的问题.本题中既有对题目中条件的化简,又有充分必要条件和集合间关系的转化.解析 ∵綈p 是綈q 的必要不充分条件,∴q 是p 的必要不充分条件.即p 是q 的充分不必要条件,由x 2-2x +1-m 2≤0(m >0),得1-m ≤x ≤1+m (m >0).∴q 对应的集合为{x |1-m ≤x ≤1+m ,m >0}.设M ={x |1-m ≤x ≤1+m ,m >0}.又由⎪⎪⎪⎪1-x -13≤2,得-2≤x ≤10, ∴p 对应的集合为{x |-2≤x ≤10}.设N ={x |-2≤x ≤10}.由p 是q 的充分不必要条件知,N M ,∴⎩⎪⎨⎪⎧ m >0,1-m <-2,1+m ≥10或⎩⎪⎨⎪⎧m >0,1-m ≤-2,1+m >10,解得m ≥9.∴实数m 的取值范围为[9,+∞).答案 [9,+∞)1.命题“若一个数是负数,则它的平方是正数”的逆命题是( )A .“若一个数是负数,则它的平方不是正数”B .“若一个数的平方是正数,则它是负数”C .“若一个数不是负数,则它的平方不是正数”D .“若一个数的平方不是正数,则它不是负数”答案 B。
2019届高考数学(文科)考点清单复习1.2《常用逻辑用语》PDF版
词语的命题或直接判断不方便的情况, 具体方法是通过判断原 命题的逆否 命 题 的 真 假 来 间 接 判 断 原 命 题 的 真 假. 常 用 结 论 如下: 条件; 条件; ①¬ q 是 ¬ p 的 充 分 不 必 要 条 件 ⇔ p 是 q 的 充 分 不 必 要 ②¬ q 是 ¬ p 的 必 要 不 充 分 条 件 ⇔ p 是 q 的 必 要 不 充 分 ③¬ q 是¬ p 的充要条件⇔p 是 q 的充要条件; ④¬ q 是¬ p 的既不充分也不必要条件 ⇔ p 是 q 的既不充分 ㊀ ( 2017 江西红色七校二模,8 ) 在 әABC 中, 角 A㊁ B 均 B. 必要不充分条件 (㊀ ㊀ ) D. 既不充分也不必要条件
考点三㊀ 简单的逻辑联结词
2. 复合命题 pᶱq
p q 真 真 假 假 真 假 真 假
㊀ ㊀ 1. 逻辑联结词有: 或
pɡq
且
㊀ ㊀ 2. 四种命题间的关系
pᶱq 真 真 真 假
¬ p 的真假判断如下表:
pɡq 真 假 假 假
非 .
¬ p 假
真
㊀ ㊀
( 1) pᶱq:p㊁q 中有一个为真,则 pᶱq 为真,即一真即真. ( 2) pɡq:p㊁q 中有一个为假,则 pɡq 为假,即一假即假. ( 3) ¬ p:与 p 的真假相反,即一真一假,真假相反.
>0
(㊀ ㊀ )
当 x = 1 时等号成立,故 B 不正确,易知 A,C,D 正确,故选 B. 程 x 2 -2ax -1 = 0 有两个实数根;命题 q: 函数 f ( x ) = x + 值为 4. 给出下列命题:
解析㊀ ȵ 当 xɪN ∗ 时,x - 1ɪ N, 可得 ( x - 1) 2 ȡ0, 当且仅 4 的最小 x
十年真题(2010_2019)高考数学(文科)真题分类汇编专题02 常用逻辑用语(含解析)
十年真题(2010_2019)高考数学(文科)真题分类汇编专题02常用逻辑用语(含解析)一、选择题1.【2019年高考天津文数】设x ∈R ,则“05x <<”是“|1|1x -<”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件1.B 【解析】由|1|1x -<可得02x <<,易知由05x <<推不出02x <<, 由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件, 即“05x <<”是“|1|1x -<”的必要而不充分条件.故选B.2.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件A 【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.故选A.3.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面3.B 【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行.故选B .4.【2019年高考北京文数】设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.C 【解析】当0b =时,()cos sin cos f x x b x x =+=,()f x 为偶函数;当()f x 为偶函数时,()()f x f x -=对任意的x 恒成立,由()cos()sin()cos sin f x x b x x b x -=-+-=-,得cos sin cos sin x b x x b x +=-,则sin 0b x =对任意的x 恒成立,从而0b =.故“0b =”是“()f x 为偶函数”的充分必要条件.故选C.5.(2018浙江)已知平面α,直线m ,n 满足m α⊄,n α⊂,则“m ∥n ”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.A 【解析】若m α⊄,n α⊂,m ∥n ,由线面平行的判定定理知m ∥α.若m ∥α,m α⊄,n α⊂,不一定推出m ∥n ,直线m 与n 可能异面,故“m ∥n ”是“m ∥α”的充分不必要条件.故选A .6.(2018北京)设a ,b ,c ,d 是非零实数,则“ad bc =”是“a ,b ,c ,d 成等比数列”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.B 【解析】a ,b ,c ,d 是非零实数,若ad bc =,则b d a c=,此时a ,b ,c ,d 不一定成等比数列;反之,若a ,b ,c ,d 成等比数列,则a c b d=,所以ad bc =,所以“ad bc =”是“a ,b ,c ,d 成等比数列”的必要而不充分条件.故选B .7.(2018天津)设x ∈R ,则“38x >”是“||2x >” 的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件7.A 【解析】由38x >,得2x >,由||2x >,得2x >或2x <-,故“38x >”是“||2x >”的充分而不必要条件,故选A .8.(2018上海)已知a R ∈,则“1a >”是“11a<”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既非充分又非必要条件8.A 【解析】由1>a 可得11<a 成立;当11<a ,即1110--=<a a a , 解得0<a 或1>a ,推不出1>a 一定成立;所以“1a >”是“11a<”的充分非必要条件.故选A .9.(2017天津)设x ∈R ,则“20x -≥”是“|1|1x -≤”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件9.B 【解析】由20x -≥,得2x ≤,由|1|1x -≤,得02x ≤≤,所以“20x -≥”是“|1|1x -≤”的必要而不充分条件.选B .10.(2017山东)已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a b <.下列命题为真命题的是A .p q ∧B .p q ⌝∧C .p q ⌝∧D .p q ⌝⌝∧10.B 【解析】取0x =,知1p 成立;若22a b <,得||||a b =,q 为假,所以p q ⌝∧为真,选B .11.(2017北京)设m , n 为非零向量,则“存在负数λ,使得λ=m n ”是“0⋅<m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件11.A 【解析】因为,m n 为非零向量,所以||||cos ,0⋅=<><m n m n m n 的充要条件是cos ,0<><m n .因为0λ<,则由λ=m n 可知,m n 的方向相反,,180<>=o m n ,所以cos ,0<><m n ,所以“存在负数λ,使得λ=m n ”可推出“0⋅<m n ”;而0⋅<m n 可推出cos ,0<><m n ,但不一定推出,m n 的方向相反,从而不一定推得“存在负数λ,使得λ=m n ”,所以“存在负数λ,使得λ=m n ”是“0⋅<m n ”的充分而不必要条件.12.(2017浙江)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是“465+2S S S >”的A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D .既不充分也不必要条件12.C 【解析】∵655465()()S S S S a a d ---=-=,当0d >,可得465+2S S S >; 当465+2S S S >,可得0d >.所以“0d >”是“465+2S S S >” 充分必要条件,选C .13.(2016年山东)已知直线,a b 分别在两个不同的平面α,b 内,则“直线a 和直线b 相交”是“平面α和平面β相交”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件13.A 【解析】根据已知,如果直线,a b 相交,则平面,αβ一定存在公共点,故其一定相交;反之,如果平面,αβ相交,分别位于这两个平面内的直线不一定相交,故为充分不必要条件,选A .14.(2016年浙江高考)已知函数2()f x x bx =+,则“0b <”是“(())f f x 的最小值与()f x 的最小值相等”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件14.A 【解析】当0b <时,2min ()()24b b f x f =-=-,即2()[,)4b f x ∈-+∞, 而222(())()()(())24b b f f x f x bf x f x =+=+-的对称轴也是2b -, 又2[,)24b b -∈-+∞,所以当()2b f x =-时,2min (())4b f f x =-, 故(())f f x 的最小值与()f x 的最小值相等;另一方面,取0b =,2()f x x =与4(())f f x x =有相等的最小值0,故选A . 15.(2015重庆)“1x =”是“2210x x -+=”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件15.A 【解析】由“1x =”显然能推出“2210x x -+=”,故条件是充分的;又由“2210x x -+=”可得10)1(2=⇒=-x x ,所以条件也是必要的;故选A . 16.(2015浙江)设a ,b 是实数,则“0a b +>”是“0ab >”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件16.D 【解析】若0a b +>,取3,2a b ==-,则0ab >不成立;反之,若2,3a b =-=-,则0a b +>也不成立,因此“0a b +>”是“0ab >”的既不充分也不必要条件.17.(2015安徽)设p :3x <,q :13x -<<,则p 是q 成立的A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件17.C 【解析】∵(1,3)(,3)-⊆-∞,所以p 是q 成立的必要不充分条件.18.(2015湖北)命题“000(0,),ln 1x x x ∃∈+∞=-”的否定是A .(0,),ln 1x x x ∀∈+∞≠-B .(0,),ln 1x x x ∀∉+∞=-C .000(0,),ln 1x x x ∃∈+∞≠-D .000(0,),ln 1x x x ∃∉+∞=-18.A 【解析】由特称命题的否定为全称命题可知,所求命题的否定为(0,)x ∀∈+∞,ln 1x x ≠-,故应选A .19.(2015四川)设,a b 为正实数,则“1a b >>”是“22log log 0a b >>”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件19.A 【解析】a >b >1时,有22log log 0a b >>成立,反之也正确.20.(2015山东)设m R ∈,命题“若0m >,则方程20x x m +-=有实根”的逆否命题是A .若方程20x x m +-=有实根,则0m >B .若方程20x x m +-=有实根,则0m ≤C .若方程20x x m +-=没有实根,则0m >D .若方程20x x m +-=没有实根,则0m ≤20.D 【解析】一个命题的逆否命题,要将原命题的条件、结论加以否定,并且加以互换,故选D .21.(2015陕西)“sin cos αα=”是“cos20α=”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件21.A 【解析】∵22cos 2cos sin ααα=-,当sin cos αα=时,cos20α=,充分性成立;当cos20α=时,即22cos sin 0αα-=,∴cos sin αα=或cos sin αα=-,必要性不成立.22.(2015北京)设,a b 是非零向量,“||||⋅=a b a b ”是“a ∥b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 22.A 【解析】||||cos ,a b a b a b ⋅=⋅<>r r r r r r ,由已知得cos ,1a b <>=r r ,即,0a b <>=r r ,//a b r r .而当a r ∥b r 时,,a b <>r r 还可能是π,此时||||a b a b ⋅=-r r r r , 故“a b a b ⋅=r r r r ”是“//a b r r ”的充分而不必要条件.23.(2015福建)“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的A .充分而不必要条件B .必要而不充分条件C . 充分必要条件D .既不充分也不必要条件23.B 【解析】∵(0,)2x π∈,所以sin 20x >.任意(0,)2x π∈,sin cos k x x x <,等价于任意(0,)2x π∈,2sin 2x k x <.当(0,)2x π∈时,02x π<<,设2t x =, 则0t π<<.设()sin f t t t =-,则()1cos f t t '=-0>,所以()sin f t t t =-在(0,)π上单调递增,所以()0f t >,所以sin 0t t >>,即1sin t t >,所以1k ≤. 所以任意(0,)2x π∈,2sin 2x k x<,等价于1k ≤.因为1k ≤⇒1k <, 但1k ≤⇐1k <,所以“对任意(0,)2x π∈,sin cos k x x x <”是 “1k <”的必要而不充分条件.24.(2014新课标2)函数()f x 在0=x x 处导数存在,若()00p f x '=:,0:q x x =是()f x 的极值点,则A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件24.C 【解析】设3()f x x =,(0)0f '=,但是()f x 是单调增函数,在0x =处不存在极值,故若p 则q 是一个假命题,由极值的定义可得若q 则p 是一个真命题,故选C .25.(2014广东)在ABC ∆中,角A ,B ,C 所对应的边分别为,,,c b a 则“b a ≤”是“B A sin sin ≤”的A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件25.A 【解析】由正弦定理sin sin a b A B=,故“b a ≤”⇔“B A sin sin ≤”. 26.(2014福建)命题“[)30,.0x x x ∀∈+∞+≥”的否定是A .()30,.0x x x ∀∈+∞+<B .()3,0.0x x x ∀∈-∞+≥ C .[)30000,.0x x x ∃∈+∞+< D .[)30000,.0x x x ∃∈+∞+≥ 26.C 【解析】把量词“∀”改为“∃”,把结论否定,故选C .27.(2014浙江)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件27.A 【解析】当1a b ==时,22()(1)2a bi i i +=+=,反之,若i bi a 2)(2=+,则有1a b ==- 或1a b ==,因此选A .28.(2014湖南)已知命题22:,;:,.p x y x y q x y x y >-<->>若则命题若则在命题①p q ∧ ②p q ∨ ③()p q ∧⌝ ④()p q ⌝∨中,真命题是A .①③B .①④C .②③D .②④28.C 【解析】由不等式的性质可知,命题p 是真命题,命题q 为假命题,故①p q ∧为假命题,②p q ∨为真命题,③q ⌝为真命题,则()p q ∧⌝为真命题,④p ⌝为假命题,则()p q ⌝∨为假命题,所以选C .29.(2014陕西)原命题为“若12n n n a a a ++<,n N +∈,则{}n a 为递减数列”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是A .真,真,真B .假,假,真C .真,真,假D .假,假,假29.A 【解析】从原命题的真假人手,由于12n n n a a a ++<{}1n n n a a a +⇔<⇔为递减数列,即原命题和否命题均为真命题,又原命题与逆否命题同真同假,则逆命题、否命题和逆否命题均为真命题,选A .30.(2014江西)下列叙述中正确的是A .若,,a b c R ∈,则2"0"ax bx c ++≥的充分条件是2"40"b ac -≤B .若,,a b c R ∈,则22""ab cb >的充要条件是""a c >C .命题“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有20x ≥”D .l 是一条直线,,αβ是两个不同的平面,若,l l αβ⊥⊥,则//αβ30.D 【解析】2"40"b ac -≤推不出2"0"ax bx c ++≥,因为与a 的符号不确定,所以A不正确;当20b =时,由""a c >推不出22""ab cb >,所以B 不正确;“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有0x <”,所以C 不正确.选D .31.(2013安徽)“0a ≤”是“函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件31.C 【解析】当a =0 时,()f x x =,∴()f x 在区间()0,+∞内单调递增;当0a <时,()1f x a x x a ⎛⎫=- ⎪⎝⎭中一个根10a <,另一个根为0,由图象可知()f x 在区间()0,+∞内单调递增;∴"0"a ≤是“函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的充分条件,相反,当()1f x a x x a ⎛⎫=-⎪⎝⎭在区间(0,+)∞内单调递增, ∴0a =或10a<,即0a ≤;"0"a ≤是“函数()=(-1)f x ax x 在区间(0,+)∞内 单调递增”的必要条件,故前者是后者的充分必要条件.所以选C .32.(2013北京)“ϕπ=”是“曲线()sin 2y x ϕ=+过坐标原点的”A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件32.A 【解析】当ϕπ=时,sin 2y x =-过原点;()sin 2y x ϕ=+过原点,则,,0,,ϕππ=⋅⋅⋅-⋅⋅⋅等无数个值.选A .33.设z 是复数, 则下列命题中的假命题是A .若20z ≥, 则z 是实数B .若20z <, 则z 是虚数C .若z 是虚数, 则20z ≥D .若z 是纯虚数, 则20z <33.C 【解析】abi b a z R b a bi a z 2,,222+-=⇒∈+=设.对选项A: 为实数则若z b z ⇒=≥0,02,所以为实数z 为真.对选项B: 为纯虚数且则若z b a z ⇒≠=<0,0,02,所以为纯虚数z 为真.对选项C: 00,0,2<⇒≠=z b a z 且则为纯虚数若,所以02≥z 为假. 对选项D: 00,0,2<⇒≠=z b a z 且则为纯虚数若,所以02<z 为真. 所以选C .34.(2013浙江)已知函数),0,0)(cos()(R A x A x f ∈>>+=ϕωϕω,则“)(x f 是奇函数”是2πϕ=的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件34.B 【解析】由f (x )是奇函数可知f (0)=0,即cos φ=0,解出φ=π2+k π,k ∈Z ,所以选项B 正确.35.(2013重庆)命题“对任意x R ∈,都有20x ≥”的否定为A .对任意x R ∈,都有20x <B .不存在x R ∈,都有20x <C .存在0x R ∈,使得200x ≥D .存在0x R ∈,使得200x < 35.D 【解析】否定为:存在0x R ∈,使得200x <,故选D .36.(2013四川)设x Z ∈,集合A 是奇数集,集合B 是偶数集,若命题p :,2x A x B ∀∈∈,则A .p ⌝:,2x A xB ∀∈∉ B .p ⌝:2x A x B ∀∉∉,C .p ⌝:2x A x B ∀∉∈,D .p ⌝:2x A x B ∀∈∉,36.C 【解析】由命题的否定易知选C .37.(2013湖北)在一次跳伞训练中,甲.乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A .()()p q ⌝∨⌝B . ()p q ∨⌝C .()()p q ⌝∧⌝D .p q ∨ 37.A 【解析】“至少有一位学员没有降落在指定范围”即为:“甲或乙没有降落在指定范围内”.38.(2012湖北)命题“0x ∃∈R Q ð,30x ∈Q ”的否定是A .0x ∃∉R Q ð,30x ∈QB .0x ∃∈R Q ð,30x ∉QC .x ∀∉R Q ð,3x ∈QD .x ∀∈R Q ð,3x ∉Q38.D 【解析】存在性命题的否定为“∃”改为“∀”,后面结论加以否定,故为300,R x C Q x Q ∀∈∉.39.(2012湖南)命题“若4πα=,则tan 1α=”的逆否命题是 A .若4πα≠,则tan 1α≠ B .若4πα=,则tan 1α≠C .若tan 1α≠,则4πα≠ D .若tan 1α≠,则4πα=39.C 【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,所以 “若4πα=, 则tan 1α=”的逆否命题是 “若tan 1α≠,则4πα≠”.40.(2012安徽)设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥,则“αβ⊥”是“a b ⊥”的A .充分不必要条件B .必要不充分条件C .充要条件D . 即不充分不必要条件40.A 【解析】①,,,b m m b αβαββ⊥⊥⋂=⊂,b a b a αα⇒⊥⊂⇒⊥②如果//a m ;∵b m ⊥,一定有a b ⊥但不能保证b α⊥,既不能推出αβ⊥41.(2012福建)下列命题中,真命题是A .00,0xx R e ∃∈… B .2,2x x R x ∀∈> C .0a b +=的充要条件是1a b =- D .1a >,1b >是1ab >的充分条件 41.D 【解析】∵,0x x R e ∀∈>,故排除A ;取x =2,则2222=,故排除B ;0a b +=,取0a b ==,则不能推出1a b=-,故排除C ;应选D . 41.(2012北京)设,a b ∈R ,“0a =”是‘复数i a b +是纯虚数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件42.B 【解析】0a =时i a b +不一定是纯虚数,但i a b +是纯虚数0a =一定成立,故“0a =”是“复数i a b +是纯虚数”的必要而不充分条件.43.(2012湖北)命题“存在一个无理数,它的平方是有理数”的否定是A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数43.B 【解析】根据特称命题的否定,需先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”,故选B .44.(2012山东)设0>a 且1≠a ,则“函数()x a x f =在R 上是减函数”是“()()32x a x g -=在R 上是增函数”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件44.A 【解析】p :“函数()x a x f =在R 上是减函数 ”等价于10<<a ;q :“函数()()32x a x g -=在R 上是增函数”等价于02>-a ,即,20<<a 且a ≠1,故p 是q 成立的充分不必要条件.选A .45.(2012山东)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是A .p 为真B .q ⌝为假C .p q ∧为假D .p q ∨为真45.C 【解析】命题p 为假,命题q 也为假,故选.46.(2011山东)已知,,a b c R ∈,命题“若a b c ++=3,则222a b c ++≥3”,的否命题是A .若3a b c ++≠,则222a b c ++<3B .若3a b c ++=,则222a b c ++<3C .若3a b c ++≠,则222a b c ++≥3D .若222a b c ++≥3,则3a b c ++=46.A 【解析】3a b c ++=的否定是3a b c ++≠,222a b c ++≥3的否定是222a b c ++<3,故选A .47.(2011新课标)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题12:||1[0,)3p πθ+>⇔∈a b 2:p ||1+>a b ⇔2(,]3πθπ∈ 13:||1[0,)3p πθ->⇔∈a b 4:p ||1->a b ⇔(,]3πθπ∈ 其中真命题是A .14,p pB .13,p pC .23,p pD .24,p p47.A 【解析】由1a b +==>得, 1cos 2θ>-, 20,3πθ⎡⎫⇒∈⎪⎢⎣⎭.由1a b -==> 得1cos 2θ<,3πθπ⎛⎤⇒∈ ⎥⎝⎦.选A . 48.(2011陕西)设,a b 是向量,命题“若=-a b ,则=a b ”的逆命题是A .