Early Biomarkers in 1H Nuclear Magnetic Resonance Spectroscopy of Striatal Pathological Me
nmr_精品文档
NMRNuclear Magnetic Resonance (NMR) is a powerful analytical technique used to obtain detailed information about the structure, dynamics, and interactions of molecules. It is widely used in various scientific fields including chemistry, biology, and materials science. In this article, we will explore the principles, applications, and benefits of NMR.Principles of NMRAt its core, NMR relies on the magnetic properties of atomic nuclei and their interaction with an external magnetic field. When placed in a strong magnetic field, certain atomic nuclei can absorb and re-emit electromagnetic radiation at specific resonant frequencies. This resonance frequency is highly sensitive to the chemical environment around the nucleus, providing valuable structural and chemical information.The process of NMR involves several key steps:1.Sample Preparation: The sample of interest is dissolved in a suitablesolvent and placed in a glass tube or NMR sample holder.2.Magnetization: The sample is placed in a strong magnetic field,typically generated by a superconducting magnet. This aligns the nuclear spins with the magnetic field.3.Radiofrequency Excitation: A radiofrequency pulse is applied to thesample to perturb the aligned nuclear spins.4.Signal Detection: After the excitation, the nuclear spins return totheir original alignment and emit a detectable signal. This signal is called the Free Induction Decay (FID).5.Signal Processing: The FID signal is processed using varioustechniques to extract valuable information about the sample, such as chemical shifts, coupling constants, and relaxation times.Applications of NMRNMR has a wide range of applications across various scientific disciplines. Some of the key applications include:Structural ElucidationNMR spectroscopy is widely used for determining the structure of organic compounds, including complex natural products and synthetic molecules. By analyzing the chemical shifts and coupling patterns in the NMR spectrum,researchers can decipher the connectivity of atoms within a molecule and derive useful structural information.Drug DiscoveryNMR plays a crucial role in drug discovery and development. It is used to study the interactions between drug candidates and their target molecules, helping researchers understand the binding affinity, specificity, and mode of action of potential drugs. NMR can also be used to determine the three-dimensional structure of proteins and protein-ligand complexes, enabling structure-based drug design.MetabolomicsNMR spectroscopy is widely employed in metabolomics, which is the comprehensive analysis of the small molecules (metabolites) present in biological samples. By analyzing