2015届高考物理精讲:专题8++带电粒子在复合场中的运动(高考定位+审题破题,含原创题组及解析)

合集下载

带电粒子在复合场中的运动解题技巧

带电粒子在复合场中的运动解题技巧

带电粒子在复合场中的运动解题技巧带电粒子在电场力作用下的运动和在洛伦兹力作用下的运动,有着不同的运动规律。

带电粒子在复合场中的运动是高考的重点考点,那么掌握答题技巧是关键。

接下来店铺为你整理了带电粒子在复合场中的运动解题技巧,一起来看看吧。

带电粒子在复合场中的运动解题技巧:分离的电场与磁场带电粒子在电场中的加速运动可以利用牛顿第二定律结合匀变速直线运动规律,或者从电场力做功角度出发求出粒子进入下一个场的速度。

对于带电粒子在电场中的偏转,要利用类平抛运动的规律,根据运动的合成与分解,结合牛顿定律和能量关系,求出粒子进入下一个场的速度大小,再结合速度合成与分解之间的关系,速度偏转角正切值与位移偏转角正切值的关系求出速度方向。

带电粒子垂直进入匀强磁场,其运动情况一般是匀速圆周运动的一部分,解决粒子在磁场中的运动情况,关键是确定粒子飞入点和飞出点的位置以及速度方向,再利用几何关系确定圆心和半径。

值得注意的是,若带电粒子从磁场中某个位置飞出后,再经电场的作用在同一个位置以相同的速度大小再次飞入磁场中时,由于飞出和飞入速度方向相反,洛伦兹力的方向相反,粒子两次在磁场中的运动轨迹并不重合!需要强调的是,带电粒子从一个场进入另外一个场,两场之间的连接点是这类问题的中枢,其速度是粒子在前一个场的某速度,是后一个场的初速度,再解决问题时要充分利用这个位置信息。

带电粒子在复合场中的运动解题技巧:多场并存的无约束运动多场并存的无约束运动在解决复合场问题时应首先弄清楚是哪些场共存,注意电场和磁场的方向以及强弱,以便确定带电粒子在场中的受力情况。

带电粒子在复合场中运动时如果没有受到绳子,杆,环等的约束,则带电粒子在空间中可以自由移动,只受场力的作用。

根据空间存在的场的不同,一般带电粒子的运动规律不同,通常可以分为以下几类:1、静止或匀速直线运动如果是重力场与电场共存,说明电场力等于重力。

如果是重力场与磁场共存,说明重力与洛伦兹力平衡。

带电粒子在复合场中的运动(经典题例)

带电粒子在复合场中的运动(经典题例)

带电粒子在复合场中的运动一、带电粒子在复合场中运动的轨迹欣赏例1、如图所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B。

在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场。

一质量为m、带电量为+q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零。

如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中)例2、如图所示,在x轴上方有垂直于xy平面的匀强磁场,磁感应强度为B,在x 轴下方有沿y轴负方向的匀强电场,场强为E,一质量为m,电量为-q的粒子从坐标原点O沿着y轴正方向射出,射出之后,第三次到达x轴时,它与O点的距离为L,求此时粒子射出时的速度和运动的总路程(重力不记)例3、据有关资料介绍,受控热核聚变反应装置中有极高的温度,因而带电粒子将没有通常意义上的容器可装,而是由磁场约束带电粒子运动将其束缚在某个区域内,现按下面的简化条件来讨论这个问题,如图所示,有一个环形区域,其截面内半径为R1=√33m,外半径为R2=1.0m,区域内有垂直纸面向外的匀强磁场,已知磁感应强度B=1.0 T,被束缚粒子的比荷qm=4×107C/kg。

(1)若中空区域中的带电粒子沿环的半径方向射入磁场,求带电粒子不能穿越磁场外边界的最大速度V0.(2)若中空区域中的带电粒子以(1)中的最大速度V0沿圆环半径方向射入磁场,求带电粒子从进入磁场开始到第一次回到该点所需要的时间t。

例4、据有关资料介绍,受控热核聚变反应装置中有极高的温度,因而带电粒子将没有通常意义上的容器可装,托卡马克装置是一种利用磁约束来实现受控核聚变的环形容器,由磁场将高温、高密等离子体约束在有限的范围内,现按下面的简化条件来讨论这个问题,如图所示,有一个环形区域,其截面内半径为R1=a,外半径为R2=(2√2−1)a,环形区域内有垂直纸面向外的匀强磁场,磁感应强度为B。

高考物理高考物理带电粒子在复合场中的运动解题技巧讲解及练习题

高考物理高考物理带电粒子在复合场中的运动解题技巧讲解及练习题

一、带电粒子在复合场中的运动专项训练1.如图,ABD 为竖直平面内的光滑绝缘轨道,其中AB 段是水平的,BD 段为半径R =0.25m 的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,场强大小E =5.0×103V/m 。

一不带电的绝缘小球甲,以速度v 0沿水平轨道向右运动,与静止在B 点带正电的小球乙发生弹性碰撞。

已知甲、乙两球的质量均为m =1.0×10-2kg ,乙所带电荷量q =2.0×10-5C ,g 取10m/s 2。

(水平轨道足够长,甲、乙两球可视为质点,整个运动过程无电荷转移)(1)甲乙两球碰撞后,乙恰能通过轨道的最高点D ,求乙球在B 点被碰后的瞬时速度大小;(2)在满足1的条件下,求甲的速度v 0;(3)甲仍以中的速度v 0向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B 点的距离范围。

【来源】四川省资阳市高中(2018届)2015级高三课改实验班12月月考理综物理试题 【答案】(1)5m/s ;(2)5m/s ;(3)32m 3m 2x '≤<。

【解析】 【分析】 【详解】(1)对球乙从B 运动到D 的过程运用动能定理可得22112222D B mg R qE R mv mv --=-g g 乙恰能通过轨道的最高点D ,根据牛顿第二定律可得2Dv mg qE mR+=联立并代入题给数据可得B v =5m/s(2)设向右为正方向,对两球发生弹性碰撞的过程运用动量守恒定律可得00B mv mv mv '=+ 根据机械能守恒可得22200111222B mv mv mv '=+联立解得0v '=,05v =m/s (3)设甲的质量为M ,碰撞后甲、乙的速度分别为M v 、m v ,根据动量守恒和机械能守恒定律有0M m Mv Mv mv =+2220111222M m Mv Mv mv =+ 联立得2m Mv v M m=+ 分析可知:当M =m 时,v m 取最小值v 0;当M ≫m 时,v m 取最大值2v 0 可得B 球被撞后的速度范围为002m v v v <<设乙球过D 点的速度为Dv ',由动能定理得 22112222D m mg R qE R mv mv --='-g g 联立以上两个方程可得35m /s<230m /s Dv '> 设乙在水平轨道上的落点到B 点的距离为x ',则有2122D x v t R gt ''==, 所以可得首次落点到B 点的距离范围32m 23m 2x '≤<2.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d ,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m 、带电量q +、重力不计的带电粒子,以初速度1v 垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:(1)粒子第一次经过电场的过程中电场力所做的功1W (2)粒子第n 次经过电场时电场强度的大小n E (3)粒子第n 次经过电场所用的时间n t(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).【来源】河北省衡水中学滁州分校2018届高三上学期全真模拟物理试题【答案】(1)21132mv W =(2)21(21)2n n mv E qd +=(3)12(21)n d t n v =+ (4)如图;【解析】 (1)根据mv r qB =,因为212r r =,所以212v v =,所以221211122W mv mv =-, (2)=,,所以.(3),,所以.(4)3.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P (x =0,y =h )点以一定的速度平行于x 轴正向入射.这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点.不计重力.求: (1)粒子到达x =R 0平面时速度方向与x 轴的夹角以及粒子到x 轴的距离; (2)M 点的横坐标x M .【来源】磁场 【答案】(1)20122R H h at h =+=+;(2)22000724M x R R R h h =++- 【解析】 【详解】(1)做直线运动有,根据平衡条件有:0qE qB =v ①做圆周运动有:200qB m R =v v ②只有电场时,粒子做类平抛,有:qE ma =③00R t =v ④ y v at =⑤解得:0y v v =⑥ 粒子速度大小为:22002y v v v v =+=⑦速度方向与x 轴夹角为:π4θ=⑧ 粒子与x 轴的距离为:20122R H h at h =+=+⑨(2)撤电场加上磁场后,有:2v qBv m R=⑩解得:02R R =⑾. 粒子运动轨迹如图所示圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y 轴的夹角均为4π,有几何关系得C 点坐标为:02C x R =⑿02C R y H R h =-=-⒀ 过C 作x 轴的垂线,在ΔCDM 中:02CM R R ==⒁2C R CD y h ==-⒂) 解得:22220074DM CM CD R R h h =-=+- M 点横坐标为:22000724M x R R R h h =+-4.如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。

