北京市西城区2012年初三二模试卷
2012北京西城区初三数学二模试卷及答案(WORD版)
北京市西城区2012年初三一模试卷数学答案及评分标准2012. 5三、解答题(本题共30分,每小题5分)13.解:原式=32133321++⨯- …………………………………………………………4分 =323+.…………………………………………………………………… 5分14.解:由①得2->x .……………………………………………………………………1分由②得x ≤37. ……………………………………………………………………3分∴ 原不等式组的解集是-2< x ≤37.………………………………………………4分∴ 它的非负整数解为0,1,2.………………………………………………… 5分 15.(1)证明:如图1.∵ ∠ABC=90º,D 为AB 延长线上一点,∴ ∠ABE=∠CBD=90º . …………………………………………………1分 在△ABE 和△CBD 中,⎪⎩⎪⎨⎧=∠=∠=,,,BD BE CBD ABE CB AB∴ △ABE ≌△CBD. …………………… 2分 (2)解:∵ AB=CB ,∠ABC=90º,∴ ∠CAB =45°. …….…………………… 3分 又∵ ∠CAE=30º,∴ ∠BAE =15°. ……………………………………………………………4分①② ⎪⎩⎪⎨⎧-+<-215)1(3x x x ,≥2x -4,∵ △ABE ≌△CBD ,∴ ∠BCD =∠BAE =15°. ……………………………………………………5分16. 解:原式=()()()()2a ab a b a b b a a b ++-⋅- =()22b b a +. ..….….….….….……………………3分 ∵ 2a +b =0,∴ a b 2-=. ……………………………………………………………………… 4分∴ 原式=22224)2()(a a a a =--.∵ a 不为0,∴ 原式=41. ..….….….….……………………………………………………… 5分17. 解:(1)∵ 反比例函数 的图象经过点),2(m A , ∴ 2m k =,且m >0.∵ AB ⊥x 轴于点B ,△AOB 的面积为1,∴1212m ⋅⋅=. 解得 1=m . ……………………………………………………………… 1分∴ 点A 的坐标为)1,2(. ………………………………………………… 2分 ∴ 22k m ==. …………………………………………………………… 3分 (2)点C 的坐标为(0,3)或(0,-1). ……………………………………………… 5分 18.解:设甲工厂每天能加工x 件新产品,则乙工厂每天能加工1.5x 件新产品.依题意得 105.112001200+=x x . ……………………………………………………2分解得40=x . …………………………………………………………………… 3分 经检验,40=x 是原方程的解,并且符合题意. …………………………… 4分∴ 605.1=x .答: 甲工厂每天能加工40件新产品, 乙工厂每天能加工60件新产品. ……………5分 四、解答题(本题共20分,每小题5分)19.解:(1)2,50;…………………………………2分 (2)5040%20⨯=,C 组的户数为20. … 3分补图见图2. …………………………4分 (3)∵ 500(28%8%)180⨯+=,∴ 根据以上信息估计,全社区捐款不少 于300元的户数是180.……………………………… 5分)0(>=k xk y捐款户数分组统计图120.解:(1)∵ 梯形ABCD 中,AD ∥BC ,90A ∠=︒,60C ∠=︒,∴ 90ABC ∠=︒,180120ADC C ∠=︒-∠=︒. 在Rt △ABD 中,∵90A ∠=︒,15ABD ∠=︒, ∴ 75ADB ∠=︒.∴ 45BDC ADC ADB ∠=∠-∠=︒.…… 2分 (2)作BE CD ⊥于点E ,DF BC ⊥于点F .(如图3)在Rt △BCE 中,∵ BC=2,60C ∠=︒, ∴sin BE BC C =⋅cos 1CE BC C =⋅=. ∵ 45BDC ∠=︒, ∴DE BE =∴1CD DE CE =+.…………………………………………… 3分 ∵ BC DF CD BE ⋅=⋅, ∴(31)333CD BE DF BC ⋅+⋅+==. …………………………… 4分 ∵ AD ∥BC ,90A ∠=︒,DF BC ⊥,∴ 33AB DF +==…………………………………………………… 5分 21.解:(1)作OF BD ⊥于点F ,连结OD .(如图4) ∵ ∠BAD=60°,∴ ∠BOD=2∠BAD =120°.……………1分 又∵OB =OD ,∴ 30OBD ∠=︒.……………………… 2分∵ AC 为⊙O 的直径,AC=4, ∴ OB= OD= 2.在Rt △BOF 中,∵∠OFB =90°, OB=2,︒=∠30OBF , ∴ 130sin 2sin =︒=∠⋅=OBF OB OF ,即点O 到BD 的距离等于1. ………………………………………… 3分(2)∵ OB= OD ,OF BD ⊥于点F ,∴ BF=DF .由DE=2BE ,设BE=2x ,则DE=4x ,BD=6x ,EF=x ,BF=3x . ∵ cos30BF OB =⋅︒=∴ x =. 在Rt △OEF 中,90OFE ∠=︒,图3FB图4AC∵ tan OFOED EF∠=∴ 60OED ∠=︒,1cos 2OED ∠=. …………………………………… 4分 ∴ 30BOE OED OBD ∠=∠-∠=︒. ∴ 90DOC DOB BOE ∠=∠-∠=︒. ∴ 45C ∠=︒.∴ CD ==. ………………………………………………… 5分 22.解:(1)135°;………………………………………………………………………… 2分(2)120°;………………………………………………………………………… 3分. ……………………………………………………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)∵ 关于x 的一元二次方程2 10x px q +++=的一个实数根为 2,∴ 22 210p q +++=.…………………………………………………… 1分 整理,得 25q p =--. …………………………………………………… 2分 (2)∵ 222244(25)820(4)4p q p p p p p ∆=-=++=++=++, 无论p 取任何实数,都有2(4)p +≥0,∴ 无论p 取任何实数,都有 2(4)40p ++>.∴ 0∆>. ………………………………………………………………… 3分∴ 抛物线2y x px q =++与x 轴有两个交点.………………………… 4分(3)∵ 抛物线21y x px q =++与抛物线221y x px q =+++的对称轴相同,都为直线2px =-抛物线221y x px q =+++可由抛物线21y x =沿y 轴方向向上平移一个单位得到,(如图5所示,省略了x 轴、y 轴) ∴ EF ∥MN ,EF =MN =1.∴ 四边形FEMN 是平行四边形. ………………由题意得 22FEMN pS EF =⨯-=四边形.解得4p =±.………………………………………724.证明:(1)如图6.∵ 点B 关于直线CH 的对称点为D ,CH ⊥AB 于点H ,直线DE 交直线CH 于点F ,∴ BF=DF ,DH=BH .…………………1分21∴ ∠1=∠2.又∵ ∠EDA =∠A ,∠EDA =∠1, ∴ ∠A =∠2.∴ BF ∥AC .……………………………………………………………… 2分 (2)取FD 的中点N ,连结HM 、HN . ∵ H 是BD 的中点,N 是FD 的中点,∴ HN ∥BF . 由(1)得BF ∥AC , ∴ HN ∥AC ,即HN ∥EM . ∵ 在Rt △ACH 中,∠AHC =90°, AC 边的中点为M , ∴ 12HM AC AM ==.∴ ∠A =∠3. ∴ ∠EDA =∠3. ∴ NE ∥HM .∴ 四边形ENHM 是平行四边形.……………………………………… 3分 ∴ HN=EM .∵ 在Rt △DFH 中,∠DHF =90°,DF 的中点为N , ∴ 12HN DF =,即2DF HN =.∴ 2DF EM =. ………………………………………………………… 4分 (3)当AB =BC 时,在未添加辅助线和其它字母的条件下,原题图2中所有与BE 相等的线段是EF 和CE . (只猜想结论不给分) 证明:连结CD .(如图8)∵ 点B 关于直线CH 的对称点为D ,CH ⊥AB 于点H ,∴ BC=CD ,∠ABC =∠5. ∵ AB =BC ,∴ 1802ABC A ∠=︒-∠, AB =CD .① ∵ ∠EDA =∠A ,∴ 61802A ∠=︒-∠,AE =DE .② ∴ ∠ABC =∠6=∠5. ∵ ∠BDE 是△ADE 的外角, ∴ 6BDE A ∠=∠+∠.∵ 45BDE ∠=∠+∠, ∴ ∠A =∠4.③由①,②,③得 △ABE ≌△DCE .………………………………………5分 ∴ BE = CE . ……………………………………………………………… 6分 由(1)中BF=DF 得 ∠CFE=∠BFC . 由(1)中所得BF ∥AC 可得 ∠BFC=∠ECF . ∴ ∠CFE=∠ECF . ∴ EF=CE .∴ BE=EF . ……………………………………………………………… 7分 ∴ BE =EF =CE .(阅卷说明:在第3问中,若仅证出BE =EF 或BE =CE 只得2分)25.解:(1)∵ 2244(2)y ax ax a c a x c =-++=-+,∴ 抛物线的对称轴为直线2x =.∵ 抛物线244y ax ax a c =-++与x 轴交于点A 、点B ,点A 的坐标为(1,0),∴ 点B 的坐标为(3,0),OB =3.…………… 1分 可得该抛物线的解析式为(1)(3)y a x x =--. ∵ OB =OC ,抛物线与y 轴的正半轴交于点C , ∴ OC =3,点C 的坐标为(0,3).将点C 的坐标代入该解析式,解得a =1.……2分∴ 此抛物线的解析式为243y x x =-+.(如图9)(2)作△ABC 的外接圆☉E ,设抛物线的对称轴与x 轴的交点为点F ,设☉E 与抛物线的对称轴位于x 轴上方的部分的交点为点1P ,点1P 关于x 轴的对称点为点2P ,点1P 、点2P 均为所求点.(如图10)可知圆心E 必在AB 边的垂直平分线即抛物线的对称轴直线2x =上.∵ 1APB ∠、ACB ∠都是弧AB 所对的圆周角, ∴ ACB B AP ∠=∠1,且射线FE 上的其它点P 都不满足ACB APB ∠=∠. 由(1)可知 ∠OBC=45°,AB=2,OF=2.可得圆心E 也在BC 边的垂直平分线即直线y x =上.∴ 点E 的坐标为(2,2)E .………………………………………………… 4分∴ 由勾股定理得 EA ∴ 1EP EA =∴ 点1P 的坐标为1(2,2P +.…………………………………………… 5分 由对称性得点2P 的坐标为2(2,2P -.……………………………… 6分∴符合题意的点P 的坐标为1(2,2P 、2(2,2P -. (3)∵ 点B 、D 的坐标分别为(3,0)B 、(2,1)D -,可得直线BD 的解析式为3y x =-,直线BD 与x 轴所夹的锐角为45°. ∵ 点A 关于∠AQB 的平分线的对称点为A ',(如图11) 若设AA '与∠AQB 的平分线的交点为M ,则有 QA QA '=,AM A M '=,AA QM '⊥,Q ,B ,A '三点在一条直线上. ∵ QA QB -=∴ .2''=-=-=QB QA QB QA BA 作A N '⊥x 轴于点N .∵ 点Q 在线段BD 上, Q ,B ,A '三点在一条直线上, ∴ sin 451A N BA ''=⋅︒=,cos 451BN BA '=⋅︒=. ∴ 点A '的坐标为(4,1)A '. ∵ 点Q 在线段BD 上,∴ 设点Q 的坐标为(,3)Q x x -,其中23x <<. ∵ QA QA '=,∴ 由勾股定理得 2222(1)(3)(4)(31)x x x x -+-=-+--.解得114x =. 经检验,114x =在23x <<的范围内.∴ 点Q 的坐标为111(,)44Q -. …………………………………………… 7分此时1115()2(1)2244QAA A AB QAB A Q S S S AB y y '''∆∆∆=+=⋅⋅+=⨯⨯+=.… 8分图11。
2012年北京西城区中考二模数学试卷
2012年北京西城中考二模数 学2012年6月一、选择题(本题共 32 分,每小题 4 分)下面各题均有四个选项,其中只有一个是符合题意的 1.8 的倒数是A.8B.8C.18D.182.在2012年4月25日至5月2日举办的2012(第十二届)北京国际汽车展览会上,约有800 000名观众到场参观,盛况空前.800 000用科学记数法表示应为 A.3810 B.48010 C.5810 D.60.810 3.若⊙1O 与⊙2O 内切,它们的半径分别为3和8,则以下关于这两圆的圆心距12O O 的结论正确的是A.12O O =5B.12O O =11C.12O O >11D. 5<12O O <114.如图,在△ABC 中,D 为AB 边上一点,DE ∥BC 交AC 于点E ,若35AD DB ,AE =6,则EC 的长为A . 8B. 10C. 12D. 165.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是8.9环,方差分别是20.61S 甲,20.52S 乙,20.53S 丙,20.42S 丁,则射击成绩波动最小的是A. 甲B. 乙C. 丙D. 丁6. 如图,AB 为⊙O 的弦,半径OC ⊥AB 于点D ,若OB 长为10,3cos 5BOD , 则AB 的长是 A . 20B. 16C. 12D. 87.若某个多边形的内角和是外角和的3倍,则这个多边形的边数为A . 4 B. 6 C. 8 D. 108.如图,在矩形ABCD 中,3 AB ,BC=1. 现将矩形ABCD绕点C 顺时针旋转90°得到矩形A B CD ,则AD 边扫过的面积(阴影部分)为 A . 21πB.31π C.41π D. 51π二、填空题(本题共16分,每小题4分)9. 将代数式2610x x 化为2()x m n 的形式(其中m ,n 为常数),结果为 .10.若菱形ABCD 的周长为8,∠BAD =60°,则BD =.11.如图,把一个半径为12cm 的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径等于 cm .12.如图,在平面直角坐标系xOy 中,点1A ,2A ,3A ,…都在y 轴上,对应的纵坐标分别为1,2,3,….直线1l ,2l ,3l ,…分别经过点1A ,2A ,3A ,…,且都平行于x轴.以点O 为圆心,半径为2的圆与直线1l 在第一象限交于点1B ,以点O 为圆心,半径为3的圆与直线2l 在第一象限交于点2B ,…,依此规律得到一系列点n B (n 为正整数),则点1B 的坐标为 ,点n B 的坐标为 .三、解答题(本题共30分,每小题5分)13.计算:101()(π3)6cos45514.已知2240x x ,求代数式22(2)(6)3x x x x 的值.15.如图,点F ,G 分别在△ADE 的AD ,DE 边上,C ,B 依次为GF 延长线上两点,AB=AD ∠BAF =∠CAE ,∠B=∠D . (1)求证:BC=DE ;(2)若∠B=35°,∠AFB =78°,直接写出∠DGB 的度数.16.已知关于x的一元二次方程(m +1)x2 + 2mx + m 3 = 0 有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最小奇数时,求方程的根.17.如图,在平行四边形ABCD中,点E,F分别是AB,CD的中点.(1)求证:四边形AEFD是平行四边形;(2)若∠A=60°,AB=2AD=4,求BD的长.18.吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康.为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下两个统计图:(图中信息不完整)请根据以上信息回答下面问题:(1) 同学们一共随机调查了人;(2) 如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”方式的概率是;(3) 如果该社区有5 000人,估计该社区支持“警示戒烟”方式的市民约有人.四、解答题(本题共20分,每小题5分)19.如图,某天然气公司的主输气管道途经A 小区,继续沿 A 小区的北偏东60 方向往前铺设,测绘员在A 处测得另一个需要安装天然气的M 小区位于北偏东30 方向,测绘员从A 处出发,沿主输气管道步行2000米到达C 处,此时测得M 小区位于北偏西60 方向.现要在主输气管道AC 上选择一个支管道连接点N ,使从N 处到M 小区铺设的管道最短. (1)问:MN 与AC 满足什么位置关系时,从N 到M 小区铺设的管道最短? (2)求∠AMC 的度数和AN 的长.20.如图,在平面直角坐标系xOy 中,直线483y x 与x 轴,y 轴分别交于点A ,点B ,点D 在y 轴的负半轴上,若将△DAB 沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处. (1)求AB 的长和点C 的坐标; (2)求直线CD 的解析式.21.如图,BC 是⊙O 的直径,A 是⊙O 上一点,过点C 作⊙O 的切线,交BA 的延长线于点D ,取CD 的中点E ,AE 的延长线与BC 的延长线交于点P .(1)求证:AP 是⊙O 的切线;(2)若OC =CP ,AB =33,求CD 的长.22.阅读下列材料小华在学习中发现如下结论:如图1,点A ,A 1,A 2在直线l 上,当直线l ∥BC 时,BC A BC A ABC S S S 21 .请你参考小华的学习经验画图(保留画图痕迹):(1)如图2,已知△ABC ,画出一个..等腰△DBC ,使其面积与△ABC 面积相等;(2)如图3,已知△ABC ,画出两个..Rt △DBC ,使其面积与△ABC 面积相等(要求:所画的两个三角形不全等...);(3)如图4,已知等腰△ABC 中,AB=AC ,画出一个..四边形ABDE ,使其面积与△ABC 面积相等,且一组对边DE=AB ,另一组对边BD ≠AE ,对角∠E =∠B .图2 图3 图4五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.在平面直角坐标系xOy 中,A 为第一象限内的双曲线1k y x(10k )上一点,点A 的横坐标为1,过点A 作平行于 y 轴的直线,与x 轴交于点B ,与双曲线2ky x(20k )交于点C . x 轴上一点(,0)D m 位于直线AC 右侧,AD 的中点为E .(1)当m=4时,求△ACD 的面积(用含1k ,2k 的代数 式表示);(2)若点E 恰好在双曲线1k y x(10k )上,求m 的值;(3)设线段EB 的延长线与y 轴的负半轴交于点F ,当 点D 的坐标为(2,0)D 时,若△BDF 的面积为1, 且CF ∥AD ,求1k 的值,并直接写出线段CF 的长.24.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.动点P从点A开始沿折线AC-CB -BA运动,点P在AC,CB,BA边上运动的速度分别为每秒3,4,5 个单位.直线l从与AC重合的位置开始,以每秒43个单位的速度沿CB方向平行移动,即移动过程中保持l∥AC,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动.(1)当t = 5秒时,点P走过的路径长为;当t = 秒时,点P与点E重合;(2)当点P在AC边上运动时,将△PEF绕点E逆时针旋转,使得点P的对应点M落在EF上,点F的对应点记为点N,当EN⊥AB时,求t的值;(3)当点P在折线AC-CB-BA上运动时,作点P关于直线EF的对称点,记为点Q.在点P与直线l运动的过程中,若形成的四边形PEQF为菱形,请直接写出t的值.25.在平面直角坐标系xOy 中,抛物线21124y x 的顶点为M ,直线2y x ,点 0P n ,为x 轴上的一个动点,过点P 作x 轴的垂线分别交抛物线21124y x 和直线2y x 于点A ,点B .