the NMR spectra of biological fluids such as blood, urine, and cerebrospinal fluid, researchers can gain insights into metabolic pathways, identify biomarkers of diseases, and understand the impact of external factors on metabolism.Material CharacterizationNMR is a versatile tool for the characterization of various materials, including polymers, catalysts, and solids. It can provide valuable information about the molecular structure, composition, and dynamics of materials, helping researchers optimize their properties and understand their behavior.Benefits of NMRNMR offers several significant advantages compared to other analytical techniques:1.Non-Destructive: NMR analysis is non-destructive, meaning thesample remains intact after measurement. This allows for further analysis or repeat experiments if required.2.Quantitative Analysis: NMR can provide quantitative informationabout the composition and concentration of components within a sample. By calibrating the NMR signal against known standards, precise measurements can be obtained.3.Highly Informative: NMR provides rich and detailed structuralinformation, allowing researchers to study molecular structures, dynamics, and interactions in great detail.4.Versatility: NMR can be applied to a wide range of samples, includingliquids, solids, and gases. It is also compatible with a variety of isotopes,allowing researchers to investigate different elements and isotopic labelingtechniques.5.Reliability: NMR is a well-established technique with a high level ofreliability. It has been extensively validated and is widely used in bothacademic and industrial settings.ConclusionNMR spectroscopy is a versatile and powerful analytical technique that provides valuable information about the structure, dynamics, and interactions of molecules. Its applications span across various scientific disciplines, ranging from structural elucidation and drug discovery to metabolomics and material characterization. With its non-destructive nature, quantitative capabilities, and detailed structural insights, NMR continues to play a pivotal role in scientific research and development.。
第十五章核磁共振要点资料讲解
The Nobel Prize in Physiology or Medicine 2003
2003年诺贝尔生理或医学奖授予美国的保罗·C·劳特伯(Paul C. Lauterbur) 和英国的皮特·曼斯菲尔德(Peter Mansfield),因为他们发明了磁共振成像 技术(Magnetic Resonance Imaging, MRI)。该项技术可以使 人们能够无损 伤地从微观到宏观系统地探测生物活体的结构和功能,为医疗诊断和科学 研究提供了非常便利的 手段。
Felix Bloch Stanford University Stanford, CA, USA
Edward Mills Purcell Harvard University Cambridge, MA, USA
The Noble Prize in Chemistry 1991 瑞士科学家恩斯特,发明了傅立叶变
P h I(I 1) 2π
PZ
m
h 2π
m I, I 1, I 2, , I
cos θ m I(I 1)
(2I 1) 个
E2hH0
E 1 2
1 h
2
2
H0
1 h
E 1 2
2
2
H0
z
Pz
h 2
m
E
zH 0
m
h 2
H0
1 H 在外磁场中只有
m1 2及m Nhomakorabea1 2
两种取向
m 1时 2
The Nobel Prize in Physiology or Medicine 2003