若≠a b ,则≠a bB .若=-a b ,则≠a bC .若≠a b ,则≠a bD .若=a b ,则=-a b48.D 【解析】根据定义若“若a b =r r ,则a b =-r r ”.49.(2011湖南)设集合{}{}21,2,,M N a ==则 “1a =”是“N M ⊆”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件49.A 【解析】显然1a =时一定有N M ⊆,反之则不一定成立,如1a =-,故“1a =”是“N M ⊆” 充分不必要条件.50.(2011安徽)命题“所有能被2整聊的整数都是偶数”的否定..是 A .所有不能被2整除的数都是偶数B .所有能被2整除的整数都不是偶数C .存在一个不能被2整除的数都是偶数D .存在一个能被2整除的数都不是偶数50.D 【解析】根据定义容易知D 正确.51.(2010新课标)已知命题1p :函数22x x y -=-在R 为增函数,2p :函数22x x y -=+ 在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是A .1q ,3qB .2q ,3qC .1q ,4qD .2q ,4q51.C 【解析】∵1p 是真命题,则1p ⌝为假命题;2p 是假命题,则2p ⌝为真命题,∴1q :12p p ∨ 是真命题,2q :12p p ∧是假命题,3q :()12p p ⌝∨为假命题, 4q :()12p p ∧⌝为真命题,故选C .52.(2010辽宁)已知a >0,则0x 满足关于x 的方程ax b =的充要条件是A .220011,22x R ax bx ax bx ∃∈-≥- B .220011,22x R ax bx ax bx ∃∈-≤- C .220011,22x R ax bx ax bx ∀∈-≥- D .220011,22x R ax bx ax bx ∀∈-≤- 52.C 【解析】由于a >0,令函数22211()222b b y ax bx a x a a=-=--,此时函数对应的开口向上,当x =b a 时,取得最小值22b a -,而0x 满足关于x 的方程ax b =,那么0x =b a,min y =2200122b ax bx a-=-,那么对于任意的x ∈R , 都有212y ax bx =-≥22b a -=20012ax bx -. 二、填空题53.(2018北京)能说明“若a b >,则11a b<”为假命题的一组a ,b 的值依次为____. 53.11-(答案不唯一)【解析】由题意知,当1a =,1b =-时,满足a b >,但是11a b >,故答案可以为11-.(答案不唯一,满足0a >,0b <即可)54.(2013四川)设n P P P ,,,⋯⋯21为平面a 内的n 个点,在平面a 内的所有点中,若点P 到点n P P P ,,,⋯⋯21的距离之和最小,则称点P 为点12n P P P ⋅⋅⋅,,,的一个“中位点”,例如,线段AB 上的任意点都是端点A ,B 的中位点,现有下列命题:①若三个点A ,B ,C 共线,C 在线段AB 上,则C 是A ,B ,C 的中位点; ②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点A ,B ,C ,D 共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点;其中的真命题是________________(写出所有的真命题的序号).54.①④【解析】由“中位点”可知,若C 在线段AB 上,则线段AB 上任一点都为“中位点”,C 也不例外,故①正确;对于②假设在等腰Rt △ABC 中,∠ACB =90°,如图所示,点P 为斜边AB 中点,设腰长为2,则|P A |+|PB |+|PC |=32|AB |=C 为“中位点”,则|CB |+|CA |=4<对于③,若B ,C 三等分AD ,若设|AB |=|BC |=|CD |=1,则|BA |+|BC |+|BD |=4=|CA |+|CB |+|CD |,故③错;对于④,在梯形ABCD 中,对角线AC 与BD 的交点为O ,在梯形ABCD 内任取不同于点O 的一点M ,则在△MAC 中,|MA |+|MC |>|AC |=|OA |+|OC |,同理在△MBD 中,|MB |+|MD |>|BD |=|OB |+|OD |,则得,|MA |+|MB |+|MC |+|MD |>|OA |+|OB |+|OC |+|OD |,故O 为梯形内唯一中位点是正确的.55.(2011陕西)设n N +∈,一元二次方程240x x n -+=有正数根的充要条件是n = . 55.3或4【解析】 易知方程得解都是正整数解,由判别式1640n ∆=-≥得, 14n ≤≤,逐个分析,当1,2n =时,方程没有整数解;而当3n =时, 方程有正整数解1、3;当4n =时,方程有正整数解2.56.(2010安徽)命题“存在x R ∈,使得2250x x ++=”的否定是 .56.【解析】对任何x R ∈,都有2250x x ++≠.。
专题02+常用逻辑用语(检测)-2019年高考数学(理)名师揭秘之一轮总复习
本专题要特别小心:1.命题与开语句混淆陷阱;2.否命题与命题的否定陷阱;3.隐含条件陷阱;4.互逆命题陷阱;5.分类讨论陷阱;6.充分性必要性混淆陷阱;7.新定义问题;8.全称与特称否定陷阱.【学习目标】1.理解命题的概念及命题构成,了解“若p,则q”形式命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系;2.理解必要条件、充分条件与充要条件的意义;3.了解逻辑联结词“或”、“且”、“非”的含义;4.理解全称量词与存在量词的意义,能正确地对含有一个量词的命题进行否定.【知识要点】1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系(1)在两个命题中,如果第一个命题的条件是第二个命题的结论,且第一个命题的条件是第二个命题的结论,那么这两个命题叫做互逆命题;如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆命题.(2)同时否定原命题的条件和结论,所得的命题是原命题的否命题.注意:“否命题”与“命题的否定”是两个不同的概念.如果原命题是“若p,则q”,那么这个原命题的否定是“若p,则非q”,即只否定结论,而原命题的否命题是“若非p,则非q”,即既否定命题的条件,又否定结论.(3)交换原命题的条件和结论,并且同时否定,所得到的命题是原命题的逆否命题.(4)一般地,用p 和q 分别表示原命题的条件和结论,用非p 和非q 分别表示p ,q 的否定,于是四种命题形式是:原命题:若p ,则q ;逆命题:若q ,则p ;否命题:若非p ,则非q ;逆否命题:若非q ,则非p . (5)四种命题之间的关系注意:(1)两个命题互为逆否命题,它们有相同的真假性. (2)两个命题互为逆命题或互为否命题,它们的真假性不一定相同. 3.充分条件与必要条件(1)若 p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件. (2)若p ⇔q ,则p 是q 的充分必要条件,即充要条件. 4.逻辑联结词命题中的或,且,非叫逻辑联结词.(1)当p ,q 都是真命题时,p ∧q 是真命题;当p ,q 两个命题中至少有一个是假命题时,p ∧q 是假命题. (2)当p ,q 两个命题中至少有一个命题是真命题时,p ∨q 是真命题;当p ,q 两个命题都是假命题时,p ∨q 是假命题.5.全称量词、存在量词 (1)全称量词短语“对所有的”、“对任意一个”在逻辑中通常叫做全称量词,并用符号∀表示.含有全称量词的命题,叫做全称命题,全称命题“对M 中任意一个x ,有p (x )成立”,简记作∀x ∈M ,p (x ) . (2)存在量词短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词 ,并用符号∃表示.含有存在量词的命题,叫做特称命题,特称命题“存在M 中的一个x ,使p (x )成立”,简记作∃x 0∈M ,p (x 0).(3)两种命题的关系全称命题的否定是特称命题;特称命题的否定是全称命题.注意:同一个全称命题、特称命题,由于自然语言的不同,可能有不同的表述方法,在实际应用中可以灵活地选择.一、单选题1.【上海市2018二模】“”是“”成立的( ).A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件【答案】B【解析】若,可能,充分性不成立,若且,则,必要性成立,综上可得:“”是“且”成立的必要非充分条件.本题选择B选项.2.【2018衡水金卷】设随机变量,则使得成立的一个必要不充分条件为()A. 或B.C.D. 或【答案】A【解析】由,得到=,故3m=3,得到m=1,则使得成立的充要条件为m=1,故B错误;因为是的真子集,故原题的必要不充分条件为或.故答案为:A.3.【金华十校2018年4月高考模拟】“”是“”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既非充分也非必要条件【答案】A4.【荆州市2018模拟】“”是“直线与直线相互垂直”的()条件A. 充要B. 充分非必要C. 必要非充分D. 既非充分也非必要【答案】B【解析】时,两条直线分别化为:,此时两条直线相互垂直,满足条件;由“直线与直线相互垂直”,可得,,解得或,“”是“直线与直线相互垂直”的充分非必要条件,故选B.5.【2018天一联考】“”是“方程表示双曲线”的()A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【答案】C【解析】表示双曲线,则有;当或时方程无意义,故“”是“方程表示双曲线”的必要不充分条件.故选C.6.【2018豫南联考】下列说法正确的是()A. 命题“若,则”的否命题是“若,则”B. 命题“,”的否定是“,”C. 函数的最小值为D. 若,则“”是“”的必要不充分条件【答案】D7.【2018豫南联考】已知,则是为纯虚数的()A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分又不必要条件【答案】C【解析】先考虑充分性,当x+y=0时,不一定为纯虚数,因为x-y=0时,它是实数.所以是非充分条件.再考虑必要性,当为纯虚数时,则有x+y=0且x-y≠0,所以必要性成立.故选C.8.设且,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B9.【2018兰州市2018届高三一诊】设:实数,满足;:实数,满足,则是的()A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要的条件【来源】2018年高考数学备考中等生百日捷进提升系列(捷进提升篇)专题07 不等式【答案】B【解析】画出表示的区域,如图所示的,表示的区域是,为等腰直角三角形,表示的区域是以为圆心,以为半径的圆,而其内切球半径为,圆心,满足的点在内切圆内,是的必要不充分条件,故选B.10.若命题:“存在,使成立”为假命题,则实数的取值范围为A. B. C. D.【答案】A【解析】由题知,任意使,即对恒成立,因为=,当且仅当,即时,=,所以≤,所以实数的取值范围为(-∞,),故选A .11.【衡水金卷调研卷】已知0a >, 0b >,则点的离心率e 的取值范围为A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件 【答案】A12.【荆州2018模拟】设等比数列{}n a 的公比为q ,前n 项和为n S ,则是“422S S =”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 【答案】C【解析】由422S S =,得()()2311121a q q q a q +++=+,即3210q q q +--=,即()()2110q q +-=.∴1q =±,即时,易得422S S =.是“422S S =”的充要条件. 故选C.13.【2018郑州二模】命题“[]21,2,320x x x ∀∈-+≤”的否定为( )A. []21,2,320x x x ∀∈-+> B. []21,2,320x x x ∀∉-+>C. []20001,2,320x x x ∃-+> D. []20001,2,320x x x ∃∉-+>【答案】C【解析】全称性命题的否定是特称性命题,所以选C.14.已知下列命题中:(1)若k R ∈,且0kb =,则0k =或0b =;(2)若·0a b =,则0a =或0b =;(3)若不平行的两个非零向量a , b ,满足a b =,则()()·0a b a b +-=;(4)若a 与b 平行,则··a b a b =其中真命题的个数是( )A. 0B. 1C. 2D. 3 【答案】C15.若命题“0x R ∃∈,使得200230x mx m ++-<”为假命题,则实数m 的取值范围是( )A. []26,B. []6,2--C. ()26,D. ()6,2-- 【答案】A【解析】若命题“0x R ∃∈,使得200230x mx m ++-<”为假命题, 则命题“x R ∀∈,使得2x x 230m m ++-≥”为真命题, 所以24(23)0m m =--≤,解得26m ≤≤. 故选A.16.【沈阳市东北育才学校2018模拟】命题“2m =-”是命题“直线2240x my m +-+=与直线220mx y m +-+=平行”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 即不充分也不必要条件 【答案】C【解析】当两直线平行时, 24,2m m ==±,当m=2时,两直线均为x+y=0,不符。
考点02 常用逻辑用语-2019年江苏高考数学五年真题与三年模拟试题考点分类解读 Word版含解析
内容要求A B C命题的四种形式√充分条件、必要条件、充要条件√简单的逻辑关键词√全称量词与存在量词√1、了解命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系。
2、理解充分条件、必要条件、充分条件的意义,会判断充分条件、必要条件、充要条件。
3、了解或、且、非的含义·4、了解全称量词与存在量词的意义,能准确地对一个量词的命题进行否定·2009年2014年2015年2016年2017年2018年考查了命题以及命题的条件填空题考查了恒成立问题;解答题均考查了恒成立问题和存在问题与圆锥曲线结合的恒成立问题有函数结合的恒成立问题与数列结合的恒成立问题与数列结合的恒成立问题考纲要求近五年高考情况分析从近几年江苏高考可以看出,高考对本章的考查主要体现在函数的恒成立和存在问题,这也是与函数知识点融合的热点问题,这就要引起考生的重视,另外一方面也要重点复习含有量词的否定等含有量词的简单问题以及两个命题的条件的问题。
2、(2017苏州暑假测试)命题“∃x0>1,x20≥2”的否定是________.【答案】. ∀x>1,x2<2【解析】:根据存在性命题的否定规则得“∃x0>1,x20≥2”的否定是“∀x>1,x2<2”.3、(2017无锡期末)命题“∀x≥2,x2≥4”的否定是“________,x2<4”.【答案】:∃x≥2【解析】:因为命题“∀x≥2,x2≥4”的否定是“∃x≥2,x2<4”4、(2016泰州期末)若命题“存在x∈R,ax2+4x+a≤0”为假命题,则实数a的取值范围是________.【答案】:(2,+∞)易错警示转为真命题来处理,二次项系数为参数的不等式恒成立问题,要注意讨论二次项系数为0时能否成立.5、(2016南通、扬州、淮安、连云港二调)命题“∃x∈R,2x>0”的否定是________.【答案】∀x∈R,2x≤0【解析】:根据全称命题的否定法则可得6、(2016扬州期末)已知命题p:“∀x∈R,x2+2x-3≥0”,则命题p的否定为________.【答案】∃x∈R,x2+2x-3<0【解析】:根据全称命题的否定法则可得题型二:充分必要条件1、(2018盐城三模)“”是“1sin2x ”成立的条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”).【答案】、充分不必要【规律总结】因为“小范围”可以推出“大范围”,故“小范围”是“大范围”的充分条件,“大范围”是“大范围”的必要条件.2、(2016南京学情调研)已知直线l ,m ,平面α,m ⊂α,则“l ⊥m ”是“l ⊥α”的________条件(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”). 【答案】:. 必要不充分【解析】:根据直线与平面垂直的定义:若直线与平面内的任意一条直线都垂直,则称这条直线与这个平面垂直.现在是直线与平面内给定的一条直线垂直,而不是任意一条,故由“l ⊥m ”推不出“l ⊥α”,但是由定义知“l ⊥α”可推出“l ⊥m ”,故填必要不充分3、(2016南京、盐城一模) 设向量a =(sin2θ,cos θ),b =(cos θ,1),则“a ∥b ”是“tan θ=”的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)【答案】必要不充分【解析】:若a ∥b ,则cos 2θ-sin2θ=0,即cos 2θ-2sin θcos θ=0.得cos θ=0或tan θ=.所以“cos θ=0或tan θ=”是“tan θ=”的必要不充分条件,即“a ∥b ”是“tan θ=”的必要不充分条件.4、(2016南京三模)记不等式x 2+x -6<0的解集为集合A ,函数y =lg(x -a )的定义域为集合B .若“xA ”是“xB ”的充分条件,则实数a 的取值范围为 . 【答案】(],3-∞-【解析】由得32x -<<,即()3,2A =-,又由0x a ->得x a >,即(),B a =+∞,因为“x A ∈”是“x B ∈”的充分条件,所以,故3a ≤-。
精品三年高考(2019)高考数学试题分项版解析 专题02 常用逻辑用语 文(含解析)
专题02 常用逻辑用语文考纲解读明方向分析解读1.本节主要考查充分必要条件的推理判断及四种命题间的相互关系问题.2.本部分内容在高考试题中多以选择题或填空题的形式出现,考查四种命题的真假判断以及充分条件、必要条件的判定和应用,考查学生的逻辑推理能力.3.会判断含有一个量词的全称命题或特称命题的真假,能正确地对含有一个量词的命题进行否定.4.能用逻辑联结词“或”“且”“非”正确地表达相关的数学内容.5.本节内容在高考中约为5分,属中低档题.命题探究练扩展2018年高考全景展示1.【2018年浙江卷】已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】点睛:充分、必要条件的三种判断方法:(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.(2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.2.【2018年文北京卷】能说明“若a﹥b,则”为假命题的一组a,b的值依次为_________.【答案】(答案不唯一)【解析】分析:根据原命题与命题的否定的真假关系,可将问题转化为找到使“若,则”成立的,根据不等式的性质,去特值即可. 详解:使“若,则”为假命题,则使“若,则”为真命题即可, 只需取即可满足,所以满足条件的一组的值为(答案不唯一)点睛:此题考查不等式的运算,解决本题的核心关键在于对原命题与命题的否定真假关系的灵活转换,对不等式性质及其等价变形的充分理解,只要多取几组数值,解决本题并不困难. 3.【2018年天津卷文】设,则“”是 “” 的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】A点睛:本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力. 4.【2018年北京卷文】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 【答案】B【解析】分析:证明“”“成等比数列”只需举出反例即可,论证“成等比数列”“”可利用等比数列的性质.详解:当时,不成等比数列,所以不是充分条件;当成等比数列时,则,所以是必要条件.综上所述,“”是“成等比数列”的必要不充分条件,故选B.点睛:此题主要考查充分必要条件,实质是判断命题“”以及“”的真假.判断一个命题为真命题,要给出理论依据、推理证明;判断一个命题为假命题,只需举出反例即可,或者当一个命题正面很难判断真假时,可利用原命题与逆否命题同真同假的特点转化问题.2017年高考全景展示1.【2017天津,文2】设x ∈R ,则“20x -≥”是“|1|1x -≤”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件【答案】B【考点】充分必要条件【名师点睛】判断充分必要条件的的方法:1.根据定义,若,p q q p ⇒≠>,那么p 是q 的充分不必要条件,同时q 是p 的必要不充分条件,若p q ⇔,那互为充要条件,若p q <≠>,那就是既不充分也不必要条件,2.当命题是以集合形式给出时,那就看包含关系,若:,:p x A q x B ∈∈,若A B ≠⊂,那么p 是q 的充分必要条件,同时q 是p 的必要不充分条件,若A B =,互为充要条件,若没有包含关系,就是既不充分也不必要条件,3.命题的等价性,根据互为逆否命题的两个命题等价,将p 是q 条件的判断,转化为q ⌝是p ⌝条件的判断.2.【2017山东,文5】已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是 A .p q ∧ B.p q ∧⌝ C.p q ⌝∧ D.p q ⌝∧⌝ 【答案】B 【解析】试题分析:由0x =时210x x -+≥成立知p 是真命题,由221(2),12<->-可知q 是假命题,所以p q ∧⌝是真命题,故选B.【考点】命题真假的判断【名师点睛】判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.3.【2017北京,文13】能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为______________________________. 【答案】-1,-2,-3(答案不唯一) 【解析】试题分析:()123,1233->->--+-=->-相矛盾,所以验证是假命题. 【考点】不等式的性质【名师点睛】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时利用赋值的方式举反例进行验证,答案不唯一.2016年高考全景展示1.【2016高考四川文科】设p:实数x ,y 满足1x >且1y >,q: 实数x ,y 满足2x y +>,则p 是q 的( ) (A)充分不必要条件 (B)必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件 【答案】A 【解析】考点:充分必要条件.【名师点睛】本题考查充分性与必要性的判断问题,首先是分清条件和结论,然后考察条件推结论,结论推条件是否成立.这类问题往往与函数、三角、不等式等数学知识结合起来考.有许多情况下可利用充分性、必要性和集合的包含关系得出结论.2.【2016高考天津文数】设0>x ,R y ∈,则“y x >”是“||y x >”的( )(A )充要条件(B )充分而不必要条件(C )必要而不充分条件(D )既不充分也不必要条件【答案】C 【解析】试题分析:34,3|4|>-<-,所以充分性不成立;||x y y x y >≥⇒>,必要性成立,故选C 考点:充要关系【名师点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 3.【2016高考上海文科】设R a ∈,则“1>a ”是“12>a ”的( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件 【答案】A【名师点睛】充要条件的判定问题,是高考常考题目之一,其综合性较强,易于和任何知识点结合.本题涉及不等关系,突出体现了高考试题的基础性,能较好的考查考生分析问题解决问题的能力、逻辑推理能力等.。
专题2 常用逻辑用语复习指导-2019年高考数学考点讲解与真题分析
常用逻辑用语复习指导一.知识网络二.命题特征1.对于命题的判断问题,在高考中往往涉及多个知识点综合进行考查.考查知识点涉及逻辑联结词、三角函数、不等式、立体几何初步等诸多内容,得到命题者的青睐.该部分的考查重点有两个:(1)是综合其他知识,考查一些简单命题真假的判断;(2)是考查命题四种形式之间的关系.2.四种命题的关系及真假判断、充要条件的判定是高考热点,常与函数、不等式、立体几何中的线面关系、解析几何中的直线与圆的位置关系等知识综合考查。
3.全称命题、特称命题的否定及其真假判断是高考的热点。
三.重点内容解读1.四种命题的结构:如果用p和q分别表示命题的条件和结论,那么它的四种形式是:原命题:若p则q;逆命题:若q则p;否命题:若⌝p则⌝q;逆否命题:若⌝q则⌝p.应注意的是:如果所给命题不是“若p则q”形式,首先应改写成“若p则q”形式;如果一个命题有大前提而要写出其他三种命题时,必须保留大前提,也就是说大前提不变.2.四种命题之间的关系四种命题中有两对互为逆否的命题,分别是原命题和逆否命题,否命题和逆命题.由于互为逆否的命题同真假,则四种命题中,真命题的个数只能是0、2、4.3正确理解充分条件、必要条件的定义是解题的关键,而理解定义的前提是分清命题的条件与结论.对于命题“p⇒q”来说,它可以有四种自然语言描述:(1)p是q的充分条件;(2)q是p的必要条件;(3)q成立的充分条件是p;(4)p成立的必要条件是q.只有深刻理解这四句话,才能做好这一类的题目.充分、必要条件的判断方法(1)利用定义判断:直接判断“若p,则q”“若q,则p”的真假.(2)从集合的角度判断:利用集合中包含思想判定.(3)利用等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断真假.4. 全称命题与存在性命题的真假性判断是本章中的基础内容.判断全称命题的真假时,通常有两种方法:(1)定义法:对给定的集合的每一个元素x,p(x)都为真;(2)代入法:在给定的集合内找出一个x0,使p(x0)为假,则全称命题为假.判断存在性命题的真假时,通常用代入法:在给定的集合中能找到一个元素x,使命题p(x)为真,则为真命题,否则为假命题.通常在对全称命题和存在性命题进行否定时,首先要判断所给命题是全称命题还是存在性命题,然后按照下面的规则进行否定:全称命题否定后,全称量词变为存在量词,肯定判断变为否定判断;存在性命题否定后,存在量词变为全称量词,肯定判断变为否定判断。