⑴直接写出A ,B 两点的坐标(用含n 的代数式表示);⑵设线段AB 的长为d ,求d 关于n 的函数关系式及d 的最小值,并直接写出此时线段OB 与线段PM 的位置关系和数量关系;(3)已知二次函数2y ax bx c (a ,b ,c 为整数且0a ),对一切实数x 恒有x ≤y ≤2124x ,求a ,b ,c 的值.数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数.三、解答题(本题共305分)13.解:原式=5162分=4…………………………………………………………………… 5分14.解:原式=22(44)(6)3x x x x x=32324463x x x x x=2243x x .………………………..….….….….….…………………… 3分∵ 2240x x ,∴224x x . ………………………………………………………………… 4分∴ 原式=22(2)35x x . ….……………………………………………………5分15.(1)证明:如图1.∵ ∠BAF =∠CAE ,∴ BAF CAF CAE CAF . ∴ BAC DAE . ………………… 1分 在△ABC 和△ADE 中,,,,B D AB AD BAC DAE∴ △A B C ≌△A D E . ……………………………………………………… 3分 ∴ B C =D E . ………………………………………………………………… 4分 (2)∠D G B 的度数为67 .……………………………………………………………… 5分图1E16.解:(1)∵关于x 的一元二次方程(m +1)x 2 + 2mx + m 3 = 0 有两个不相等的实数根,∴ 10m 且0 .∵ 2(2)4(1)(3)4(23)m m m m ,∴ 230m . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍1分解得 m >23. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分∴ m 的取值范围是 m >23且m 1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 3分(2)在m >23且m1的范围内,最小奇数m 为1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 此时,方程化为210x x . ∵ 224141(1)5b ac ,∴x ∴ 方程的根为1x ,2x .﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分 17.(1)证明:如图2.∵ 四边形ABCD 是平行四边形, ∴ AB ∥CD 且AB=CD . ﹍﹍﹍﹍1分 ∵ 点E ,F 分别是AB ,CD 的中点,∴ CD DF AB AE 21,21 .∴ AE=DF . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 2分 ∴ 四边形AEFD 是平行四边形. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分(2)解:过点D 作DG ⊥AB 于点G .∵ AB =2AD =4,∴ AD =2. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分在Rt △AGD 中,∵90,60,AGD A AD =2,∴ .360sin ,160cos AD DG AD AG ∴ 3BG AB AG .在Rt △DGB中,∵90,3,DGB DG BG∴.329322 BG DG DB ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分18.解:(1)300; ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分 (2)52;﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 (3)1750 .﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分四、解答题(本题共20分,每小题5分)19.解:(1)当MN ⊥AC 时,从N 到M 小区铺设的管道最短.(如图3)﹍﹍﹍﹍﹍﹍ 1分(2) ∵ MAC =60 30 =30 , ACM =30 +30 =60 ,﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分图2FEDCBA∴ AMC=180 30 60 =90 . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分在Rt△AMC中,∵ AMC=90 , MAC=30 ,AC=2000,∴cos2000AM AC MAC米). ﹍﹍﹍﹍﹍﹍﹍﹍4分在Rt△AMN中,∵ ANM=90 ,cos30=AMAN,∴AN=AM cos30 =1000323=1500(米).………………………………………… 5分答:∠AMC等于90 ,AN的长为1500米.20.解:(1)根据题意得(6,0)A,(0,8)B.(如图4)在Rt△OAB中, AOB=90 ,OA=6,OB=8,∴10AB .﹍﹍﹍﹍﹍﹍﹍1分∵△DAB沿直线AD折叠后的对应三角形为△DAC,∴AC=AB=10.∴16OC OA AC OA AB.∵点C在x轴的正半轴上,∴点C的坐标为(16,0)C.﹍﹍﹍﹍﹍2分(2)设点D的坐标为(0,)D y.(y<0)由题意可知CD=BD,22CD BD.由勾股定理得22216(8)y y.解得12y .∴点D的坐标为(0,12)D .﹍﹍﹍﹍﹍3分可设直线CD的解析式为12y kx.(k 0)∵点(16,0)C在直线12y kx上,∴16120k . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分解得34k .∴直线CD的解析式为3124y x.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分21.(1)证明:连结AO,AC.(如图5)∵BC是⊙O的直径,∴90BAC CAD.﹍﹍﹍﹍﹍1分∵E是CD的中点,∴AEDECE.∴EACECA.∵OA=OC,∴OCAOAC.∵CD是⊙O的切线,东lN∴ CD ⊥OC . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分 ∴ 90ECA OCA .∴ 90EAC OAC . ∴ OA ⊥AP .∵ A 是⊙O 上一点,∴ AP 是⊙O 的切线. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分 (2) 解:由(1)知OA ⊥AP .在Rt △OAP 中,∵90OAP ,OC=CP=OA ,即OP =2OA , ∴ sin P 21OP OA . ∴ 30P . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分∴ 60AOP . ∵ OC=OA , ∴ 60ACO .在Rt △BAC 中,∵90BAC,AB =33,60ACO , ∴ 3tan AB AC ACO.又∵ 在Rt △ACD 中,90CAD,9030ACD ACO , ∴ 3cos cos30AC CD ACD﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分22.解:(1) 如图所示,答案不唯一. 画出△D 1BC ,△D 2BC ,△D 3BC ,△D 4BC ,△D 5BC 中的一个即可.(将BC 的平行线l 画在直线BC 下方对称位置所画出的三角形亦可)﹍﹍﹍﹍﹍﹍﹍ 2分(2) 如图所示,答案不唯一. (在直线D 1D 2上取其他符合要求的点,或将BC 的平行线画在直线BC 下方对称位置所画出的三角形亦可)﹍﹍﹍﹍﹍﹍﹍4分(3) 如图所示(答案不唯一).﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 5分如上图所示的四边形ABDE 的画法说明:(1)在线段BC 上任取一点D (D 不为BC 的中点),连结AD ;(2)画出线段AD 的垂直平分线MN ;(3)画出点C 关于直线MN 的对称点E ,连结DE ,AE . 则四边形ABDE 即为所求.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)由题意得A ,C 两点的坐标分别为1(1,)A k ,2(1,)C k .(如图6)﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍1分∵ 10k ,20k ,∴ 点A 在第一象限,点C 在第四象限,12AC k k .当m=4时,1213()ACD S AC BD k k .﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分(2) 作EG ⊥x 轴于点G .(如图7)∵ EG ∥AB ,AD 的中点为E , ∴ △DEG ∽△DAB ,12EG DG DE AB DB DA ,G 为BD的中点.∵ A ,B ,D 三点的坐标分别为1(1,)A k ,(1,0)B ,(,0)D m ,∴ 122k AB EG ,122BD m BG ,12m OG OB BG . ∴ 点E 的坐标为11(,)22k m E . ∵ 点E 恰好在双曲线1ky x上,∴ 11122k m k .①﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分∵ 10k ,∴ 方程①可化为114m ,解得3m .﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分(3)当点D 的坐标为(2,0)D 时,由(2)可知点E 的坐标为13(,)22kE .(如图8)∵ 1BDF S ,∴ 11122BDF S BD OF OF .∴ 2OF . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 5分设直线BE 的解析式为y ax b (a ≠0).∵ 点B ,点E 的坐标分别为(1,0)B ,13(,)22k E , ∴ 10,3.22a b k a b 解得 1a k ,1b k. ∴ 直线BE 的解析式为11y k x k .∵ 线段EB 的延长线与y 轴的负半轴交于点F ,10k ,∴ 点F 的坐标为1(0,)F k,1OF k . ∴ 12k .﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 6分线段CF7分24.解:(1) 当t =5秒时,点P 走过的路径长为 19 ;当t = 3 秒时,点P 与点E 重合.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分(2) 如图9,由点P 的对应点M 落在EF 上,点F 的对应点为点N ,可知∠PEF =∠MEN ,都等于△PEF 绕点E 旋转的旋转角,记为α.设AP =3t (0< t <2),则CP =63t ,43CE t . ∵ EF ∥AC ,∠C =90°,∴ ∠BEF =90°,∠CPE =∠PEF =α. ∵ EN ⊥AB , ∴ ∠B=∠MEN=α.∴ CPE B .﹍﹍﹍﹍﹍﹍﹍3分 ∵ tan CE CPE CP,3tan 4AC B BC, ∴ 43CP CE .∴ 446333t t .﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分解得5443t.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分(3) t 的值为65(秒)或307(秒).﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 7分25.解:(1)21(2)4A n n ,,()B n n ,. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分(2) d =AB =A B y y =2124n n .∴ d =2112()48n =2112()48n .﹍﹍3分∴ 当14n 时,d 取得最小值18. ﹍﹍ 4分 当d 取最小值时,线段OB 与线段PM 的位置A关系和数量关系是OB ⊥PM 且OB =PM . (如图10)﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 5分(3) ∵ 对一切实数x 恒有 x ≤y ≤2124x ,∴ 对一切实数x ,x ≤2ax bx c ≤2124x 都成立. (0a ) ①当0x 时,①式化为 0≤c ≤14. ∴ 整数c 的值为0. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 6分 此时,对一切实数x ,x ≤2ax bx ≤2124x 都成立.(0a )即 222,12.4x ax bx ax bx x对一切实数x 均成立.由②得 21ax b x ≥0 (0a ) 对一切实数x 均成立.∴ 210,10.a b 由⑤得整数b 的值为1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍7分 此时由③式得,2ax x ≤2124x 对一切实数x 均成立. (0a )即21(2)4a x x ≥0对一切实数x 均成立. (0a )当a =2时,此不等式化为14x ≥0,不满足对一切实数x 均成立.当a ≠2时,∵ 21(2)4a x x ≥0对一切实数x 均成立,(0a )∴ 2220,1(1)4(2)0.4a a∴ 由④,⑥,⑦得 0 <a ≤1.∴ 整数a 的值为1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍8分∴ 整数a ,b ,c 的值分别为1a ,1b ,0c .④② ⑥。
2012西城、海淀二模物理答案
北京市西城区2012年初三二模试卷物理答案及评分标准2012.6二、多项选择题:1)3)图12N五、计算题:(共16分)X k b1. c o m36.解:Q放=cm(t0-t) …………………… 1分=4.2×103J/(kg·℃)×20kg×(80℃-30℃) …………………… 1分=4.2×106J …………………… 1分37. 解:当滑片P 滑至B 端时,断开开关S 1,闭合开关S 和S 2,电路如图7甲所示;当滑片P 滑至A 端时,断开开关S 1,闭合开关S 和S 2,电路如图7乙所示; 当滑片P 在B 端时,断开开关S 2,闭合开关S 和S 1,电路如图7丙所示; 当滑片P 滑至A 端时,闭合开关S 、S 1和S 2,灯泡正常发光,电路如图7丁所示。
(等效电路图) ……………………1分(1)在甲、乙两图中,电阻R 1不变11P P '=2122I I =14; 则 :21I I =21 ……………………1分总电压U 一定: 21I I =112R R R +=21 则 :12R R =11……………………1分(2)由丙图知:R L =L 3U I =2V 0.1A=20ΩI 3=2L UR R +=0.1A ①在乙图中:I 2=1U R =0.15A ②由①、②和R 2=R 1解得:R 1=323I I I -R L =A1.0A 15.0A 1.0-×20Ω=40Ω ………1分在乙图中,U =I 2R 1=0.15A×40Ω=6V ……………………1分(3)在丁图中,灯泡正常发光。
则灯L 的额定功率:P L0=U L0·I L0=U L0· (I 4-I 2)=6V×(0.35A -0.15A)=1.2W ……………………1分38. 解:以动滑轮和重物为研究对象,物体出水前后受力情况如图7所示。
2012西城二模数学(理)试题
2012西城二模数学(理)试题第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合2{|log 1}A x x =<,{|0B x x c =<<,其中0}c >.若A B B =U ,则c 的取值范围是( ) (A )(0,1] (B )[1,)+∞ (C )(0,2] (D )[2,)+∞2.执行如图所示的程序框图,若输入如下四个函数: ①()e xf x =; ②()e xf x =-; ③1()f x x x -=+; ④1()f x x x -=-. 则输出函数的序号为( ) (A )① (B )② (C )③ (D )④3.椭圆 3cos 5sin x y ϕϕ=⎧⎨=⎩(ϕ是参数)的离心率是( )(A )35(B )45(C )925(D )16254.已知向量(,1)x =a ,(,4)x =-b ,其中x ∈R .则“2x =”是“⊥a b ”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分又不必要条件5.右图是1,2两组各7名同学体重(单位:kg ) 数据的茎叶图.设1,2两组数据的平均数依次 为1x 和2x ,标准差依次为1s 和2s ,那么( ) (注:标准差222121[()()()]n s x x x x x x n=-+-++-L ,其中x 为12,,,n x x x L 的平均数)(A )12x x >,12s s > (B )12x x >,12s s < (C )12x x <,12s s < (D )12x x <,12s s >6.已知函数()1f x kx =+,其中实数k 随机选自区间[2,1]-.对[0,1]x ∀∈,()0f x ≥的概率是( ) (A )13(B )12(C )23(D )347.某大楼共有12层,有11人在第1层上了电梯,他们分别要去第2至第12层,每层1人.因 特殊原因,电梯只允许停1次,只可使1人如愿到达,其余10人都要步行到达所去的楼层.假设这10位乘客的初始“不满意度”均为0,乘客每向下步行1层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,10人的“不满意度”之和记为S ,则S 的最小值是( ) (A )42 (B )41 (C )40 (D )398.对数列{}n a ,如果*k ∃∈N 及12,,,k λλλ∈R L ,使1122n k n k n k k n a a a a λλλ++-+-=+++L成立,其中*n ∈N ,则称{}n a 为k 阶递归数列.给出下列三个结论: ① 若{}n a 是等比数列,则{}n a 为1阶递归数列; ② 若{}n a 是等差数列,则{}n a 为2阶递归数列;③ 若数列{}n a 的通项公式为2n a n =,则{}n a 为3阶递归数列.其中,正确结论的个数是( ) (A )0 (B )1 (C )2 (D )3第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.在△ABC 中,3BC =,2AC =,π3A =,则B = _____.10.已知复数z 满足(1i)1z -⋅=,则z =_____.11.如图,△ABC 是⊙O 的内接三角形,PA 是⊙O 的切线,PB 交AC 于点E ,交⊙O 于点D .若PA PE =,60ABC ︒∠=,1PD =,9PB =,则PA =_____;EC =_____.12.已知函数2()1f x x bx =++是R 上的偶函数,则实数b =_____;不等式(1)||f x x -<的解集为_____.13.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,该几何体 的体积是_____;若该几何体的所有顶点在同一球面 上,则球的表面积是_____.14.曲线C 是平面内到定点(0,1)F 和定直线:1l y =-的距离之和等于4的点的轨迹,给出下列三个结论:① 曲线C 关于y 轴对称;② 若点(,)P x y 在曲线C 上,则||2y ≤; ③ 若点P 在曲线C 上,则1||4PF ≤≤. 其中,所有正确结论的序号是____________.C三、解答题共6小题,共80分. 解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数22π()cos ()sin 6f x x x =--. (Ⅰ)求π()12f 的值; (Ⅱ)若对于任意的π[0,]2x ∈,都有()f x c ≤,求实数c 的取值范围.16.(本小题满分14分)如图,直角梯形ABCD 与等腰直角三角形ABE 所在的平面互相垂直.AB ∥CD ,BC AB ⊥,BC CD AB 22==,EA EB ⊥.(Ⅰ)求证:AB DE ⊥;(Ⅱ)求直线EC 与平面ABE 所成角的正弦值;(Ⅲ)线段EA 上是否存在点F ,使EC // 平面FBD ?若存在,求出EFEA;若不存在,说明理由.17.(本小题满分13分)甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是53,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.(Ⅰ)求乙得分的分布列和数学期望;(Ⅱ)求甲、乙两人中至少有一人入选的概率.18.(本小题满分13分)已知抛物线24y x =的焦点为F ,过点F 的直线交抛物线于A ,B 两点.(Ⅰ)若2AF FB =u u u r u u u r,求直线AB 的斜率;(Ⅱ)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值.19.(本小题满分14分)已知函数2221()1ax a f x x +-=+,其中a ∈R . (Ⅰ)当1a =时,求曲线()y f x =在原点处的切线方程; (Ⅱ)求)(x f 的单调区间;(Ⅲ)若)(x f 在[0,)+∞上存在最大值和最小值,求a 的取值范围. 20.(本小题满分13分)若12(0n n i A a a a a ==L 或1,1,2,,)i n =L ,则称n A 为0和1的一个n 位排列.对于n A ,将排列121n n a a a a -L 记为1()n R A ;将排列112n n n a a a a --L 记为2()n R A ;依此类推,直至()nn n R A A =.对于排列n A 和()in R A (1,2,,1)i n =-L ,它们对应位置数字相同的个数减去对应位置数字不同的个数,叫做n A 和()i n R A 的相关值,记作(,())in n t A R A .例如3110A =,则13()011R A =, 133(,())1t A R A =-.若(,())1(1,2,,1)in n t A R A i n =-=-L ,则称n A 为最佳排列.(Ⅰ)写出所有的最佳排列3A ; (Ⅱ)证明:不存在最佳排列5A ;(Ⅲ)若某个21(k A k +是正整数)为最佳排列,求排列21k A +中1的个数.。