高考物理带电粒子在复合场中的运动压轴难题知识点及练习题含答案解析

高考物理带电粒子在复合场中的运动压轴难题知识点及练习题含答案解析

高考物理带电粒子在复合场中的运动压轴难题知识点及练习题含答案解析一、带电粒子在复合场中的运动压轴题1.离子推进器是太空飞行器常用的动力系统,某种推进器设计的简化原理如图所示,截面半径为R 的圆柱腔分为两个工作区.I 为电离区,将氙气电离获得1价正离子;II 为加速区,长度为L ,两端加有电压,形成轴向的匀强电场.I 区产生的正离子以接近0的初速度进入II 区,被加速后以速度v M 从右侧喷出.I 区内有轴向的匀强磁场,磁感应强度大小为B ,在离轴线R /2处的C 点持续射出一定速度范围的电子.假设射出的电子仅在垂直于轴线的截面上运动,截面如图所示(从左向右看).电子的初速度方向与中心O 点和C 点的连线成α角(0<α<90◦).推进器工作时,向I 区注入稀薄的氙气.电子使氙气电离的最小速度为v 0,电子在I 区内不与器壁相碰且能到达的区域越大,电离效果越好.......................已知离子质量为M ;电子质量为m ,电量为e .(电子碰到器壁即被吸收,不考虑电子间的碰撞).(1)求II 区的加速电压及离子的加速度大小;(2)为取得好的电离效果,请判断I 区中的磁场方向(按图2说明是“垂直纸面向里”或“垂直纸面向外”);(3)α为90°时,要取得好的电离效果,求射出的电子速率v 的范围; (4)要取得好的电离效果,求射出的电子最大速率v max 与α角的关系.【来源】2014年全国普通高等学校招生统一考试理科综合能力测试物理(浙江卷带解析)【答案】(1)22Mv L(2)垂直于纸面向外(3)043mv B eR >(4)()max 342sin eRB v m α=-【解析】 【分析】 【详解】(1)离子在电场中加速,由动能定理得:212M eU Mv =,得:22M Mv U e =.离子做匀加速直线运动,由运动学关系得:22Mv aL =,得:22Mv a L=.(2)要取得较好的电离效果,电子须在出射方向左边做匀速圆周运动,即为按逆时针方向旋转,根据左手定则可知,此刻Ⅰ区磁场应该是垂直纸面向外.(3)当90α=︒时,最大速度对应的轨迹圆如图一所示,与Ⅰ区相切,此时圆周运动的半径为34r R =洛伦兹力提供向心力,有2maxmaxv Bev m r= 得34max BeRv m=即速度小于等于34BeRm 此刻必须保证043mv B BR>. (4)当电子以α角入射时,最大速度对应轨迹如图二所示,轨迹圆与圆柱腔相切,此时有:90OCO α∠'=︒﹣2ROC =,OC r '=,OO Rr '=﹣ 由余弦定理有222(29022R R R r r r cos α⎛⎫=+⨯⨯︒ ⎪⎝⎭﹣)﹣(﹣),90cos sin αα︒-=() 联立解得:()342Rr sin α=⨯-再由:maxmv r Be=,得 ()342max eBRv m sin α=-.考点:带电粒子在匀强磁场中的运动、带电粒子在匀强电场中的运动 【名师点睛】该题的文字叙述较长,要求要快速的从中找出物理信息,创设物理情境;平时要注意读图能力的培养,以及几何知识在物理学中的应用,解答此类问题要有画草图的习惯,以便有助于对问题的分析和理解;再者就是要熟练的掌握带电粒子在磁场中做匀速圆周运动的周期和半径公式的应用.2.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d ,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m 、带电量q +、重力不计的带电粒子,以初速度1v 垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:(1)粒子第一次经过电场的过程中电场力所做的功1W (2)粒子第n 次经过电场时电场强度的大小n E (3)粒子第n 次经过电场所用的时间n t(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).【来源】河北省衡水中学滁州分校2018届高三上学期全真模拟物理试题【答案】(1)21132mv W =(2)21(21)2n n mv E qd +=(3)12(21)n d t n v =+ (4)如图;【解析】 (1)根据mv r qB =,因为212r r =,所以212v v =,所以221211122W mv mv =-, (2)=,,所以.(3),,所以.(4)3.如图所示,在无限长的竖直边界NS和MT间充满匀强电场,同时该区域上、下部分分别充满方向垂直于NSTM平面向外和向内的匀强磁场,磁感应强度大小分别为B和2B,KL为上下磁场的水平分界线,在NS和MT边界上,距KL高h处分别有P、Q两点,NS和MT间距为1.8h ,质量为m,带电荷量为+q的粒子从P点垂直于NS边界射入该区域,在两边界之间做圆周运动,重力加速度为g.(1)求电场强度的大小和方向;(2)要使粒子不从NS边界飞出,求粒子入射速度的最小值;(3)若粒子能经过Q点从MT边界飞出,求粒子入射速度的所有可能值.【来源】【全国百强校】2017届浙江省温州中学高三3月高考模拟物理试卷(带解析)【答案】(1)mgqE=,方向竖直向上(2)min(962)qBhvm-=(3)0.68qBhvm=;0.545qBhvm=;0.52qBhvm=【解析】【分析】(1)粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,电场力与重力合力为零;(2)作出粒子的运动轨迹,由牛顿第二定律与数学知识求出粒子的速度;(3)作出粒子运动轨迹,应用几何知识求出粒子的速度.【详解】(1)粒子在磁场中做匀速圆周运动,电场力与重力合力为零,即mg=qE,解得:mgqE=,电场力方向竖直向上,电场方向竖直向上;(2)粒子运动轨迹如图所示:设粒子不从NS边飞出的入射速度最小值为v min,对应的粒子在上、下区域的轨道半径分别为r1、r2,圆心的连线与NS的夹角为φ,粒子在磁场中做匀速圆周运动,由牛顿第二定律得:2vqvB mr=,解得,粒子轨道半径:vrqBπ=,min1vrqBπ=,2112r r=,由几何知识得:(r1+r2)sinφ=r2,r1+r1cosφ=h,解得:min 962)qBhvm=;(3)粒子运动轨迹如图所示,设粒子入射速度为v ,粒子在上、下区域的轨道半径分别为r 1、r 2, 粒子第一次通过KL 时距离K 点为x , 由题意可知:3nx =1.8h (n =1、2、3…)3(962)22h x -≥,()2211x r h r =--, 解得:120.361)2hr n =+(,n <3.5, 即:n =1时, 0.68qBhv m=, n =2时,0.545qBhv m =, n =3时,0.52qBhv m=; 答:(1)电场强度的大小为mg qE =,电场方向竖直向上;(2)要使粒子不从NS 边界飞出,粒子入射速度的最小值为min 962)qBhv m=. (3)若粒子经过Q 点从MT 边界飞出,粒子入射速度的所有可能值为:0.68qBhv m=、或0.545qBh v m =、或0.52qBhv m=. 【点睛】本题考查了粒子在磁场中的运动,分析清楚粒子运动过程、作出粒子运动轨迹是正确解题的前提与关键,应用平衡条件、牛顿第二定律即可正确解题,解题时注意数学知识的应用.4.在场强为B 的水平匀强磁场中,一质量为m 、带正电q 的小球在O 静止释放,小球的运动曲线如图所示.已知此曲线在最低点的曲率半径为该点到z 轴距离的2倍,重力加速度为g .求:(1)小球运动到任意位置P (x ,y)的速率v ; (2)小球在运动过程中第一次下降的最大距离y m ; (3)当在上述磁场中加一竖直向上场强为E (mgE q>)的匀强电场时,小球从O 静止释放后获得的最大速率m v 。

高三物理第一轮复习带电粒子在复合场中的运动、回旋加速器 知识精讲

高三物理第一轮复习带电粒子在复合场中的运动、回旋加速器 知识精讲

高三物理第一轮复习:带电粒子在复合场中的运动、回旋加速器【本讲主要内容】带电粒子在复合场中的运动、回旋加速器复合场、带电粒子在复合场中的运动规律,应用复合场的几种物理模型【知识掌握】 【知识点精析】1. 复合场:复合场是指电场、磁场和重力场并存,或者其中某两场并存,或分区域存在的某一空间。

粒子经过该空间时可能受到三种场力。

(1)重力:若为基本粒子(如电子、质子、α粒子、离子等)一般不考虑重力;若为带电颗粒(如液滴、油滴、小球、尘埃等)一般需要考虑重力。

(2)电场力:带电粒子(体)在电场中一定受到电场力的作用。

在匀强电场中,电场力为恒力,且电场力做功与路径无关。

这两点与重力很类似,因此电场力是平衡重力的最理想的力。

(3)洛仑兹力:带电粒子(体)在磁场中受到的洛仑兹力与运动的速度(大小、方向)有关,且F v 洛⊥,故洛仑兹力永远不做功,也不会改变粒子的动能。

2. 带电粒子在复合场中的几种典型运动(1)直线运动:自由的带电粒子(无轨道约束)在匀强电场、匀强磁场和重力场中做的直线运动应该是匀速直线运动,除非运动方向沿匀强磁场方向而粒子不受洛仑兹力。

当匀速直线运动时,F 合=0,常作为解题的切入点。

(2)匀速圆周运动:当带电粒子进入匀强电场、匀强磁场和重力场共存的复合场中,电场力和重力相平衡,粒子运动方向与匀强磁场方向相垂直时,带电粒子就在洛仑兹力作用下做匀速圆周运动。

可等效为仅在洛仑兹力作用下的匀速圆周运动。

此种情况下,要同时应用平衡条件和向心力公式分析。

(3)曲线运动:当带电粒子所受的合外力是变力,且与初速度方向不在一条直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹不是圆弧,也不是抛物线。