集合与常用逻辑用语-2019年高考真题和模拟题分项汇编数学(文)+Word版含解析
专题 集合与常用逻辑用语1.【2019年高考全国Ⅰ卷文数】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =ðA .{}1,6B .{}1,7C .{}6,7D .{}1,6,7【答案】C【解析】由已知得{}1,6,7U A =ð, 所以U BA =ð{6,7}.故选C .【名师点睛】本题主要考查交集、补集的运算,根据交集、补集的定义即可求解.2.【2019年高考全国Ⅱ卷文数】已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(-1,+∞) B .(-∞,2)C .(-1,2)D .∅【答案】C【解析】由题知,(1,2)A B =-. 故选C .【名师点睛】本题主要考查交集运算,是容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.3.【2019年高考全国Ⅲ卷文数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1A B =-.故选A .【名师点睛】本题考查了集合交集的求法,是基础题.4.【2019年高考北京文数】已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B = A .(–1,1) B .(1,2) C .(–1,+∞)D .(1,+∞)【答案】C【解析】∵{|12},{|1}A x x B x =-<<=>, ∴(1,)AB =-+∞.故选C.【名师点睛】本题考查并集的求法,属于基础题.5.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B ð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A【解析】∵{1,3}U A =-ð,∴(){1}U A B =-ð.故选A.【名师点睛】注意理解补集、交集的运算.6.【2019年高考天津文数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4 【答案】D 【解析】因为{1,2}A C =,所以(){1,2,3,4}A C B =.故选D.【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.7.【2019年高考天津文数】设x ∈R ,则“05x <<”是“|1|1x -<”的 A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<, 由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件, 即“05x <<”是“|1|1x -<”的必要而不充分条件. 故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x 的取值范围. 8.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果. 9.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行.故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.10.【2019年高考北京文数】设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】当0b =时,()cos sin cos f x x b x x =+=,()f x 为偶函数; 当()f x 为偶函数时,()()f x f x -=对任意的x 恒成立,由()cos()sin()cos sin f x x b x x b x -=-+-=-,得cos sin cos sin x b x x b x +=-, 则sin 0b x =对任意的x 恒成立, 从而0b =.故“0b =”是“()f x 为偶函数”的充分必要条件. 故选C.【名师点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查.11.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则AB = ▲ .【答案】{1,6}【解析】由题意利用交集的定义求解交集即可. 由题意知,{1,6}AB =.【名师点睛】本题主要考查交集的运算,属于基础题.12.【辽宁省沈阳市2019届高三教学质量监测(三)数学】已知集合{(,)|2,,}A x y x y x y =+≤∈N ,则A 中元素的个数为 A .1 B .5 C .6D .无数个【答案】C【解析】由题得{(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)}A =, 所以A 中元素的个数为6. 故选C.【名师点睛】本题主要考查集合的表示和化简,意在考查学生对这些知识的理解掌握水平和分析推理能力.13.【云南省玉溪市第一中学2019届高三上学期第二次调研考试数学】命题“2000,10x x x ∃∈++<R ”的否定为A .2000,10x x x ∃∈++≥RB .2000,10x x x ∃∈++≤RC .2000,10x x x ∀∈++≥R D .2000,10x x x ∀∉++≥R【答案】C【解析】由题意得原命题的否定为2000,10x x x ∀∈++≥R .故选C.【名师点睛】本题考查含有一个量词的命题的否定,全称命题的否定是特称命题,特称命题的否定是全称命题.14.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)考试】已知集合{|1}A x x =<,{|31}x B x =<,则A .{}1AB x x => B .A B =RC .{|0}AB x x =<D .AB =∅【答案】C【解析】集合{|31}xB x =<,即{}0B x x =<,而{|1}A x x =<, 所以{}1A B x x =<,{}0A B x x =<.故选C.【名师点睛】本题考查集合的交集、并集运算,属于简单题.15.【北京市通州区2019届高三三模数学】已知集合{}0,1,2P =,{|2}Q x x =<,则PQ =A .{}0B .{0,1}C .{}1,2D .{0,2}【答案】B【解析】因为集合{0,1,2}P =,{|2}Q x x =<,所以{0,1}P Q =.故选B.【名师点睛】本题主要考查集合的交集运算,熟记概念即可,属于基础题型.16.【北京市昌平区2019届高三5月综合练习(二模)数学】已知全集U =R ,集合2{|1}A x x =≤,则U A =ðA .(,1)(1,)-∞-+∞B .(,1][1,)-∞-+∞C .(1,1)-D .[1,1]-【答案】A【解析】因为2{|1}A x x =≤={|11}x x -≤≤, 所以U A =ð{|1x x <-或1}x >, 表示为区间形式即(,1)(1,)-∞-+∞.故选A.【名师点睛】本题主要考查集合的表示方法,补集的定义与运算等知识,意在考查学生的转化能力和计算求解能力.17.【福建省龙岩市(漳州市)2019届高三5月月考数学】已知集合}1|{≥=x x A ,{|230}B x x =->,则AB =A .[0,)+∞B .[1,)+∞C .3,2⎛⎫+∞⎪⎝⎭D .30,2⎡⎫⎪⎢⎣⎭【答案】B【解析】因为{|230}B x x =->=}23|{>x x ,}1|{≥=x x A , 所以A B =[1,)+∞.故选B.【名师点睛】本题考查并集其运算,考查了不等式的解法,是基础题.18.【陕西省2019年高三第三次教学质量检测】设集合{|12,}A x x x =-≤≤∈N ,集合{2,3}B =,则BA 等于A .{1,0,1,2,3}-B .{0,1,2,3}C .}3,2,1{D .{2}【答案】B【解析】因为集合{|12,}{0,1,2}A x x x =-≤≤∈=N ,{2,3}B =, 所以0,1,3}2,{AB =.故选B .【名师点睛】本题主要考查了集合的表示方法,以及集合的并集运算,其中正确求解集合A ,熟练应用集合并集的运算是解答的关键,着重考查了运算与求解能力,属于基础题.19.【湖北省安陆一中2019年5月高二摸底调考数学】已知集合{0,1,2}A =,{,2}B a =,若B A ⊆,则a =A .0B .0或1C .2D .0或1或2【答案】B【解析】由B A ⊆,可知{0,2}B =或{1,2}B =, 所以0a =或1. 故选B.【名师点睛】本小题主要考查子集的概念,考查集合中元素的互异性,属于基础题. 20.【天津市第一中学2019届高三下学期第五次月考数学】设x ∈R ,则“31x <”是“1122x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】由31x <可得1x <,由1122x -<可得01x <<, 据此可知“31x <”是“1122x -<”的必要而不充分条件. 故选B .【名师点睛】本题主要考查不等式的解法,充分性与必要性的判定等知识,意在考查学生的转化能力和计算求解能力.21.【福建省龙岩市(漳州市)2019届高三5月月考数学】若1a >,则“y x a a >”是“log log a a x y >”的A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件【答案】A【解析】由a >1,得y x a a >等价为x >y ;log log a a x y >等价为x >y >0,故“y x a a >”是“log log a a x y >”的必要不充分条件. 故选A.【名师点睛】本题主要考查充分条件和必要条件的判断,指数函数和对数函数的单调性,掌握充分条件和必要条件的定义是解决本题的关键.22.【河南省郑州市2019届高三第三次质量检测数学】“02m <<”是“方程2212x y m m+=-表示椭圆”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【答案】C【解析】方程2212x ym m +=-表示椭圆,即020022m m m m m>⎧⎪->⇒<<⎨⎪≠-⎩且1m ≠,所以“02m <<”是“方程2212x y m m+=-表示椭圆”的必要不充分条件.故选C.【名师点睛】本题考查了椭圆的概念,充分条件和必要条件的判断,容易遗漏椭圆中2m m ≠-,属于基础题.23.【四川省宜宾市2019届高三第三次诊断性考试数学】设 是空间两条直线,则“ 不平行”是“ 是异面直线”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【解析】由 是异面直线⇒ 不平行.反之,若直线 不平行,也可能相交,不一定是异面直线. 所以“ 不平行”是“ 是异面直线”的必要不充分条件. 故选B .【名师点睛】本题考查了异面直线的性质、充分必要条件的判定方法,属于基础题.24.【北京市人大附中2019年高考信息卷(三)】设a ,b 为非零向量,则“a ∥b ”是“a 与b 方向相同”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】因为a ,b 为非零向量,所以a ∥b 时,a 与b 方向相同或相反, 因此“a ∥b ”是“a 与b 方向相同”的必要而不充分条件. 故选B .【名师点睛】本题考查充要条件和必要条件的判断,属基础题.25.【江西省名校(临川一中、南昌二中)2019届高三5月联合考试数学】已知集合{}2230,A x x x =+-≤{}2B =<,则A B =A .{}31x x -≤≤B .{}01x x ≤≤ C .{}31x x -≤< D .{}10x x -≤≤【答案】B【解析】因为{}{}31,04A x x B x x =-≤≤=≤<, 所以A B ={}01x x ≤≤.故选B.【名师点睛】本题主要考查集合的化简和交集运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.26.【广东省深圳市高级中学2019届高三适应性考试(6月)数学】已知集合{|A x y ==,2{|log 1}B x x =≤,则A B =A .1{|}3x x ≤≤-B .{|01}x x <≤C .{|32}-≤≤x xD .{|2}x x ≤【答案】B【解析】由二次根式有意义的条件,可得(1)(3)0x x -+≥, 解得31x -≤≤,所以{|A x y =={|31}x x =-≤≤. 由对数函数的性质可得22log log 2x ≤, 解得02x <≤,所以2{|log 1}B x x =≤{|02}x x =<≤, 所以AB ={|01}x x <≤.故选B .【名师点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质是求满足属于集合A 且属于集合B 的元素的集合.27.【山东省烟台市2019届高三5月适应性练习(二)数学】设集合{|A x y ==,{|2,x B y y ==3}x ≤,则集合()A B =R I ðA .}3|{<x xB .{|3}x x ≤C .{|03}x x <<D .{|03}x x <≤ 【答案】C【解析】因为{}{|3A x y x x ===≥,所以{}3A x x =<R ð,又{}{}|2,3|08xB y y x y y ==≤=<≤,所以(){}03A B x x =<<R ð.故选C .【名师点睛】本题考查了集合的交集运算、补集运算,正确求出函数3-=x y 的定义域,函数2,3x y x =≤的值域是解题的关键.28.【辽宁省沈阳市2019届高三教学质量监测(三)】“k =:(2)l y k x =+与圆221x y +=相切”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】因为直线:(2)l y k x =+与圆221x y +=相切,1,=则3k =±.所以“3k =”是“直线:(2)l y k x =+与圆221x y +=相切”的充分不必要条件. 故选A. 【名师点睛】本题主要考查直线和圆的位置关系和充分不必要条件的判定,意在考查学生对这些知识的理解掌握水平和分析推理能力.29.【北京市朝阳区2019届高三第二次(5月)综合练习(二模)数学】已知等差数列{}n a 的首项为1a ,公差0d ≠,则“139,,a a a 成等比数列” 是“1a d =”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】若139,,a a a 成等比数列,则2319a a a =,即2111(2)(8)a d a a d +=+,变形可得1a d =, 则“139,,a a a 成等比数列”是“1a d =”的充分条件;若1a d =,则3123a a d d =+=,9189a a d d =+=,则有2319a a a =,则“139,,a a a 成等比数列”是“1a d =”的必要条件.综合可得:“139,,a a a 成等比数列”是“1a d =”的充要条件.故选C .【名师点睛】本题考查等差数列的通项公式、等比数列的性质,充分必要条件的定义与判断,属于基础题.30.【江西省新八校2019届高三第二次联考数学】若“3x >”是“x m >”的必要不充分条件,则m 的取值范围是________.【答案】(3,)+∞【解析】因为“3x >”是“x m >”的必要不充分条件,所以(),m +∞是()3,+∞的真子集,所以3m >,故答案为(3,)+∞.【名师点睛】本题考查根据必要不充分条件求参数的值,由题意得到(),m +∞是()3,+∞的真子集是解答的关键,属于基础题.31.【甘肃省酒泉市敦煌中学2019届高三一诊数学】设集合则 =__________.【答案】【解析】求解绝对值不等式 可得 ,求解函数 的值域可得 ,由交集的定义可知: .故答案为 .【名师点睛】本题主要考查绝对值不等式的解法,函数的值域,交集的定义及其应用等知识,意在考查学生的转化能力和计算求解能力.32.【河北省衡水市2019届高三下学期第三次质量检测数学】设 为两个不同平面,直线 ,则“ ”是“ ”的__________条件.【答案】充分不必要【解析】根据题意,α,β表示两个不同的平面,直线m α⊂,当α∥β时,根据面面平行的性质定理可知,α中任何一条直线都平行于另一个平面,得 ,所以α∥β ⇒ ;当 且m α⊂时,α∥β或α与β相交,所以“ ”是“ ”的充分不必要条件.故答案为充分不必要.【名师点睛】本题主要考查了面面平行的性质定理,面面的位置关系,充分条件和必要条件定义的理解,属于基础题.33.【安徽省江淮十校2019届高三第三次联考数学】若命题“,”的否定是假命题,则实数的取值范围是__________.【答案】∞【解析】因为命题的否定是假命题,所以原命题为真命题,即不等式对恒成立,又在上为增函数,所以,即.故实数的取值范围是:∞.【名师点睛】本题考查命题否定的真假以及不等式恒成立问题,考查基本分析能力和转化求解能力,属中档题.。
专题02 集合与常用逻辑用语-2019年高考数学(文)考试大纲解读 Word版含解析
(一)集合1.集合的含义与表示(1)了解集合的含义,元素与集合的属于关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用韦恩(Ve n n)图表达集合的关系及运算.(3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.样题6已知集合,B={x|(x−b)2<a},若“a=1”是“A B≠∅”的充分条件,则实数b的取值范围是________.【答案】(−2,2)【解析】由={x|(x−1)·(x+1)<0}={x|−1<x<1},当a=1时,B={x|(x−b)2<1}={x|b−1<x<b+1},此时,A B≠∅,所以1111bb+>-⎧⎨-<⎩,解得−2<b<2.考向四命题真假的判断样题7 (2018北京文科)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是__________.【答案】(答案不唯一)样题8 已知命题;命题q :若x y >,则22x y >.则下列命题为真命题的是A . p q ∧B .()p q ∧⌝C .D .()p q ⌝∨ 【答案】B【解析】显然命题是真命题;命题q :若x y >,则22x y >是假命题,所以q ⌝是真命题,故()p q ∧⌝为真命题.考向五 特称命题与全称命题样题9 命题“,使得2n x ≥”的否定形式是 A .,使得2n x < B .,使得2n x < C .,使得2n x < D .,使得2n x <【答案】D【解析】∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故选D . 样题10 若“”是真命题,则实数m 的最小值为__________________.【答案】1。
2019年精选高考数学(文科)一轮复习通用版:第一单元 集合与常用逻辑用语
第一单元 集合与常用逻辑用语第1课集__合[过双基]1.集合的含义及表示(1)集合的含义:研究对象叫做元素,一些元素组成的总体叫做集合.集合中元素的性质:确定性、无序性、互异性.(2)元素与集合的关系:①属于,记为∈;②不属于,记为∉. (3)集合的表示方法:列举法、描述法和图示法.(4)常用数集的记法:自然数集N ,正整数集N *或N +,整数集Z ,有理数集Q ,实数集R . 2.集合间的基本关系A B 或B A3.集合的基本运算(1)集合A 是其本身的子集,即A ⊆A ;(2)子集关系的传递性,即A ⊆B ,B ⊆C ⇒A ⊆C ;(3)A ∪A =A ∩A =A ,A ∪∅=A ,A ∩∅=∅,∁U U =∅,∁U ∅=U . [小题速通]1.(2018·江西临川一中期中)已知集合A ={2,0,1,8},B ={k |k ∈R ,k 2-2∈A ,k -2∉A },则集合B 中所有的元素之和为( )A .2B .-2C .0D. 2解析:选B 若k 2-2=2,则k =2或k =-2,当k =2时,k -2=0,不满足条件,当k =-2时,k -2=-4,满足条件;若k 2-2=0,则k =±2,显然满足条件;若k 2-2=1,则k =±3,显然满足条件;若k 2-2=8,则k =±10,显然满足条件.所以集合B 中的元素为-2,±2,±3,±10,所以集合B 中的元素之和为-2,故选B.2.(2018·河北武邑中学期中)集合A ={x |x 2-7x <0,x ∈N *},则B =⎩⎨⎧⎭⎬⎫y ⎪⎪6y∈N *,y ∈A 中元素的个数为( )A .1B .2C .3D .4解析:选D A ={x |x 2-7x <0,x ∈N *}={x |0<x <7,x ∈N *}={1,2,3,4,5,6},B =⎩⎨⎧⎭⎬⎫y ⎪⎪6y ∈N *,y ∈A ={1,2,3,6},则B 中元素的个数为4个. 3.(2017·黄冈三模)设集合U ={1,2,3,4},集合A ={x ∈N |x 2-5x +4<0},则∁U A 等于( ) A .{1,2} B .{1,4} C .{2,4}D .{1,3,4}解析:选B 因为集合U ={1,2,3,4},集合A ={x ∈N |x 2-5x +4<0}={x ∈N |1<x <4}={2,3},所以∁U A ={1,4}.4.(2017·天津高考)设集合A ={1,2,6},B ={2,4},C ={x ∈R |-1≤x ≤5},则(A ∪B )∩C =( )A .{2}B .{1,2,4}C .{1,2,4,6}D .{x ∈R |-1≤x ≤5}解析:选B A ∪B ={1,2,4,6},又C ={x ∈R |-1≤x ≤5},则(A ∪B )∩C ={1,2,4}. 5.(2017·衡水押题卷)已知集合A ={x |x 2-2x ≤0},B ={y |y =log 2(x +2),x ∈A },则A ∩B 为( )A .(0,1)B .[0,1]C .(1,2)D .[1,2]解析:选D 因为A ={x |0≤x ≤2},所以B ={y |y =log 2(x +2),x ∈A }={y |1≤y ≤2},所以A ∩B ={x |1≤x ≤2}.[清易错]1.在写集合的子集时,易忽视空集.2.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.3.在应用条件A ∪B =B ⇔A ∩B =A ⇔A ⊆B 时,易忽略A =∅的情况.1.(2018·西安质检)已知集合M ={1,2,3,4},则集合P ={x |x ∈M ,且2x ∉M }的子集的个数为( )A .8B .4C .3D .2解析:选B 由题意,得P ={3,4},所以集合P 的子集有22=4个,故选B.2.已知全集U ={2,3,a 2+2a -3},A ={|a +1|,2},∁U A ={a +3},则实数a 的值为________. 解析:∵∁U A ={a +3},∴a +3≠2且a +3≠|a +1|且a +3∈U , 由题意,得a +3=3或a +3=a 2+2a -3, 解得a =0或a =2或a =-3,又∵|a +1|≠2且A U ,∴a ≠0且a ≠-3,∴a =2. 答案:23.设集合A ={x |x 2-5x +6=0},集合B ={x |mx -1=0},若A ∩B =B ,则实数m 组成的集合是________.解析:由题意知A ={2,3},又A ∩B =B ,所以B ⊆A . 当m =0时,B =∅,显然成立;当m ≠0时,B =⎩⎨⎧⎭⎬⎫1m ⊆{2,3},所以1m =2或1m =3,即m =12或13.故m 组成的集合是⎩⎨⎧⎭⎬⎫0,12,13.答案:⎩⎨⎧⎭⎬⎫0,12,13[全国卷5年命题分析]考点 考查频度 考查角度集合的基本概念 5年2考 集合的表示、集合元素的性质集合间的基本关系 未考查集合的基本运算 5年11考交、并、补运算,多与不等式相结合集合的基本概念[典例] (1)设集合,b ∈B },则M 中的元素个数为( )A .3B .4C .5D .6(2)(2018·厦门模拟)已知P ={x |2<x <k ,x ∈N },若集合P 中恰有3个元素,则k 的取值范围为________.[解析] (1)∵a ∈A ,b ∈B ,∴x =a +b 为1+4=5,1+5=2+4=6,2+5=3+4=7,3+5=8,共4个元素.(2)因为P 中恰有3个元素,所以P ={3,4,5},故k 的取值范围为5<k ≤6. [答案] (1)B (2)(5,6] [方法技巧]与集合中的元素有关问题的求解策略(1)确定集合的元素是什么,即集合是数集还是点集. (2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性.[即时演练]1.(2018·莱州一中模拟)已知集合A ={x ∈N |x 2+2x -3≤0},B ={C |C ⊆A },则集合B 中元素的个数为( )A .2B .3C .4D .5解析:选C A ={x ∈N |(x +3)(x -1)≤0}={x ∈N |-3≤x ≤1}={0,1},共有22=4个子集,因此集合B 中元素的个数为4,选C.2.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.解析:由题意得m +2=3或2m 2+m =3,则m =1或m =-32,当m =1时,m +2=3且2m 2+m =3,根据集合中元素的互异性可知不满足题意;当m =-32时,m +2=12,而2m 2+m =3,故m =-32.答案:-32集合间的基本关系[典例] (1)a 的取值范围为( )A .(-∞,0)∪(2,+∞)B .(-∞,0]∪[3,+∞)C .[0,2]D .[0,3](2)已知集合A ={x |1≤x <5},B ={x |-a <x ≤a +3},若B ⊆(A ∩B ),则实数a 的取值范围为________.[解析] (1)∵C ⊆A ,∴⎩⎪⎨⎪⎧a ≥0,a +1≤3,解得0≤a ≤2,故实数a 的取值范围为[0,2].(2)因为B ⊆(A ∩B ),所以B ⊆A . ①当B =∅时,满足B ⊆A , 此时-a ≥a +3,即a ≤-32;②当B ≠∅时,要使B ⊆A ,则⎩⎪⎨⎪⎧-a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1.由①②可知,实数a 的取值范围为(-∞,-1]. [答案] (1)C (2)(-∞,-1] [方法技巧]已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Ve nn 图帮助分析.[即时演练]1.设U =R ,集合A ={x |x 2+3x +2=0},B ={x |x 2+(m +1)x +m =0},若B ⊆A ,则m =________.解析:由已知得A ={x |x =-2或x =-1}, B ={x |x =-1或x =-m }. 