彼得·曼斯菲尔德
保罗·劳特布尔(美) 彼得·曼斯菲尔德(英)
在如何用核磁共振技术拍摄 不同结构的图像上获得了关键 性发现。这些发现导致了在临 床诊断和医学研究上获得突破 的核磁共振成像仪的出现。
原发性肝癌阳虚证患者血清代谢组特征初步研究_陈群伟
收稿日期:2011-10-28基金项目:国家自然科学基金资助项目(30873219)作者简介:陈群伟(1978-),男,浙江浦江人,主治医师,博士,研究方向:中西医结合肿瘤防治研究。
通讯作者:黄雪强(1967-),男,浙江嘉兴人,副教授、副主任医师,硕士,研究方向:中西医结合肿瘤防治研究。
[6]滕瑞芝,解信章,张丰森.氧化苦参碱注射液治疗慢性湿疹48例疗效观察[J ].山东医药,2007,47(11):79.[7]黄国坚,贺祖秀,苏敏.中西药内服外用治疗慢性湿疹100例临床分析[J ].CJTCM ,2007,10(19):476.[8]刘宇.黄柏止痒洗剂治疗肛周湿疹180例疗效观察[J ].山东医药,2010,50(9):102.[9]王占威.中药外洗治疗肛门湿疹40例临床观察[J ].中国现代药物应用,2010,4(9):128.[10]李仙.中药薰洗治疗双手湿疹18例[J ].中华中西医学杂志,2010,8(5):33.[11]徐蓉,李福伦,张琳玲.槐虎乳膏治疗慢性湿疹的随机对照临床研究[J ].西医结合学报,2008,12(12):1246.[12]李玮.自拟湿疹膏治疗外耳湿疹108例[J ].浙江中医杂志,2008,43(2):74.[13]蒋玲.46例中药熏蒸治疗慢性湿疹的疗效观察及护理[J ].当代护理,2007,7(1):71.[14]来文华,顾科峰,高宜云.四物消风汤加中药熏蒸汽治疗慢性湿疹[J ].浙江中西医结合杂志,2010,20(6):368.[15]陈进荣.硼硫散治急慢性湿疹1173例[J ].中国民间疗法,1996,2(37):37.[16]郑雄彦,杜文敏,文焕琛.消炎止痒喷雾剂治疗肛周湿疹48例疗效观察[J ].护理研究,2009,9(297):2307.[17]李军,汤长明,庞晓东.湿疹净喷雾剂治疗湿疹的效果[J ].实用医药杂志,2003,3(3):198.[18]王显超,韩寿英,王晓蔷.乌蛇酊治疗慢性湿疹30例[J ].中医药信息,2001,18(5):33.[19]魏江玲.湿疮酊治疗慢性湿疹40例临床疗效观察[J ].中国民族民间医药杂志,2006,79:92.[20]杨金鸽.清开灵湿敷治疗慢性肛周湿疹72例[J ].实用中医药杂志,1999,15(7):38。
第三讲 核磁共振氢谱
关于自旋-自旋偶合及偶合常数
(1)偶合体系中化学位移值的读取;
d B标准-B样品 x 106
B标准
d
样品-标准 标准
x 106
(2)偶合常数的读取;
(3)数根图的熟练运用。
54
§3.5 简化1H NMR的谱的实验方法
重水交换法:与氧、氮、硫等相连的氢是 活泼氢,在溶液中它们可以进行不断的交换。如 果样品分子中含有这些基团,在作完谱图后滴加 几滴重水,振荡,然后重新作图,此时活泼氢已 被氘取代,相应的谱峰消失,由此可以完全确定 它们的存在。
N 1.03
O H 2.55 H H
H 2.93
1.80
H
H
39
9.87 2.96
OH
HH O
H H
N
H
H H 8.02
2.88
6.69 H
H 5.23 H
H
H
5.74
H 5.28 H
3.72
H
H
1.25
O
HH
O
2.05
4.12 H
O
HH
3.48
O H
2.35 N
HH H
1.26
2.53 H N
HH
19
3、相邻键的磁各向异性 (1)叁键:
20
(2)双键:
21
(3)环状共轭体系的环电流效应 苯环:环电流产生的磁力线方向在苯环上、
下方与外磁场磁力线方向相反,但在苯环侧面 (苯环的氢正处于苯环侧面),二者的方向是相同 的。即环电流增强了外磁场,氢核被去屏蔽, 共振谱峰位置移向低场。
22
不仅是苯,所有具有4n+2个离域p电子的
核磁共振波谱NMR
核磁共振波谱仪
nuclear magnetic resonance spectrometer
外加磁场
探头
高频电磁波发生 器及接受器
数据处理及记录
核磁共振原理及仪器简介
超导磁铁 superconductive magnet
200MHz以上高频谱仪采用超导磁体利用铌钛合 金在液氦中(温度4K)的超导性质。只要不破坏超
分辨 率高
连续波NMR仪器(CW-NMR)
脉冲FT-NMR
样品的制备
试样浓度
标样浓度
溶剂
氘代溶剂
5-10%;需要纯 样品15-30 mg;
傅立叶变换核 磁共振波谱仪需 要纯样品1 mg
(四甲基硅 烷 TMS)
1%;
1H谱 四 氯化碳, 二硫化碳
氯仿,丙酮、 苯、二甲基亚 砜的氘代物;
样品的制备
在测试样品时,选择 合适的溶剂配制样品 溶液,样品的溶液应 有较低的粘度,否则 会降低谱峰的分辨率。 若溶液粘度过大,应 减少样品的用量或升
质子跃迁时需要的能量: ΔE =2μHH0
电磁波的能量:
ΔE’=hν
发生核磁共振时 : ΔE=ΔE’
所以
hν=2μHH0
μH:自旋磁矩(2.79核磁子,1.41×10-23尔格/高斯)
2μH
V = h H0
H0: 外加磁场强度
h: 普朗克常数 (6.6256×10-27 尔格/秒)
ν: 电磁波频率
核磁共振原理及仪器简介
1952~1953
1952年Standford大 学的Bloch和Harvard 大学的Purcell独立证 实了上述假设。获 Nobel Prize 。1953年, 第一台NMR仪器FTNMR
核磁共振基本原理和结构鉴定
R. R. Ernst 恩斯特
The Winner of The Nobel Prize
in Chemistry (1991)
FT-NMR and 2DNMR
The Winner of The Nobel Prize in
biomacromolecule (2002)
发明了利用核磁共振技术测定溶液 中生物大分子三维结构的方法
(1)与外磁场平行,能量低,磁量子数m=+1/2
(2)与外磁场相反,能量高,磁量子数m=-1/2
根据电磁学理论,核磁矩与外磁场相互作用 而产生核磁场作用能E,即各能级的能量为
I=1/2的核自旋能级裂分与H0的关系
E
h
2
mH0
E 无磁场
外加磁场 m =-1/2 E2 △E
m =1/2 E1
I=1/2的核在磁场中, 由低能级(E1)向高能 级(E2)跃迁时,所需 的能量(△E)为
核磁共振现象产生的条件?