此种情况往往根据重力、电场力做功情况求粒子动能及速率的改变。

3. 应用复合场的几个模型 (1)速度选择器:①原理:如图所示,由所受重力可忽略不计,运动方向相同而速率不同的正粒子组成的粒子束射入相互正交的匀强电场E 和匀强磁场B 所组成的场区中,会受到如图所示的力的作用。

带电粒子在复合场中的运动例题

带电粒子在复合场中的运动例题

带电粒子在复合场中的运动例题引言本文将围绕带电粒子在复合场中的运动进行详细的探讨和解析。

我们将通过一个具体的运动例题,展示带电粒子在电磁场和重力场共同作用下的运动规律,帮助读者更好地理解这一过程。

问题描述考虑一个带电质量为m的粒子,在匀强电场和重力作用下,其运动方程如下:$$F=qE+m g$$其中,F表示粒子所受的合外力,q表示粒子的电荷量,E表示电场强度,g表示重力加速度。

在给定初速度v0的情况下,我们的目标是确定带电粒子在复合场中的运动轨迹。

解析为了解决这个问题,我们将采取以下步骤:步骤一:分析受力情况带电粒子所受的合外力由电场力和重力构成,因此可以将合外力表示为:$$F=qE+m g$$步骤二:列出运动方程根据牛顿第二定律,粒子的加速度与合外力成正比,因此可以得到运动方程为:$$a=\f ra c{F}{m}=\f ra c{qE}{m}+g$$将加速度与速度的关系带入上式,得到:$$\f ra c{dv}{dt}=\f ra c{qE}{m}+g$$步骤三:解微分方程对上式进行积分,可以得到粒子的速度与时间的关系:$$v=\f ra c{qE}{m}t+gt+v_0$$其中,v0为初始速度。

步骤四:求解轨迹方程将速度与时间的关系带入运动方程中,即可得到带电粒子在复合场中的运动轨迹:$$x=\f ra c{1}{2}\l e ft(\fr ac{q E}{m}t^2+g t^2+v_0t\ri g ht)+x _0$$其中,x0为初始位置。

结论通过以上的推导和计算,我们得到了带电粒子在复合场中的运动轨迹方程。

这个运动方程将帮助我们更好地理解带电粒子在电场和重力场中的相互作用情况,并能够准确地描述其运动过程。

希望读者通过本文的学习,能够加深对带电粒子在复合场中运动的理解,并能够应用相关原理解决类似的问题。

*注意:本文所使用的公式和推导过程纯属示例,实际问题中需要根据具体情况进行适当的调整。

带电粒子在复合场中的运动

带电粒子在复合场中的运动

带电粒子在复合场中的运动发表时间:2011-08-19T16:29:23.780Z 来源:《学习方法报》教研周刊 作者: 马敬卫[导读] 带电粒子在复合场中的运动一般有两种情况:直线运动和圆周运动。

山东省郓城第一中学 马敬卫复合场是指电场、磁场、重力场中三者或任意两者共存的场。

虽然带电粒子在复合场中的运动情况一般较为复杂,但它作为一个力学问题,同样遵循联系力和运动的基本规律。

带电粒子在复合场中的运动一般有两种情况:直线运动和圆周运动。

(1)若带电粒子在电场力、重力和洛伦兹力共同作用下做直线运动,由于电场力和重力为恒力,洛伦兹力方向和速度方向垂直且大小随速度大小而改变,所以只要带电粒子速度大小发生变化,垂直于速度方向的合力就要发生变化,该方向带电粒子的运动状态就会发生变化,带电粒子就会脱离原来的直线轨道而沿曲线运动。

可见,只有带电粒子速度大小不变,才可能做直线运动,也就是说,带电粒子在电场力、重力和洛伦兹力共同作用下做直线运动时,一定是做匀速直线运动。

(2)若带电粒子在电场力、重力和洛伦兹力共同作用下做匀速圆周运动时,由于物体做匀速圆周运动的条件是所受合外力大小恒定、方向时刻和速度方向垂直,这是任何几个恒力或恒力和某一变力无法合成实现的,只有洛伦兹力可满足该条件。

也就是说,带电粒子在上述复合场中如果做匀速圆周运动,只能是除洛伦兹力以外的所有恒力的合力为零才能实现。

总之,处理此类问题,一定要牢牢把握隐含条件。

在解决实际问题时,要做到以下三点:①正确分析受力情况;②充分理解和掌握不同场对带电粒子作用的特点和差异;③认真分析带电粒子运动的详细过程,充分发掘题目中的隐含条件,建立清晰的物理情景,最终把物理模型转化为数学表达式。

下面以两个例子来说明处理此类问题的方法。

1. 带电微粒在电场力、重力和洛伦兹力共同作用下做匀速圆周运动。

必然是电场力和重力平衡,而洛伦兹力充当向心力。

例1 一个带电微粒在图示的正交匀强电场和匀强磁场中在竖直平面内做匀速圆周运动。

高考物理总复习 第九单元 磁场 微专题8 带电粒子在组合场和复合场中的运动(含解析)

高考物理总复习 第九单元 磁场 微专题8 带电粒子在组合场和复合场中的运动(含解析)

微专题8 带电粒子在组合场和复合场中的运动一带电粒子在组合场中的运动组合场是指电场与磁场同时存在或者磁场与磁场同时存在,但各位于一定的区域内,并不重叠的情况。

所以弄清带电粒子在电场及磁场中的运动形式、规律和研究方法是解决此类问题的基础。

1.基本类型运动类型带电粒子在匀强电场中加速(v0与电场线平行或为零)带电粒子在匀强电场中偏转(v0⊥E)带电粒子在匀强磁场中匀速运动(v0与磁感线平行)带电粒子在匀强磁场中偏转(v0与磁感线垂直)受力特点受到恒定的电场力;电场力做功不受磁场力作用受磁场力作用;但磁场力不做功运动特征匀变速直线运动类平抛运动匀速直线运动匀速圆周运动研究方法牛顿运动定律匀变速运动学规律牛顿运动定律匀变速运动学公式正交分解法匀速直线运动公式牛顿运动定律向心力公式圆的几何知识表达方式如何求运动时间、速度和位移如何求飞行时间、偏移量和偏转角-如何求时间和偏转角用匀变速直线运动的基本公式、导出公式和推论求解飞出电场时间:t=打在极板上t=偏移量:y=偏转角:tan-时间t=T(θ是圆心角,T是周期)偏转角sin θ=(l是磁场宽度,R是粒子轨道半径)α=运动情境2.解题思路题型1电场与磁场的组合例1如图所示,在xOy直角坐标系中,第Ⅰ象限内分布着方向垂直纸面向里的匀强磁场,第Ⅱ象限内分布着沿y轴负方向的匀强电场。

初速度为零、带电荷量为q、质量为m的粒子经过电压为U的电场加速后,从x轴上的A点垂直x轴进入磁场区域,重力不计,经磁场偏转后过y轴上的P点且垂直于y轴进入电场区域,在电场中偏转并击中x轴上的C点。

已知OA=OC=d。

则磁感应强度B和电场强度E分别为多少?解析设带电粒子经电压为U的电场加速后速度为v,则qU=mv2带电粒子进入磁场后,由洛伦兹力提供向心力qBv=依题意可知r=d,联立解得B=带电粒子在电场中偏转,做类平抛运动,设经时间t从P点到达C点,由d=vt,d=t2联立解得E=。

高三物理总复习知识讲解 带电粒子在复合场中的运动(基础)

高三物理总复习知识讲解 带电粒子在复合场中的运动(基础)

物理总复习:带电粒子在复合场中的运动编稿:李传安审稿:【考纲要求】1、知道带电粒子在复合场中运动的特点及规律,会用力的观点、运动的观点和能量的观点熟练解决相关问题2、知道带电粒子在复合场中运动的特点及规律,会用力的观点、运动的观点和能量的观点熟练解决相关问题【考点梳理】考点一、带电粒子在复合场中的受力复合场的组成和特点:复合场:指电场、磁场和重力场并存,或其中两个场并存,或分区域存在。

粒子连续运动时,一般要同时考虑电场力、洛伦兹力和重力的作用。

抓住三个力的特点是分析和求解相关问题的前提和基础。

要点诠释:=,方向竖直向下.重力做功与路径无关,其数值除与带电1、重力:重力的大小为G mg粒子的质量有关外,还与始末位置的高度差有关。

2、电场力:电场力的大小为qE,方向与电场强度E及带电粒子所带电荷的性质有关,电场力做功与路径无关,其数值除与带电粒子的电荷量有关外,还与始末位置的电势差有关。

3、洛伦兹力:洛伦兹力的大小跟速度与磁场方向的夹角有关,当带电粒子的速度与磁场方=,洛伦兹力的方向垂直于速向平行时F=0;当带电粒子的速度与磁场方向垂直时F qvB度v和磁感应强度B所决定的平面。

无论带电粒子做什么运动,洛伦兹力都不做功。

但重力、电场力可能做功而引起带电粒子能量的转化。

考点二、带电粒子在复合场中运动的力学观点要点诠释:带电粒子在复合场中的运动问题是力学和电学知识的一次“大综合”,其分析方法和力学综合问题的分析方法基本相同,只是在受力分析时多加了电场力和洛伦兹力,在考虑能量转化时多了电势能。