因为B ⊆A ,当-m =-1,即m =1时,满足题意;当-m=-2,即m=2时,满足题意,故m=1或2.答案:1或22.已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,实数a的取值范围是(c,+∞),则c=________.解析:由log2x≤2,得0<x≤4,即A={x|0<x≤4},而B=(-∞,a),由于A⊆B,如图所示,则a>4,即c=4.答案:41.(2017·山东高考)设函数y=4-x2的定义域为A,函数y=l n(1-x)的定义域为B,则A∩B=()A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:选D由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.2.(2017·浙江高考)已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=()A.(-1,2) B.(0,1)C.(-1,0) D.(1,2)解析:选A根据集合的并集的定义,得P∪Q=(-1,2).角度二:交、并、补的混合运算3.设全集U=R,集合A={x|x>0},B={x|x2-x-2<0},则A∩(∁U B)=()A.(0,2] B.(-1,2]C.[-1,2]D.[2,+∞)解析:选D 因为A ={x |x >0},B ={x |-1<x <2}, 所以∁U B ={x |x ≤-1或x ≥2}, 所以A ∩(∁U B )={x |x ≥2}.4.若全集U =R ,集合A ={x |1<2x <4},B ={x |x -1≥0},则A ∪(∁U B )=________. 解析:A ={x |0<x <2},B ={x |x ≥1},则∁U B ={x |x <1},所以A ∪(∁U B )={x |x <2}. 答案:{x |x <2}角度三:集合运算中的参数范围5.(2017·上海高考)设集合A ={x ||x -2|≤3},B ={x |x <t },若A ∩B =∅,则实数t 的取值范围是________.解析:因为集合A ={x |-1≤x ≤5},B ={x |x <t },且A ∩B =∅,所以t ≤-1,即实数t 的取值范围是(-∞,-1].答案:(-∞,-1] 角度四:集合的新定义问题6.设M ,P 是两个非空集合,定义M 与P 的差集为:M -P ={x |x ∈M ,且x ∉P },则M -(M -P )=( )A .PB .M ∩PC .M ∪PD .M解析:选B 设全集U ,由题意可得M -P =M ∩(∁U P ),所以M -(M -P )=M ∩P .7.对于集合M ,定义函数f M (x )=⎩⎪⎨⎪⎧-1,x ∈M ,1,x ∉M ,对于两个集合A ,B ,定义集合A ΔB={x |f A (x )·f B (x )=-1}.已知A ={2,4,6,8,10},B ={1,2,4,8,12},则用列举法写出集合A ΔB 的结果为________.解析:由题意知当x ∈A 且x ∉B 或x ∈B 且x ∉A 时,有f A (x )·f B (x )=-1成立,所以A ΔB ={1,6,10,12}.答案:{1,6,10,12} [方法技巧]解集合运算问题4个注意点(1)看元素构成集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键. (2)对集合化简有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决.(3)应用数形常用的数形结合形式有数轴和Ve nn 图.(4)创新性问题以集合为依托,对集合的定义、运算、性质进行创新考查,但最终化为原来的集合知识和相应数学知识来解决.1.(2017·全国卷Ⅰ)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0} B.A∪B=RC.A∪B={x|x>1} D.A∩B=∅解析:选A∵集合A={x|x<1},B={x|x<0},∴A∩B={x|x<0},A∪B={x|x<1},故选A.2.(2016·全国卷Ⅱ)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=() A.{1} B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}解析:选C因为B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1},A={1,2,3},所以A∪B={0,1,2,3}.3.(2015·全国卷Ⅱ)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=()A.(-1,3) B.(-1,0)C.(0,2) D.(2,3)解析:选A将集合A与集合B在数轴上画出(如图).由图可知A∪B=(-1,3),故选A.4.(2014·全国卷Ⅱ)已知集合A={-2,0,2},B={ x|x2-x-2=0},则A∩B=() A.∅B.{2}C.{0} D.{-2}解析:选B因为B={x|x2-x-2=0}={-1,2},A={-2,0,2},所以A∩B={2},故选B.5.(2013·全国卷Ⅰ)已知集合A={x|x2-2x>0},B={x|-5<x<5},则()A.A∩B=∅B.A∪B=RC.B⊆A D.A⊆B解析:选B因为集合A={x|x>2或x<0},所以A∪B={x|x>2或x<0}∪{x|-5<x <5}=R,故选B.一、选择题1.(2017·北京高考)若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =( ) A .{x |-2<x <-1} B .{x |-2<x <3} C .{x |-1<x <1}D .{x |1<x <3}解析:选A 由集合交集的定义可得A ∩B ={x |-2<x <-1}.2.设集合A ={x |x 2-9<0},B ={x |2x ∈N },则A ∩B 中元素的个数为( ) A .3 B .4 C .5D .6解析:选D 因为A ={x |-3<x <3},B ={x |2x ∈N },所以由2x ∈N 可得A ∩B =⎩⎨⎧⎭⎬⎫0,12,1,32,2,52,其元素的个数是6.3.(2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:选B 因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.4.设集合A ={x |x 2-2x -3<0},B ={x |x >0},则A ∪B =( ) A .(-1,+∞) B .(-∞,3) C .(0,3)D .(-1,3)解析:选A 因为集合A ={x |x 2-2x -3<0}={x |-1<x <3},B ={x |x >0},所以A ∪B ={x |x >-1}.5.(2017·全国卷Ⅱ)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =( ) A .{1,-3} B .{1,0} C .{1,3}D .{1,5}解析:选C 因为A ∩B ={1},所以1∈B ,所以1是方程x 2-4x +m =0的根,所以1-4+m =0,m =3,方程为x 2-4x +3=0,解得x =1或x =3,所以B ={1,3}.6.设集合A ={-1,0,1},集合B ={0,1,2,3},定义A *B ={(x ,y )|x ∈A ∩B ,y ∈A ∪B },则A *B 中元素的个数是( )A .7B .10C .25D .52解析:选B 因为A ={-1,0,1},B ={0,1,2,3}, 所以A ∩B ={0,1},A ∪B ={-1,0,1,2,3}. 由x ∈A ∩B ,可知x 可取0,1;由y ∈A ∪B ,可知y 可取-1,0,1,2,3. 所以元素(x ,y )的所有结果如下表所示:所以A *B 中的元素共有10个.7.(2017·吉林一模)设集合A ={0,1},集合B ={x |x >a },若A ∩B 中只有一个元素,则实数a 的取值范围是( )A .(-∞,1)B .[0,1)C .[1,+∞)D .(-∞,1]解析:选B 由题意知,集合A ={0,1},集合B ={x |x >a },画出数轴(如图所示).若A ∩B 中只有一个元素,则0≤a <1,故选B.8.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },如果P ={x |log 2x <1},Q ={x ||x -2|<1},那么P -Q =( )A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}解析:选B 由log 2x <1,得0<x <2, 所以P ={x |0<x <2}. 由|x -2|<1,得1<x <3, 所以Q ={x |1<x <3}.由题意,得P -Q ={x |0<x ≤1}. 二、填空题9.(2018·辽宁师大附中调研)若集合A ={x |(a -1)x 2+3x -2=0}有且仅有两个子集,则实数a 的值为________.解析:由题意知,集合A 有且仅有两个子集,则集合A 中只有一个元素.当a -1=0,即a =1时,A =⎩⎨⎧⎭⎬⎫23,满足题意;当a -1≠0,即a ≠1时,要使集合A 中只有一个元素,需Δ=9+8(a -1)=0,解得a =-18.综上可知,实数a 的值为1或-18.答案:1或-1810.已知集合A ={x |1≤x ≤3},B ={x |x -1≥1}.若A ∩B 是集合{x |x ≥a }的子集,则实数a 的取值范围为________.解析:∵由x -1≥1,得x ≥2,∴B ={x |x ≥2}.∵A ={x |1≤x ≤3},∴A ∩B ={x |2≤x ≤3}.若集合A ∩B ={x |2≤x ≤3}是集合{x |x ≥a }的子集,则a ≤2.答案:(-∞,2]11.(2018·贵阳监测)已知全集U ={a 1,a 2,a 3,a 4},集合A 是全集U 的恰有两个元素的子集,且满足下列三个条件:①若a 1∈A ,则a 2∈A ;②若a 3∉A ,则a 2∉A ;③若a 3∈A ,则a 4∉A .则集合A =________.(用列举法表示)解析:假设a 1∈A ,则a 2∈A ,由若a 3∉A ,则a 2∉A 可知,a 3∈A ,故假设不成立;假设a 4∈A ,则a 3∉A ,a 2∉A ,a 1∉A ,故假设不成立.故集合A ={a 2,a 3}.答案:{a 2,a 3}12.(2016·北京高考)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种.则该网店①第一天售出但第二天未售出的商品有________种;②这三天售出的商品最少有________种.解析:设三天都售出的商品有x 种,第一天售出,第二天未售出,且第三天售出的商品有y 种,则三天售出商品的种类关系如图所示.由图可知:①第一天售出但第二天未售出的商品有19-(3-x )-x =16(种).②这三天售出的商品有(16-y )+y +x +(3-x )+(6+x )+(4-x )+(14-y )=43-y (种).由于⎩⎪⎨⎪⎧ 16-y ≥0,y ≥0,14-y ≥0,所以0≤y ≤14.所以(43-y )mi n =43-14=29.答案:①16 ②29三、解答题13.已知A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }.(1)当m =1时,求A ∪B ;(2)若B ⊆∁R A ,求实数m 的取值范围.解:(1)因为m =1时,B ={x |1≤x <4},所以A ∪B ={x |-1<x <4}.(2)∁R A ={x |x ≤-1或x >3}.当B =∅时,则m ≥1+3m ,得m ≤-12,满足B ⊆∁R A ,当B ≠∅时,要使B ⊆∁R A ,须满足⎩⎪⎨⎪⎧ m <1+3m ,1+3m ≤-1或⎩⎪⎨⎪⎧m <1+3m ,m >3,解得m >3. 综上所述,m 的取值范围是⎝⎛⎦⎤-∞,-12∪(3,+∞). 14.记函数f (x )=2-x +3x +1的定义域为A ,g (x )=lg [(x -a -1)(2a -x )](a <1)的定义域为B .(1)求A ;(2)若B ⊆A ,求实数a 的取值范围.解:(1)由2-x +3x +1≥0,得x -1x +1≥0, 解得x <-1或x ≥1,即A =(-∞,-1)∪[1,+∞).(2)由(x -a -1)(2a -x )>0,得(x -a -1)(x -2a )<0,∵a <1,∴a +1>2a ,∴B =(2a ,a +1),∵B ⊆A ,∴2a ≥1或a +1≤-1,即a ≥12或a ≤-2, ∵a <1,∴12≤a <1或a ≤-2, ∴实数a 的取值范围是(-∞,-2]∪⎣⎡⎭⎫12,1.1.已知定义域均为{x |0≤x ≤2}的函数f (x )=x e x -1与g (x )=ax +3-3a (a >0),设函数f (x )与g (x )的值域分别为A 与B ,若A ⊆B ,则a 的取值范围是( )A .[2,+∞)B .[1,2]C .[0,2]D .[1,+∞) 解析:选B 因为f ′(x )=1-x e x -1,所以f (x )=x ex -1在[0,1)上是增函数,在(1,2]上是减函数, 又因为f (1)=1,f (0)=0,f (2)=2e,所以A ={x |0≤x ≤1}; 由题意易得B =[3-3a,3-a ],因为[0,1]⊆[3-3a,3-a ],所以3-3a ≤0且3-a ≥1,解得1≤a ≤2.2.已知集合A ={x |x 2-2 018x +2 017<0},B ={x |log 2x <m },若A ⊆B ,则整数m 的最小值是________.解析:由x 2-2 018x +2 017<0,解得1<x <2 017,故A ={x |1<x <2 017}.由log 2x <m ,解得0<x <2m ,故B ={x |0<x <2m }.由A ⊆B ,可得2m ≥2 017,因为210=1 024,211=2 048,所以整数m 的最小值为11.答案:11第2课命题及其关系__充分条件与必要条件[过双基]1.命题2.(1)四种命题间的相互关系:(2)四种命题中真假性的等价关系:原命题等价于逆否命题,原命题的否命题等价于逆命题.在四种形式的命题中真命题的个数只能是0,2,4.3.充要条件[1.命题“若a >b ,则ac >bc ”的逆否命题是( )A .若a >b ,则ac ≤bcB .若ac ≤bc ,则a ≤bC.若ac>bc,则a>b D.若a≤b,则ac≤bc解析:选B由逆否命题的定义可知,答案为B.2.已知命题p:对于x∈R,恒有2x+2-x≥2成立;命题q:奇函数f(x)的图象必过原点,则下列结论正确的是()A.p∧q为真B.(綈p)∨q为真C.p∧(綈q)为真D.(綈p)∧q为真解析:选C由指数函数与基本不等式可知,命题p是真命题;当函数f(x)=1x时,是奇函数但不过原点,则可知命题q是假命题,所以p∧(綈q)是真命题,故选C.3.已知p:x>1或x<-3,q:x>a,若q是p的充分不必要条件,则a的取值范围是() A.[1,+∞) B.(-∞,1]C.[-3,+∞) D.(-∞,-3)解析:选A法一:设P={x|x>1或x<-3},Q={x|x>a},因为q是p的充分不必要条件,所以Q P,因此a≥1.法二:令a=-3,则q:x>-3,则由命题q推不出命题p,此时q不是p的充分条件,排除B、C;同理,取a=-4,排除D,选A.4.已知命题p:x≠π6+2kπ,k∈Z;命题q:si n x≠12,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B令x=5π6,则si n x=12,即p⇒/ q;当si n x≠12时,x≠π6+2kπ或5π6+2kπ,k∈Z,即q⇒p,因此p是q的必要不充分条件.[清易错]1.易混淆否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.易忽视A是B的充分不必要条件(A⇒B且B⇒/A)与A的充分不必要条件是B(B⇒A 且A⇒/B)两者的不同.1.“若x,y∈R且x2+y2=0,则x,y全为0”的否命题是()A.若x,y∈R且x2+y2≠0,则x,y全不为0B.若x,y∈R且x2+y2≠0,则x,y不全为0C.若x,y∈R且x,y全为0,则x2+y2=0D.若x,y∈R且xy≠0,则x2+y2=0解析:选B原命题的条件:x,y∈R且x2+y2=0,结论:x ,y 全为0.否命题是否定条件和结论.即否命题:“若x ,y ∈R 且x 2+y 2≠0,则x ,y 不全为0”.2.设a ,b ∈R ,函数f (x )=ax +b (0≤x ≤1),则f (x )>0恒成立是a +2b >0成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 充分性:因为f (x )>0恒成立,所以⎩⎪⎨⎪⎧f (0)=b >0,f (1)=a +b >0,则a +2b >0,即充分性成立; 必要性:令a =-3,b =2,则a +2b >0成立,但是,f (1)=a +b >0不成立,即f (x )>0不恒成立,则必要性不成立.所以答案为A.[全国卷5年命题分析]考点考查频度 考查角度 四种命题的相互关系及真假判断5年1考 命题的真假判断 充分条件、必要条件5年1考 充要条件的判断命题的相互关系及真假性 [典例] 0”,命题q :“若a 不是正数,则它的平方等于0”,则q 是p 的( )A .逆命题B .否命题C .逆否命题D .否定(2)原命题为“若a n +a n +12<a n ,n ∈N *,则{a n }为递减数列”,关于其逆命题、否命题、逆否命题真假性的依次判断正确的是( )A .真,真,真B .假,假,真C .真,真,假D .假,假,假[解析] (1)命题p :“正数a 的平方不等于0”可写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题.(2)原命题是:“若a n +1<a n ,n ∈N *,则{a n }为递减数列”为真命题,则其逆否命题为真,逆命题是:“若{a n }为递减数列,n ∈N *,则a n +1<a n ”为真命题,所以否命题也为真命题.[答案] (1)B (2)A[方法技巧]命题的关系及真假判断(1)在判断命题之间的关系时,首先要分清命题的条件与结论,再分析每个命题的条件与结论之间的关系,要注意四种命题关系的相对性.(2)判断命题真假的方法:一是联系已有的数学公式、定理、结论进行正面直接判断;二是利用原命题和其逆否命题的等价关系进行判断.[即时演练]1.已知命题α:如果x <3,那么x <5;命题β:如果x ≥3,那么x ≥5;命题γ:如果x ≥5,那么x ≥3.关于这三个命题之间的关系,下列三种说法正确的是( )①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题;③命题β是命题α的否命题,且命题γ是命题α的逆否命题.A .①③B .②C .②③D .①②③解析:选A 命题的四种形式,逆命题是把原命题中的条件和结论互换,否命题是把原命题的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定,然后交换条件与结论所得,因此①正确,②错误,③正确.2.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A .3B .2C .1D .0解析:选C 易知原命题是真命题,则其逆否命题也是真命题,而逆命题、否命题是假命题,故它的逆命题、否命题、逆否命题三个命题中,真命题只有一个. 充分、必要条件的判定[典例] n n S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(2)设α:1≤x ≤3,β:m +1≤x ≤2m +4,m ∈R ,若α是β的充分条件,则m 的取值范围是________.[解析] (1)因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5.(2)若α是β的充分条件,则α对应的集合是β对应集合的子集,则⎩⎪⎨⎪⎧m +1≤1,2m +4≥3,解得-12≤m ≤0. [答案] (1)C (2)⎣⎡⎦⎤-12,0[方法技巧]充要条件的3种判断方法 即设A ={x |p (x )},B ={x |q (x )}:若A ⊆B ,则p 是q 的充分条件或q 是p 的必要条件;若A B ,则p 是q 的充分不必要条件,若A =B ,则p 是q 的充要条件[1.(2016·四川高考)设p :实数x ,y 满足x >1且y >1,q :实数x ,y 满足x +y >2,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A ∵⎩⎪⎨⎪⎧x >1,y >1,∴x +y >2,即p ⇒q . 而当x =0,y =3时,有x +y =3>2,但不满足x >1且y >1,即q ⇒/ p .故p 是q 的充分不必要条件.2.已知m ,n ∈R ,则“mn <0”是“抛物线mx 2+ny =0的焦点在y 轴正半轴上”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 若“mn <0”,则x 2=-n m y 中的-n m>0,所以“抛物线mx 2+ny =0的焦点在y 轴正半轴上”成立,是充分条件;反之,若“抛物线mx 2+ny =0的焦点在y 轴正半轴上”,则x 2=-n m y 中的-n m >0,即mn <0,则“mn <0”成立,故是充要条件.[典例] (2018·安徽黄山调研)已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.[解析] 由2x 2-3x +1≤0,得12≤x ≤1, ∴条件p 对应的集合P =⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤1. 由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,∴条件q 对应的集合为Q ={x |a ≤x ≤a +1}.法一:用“直接法”解题綈p 对应的集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪x >1或x <12, 綈q 对应的集合B ={x |x >a +1或x <a }. ∵綈p 是綈q 的必要不充分条件,即B A ,∴⎩⎪⎨⎪⎧ a <12,a +1≥1或⎩⎪⎨⎪⎧ a ≤12,a +1>1,∴0≤a ≤12. 即实数a 的取值范围是⎣⎡⎦⎤0,12. 法二:用“等价转化法”解题∵綈p 是綈q 的必要不充分条件,∴根据原命题与逆否命题等价,得p 是q 的充分不必要条件.∴p ⇒q ,即P Q ⇔⎩⎪⎨⎪⎧ a <12,a +1≥1或⎩⎪⎨⎪⎧a ≤12,a +1>1,解得0≤a ≤12.即实数a 的取值范围是⎣⎡⎦⎤0,12. [答案] ⎣⎡⎦⎤0,12 [方法技巧]根据充分、必要条件求参数范围的2个注意点(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.[即时演练]1.(2018·安阳调研)已知p :x ∈A ={x |x 2-2x -3≤0,x ∈R },q :x ∈B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }.若p 是綈q 的充分条件,则实数m 的取值范围是________.解析:∵A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2},∴∁R B ={x |x <m -2或x >m +2}.∵p 是綈q 的充分条件,∴A ⊆∁R B ,∴m -2>3或m +2<-1,∴m >5或m <-3.答案:(-∞,-3)∪(5,+∞)2.若“x 2>1”是“x <a ”的必要不充分条件,则a 的最大值为________.解析:由x 2>1,得x <-1,或x >1,又“x 2>1”是“x <a ”的必要不充分条件,知由“x <a ”可以推出“x 2>1”,反之不成立,所以a ≤-1,即a 的最大值为-1.答案:-11.(2014·全国卷Ⅱ)函数f (x )在x =x 0处导数存在.若p :f ′(x 0)=0;q :x =x 0是f (x )的极值点,则( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件解析:选C 当f ′(x 0)=0时,x =x 0不一定是f (x )的极值点,比如,y =x 3在x =0时,f ′(0)=0,但在x =0的左右两侧f ′(x )的符号相同,因而x =0不是y =x 3的极值点.由极值的定义知,x =x 0是f (x )的极值点必有f ′(x 0)=0.综上知,p 是q 的必要条件,但不是充分条件.2.(2017·天津高考)设θ∈R ,则“⎪⎪⎪⎪θ-π12<π12”是“si n θ<12”的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选A 法一:由⎪⎪⎪⎪θ-π12<π12,得0<θ<π6, 故si n θ<12.由si n θ<12,得-7π6+2k π<θ<π6+2k π,k ∈Z ,推不出“⎪⎪⎪⎪θ-π12<π12”. 故“⎪⎪⎪⎪θ-π12<π12”是“si n θ<12”的充分而不必要条件. 法二:⎪⎪⎪⎪θ-π12<π12⇒0<θ<π6⇒si n θ<12,而当si n θ<12时,取θ=-π6,⎪⎪⎪⎪-π6-π12=π4>π12.故“⎪⎪⎪⎪θ-π12<π12”是“si n θ<12”的充分而不必要条件. 3.(2016·北京高考)设a ,b 是向量,则“| a |=|b |”是“|a +b |=|a -b |”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选D 若|a |=|b |成立,则以a ,b 为邻边的平行四边形为菱形.a +b ,a -b 表示的是该菱形的对角线,而菱形的两条对角线长度不一定相等,所以|a +b |=|a -b |不一定成立,从而不是充分条件;反之,若|a +b |=|a -b |成立,则以a ,b 为邻边的平行四边形为矩形,而矩形的邻边长度不一定相等,所以|a |=|b |不一定成立,从而不是必要条件.故“|a |=|b |”是“|a +b |=|a -b |”的既不充分也不必要条件.4.(2015·陕西高考)“sin α=cos α”是“cos 2α=0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A cos 2α=0等价于cos 2α-sin 2α=0,即cos α=±sin α.