一、原子核的自旋 atomic nuclear spin
★ 原子核的基本属性:质量和电荷数。
★ 原子核的自旋特性,在量子力学中用自旋量子数I描述原子 核的运动状态。而自旋量子数I的值又与核的质量数和所带电 荷数有关,即与核中的质子数和中子数有关。
若原子核存在自旋,产生自旋角动量:
核磁共振波谱是物质与电磁波相互作用而产生的,属 于吸收谱(波谱)范畴。
根据核磁共振波谱图上共振峰的位置、强度和精细结 构可以研究纯化合物结构、混合物成分及定量分析等。
特点:
▪ 与通常的吸收光谱相比,其来源不同,来源于 原子核自旋跃迁所得吸收谱; ▪ 应用范围广,有机、无机、定性、结构分析、 定量等; ▪ 不需要标准样品,可直接进行定量; ▪ 不破坏样品; ▪ 只能研究磁性核 。
肿瘤转移英文版
Tumor cells detach from the primary tuber and enter the bloodstream or lymphatic system
Linear metastasis
Cancer cells spread through the linear system to linear nodes and other issues
Site specific metathesis: Some tutor cells have the ability to preferentially identify specific organizations or issues, often related to their issues of origin
English version of tumor metastasis
目录
contents
Overview of Tumor MetastasisThe mechanism of tuber metastasisDiagnosis and monitoring of tuber metastasisTreatment of tuber metastasisPrevention and control of tuber metastasis
The mechanism of tuber metastasisBiblioteka CATALOGUE02
Self renew
Tumor cells have the ability to replicate and form new Tumor cells
Tumor cells can invade surrounding issues and migrate to other parts of the body
代谢组学的英语
代谢组学的英语Metabolomics: Unraveling the Complexity of Biological SystemsMetabolomics, a rapidly evolving field in the realm of systems biology, has emerged as a powerful tool for understanding the intricate workings of living organisms. This discipline focuses on the comprehensive analysis of the small molecules, known as metabolites, that are produced and consumed within biological systems. By studying the metabolome, the complete set of metabolites present in a cell, tissue, or organism, researchers can gain invaluable insights into the dynamic and interconnected processes that sustain life.The origins of metabolomics can be traced back to the early 20th century, when scientists began to recognize the importance of studying the chemical composition of living organisms. However, it was not until the advent of modern analytical technologies, such as mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, that the field truly began to flourish. These advanced techniques have enabled researchers to detect and identify a wide range of metabolites, from simple sugars and amino acids to complex lipids and secondary metabolites.One of the key advantages of metabolomics is its ability to provide a comprehensive snapshot of the physiological state of a biological system. Unlike genomics, which focuses on the genetic blueprint, or proteomics, which examines the expression of proteins, metabolomics offers a more direct and dynamic representation of the functional activities within a cell or organism. By analyzing the metabolic profiles of samples, researchers can identify biomarkers –specific metabolites or patterns of metabolites – that are associated with particular physiological or pathological conditions.The