基本思路如下:(1)正确的受力分析:除重力、弹力、摩擦力外,要特别注意电场力和洛伦兹力的分析搞清场和力的空间方向及关系。

(2)正确的运动分析:即根据受力情况进一步明确物体的运动情况,找出物体的速度、位置及其变化规律,分析运动过程。

如果出现临界状态,要分析临界条件。

(3)运用动力学三大方法解决问题。

①牛顿运动定律与运动学公式;②用动量观点分析,包括动量定理、动量守恒定律;③用能量观点分析,包括动能定理、机械能(或能量转化)守恒定律。

高考物理轮精细复习 (压轴题)带电粒子在复合场中的运动(含解析)

高考物理轮精细复习 (压轴题)带电粒子在复合场中的运动(含解析)

避躲市安闲阳光实验学校带电粒子在复合场中的运动(基础知识夯实+综合考点应用+名师分步奏详解压轴题,含精细解析)带电粒子在复合场中的运动[想一想]带电粒子在复合场中什么时候静止或做直线运动?什么时候做匀速圆周运动?[提示] 当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动。

当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内将做匀速圆周运动。

2.复合场中带电粒子在重力、电场力(为恒力时)、洛伦兹力三个力作用下能做匀变速直线运动吗?[提示] 不能,因为重力和电场力为恒力,而洛伦兹力随速度的增加而增加,故三力的合力一定发生变化。

带电粒子不能做匀变速直线运动。

[记一记]1.复合场复合场是指电场、磁场和重力场并存,或其中某两场并存,或分区域存在。

从场的复合形式上一般可分为如下四种情况:①相邻场;②重叠场;③交替场;④交变场。

2.带电粒子在复合场中的运动分类(1)静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动。

(2)匀速圆周运动当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动。

(3)较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一条直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线。

(4)分阶段运动带电粒子可能依次通过几个情况不同的复合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成。

[试一试]1.地球大气层外部有一层复杂的电离层,既分布有地磁场,也分布有电场。

假设某时刻在该空间中有一小区域存在如图8-3-1所示的电场和磁场;电场的方向在纸面内斜向左下方,磁场的方向垂直纸面向里。

此时一带电宇宙粒子恰以速度v 垂直于电场和磁场射入该区域,不计重力作用,则在该区域中,有关该带电粒子的运动情况可能的是( )图8-3-1A.仍做直线运动 B.立即向左下方偏转C.立即向右上方偏转D.可能做匀速圆周运动解析:选ABC 比较Eq与Bqv,因二者开始时方向相反,当二者相等时,A 正确;当Eq>Bqv时,向电场力方向偏,当Eq<Bqv时,向洛伦兹力方向偏,B、C正确;有电场力存在,粒子不可能做匀速圆周运动,D错。

【高考领航】2015高考物理新一轮总复习课件8.3 带电粒子在复合场中的运动

【高考领航】2015高考物理新一轮总复习课件8.3 带电粒子在复合场中的运动

向分速度的大小为vy,
速度与x轴正方向间的 夹角为θ,由牛顿第二 定律得
C
考点 突破 题型 透析
知识整合
典型例题
考点一 带电粒子在组合场中的运动
方法总结 跟踪训练
【解析】
(2013· 高考山东卷)如图所示,在坐标系xOy的第一、第三
象限内存在相同的匀强磁场,磁场方向垂直于xOy平面向 里;第四象限内有沿y轴正方向的匀强电场,电场强度大小 为E.一带电量为+q、质量为m的粒子,自y轴上的P点沿x 轴正方向射入第四象限,经x轴上的Q点进入第一象限,随 即撤去电场,以后仅保留磁场.已知OP=d,OQ=2d.不 计粒子重力. (1)求粒子过Q点时速度的大小和方向. (2)若磁感应强度的大小为一确定值B0, 粒子将以垂直y轴的方向进入第二象限,求B0. (3)若磁感应强度的大小为另一确定值, 经过一段时间后粒子将再次经过Q点, 且速度与第一次过Q点时相同, 求该粒子相邻两次经过Q点所用的时间.
第八章


第3节 带电粒子 在复合场中的运动
C
目 录
ONTENTS
1
2 3 4 5 6
知识梳理 基础深化 考点突破 典例透析 思想方法 物理建模
高考演练 明确考向
课时训练 高分在握 微课助学
C
目 录
ONTENTS
1 2 3 4 5 6
知识梳理 基础深化 考点突破 典例透析 思想方法 物理建模
高考演练 明确考向
思维提升 (1)近几年各省市的高考题在这里的命题情景大都是组合场模型,或 是一个电场与一个磁场相邻,或是两个或多个磁场相邻. (2)解题时要弄清楚场的性质、场的方向、强弱、范围等. (3)要进行正确的受力分析,确定带电粒子的运动状态. (4)分析带电粒子的运动过程,画出运动轨迹是解题的关键.

2015届高三物理一轮复习:带电粒子在复合场中的运动轨迹分析(共37张PPT)

2015届高三物理一轮复习:带电粒子在复合场中的运动轨迹分析(共37张PPT)

第八章


由⑥⑦⑧⑨式解得 E vm = + B
[答案 ] E (3) + B
2 E +v2 0. B
qBa (1) 2m
(2)2 个
aqB 2mv
2 E +v2 0 B
第八章


1.(2014· 郑州质检)如图所示,中轴线PQ将矩形区域MNDC
分成上、下两部分,上部分充满垂直纸面向外的匀强磁场, 下部分充满垂直纸面向里的匀强磁场,磁感应强度皆为B.一

第八章


当磁场垂直纸面向里时,电荷运动的半径: mv0 r2= = 3 cm B2q 2 πm 2 π - 周期 T2= = × 10 5 s B2q 5 故电荷从 t= 0 时刻开始做周期性运动,其运动轨迹如图丙 所示. 4π - t= × 10 5 s 时刻电荷与 O 点的水平距离: 5 Δ d= 2(r1- r2)=4 cm.
第八章


“微讲座”(八)——带电粒子在复合场中 的运动轨迹分析
第八章


带电粒子在复合场中的运动是历年高考中的压轴题,所以明确粒
子的运动轨迹、类型及判定方法对于问题的解决至关重要.
1.运动轨迹 ——运动性质
匀速直线运动 (1)直线 匀变速直线运动
(2)抛物线:类平抛运动 (3)圆周(圆弧 ):匀速圆周运动 (4)复杂曲线:变加速曲线运动
所以运动时间为 2πr+ 2d 2πm+2m t= = . v Bq
第八章


(2)在区域Ⅱ内由动能定理得 1 2 1 2 qEd= mv1- mv 2 2 由题意知在区域Ⅲ内粒子做圆周运动的半径仍为 r=d v2 1 由 2Bqv1= m 得 r