由cos α=sin α可得到cos 2α=0,反之不成立,故选A.5.(2015·重庆高考)“x >1”是“log 12(x +2)<0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件解析:选B ∵x >1⇒log 12 (x +2)<0,log 12(x +2)<0⇒x +2>1⇒x >-1,∴“x >1”是“log 12(x +2)<0”的充分而不必要条件.一、选择题1.命题“若α=π4,则tan α=1”的逆否命题是( ) A .若α≠π4,则tan α≠1 B .若α=π4,则tan α≠1 C .若tan α≠1,则α=π4 D .若tan α≠1,则α≠π4解析:选D 逆否命题是将原命题中的条件与结论都否定后再交换位置即可.所以逆否命题为:若tan α≠1,则α≠π4. 2.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是()A.都真B.都假C.否命题真D.逆否命题真解析:选D对于原命题:“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x|ax2+bx+c<0}≠∅,则抛物线y=ax2+bx+c的开口向下”是一个假命题,因为当不等式ax2+bx+c<0的解集非空时,可以有a>0,即抛物线的开口可以向上,因此否命题也是假命题.故选D.3.“直线y=x+b与圆x2+y2=1相交”是“0<b<1”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:选C由直线y=x+b与圆x2+y2=1相交可得|b|2<1,所以-2<b<2,因此,“直线y=x+b与圆x2+y2=1相交”⇒/ “0<b<1”,但“0<b<1”⇒“直线y=x+b与圆x2+y2=1相交”.故选C.4.命题p:“∀x>e,a-ln x<0”为真命题的一个充分不必要条件是()A.a≤1 B.a<1C.a≥1 D.a>1解析:选B由题意知∀x>e,a<ln x恒成立,因为ln x>1,所以a≤1,故答案为B.5.a2+b2=1是a si nθ+b cos θ≤1恒成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A因为a2+b2=1,所以设a=cos α,b=sin α,则a sin θ+b cos θ=si n(α+θ)≤1恒成立;当a sin θ+b cos θ≤1恒成立时,只需a sin θ+b cos θ=a2+b2sin(θ+φ)≤a2+b2≤1即可,所以a2+b2≤1,故不满足必要性.6.若向量a=(x-1,x),b=(x+2,x-4),则“a⊥b”是“x=2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B若“a⊥b”,则a·b=(x-1,x)·(x+2,x-4)=(x-1)(x+2)+x(x-4)=2x2-3x-2=0,则x=2或x=-12;若“x=2”,则a·b=0,即“a⊥b”,所以“a⊥b”是“x=2”的必要不充分条件.7.在△ABC中,“sin A-sin B=cos B-cos A”是“A=B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B在△ABC中,当A=B时,sin A-sin B=cos B-cos A显然成立,即必要性成立;当sin A -sin B =cos B -cos A 时,则sin A +cos A =sin B +cos B ,两边平方可得sin 2A =sin 2B ,则A =B 或A +B =π2,即充分性不成立.则在△ABC 中,“sin A -sin B =cos B -cos A ”是“A =B ”的必要不充分条件.8.设m ,n 是两条直线,α,β是两个平面,则下列命题中不正确的是( ) A .当n ⊥α时,“n ⊥β”是“α∥β”的充要条件 B .当m ⊂α时,“m ⊥β”是“α⊥β”的充分不必要条件 C .当m ⊂α时,“n ∥α”是“m ∥n ”的必要不充分条件 D .当m ⊂α时,“n ⊥α”是“m ⊥n ”的充分不必要条件解析:选C 由垂直于同一条直线的两个平面平行可知,A 正确;显然,当m ⊂α时,“m ⊥β”⇒“α⊥β”;当m ⊂α时,“α⊥β”⇒/ “m ⊥β”,故B 正确;当m ⊂α时,“m ∥n ”⇒/ “n ∥α”, n 也可能在平面α内,故C 错误;当m ⊂α时,“n ⊥α”⇒“m ⊥n ”,反之不成立,故D 正确.二、填空题9.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.解析:其中原命题和逆否命题为真命题,逆命题和否命题为假命题. 答案:210.下列命题正确的序号是________.①命题“若a >b ,则2a >2b ”的否命题是真命题;②命题“a ,b 都是偶数,则a +b 是偶数”的逆否命题是真命题; ③若p 是q 的充分不必要条件,则綈p 是綈q 的必要不充分条件; ④方程ax 2+x +a =0有唯一解的充要条件是a =±12.解析:①否命题“若2a ≤2b ,则a ≤b ”,由指数函数的单调性可知,该命题正确;②由互为逆否命题真假相同可知,该命题为真命题;由互为逆否命题可知,③是真命题;④方程ax 2+x +a =0有唯一解,则a =0或⎩⎪⎨⎪⎧Δ=1-4a 2=0,a ≠0,求解可得a =0或a =±12,故④是假命题.答案:①②③11.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析:A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ={x |-1<x <3},∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2. 答案:(2,+∞) 12.给出下列四个结论: ①若am 2<bm 2,则a <b ;②已知变量x 和y 满足关系y =-0.1x +1,若变量y 与z 正相关,则x 与z 负相关; ③“已知直线m ,n 和平面α,β,若m ⊥n ,m ⊥α,n ∥β,则α⊥β”为真命题; ④m =3是直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直的充分不必要条件. 其中正确的结论是________(填序号).解析:由不等式的性质可知,①正确;由变量间相关关系可知,当变量y 和z 是正相关时,x 与z 负相关,故②正确;③由已知条件,不能判断α与β的位置关系,故③错误;④当m =3时,直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直;当直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直时,(m +3)m -6m =0,则m =3或m =0,即m =3是直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直的充分不必要条件,则④正确.答案:①②④ 三、解答题13.写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题、否命题、逆否命题,并判断它们的真假.解:(1)逆命题:已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集,为真命题.(2)否命题:已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2<4b ,为真命题.(3)逆否命题:已知a ,b ∈R ,若a 2<4b ,则关于x 的不等式x 2+ax +b ≤0没有非空解集,为真命题.14.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716, ∵x ∈⎣⎡⎦⎤34,2,∴716≤y ≤2, ∴A =⎩⎨⎧⎭⎬⎫y ⎪⎪716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2, ∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件, ∴A ⊆B ,∴1-m 2≤716, 解得m ≥34或m ≤-34,故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞.1.下列四个命题中,①命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”; ②“x =4”是“x 2-3x -4=0”的充分条件;③命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题;④命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0且n ≠0”;⑤对空间任意一点O ,若满足OP ―→=34OA ―→+18OB ―→+18OC ―→,则P ,A ,B ,C 四点一定共面.其中真命题的为________.(填序号)解析:①命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”,故①正确;②x =4⇒x 2-3x -4=0;由x 2-3x -4=0,解得x =-1或x =4. ∴“x =4”是“x 2-3x -4=0”的充分不必要条件,故②正确;③命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为“若方程x 2+x -m =0有实根,则m >0”,是假命题,如m =0时,方程x 2+x -m =0有实根,故③错误;④命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”,故④错误;⑤∵34+18+18=1,∴对空间任意一点O ,若满足OP ―→=34OA ―→+18OB ―→+18OC ―→,则P ,A ,B ,C 四点一定共面,故⑤正确.答案:①②⑤2.已知p :-x 2+4x +12≥0,q :x 2-2x +1-m 2≤0(m >0). (1)若p 是q 的充分不必要条件,则实数m 的取值范围为________; (2)若“綈p ”是“綈q ”的充分条件,则实数m 的取值范围为________. 解析:由题知,p 为真时,-2≤x ≤6,q 为真时,1-m ≤x ≤1+m , 令P ={x |-2≤x ≤6},Q ={x |1-m ≤x ≤1+m }. (1)∵p 是q 的充分不必要条件,∴P Q ,∴⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >6或⎩⎪⎨⎪⎧1-m <-2,1+m ≥6,解得m ≥5, ∴实数m 的取值范围是[5,+∞).(2)∵“綈p ”是“綈q ”的充分条件,∴“p ”是“q ”的必要条件, ∴Q ⊆P ,∴⎩⎪⎨⎪⎧1-m ≥-2,1+m ≤6,m >0,解得0<m ≤3,∴实数m 的取值范围是(0,3]. 答案:(1)[5,+∞) (2)(0,3]第3课简单的逻辑联结词、全称量词与存在量词[过双基]1.命题p ∧q ,p ∨q ,綈p 的真假判断2.全称量词与存在量词3.全称命题和特称命题否定∃x0∈M,綈p(x0)∀x∈M,綈p(x)[1.已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(綈q);④(綈p)∨q中,真命题的是()A.①③B.①④C.②③D.②④解析:选C当x>y时,-x<-y,故命题p为真命题,从而綈p为假命题.当x>y时,x2>y2不一定成立,故命题q为假命题,从而綈q为真命题.故①p∧q为假命题;②p∨q为真命题;③p∧(綈q)为真命题;④(綈p)∨q为假命题.2.若命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则在下列命题中真命题的是()A.p∧(綈q) B.(綈p)∧(綈q)C.(綈p)∧q D.p∧q解析:选A由指数函数的性质可知,命题p是真命题,则命题綈p是假命题;显然,“x>1”是“x>2”的必要不充分条件,即命题q是假命题,命题綈q是真命题.所以命题p∧(綈q)是真命题.3.命题“∀x∈R,x2+x+1≥0”的否定为()A.∃x0∈R,x20+x0+1≥0 B.∃x0∈R,x20+x0+1<0C.∀x∈R,x2+x+1≤0 D.∀x∈R,x2+x+1<0解析:选B原命题∀x∈R,x2+x+1≥0为全称命题,所以原命题的否定为:∃x0∈R,x20+x0+1<0.4.若命题p:∃x0,y0∈Z,x20+y20=2 018,则綈p为()A.∀x,y∈Z,x2+y2≠2 018B.∃x0,y0∈Z,x20+y20≠2 018C.∀x,y∈Z,x2+y2=2 018D.不存在x,y∈Z,x2+y2=2 018解析:选A原命题为特称命题,故其否定为全称命题,即綈p:∀x,y∈Z,x2+y2≠2018.[清易错]1.对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再。
高考真题和模拟题分类汇编 数学 专题02 常用逻辑用语 Word版含解析
高考真题和模拟题分类汇编数 学专题02 常用逻辑用语一、选择题部分1.(2021•高考全国乙卷•文T3)已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是()A. p q ∧B. p q ⌝∧C. p q ∧⌝D. ()p q ⌝∨ 【答案】A .【解析】由于1sin 1x -≤≤,所以命题p 为真命题;由于0x ≥,所以||e 1x ≥,所以命题q 为真命题;所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选A .2.(2021•山东聊城三模•T 4.)已知直线l:(a −1)x +y −3=0,圆C:(x −1)2+y 2=5.则“ a =−1 ”是“ l 与C 相切”的().A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件【答案】B .【考点】必要条件、充分条件与充要条件的判断,直线与圆的位置关系【解析】圆C:(x −1)2+y 2=5的圆心为(1,0),半径r =√5,由直线l 和C 相切可得:圆心到直线的距离d =√(a−1)2+1=√5,解得2a 2−a −3=0,解得a =−1或a =32,故a =−1是a =−1或a =32的充分不必要条件,故答案为:B. 【分析】根据直线与圆相切的性质解得a =−1或a =32,再由充分必要条件即可判断B 正确。
3.(2021•安徽蚌埠三模•文T 3.)下面四个条件中,使a >b 成立的必要不充分条件是( )A .a ﹣2>bB .a +2>bC .|a |>|b |D .【答案】B .【解析】a >b 无法推出a ﹣2>b ,故A 错误;“a >b ”能推出“a +2>b ”,故选项B 是“a >b ”的必要条件,但“a +2>b ”不能推出“a >b ”,不是充分条件,满足题意,故B 正确;“a >b ”不能推出“|a |>|b |”即a 2>b 2,故选项C 不是“a >b ”的必要条件,故C 错误;a >b 无法推出>,如a >b >1时,故D 错误.b >4.(2021•上海嘉定三模•T13.)已知直角坐标平面上两条直线方程分别为l 1:a 1x +b 1y +c 1=0,l 2:a 2x +b 2y +c 2=0,那么“=0是“两直线l1,l2平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B.【解析】若“=0则a1b2﹣a2b1=0,若a1c2﹣a2c1=0,则l1不平行于l2,若“l1∥l2”,则a1b2﹣a2b1=0,∴=0,故“=0是“两直线l1,l2平行的必要不充分条件.5.(2021•河南济源平顶山许昌三模•文T11.)下列结论中正确的是()①设m,n是两条不同的直线,α,β是两个不同的平面,若m⊥α,m∥n,n∥β,则α⊥β;②x=是函数y=sin x+sin(β﹣x)取得最大值的充要条件;③已知命题p:∀x∈R,4x<5x;命题q:∃x>0,x2>2x,则¬p∧q为真命题;④等差数列{a n}中,前n项和为S n,公差d<0,若a8=|a9|,则当S n取得最大值时,n=15.A.①③B.①④C.②③D.③④【答案】A.【解析】对于①:设m,n是两条不同的直线,α,β是两个不同的平面,若m⊥α,m∥n,直线m相当于平面α的法向量,由于n∥β,则α⊥β,故①正确;对于②,函数f(x)=sin x+sin(﹣x)满足f(0)=f(),故x=不是取得最大值的充要条件,故②错误;③已知命题p:∀x∈R,4x<5x;当x=﹣1时,不成立,命题q:∃x>0,x2>2x,当x=3时,成立,则¬p∧q为真命题,故③正确;④等差数列{a n}中,前n项和为S n,公差d<0,若a8=|a9|,即a8=﹣a9,则当S n取得最大值时,n=8或9,故④错误.6.(2021•上海浦东新区三模•T14.)关于x、y的二元一次方程组的系数行列式D=0是该方程组有解的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D.【解析】系数行列式D≠0时,方程组有唯一的解,系数行列式D=0时,方程组有无数个解或无解.∴当系数行列式D=0,方程可能有无数个解,也有可能无解,反之,若方程组有解,可能有唯一解,也可能有无数解,则行列式D可能不为0,也可能为0.∴系数行列式D=0是方程有解的既不充分也不必要条件.7.(2021•福建宁德三模•T3) 不等式x2−2x−3<0成立的一个充分不必要条件是( )A. −1<x<3B. −1≤x<2C. −3<x<3D. 0≤x<3【答案】D.【解析】∵x2−2x−3<0,∴−1<x<3,∵[0,3)⊊(−1,3),∴不等式x2−2x−3<0成立的一个充分不必要条件是[0,3),故选:D.先解不等式x2−2x−3<0的解集,利用子集的包含关系,借助充分必要条件的定义即可.本题考查了充分必要条件的判定,一元二次不等式的解法,属于基础题.8.(2021•宁夏中卫三模•理T2.)命题“若a2+b2=0,则a=0且b=0”的否定是()A.若a2+b2≠0,则a≠0且b≠0B.若a2+b2=0,则a≠0且b≠0C.若a2+b2≠0,则a≠0或b≠0D.若a2+b2=0,则a≠0或b≠0【答案】D.【解析】命题“若a2+b2=0,则a=0且b=0”的否定是“若a2+b2=0,则a≠0或b≠0”.8.(2021•江西南昌三模•理T7.)随机变量X服从正态分布,有下列四个命题:①P(X≥k)=0.5;②P(X<k)=0.5;③P(X>k+1)<P(X<k﹣2);④P(k﹣1<X<k)>P(k+1<X<k+2).若只有一个假命题,则该假命题是()A.①B.②C.③D.④【答案】C.【解析】因为4个命题中只有一个假命题,又①P(X≥k)=0.5;②P(X<k)=0.5,由正态分布的相知可知,①②均为真命题,所以μ=k,则P(X>k+1)>P(X>k+2)=P(X<k﹣2),故③错误;因为P(k﹣1<X<k)=P(k<X<k+1)>P(k+1<X<k+2),故④正确.9.(2021•江西上饶三模•理T 1.)设x∈R,则“﹣2<x<2”是“1<x<2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B.【解析】∵(1,2)⊊(﹣2,2),∴﹣2<x<2是1<x<2的必要不充分条件.10.(2021•安徽马鞍山三模•理T5.)已知命题p:“∃x∈R,x2﹣x+1<0”,则¬p为()A.∃x∈R,x2﹣x+1≥0B.∃x∉R,x2﹣x+1≥0C.∀x∈R,x2﹣x+1≥0D.∀x∈R,x2﹣x+1<0【答案】C.【解析】由特称命题的否定为全称命题,可得命题p:∃x∈R,x2﹣x+1<0,则¬p是∀x∈R,x2﹣x+1≥0.11.(2021•浙江杭州二模•理T3.)设,是非零向量,则“⊥”是“函数f(x)=(x+)•(x﹣)为一次函数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B.【解析】f(x)=(x)•(x﹣)=•x2+(﹣)x﹣•,若⊥,则•=0,如果同时有||=||,则函数恒为0,不是一次函数,故不充分;如果f(x)是一次函数,则•=0,故⊥,该条件必要.12.(2021•江西鹰潭二模•理T5.)下列命题中,真命题的是()A.函数y=sin|x|的周期是2πB.∀x∈R,2x>x2C.函数y=ln是奇函数D.a+b=0的充要条件是=﹣1【答案】C.【解析】对于A,函数y=sin|x|不是周期函数,故A是假命题;对于B,当x=2时2x=x2,故B是假命题;对于C,函数y=f(x)=ln的定义域(﹣2,2)关于原点对称,且满足f(﹣x)=﹣f(x),故函数f(x)是奇函数,故C是真命题;对于D,“a+b=0”的必要不充分条件是“=﹣1”,即D是假命题.13.(2021•北京门头沟二模•理T6)“sinα=cosα”是“α=π4+2kπ,(k∈Z)”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B.【解析】由“sinα=cosα”得:α=kπ+π4,k∈Z,故sinα=cosα是“α=π4+2kπ,(k∈Z)”的必要不充分条件,故选:B.根据充分必要条件的定义结合集合的包含关系判断即可.本题考查了充分必要条件,考查三角函数以及集合的包含关系,是一道基础题.14.(2021•天津南开二模•T2.)已知x∈R,则“”是“x2<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B.【解析】由<0,解得x<1;由x2<1,解得﹣1<x<1,∵(﹣1,1)⊆(﹣∞,1)∴“”是“x2<1”的必要不充分条件.15.(2021•辽宁朝阳二模•T4.)已知x1,x2是一元二次方程ax2+bx+c=0的两个不同的实根x1,x2,则“x1>1且x2>1”是“x1+x2>2且x1•x2>1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A.【解析】已知x1,x2是一元二次方程ax2+bx+c=0的两个不同的实根x1,x2,则当“x1>1且x2>1”时,整理得:“x1+x2>2且x1•x2>1”.当x1=0.99,x2=2,满足:“x1+x2>2且x1•x2>1”但是“x1>1且x2>1”不成立,故“x1>1且x2>1”是“x1+x2>2且x1•x2>1”的充分不必要条件.16.(2021•浙江丽水湖州衢州二模•T6.)“关于x的方程=|x﹣m|(m∈R)有解”的一个必要不充分条件是()A.m∈[﹣2,2]B.m∈[﹣,]C.m∈[﹣1,1]D.m∈[1,2]【答案】C.【解析】化简=|x﹣m|,得2x2﹣2mx+m2﹣1=0,关于x的方程=|x﹣m|有解的充要条件是△≥0,即4m2﹣8(m2﹣1)≥0,解得﹣≤m.因此关于x的方程=|x﹣m|,有解的必要不充分条件是﹣≤m的真子集.17.(2021•安徽淮北二模•文T5.)在△ABC中,“sin A>cos B”是“△ABC为锐角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B.【解析】若B为钝角,A为锐角,则sin A>0,cos B<0,则满足sin A>cos B,但△ABC为锐角三角形不成立,若△ABC为锐角三角形,则A,B,π﹣A﹣B都是锐角,即π﹣A﹣B<,即A+B>,B>﹣A,则cos B <cos(﹣A),即cos B<sin A,故“sin A>cos B”是“△ABC为锐角三角形”的必要不充分条件.18.(2021•宁夏银川二模•文T4.)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥α”是“m∥n”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B.【解析】因为m⊄α,n⊂α,当m∥α时,m与n不一定平行,即充分性不成立;当m∥n时,满足线面平行的判定定理,m∥α成立,即必要性成立;所以“m∥α”是“m∥n”的必要不充分条件.19.(2021•新疆乌鲁木齐二模•文T3.)已知命题p:∀x∈R,cos x≤1,则()A.¬p:∃x0∈R,cos x0≥1B.¬p:∀x∈R,cos x≥1C.¬p:∀x∈R,cos x>1D.¬p:∃x0∈R,cos x0>1【答案】D.【解析】因为全称命题的否定是特称命题,所以命题p:∀x∈R,cos x≤1,¬p:∃x0∈R,cos x0>1.20.(2021•山西调研二模•文T3.)已知p:a∈(1,3),q:f(x)=log a x在(0,+∞)单调递增,则p是q的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A.【解析】∵q:f(x)=log a x在(0,+∞)单调递增,∴a>1,∵(1,3)⊊(1,+∞),∴p是q的充分不必要条件,故选:A.根据对数函数单调性的性质,求出a的等价条件,利用充分条件和必要条件的定义进行判断即可得到结论.本题主要考查充分条件和必要条件的判断,根据对数函数的单调性是解决本题的关键.二、填空题部分21.(2021•安徽马鞍山三模•文T13.)已知命题“∃x0∈R,x02﹣x0+1<0”,写出这个命题的否定:.【答案】∀x∈R,x2﹣x+1≥0.【解析】因为特称命题的否定是全称命题,所以命题:∃x0∈R,x02﹣x0+1<0的否定:∀x∈R,x2﹣x+1≥0.22.(2021•贵州毕节三模•文T13.)命题“若sinα=sinβ,则α=β”的否命题为真命题.(填“真”或“假”)【答案】真.【解析】命题“若sinα=sinβ,则α=β”的否命题为若sinα≠sinβ,则α≠β”其否命题为真命题.23.(2021•福建宁德三模•T15) 能够说明“若ax >ay,a<0,则x>y”是假命题的一组整数x,y的值依次为______ .【答案】−1,1(满足x<0,y>0,x,y∈Z均可)【解析】当ax >ay,a<0,可得1x<1y,①当x,y同号时,可得x>y,②当x,y异号时,y>0>x。
2019版高考数学文科一轮复习:1.2 常用逻辑用语
2019/8/14
你是我今生最美的相遇遇上你是我的缘
16
5.(2017浙江,6,5分)已知等差数列{an}的公差为d,前n项和为Sn,则“d>0”是“S4+S6>2S5”的 () A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
1.(2018北京,4,5分)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件
答案 B 本题主要考查充分条件与必要条件,等比数列的性质. 由a,b,c,d成等比数列,可得ad=bc,即必要性成立; 当a=1,b=-2,c=-4,d=8时,ad=bc,但a,b,c,d不成等比数列,即充分性不成立,故选B.