applications of metabolomics are vast and diverse, spanning a wide range of disciplines, from medicine and agriculture to environmental science and biotechnology. In the field of medicine, metabolomics has been instrumental in the early detection and diagnosis of diseases, the monitoring of disease progression, and the development of personalized treatment strategies. By identifying unique metabolic signatures associated with various health conditions, such as cancer, diabetes, and neurological disorders, clinicians can develop more targeted and effective interventions.Moreover, metabolomics has become a valuable tool in the field of drug discovery and development. By studying the metabolic responses of cells or organisms to the introduction of potential drug candidates, researchers can gain insights into the mechanisms ofaction, potential side effects, and optimal dosing regimens. This information can help streamline the drug development process and improve the chances of success for new therapeutic agents.In the realm of agriculture, metabolomics has found applications in the optimization of crop yields, the development of sustainable farming practices, and the detection of food contaminants or adulterants. By analyzing the metabolic profiles of plants, researchers can identify key metabolites that are associated with desirable traits, such as increased yield, stress tolerance, or nutritional value. This knowledge can then be used to guide breeding programs or to inform the development of more efficient agricultural practices.Beyond its applications in medicine and agriculture, metabolomics has also made significant contributions to our understanding of environmental processes and the study of microbial communities. By analyzing the metabolic signatures of environmental samples, such as soil, water, or air, researchers can gain insights into the complex interactions between living organisms and their surrounding ecosystems. This information can be used to monitor the health of natural environments, detect the presence of pollutants or toxins, and develop strategies for environmental remediation.Despite the numerous advancements in the field of metabolomics, there are still significant challenges that researchers must overcome.The complexity of biological systems, the vast diversity of metabolites, and the inherent variability in analytical techniques can all contribute to the difficulty in interpreting and integrating metabolomics data. Additionally, the development of comprehensive databases and standardized data analysis workflows remains an ongoing effort, as researchers strive to create a more unified and streamlined approach to metabolomics research.Nonetheless, the potential of metabolomics to transform our understanding of biological systems is undeniable. As the field continues to evolve, we can expect to see