高考物理一轮复习考点解析学案:专题8.4 带电粒子在复合场中的运动.pdf

高考物理一轮复习考点解析学案:专题8.4 带电粒子在复合场中的运动.pdf

【2015高考考纲解读】 1.理解掌握带电粒子的电偏转和磁偏转的条件、运动性质,会应用牛顿运动定律进行分析研究,掌握研究带电粒子的电偏转和磁偏转的方法,能够熟练处理类平抛运动和圆周运动. 2.学会按照时间先后或空间先后顺序对运动进行分析,分析运动速度的承前启后关联、空间位置的距离关系、运动时间的分配组合等信息将各个运动联系起来. 3.能够正确对叠加场中的带电粒子从受力、运动、能量三个方面进行分析. 4.能够合理选择力学规律(牛顿运动定律、运动学规律、动能定理、能量守恒定律等)对粒子的运动进行研究. 1.2014·四川卷如图所示,水平放置的不带电的平行金属板p和b相距h,与图示电路相连,金属板厚度不计,忽略边缘效应.p板上表面光滑,涂有绝缘层,其上O点右侧相距h处有小孔K;b板上有小孔T,且O、T在同一条竖直线上,图示平面为竖直平面.质量为m、电荷量为-q(q>0)的静止粒子被发射装置(图中未画出)从O点发射,沿p板上表面运动时间t后到达K孔,不与板碰撞地进入两板之间.粒子视为质点,在图示平面内运动,电荷量保持不变,不计空气阻力,重力加速度大小为g. (1)求发射装置对粒子做的功; (2)电路中的直流电源内阻为r,开关S接“1”位置时,进入板间的粒子落在b板上的A点,A点与过K孔竖直线的距离为l.此后将开关S接“2”位置,求阻值为R的电阻中的电流强度; (3)若选用恰当直流电源,电路中开关S接“1”位置,使进入板间的粒子受力平衡,此时在板间某区域加上方向垂直于图面的、磁感应强度大小合适的匀强磁场(磁感应强度B只能在0~Bm=范围内选取),使粒子恰好从b板的T孔飞出,求粒子飞出时速度方向与b板板面的夹角的所有可能值(可用反三角函数表示). 则题目所求为 00表示电场方向竖直向上.t=0时,一带正电、质量为m的微粒从左边界上的N1点以水平速度v射入该区域,沿直线运动到Q点后,做一次完整的圆周运动,再沿直线运动到右边界上的N2点.Q为线段N1N2的中点,重力加速度为g.上述d、E0、m、v、g为已知量. (1)求微粒所带电荷量q和磁感应强度B的大小. (2)求电场变化的周期T. (3)改变宽度d,使微粒仍能按上述运动过程通过相应宽度的 区域,求T的最小值. 【变式探究】如图甲所示,在以O为坐标原点的xOy平面内,存在着范围足够大的电场和磁场.一个质量m=2×10-2kg,带电荷量q=+5×10-3C的小球在0时刻以v0=40 m/s的速度从O点沿+x方向(水平向右)射入该空间,在该空间同时加上如图乙所示的电场和磁场,其中电场沿-y方向(竖直向上),场强大小E0=40 V/m.磁场垂直于xOy平面向外,磁感应强度大小B0=4π T.取当地的重力加速度g=10 m/s2,计算结果中可以保留根式或π. (1)求12 s末小球速度的大小. (2)在给定的xOy坐标系中,大致画出小球在24 s内的运动轨 迹示意图. (3)求26 s末小球的位置坐标. (2)小球在24 s内的运动轨迹示意图如图所示(半径越来越大). 【高考真题解析】 1.(2012·海南卷,2)如图所示,在两水平极板间存在匀强电场和匀强磁场,电场方向竖直向下,磁场方向垂直于纸面向里.一带电粒子以某一速度沿水平直线通过两极板.若不计重力,下列四个物理量中哪一个改变时,粒子运动轨迹不会改变 ( ). A.粒子速度的大小 B.粒子所带的电荷量 C.电场强度 D.磁感应强度 2.(2012·课标全国卷,25)如图所示,一半径为R的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m、电荷量为q的粒子沿图中直线在圆上的a点射入柱形区域,在圆上的b点离开该区域,离开时速度方向与直线垂直.圆心O到直线的距离为R.现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a点射入柱形区域,也在b点离开该区域.若磁感应强度大小为B,不计重力,求电场强度的大小. 答案 3.(2012·重庆卷,24)有人设计了一种带电颗粒的速率分选装置,其原理如图所示.两带电金属板间有匀强电场,方向竖直向上,其中PQNM矩形区域内还有方向垂直纸面向外的匀强磁场.一束比荷(电荷量与质量之比)均为的带正电颗粒,以不同的速率沿着磁场区域的水平中心线O′O进入两金属板之间,其中速率为v0的颗粒刚好从Q点处离开磁场,然后做匀速直线运动到达收集板.重力加速度为g,PQ=3d,NQ=2d,收集板与NQ的距离为l,不计颗粒间相互作用. 求:(1)电场强度E的大小; (2)磁感应强度B的大小; (3)速率为λv0(λ>1)的颗粒打在收集板上的位置到O点的距离. 解析 (1)设带电颗粒的电荷量为q,质量为m.有Eq=mg,将=代入,得E=kg. (2)如图甲所示,有qv0B=m,R2=(3d)2+(R-d)2,得B=. (3)如图乙所示,有qλv0B=m, tan θ=,y1=R1-, y2=ltan θ,y=y1+y2,得 y=d(5λ-)+. 答案 (1)kg (2) (3)d(5λ-)+ 4.(2012·浙江卷,24)如图所示,两块水平放置、相距为d的长金属板接在电压可调的电源上.两板之间的右侧区域存在方向垂直纸面向里的匀强磁场.将喷墨打印机的喷口靠近上板下表面,从喷口连续不断喷出质量均为m、水平速度均为v0、带相等电荷量的墨滴.调节电源电压至U,墨滴在电场区域恰能沿水平向右做匀速直线运动;进入电场、磁场共存区域后,最终垂直打在下板的M点. (1)判断墨滴所带电荷的种类,并求其电荷量; (2)求磁感应强度B的值; (3)现保持喷口方向不变,使其竖直下移到两板中间的位置.为了使墨滴仍能到达下板M点,应将磁感应强度调至B′,则B′的大小为多少? (3)根据题设,墨滴运动轨迹如图所示,设墨滴做圆周运动的半径为R′,有qv0B′=m ⑤ 由图可得: R′2=d2+2 ⑥ 由⑥式得:R′=d ⑦ 联立②⑤⑦式可得:B′= 答案 (1)负电荷 (2) (3) 5.(2013·江苏卷,15)在科学研究中,可以通过施加适当的电场和磁场来实现对带电粒子运动的控制.如图(a)所示的xOy平面处于匀强电场和匀强磁场中,电场强度E和磁感应强度B随时间t作周期性变化的图象如图(b)所示.x轴正方向为E的正方向,垂直纸面向里为B的正方向.在坐标原点O有一粒子P,其质量和电荷量分别为m和+q.不计重力.在t=时刻释放P,它恰能沿一定轨道做往复运动. (1)求P在磁场中运动时速度的大小v0; (2)求B0应满足的关系; (3)在t0时刻释放P,求P速度为零时的坐标. 解析 (1)~τ做匀加速直线运动,τ~2τ做匀速圆周运动,电场力F=qE0,加速度a=,速度v0=aτ,且t=,解得v0=. (2)只有当t=2τ时,P在磁场中做圆周运动结束并开始沿x轴负方向运动,才能沿一定轨道做往复运动,如图所示.设P在磁场中做圆周运动的周期为T.则T=τ(n=1,2,3,…),匀速圆周运动qvB0=m,T= 解得B0=,(n=1,2,3…). 解得y=,(k=1,2,3…). 答案 (1) (2)B0=,(n=1,2,3…) (3)横坐标x=0,纵坐标y=,(k=1,2,3…) (2013·浙江高考)在半导体离子注入工艺中,初速度可忽略的磷离子P+和P3+,经电压为U的电场加速后,垂直进入磁感应强度大小为B、方向垂直纸面向里、有一定宽度的匀强磁场区域,如图所示,已知离子P+在磁场中转过θ=30°后从磁场右边界射出.在电场和磁场中运动时,离子P+和P3+( ) A.在电场中的加速度之比为11 B.在磁场中运动的半径之比为1 C.在磁场中转过的角度之比为12 D.离开电场区域时的动能之比为13 7.(2013·天津高考)一圆筒的横截面如图所示,其圆心为O.筒内有垂直于纸面向里的匀强磁场,磁感应强度为B.圆筒下面有相距为d的平行金属板M、N,其中M板带正电荷,N板带等量负电荷.质量为m、电荷量为q的带正电粒子自M板边缘的P处由静止释放,经N板的小孔S以速度v沿半径SO方向射入磁场中.粒子与圆筒发生两次碰撞后仍从S孔射出,设粒子与圆筒碰撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求: (1)M、N间电场强度E的大小; (2)圆筒的半径R; (3)保持M、N间电场强度E不变,仅将M板向上平移d,粒子仍从M板边缘的P处由静止释放,粒子自进入圆筒至从S孔射出期间,与圆筒的碰撞次数n. (3)保持M、N间电场强度E不变,M板向上平移d后,设板间电压为U′,则 U′== 设粒子进入S孔时的速度为v′,由式看出 = 综合式可得 v′=v 设粒子做圆周运动的半径为r′,则 r′= 设粒子从S到第一次与圆筒碰撞期间的轨迹所对圆心角为θ,比较两式得到r′=R,可见 θ= 粒子需经过四个这样的圆弧才能从S孔射出,故 n=3 【答案】 (1) (2) (3)3【当堂巩固】1.如图所示,一个静止的质量为m、电荷量为q的粒子(重力忽略不计),经加速电压U加速后,垂直进入磁感应强度为B的匀强磁场中,粒子打到P点, OP=x,能正确反映x与U之间关系的是( ) A.x与U成正比 B.x与U成反比 C.x与成正比 D.x与成反比 【解析】 由x=2R=2mv/qB,qU=mv2,可得x与成正比,选项C正确. 