2019/8/14
你是我今生最美的相遇遇上你是我的缘
11
E(1,2),F(2,3), 则D的“伴随点”为D'(1,0),
E的“伴随点”为E' 52 ,
1 5
,
F的“伴随点”为F' 133 ,
2 13
,
通过计算可知D'、E'、F'三点不共线,
故④是假命题.
评析 本题是一个新定义问题,考查学生分析问题、解决问题的能力.
5.(2013北京,7,5分)双曲线x2- y2 =1的离心率大于 2 的充分必要条件是 ( ) m
备考2019高考(文科)数学一轮复习检测题(一)含答案及解析
备考2019高考(文科)数学一轮复习检测题(一)一轮复习检测题01……..集合一轮复习检测题02……..命题及其关系充分条件与必要条件一轮复习检测题03……..简单的逻辑联结词、全称量词与存在量词一轮复习检测题04…….. 函数的定义域、解析式及分段函数一轮复习检测题05…….. 函数的单调性、奇偶性及周期性一轮复习检测题06…….. 幂函数、二次函数的3类考查点——图象、性质、解析式一轮复习检测题07…….. 指数函数的2类考查点——图象、性质一轮复习检测题08…….. 对数函数的2类考查点——图象、性质一轮复习检测题09…….. 函数图象的3个常考方式——作图、识图、用图一轮复习检测题10…….. 函数零点的命题3角度——求个数、定区间、求参数一轮复习检测题集合一、选择题1.(2017·北京高考)若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =( ) A .{x |-2<x <-1} B .{x |-2<x <3} C .{x |-1<x <1}D .{x |1<x <3}解析:选A 由集合交集的定义可得A ∩B ={x |-2<x <-1}.2.设集合A ={x |x 2-9<0},B ={x |2x ∈N },则A ∩B 中元素的个数为( ) A .3 B .4 C .5D .6解析:选D 因为A ={x |-3<x <3},B ={x |2x ∈N },所以由2x ∈N 可得A ∩B =⎩⎨⎧⎭⎬⎫0,12,1,32,2,52 ,其元素的个数是6.3.(2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:选B 因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.4.设集合A ={x |x 2-2x -3<0},B ={x |x >0},则A ∪B =( ) A .(-1,+∞) B .(-∞,3) C .(0,3)D .(-1,3)解析:选A 因为集合A ={x |x 2-2x -3<0}={x |-1<x <3},B ={x |x >0}, 所以A ∪B ={x |x >-1}.5.(2017·全国卷Ⅱ)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =( )A .{1,-3}B .{1,0}C .{1,3}D .{1,5}解析:选C 因为A ∩B ={1},所以1∈B ,所以1是方程x 2-4x +m =0的根, 所以1-4+m =0,m =3,方程为x 2-4x +3=0, 解得x =1或x =3,所以B ={1,3}.6.设集合A ={-1,0,1},集合B ={0,1,2,3},定义A *B ={(x ,y )|x ∈A ∩B ,y ∈A ∪B },则A *B 中元素的个数是( )A .7B .10C .25D .52解析:选B 因为A ={-1,0,1},B ={0,1,2,3}, 所以A ∩B ={0,1},A ∪B ={-1,0,1,2,3}. 由x ∈A ∩B ,可知x 可取0,1; 由y ∈A ∪B ,可知y 可取-1,0,1,2,3. 所以元素(x ,y )的所有结果如下表所示:所以A *B 中的元素共有10个.7.(2017·吉林一模)设集合A ={0,1},集合B ={x |x >a },若A ∩B 中只有一个元素,则实数a 的取值范围是( )A .(-∞,1)B .[0,1)C .[1,+∞)D .(-∞,1]解析:选B 由题意知,集合A ={0,1},集合B ={x |x >a },画出数轴(如图所示).若A ∩B 中只有一个元素,则0≤a <1,故选B.8.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },如果P ={x |log 2x <1},Q ={x ||x -2|<1},那么P -Q =( )A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}解析:选B 由log 2x <1,得0<x <2, 所以P ={x |0<x <2}. 由|x -2|<1,得1<x <3, 所以Q ={x |1<x <3}.由题意,得P -Q ={x |0<x ≤1}. 二、填空题9.(2018·辽宁师大附中调研)若集合A ={x |(a -1)x 2+3x -2=0}有且仅有两个子集,则实数a 的值为________.解析:由题意知,集合A 有且仅有两个子集,则集合A 中只有一个元素.当a -1=0,即a =1时,A =⎩⎨⎧⎭⎬⎫23 ,满足题意;当a -1≠0,即a ≠1时,要使集合A 中只有一个元素,需Δ=9+8(a -1)=0,解得a =-18.综上可知,实数a 的值为1或-18.答案:1或-1810.已知集合A ={x |1≤x ≤3},B ={x |x -1≥1}.若A ∩B 是集合{x |x ≥a }的子集,则实数a 的取值范围为________.解析:∵由x -1≥1,得x ≥2,∴B ={x |x ≥2}. ∵A ={x |1≤x ≤3},∴A ∩B ={x |2≤x ≤3}. 若集合A ∩B ={x |2≤x ≤3}是集合{x |x ≥a }的子集, 则a ≤2. 答案:(-∞,2]11.(2018·贵阳监测)已知全集U ={a 1,a 2,a 3,a 4},集合A 是全集U 的恰有两个元素的子集,且满足下列三个条件:①若a 1∈A ,则a 2∈A ;②若a 3∉A ,则a 2∉A ;③若a 3∈A ,则a 4∉A .则集合A =________.(用列举法表示)解析:假设a 1∈A ,则a 2∈A ,由若a 3∉A ,则a 2∉A 可知,a 3∈A ,故假设不成立; 假设a 4∈A ,则a 3∉A ,a 2∉A ,a 1∉A ,故假设不成立.故集合A ={a 2,a 3}. 答案:{a 2,a 3}12.(2016·北京高考)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种.则该网店①第一天售出但第二天未售出的商品有________种; ②这三天售出的商品最少有________种.解析:设三天都售出的商品有x 种,第一天售出,第二天未售出,且第三天售出的商品有y 种,则三天售出商品的种类关系如图所示.由图可知:①第一天售出但第二天未售出的商品有19-(3-x )-x =16(种).②这三天售出的商品有(16-y )+y +x +(3-x )+(6+x )+(4-x )+(14-y )=43-y (种). 由于⎩⎪⎨⎪⎧16-y ≥0,y ≥0,14-y ≥0,所以0≤y ≤14.所以(43-y )mi n =43-14=29. 答案:①16 ②29 三、解答题13.已知A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }. (1)当m =1时,求A ∪B ;(2)若B ⊆∁R A ,求实数m 的取值范围. 解:(1)因为m =1时,B ={x |1≤x <4}, 所以A ∪B ={x |-1<x <4}. (2)∁R A ={x |x ≤-1或x >3}.当B =∅时,则m ≥1+3m ,得m ≤-12,满足B ⊆∁R A ,当B ≠∅时,要使B ⊆∁R A ,须满足⎩⎪⎨⎪⎧ m <1+3m ,1+3m ≤-1或⎩⎪⎨⎪⎧m <1+3m ,m >3,解得m >3.综上所述,m 的取值范围是⎝⎛⎦⎤-∞,-12∪(3,+∞). 14.记函数f (x )= 2-x +3x +1的定义域为A ,g (x )=lg [(x -a -1)(2a -x )](a <1)的定义域为B .(1)求A ;(2)若B ⊆A ,求实数a 的取值范围. 解:(1)由2-x +3x +1≥0,得x -1x +1≥0, 解得x <-1或x ≥1,即A =(-∞,-1)∪[1,+∞). (2)由(x -a -1)(2a -x )>0, 得(x -a -1)(x -2a )<0,∵a <1,∴a +1>2a ,∴B =(2a ,a +1),∵B ⊆A ,∴2a ≥1或a +1≤-1,即a ≥12或a ≤-2,∵a <1,∴12≤a <1或a ≤-2,∴实数a 的取值范围是(-∞,-2]∪⎣⎡⎭⎫12,1.1.已知定义域均为{x |0≤x ≤2}的函数f (x )=xex -1与g (x )=ax +3-3a (a >0),设函数f (x )与g (x )的值域分别为A 与B ,若A ⊆B ,则a 的取值范围是( )A .[2,+∞)B .[1,2]C .[0,2]D .[1,+∞)解析:选B 因为f ′(x )=1-x e x -1,所以f (x )=x ex -1在[0,1)上是增函数,在(1,2]上是减函数,又因为f(1)=1,f(0)=0,f(2)=2e,所以A={x|0≤x≤1};由题意易得B=[3-3a,3-a],因为[0,1]⊆[3-3a,3-a],所以3-3a≤0且3-a≥1,解得1≤a≤2.2.已知集合A={x|x2-2 018x+2 017<0},B={x|log2x<m},若A⊆B,则整数m的最小值是________.解析:由x2-2 018x+2 017<0,解得1<x<2 017,故A={x|1<x<2 017}.由log2x<m,解得0<x<2m,故B={x|0<x<2m}.由A⊆B,可得2m≥2 017,因为210=1 024,211=2 048,所以整数m的最小值为11.答案:11一轮复习检测题02命题及其关系 充分条件与必要条件一、选择题1.命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α=π4D .若tan α≠1,则α≠π4解析:选D 逆否命题是将原命题中的条件与结论都否定后再交换位置即可. 所以逆否命题为:若tan α≠1,则α≠π4.2.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真解析:选D 对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线的开口可以向上,因此否命题也是假命题.故选D.3.“直线y =x +b 与圆x 2+y 2=1相交”是“0<b <1”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选C 由直线y =x +b 与圆x 2+y 2=1相交可得|b |2<1,所以-2<b <2,因此,“直线y =x +b 与圆x 2+y 2=1相交” “0<b <1”,但“0<b <1”⇒“直线y =x +b 与圆x 2+y 2=1相交”.故选C.4.命题p :“∀x >e ,a -ln x <0”为真命题的一个充分不必要条件是( ) A .a ≤1 B .a <1 C .a ≥1D .a >1解析:选B 由题意知∀x >e ,a <ln x 恒成立,因为ln x >1,所以a ≤1,故答案为B. 5.a 2+b 2=1是a si n θ+b cos θ≤1恒成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 因为a 2+b 2=1,所以设a =cos α,b =sin α,则a sin θ+b cos θ=si n (α+θ)≤1恒成立;当a sin θ+b cos θ≤1恒成立时,只需a sin θ+b cos θ=a 2+b 2sin(θ+φ)≤a 2+b 2≤1即可,所以a2+b2≤1,故不满足必要性.6.若向量a=(x-1,x),b=(x+2,x-4),则“a⊥b”是“x=2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B若“a⊥b”,则a·b=(x-1,x)·(x+2,x-4)=(x-1)(x+2)+x(x-4)=2x2-3x-2=0,则x=2或x=-12;若“x=2”,则a·b=0,即“a⊥b”,所以“a⊥b”是“x=2”的必要不充分条件.7.在△ABC中,“sin A-sin B=cos B-cos A”是“A=B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B在△ABC中,当A=B时,sin A-sin B=cos B-cos A显然成立,即必要性成立;当sin A-sin B=cos B-cos A时,则sin A+cos A=sin B+cos B,两边平方可得sin 2A=sin 2B,则A=B或A+B=π2,即充分性不成立.则在△ABC中,“sin A-sin B=cos B-cos A”是“A=B”的必要不充分条件.8.设m,n是两条直线,α,β是两个平面,则下列命题中不正确的是()A.当n⊥α时,“n⊥β”是“α∥β”的充要条件B.当m⊂α时,“m⊥β”是“α⊥β”的充分不必要条件C.当m⊂α时,“n∥α”是“m∥n”的必要不充分条件D.当m⊂α时,“n⊥α”是“m⊥n”的充分不必要条件解析:选C由垂直于同一条直线的两个平面平行可知,A正确;显然,当m⊂α时,“m⊥β”⇒“α⊥β”;当m⊂α时,“α⊥β”“m⊥β”,故B正确;当m⊂α时,“m∥n”“n∥α”,n也可能在平面α内,故C错误;当m⊂α时,“n⊥α”⇒“m⊥n”,反之不成立,故D正确.二、填空题9.“若a≤b,则ac2≤bc2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.解析:其中原命题和逆否命题为真命题,逆命题和否命题为假命题.答案:210.下列命题正确的序号是________.①命题“若a>b,则2a>2b”的否命题是真命题;②命题“a,b都是偶数,则a+b是偶数”的逆否命题是真命题;③若p是q的充分不必要条件,则綈p是綈q的必要不充分条件;④方程ax 2+x +a =0有唯一解的充要条件是a =±12.解析:①否命题“若2a ≤2b ,则a ≤b ”,由指数函数的单调性可知,该命题正确; ②由互为逆否命题真假相同可知,该命题为真命题; 由互为逆否命题可知,③是真命题; ④方程ax 2+x +a =0有唯一解,则a =0或⎩⎪⎨⎪⎧Δ=1-4a 2=0,a ≠0,求解可得a =0或a =±12,故④是假命题.答案:①②③11.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析:A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2. 答案:(2,+∞) 12.给出下列四个结论: ①若am 2<bm 2,则a <b ;②已知变量x 和y 满足关系y =-0.1x +1,若变量y 与z 正相关,则x 与z 负相关; ③“已知直线m ,n 和平面α,β,若m ⊥n ,m ⊥α,n ∥β,则α⊥β”为真命题; ④m =3是直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直的充分不必要条件. 其中正确的结论是________(填序号). 解析:由不等式的性质可知,①正确;由变量间相关关系可知,当变量y 和z 是正相关时,x 与z 负相关,故②正确; ③由已知条件,不能判断α与β的位置关系,故③错误;④当m =3时,直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直;当直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直时,(m +3)m -6m =0,则m =3或m =0,即m =3是直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直的充分不必要条件,则④正确.答案:①②④ 三、解答题13.写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题、否命题、逆否命题,并判断它们的真假.解:(1)逆命题:已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集,为真命题.(2)否命题:已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2<4b ,为真命题.(3)逆否命题:已知a ,b ∈R ,若a 2<4b ,则关于x 的不等式x 2+ax +b ≤0没有非空解集,为真命题.14.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716, ∵x ∈⎣⎡⎦⎤34,2,∴716≤y ≤2, ∴A =⎩⎨⎧⎭⎬⎫y ⎪⎪716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2, ∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件, ∴A ⊆B ,∴1-m 2≤716, 解得m ≥34或m ≤-34,故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞.1.下列四个命题中,①命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”; ②“x =4”是“x 2-3x -4=0”的充分条件;③命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题;④命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0且n ≠0”;⑤对空间任意一点O ,若满足OP ―→=34OA ―→+18OB ―→+18OC ―→,则P ,A ,B ,C 四点一定共面.其中真命题的为________.(填序号)解析:①命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”,故①正确;②x =4⇒x 2-3x -4=0;由x 2-3x -4=0,解得x =-1或x =4. ∴“x =4”是“x 2-3x -4=0”的充分不必要条件,故②正确;③命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为“若方程x 2+x -m =0有实根,则m >0”,是假命题,如m =0时,方程x 2+x -m =0有实根,故③错误;④命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”,故④错误;⑤∵34+18+18=1,∴对空间任意一点O ,若满足OP ―→=34OA ―→+18OB ―→+18OC ―→,则P ,A ,B ,C 四点一定共面,故⑤正确.答案:①②⑤2.已知p :-x 2+4x +12≥0,q :x 2-2x +1-m 2≤0(m >0). (1)若p 是q 的充分不必要条件,则实数m 的取值范围为________; (2)若“綈p ”是“綈q ”的充分条件,则实数m 的取值范围为________. 解析:由题知,p 为真时,-2≤x ≤6,q 为真时,1-m ≤x ≤1+m , 令P ={x |-2≤x ≤6},Q ={x |1-m ≤x ≤1+m }. (1)∵p 是q 的充分不必要条件,∴P Q ,∴⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >6或⎩⎪⎨⎪⎧1-m <-2,1+m ≥6,解得m ≥5, ∴实数m 的取值范围是[5,+∞).(2)∵“綈p ”是“綈q ”的充分条件,∴“p ”是“q ”的必要条件, ∴Q ⊆P ,∴⎩⎪⎨⎪⎧1-m ≥-2,1+m ≤6,m >0,解得0<m ≤3,∴实数m 的取值范围是(0,3]. 答案:(1)[5,+∞) (2)(0,3]一轮复习检测题03简单的逻辑联结词、全称量词与存在量词一、选择题1.下列命题为真命题的是( )A .若ac >bc ,则a >bB .若a 2>b 2,则a >bC .若1a >1b ,则a <bD .若a <b ,则a <b解析:选D 由ac >bc ,当c <0时,有a <b ,选项A 错误;若a 2>b 2,不一定有a >b ,如(-3)2>(-2)2,但-3<-2,选项B 错误; 若1a >1b ,不一定有a <b ,如12>-13,但2>-3,选项C 错误; 若a <b ,则(a )2<(b )2,即a <b ,选项D 正确. 2.给出以下四个命题:命题p 1:存在x ∈R ,x -2>lg x 成立;命题p 2:不存在x ∈(0,1),使不等式log 2x <log 3x 成立; 命题p 3:对任意的x ∈(0,1),不等式log 2x <log 3x 成立; 命题p 4:对任意的x ∈(0,+∞),不等式log 2x <1x 成立. 其中的真命题有( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3D .p 2,p 4解析:选A p 1中取x =10,则有10-2>lg 10,故命题p 1为真命题;由对数函数的性质知,p 2为假命题,p 3为真命题;p 4中取x =4不等式不成立,故选A.3.(2018·石家庄一模)命题p :若si n x >si n y ,则x >y ;命题q :x 2+y 2≥2xy .下列命题为假命题的是( )A .p 或qB .p 且qC .qD .綈p解析:选B 取x =π3,y =5π6,可知命题p 是假命题;由(x -y )2≥0恒成立,可知命题q 是真命题, 故綈p 为真命题,p 或q 是真命题,p 且q 是假命题.4.(2018·唐山模拟)已知命题p :∃x 0∈N ,x 30<x 20;命题q :∀a ∈(0,1)∪(1,+∞),函数f (x )=log a (x -1)的图象过点(2,0),则( )A .p 假q 真B .p 真q 假C .p 假q 假D .p 真q 真解析:选A 由x 30<x 20,得x 20(x 0-1)<0,解得x 0<0或0<x 0<1,在这个范围内没有自然数,∴命题p 为假命题;∵对任意的a ∈(0,1)∪(1,+∞),均有f (2)=log a 1=0,∴命题q 为真命题.5.下列命题中,假命题的是( ) A .∃x 0∈R ,ln x 0<0B .∀x ∈(-∞,0),e x >0C .∀x >0 , 5x >3xD .