2012年北京西城区中考二模数学试卷及答案
北京市西城区2012年初三二模试卷数 学 2011. 6下面各题均有四个选项,其中只有一个..是符合题意的. 1.3-的倒数是A .3B .13-C .3-D .132.2010年,我国国内生产总值(GDP )为58 786亿美元,超过日本,成为世界第二大经济体.58 786用科学记数法表示为 A .45.878610⨯ B .55.878610⨯ C .358.78610⨯ D .50.5878610⨯ 3.⊙O 1的半径为3cm ,⊙O 2的半径为5cm ,若圆心距O 1O 2=2 cm ,则这两圆的位置关系是 A .内含 B .外切 C .相交 D .内切 4.若一个多边形的内角和是它的外角和的2倍,则这个多边形是 A .四边形 B .五边形 C .六边形 D .八边形 5.某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是A .平均数B .众数C .中位数 D.方差6.小明的爷爷每天坚持体育锻炼,一天他步行到离家较远的公园,打了一会儿太极拳后跑步回家.下面的四个函数图象中,能大致反映当天小明的爷爷离家的距离y与时间x的函数关系的是7.下图的长方体是由A ,B ,C ,D 四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的小正方体组成的,那么长方体中,第四部分所对应的几何体应是8.在平面直角坐标系xOy 中,点P 在由直线3+-=x y ,直线4y =和直线1x =所围成的 区域内或其边界上,点Q 在x 轴上,若点R 的坐标为(2,2)R ,则QP QR +的最小值为A B .25+ C . D .4 二、填空题(本题共16分,每小题4分) 9.分解因式 m 3 – 4m = . 10.函数21-=x y 中,自变量x 的取值范围是 . 11.如图,两同心圆的圆心为O ,大圆的弦AB 与小圆相切,切点为P .若两圆的半径分别为2和1,则弦长AB =;若用阴影部分围成一个圆锥(OA 与OB 重合),则该圆锥的底面半径长为 . 12.对于每个正整数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于A n ,B n 两点,若n n A B 表示这两点间的距离,则n n A B = (用含n 的代数式表示);11222011A B A B A B +++ 的值为 .三、解答题(本题共30分,每小题5分) 13.计算:2273181---⎪⎭⎫ ⎝⎛--- .14.已知:如图,直线AB 同侧两点C ,D 满足CAD DBC ∠=∠, AC =BD ,BC 与AD 相交于点E .求证:AE =BE .15.已知:关于x 的一元二次方程2420x x k ++=有两个不相等的实数根. (1)求k 的取值范围;(2)当k 取最大整数值时,用公式法求该方程的解.16.已知 122=+xy x ,215xy y +=,求代数式()22()x y y x y +-+的值.17.如图,一次函数y kx b =+()0≠k 的图象与反比例函数my x=()0≠m 的图象交于(3,1)A -,(2,)B n 两点. (1)求反比例函数和一次函数的解析式;(2)求△AOB 的面积.18.今年3月12日,某校九年级部分学生参加植树节活动,以下是根据本次植树活动的有关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:(1)参加植树的学生共有 人; (2)请将该条形统计图补充完整;(3)参加植树的学生平均每人植树 棵.(保留整数)四、解答题(本题共20分,每小题5分)19.某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x (辆),购车总费用为y (万元). (1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求 出该方案所需费用.20.如图,在梯形ABCD 中,AB ∥DC ,5AD BC ==,10AB =,4CD =,连结并延长BD 到E ,使DE BD =,作EF AB ⊥,交BA 的延长线于点F .(1)求tan ABD ∠的值; (2)求AF 的长.21.已知:如图,BD 为⊙O 的直径,点A 是劣弧BC 的中点, AD 交BC 于点E ,连结AB . (1)求证:2AB AE AD =⋅; (2)过点D 作⊙O 的切线,与BC 的延长线交于点F , 若AE =2,ED =4,求EF 的长.22.如图1,若将△AOB 绕点O 逆时针旋转180°得到△COD ,则△AOB ≌△COD .此时,我们称△AOB与△COD 为“8字全等型”.借助“8字全等型”我们可以解决一些图形的分割与拼接问题.例如:图2中,△ABC 是锐角三角形且AC >AB , E 为AC 的中点,F 为BC 上一点且BF ≠FC (F 不与B ,C 重合),沿EF 将其剪开,得到的两块图形恰能拼成一个梯形.请分别按下列要求用直线将图2中的△ABC 重新进行分割,画出分割线及拼接后的图形. (1)在图3中将△ABC 沿分割线剪开,使得到的两块图形恰能拼成一个平行四边形;(2)在图4中将△ABC 沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中的两块为直角三角形;(3)在图5中将△ABC 沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中 的一块为钝角三角形.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.阅读下列材料:若关于x 的一元二次方程20ax bx c ++=()0≠a 的两个实数根分别为x 1,x 2,则12bx x a +=-,12c x x a⋅=. 解决下列问题:已知:a ,b ,c 均为非零实数,且a >b >c ,关于x 的一元二次方程20ax bx c ++=有两个实数根,其中一根为2.(1)填空:42a b c ++ 0,a 0,c 0;(填“>”,“<”或“=”)(2)利用阅读材料中的结论直接写出方程20ax bx c ++=的另一个实数根(用含a ,c 的代数式表示); (3)若实数m 使代数式2am bm c ++的值小于0,问:当x =5m +时,代数式2ax bx c ++的值是否为正数?写出你的结论并说明理由.24.如图1,在Rt△ABC中,∠C=90°,AC=9cm,BC=12cm.在Rt△DEF中,∠DFE=90°,EF=6cm,DF=8cm.E,F两点在BC边上,DE,DF两边分别与AB边交于G,H两点.现固定△ABC不动,△DEF从点F与点B重合的位置出发,沿BC以1cm/s的速度向点C运动,点P从点F出发,在折线FD—DE上以2cm/s的速度向点E运动.△DEF与点P同时出发,当点E到达点C时,△DEF 和点P同时停止运动.设运动的时间是t(单位:s),t>0.(1)当t=2时,PH= cm,DG = cm;(2)t为多少秒时△PDE为等腰三角形?请说明理由;(3)t为多少秒时点P与点G重合?写出计算过程;(4)求tan∠PBF的值(可用含t的代数式表示).25.如图1,在平面直角坐标系xOy 中,以y 轴正半轴上一点(0,)A m (m 为非零常数)为端点,作与y 轴正方向夹角为60°的射线l ,在l 上取点B ,使AB =4k (k 为正整数),并在l 下方作∠ABC =120°,BC=2OA ,线段AB ,OC 的中点分别为D ,E . (1)当m =4,k =1时,直接写出B ,C 两点的坐标;(2)若抛物线212y x m k =-++的顶点恰好为D 点,且DE=及此时cos ∠ODE 的值;(3)当k =1时,记线段AB ,OC 的中点分别为D 1,E 1;当k =3时,记线段AB ,OC 的中点分别为D 3,E 3,求直线13E E 的解析式及四边形1331D D E E 的面积(用含m 的代数式表示).北京市西城区2011年初三二模试卷数学答案及评分标准 2011.6二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每小题5分) 13.解:原式=112- ……………………………………………………………4分 =32. ……………………………………………………………………5分 14.证明: 如图1. 在△ACE 和△BDE 中,∵⎪⎩⎪⎨⎧=∠=∠∠=∠,,,BD AC BED AEC DBE CAE ………………………………3分∴ △ACE ≌△BDE . ……………………………………………………………4分 ∴ AE =BE .………………………………………………………………………5分 15.解:(1)∵ 关于x 的一元二次方程2420x x k ++=有两个不相等的实数根,∴ 16420k ∆=-⨯>. ………………………………………………………1分解得2k <. ……………………………………………………………………2分(2)∵2k<,∴ 符合条件的最大整数1k =,此时方程为2420x x ++=. ……………3分∴ 142a b c ===,,. ∴ 22444128b ac -=-⨯⨯=.………………………………………………4分代入求根公式x =,得2x ==-±.…………5分 ∴ 1222x x =-+=-16.解:原式=222222x xy y xy y ++--=22x y -.………………………………………2分 ∵ 122=+xy x ①,152=+y xy ②,∴ ①-②,得223x y -=-. ………………………………………………………4分 ∴ 原式=3-. ………………………………………………………………………5分17.解:(1)∵ 反比例数my x=()0≠m 的图象经过(3,1)A -,(2,)B n 两点,(如图2) ∴ 313m =-⨯=-,322m n ==-.∴ 反比例函数解析式为3y x=-.………………………1分 点B 的坐标为3(2)2B -,.……………………………2分∵ 一次函数y kx b =+()0≠k 的图象经过(3,1)A -,3(2)2B -,两点,∴ 31,32.2k b k b -+=⎧⎪⎨+=-⎪⎩解得 1,21.2k b ⎧=-⎪⎪⎨⎪=-⎪⎩∴ 一次函数的解析式为1122y x =--.……………………………………3分(2)设一次函数1122y x =--的图象与x 轴的交点为C ,则点C 的坐标为(1,0)C -.∴ =AOB ACO COB S S S ∆∆∆+113=11+1222⨯⨯⨯⨯5=4. …………………………5分18.解:(1)50;………………………………………………………………………………1分(2)………………………………………………………………………………3分 (3)3.………………………………………………………………………………5分四、解答题(本题共20分,每小题5分) 19.解:(1)因为购买大型客车x 辆,所以购买中型客车(20)x -辆. ()62402022800y x x x =+-=+.…………………………………………2分 (2)依题意得x -20< x .解得x >10.……………………………………………………………………3分 ∵ 22800y x =+,y 随着x 的增大而增大,x 为整数,∴ 当x=11时,购车费用最省,为22×11+800=1 042(万元). …………4分 此时需购买大型客车11辆,中型客车9辆.……………………………5分 答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元. 20.解:(1)作DM ⊥AB 于点M ,CN ⊥AB 于点N .(如图3) ∵ AB ∥DC ,DM ⊥AB ,CN ⊥AB , ∴ ∠DMN =∠CNM =∠MDC =90︒. ∴ 四边形MNCD 是矩形.∵4CD =, ∴ MN =CD = 4.∵ 在梯形ABCD 中,AB ∥DC ,5AD BC ==, ∴ ∠DAB =∠CBA ,DM=CN . ∴ △ADM ≌△BCN . 又∵10AB =, ∴ AM =BN =()11(104)322AB MN -=⨯-=. ∴ MB =BN +MN =7.……………………………………………………………2分 ∵ 在Rt △AMD 中,∠AMD =90︒,AD =5,AM =3, ∴4DM =. ∴ 4tan 7DM ABD BM ∠==.……………………………………………………3分 (2)∵ EF AB ⊥, ∴ ∠F =90︒.∵∠DMN =90︒, ∴ ∠F =∠DMN . ∴ DM ∥EF .∴ △BDM ∽△BEF . ∵ DE BD =, ∴12BM BD BF BE ==. ∴ BF =2BM =14. ……………………………………………………………4分 ∴ AF =BF -AB =14-10=4. …………………………………………………5分 21.(1)证明:如图4.∵ 点A 是劣弧BC 的中点,∴ ∠ABC =∠ADB .………………………1分 又∵ ∠BAD =∠EAB ,∴ △ABE ∽△ADB .………………………2分∴ AB AD AE AB=. ∴ 2AB AE AD =⋅.………………………………………………………3分 (2)解:∵ AE =2,ED =4,∴()22612AB AE AD AE AE ED =⋅=+=⨯=.∴AB =.………………………………………………………4分 ∵ BD 为⊙O 的直径, ∴ ∠A =90︒.又∵ DF 是⊙O 的切线, ∴ DF ⊥BD.∴ ∠BDF =90︒.在Rt △ABD 中,tan AB ADB AD ∠===, ∴ ∠ADB =30︒.∴ ∠ABC =∠ADB =30︒. ∴∠DEF=∠AEB=60︒,903060EDF BDF ADB ∠=∠-∠=︒-︒=︒. ∴ ∠F =18060DEF EDF ︒-∠-∠=︒.∴ △DEF 是等边三角形.∴ EF = DE 5分22.解:(1)……………………………………………………1分(2)……………………………………………………3分(3)……………………………………………………5分 23.解:(1)=,>,<.……………………………………………………………………3分 (2)2ca.……………………………………………………………………………4分 (3)答:当x =5m +时,代数式2y ax bx c =++的值是正数. 理由如下:设抛物线2y ax bx c =++(a ≠0),则由题意可知,它经过A (,0)2ca,B (2,0) 两点. ∵ a >0,c <0,∴ 抛物线2y ax bx c =++开口向上,且2ca<0<2,即点A 在点B 左侧.………………………5分 设点M 的坐标为2(,)M m am bm c ++,点N 的坐标为(5,)N m y +.∵ 代数式2am bm c ++的值小于0,∴ 点M 在抛物线2y ax bx c =++上,且点M 的纵坐标为负数. ∴ 点M 在x 轴下方的抛物线上.(如图5) ∴ A M B x x x <<,即22cm a<<.∴5572c m a +<+<,即572N c x a+<<. 以下判断52ca+与B x 的大小关系:∵ 42a b c ++=0,a >b ,a >0, ∴ 66(42)(5)(5)202222B c c a c a a b a b x a a a a a+-+-+-=+-===>. ∴B x ac>+52. ∴ 52N B cx x a>+>.…………………………………………………………6分 ∵ B ,N 两点都在抛物线的对称轴的右侧,y 随x 的增大而增大, ∴B N y y >,即0y >.∴ 当x =5m +时,代数式2ax bx c ++的值是正数. ………………………7分 24.解:(1)52,265.………………………………………………………………………2分 (2)只有点P 在DF 边上运动时,△PDE 才能成为等腰三角形,且PD=PE .(如图6)……………3分∵ BF=t ,PF=2t ,DF =8, ∴ 82PD DF PF t =-=-.在Rt △PEF 中,2222436PE PF EF t =+=+=2PD . 即()2228364t t -=+.解得 78t =.…………………………………4分 ∴ t 为78时△PDE 为等腰三角形.(3)设当△DEF 和点P 运动的时间是t 时,点P 与点G 重合,此时点P 一定在DE 边上,DP= DG . 由已知可得93tan 124AC B BC ===,63tan 84EF D DF ===. ∴.D B ∠=∠∴.90︒=∠=∠BFH DGH∴ 3tan 4FH BF B t =⋅=, 384D H D F F H t=-=-, .5325354438cos +-=⨯⎪⎭⎫ ⎝⎛-=⋅=t t D DH DG∵ 2DP DF t +=,∴ 28DP t =-.由DP=DG 得3322855t t -=-+. 解得 7213t =. …………………………………………………………………5分 检验:724613<<,此时点P 在DE 边上.∴ t 的值为7213时,点P 与点G 重合. (4)当0<t ≤4时,点P 在DF 边上运动(如图6),ta n 2PFPBF BF∠==. …………………………………………………………………………………6分 当4< t ≤6时,点P 在DE 边上运动(如图7),作PS ⊥BC 于S ,则tan PS PBF BS∠=. 可得10(28)182PE DE DP t t =-=--=-. 此时()5725821854cos cos +-=-=⋅=∠⋅=t t D PE EPS PE PS , ()5545621853sin sin +-=-=⋅=∠⋅=t t D PE EPS PE ES . 524511554566-=⎪⎭⎫ ⎝⎛+--+=-+=t t t ES EF BF BS .∴ 728tan 1124PS tPBF BS t -∠==-.………………………………………………7分 综上所述, 2 (04),tan 728 (46).1124t PBF t t t <≤⎧⎪∠=-⎨<≤⎪-⎩(以上时间单位均为s ,线段长度单位均为cm )25.解:(1)B,………………………………………………………1分 C.………………………………………………………3分 (2)当AB =4k ,(0,)A m 时,OA =m ,与(1)同理可得B点的坐标为,2)B k m +, C点的坐标为,2)C k .如图8,过点B 作y 轴的垂线,垂足为F ,过点C 作x 轴的垂线,垂足为G , 两条垂线的交点为H ,作DM ⊥FH 于点M ,EN ⊥OG 于点N .由三角形中位线的性质可得点D的坐标为,)D k m +,点E的坐标为)E k .由勾股定理得DE . ∵DE=∴ m=4. ……………………………4分 ∵ D恰为抛物线212y x m k =-++的顶点, 它的顶点横坐标为, ∴=.解得k=1.此时抛物线的解析式2143y x x =-+. …………………………………5分 此时D ,E两点的坐标分别为D,E . ∴OD =OE = ∴ OD=OE=DE .∴ 此时△ODE 为等边三角形,cos ∠ODE= cos60°=12.……………………6分 (3)E 1,E 3点的坐标分别为1E ,E3. 设直线13E E 的解析式为y ax b =+(a ≠0).则1,3.a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩解得.2a m b ⎧=⎪⎪⎨⎪=-⎪⎩∴ 直线13E E的解析式为2my =-. ……………………………………7分 可得直线13E E 与y 轴正方向的夹角为60°.∵ 直线13D D ,13E E 与y 轴正方向的夹角都等于60°, ∴ 13D D ∥13E E .∵ D 1,D 3两点的坐标分别为11)D m +,33)D m +, 由勾股定理得13D D =4,13E E =4. ∴ 1313D D E E =.∴ 四边形1331D D E E 为平行四边形.设直线13E E 与y 轴的交点为P ,作AQ ⊥13E E 于Q .(如图9)可得点P 的坐标为.23,2,0m AP m P =⎪⎭⎫ ⎝⎛-∴.43360sin sin m AP OPQ AP AQ =︒⋅=∠⋅= ∴1331134D D E E S D D AQ =⨯==四边形.…………………………8分。