【答案】 C 2.美国物理学家劳伦斯于1932年发明的回旋加速器,应用带电粒子在磁场中做圆周运动的特点,能使粒子在较小的空间范围内经过电场的多次加速获得较大的能量,使人类在获得以较高能量带电粒子方面前进了一步,如图所示为一种改进后的回旋加速器示意图,其中盒缝间的加速电场场强大小恒定,且被限制在A、C板间,带电粒子从P0处静止释放,并沿电场线方向射入加速电场,经加速后再进入D形盒中的匀强磁场做匀速圆周运动,对于这种改进后的回旋加速器,下列说法正确的是( ) A.带电粒子每运动一周被加速一次 B.P1P2=P2P3 C.加速粒子的最大速度与D形盒的尺寸无关 D.加速电场方向需要做周期性的变化 3.如图所示,a、b是位于真空中的平行金属板,a板带正电,b板带负电,两板之间的电场为匀强电场,场强为E.同时在两板之间的空间中加匀强磁场,磁场方向垂直于纸面向里,磁感应强度为B.一束电子以大小为v0的速度从左边S处沿图中虚线方向入射,虚线平行于两板.要想使电子在两板间能沿虚线运动,则v0、E、B之间的关系应该是( ) A.v0= B.v0= C.v0= D.v0= 【解析】 电子沿直线运动时,必有Eq=Bv0q,故v0=,A正确. 【答案】 A 4.如图所示,水平放置的平行金属板a、b带有等量正负电荷,a板带正电,两板间有垂直于纸面向里的匀强磁场,一个带正电的粒子在两板间做直线运动,粒子的重力不计.关于粒子在两板间运动的情况,正确的是( ) A.可能向右做匀加速直线运动 B.可能向左做匀加速直线运动 C.只能是向右做匀速直线运动 D.只能是向左做匀速直线运动 .质谱仪的构造原理如图所示.从粒子源S出来时的粒子速度很小,可以看作初速为零,粒子经过电场加速后进入有界的垂直纸面向里的匀强磁场区域,并沿着半圆周运动而达到照相底片上的P点,测得P点到入口的距离为x,则以下说法正确的是( ) A.粒子一定带正电 B.粒子一定带负电 C.x越大,则粒子的质量与电量之比一定越大 D.x越大,则粒子的质量与电量之比一定越小 【解析】 由左手定则可判断,A对;半径为x/2,由R=可知C对. 【答案】 AC .如图甲所示,竖直挡板MN的左侧空间有方向竖直向上的匀强电场和垂直纸面的水平匀强磁场,电场和磁场的范围足够大,电场强度的大小E=40 N/C,磁感应强度B随时间t变化的关系图象如图乙所示,选定磁场垂直纸面向里为正方向,在t=0时刻,一质量m=8×10-4 kg、带电荷量q=+2×10-4 C的微粒在O点具有竖直向下的速度v=0.12m/s,O′是挡板MN上一点,直线OO′与挡板MN垂直,取g=10 m/s2.求: (1)微粒下一次经过直线OO′时到O点的距离. (2)微粒在运动过程中离开直线OO′的最大距离. (3)水平移动挡板,使微粒能垂直射到挡板上,挡板与O点间距离应满足的条件.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考定位带电粒子在复合场中的运动是力电综合的重点和高考的热点,常见的考查形式有组合场(电场、磁场、重力场依次出现)、叠加场(空间同一区域同时存在两种以上的场)、周期性变化场等,近几年高考试题中,涉及本专题内容的频度极高,特别是计算题,题目难度大,涉及面广.试题多把电场和磁场的性质、运动学规律、牛顿运动定律、圆周运动规律、功能关系揉合在一起.主要考查考生的空间想象能力、分析综合能力以及运用数学知识解决物理问题的能力.以考查考生综合分析和解决复杂问题的能力.考题1带电粒子在叠加场中的运动分析例1如图1所示,位于竖直平面内的坐标系xOy,在其第三象限空间有垂直于纸面向外的匀强磁场,磁感应强度大小为B=0.5 T,还有沿x轴负方向的匀强电场,场强大小为E=2 N/C.在其第一象限空间有沿y轴负方向的、场强大小也为E的匀强电场,并在y>h=0.4 m的区域有磁感应强度也为B的垂直于纸面向里的匀强磁场.一个带电荷量为q的油滴从图中第三象限的P点得到一初速度,恰好能沿PO做匀速直线运动(PO与x轴负方向的夹角为θ=45°),并从原点O进入第一象限.已知重力加速度g=10 m/s2,问:图1(1)油滴在第三象限运动时受到的重力、电场力、洛伦兹力三力的大小之比,并指出油滴带何种电荷;(2)油滴在P点得到的初速度大小;(3)油滴在第一象限运动的时间.审题突破(1)结合平衡条件判断油滴所受电场力的方向和洛伦兹力的方向,进而判断油滴的电性,对油滴受力分析后采用合成法作图,由几何关系得出三力之比;(2)根据油滴在垂直直线方向上应用平衡条件列方程求得速度大小;(3)进入第一象限,由于重力等于电场力,在电场中做匀速直线运动,在混合场中做匀速圆周运动,作出运动轨迹,结合磁场中圆周运动的周期公式即运动的对称性确定运动总时间.解析 (1)根据受力分析(如图)可知油滴带负电荷,设油滴质量为m ,由平衡条件得: mg ∶qE ∶F =1∶1∶ 2. (2)由第(1)问得:mg =qE q v B =2qE 解得:v =2EB=4 2 m/s. (3)进入第一象限,电场力和重力平衡,知油滴先做匀速直线运动,进入y ≥h 的区域后做匀速圆周运动,轨迹如图,最后从x 轴上的N 点离开第一象限.由O →A 匀速运动的位移为x 1=hsin 45°=2h其运动时间:t 1=x 1v =2h 2E B=hBE =0.1 s由几何关系和圆周运动的周期关系式T =2πmqB知,由A →C 的圆周运动时间为t 2=14T =πE2gB ≈0.628 s由对称性知从C →N 的时间t 3=t 1在第一象限运动的总时间t =t 1+t 2+t 3=2×0.1 s +0.628 s =0.828 s 答案 (1)1∶1∶2 油滴带负电荷 (2)4 2 m/s (3)0.828 s1.如图2,水平地面上方有一底部带有小孔的绝缘弹性竖直挡板,板高h =9 m ,与板上端等高处水平线上有一P 点,P 点离挡板的距离x =3 m .板的左侧以及板上端与P 点的连线上方存在匀强磁场和匀强电场.磁场方向垂直纸面向里,磁感应强度B =1 T ;比荷大小qm =1.0C /kg 可视为质点的小球从挡板下端处小孔以不同的速度水平射入场中做匀速圆周运动,若与挡板相碰就以原速率弹回,且碰撞时间不计,碰撞时电量不变,小球最后都能经过位置P ,g =10 m/s 2,求:图2(1)电场强度的大小与方向;(2)小球不与挡板相碰运动到P 的时间;(3)要使小球运动到P 点时间最长应以多大的速度射入?答案 (1)10 N/C ,方向竖直向下 (2)π+arcsin 35(s)(3)3.75 m/s解析 (1)由题意可知,小球带负电,因小球做匀速圆周运动,有:Eq =mg得:E =mgq =10 N/C ,方向竖直向下(2)小球不与挡板相碰直接到达P 点轨迹如图:有:(h -R )2+x 2=R 2得:R =5 m 设PO 与挡板的夹角为θ,则sin θ=x R =35小球做圆周运动的周期T =2πmqB设小球做圆周运动所经过圆弧的圆心角为α,则t =αmqB运动时间t =(π+arcsin 35)mqB =π+arcsin 35(s).(3)因速度方向与半径垂直,圆心必在挡板上,设小球与挡板碰撞n 次,有R ≤h2n又R ≥x ,n 只能取0,1. n =0时,(2)问不符合题意 n =1时,有(3R -h )2+x 2=R 2 解得:R 1=3 m ,R 2=3.75 m轨迹如图,半径为R 2时运动时间最长洛伦兹力提供向心力:q v B =m v 2R 2得:v =3.75 m/s.带电粒子在叠加场中运动的处理方法 1.弄清叠加场的组成特点.2.正确分析带电粒子的受力及运动特点. 3.画出粒子的运动轨迹,灵活选择不同的运动规律(1)若只有两个场且正交,合力为零,则表现为匀速直线运动或静止.例如电场与磁场中满足qE =q v B ;重力场与磁场中满足mg =q v B ;重力场与电场中满足mg =qE .(2)若三场共存时,合力为零,粒子做匀速直线运动,其中洛伦兹力F =q v B 的方向与速度v 垂直.(3)若三场共存时,粒子做匀速圆周运动,则有mg =qE ,粒子在洛伦兹力作用下做匀速圆周运动,即q v B =m v 2r .(4)当带电粒子做复杂的曲线运动或有约束的变速直线运动时,一般用动能定理或能量守恒定律求解.考题2 带电粒子在组合场中的运动分析例2 (2014·广东·36)如图3所示,足够大的平行挡板A 1、A 2竖直放置,间距为6L .两板间存在两个方向相反的匀强磁场区域Ⅰ和Ⅱ,以水平面MN 为理想分界面.Ⅰ区的磁感应强度为B 0,方向垂直纸面向外,A 1、A 2上各有位置正对的小孔S 1、S 2,两孔与分界面MN 的距离为L .质量为m 、电量为+q 的粒子经宽度为d 的匀强电场由静止加速后,沿水平方向从S 1进入Ⅰ区,并直接偏转到MN 上的P 点,再进入Ⅱ区.P 点与A 1板的距离是L 的k 倍.不计重力,碰到挡板的粒子不予考虑.图3(1)若k =1,求匀强电场的电场强度E ;(2)若2<k <3,且粒子沿水平方向从S 2射出,求出粒子在磁场中的速度大小v 与k 的关系式和Ⅱ区的磁感应强度B 与k 的关系式.