∃x 0∈(0,+∞),⎝⎛⎭⎫12x 0<⎝⎛⎭⎫13x 0解析:选D 令x 0=1e ,则ln x 0=-1<0,故A 正确;由指数函数的性质可知,B 、C正确.因此答案为D.6.(2018·河北六校联考)命题p :∃a 0∈⎝⎛⎭⎫-∞,-14 ,使得函数f (x )=⎪⎪⎪⎪x +a 0x +1在⎣⎡⎦⎤12,3上单调递增;命题q :函数g (x )=x +log 2x 在区间⎝⎛⎭⎫12,+∞上无零点.则下列命题中是真命题的是( )A .綈pB .p ∧qC .(綈p )∨qD .p ∧(綈q )解析:选D 设h (x )=x +a x +1.当a =-12时,函数h (x )在(-∞,-1)∪(-1,+∞)上为增函数,且h ⎝⎛⎭⎫12=16>0,则函数f (x )在⎣⎡⎦⎤12,3 上必单调递增,即p 是真命题;∵g ⎝⎛⎭⎫12=-12<0,g (1)=1>0,∴g (x )在⎝⎛⎭⎫12,+∞上有零点,即q 是假命题,故选D. 7.命题p :“∃x 0∈⎣⎡⎦⎤0,π4,sin 2x 0+cos 2x 0<a ”是假命题,则实数a 的取值范围是( ) A .(-∞,1] B .(-∞,2] C .[1,+∞)D .[2,+∞)解析:选A 因为命题p :“∃x 0∈⎣⎡⎦⎤0,π4 ,sin 2x 0+cos 2x 0<a ”是假命题, 所以命题綈p :“∀x ∈⎣⎡⎦⎤0,π4 ,sin 2x +cos 2x ≥a ”是真命题,即(sin 2x +cos 2x )mi n ≥a , 因为sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4,且 π4≤2x +π4≤3π4,所以sin 2x +cos 2x ≥1,则a ≤1. 8.(2017·贵阳期末)下列说法正确的是( )A .命题“∀x ∈R ,e x >0”的否定是“∃x 0∈R ,e x 0>0”B .命题“已知x ,y ∈R ,若x +y ≠3,则x ≠2或y ≠1”的逆否命题是真命题C .“x 2+2x ≥ax 在x ∈[1,2]上恒成立”⇔“(x 2+2x )mi n ≥(ax )max 在x ∈[1,2]上恒成立”D .命题“若a =-1,则函数f (x )=ax 2+2x -1只有一个零点”的逆命题为真命题 解析:选B A :命题的否定是“∃x 0∈R ,e x 0≤0”,∴A 错误;B :逆否命题为“已知x ,y ∈R ,若x =2且y =1,则x +y =3”,易知为真命题,∴B 正确;C :分析题意可知,不等式两边的最值不一定在同一个点取到,故C 错误;D :若函数f (x )=ax 2+2x -1只有一个零点,则:①a =0,符合题意;②a ≠0,Δ=4+4a =0,a =-1,故逆命题是假命题,∴D 错误.二、填空题9.命题“∀x ∈R ,cos x ≤1”的否定是____________________. 答案:∃x 0∈R ,cos x 0>1 10.给出下列命题:①∀x ∈R ,x 2+1>0;②∀x ∈N ,x 2≥1;③∃x 0∈Z ,x 30<1;④∃x 0∈Q ,x 20=3;⑤∀x ∈R ,x 2-3x +2=0;⑥∃x 0∈R ,x 20+1=0. 其中所有真命题的序号是________.解析:①显然是真命题;②中,当x =0时,x 2<1,故②是假命题;③中,当x =0时,x 3<1,故③是真命题;④中,对于任意的x ∈Q ,x 2=3都不成立,故④是假命题;⑤中,只有当x =1或x =2时,x 2-3x +2=0才成立,故⑤是假命题;⑥显然是假命题.综上可知,所有真命题的序号是①③. 答案:①③11.已知命题p :x 2+2x -3>0,命题q :13-x >1,若“(綈q )∧p ”为真,则x 的取值范围是________.解析:命题p :x >1或x <-3; 由13-x>1,求解可得命题q :2<x <3, 则命题綈q :x ≥3或x ≤2, 因为“(綈q )∧p ”为真,所以⎩⎪⎨⎪⎧x ≥3或x ≤2,x >1或x <-3,解得x ≥3或x <-3,所以x 的取值范围是(-∞,-3)∪[3,+∞). 答案:(-∞,-3)∪[3,+∞)12.给定两个命题,p :对任意实数x 都有ax 2+ax +1>0恒成立;q :关于x 的方程 x 2-x +a =0有实数根;如果p 与q 中有且仅有一个为真命题,则实数a 的取值范围是________.解析:对任意实数x 都有ax 2+ax +1>0恒成立⇒a =0或⎩⎪⎨⎪⎧a >0Δ=a 2-4a <0⇒0≤a <4; 关于x 的方程x 2-x +a =0有实数根⇒1-4a ≥0⇒a ≤14;若p 真q 假,则有0≤a <4,且a >14,∴14<a <4;若p 假q 真,则有a <0或a ≥4,且a ≤14,∴a <0,所以实数a 的取值范围为(-∞,0)∪⎝⎛⎭⎫14,4. 答案:(-∞,0)∪⎝⎛⎭⎫14,4 三、解答题13.已知命题p :“存在a >0,使函数f (x )=ax 2-4x 在(-∞,2]上单调递减”,命题q :“存在a ∈R ,使∀x ∈R ,16x 2-16(a -1)x +1≠0”.若命题“p ∧q ”为真命题,求实数a 的取值范围.解:若p 为真,则对称轴x =--42a =2a 在区间(-∞,2]的右侧,即2a ≥2,∴0<a ≤1.若q 为真,则方程16x 2-16(a -1)x +1=0无实数根. ∴Δ=[-16(a -1)]2-4×16<0, ∴12<a <32. ∵命题“p ∧q ”为真命题, ∴命题p ,q 都为真, ∴⎩⎪⎨⎪⎧0<a ≤1,12<a <32,∴12<a ≤1. 故实数a 的取值范围为⎝⎛⎦⎤12,1.14.设p :实数x 满足x 2-4ax +3a 2<0,其中a >0.q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围; (2)綈p 是綈q 的充分不必要条件,求实数a 的取值范围.解:由x 2-4ax +3a 2<0(a >0),得a <x <3a , 即p 为真命题时,a <x <3a ,由⎩⎪⎨⎪⎧ x 2-x -6≤0,x 2+2x -8>0,得⎩⎪⎨⎪⎧-2≤x ≤3,x >2或x <-4,即2<x ≤3,即q 为真命题时,2<x ≤3. (1)a =1时,p :1<x <3.由p ∧q 为真,知p ,q 均为真命题,则⎩⎪⎨⎪⎧1<x <3,2<x ≤3,得2<x <3,所以实数x 的取值范围为(2,3).(2)设A ={x |a <x <3a },B ={x |2<x ≤3}, 由题意知q 是p 的充分不必要条件,所以B A ,有⎩⎪⎨⎪⎧0<a ≤2,3a >3,所以1<a ≤2, 所以实数a 的取值范围为(1,2].1.已知命题p :对于一切正实数x ,y ,不等式 y 4-cos 2x ≥a sin x -9y 恒成立.若命题綈p 是假命题,则实数a 的取值范围是( )A.⎝⎛⎭⎫-∞,43 B .[3,+∞) C .[-22,22]D .[-3,3]解析:选D 因为命题綈p 是假命题,所以命题p 是真命题,由题意,对于一切正实数x ,y ,不等式y 4+9y ≥a sin x +cos 2x 恒成立,因为y 4+9y ≥2y 4·9y=3, 所以对于一切正实数x ,不等式3≥a sin x +cos 2x , 即sin 2x -a sin x +2≥0恒成立, 令sin x =t ,-1≤t ≤1, 设f (t )=t 2-at +2,-1≤t ≤1,当a2>1,即a >2时,函数f (t )=t 2-at +2在[-1,1]上是减函数, 所以f (1)=3-a ≥0,则2<a ≤3;当-1≤a2≤1,即-2≤a ≤2时,函数f (t )=t 2-at +2在⎣⎡⎭⎫-1,a 2上是减函数,在⎝⎛⎦⎤a 2,1上是增函数,所以最小值是f ⎝⎛⎭⎫a 2=⎝⎛⎭⎫a 22-a ×a2+2≥0,则-2≤a ≤2; 当a2<-1,即a <-2时,函数f (t )=t 2-at +2在[-1,1]上是增函数, 所以f (-1)=3+a ≥0,则-3≤a <-2. 综上可得,实数a 的取值范围是[-3,3]. 2.已知函数f (x )=xe x ,在下列命题中,①曲线y =f (x )必存在一条与x 轴平行的切线; ②函数y =f (x )有且仅有一个极大值,没有极小值;③若方程f (x )-a =0有两个不同的实根,则a 的取值范围是⎝⎛⎭⎫-∞,1e ; ④对任意的x ∈R ,不等式f (x )<12恒成立;⑤若a ∈⎝⎛⎦⎤0,12e ,则∃x 1,x 2∈R +,可以使不等式f (x )≥a 的解集恰为[x 1,x 2]. 其中正确命题的序号有________. 解析:求导得,f ′(x )=1-xe x. ①令f ′(x )=1-x e x =0可得x =1,即过点⎝⎛⎭⎫1,1e 的切线与x 轴平行,故①正确; ②当x ∈(-∞,1)时,函数f (x )是增函数,当x ∈(1,+∞)时,函数f (x )是减函数,所以函数f (x )有极大值f (1)=1e,没有极小值,故②正确;③由②可知,当x ∈(1,+∞)时,0<f (x )<1e ,当x ∈(-∞,1)时,f (x )<1e ,所以若方程f (x )-a =0有两个不同的实根,则a 的取值范围是⎝⎛⎭⎫0,1e ,故③错误; ④由②可知,f (x )≤f (1)=1e <12,故④正确;⑤由②可知,若a ∈⎝⎛⎦⎤0,12e ,则∃x 1,x 2∈R +,可以使不等式f (x )≥a 的解集恰为 [x 1,x 2],故⑤正确.答案:①②④⑤一轮复习检测题04函数的定义域、解析式及分段函数一、选择题1.(2018·广东模拟)设函数f (x )满足f ⎝ ⎛⎭⎪⎫1-x 1+x =1+x ,则f (x )的表达式为( )A.21+xB.21+x 2C.1-x 21+x 2D.1-x 1+x解析:选A 令1-x 1+x =t ,则x =1-t 1+t ,代入f ⎝ ⎛⎭⎪⎫1-x 1+x =1+x ,得f (t )=1+1-t 1+t =21+t ,即f (x )=21+x ,故选A. 2.函数f (x )=1ln (2x +1)的定义域是( )A.⎝⎛⎭⎫-12,+∞ B.⎝⎛⎭⎫-12,0∪(0,+∞) C.⎣⎡⎭⎫-12,+∞ D .[0,+∞)解析:选B 由题意,得⎩⎪⎨⎪⎧2x +1>0,2x +1≠1,解得-12<x <0或x >0.3.(2018·福建调研)设函数f :R →R 满足f (0)=1,且对任意x ,y ∈R 都有f (xy +1)=f (x )f (y )-f (y )-x +2,则f (2 017)=( )A .0B .1C .2 017D .2 018解析:选D 令x =y =0,则f (1)=f (0)f (0)-f (0)-0+2=1×1-1-0+2=2, 令y =0,则f (1)=f (x )f (0)-f (0)-x +2, 将f (0)=1,f (1)=2代入,可得f (x )=1+x , 所以f (2 017)=2 018.4.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (1)=( ) A .2 B .0 C .1D .-1解析:选A 令x =1,得2f (1)-f (-1)=4,① 令x =-1,得2f (-1)-f (1)=-2, ② 联立①②得f (1)=2.5.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2xD .g (x )=-3x 2-2x解析:选B 设g (x )=ax 2+bx +c (a ≠0), ∵g (1)=1,g (-1)=5,且图象过原点, ∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3,b =-2,c =0,∴g (x )=3x 2-2x .6.(2018·青岛模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤0,|log 2x |,x >0,则使f (x )=2的x 的集合是( )A.⎩⎨⎧⎭⎬⎫14,4 B.{}1,4 C.⎩⎨⎧⎭⎬⎫1,14 D.⎩⎨⎧⎭⎬⎫1,14,4解析:选A 由题意可知,f (x )=2,即⎩⎪⎨⎪⎧ 2x =2,x ≤0或⎩⎪⎨⎪⎧|log 2x |=2,x >0,解得x =14或4,故选A.7.(2018·莱芜模拟)已知函数f (x )的定义域为[3,6],则函数y =f (2x )log 12(2-x )的定义域为( )A.⎣⎡⎭⎫32,+∞ B.⎣⎡⎭⎫32,2 C.⎝⎛⎭⎫32,+∞ D.⎣⎡⎭⎫12,2解析:选B 要使函数y =f (2x )log 12(2-x )有意义,需满足⎩⎪⎨⎪⎧3≤2x ≤6,log 12(2-x )>0,2-x >0⇒⎩⎪⎨⎪⎧32≤x ≤3,2-x <1,2-x >0⇒32≤x <2.故选B. 8.(2018·武汉调研)函数f (x )=⎩⎪⎨⎪⎧sin (πx 2),-1<x <0,e x -1,x ≥0满足f (1)+f (a )=2,则a 的所有可能取值为( )A .1或-22B .-22 C .1D .1或22解析:选A ∵f (1)=e 1-1=1且f (1)+f (a )=2, ∴f (a )=1,当-1<a <0时,f (a )=si n (πa 2)=1, ∵0<a 2<1,∴0<πa 2<π,∴πa 2=π2⇒a =-22;当a ≥0时,f (a )=e a -1=1⇒a =1.故a =-22或1. 二、填空题9.已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________. 解析:∵y =f (x 2-1)的定义域为[-3,3], ∴x ∈[-3, 3 ],x 2-1∈[-1,2], ∴y =f (x )的定义域为[-1,2]. 答案:[-1,2]10.已知函数y =lg(kx 2+4x +k +3)的定义域为R ,则实数k 的取值范围是________. 解析:∵函数y =lg(kx 2+4x +k +3)的定义域为R , ∴kx 2+4x +k +3>0对任意实数x 恒成立,若k =0,不等式化为4x +3>0,即x >-34,不合题意;若k ≠0,则⎩⎪⎨⎪⎧k >0,16-4k (k +3)<0,解得k >1.∴实数k 的取值范围是(1,+∞). 答案:(1,+∞)11.具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数.下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是________.(填序号)解析:对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x -x =-f (x ),满足题意; 对于②,f ⎝⎛⎭⎫1x =1x +x =f (x )≠-f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1.故f ⎝⎛⎭⎫1x =-f (x ),满足题意. 答案:①③12.(2016·北京高考)设函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤a ,-2x ,x >a .①若a =0,则f (x )的最大值为________;②若f (x )无最大值,则实数a 的取值范围是________. 解析:当x ≤a 时,由f ′(x )=3x 2-3=0,得x =±1.如图是函数y =x 3-3x 与y =-2x 在没有限制条件时的图象. ①若a =0,则f (x )max =f (-1)=2. ②当a ≥-1时,f (x )有最大值;当a <-1时,y =-2x 在x >a 时无最大值,且-2a >(x 3-3x )max , 所以a <-1.答案:①2 ②(-∞,-1) 三、解答题13.已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0.(1)求f (g (2))与g (f (2)); (2)求f (g (x ))与g (f (x ))的表达式. 解:(1)由已知,g (2)=1,f (2)=3, 因此f (g (2))=f (1)=0,g (f (2))=g (3)=2. (2)当x >0时,g (x )=x -1, 故f (g (x ))=(x -1)2-1=x 2-2x ; 当x <0时,g (x )=2-x ,故f (g (x ))=(2-x )2-1=x 2-4x +3.所以f (g (x ))=⎩⎪⎨⎪⎧x 2-2x ,x >0,x 2-4x +3,x <0.当x >1或x <-1时,f (x )>0, 故g (f (x ))=f (x )-1=x 2-2; 当-1<x <1时,f (x )<0, 故g (f (x ))=2-f (x )=3-x 2.所以g (f (x ))=⎩⎪⎨⎪⎧x 2-2,x >1或x <-1,3-x 2,-1<x <1. 14.水库的储水量随时间而变化,现用t 表示时间,以月为单位,以年初为起点,根据历年数据,某水库的储水量(单位:亿立方米)关于t 的近似函数关系式为:v (t )=⎩⎪⎨⎪⎧1240(-t 2+15t -51)e t +50,0<t ≤9,4(t -9)(3t -41)+50,9<t ≤12.(1)该水库的储水量小于50的时期称为枯水期,问:一年内哪几个月份是枯水期? (2)求一年内该水库的最大储水量. (取21的值为4.6计算,e 3的值为20计算) 解:(1)当0<t ≤9时,v (t )=1240(-t 2+15t -51)e t +50<50,即t 2-15t +51>0. 解得t >15+212或t <15-212,从而0<t <15-212≈5.2.当9<t ≤12时,v (t )=4(t -9)(3t -41)+50<50, 即(t -9)(3t -41)<0,解得9<t <413,所以9<t ≤12.综上,0<t <5.2或9<t ≤12,故枯水期分别为:1月,2月,3月,4月,5月,10月,11月,12月.(2)由(1)知,水库的最大蓄水量只能在6~9月份. v ′(t )=1240(-t 2+13t -36)e t =-1240e t (t -4)(t -9), 令v ′(t )=0,解得t =9或t =4(舍去), 又当t ∈(6,9)时,v ′(t )>0,v (t )单调递增; 当t ∈(9,10)时,v ′(t )<0,v (t )单调递减. 所以当t =9时,v (t )的最大值v (9)=1240×3×e 9+50=150(亿立方米), 故一年内该水库的最大蓄水量是150亿立方米.1.已知函数f (x )=⎩⎪⎨⎪⎧2x -1,0≤x ≤1,f (x -1)+m ,x >1在定义域[0,+∞)上单调递增,且对于任意a≥0,方程f (x )=a 有且只有一个实数解,则函数g (x )=f (x )-x 在区间[0,2n ](n ∈N *)上的所有零点的和为( )A.n (n +1)2 B .22n -1+2n -1C.(1+2n )22D .2n -1解析:选B 因为函数f (x )=⎩⎪⎨⎪⎧2x -1,0≤x ≤1,f (x -1)+m ,x >1在定义域[0,+∞)上单调递增,所以m ≥1.又因为对于任意a ≥0,方程f (x )=a 有且只有一个实数解,且函数f (x )=⎩⎪⎨⎪⎧2x -1,0≤x ≤1,f (x -1)+m ,x >1在定义域[0,+∞)上单调递增,且图象连续, 所以m =1.如图所示,函数g (x )=f (x )-x 在区间[0,2n](n ∈N *)上的所有零点分别为0,1,2,3, (2),所以所有的零点的和等于2n (1+2n )2=22n -1+2n -1.2.设函数f (x )=⎩⎪⎨⎪⎧x -[x ],x ≥0,f (x +1),x <0,其中[x ]表示不超过x 的最大整数,如[-1.5]=-2,[2.5]=2,若直线y =k (x -1)(k <0)与函数y =f (x )的图象只有三个不同的交点,则k 的取值范围为( )A.⎣⎡⎦⎤-12,-13B.⎝⎛⎭⎫-12,-13 C.⎝⎛⎦⎤-1,-12 D.⎝⎛⎭⎫-1,-12 解析:选C 作出函数f (x )=⎩⎪⎨⎪⎧x -[x ],x ≥0,f (x +1),x <0的图象如图所示.因为直线y =k (x -1)(k <0)与函数y =f (x )的图象只有三个不同的交点,所以⎩⎪⎨⎪⎧k (0-1)<1,k (-1-1)≥1,解得-1<k ≤-12.一轮复习检测题05 函数的单调性、奇偶性及周期性一、选择题1.(2017·北京高考)已知函数f (x )=3x -⎝⎛⎭⎫13x,则f (x )( ) A .是奇函数,且在R 上是增函数 B .是偶函数,且在R 上是增函数 C .是奇函数,且在R 上是减函数 D .是偶函数,且在R 上是减函数解析:选A 因为f (x )=3x -⎝⎛⎭⎫13x,且定义域为R ,所以f (-x )=3-x -⎝⎛⎭⎫13-x =⎝⎛⎭⎫13x -3x =-[ 3x -⎦⎤⎝⎛⎭⎫13x =-f (x ),即函数f (x )是奇函数. 又y =3x 在R 上是增函数,y =⎝⎛⎭⎫13x在R 上是减函数, 所以f (x )=3x -⎝⎛⎭⎫13x 在R 上是增函数.2.(2018·辽宁阶段测试)设函数f (x )=ln(1+x )+m ln (1-x )是偶函数,则( ) A .m =1,且f (x )在(0,1)上是增函数 B .m =1,且f (x )在(0,1)上是减函数 C .m =-1,且f (x )在(0,1)上是增函数 D .m =-1,且f (x )在(0,1)上是减函数解析:选B 因为函数f (x )=ln(1+x )+m ln(1-x )是偶函数, 所以f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,则(m -1)ln3=0,即m =1, 则f (x )=ln(1+x )+ln(1-x )=ln(1-x 2),因为x ∈(0,1)时,y =1-x 2是减函数,故f (x )在(0,1)上是减函数,故选B. 3.已知x ,y ∈R ,且x >y >0,则( ) A.1x -1y >0 B .sin x -sin y >0 C.⎝⎛⎭⎫12x -⎝⎛⎭⎫12y <0 D .ln x +ln y >0解析:选C A 项,考查的是反比例函数y =1x 在(0,+∞)上单调递减,因为x >y >0,所以1x -1y <0,所以A 错误;B 项,考查的是三角函数y =sin x 在(0,+∞)上的单调性,y =sin x 在(0,+∞)上不单调,所以不一定有sin x >sin y ,所以B 错误;C 项,考查的是指数函数y =⎝⎛⎭⎫12x 在(0,+∞)上单调递减,因为x >y >0,所以有⎝⎛⎭⎫12x <⎝⎛⎭⎫12y ,即⎝⎛⎭⎫12x -⎝⎛⎭⎫12y <0,所以C 正确;D 项,考查的是对数函数y =ln x 的性质,ln x +ln y =ln xy ,当x >y >0时,xy >0,不一定有ln xy >0,所以D 错误.4.