英语_2012年北京市西城区中考英语二模试卷_复习
2012年北京市西城区中考英语二模试卷听力理解(共26分)一、听对话,从下面各题所给的A、B、C三幅图片中选择与对话内容相符的图片.每段对话读两遍.1.2.3.4.5. 请听一段对话,完成第5至第6小题.5.What is the boy busy doing?A Doing some cleaning.B Studying for the exam.C Taking a vacation.6.What does the girl suggest?A.Staying at home.B.Visiting his teacher.C.Having a picnic.6. 请听一段对话,完成第7至第8小题.7.Where will the woman go?A The Garden Hotel.B The taxi company.C The airport.8.How much will the woman pay?A.﹩60.B.﹩50.C.﹩7.7. 请听一段对话,完成第9至第10小题.9.What is the girl's name?A Betty.B Karen.C Nancy.10.What does the girl's mother do?A.A teacher.B.A housewife.C.A business woman.8. 请听一段对话,完成第11至第13小题.11.What is there going to be in Liberty Park next week?A An art festival.B A classical concert.C A film show.12.How many local artists are showing their paintings?A.Two.B.Three.C.Four.13.What can you infer from the dialogue?A.The paintings are shown at the same place and time.B.People can see the paintings for one week.C.The woman is interested in paintings.9. 请听一段独白,完成第14至第16小题.14.What did the American family do on the speaker's arrival?A They held a great welcome party.B They told the speaker some funny stories.C They showed the speaker around the house.15.What surprised the speaker?A.The speaker was given nothing to eat.B.The family were not friendly.C.The family prepared everything for the speaker.16.What's the lesson for the speaker?A.Home is always the best place.B.Always directly tell Americans what you want.C.Never stay with an American family again.10. 听独白,根据所听到的独白内容和提示词语,记录关键信息.独白读两遍.The School Trip知识运用(共25分)四、单项填空(共13分,每小题1分)从下面各题所给的A、B、C、D四个选项中,选择可以填入空白处的最佳选项.11. -What are you reading?-The Adventures of Tom Sawyer.______ writer is Mark Twain.()A ItB ItsC HeD His12. -Where did you have dinner?-______ Lily's house.()A AtB ToC OnD For13. The shoes are very smart,______ they don't fit me.()A soB andC butD or14. New York is one of the ______ in the world.()A modern cityB more modern citiesC most modern citiesD most modern city15. —Wait a minute. I have ______ to tell you.—What is it?A something importantB important somethingC anything importantD importa nt anything16. -Where is Mike?-I don't know.But I saw him ______ football on the playground just now.()A to playB playingC plyedD plays17. -Who ______ us a speech next week?-Dr.Smith,a famous scientist.()A giveB gaveC givesD will give18. -Have you seen my dictionary?-Yes.I ______ it on your desk five minutes ago.()A seeB sawC seesD will see19. Don't forget ______ the windows before you leave the classroom.()A closeB closingC to closeD closed20. The Greens ______ breakfast when the door bell rang.()A hadB would haveC are havingD were having21. -The concert is very popular.-Yes.So far,all the tickets ______.()A bookedB have bookedC were bookedD have been booked22. We'll go to have a picnic next Sunday ______ the weather is fine.()A ifB beforeC unlessD until23. Frank asked me ______ for the violin.()A how much do I payB how much I paidC how much did I payD how much I pa y五、完形填空(共12分,每小题12分)24. 阅读下面短文,掌握其大意,然后从短文后各题所给的A、B、C、D四个选项中,选择最佳选项.One day in my third grade, I brought home a very plain invitation."I'm not going, "I said."She's a (1)________ girl named Ruth, and Berniece and Pat aren't going.She asked the whole class, all 36 of us."As Momma studied the invitation, she looked (2)________ sad.Then she said, "Well, you are going!I'll pick up a present tomorrow."I couldn't believe it.Momma had never made me go to a party!I was sure I'd (3)________ die if I had to go.But nothing could ever make Momma change her mind.When Saturday arrived, Momma (4)________ me out of bed, made me wrap the pretty pink mirror she bought and drove me over to Ruth's home.Following Ruth up the steeest (最陡峭的), scariest stairs I'd ever seen, I finally got through the door.On the table sat the biggest cake I had ever seen.Thirty-six cups filled with homemade candy were near the cake-each one with a name on it."This won't be too bad-once (5)________ gets here, "I decided."Where's your mom? "I asked Ruth.Looking down at the floor, she said, "Well, she's sick.""Oh.Where's your dad? ""He's gone."Then there was a (6)________, except for a few bad coughs from behind a closed door.About 15minutes passed…t hen 10more.Suddenly, we (7)________ that no one else was coming.How could I get out of here? As I slowly fell into self-pity, I saw Ruth's tearful face.All at once my eight-year-old heart was filled with pity for Ruth and (8)________ at my 35selfish (自私的) classmates.I spoke at the top of my voice, "Who needs them? "Ruth's surprised look changed to (9)________ agreement.We started with the cake.I sang"Happy Birthday"(10)________ Ruth made a wish and blew out the candles, and then we played all the games.In a flash it was noon and Momma arrived to pick me up.(11)________ Ruth repeatedly, I happily got into the car."I was the only one there-out of the whole class.And I couln't wait to tell every one of them what a great party they (12)________!"That was the day I learned that one person could really make a difference.I had made a bi g difference on Ruth's ninth birthday, and Momma had made a big difference in my life.(1)A popularB luckyC newD happy(2)A hopefullyB strangelyC absolutelyD immediately(3)A justB stillC everD never(4)A helpedB knockedC kickedD rushed(5)A anyoneB no oneC everyoneD someone(6)A silenceB voiceC shameD sadness(7)A expectedB realizedC hopedD explained(8)A responsibilityB understandingC interestD anger(9)A excitedB suddenC directD quiet(10)A sinceB becauseC whileD though(11)A HoldingB ReplyingC PraisingD Thanking(12)A hatedB missedC lostD knew六、阅读下列短文,根据短文内容,从短文后各题所给的A、B、C、D四个选项中,选择最佳选项.(共26分,每小题6分)25. Natural Wonders of the WorldThe Deepest Lakein the WorldLake Baikal in Russia is the deepest lake in the world.It is 1, 637 meters deep.It is also t he largest freshwater lake in the world.The Biggest Lakein the WorldThe biggest lake in the world is the Caspian Sea.It has a surface area of 371, 000square ki lometers.The Caspian Sea is salty, about 1/3as salty as seawater.The Hottest Desertin the WorldThe hottest desert in the world is the Sahara Desert.In 1922, scientists recorded a record high temperature of 58°C.Though it{'}s hot there during the day, it sometimes freezes at ni ght.The Largest Volcano (火山)in the WorldThe largest volcano in the world is Mauna Loa in Hawaii.It is about17, 000meters high from the bottom to the top.Mauna Loa is much larger than Mt.Ever est but most of Mauna Loa is underwater(1)Which is the biggest lake in the world?________A Lake Baikal.B Caspian Sea.C Sahara.D Mauna Loa.(2)How high is the largest volcano in the world?________A 17,000meters.B 371,000meters.C 1,922meters.D 1,637meters.(3)Sometimes,it's________ at night in Sahara Desert.A hot.B warm.C freezing.D cool.26. Teenager Callie Rogers was"jumping and screaming"when she realized she had become the National Lottery's (彩票) youngest ever millionaire (百万富翁).The 16-year-old, from Cockermouth, Cumbria, described the moment when she realized that she had won the£1, 875, 000prize on Saturday.Callie told reporters at the meeting organized by the lottery that she was dog-sitting for a friend when the draw (抽奖) took place.She said she rushed home to check the numbers-1, 10, 17, 23, 29, and 35-which were based on her family birthdays.Callie was one of eight winners sharing the£15, 000, 000prize.And she said she was looking forward to taking her first holiday in Australia. She said: "Hopefully I will help my family have a better life."But Callie, who left school in December last year, said becoming a millionaire would mean a different future.She said she was going to go traveling for two years, and then would like to become a social worker.One of the first things she hopes to buy is a new computer for her mother.Callie, who will be 17in December, is going to treat herself as well, and said she wanted to buy a Peugeot 206 when she learnt to drive.She said: "My brother also wants a motorbike and my sister wants a piano."Callie had been working since leaving school at a number of jobs, as a shop assistant, a wai tress, and at the Community Center, and she was happy to take a break.