审题突破 (1)粒子在电场中做加速直线运动,根据动能定理列式;粒子在磁场中做匀速圆周运动,根据牛顿第二定律列式;结合几何关系得到轨道半径;最后联立求解.(2)结合几何关系列式求解出轨道半径;粒子在磁场中做匀速圆周运动时,洛伦兹力提供向心力,根据牛顿第二定律列式;最后联立求解即可.解析 (1)若k =1,则有MP =L ,粒子在匀强磁场中做匀速圆周运动,根据几何关系,该情况粒子的轨迹半径为 R =L粒子在匀强磁场中做匀速圆周运动,则有:q v B 0=m v 2R粒子在匀强电场中加速,根据动能定理有:qEd =12m v 2综合上式解得:E =qB 20L22dm(2)因为2<k <3,且粒子沿水平方向从S 2射出,该粒子运动轨迹如图所示,由几何关系:R 2-(kL )2=(R -L )2,又有q v B 0=m v 2R则整理解得:v =qB 0(L +k 2L )2m又因为:6L -2kL =2x根据几何关系有:kL x =Rr又q v B =m v2r则Ⅱ区的磁感应强度B 与k 的关系:B =kB 03-k.答案 (1)qB 20L 22dm (2)v =qB 0(L +k 2L )2m B =kB 03-k2.如图4所示的直角坐标xOy 平面内有间距为d ,长度为233d 的平行正对金属板M 、N ,M位于x 轴上,OP 为过坐标原点O 和极板N 右边缘的直线,与y 轴的夹角θ=π3,OP 与y 轴之间及y 轴右侧空间中分别存在磁感应强度大小相等方向相反且均垂直于坐标平面的匀强磁场.质量为m 、电荷量为q 的带正电粒子从M 板左侧边缘以速度v 0沿极板方向射入,恰好从N 板的右侧边缘A 点射出进入磁场.粒子第一次通过y 轴时,速度与y 轴负方向的夹角为π6.不计粒子重力,求:图4(1)极板M 、N 间的电压; (2)匀强磁场磁感应强度的大小; (3)粒子第二次通过y 轴时的纵坐标值;(4)粒子从进入板间到第二次通过y 轴时经历的时间.答案 (1)3m v 202q (2)2m v 0qd (3)2d (4)(43+7π6)dv 0解析 (1)粒子在M 、N 板间做类平抛运动,设加速度为a ,运动时间为t 1,则233d =v 0t 1d =12at 21根据牛顿运动定律得q Ud =ma联立解得U =3m v202q .(2)设粒子经过A 点时的速度为v ,方向与x 轴的夹角为α,根据动能定理,得qU =12m v 2-12m v 20cos α=v 0v解得v =2v 0,α=π3设粒子第一次与y 轴相交于D 点,轨迹如图,由几何关系知D 点与A 点高度相等,△C 1DO 为等边三角形.R =d根据牛顿定律,得q v B =m v 2R整理得B =2m v 0qd.(3)粒子在y 轴右侧空间的运动轨迹如图.由几何关系知 DE =2R cos θ=d即E 点的纵坐标为y E =2d . (4)粒子从A 到D 的时间t 2=13T从D 到E 的时间t 3=56T而T =2πm qB =πd v 0故t =t 1+t 2+t 3=(43+7π6)dv 0.3.如图5所示,相距3L 的AB 、CD 两直线间的区域存在着两个大小不同、方向相反的有界匀强电场,其中PT 上方的电场Ⅰ的场强方向竖直向下,PT 下方的电场Ⅱ的场强方向竖直向上,电场Ⅰ的场强大小是电场Ⅱ的场强大小的两倍,在电场左边界AB 上有点Q ,PQ 间距离为L .从某时刻起由Q 以初速度v 0沿水平方向垂直射入匀强电场的带电粒子,电量为+q 、质量为m .通过PT 上的某点R 进入匀强电场Ⅰ后从CD 边上的M 点水平射出,其轨迹如图,若PR 两点的距离为2L .不计粒子的重力.试求:图5(1)匀强电场Ⅰ的电场强度的大小和MT 之间的距离;(2)有一边长为a 、由光滑弹性绝缘壁围成的正三角形容器,在其边界正中央开有一小孔S ,将其置于CD 右侧且紧挨CD 边界,若从Q 点射入的粒子经AB 、CD 间的电场从S 孔水平射入容器中.欲使粒子在容器中与器壁多次垂直碰撞后仍能从S 孔射出(粒子与绝缘壁碰撞时无机械能和电量损失),并返回Q 点,需在容器中现加上一个如图所示的匀强磁场,粒子运动的半径小于12a ,求磁感应强度B 的大小应满足的条件以及从Q 出发再返回到Q 所经历的时间.答案 (1)m v 20qL 12L (2)B =2m v 0(1+2n )qa,n =1,2,…6L v 0+(6n +1)πa 2(2n +1)v 0,n =1,2,… 解析 (1)设粒子经PT 直线上的点R 由E 2电场进入E 1电场,由Q 到R 及R 到M 点的时间分别为t 2与t 1,到达R 时竖直速度为v y , 则由F =qE =ma , 2L =v 0t 2,L =v 0t 1,L =12·E 2q m t 22,E 1=2E 2,得E 1=m v 20qLv y =E 2q m t 2=E 1q m t 1MT =12·E 1q mt 21联立解得MT =12L .(2)欲使粒子仍能从S 孔处射出,粒子运动的半径为r ,则q v 0B =m v 20r(1+2n )r =12a ,n =1,2,…解得:B =2m v 0(1+2n )qa, n =1,2,…由几何关系可知t ′=3×(2n ×T 2+T 6)=(3n +12)Tn =1,2,3…T =2πR v =2πm Bq代入B 得T =πa(2n +1)v 0,n =1,2,…t =2t 1+2t 2+t ′=6L v 0+(6n +1)πa2(2n +1)v 0,n =1,2,…带电粒子在组合场内的运动实际上也是运动过程的组合,解决方法如下:(1)分别研究带电粒子在不同场区的运动规律.在匀强磁场中做匀速圆周运动.在匀强电场中,若速度方向与电场方向平行,则做匀变速直线运动;若速度方向与电场方向垂直,则做类平抛运动.(2)带电粒子经过磁场区域时利用圆周运动规律结合几何关系处理.(3)当粒子从一个场进入另一个场时,分析转折点处粒子速度的大小和方向往往是解题的突破口.考题3 带电粒子在周期性变化的电磁场中的运动分析例3 (19分)如图6甲所示,在xOy 平面内存在均匀、大小随时间周期性变化的磁场和电场,变化规律分别如图乙、丙所示(规定垂直纸面向里为磁感应强度的正方向、沿y 轴正方向电场强度为正).在t =0时刻由原点O 发射初速度大小为v 0,方向沿y 轴正方向的带负电粒子.图6已知v 0、t 0、B 0,粒子的比荷为πB 0t 0,不计粒子的重力.求:(1)t =t 0时,求粒子的位置坐标;(2)若t =5t 0时粒子回到原点,求0~5t 0时间内粒子距x 轴的最大距离; (3)若粒子能够回到原点,求满足条件的所有E 0值.解析 (1)由粒子的比荷q m =πB 0t 0,则粒子做圆周运动的周期T =2πmB 0q =2t 0(1分) 则在0~t 0内转过的圆心角α=π(2分) 由牛顿第二定律q v 0B 0=m v 20r 1(2分) 得r 1=v 0t 0π(1分) 位置坐标(2v 0t 0π,0).(1分)(2)粒子t =5t 0时回到原点,轨迹如图所示r 2=2r 1(2分) r 1=m v 0B 0q r 2=m v 2B 0q(1分) 得v 2=2v 0(1分) 又q m =πB 0t 0,r 2=2v 0t 0π(1分)粒子在t 0~2t 0时间内做匀加速直线运动, 2t 0~3t 0时间内做匀速圆周运动,则在0~5t 0时间内粒子距x 轴的最大距离:h m =v 0+2v 02t 0+r 2=(32+2π)v 0t 0. (2分)(3)如图所示,设带电粒子在x 轴上方做圆周运动的轨道半径为r 1,在x 轴下方做圆周运动的轨道半径为r 2′,由几何关系可知,要使粒子经过原点,则必须满足:n (2r 2′-2r 1)=2r 1,(n =1,2,3,…) (1分) r 1=m v 0B 0q r 2′=m v B 0q(1分) 联立以上各式解得v =n +1n v 0,(n =1,2,3,…)(1分) 又由v =v 0+E 0qt 0m(1分) 得E 0=v 0B 0n π,(n =1,2,3,…).(1分)答案 (1)(2v 0t 0π,0) (2)(32+2π)v 0t 0(3)v 0B 0n π,(n =1,2,3,…)(20分)如图7甲所示,间距为d 、垂直于纸面的两平行板P 、Q 间存在匀强磁场.取垂直于纸面向里为磁场的正方向,磁感应强度随时间的变化规律如图乙所示.t =0时刻,一质量为m 、带电量为+q 的粒子(不计重力),以初速度v 0由Q 板左端靠近板面的位置,沿垂直于磁场且平行于板面的方向射入磁场区.当B 0和T B 取某些特定值时,可使t =0时刻入射的粒子经Δt 时间恰能垂直打在P 板上(不考虑粒子反弹).上述m 、q 、d 、v 0为已知量.图7(1)若Δt =12T B ,求B 0;(2)若Δt =32T B ,求粒子在磁场中运动时加速度的大小;(3)若B 0=4m v 0qd ,为使粒子仍能垂直打在P 板上,求T B .答案 (1)m v 0qd (2)3v 20d(3)πd3v 0或⎝⎛⎭⎫π2+arcsin 14d 2v 0 解析 (1)设粒子做圆周运动的半径为R 1,由牛顿第二定律得q v 0B 0=m v 20R 1① 据题意由几何关系得R 1=d② 联立①②式得B 0=m v 0qd③(2)设粒子做圆周运动的半径为R 2,加速度大小为a ,由圆周运动公式得a =v 20R 2④据题意由几何关系得3R 2=d⑤ 联立④⑤式得a =3v 20d.