an increasing number of groundbreaking discoveries and innovative applications that will have far-reaching impacts on fields as diverse as medicine, agriculture, and environmental science. By unraveling the complex web of metabolic interactions within living organisms, metabolomics holds the promise of unlocking new avenues for improving human health, enhancing food production, and protecting the delicate balance of our natural world.。
大学有机化学核磁共振氢谱
只有当I > O,才能发生共振吸收,产生共振信号。 2.自旋核在外加磁场中的取向 (在没有外电场时,自旋核的取向是任意的)。
1H核 :自 旋 取 向 数=2× 1/2+1=2
H'
H'
即 : H核 在 外 场 有 两 个 自 旋 方 向 相 反 的 取 向 。
一致H0相反
3. 磁共振的产生
核在外加磁场中的取向:每一个取向都代表 一个能级状态
18双键碳上的质子烯烃双键碳上的质子位于键环流电子产生的感生磁场与外加磁场方向一致的区域称为去屏蔽区去屏蔽效应的结果使烯烃双键碳上的质子的共振信号移向稍低的磁场优秀课件精彩无限
核磁共振氢谱
Nuclear Magnetic Resonance (1HNMR)
核磁共振是指具有磁矩的原 子核在恒定磁场中由电磁波 引起的共振跃迁现象。
a bc
C3HC2HC2HC l
红外光谱的八个峰区
4 C3H6O2 IR
=1 NMR
3400cm-1 1700cm-1 11.3 (单峰 1H) 2.3 (四重峰 2H) 1.2 (三重峰 3H)
答案:CH3CH2COOH
C7H8O IR 3300,3010,1500,1600,730,690cm-1
显然,核外电子云密度越大,屏蔽效应越强,要发生 共振吸收就势必增加外加磁场强度,共振信号将移向高 场区;反之,共振信号将移向低场区。
低 场
屏 蔽 效 应 , 共 振 信 号 移 向 高 场
H 0 高 场
去 屏 蔽 效 应 , 共 振 信 号 移 向 低 场
因此,H核磁共振的条件是:
2H实2H( 01)
试 样 的 共 振 频 率
标 准 物 质 T M S 的 共 振 频 率
核磁氢谱(中)ppt课件
d
ቤተ መጻሕፍቲ ባይዱ精选课件PPT
c CH3
CH
CH3
Hb
5.00-6.00ppm部分
4
2.同碳偶合(偕偶)
同碳质子间相隔两个化学键(C H ),偶合常数2JHH一般为负
值,有时为正值。
H
分子结构对2JHH影响很大。 如:sp3碳原子的同碳质子偶合常数可从 -30Hz到+6Hz
CH2,CH3,CH4等偶合只有单峰。同碳质子为磁全同质子。 量子力学表明:磁等价的质子在受激允许跃迁时所吸收能量与
如取代基通过超共轭效应吸引偶合键上电子云
2JHH向负方向变化
CH4
-12.4
O=C(CH3)2 -14.9
H HC
H
CO
精选课件PPT
CH3
10
3.远程偶合
远程偶合:质子之间通过四个(4JH-C-C-C-H)或四 个以上键偶合
多数情况下通过π键和张力环传递。(烯、炔、 芳烃、杂环、小环或桥环)
J值一般为0~3Hz
HcHa反式偶合
0~-3Hz
精选课件PPT
12
丙烯型远程偶合常数为跨三个单键及一个双键的偶合
HA
C
HB
CHC C
精选课件PPT
13
高丙烯式偶合 :
远J +1.0~ +5.0 与两面角有关
H C
C
H
C
C
精选课件PPT
H C
C
C
C
H
14
“W”效应:饱和化合物的远程偶合一般观察不到。 但如质子相隔四个单键为“W”(或M型)(4JHH)固定 碳架,饱和体系也可观察到强的偶合
H
基于^1h-mrs探究乳腺浸润性导管癌化疗后幸存者记忆功能改变的海马代谢
基于1H-MRS探究乳腺浸润性导管癌化疗后幸存者记忆功能改变的海马代谢刘同辉,李朋,周琳,陈瑞,冯伟,张华文*陕西省核工业二一五医院医学影像科,陕西咸阳712000;*通讯作者张华文 1579226281@【基金项目】陕西省重点研发计划(2019SF-209)【摘要】目的应用氢质子磁共振波谱分析(1H-MRS)研究乳腺癌化疗幸存者海马代谢与记忆功能的关系。
资料与方法选择经病理证实并行EC-T化疗的乳腺浸润性导管癌29例,同期选择健康志愿者42例为对照组。
所有受试者先行听觉词语测试(AVLT-H)及数字广度测试评分,后行全脑3DT1WI扫描,选取双侧海马为感兴趣区,行单体素1H-MRS扫描,采用MR仪配套工作站进行海马波谱数据测量,对双侧海马波谱数据及量表评分进行分析,并对有差异的结果与化疗后病程进行相关性分析。
结果两组受试者AVLT-H及数字广度测试评分差异无统计学意义(P>0.05)。
乳腺癌组右侧海马胆碱浓度高于对照组(14.39±3.27比12.38±3.22,t=2.46,P=0.02),左侧海马N-乙酰基天门冬氨酸(NAA)/肌酸值低于对照组(1.23±0.18比1.35±0.24,t=-2.15,P=0.04)。
乳腺癌组左侧NAA、肌酸浓度、胆碱浓度、胆碱/肌酸值与对照组比较,差异无统计学意义(P>0.05)。
乳腺癌组化疗后的左侧海马NAA/肌酸值、右侧海马胆碱浓度与化疗后病程无明显相关性(r=-0.22、-0.04,P>0.05)。
结论接受标准EC-T化疗的乳腺浸润性导管癌幸存者海马代谢仍然存在异常,且这种代谢异常与化疗后病程无明显关系,但记忆功能恢复至正常水平。