(1)What prize did Callie win?________A £1,875,000.B £15000,000. C A holiday in Australia. D A Peugeot 206.(2)Callie chose the lottery numbers according to________.A her telephone number .B her family birthdays.C the ages of her family .D her friends'birthdays.(3)What will Callie probably do after winning the prize?________A She will go traveling for a year.B She will continue her education.C She will b uy a new computer for her grandmother.D She will buy the gifts that her brother and s ister want.27.Of the many kinds of vegetables grown all over the world, which remains the favorite of both the young and old? The potato, of course.Perhaps you know them as"taters", "spuds", or"Id ahoes".But it's no matter, a potato by any other name is still a potato-the world's most widely grown vegetable.As a matter of fact, if you are a normal potato eat er, you will eat at least a hundred pounds of them each year.That's only a tiny part of the total grown every year, however.Worldwide, the potato harv est (收获) every year is over six billion bags, with each bag having a hundred pounds of spuds, so me of them as large as four pounds each.In the United States, farmers fill about four hundre d million bags a year.That may seem like a lot of taters, but it leaves us in third place amon g world potato growers.Farmers in Poland (波兰) dig up just over 800million bags a year, while the Russians lead the world with nearly 1. 5billion bags.People eat potatoes in many ways-baked (烘烤), mashed (捣成糊状), and roasted, to name just three.However, in the United States most potatoes are eaten in the form of French fries.One fast-food chain alone sells more than $1billion worth of fries each year.No wonder, then, that th e company pays close attention to the way its fries are prepared.Before any fry makes it to the people who eat at this popular restaurant, it must pass many separate tests.Fail any one and the French fry is thrown away.To start with, only a certai n kind of Idaho potato is used to make fries.They have less water than other kinds.Once c ut into"shoestring"shapes, the potatoes are partly fried in secret oils, sprayed (喷洒) with liquid sugar to brown them, steam dried at high heat, and then quickly frozen for s hipment to each restaurant.Before shipping, though, every shoestring is measured (测量).Forty percent of the fries must be between two and three inches long.Another forty p ercent has to be over three inches.What about the twenty percent that is left? Well, a few sh ort fries in a bag are okay, it seems.So, now that you realize the huge size and value of the potato crop, you can understand wh y most people agree that this part of the food industry is no"small potatoes."(1)According to the passage,which country has the largest harvest of potatoes?________ A America. B Russia. C Poland. D France.(2)What can be known about Americans and French fries?________A Americans like to eat French fries at home.B Americans care about French fries'size and shape.C Americans eat French fries less than mashed potatoes.D Americans prefer potatoes to be cooked in this way.(3)What is the main idea of this passage?________A Potatoes are known by many names.B The way of making French fries is interesting .C The potato is an important vegetable in America.D The various names of pota toes have a long history.28. What does the word"patent (专利权)"mean to you? Does it interest you? If it does, stop and think a moment about some of the co mmonplace things that you use every day: the telephone, radio, television, and the thousands of other things that enrich our lives today, were once only ideas in the minds of men.If it ha d not been possible to patent their ideas, so as to protect them from being copied, these inve ntions might never have been fully developed to serve human beings.If there were no patent protection there would be little encouragement to invent, for once t he secrets of an invention became known, those who did not experience the inventor's risks and expenses(花费) might well fill the market with their copies of his product and steal much of the benefit (益处) of his efforts.The most basic values in the U.S.patent system came from England.During the rule of Queen Elizabeth I in England, the growing technology was furthered by the giving of exclusiv e privileges (独家特权) to people who had invented new processes (程序) or tools-a step that did much to encourage creativity.Later, an important value was added: society h ad everything to gain and nothing to lose by giving exclusive privileges to an inventor, becaus e a patent for an invention was given for something new that society never had before.George Washington signed the first patent law on April 10, 1790, and less than four month s later, the first patent was given to a man named Samuel Hopkins for a chemical process, an i mproved method in soap making.In 1936, the Patent Office became a separate department and it has grown into an organiza tion of over 2, 500people who every week deal with more than 1, 600patent applications, an d of those, give more than 1, 000.A patent may be given for any new and useful process, ma chine, or planning method.The patent system has also helped to improve the pay of the American worker to an unexp ected level; he can produce and earn more by using computers or adding machines, two imp ortant patented inventions.Patented inventions also help keep prices down by encouraging competition.Our patent laws, like the Constitution from which they grew, have stood the test of time.T hey have encouraged creative processes, brought great benefits to society as a whole, and en abled American technology to outstrip that of the rest of the modern world.(1)From the passage,what can we learn about inventors?________A They make a lot of money.B They fight against copiers.C They have a lot of ex perience.D They put effort into inventions.(2)Why were inventors given exclusive privileges?________A Because their inventions made leaders happy.B Because their creativity is very imp ortant.C Because their inventions could enlarge society.D Because they were the smartest people in society.(3)According to the passage,the patent system is good for America because________.A it helps more workers get jobs.B it provides a first-class service. C it produces less expensive things. D it helps inventors find market s.(4)What is the meaning of"outstrip"in the last paragraph?________A be better than.B catch up with.C make better use of.D cost more than.七、阅读短文,根据短文内容,从短文后的五个选项中选出能填入空白处的最佳选项.选项中有一项为多余选项.(共8分,每小题8分)29. When a man was passing the elephants,he suddenly stopped,not understanding how these huge animals could be held by only a small rope tied to their fr ont leg.No chains (链子),no cages (笼子).(60)________.But for some reason,they did not.He saw a trainer nearby and asked why these animals just stood there and didn't try to get a way."Well,"the trainer said,"when they are very young and much smaller,we use the same size rope to tie them and,at that age,it's enough to hold them.As they grow up,they have to come to believe they cannot break away.(61)________.So they never try to break free."The man couldn't believe what he was seeing.These animals could at any time break free fr om their ropes.(62)________.They believed they couldn't.Many of us go through life like the elephants.We sometimes believe that we cannot do som ething,simply because we failed at it once before.(63)________.We should never give up the struggle (抗争) in life.A.Failure is part of learningB.Success is not what we wantC.They believe the rope can still hold themD.But they were stuck right where they wereE.It was clear that the elephants could break away from their ropes.八、阅读短文,根据短文内容回答问题.(共10分,每小题10分)30. The idea of teamwork is very important to the success of any team.All coaches talk about working as one unit,as a team that plays as one.Teamwork and unselfishness (无私) create the strong center of a great team; without them a team cannot play well against other teams.You can have a group of superstars,but if they do not work well as one unit,they are not going to be successful.The team working as one unit is going to be successful.Here are some things to consider when you are looking at your team:◆ Does your team have agreed-upon goals they created as a team?◆ Do the players openly encourage and support one another?◆ Do they have open communication with one another,as well as the coaches?◆ Does each player know what their role on the team is?◆ Is there shared respect among the players and coaches?