⑥ (3)设粒子做圆周运动的半径为R ,周期为T ,由圆周运动公式得T =2πRv 0⑦由牛顿第二定律得q v 0B 0=m v 20R⑧由题意知B 0=4m v 0qd ,代入⑧式得d =4R⑨粒子运动轨迹如图所示,O 1、O 2为圆心,O 1O 2连线与水平方向的夹角为θ,在每个T B 内,只有A 、B 两个位置才有可能垂直击中P 板,且均要求0<θ<π2,由题意可知π2+θ2πT =T B2⑩设经历完整T B 的个数为n (n =0,1,2,3,…) 若在A 点击中P 板,据题意由几何关系得 R +2(R +R sin θ)n =d ⑪ 当n =0时,无解⑫当n =1时,联立⑨⑪式得 θ=π6(或sin θ=12) ⑬联立⑦⑨⑩⑬式得 T B =πd 3v 0⑭ 当n ≥2时,不满足0<θ<90°的要求⑮若在B 点击中P 板,据题意由几何关系得R +2R sin θ+2(R +R sin θ)n =d ⑯ 当n =0时,无解⑰当n =1时,联立⑨⑯式得θ=arcsin 14(或sin θ=14)⑱联立⑦⑨⑩⑱式得 T B =⎝⎛⎭⎫π2+arcsin 14d 2v 0 ⑲当n ≥2时,不满足0<θ<90°的要求.知识专题练 训练8题组1 带电粒子在叠加场中的运动分析1.如图1所示,空间存在水平向左的匀强电场和垂直纸面向里的水平匀强磁场.在该区域中,有一个竖直放置的光滑绝缘圆环,环上套有一个带正电的小球.O 点为圆环的圆心,a 、b 、c 、d 为圆环上的四个点,a 点为最高点,c 点为最低点,b 、O 、d 三点在同一水平线上.已知小球所受电场力与重力大小相等.现将小球从环的顶端a 点由静止释放,下列判断正确的是( )图1A .小球能越过d 点并继续沿环向上运动B .当小球运动到d 点时,不受洛伦兹力C .小球从d 点运动到b 点的过程中,重力势能减小,电势能减小D .小球从b 点运动到c 点的过程中,经过弧bc 中点时速度最小 答案 B解析 电场力与重力大小相等,则二者的合力指向左下方45°,由于合力是恒力,故类似于新的重力,所以ad 弧的中点相当于竖直平面圆环的“最高点”.关于圆心对称的位置(即bc 弧的中点)就是“最低点”,速度最大;由于a 、d 两点关于新的最高点对称,若从a 点静止释放,最高运动到d 点,故A 错误;当小球运动到d 点时,速度为零,故不受洛伦兹力,故B 正确;由于d 、b 等高,故小球从d 点运动到b 点的过程中,重力势能不变,故C 错误;由于等效重力指向左下方45°,由于弧bc 中点是等效最低点,故小球从b 点运动到c 点的过程中,经过弧bc 中点时速度最大,故D 错误.2.如图2甲所示,x 轴正方向水平向右,y 轴正方向竖直向上.在xOy 平面内有与y 轴平行的匀强电场,在半径为R 的圆形区域内加有与xOy 平面垂直的匀强磁场.在坐标原点O 处放置一带电微粒发射装置,它可以连续不断地发射具有相同质量m 、电荷量q (q >0)和初速度为v 0的带电微粒.(已知重力加速度为g )图2(1)当带电微粒发射装置连续不断地沿y 轴正方向发射这种带电微粒时,这些带电微粒将沿圆形磁场区域的水平直径方向离开磁场,并继续沿x 轴正方向运动.求电场强度E 和磁感应强度B 的大小和方向.(2)调节坐标原点处的带电微粒发射装置,使其在xOy 平面内不断地以相同速率v 0沿不同方向将这种带电微粒射入第Ⅰ象限,如图乙所示.现要求这些带电微粒最终都能平行于x 轴正方向运动,则在保证电场强度E 和磁感应强度B 的大小和方向不变的条件下,求出符合条件的磁场区域的最小面积.答案 (1)E =mg q ,沿y 轴正方向 B =m v 0qR ,垂直纸面向外 (2)(π2-1)R 2解析 (1)微粒沿x 轴正方向运动,即带电微粒所受重力与电场力平衡. 设电场强度大小为E , 由平衡条件得:mg =qE 解得:E =mgq由于粒子带正电,故电场方向沿y 轴正方向 带电微粒进入磁场后,做匀速圆周运动, 且半径r =R .设匀强磁场的磁感应强度大小为B .由牛顿第二定律得:q v 0B =m v 20R解得B =m v 0qR,磁场方向垂直纸面向外.(2)沿y 轴正方向射入的微粒,运动轨迹如图所示:以半径R 沿x 轴正方向运动四分之一圆弧,该圆弧也恰为微粒运动的上边界.以O 点为圆心、R 为半径做的四分之一圆弧BC 为微粒做圆周运动的圆心轨迹.微粒经磁场偏转后沿x 轴正方向运动,即半径沿竖直方向.并且射出点距圆心轨迹上各点的距离为R ,射出点的边界与圆弧BC 平行,如图中的圆弧ODA ,圆弧OA 与圆弧ODA 之间的区域即为磁场区域的最小面积:S =2(14πR 2-12R 2)=(π2-1)R 2.题组2 带电粒子在组合场中的运动分析3.如图3所示,在矩形区域CDNM 内有沿纸面向上的匀强电场,场强的大小E =1.5×105 V /m ;在矩形区域MNGF 内有垂直纸面向外的匀强磁场,磁感应强度大小B =0.2 T .已知CD =MN =FG =0.60 m ,CM =MF =0.20 m .在CD 边中点O 处有一放射源,沿纸面向电场中各方向均匀地辐射出速率均为v 0=1.0×106 m/s 的某种带正电粒子,粒子质量m =6.4×10-27kg ,电荷量q =3.2×10-19C ,粒子可以无阻碍地通过边界MN 进入磁场,不计粒子的重力.求:图3(1)粒子在磁场中做圆周运动的半径; (2)边界FG 上有粒子射出磁场的范围长度;(3)粒子在磁场中运动的最长时间.(后两问结果保留两位有效数字) 答案 (1)0.2 m (2)0.43 m (3)2.1×10-7 s解析 (1)电场中由动能定理得: qEd =12m v 2-12m v 20 由题意知d =0.20 m ,代入数据得 v =2×106 m/s带电粒子在磁场中做匀速圆周运动,qB v =m v 2r解得r =m vqB =0.2 m.(2)设粒子沿垂直于电场方向射入时, 出电场时水平位移为x ,则由平抛规律得:⎩⎪⎨⎪⎧d =12·qE m ·t 2x =v 0t解得x =2315m离开电场时,sin θ1=v 0v =12,1由题意可知,PS ⊥MN ,沿OC 方向射出粒子到达P 点,为左边界,垂直MN 射出的粒子与边界FG 相切于Q 点,Q 为右边界,QO ″=r ,轨迹如图.范围长度为l =x +r =(2315+0.2) m ≈0.43 m.(3)T =2πm qB ,由分析可知,OO ′方向射出的粒子运动时间最长,设FG 长度为Lsin θ2=12L -r r =12,θ2=30°带电粒子在磁场中运动的最大圆心角为120°,对应的最长时间为t max =13T =2πm 3qB ≈2.1×10-7 s题组3 带电粒子在周期性变化的电磁场中运动分析4.如图4甲所示,水平直线MN 上方有竖直向下的匀强电场,场强大小E =π×103 N/C ,MN 下方有垂直于纸面的磁场,磁感应强度B 随时间t 按如图乙所示规律做周期性变化,规定垂直纸面向外为磁场正方向.T =0时将一重力不计、比荷qm =106 C/kg 的正点电荷从电场中的O 点由静止释放,在t 1=1×10-5 s 时恰通过MN 上的P 点进入磁场,P 点左方d=105 cm 处有一垂直于MN 且足够大的挡板.图4求:(1)电荷从P 点进入磁场时速度的大小v 0; (2)电荷在t 2=4×10-5 s 时与P 点的距离Δx ;(3)电荷从O 点出发运动到挡板所需时间t 总. 答案 (1)π×104 m/s (2)20 2 cm (3)1.42×10-4 s解析 (1)电荷在电场中做匀加速直线运动, 则Eq =ma01解得v 0=Eqt 1m =π×103×106×1×10-5 m/s=π×104 m/s(2)电荷在磁场中做匀速圆周运动,洛伦兹力提供向心力q v B =m v 2r ,r =m vBq当B 1=π20 T 时,半径r 1=m v 0B 1q =0.2 m =20 cm周期T 1=2πm B 1q =4×10-5 s当B 2=π10 T 时,半径r 2=m v 0B 2q =0.1 m =10 cm周期T 2=2πm B 2q =2×10-5 s故电荷从t =0时刻开始做周期性运动, 其运动轨迹如图所示.在t =0到t 2=4×10-5 s 时间内,电荷先沿直线OP 运动t 1,再沿大圆轨迹运动T 14,紧接着沿小圆轨迹运动T 2, t 2=4×10-5 s 时电荷与P 点的距离Δx =2r 1=20 2 cm(3)电荷从P 点开始的运动周期T =6×10-5 s ,且在每一个周期内向左沿PM 移动x 1=2r 1=40cm ,电荷到达挡板前经历了2个完整周期,沿PM 运动距离x =2x 1=80 cm ,设电荷撞击挡板前速度方向与水平方向成θ角,最后d -x =25 cm 内的轨迹如图所示.据几何关系有r 1+r 2sin θ=0.25 m 解得sin θ=0.5,则电荷从O 点出发运动到挡板所需总时间t 总=t 1+2T +T 14+θ360°T 2解得t 总=856×10-5 s ≈1.42×10-4 s.。

相关文档
最新文档