【关键词】癌,导管,乳腺;药物疗法;磁共振成像;磁共振波谱学;记忆障碍;海马【中图分类号】R445.2;R737.9 【DOI】10.3969/j.issn.1005-5185.2020.05.004Hippocampal Metabolism of Survivors with Memory Function After Chemotherapy with Invasive Ductal Carcinoma of the Breast Based on 1H-MRSLIU Tonghui, LI Peng, ZHOU Lin, CHEN Rui, FENG Wei, ZHANG Huawen*Department of Medical Imaging, No.215 Hospital of Shaanxi Nuclear Industry, Xianyang 712000, China; *Address Correspondence to:ZHANG Huawen; E-mail:1579226281@【Abstract】Purpose To investigate the relationship between hippocampal metabolism and memory function in survivors of breast cancer chemotherapy using hydrogen proton magnetic resonance spectroscopy (1H-MRS), and to analyzed the relationship between hippocampal metabolic abnormalities and memory function. Materials and Methods Twenty-nine cases of breast invasive ductal carcinoma confirmed by pathology and EC-T chemotherapy were selected, and 42 healthy volunteers were selected as the control group during the same period. All subjects were first scored by the auditory vocabulary test (AVLT-H) and digital breadth test, and then the whole brain 3DT1WI scan was selected, the bilateral hippocampus was selected as the area of interest, and the single element 1H-MRS scan was performed using the MR instrument supporting workstation. Measurement of hippocampal spectrum data, analysis of bilateral hippocampal spectrum data and scale scores, and correlation analysis of differences between the results and the course of disease after chemotherapy. Results There was no significant difference in AVLT-H and digital breadth test scores between the two groups of subjects (P>0.05). The right hippocampal choline concentration in the breast cancer group was higher than that in the control group (14.39±3.27 vs. 12.38±3.22, t=2.46, P=0.02), and the left hippocampus N-acetylaspartate (NAA)/creatine value was lower in the control group (1.23±0.18 vs. 1.35±0.24, t=-2.15, P=0.04). Compared with the control group, the NAA, creatine concentration, choline concentration, and choline/creatine value on the left side of the breast cancer group were not statistically significant (P>0.05). In the breast cancer group, the NAA/creatine value of the left hippocampus and the concentration of choline on the right hippocampus were not significantly correlated with the course of the disease after chemotherapy (r=-0.22, -0.04, P>0.05). Conclusion The metabolism of hippocampus in survivors of breast invasive ductal carcinoma who received standard EC-T chemotherapy is still abnormal, and this metabolic abnormality has no obvious relationship with the course of the disease after chemotherapy, but the memory function returns to normal levels.【Key words】Carcinoma, ductal, breast; Drug therapy; Magnetic resonance imaging; Magnetic resonance spectroscopy; Memory disorders; HippocampusChinese Journal of Medical Imaging, 2020, 28 (5): 339-342339340乳腺癌是女性最常见的恶性肿瘤[1],随着治疗方法的发展,患者生存率大幅度提高。
核磁共振氢谱解析及应用自旋弛豫影响化学位移的因素共轭效应精品PPT课件
1H Υ=26.752(107 rad./s.T), 200MHz
13C Υ=6.728 (107 rad./s.T) 50.3MHz
19F
Υ=25.181(107
rad./s.T)
188.2MHz
31P Υ=10.841(107 rad./s.T) 81MHz
188.2MHz
H-1F-19
81MHz50.3MHz
I>
1 2
核电荷在原子核表面呈非均匀分布
eQ > 0
核电荷非均匀分布,长椭球自转体
, 0。 如2H1, 1非均匀分布, 扁椭球自转体,
0。如37Cl17,7Li3