◆ Do players use words such as"we"when referring to the team?◆ Have they created a positive (乐观的) team image for themselves?◆ Does the team as a whole want to improve their performance?◆ Does each member consider themselves as a"team player"?A winning team has players that share common goals and a common dream.Teams come to gether through shared attitudes about a particular sport.They may come together for a nu mber of different reasons,but their goals are the same-to achieve top performance and experience success.The ends may be different but the mea ns by which one gets there is the same-teamwork.Teamwork is something that must be on the top of the list.Every player needs to understan d how important it is for them to work smoothly together if they want to be successful.Eac h player must be true to the whole team and be willing to act unselfishly.When challenges (挑战) come,the team needs to deal with them in a positive manner.A sense of teamwork will play an im portant part in this.Just remember T.E.A.M.-Together Everyone Achieves More!64.What can create the strong center of a great team?________65.Which is more important to the success of a team,teamwork or superstars?________ 66.How many things are considered when you are looking at your team?________ 67.How does a team come together according to Paragraph 3?________68.What is the text mainly about?________.九、完成句子(共10分,每小题2分)根据中文意思完成句子.31. 一起吃晚餐庆祝父亲节怎么样?________ having dinner together to celebrate"Father's Day"?32. 他们是好朋友,相处得很融洽.They are good friends and they________ each other.33. 我们需要一条新的规定,阻止学生们浪费粮食.We need a new rule to________ food.34. 政府更多关注药品安全是非常必要的.________ the government________ the drug safety.35. 这位严格的老师经常警告她的学生要么按时上交作业,要么不能通过这门课.The strict teacher often warns her students that________.十、文段表达(15分)36. 根据中文和英文提示词语,写出意思连贯、符合逻辑、不少于60词的短文.请不要写出你的真实校名和姓名.某英文报纸以"A Good Sentence to Me"为题征文,请你投稿.请你从下面的三句话中选出你最喜欢的一句,并结合自己的经历谈谈你喜欢它的理由.☆The more we read,the more we will know.☆Helping others is one of the gifts we have to give in life.☆If we're not making mistakes,then we're not doing anything.________.2012年北京市西城区中考英语二模试卷答案1. C2. B3. A4. B5. BC6. CA7. CB8. ABC9. CAB10. 略,略,略,略,略11. B12. A13. C14. C15. A16. B17. D18. B19. C20. D21. D22. A23. B24. CBADCABDACDB25. BAC26. ABD27. BDC28. DBCA29. E,C,D,A30. Teamwork and unselfishness.,Teamwork,Nine,They have shared dream goals and they have the same,The importance of teamwork and how to achieve smooth team work31. What/How about32. get on/along well with33. stop students(from)wasting34. It's necessary for,to pay more attention to35. either they hand in their homework on time or they will fail her class.36. A Good Sentence to Me"If we're not making mistakes,then we're not doing anything."This is my favorite sentence because from it I have learned t hat if we are afraid of making mistakes,we will never experiment.One day,I wanted to cook lunch by myself.But it was really a hard job because I had never cooked be fore.I didn't know anything about cooking times,and as a result,I overcooked my lunch.It tasted terrible.When my mom came back home,I told her my story.She said,"It's OK.You did it anrway."I think that I had a chance to understand the valuable role that mistakes play in life and maki ng mistakes is the key to learning.。
【精品】2012年北京西城区初三化学二模试卷
二、填空题 (共 5 个小题,共 30 分。)
26.( 6 分)化学与生活密切相关。
( 1)日常生活中食用 的蔬菜和水果中富含的营养素是
。
( 2)常见的化石燃料有天然气、石油和
。它们都能与氧气反应生成一种可引起温室效应的气体,
该气体的化学式是
。
( 3)下列关于“节约能源、保护环境”的做法正确的是
。
A.直接排放工业废水
浸入硫酸铜溶液中
银白色铝丝表面 有红色固体析出
铝比铜活泼
25.向氯化铜和稀盐酸的混合溶液中,加入过量的铁粉,充分反应后过滤。下列关于上述过程的叙述正
确的是
A.滤液中一定含有 FeC3l
B.过滤后得到的固体可能是纯净物
C.反应后固体的质量可能会增加
D.反应后溶液的质量一定会减少
第 Ⅱ卷(非选择题 共 55 分)
液变浑浊。一段时间后,打开 K,此时观察到 a、b 管中的现象是
。
33.( 8 分)红枣包装中常使用一种袋装防腐剂,品名为“ 504 双吸剂”,其标签如下图所示。
同学们对一包久置的“ 504 双吸剂”固体样品很好奇,
设计实验进行探究。 【提出问题】久置固体的成分是什么?
氧 品名 : 504 双吸剂 原 成分 :铁粉、生石灰等
的 C4H10 和 CH4,C4H10 消耗氧气的质量
CH4 消耗氧气的质量
(填 “﹥”、 “﹤ ”或 “=”)。
27.( 5 分)在宏观、微观和符号之间建立联系是化学学习的特点。 (1)现有下列微粒: ①Na+ ②3H ③3N2 ④CO32—。其中能表示 3 个原子的是
(填序号),①和 ④两种微
粒构成的化合物属于
A.优氯净由 4 种元素组成
2012北京市西城区二模理综试题
北京市西城区2012年高三二模试卷理科综合能力测试2012.51.下列关于科学研究方法与实验目的叙述正确的是A .用高倍光学显微镜可观察细胞膜磷脂双分子层的结构B .用纸层析法可以提取和分离植物细胞中的各种光合色素C .用放射性同位素标记法可以追踪细胞内的物质代谢途径D .用含有酚红的LB 培养基可分离出能分解尿素的微生物2.碘是合成甲状腺激素的原料,其在甲状腺细胞内的浓度高于内环境。
131I 是一种人工放射性同位素,是核电站泄露的核辐射源之一。
口服一定剂量131I 可以治疗甲状腺机能亢进。
据此分析下列表述不正确的是A .甲状腺细胞受损会导致下丘脑和垂体细胞分泌激素的量增加B .131I 能破坏部分甲状腺细胞使甲亢患者甲状腺激素分泌减少C .131I 辐射可能诱发突变而增加细胞癌变几率D .甲状腺细胞吸收碘需要载体但不消耗ATP3.新采摘的玉米味道比较甜的原因是籽粒中蔗糖的含量较高。
采摘一天后玉米籽粒中50%的游离蔗糖被转化成淀粉,采摘几天后的玉米籽粒失去甜味;采摘后立即冷冻可以保持玉米籽粒的甜味。
下列表述正确的是A .玉米籽粒中的蔗糖是籽粒通过光合作用合成的B .蔗糖转化为淀粉是通过光合作用的碳反应实现的C .冷冻处理抑制了相关酶的活性减少了淀粉的生成D .蔗糖转化成淀粉后籽粒的呼吸速率增加利于储存4.货币状掌跖角化病是一种遗传病,患者脚掌部发病一般从幼儿学会走路时开始,随年龄增长患处损伤逐步加重;手掌发病多见于手工劳动者。
下图为某家族中该病的遗传系谱,有关叙述不正确的是A .由家系图判断此病最可能属于常染色体显性遗传病B .Ⅳ代中患者与正常人婚配生女儿可避免此病的遗传C .家系调查与群体调查相结合可推断此病的遗传特点ⅣⅢ Ⅱ ⅠD.此病的症状表现是基因与环境因素共同作用的结果5.土壤动物是土壤生态系统中的重要组成部分。
对某一地区人工绿地、林地、农田3 种不同类型土地的地下土壤动物群落进行了调查,结果见下表。
西城二模试题
海留给我的广阔无边的第一印象。
B .地球上的海水没有边界地来回散步,空气不用签证地进进出出。环境保护,不仅需 要各国自己的努力,还需要加强国际合作,共同解决问题。
理解:这段话中,把“海水”、“空气”当成不受约束的人来写,写出了环境保护需要加 强国际合作的必要性,风趣而有说服力。
C .夏日暴烈的阳光下,牵牛花偃旗息鼓,美人蕉慵倦无力,牡丹花失去神采。只有太 阳花面对炎炎赤日,阳光愈是炽热,它开得愈是艳丽,愈是热情,愈是旺盛。
C.我们班同学分别多年了,大家都很想见见面,聊聊天。为了让各地的同学能不期而 ... 遇.,共叙友情,我们相约组织了这次同学联谊会。
D .西方的印象派绘画与中国的写意画有异曲同.工... 之妙,二者都不是纯客观地描绘自然, 而是重在表现画家对世界强烈、独特的个人感受。
初三二模 语文试卷 第 1 页(共 8 页)
头说:“呵,好、好、好……”妈妈对我丢了眼色,我立刻爬起来,拖着大刀,狼狈而逃。身
后还响着客人们着意的拍手声、叫好声和笑声。
⑧ 往后几天里,再有拜年的客人来,妈妈不再喊我,节目被取消了。我躲在自己屋里
很少露面,那把大刀也掖在床底下,只是花脸依旧戴着,大概躲在这硬纸后边再碰到爸爸
② 一年年底,舅舅带我去娘娘宫前年货集市上买花脸。过年时人都分外有劲,挤在人
群里好费力,终于从挂满一条横竿上的花花绿绿几十种花脸中,惊喜地发现一个。这花脸
好大,好特别 !通面赤红,一双墨眉,眼角雄俊地吊起,头上边凸起一块绿包头,长巾贴脸
垂下,脸下边是用马尾做的很长的胡须。虽然毫不凶恶,却有股子凛然不可侵犯的庄重之
和他人的交流,这也是造成城市青少年缺乏人际交往能力的原因之一。此外,越来越多的
城市青少年喜欢自己在家里消磨时间,而不肯走出家门和别人一起活动,长此以往,人际
京市西城区2012年初三二模试卷答案
京市西城区2012年初三二模试卷数学答案及评分标准 2012. 6三、解答题(本题共30分,每小题5分) 13.解:原式=516-+分 =4+…………………………………………………………………… 5分14.解:原式=22(44)(6)3x x x x x -+---=32324463x x x x x -+-+-=2243x x +-.………………………..….….….….….…………………… 3分∵ 2240x x +-=,∴ 224x x +=. ………………………………………………………………… 4分∴ 原式=22(2)35x x +-=. ….……………………………………………………5分15.(1)证明:如图1.∵ ∠BAF =∠CAE ,∴ BAF CAF CAE CAF ∠-∠=∠-∠.∴ BAC DAE ∠=∠. ………………… 1分 在△ABC 和△ADE 中,∴ △A B C ≌△A D E. ……………………………………… 3分 ∴ B C =D E. ………………………………………………………………… 4分 (2)∠D G B 的度数为67︒.……………………………………………………………… 5分 16.解:(1)∵关于x 的一元二次方程(m +1)x 2 + 2mx + m - 3 = 0 有两个不相等的实数根,∴ 10m +≠且0∆>.∵ 2(2)4(1)(3)4(23)m m m m ∆=-+-=+,∴ 230m +>. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍1分 解得 m >23-. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分 ∴ m 的取值范围是 m >23-且m ≠ -1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 3分 (2)在m >23-且m ≠ -1的范围内,最小奇数m 为1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 此时,方程化为210x x +-=. ∵ 224141(1)5b ac ∆=-=-⨯⨯-=,图1 B∴x = ∴ 方程的根为1x =2x =.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分 17. (1)证明:如图2.∵ 四边形ABCD 是平行四边形,∴ AB ∥CD 且AB=CD . ﹍﹍﹍﹍1分 ∵ 点E ,F 分别是AB ,CD 的中点,∴ CD DF AB AE 21,21==.∴ AE=DF . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 2分 ∴ 四边形AEFD 是平行四边形. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分(2)解:过点D 作DG ⊥AB 于点G . ∵ AB =2AD =4,∴ AD =2. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分在Rt △AGD 中,∵90,60,AGD A ∠=︒∠=︒ AD =2, ∴ .360sin ,160cos =︒⋅==︒⋅=AD DG AD AG ∴ 3BG AB AG =-=.在Rt △DGB中,∵90,3,DGB DG BG ∠=︒==∴.329322=+=+=BG DG DB ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分 18.解:(1)300; ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分(2)52;﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 (3)1750 . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分 四、解答题(本题共20分,每小题5分)19.解:(1)当MN ⊥AC 时,从N 到M 小区铺设的管道最短.(如图3)﹍﹍﹍﹍﹍﹍ 1分(2) ∵ ∠MAC =60︒-30︒=30︒,∠ACM =30︒+30︒=60︒,﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分 ∴ ∠AMC =180︒-30︒-60︒=90︒. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 3分在Rt △AMC 中,∵∠AMC =90︒,∠MAC =30︒,A C =2000,∴cos 2000AM AC MAC =⋅∠==米). ﹍﹍﹍﹍﹍﹍﹍﹍4分 在Rt △AMN 中,∵ ∠ANM =90︒,cos30︒=AMAN,∴ AN =AM ⋅cos30︒=10003⨯23=1500(米). ………………………………………… 5分答:∠AMC 等于90︒,AN 的长为1500米. 20. 解:(1)根据题意得(6,0)A ,(0,8)B .(如图4)在Rt △OAB 中,∠AOB =90︒,OA =6,OB =8,东图2GFEDCBA∴10AB .﹍﹍﹍﹍﹍﹍﹍ 1分∵ △DAB 沿直线AD 折叠后的对应三角形为△DAC , ∴ AC=AB=10.∴ 16OC OA AC OA AB =+=+=. ∵ 点C 在x 轴的正半轴上,∴ 点C 的坐标为(16,0)C .﹍﹍﹍﹍﹍ 2分 (2)设点D 的坐标为(0,)D y .(y <0) 由题意可知CD=BD ,22CD BD =. 由勾股定理得22216(8)y y +=-. 解得12y =-.∴ 点D 的坐标为(0,12)D -.﹍﹍﹍﹍﹍3分 可设直线CD 的解析式为 12y kx =-.(k ≠ 0)∵ 点(16,0)C 在直线12y kx =-上,∴ 16120k -=. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 解得34k =. ∴ 直线CD 的解析式为3124y x =-.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分 21.(1)证明:连结AO ,AC .(如图5) ∵ BC 是⊙O 的直径,∴ 90BAC CAD ∠=∠=︒.﹍﹍﹍﹍﹍1分 ∵ E 是CD 的中点, ∴ AE DE CE ==. ∴ EAC ECA ∠=∠. ∵ OA =OC , ∴ OCA OAC ∠=∠.∵ CD 是⊙O 的切线,∴ CD ⊥OC . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分∴ 90ECA OCA ∠+∠=︒.∴ 90EAC OAC ∠+∠=︒. ∴ OA ⊥AP .∵ A 是⊙O 上一点,∴ AP 是⊙O 的切线. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分 (2) 解:由(1)知OA ⊥AP .在Rt △OAP 中,∵90OAP ∠=︒,OC=CP=OA ,即OP =2OA ,∴ sin P 21==OP OA . ∴ 30P ∠=︒. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 ∴ 60AOP ∠=︒. ∵ OC=OA , ∴ 60ACO ∠=︒. 