(2016·山东高考)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12,则f (6)=( ) A .-2 B .-1 C .0D .2解析:选D 由题意可知,当-1≤x ≤1时,f (x )为奇函数,且当x >12时,f (x +1)=f (x ),所以f (6)=f (5×1+1)=f (1).而f (1)=-f (-1)=-[(-1)3-1]=2,所以f (6)=2.故选D.5.(2018·湖南联考)已知函数f (x )是R 上的奇函数,且在区间[0,+∞)上单调递增,若a =f ⎝⎛⎭⎫sin 2π7,b =f ⎝⎛⎭⎫cos 5π7,c =f ⎝⎛⎭⎫tan 5π7,则a ,b ,c 的大小关系为( ) A .b <a <c B .c <b <a C .b <c <aD .a <b <c解析:选B ∵π2<5π7<3π4,∴tan 5π7<-1<cos 5π7<0,又sin 2π7>0,∴tan 5π7<cos 5π7<sin 2π7.∵函数f (x )是R 上的奇函数,且在区间[0,+∞)上单调递增, ∴函数f (x )是R 上的增函数,∴c <b <a ,故选B.6.若函数f (x )=x 2+a |x |+2,x ∈R 在区间[3,+∞)和[-2,-1]上均为增函数,则实数a 的取值范围是( )A.⎣⎡⎦⎤-113,-3 B .[-6,-4] C .[-3,-22] D .[-4,-3]解析:选B 由函数f (x )为R 上的偶函数知,只需考虑f (x )在(0,+∞)上的单调性,由题意可知f (x )在[3,+∞)上为增函数,在[1,2]上为减函数,则只需函数y =x 2+ax +2的对称轴x =-a2∈[2,3]即可,故a ∈[-6,-4],选B.7.设函数f (x )=ln (1+|x |)-11+x 2,则使f (x )>f (2x -1)成立的x 的取值范围是( ) A.⎝⎛⎭⎫13,1 B.⎝⎛⎭⎫-∞,13∪(1,+∞) C.⎝⎛⎭⎫-13,13 D.⎝⎛⎭⎫-∞,13∪⎝⎛⎭⎫13,+∞ 解析:选A 由题意知,f (-x )=f (x ),所以函数f (x )是偶函数, 当x ≥0时,易得函数f (x )=l n (1+x )-11+x 2是增函数, 所以不等式f (x )>f (2x -1)等价于|2x -1|<|x |,解得13<x <1,则x 的取值范围是⎝⎛⎭⎫13,1.8.(2018·广州模拟)定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x )=f (x +4),且当x ∈(-1,0)时,f (x )=2x +15,则f (log 220)=( )A .1 B.45C .-1D .-45解析:选C 因为x ∈R ,且f (-x )=-f (x ),所以函数为奇函数, 因为f (x )=f (x +4),所以函数的周期为4. 所以f (log 220)=f (log 220-4)=f ⎝⎛⎭⎫log 254 =-f ⎝⎛⎭⎫-log 254=-f ⎝⎛⎭⎫log 245=-⎝⎛⎭⎫2log 245+15 =-⎝⎛⎭⎫45+15=-1,故选C. 二、填空题9.(2016·天津高考)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a-1|)>f (-2),则a 的取值范围是________.解析:∵f (x )是偶函数,且在(-∞,0)上单调递增, ∴f (x )在(0,+∞)上单调递减,f (-2)=f (2), ∴f (2|a -1|)>f (2),∴2|a -1|<2=212,∴|a -1|<12,即-12<a -1<12,即12<a <32.答案:⎝⎛⎭⎫12,3210.(2016·四川高考)已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝⎛⎭⎫-52+f (1)=________. 解析:∵f (x )为奇函数,周期为2, ∴f (1)=f (1-2)=f (-1)=-f (1),∴f (1)=0. ∵f (x )=4x ,x ∈(0,1),∴f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-52+2=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12=-412=-2. ∴f ⎝⎛⎭⎫-52+f (1)=-2. 答案:-211.已知定义在R 上的函数f (x )满足f (-x )=f (x ),且对于任意x 1,x 2∈[0,+∞),x 1≠x 2,均有f (x 2)-f (x 1)x 1-x 2>0.若f ⎝⎛⎭⎫-13=12,2f ⎝⎛⎭⎫log 18x<1,则x 的取值范围为________.解析:由f (-x )=f (x )可知,函数f (x )是偶函数, 因为对于任意x 1,x 2∈[0,+∞),x 1≠x 2,均有f (x 2)-f (x 1)x 1-x 2>0,即f (x 2)-f (x 1)x 2-x 1<0,所以函数f (x )在[0,+∞)上是减函数.又因为f ⎝⎛⎭⎫-13=12,所以2f ⎝⎛⎭⎫log 18x<1=2f ⎝⎛⎭⎫-13, 所以|log 18x |>13,即log 18x >13或log 18x <-13,所以0<x <12或x >2,即x 的取值范围为⎝⎛⎭⎫0,12∪(2,+∞). 答案:⎝⎛⎭⎫0,12∪(2,+∞) 12.(2017·江苏高考)已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数.若f (a-1)+f (2a 2)≤0,则实数a 的取值范围是________.解析:由f (x )=x 3-2x +e x -1e x ,得f (-x )=-x 3+2x +1e x -e x =-f (x ),所以f (x )是R 上的奇函数.又f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x ·1ex =3x 2≥0,当且仅当x =0时取等号, 所以f (x )在其定义域内单调递增. 因为f (a -1)+f (2a 2)≤0, 所以f (a -1)≤-f (2a 2)=f (-2a 2), 所以a -1≤-2a 2,解得-1≤a ≤12,故实数a 的取值范围是⎣⎡⎦⎤-1,12. 答案:⎣⎡⎦⎤-1,12 三、解答题13.已知函数f (x )是定义在R 上的偶函数,f (0)=0,当x >0时,f (x )=log 12x .(1)求函数f (x )的解析式; (2)解不等式f (x 2-1)>-2.解:(1)当x <0时,-x >0,则f (-x )=log 12(-x ).因为函数f (x )是偶函数,所以f (-x )=f (x ). 所以函数f (x )的解析式为f (x )=⎩⎨⎧log 12x ,x >0,0,x =0,log 12(-x ),x <0.(2)因为f (4)=log 124=-2,f (x )是偶函数, 所以不等式f (x 2-1)>-2可化为f (|x 2-1|)>f (4). 又因为函数f (x )在(0,+∞)上是减函数, 所以|x 2-1|<4,解得-5<x <5, 即不等式的解集为(-5,5).14.(2018·湖南长郡中学测试)已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (x )在[-1,1]上的解析式; (2)证明:f (x )在(0,1)上是减函数. 解:(1)当x ∈(-1,0)时,-x ∈(0,1). ∵f (x )是奇函数,∴f (x )=-f (-x )=-2-x4-x +1=-2x4x +1.由f (0)=f (-0)=-f (0),且f (1)=-f (-1)=-f (-1+2)=-f (1), 得f (0)=f (1)=f (-1)=0.∴在区间[-1,1]上,有f (x )=⎩⎨⎧2x4x +1,x ∈(0,1),-2x 4x+1,x ∈(-1,0),0,x ∈{-1,0,1}.(2)证明:当x ∈(0,1)时,f (x )=2x4x +1,设0<x 1<x 2<1,则f (x 1)-f (x 2)=2x 14 x 1+1-2x 24x 2+1=(2x 2-2x 1)(2x 1+x 2-1)(4 x 1+1)(4 x 2+1),∵0<x 1<x 2<1,∴2x 2-2x 1>0,2x 1+x 2-1>0, ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 故f (x )在(0,1)上是减函数.1.已知奇函数f (x )(x ∈D ),当x >0时,f (x )≤f (1)=2.给出下列命题: ①D =[-1,1];②对∀x ∈D ,|f (x )|≤2;③∃x 0∈D ,使得f (x 0)=0;④∃x 1∈D ,使得f (x 1)=1. 其中所有正确命题的个数是( ) A .0 B .1 C .2D .3解析:选A 由奇函数f (x )(x ∈D ),当x >0时,f (x )≤f (1)=2,只说明函数有最值,与定义域无关,故①错误;对于②,可能f (3)=-3,|f (3)|=3>2,故②错误;对于③,当0不在D 中,且x 轴为渐近线时,则不满足③; 当y =1为渐近线时,不满足④,因此选A.2.已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2),若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( )A.⎣⎡⎦⎤-13,13B.⎣⎡⎦⎤-33,33 C.⎣⎡⎦⎤-16,16 D.⎣⎡⎦⎤-66,66 解析:选D 当x ≥0时,f (x )=⎩⎪⎨⎪⎧-x ,0≤x <a 2,-a 2,a 2≤x <2a 2,x -3a 2,x ≥2a 2,作出函数图象,再根据函数为奇函数画出x <0时的图象如图所示,由题意,要满足∀x ∈R ,f (x -1)≤f (x )恒成立,所以应满足2a 2-(-4a 2)≤1,解得a ∈⎣⎡⎦⎤-66,66.。
2019年高考数学文科第二轮专题 集合与常用逻辑用语(命题猜想)
【考向解读】集合与常用逻辑用语在高考中是以选择题或填空题的形式进行考查的,属于容易题.但命题真假的判断,这一点综合性较强,联系到更多的知识点,属于中挡题.预测高考会以集合的运算和充要条件作为考查的重点.【命题热点突破一】集合的关系及运算集合是高考每年必考内容,题型基本都是选择题、填空题,题目难度大多数为最低档,有时候在填空题中以创新题型出现,难度稍高.在复习中,本部分应该重点掌握集合的表示、集合的性质、集合的运算及集合关系在常用逻辑用语、函数、不等式、三角函数、解析几何等方面的应用.同时注意研究有关集合的创新问题,研究问题的切入点及集合知识在相关问题中所起的作用.1.集合的运算性质及重要结论 (1)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A . (2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U . (4)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解; (2)若已知的集合是点集,用数形结合法求解; (3)若已知的集合是抽象集合,用Venn 图求解. 例1、(2018年全国卷Ⅱ)已知集合,,则A.B.C.D.【答案】C 【解析】,,故选C 。
【变式探究】【2017全国卷1,文1】已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A I B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A I B =∅C .A U B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A U B=R【答案】A【解析】由320x ->得32x <,所以,选A .【变式探究】设集合,则S T =I ( )(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) 【答案】D 【解析】由解得3x ≥或2x ≤,所以,所以,故选D .【变式探究】【2017天津,文2】设x ∈R ,则“20x -≥”是“|1|1x -≤”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】B【变式探究】设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的( )(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 【答案】C【解析】由题意得,,故是必要不充分条件,故选C.【感悟提升】充分条件与必要条件的三种判定方法(1)定义法:正、反方向推理,若p ⇒q ,则p 是q 的充分条件(或q 是p 的必要条件);若p ⇒q ,且q ⇏p ,则p 是q 的充分不必要条件(或q 是p 的必要不充分条件).(2)集合法:利用集合间的包含关系.例如,若A ⊆B ,则A 是B 的充分条件(B 是A 的必要条件);若A =B ,则A 是B 的充要条件.(3)等价法:将命题等价转化为另一个便于判断真假的命题.【变式探究】(1)设α,β是两个不同的平面,m 是直线且m ⊂α.则“m ∥β”是“α∥β”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B(2)给出下列命题:①若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ②a =b 的充要条件是|a |=|b |且a ∥b ;③在△ABC 中,sin A >sin B 的充要条件为A >B ;④在△ABC 中,设命题p :△ABC 是等边三角形,命题q :a ∶b ∶c =sin B ∶sin C ∶sin A ,那么命题p 是命题q 的充分不必要条件.其中正确的命题为________.(把你认为正确的命题序号都填上) 【答案】①③【解析】①正确.因为AB →=DC →, 所以|AB →|=|DC →|且AB →∥DC →,又A ,B ,C ,D 是不共线的四点,所以四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则AB →∥DC →且|AB →|=|DC →|,因此AB →=DC →.②不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.【点评】判断充分、必要条件时应注意的问题(1)先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A .9. (2018年北京卷)设a,b,c,d 是非零实数,则“ad =bc ”是“a,b,c,d 成等比数列”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 【答案】B10. (2018年天津卷)设,则“”是“” 的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】A 【解析】求解不等式可得,求解绝对值不等式可得或,据此可知:“”是“”的充分而不必要条件,本题选择A 选项。
2019版高考数学:§1.2 常用逻辑用语
也为真;若{an}是递减数列,则an+1<an,∴an+an+1<2an,∴
an
an1 2
<an,故其逆命题也是真命题,则其
否命题也是真命题.故选A.
2019年7月10日
你是我今生最美的相遇遇上你是我
8
的缘
6.(2018北京,11,5分)能说明“若a>b,则 1 < 1 ”为假命题的一组a,b的值依次为
2019年7月10日
你是我今生最美的相遇遇上你是我
16
的缘
8.(2015重庆,2,5分)“x=1”是“x2-2x+1=0”的 ( )
A.充要条件
B.充分而不必要条件
C.必要而不充分条件 D.既不充分也不必要条件
答案 A 若x=1,则x2-2x+1=0;若x2-2x+1=0,即(x-1)2=0,则x=1.故选A.
2019年7月10日
你是我今生最美的相遇遇上你是我
2
的缘
考点二 充分条件与必要条件
(2014课标Ⅱ,3,5分,0.501)函数f(x)在x=x0处导数存在.若p:f ‘(x0)=0;q:x=x0是f(x)的极值点,则 ( ) A.p是q的充分必要条件 B.p是q的充分条件,但不是q的必要条件 C.p是q的必要条件,但不是q的充分条件 D.p既不是q的充分条件,也不是q的必要条件 答案 C ∵f(x)在x=x0处可导,∴若x=x0是f(x)的极值点,则f ‘(x0)=0,∴q⇒p,故p是q的必要条件; 反之,以f(x)=x3为例,f ’(0)=0,但x=0不是极值点,∴p⇒ /q,故p不是q的充分条件.故选C.
你是我今生最美的相遇遇上你是我
13
2019版高考数学精选地区1.2 常用逻辑用语
梅花三麓专业文档
8
7.(2014福建,6,5分)直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“△OAB的面积为
1 ”的 ( )
2
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件 D.既不充分又不必要条件
答案 A 当k=1时,l:y=x+1,由题意不妨令A(-1,0),B(0,1),则S△AOB= 12 ×1×1= 12 ,所以充分性成立; 当k=-1时,l:y=-x+1,也有S△AOB= 12 ,所以必要性不成立.
2.(2014辽宁,5,5分)设a,b,c是非零向量.已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则 a∥c.则下列命题中真命题是 ( ) A.p∨q B.p∧q C.(¬p)∧(¬q) D.p∨(¬q)
答案 A 由题意知命题p为假命题,命题q为真命题,所以p∨q为真命题.故选A.
4
x≤1,∵“∀x∈ 0, 4
,tan
x≤m”是真命题,∴m≥1.∴实数m的最
小值为1.
2019年4月28日
梅花三麓专业文档
14
C组 教师专用题组
考点一 命题及其关系
1.(2012课标,3,5分)下面是关于复数z= 2 的四个命题:
1 i
p1:|z|=2, p2:z2=2i, p3:z的共轭复数为1+i, p4:z的虚部为-1. 其中的真命题为 ( )
答案 B “3a>3b>3”等价于“a>b>1”,“loga3<logb3”等价于“a>b>1或0<a<1<b或0<b<a< 1”,从而“3a>3b>3”是“loga3<logb3”的充分不必要条件.故选B.
推荐2019版高考数学文科一轮复习(北京卷B版)课件:1.2 常用逻辑用语
故选D.
考点四
围是
全称命题与特称命题
.
(2012北京,14,5分)已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若∀x∈R, f(x)<0或g(x)<0,则m的取值范
答案 (-4,0) 解析 由g(x)=2x-2<0,解得x<1. ∵∀x∈R, f(x)<0或g(x)<0, ∴当x≥1时, f(x)<0恒成立, 即f(x)=m(x-2m)(x+m+3)<0恒成立,
性成立.由m· n<0,可得m,n的夹角为钝角或180°,故必要性不成立.故选A.
y2 2 的充分必要条件是 ( 5.(2013北京,7,5分)双曲线x - =1的离心率大于 m 1 A.m> B.m≥1 C.m>1 D.m>2 2
2
)
答案 C
c 1 m y2 双曲线x - =1中,a=1,b= m ,则c= 1 m ,离心率e= = > 2 ,解得m>1.故选C. a m 1
1 1 ba a b ab 1 1 故当a>0,b<0时,能说明“若a>b,则 < ”为假命题. a b 1 a 1 b
若a>b,则 < 为真命题,则 - = <0,∵a>b,∴ab>0.
考点二
充分条件与必要条件
) B.必要而不充分条件
1.(2018北京,4,5分)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的 ( A.充分而不必要条件 C.充分必要条件
)
答案 D 命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根, 则m≤0”,故选D.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
决胜2019届高考数学(文)一轮复习专题卷
跟踪知识梳理
考纲解读:
1.了解原命题和原命题的逆命题、否命题、逆否命题的含义,及其相互之间的关系.
2.理解命题的必要条件、充分条件、充要条件的意义,能判断并证明命题成立的充分条件、
必要条件、充要条件.
考点梳理:
1.命题
用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.
2.四种命题及其关系
(1)四种命题间的相互关系
(2)四种命题的真假关系
①两个命题互为逆否命题,它们有相同的真假性;
②两个命题为互逆命题或互否命题,它们的真假性没有关系.
3.充分条件、必要条件与充要条件的概念
若p⇒q,则p是q的充分条件,q是p的必要条件
p是q的充分不必要条件p⇒q且q⇒/p
p是q的必要不充分条件p⇒/q且q⇒p
p是q的充要条件p⇔q
p是q的既不充分也不必要条件p⇒/q且q⇒/p
核心能力必练
一、选择题
1.2018天津,4,5分)设x∈R,则“ < ”是“x3<1”的 ( )
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
【答案】
A
2.(2018山东济南外国语中学3月月考,3)设a>b,a,b,c∈R,则下列命题为真命题的是 ( ) A.ac2>bc2 B. >1
C.a-c>b-c
D.a2>b2
【答案】C
【解析】对于选项A,a>b,若c=0,则ac2=bc2,故A错;对于选项B,a>b,若a>0,b<0,则 <1,故B错; 对于选项C,a>b,则a-c>b-c,故C正确;对于选项D,a>b,若a,b均小于0,则a2<b2,故D错,综上,真命题
为C.
3.(2018河南郑州一模,3)下列说法正确的是 ( )
A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”
B.“若am2<bm2,则a<b”的逆命题为真命题
C.存在x0∈(0,+∞),使0
3x>04x成立
D.“若sin α≠1
2,则α≠6
”是真命题
【答案】D
【解析】对于选项A,“若a>1,则a2>1”的否命题是“若a≤1,则a2≤1”,故选项A错误;对于选项。