电荷均匀分布于原子核表面(I = , 1eQ
2
= 0)的核,核磁共振的谱线窄,有利于 核磁共振检测。
电荷非均匀分布于原子核表面
2002年诺贝尔化学奖的另一半分别授予给美国耶鲁大学及弗吉尼亚联邦大学的教授johnfenn他发明了对生物大分子进行确认和结构分析的方法和对生物大分子的质谱分析方法和日本岛津制作公司研发工程师生命科学研究部主任koichitanaka他的贡献类似于johnfenn大学化学2003181
核磁共振氢谱
(1H Nuclear Magnetic Resonance Spectra,1H NMR)
核磁共振与诺贝尔奖
核磁共振波谱是现代科学研究领域的一个非 常重要的工具。自从1945年核磁共振现象首次 被发现以来,它的应用从物理学不断扩展到化学、 生命科学、材料科学乃至医学诊断领域。
文献:毛希安, 12位诺贝尔奖金得主对核磁共振波谱学的重要贡献,
物理,1995, 24(6):377
核磁共振与诺贝尔奖
E·t h 1/2 1/T
1H-MRS的原理和检测的代谢物及其意义
1H-MRS的原理和检测的代谢物及其意义1H-MRS的原理和检测的代谢物及其意义1H-MRS是利用不同电化学环境下原子核的共振频率发生化学位移的原理,通过傅立叶转换成为按频率-信号强度分布的波谱曲线。
由于每一特定原子核在特定的分子环境中其精确的共振频率是恒定不变的,因而借助共振频率的差异有助于区分和识别不同代谢产物,并可以通过计算某物质在其特定频率下的信号强度来反映该物质的浓度。
由于特定频率峰下的面积与特定频率原子核的共振数目成正比,故一般通过测量特定频率峰下的面积来反映组织中特定代谢物的浓度。
目前在大多数1H-MRS的研究中主要检测NAA、Cho和Cr在局部脑组织中的浓度。
NAA的波谱位于2.0 ppm处,其在脑内几乎全部位于神经元内,是公认的反应神经元功能的内标物,它的浓度多少可反映神经元的功能状况。
NAA浓度降低可能是由于神经元的破坏减少或线粒体功能失调所致[1],还可能由于神经元细胞膜的破坏,NAA被暴露于使之降解的酶,因水解增加所致[2]。
临床研究和动物实验均证明,NAA 浓度降低与神经元或轴突的缺失有明显的相关性。
因此,NAA浓度降低反映了神经元或轴突的破坏和缺失以及功能的异常。
Cho的波谱位于3.2 ppm处,包括胆碱、磷酸甘油胆碱、磷酸胆碱和磷脂酰胆碱,反映脑内总的胆碱量,这些物质主要存在于细胞膜上,是细胞膜磷酯代谢的一个组成成分参与构成细胞膜并反映膜的更新,其浓度的改变反映细胞膜合成和降解的变化[8]。
有研究证实,Cho浓度的增高与细胞膜的降解增加引起可溶性Cho浓度的增高相关[3,4]。
Cr的波谱位于3.02 ppm处,包括肌酸与磷酸肌酸,其作为高能磷酸化的储备以及ATP和ADP的缓冲剂可能对维持脑细胞中的能量依赖系统发挥作用。
由于Cr在同一个体脑内不同代谢条件下均保持相对稳定,故Cr常作为波谱研究的内参照[8]。
可见,以Cr为参照的NAA/Cr和Cho/Cr比值在一定程度上反映了NAA和Cho浓度的变化。
MR原理简版1 (2)
10
先驱者
• 1973年,与劳特伯几乎同时、但又分别 独立地发表磁共振成像论文的还有英国 诺丁汉(Nottingham)大学的曼斯菲尔德 (Peter Mansfield)等学者,均认识到线性 梯度场获取核磁共振的空间分辨率是一 种有效的解决方案,对EPI回波做出了很大 的贡献。
11
12
发展及趋势ll分别同时(1946年)检测 到大块物质内核磁共振吸收,更清楚地 阐述了原子核自旋(Spin)的存在,为此, 他们共同获得了1952年诺贝尔物理学奖。
• Felix Bloch and Edward Purcell, both of whom were awarded the Nobel Prize in 1952, discovered the magnetic resonance phenomenon independently in 1946.
图中磁矩(magnetic vector ,μ)表示其大 小及方向 • Think of the spin of this proton as a magnetic moment vector, causing the proton to behave like a tiny magnet with a north and south pole.
3D FMRI of Auditory Cortex
16
17
18
19
发展及趋势
• 磁共振氧测量技术
–磁共振氧测量是运用MRI方法测定氧张力和 与氧合作用相关参数的新技术。
–对脱氧血红蛋白所致磁场不均进行测定,以 获得脱氧血红蛋白浓度,从而推算出其氧合 状态。
20
发展及趋势
• 心脏和血管成像
1
氢质子磁共振波谱对阿尔茨海默病的谷氨酸代谢物研究
氢质子磁共振波谱对阿尔茨海默病的谷氨酸代谢物研究张宁男楠;张璋【期刊名称】《国际医学放射学杂志》【年(卷),期】2014(37)4【摘要】The main clinical feature of Alzheimer’s disease (AD) is the progressive cognitive dysfunction. Proton magnetic resonance spectroscopy (1H-MRS) can be used to detect the abnormalities in anatomical structures and metabolite, which are related to the cognitive dysfunction in AD brains. Glutamate (Glu) is the excitatory neurotransmitter in central nervous system. The AD pathogenesis is associated with the disorder of Glu. The 1H-MRS is a useful non-invasive method to detect metabolites in brain. These metabolites, from 1H-MRS, can be used as an indicator for AD early diagnosis, and can be used to monitor the therapeutic effect as well.%阿尔茨海默病(AD)病人的主要特征是进行性认知功能障碍。
氢质子磁共振波谱(1H-MRS)能检测出与AD认知功能障碍的脑解剖部位和代谢物。
谷氨酸盐(Glu)是脑内兴奋性神经递质,Glu的紊乱与AD的发病机制相关。