在Rt △BAC 中,∵90BAC ∠=︒,AB =33,60ACO ∠=︒,lN∴ 3tan AB AC ACO ===∠.又∵ 在Rt △ACD 中,90CAD ∠=︒,9030ACD ACO ∠=︒-∠=︒, ∴ 3cos cos30AC CD ACD ===∠︒﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分22.解:(1) 如图所示,答案不唯一. 画出△D 1BC ,△D 2BC ,△D 3BC ,△D 4BC ,△D 5BC 中的一个即可.(将BC 的平行线l 画在直线BC 下方对称位置所画出的三角形亦可)﹍﹍﹍﹍﹍﹍﹍ 2分 (2) 如图所示,答案不唯一.(在直线D 1D 2上取其他符合要求的点,或将BC 的平行线画在直线BC 下方对称位置所画出的三角形亦可) ﹍﹍﹍4分(3)如图所示(答案不唯一).﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 5分如上图所示的四边形ABDE 的画法说明:(1)在线段BC 上任取一点D (D 不为BC 的中点),连结AD ;(2)画出线段AD 的垂直平分线MN ;(3)画出点C 关于直线MN 的对称点E ,连结DE ,AE . 则四边形ABDE 即为所求.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)由题意得A ,C 两点的坐标分别为1(1,)A k ,2(1,)C k .(如图6)﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍1分∵ 10k >,20k <,∴ 点A 在第一象限,点C 在第四象限,12AC k k =-. 当m=4时,1213()2ACD S AC BD k k ∆=⋅=-.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分∵ 点E 恰好在双曲线1ky x =上,∴ 11122k m k +⋅=.①﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分∵ 10k >,∴ 方程①可化为114m +=,解得3m =.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 (3)当点D 的坐标为(2,0)D 时,由(2)可知点E 的坐标为13(,)22kE .(如图8)∵ 1BDF S ∆=, ∴ 11122BDF S BD OF OF ∆=⋅==. ∴ 2OF =. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 5分设直线BE 的解析式为y ax b =+(a ≠0). ∵ 点B ,点E 的坐标分别为(1,0)B ,13(,)22k E , ∴ 10,3.22a b k a b +=⎧⎪⎨+=⎪⎩解得 1a k =,1b k =-.∴ 直线BE 的解析式为11y k x k =-.∵ 线段EB 的延长线与y 轴的负半轴交于点F ,10k >, ∴ 点F 的坐标为1(0,)F k -,1OF k =.∴ 12k =.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 6分 线段CF7分24.解:(1) 当t =5秒时,点P 走过的路径长为 19 ;当t = 3 秒时,点P 与点E 重合.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分(2) 如图9,由点P 的对应点M 落在EF 上,点F 的对应点为点N ,可知∠PEF =∠MEN ,都等于△PEF 绕点E 旋转的旋转角,记为α.设AP =3t (0< t <2),则CP =63t -,43CE t =. ∵ EF ∥AC ,∠C =90°,∴ ∠BEF =90°,∠CPE =∠PEF =α. ∵ EN ⊥AB , ∴ ∠B=∠MEN=α.∴ CPE B ∠=∠.﹍﹍﹍﹍﹍﹍﹍3分 ∵ tan CE CPE CP ∠=,3tan 4AC B BC ==, ∴ 43CP CE =.∴ 446333t t -=⨯.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分A解得5443t =.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分 (3) t 的值为65(秒)或307(秒).﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 7分25.解:(1)21(2)4A n n +,,()B n n ,. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分 (2) d =AB =A B y y -=2124n n -+.∴ d =2112()48n -+=2112()48n -+.﹍﹍3分∴ 当14n =时,d 取得最小值18. ﹍﹍ 4分 当d 取最小值时,线段OB 与线段PM 的位置 关系和数量关系是OB ⊥PM 且OB =PM . (如图﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 5分(3) ∵ 对一切实数x 恒有 x ≤y ≤2124x +, ∴ 对一切实数x ,x ≤2ax bx c ++≤2124x +都成立. (0a ≠) ① 当0x =时,①式化为 0≤c ≤14. ∴ 整数c 的值为0. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 6分此时,对一切实数x ,x ≤2ax bx +≤2124x +都成立.(0a ≠) 即 222,12.4x ax bx ax bx x ⎧≤+⎪⎨+≤+⎪⎩ 对一切实数x 均成立. 由②得 ()21ax b x +-≥0 (0a ≠) 对一切实数x 均成立.∴ ()210,10.a b >⎧⎪⎨∆=-≤⎪⎩ 由⑤得整数b 的值为1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍7分此时由③式得,2ax x +≤2124x +对一切实数x 均成立. (0a ≠) 即21(2)4a x x --+≥0对一切实数x 均成立. (0a ≠) 当a =2时,此不等式化为14x -+≥0,不满足对一切实数x 均成立.当a ≠2时,∵ 21(2)4a x x --+≥0对一切实数x 均成立,(0a ≠)④⑤② ③∴ 2220,1(1)4(2)0.4a a ->⎧⎪⎨∆=--⨯-⨯≤⎪⎩∴ 由④,⑥,⑦得 0 <a ≤1.∴ 整数a 的值为1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍8分∴ 整数a ,b ,c 的值分别为1a =,1b =,0c =.⑥⑦。
2012年北京市西城区初三英语二模
One day in my third grade, I brought home a very plain invitation.“I’m not going,” I said. “She’s a 35 girl named Ruth, and Berniece and Pat aren’t going. She asked the whole class, all 36 of us.”As Momma studied the invitation, she looked 36 sad. Then she said, “Well, you are going! I’ll pick up a present tomorrow.”I couldn’t believe it. Momma had never made me go to a party! I was sure I’d 37die if I had to go. But nothing could ever make Momma change her mind.When Saturday arrived, Momma 38 me out of bed, made me wrap the pretty pink mirror she bought and drove me over to Ruth’s home.Following Ruth up the steep est (最陡峭的), scariest stairs I’d ever seen, I finally got through the door. On the table sat the biggest cake I had ever seen. Thirty-six cups filled with homemade candy were near the cake — each one with a name on it.“This won’t be too bad — once 39 gets here,” I decided.“Where’s your mom?” I asked Ruth.Looking down at the floor, she said, “Well, she’s sick.”“Oh. Where’s your dad?”“He’s gone.”Then there was a 40 , except for a few bad coughs from behind a closed door. About15 minutes passed....then 10 more. Suddenly, we 41 that no one else was coming.How could I get out of here? As I slowly fell into self-pity, I saw Ruth’s tearful face. All at once my eight-year-old heart was filled with pity for Ruth and 42 at my 35 selfish (自私的) classmates. I spoke at the top of my voice, “Who needs them?”Ruth’s surprised look changed to 43 agreement.We started with the cake. I sang “Happy Birthday” 44 Ruth made a wish and blew out the candles, and then we played all the games.In a flash it was noon and Momma arrived to pick me up. 45 Ruth repeatedly, I happily got into the car.“I was the only one there — out of the whole class. And I could n’t wait to tell every one of them what a great party they 46 !”That was the day I learned that one person could really make a difference. I had made a big difference on Ruth’s ninth birthday, and Momma had made a big difference in my life.35. A. popular B. lucky C. new D. happy考点:上下文语境对比分析;形容词.题型:完形填空.思路:根据上下文语境和形容词词义辨析进行判断.解析:此类题目应根据上下文语境进行判断.本题为本文第一段设空,通过通读全文可知第一段可知Ruth是新转来的学生,她邀请我们班36个人去她家做客.故C.总结:此题主要考查形容词词义辨析,解题关键是通过上下文语境进行判断.本题难度较低.Callie told reporters at the meeting organized by the lottery that she was dog-sitting for a friend when the draw (抽奖) took place. She said she rushed home to check the numbers — 1, 10, 17, 23, 29, and 35 — which were based on her family birthdays. Callie was one of eight winners sharing the £15,000,000 prize. And she said she was looking forward to taking her first holiday in Australia.She said: “Hopefully I will help my family have a better life.” But Callie, who left school in December last year, said becoming a millionaire would mean a different future. She said she was going to go traveling for two years, and then would like to become a social worker.One of the first things she hopes to buy is a new computer for her mother. Callie, who will be 17 in December, is going to treat herself as well, and said she wanted to buy a Peugeot 206 when she learnt to drive.She said: “My brother also wants a motorbike and my sister wants a piano.”Callie had been working since leaving school at a number of jobs, as a shop assistant, a waitress, and at the Community Center, and she was happy to take a break.50. What prize did Callie win?A. £1,875,000.B. £15,000,000.C. A holiday in Australia.D. A Peugeot 206.考点:细节事实A类.题型:阅读理解.思路:根据该题所处位置及题干提示信息,迅速锁定解题范围并结合文章细节进行判断.解析:本题为文章第一个命题,应首先锁定文章首段或前几段进行解答.根据题目关键词Jprize可以定位在第一段最后一句话she had won the £1,875,000 prize on Saturday.得知Callie赢得了的£1,875,000.故A.总结:此题主要考查细节理解题,解题关键是抓住题目关键词,根据关键词答案定位在文章第一段最后一句话.本题难度较低.考点:细节题事实B类.题型:阅读理解.思路:根据该题所处位置及题干提示信息,迅速锁定解题范围并结合文章细节进行判断.解析:根据题目“Callie chose the lottery numbers”Callie选择彩票的数字是依据什么从文中的第二段的第二句话which were based on her family birthdays.故B.总结:此题主要考查细节理解题,解题关键是抓住题目关键信息,根据关键信息答案定位在文章第二段第二句话.52. What will Callie probably do after winning the prize?A.She will go traveling for a year.B.She will continue her education.C. She will buy a new computer for her grandmother.D. She will buy the gifts that her brother and sister want.考点:细节事实推理判断类考察.题型:阅读理解.思路:根据该题所处位置及题干提示信息,迅速锁定解题范围并结合文章细节进行判断.解析:文章的后四段,都是讲述Callie有了这笔钱之后的打算做的事情,从文中“She said she was going to go traveling for two years, and then would like to become a social worker.”可知A,B选项不正确,从文中倒数第三段的第一句话“One of the first things she hopes to buy is a new computer for her mother.”可知C选项不正确,由文章的后两段可知D选项是正确的.故选D.总结:此题主要考查细节事实推理判断类考察,解题关键是抓住题目关键信息,根据关键信息答案定位找到细节进而进行判定.本题难度一般.COf th e many kinds of vegetables grown all over the world, which remains the favorite of both the young and old? The potato, of course. Perhapsyou know them as “taters”, “spuds”, or “Idahoes”. But it’s no matter, a potatoby any other name is still a potato—the world's most widely grown vegetable. As a matter of fact, if you are a normal potato eater, you will eat at least a hundred pounds of them each year.That's only a tiny part of the total grown every year, however. Worldwide, the potato harvest (收获) every year is over six billion bags, with each bag having a hundred pounds of spuds, some of them as large as four pounds each. In the United States, farmers fill about four hundred million bags a year. That may seem like a lot of taters, but it leaves us in third place among world potato growers. Farmers in Poland (波兰) dig up just over 800 million bags a year, while the Russians lead the world with nearly 1.5 billion bags.People eat potatoes in many ways —baked (烘烤), mashed (捣成糊状), and roasted, to name just three. However, in the United States most potatoes are eaten in the form of French fries. One fast-food chain alone sells more than $1 billion worth of fries each year. No wonder, then, that the company pays close attention to the way its fries are prepared.Before any fry makes it to the people who eat at this popular restaurant, it must pass many separate tests. Fail any one and the French fry is thrown away. To start with, only a certain kind of Idaho potato is used to make fries. They have less water than other kinds. Once cut into “shoestring” shapes, the potatoes are partly fried in secret oils, sprayed (喷洒) with liquid sugar to brown them, steam dried at high heat, and then quickly frozen for shipment to each restaurant.Before shipping, though, every shoestring is measured (测量). Forty percent of the fries must be between two and three inches long. Another forty percent has to be over three inches. What about the twenty percent that is left? Well, a few short fries in a bag are okay, it seems.So, now that you realize the huge size and value of the potato crop, you can understand why most people agree that this part of the food industry is no “small potatoes.”53. According to the passage, which country has the largest harvest of potatoes?57. Why were inventors given exclusive p rivileges?A. Because their inventions made leaders happy.B. Because their creativity is very important.C. Because their inventions could enlarge society.D.Because they were the smartest people in society.考点:细节事实推理判断类考察.题型:阅读理解.思路:根据该题所处位置及题干提示信息,迅速锁定解题范围并结合文章细节进行解答.解析:通过文中第三段第二句话“…by the giving of exclusive privileges (独家特权) to people who had invented new processes (程序) or tools—a step that did much to encourage creativity.”可知专利权被颁发是为了鼓励发明者的创造性.是B句的同意表达.其他的三个选项都属于无中生有.故选B.总结:此题主要考查细节事实推理判断类考察,解题关键是抓住题目关键信息,根据关键信The idea of teamwork is very important to the success of any team. All coaches talk about working as one unit, as a team that plays as one. Teamwork and unselfishness (无私) create the strong center of a great team; without them a team cannot play well against other teams. You can have a group of superstars, but if they do not work well as one unit, they are not going to be successful. The team working as one unit is going to be successful.Here are some things to consider when you are looking at your team:◆ Does your team have agreed-upon goals they created as a team?◆ Do the players openly encourage and support one another?◆ Do they have open communication with one another, as well as the coaches?◆ Does each player know what their role on the team is?◆ Is there shared respect amon g the players and coaches?◆Do players use words such as “we” when referring to the team?◆ Have they created a positive (乐观的) team image for themselves?◆ Does the team as a whole want to improve their performance?◆Does each member consider themselves as a “team player” ?A winning team has players that share common goals and a common dream. Teams come together through shared attitudes about a particular sport. They may come together for a number of different reasons, but their goals are the same —to achieve top performance and experience success. The ends may be different but the means by which one gets there is the same — teamwork.Teamwork is something that must be on the top of the list. Every player needs to understand how important it is for them to work smoothly together if they want to be successful. Each player must be true to the whole team and be willing to act unselfishly. When challenges (挑战) come, the team needs to deal with them in a positive manner. A sense of teamw ork will play an important part in this.Just remember T.E.A.M. — Together Everyone Achieves More!64. What can create the strong center of a great team?考点:细节事实A类考察.题型:阅读表达.。
2012西城区中考数学二模
2012西城区中考数学二模一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.(4分)﹣8的倒数是()A.8 B.﹣8 C.D.2.(4分)在2012年4月25日至5月2日举办的2012(第十二届)北京国际汽车展览会上,约有800 000名观众到场参观,盛况空前.800 000用科学记数法表示应为()A.8×103B.80×104C.8×105D.0.8×1063.(4分)若⊙O1与⊙O2内切,它们的半径分别为3和8,则以下关于这两圆的圆心距O1O2的结论正确的是()A.O1O2=5 B.O1O2=11 C.O1O2>11 D.5<O1O2<114.(4分)如图,在△ABC中,D为AB边上一点,DE∥BC交AC于点E,若,AE=6,则EC的长为()A.8 B.10 C.12 D.165.(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是8.9环,方差分别是S甲2=0.61,S乙2=0.52,S丙2=0.53,S丁2=0.42,则射击成绩波动最小的是()A.甲B.乙C.丙D.丁6.(4分)如图,AB为⊙O的弦,半径OC⊥AB于点D,若OB长为10,cos∠BOD=,则AB的长是()A.20 B.16 C.12 D.87.(4分)若某个多边形的内角和是外角和的3倍,则这个多边形的边数为()A.4 B.6 C.8 D.108.(4分)如图,在矩形ABCD中,AB=,BC=1.现将矩形ABCD绕点C顺时针旋转90°得到矩形A′B′CD′,则AD 边扫过的面积(阴影部分)为()A.πB.πC.πD.π二、填空题(本题共16分,每小题4分)9.(4分)将代数式x2﹣6x+10化为(x﹣m)2+n的形式(其中m,n为常数),结果为.10.(4分)如图,菱形ABCD周长为8cm.∠BAD=60°,则AC=cm.11.(4分)如图,把一个半径为12cm的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是cm.12.(4分)如图,在平面直角坐标系xOy中,点A1,A2,A3,…都在y轴上,对应的纵坐标分别为1,2,3,….直线l1,l2,l3,…分别经过点A1,A2,A3,…,且都平行于x轴.以点O为圆心,半径为2的圆与直线l1在第一象限交于点B1,以点O为圆心,半径为3的圆与直线l2在第一象限交于点B2,…,依此规律得到一系列点B n(n为正整数),则点B1的坐标为,点B n的坐标为.三、解答题(本题共30分,每小题5分)13.(5分)计算:.14.(5分)已知a2+2a﹣4=0,求代数式a(a﹣2)2﹣a2(a﹣6)﹣3的值.15.(5分)如图,点F,G分别在△ADE的AD,DE边上,C,B依次为GF延长线上两点,AB=AD,∠BAF=∠CAE,∠B=∠D.(1)求证:BC=DE;(2)若∠B=35°,∠AFB=78°,直接写出∠DGB的度数.16.(5分)已知关于x的一元二次方程(m+1)x2+2mx+m﹣3=0 有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最小奇数时,求方程的根.17.(5分)如图,在平行四边形ABCD中,点E,F分别是AB,CD的中点.(1)求证:四边形AEFD是平行四边形;(2)若∠A=60°,AB=2AD=4,求BD的长.18.(5分)吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康.为配合“禁烟”行动,某校组织同学们在我区某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下统计图:根据统计图解答:(1)同学们一共随机调查了人;(2)请你把统计图补充完整;(3)如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是;(4)假定该社区有1万人,请估计该地区支持“警示戒烟”这种方式大约有人.四、解答题(本题共20分,每小题5分)19.(5分)如图,某天然气公司的主输气管道途经A小区,继续沿A小区的北偏东60°方向往前铺设,测绘员在A 处测得另一个需要安装天然气的M小区位于北偏东30°方向,测绘员从A处出发,沿主输气管道步行2000米到达C 处,此时测得M小区位于北偏西60°方向.现要在主输气管道AC上选择一个支管道连接点N,使从N处到M小区铺设的管道最短.(1)问:MN与AC满足什么位置关系时,从N到M小区铺设的管道最短?(2)求∠AMC的度数和AN的长.20.(5分)如图,在平面直角坐标系xOy中,直线与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长和点C的坐标;(2)求直线CD的解析式.21.(5分)如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.(1)说明:AP是⊙O的切线;(2)若OC=CP,AB=6,求CD的长.22.(5分)阅读下列材料小华在学习中发现如下结论:如图1,点A,A1,A2在直线l上,当直线l∥BC时,.请你参考小华的学习经验画图(保留画图痕迹):(1)如图2,已知△ABC,画出一个等腰△DBC,使其面积与△ABC面积相等;(2)如图3,已知△ABC,画出两个Rt△DBC,使其面积与△ABC面积相等(要求:所画的两个三角形不全等);(3)如图4,已知等腰△ABC中,AB=AC,画出一个四边形ABDE,使其面积与△ABC面积相等,且一组对边DE=AB,另一组对边BD≠AE,对角∠E=∠B.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)在平面直角坐标系xOy中,A为第一象限内的双曲线(k1>0)上一点,点A的横坐标为1,过点A作平行于y轴的直线,与x轴交于点B,与双曲线(k2<0)交于点C.x轴上一点D (m,0)位于直线AC右侧,AD的中点为E.(1)当m=4时,求△ACD的面积(用含k1,k2的代数式表示);(2)若点E恰好在双曲线(k1>0)上,求m的值;(3)设线段EB的延长线与y轴的负半轴交于点F,当点D的坐标为D(2,0)时,若△BDF的面积为1,且CF∥AD,求k1的值,并直接写出线段CF的长.24.(7分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.动点P从点A开始沿折线AC﹣CB﹣BA运动,点P在AC,CB,BA边上运动,速度分别为每秒3,4,5个单位.直线l从与AC重合的位置开始,以每秒个单位的速度沿CB 方向平行移动,即移动过程中保持l∥AC,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动.(1)当t=5秒时,点P走过的路径长为;当t=秒时,点P与点E重合;(2)当点P在AC边上运动时,将△PEF绕点E逆时针旋转,使得点P的对应点M落在EF上,点F的对应点记为点N,当EN⊥AB时,求t的值;(3)当点P在折线AC﹣CB﹣BA上运动时,作点P关于直线EF的对称点,记为点Q.在点P与直线l运动的过程中,若形成的四边形PEQF为菱形,请直接写出t的值.25.(8分)在平面直角坐标系xOy中,抛物线y1=2x2+的顶点为M,直线y2=x,点P(n,0)为x轴上的一个动点,过点P作x轴的垂线分别交抛物线y1=2x2+和直线y2=x于点A,点B.(1)直接写出A,B两点的坐标(用含n的代数式表示);(2)设线段AB的长为d,求d关于n的函数关系式及d的最小值,并直接写出此时线段OB与线段PM的位置关系和数量关系;(3)已知二次函数y=ax2+bx+c(a,b,c为整数且a≠0),对一切实数x恒有x≤y≤2x2+,求a,b,c的值.参考答案与试题解析一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.【解答】﹣8的倒数是﹣.故选D.2.【解答】800 000=8×105.故选C.3.【解答】根据两圆内切,圆心距等于两圆的半径之差,得圆心距=8﹣3=5,故选A.4.【解答】∵DE∥BC,∴==,∵AE=6,∴EC=AE÷=6×=10,故选:B.5.【解答】因为甲、乙、丙、丁的方差分别是:,,,,所以s2丁<s2乙<s2丙<s2甲,由此射击成绩波动最小的是丁.故选D.6.【解答】∵cos∠BOD=,∴=,∵BO=10,∴DO=6,∵OC⊥AB,∴∠ODB=90°,在Rt△BOD中,BD===8,∴AB=2DB=16,故选:B.7.【解答】多边形的内角和是:3×360=1080°.设多边形的边数是n,则(n﹣2)•180=1080,解得:n=8.即这个多边形的边数是8.故选C.8.【解答】连接AC、AC′,根据勾股定理,得AC==2,故可得S扇形CAA'==π,S扇形CDD'==π,则阴影部分的面积=S扇形CAA'﹣S扇形CDD'=π.故选C.二、填空题(本题共16分,每小题4分)9.【解答】∵x2﹣6x+10=x2﹣6x+9+1,∴x2﹣6x+10=(x﹣3)2+1.故答案为:(x﹣3)2+1.10.【解答】∵菱形ABCD周长为8cm.∠BAD=60°∴△AOB为直角三角形,AB=2cm,∠OAB=30°,OA=OC,∴OA=cm,∴AC=2cm.故答案为:211.【解答】∵把一个半径为12cm的圆形硬纸片等分成三个扇形,∴扇形的弧长为:×2πr=8π,∵扇形的弧长等于圆锥的底面周长,∴2πr=8π,解得:r=4,故答案为:412.【解答】连OB1,OB2,OB3,如图,在Rt△OA1B1中,OA1=1,OB1=2,∴A1B1===,∴B1的坐标为(,1),故答案为:(,1);在Rt△OA2B2中,OA2=2,OB2=3,∴A2B2=,∴B2的坐标为(,2)在Rt△OA3B3中,OA3=3,OB3=4,∴A3B3=,∴B3的坐标为(,3);…按照此规律可得点B n的坐标是(,n),即(,n)故答案为:(,n).三、解答题(本题共30分,每小题5分)13.【解答】原式=5﹣1+6×﹣2=5﹣1+3﹣2=4.14.【解答】原式=a(a2﹣4a+4)﹣a2(a﹣6)﹣3=a3﹣4a2+4a﹣a3+6a2﹣3=2a2+4a﹣3,…(3分)∵a2+2a﹣4=0,∴a2+2a=4,…(4分)∴原式=2(a2+2a)﹣3=5.…(5分)15.【解答】(1)证明:∵∠BAF=∠CAE,∴∠BAF﹣∠CAF=∠CAE﹣∠CAF,∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(ASA),∴BC=DE;(2)解:∠DGB的度数为67°,理由为:∵∠B=∠D,∠AFB=∠GFD,∴△ABF∽△GDF,∴∠DGB=∠BAD,在△AFB中,∠B=35°,∠AFB=78°,∴∠DGB=∠BAD=180°﹣35°﹣78°=67°.16.【解答】(1)∵关于x的一元二次方程(m+1)x2+2mx+m﹣3=0 有两个不相等的实数根,∴m+1≠0且△>0.∵△=(2m)2﹣4(m+1)(m﹣3)=4(2m+3),∴2m+3>0.解得m>.∴m的取值范围是m>且m≠﹣1.(2)在m>且m≠﹣1的范围内,最小奇数m为1.此时,方程化为x2+x﹣1=0.∵△=b2﹣4ac=12﹣4×1×(﹣1)=5,∴.∴方程的根为,.17.【解答】(1)证明:如图.∵四边形ABCD是平行四边形,∴AB∥CD且AB=CD,∵点E,F分别是AB,CD的中点,∴AE=AB,DF=CD.∴AE=DF,∴四边形AEFD是平行四边形;(2)解:过点D作DG⊥AB于点G.∵AB=2AD=4,∴AD=2.在Rt△AGD中,∵∠AGD=90°,∠A=60°,AD=2,∴AG=AD•cos60°=1,DG=AD•sin60°=.∴BG=AB﹣AG=3.在Rt△DGB中,∵∠DGB=90°,DG=,BG=3,∴DB===2.18.【解答】(1)30÷10%=300(人).∴一共调查了300人.(2)由(1)可知,总人数是300人.药物戒烟:300×15%=45(人);警示戒烟:300﹣120﹣30﹣45=105(人);105÷300=35%;强制戒烟:120÷300=40%.完整的统计图如图所示:(3)设该市发支持“强制戒烟”的概率为P,由(1)可知,P=120÷300=40%=0.4.(4)支持“警示戒烟”这种方式的人有10000•35%=3500(人).故答案为:300,0.4,3500.四、解答题(本题共20分,每小题5分)19.【解答】(1)当MN⊥AC时,从N到M小区铺设的管道最短,(2)∵∠MAC=60°﹣30°=30°,∠ACM=30°+30°=60°,∴∠AMC=180°﹣30°﹣60°=90°,在Rt△AMC中,∵∠AMC=90°,∠MAC=30°,AC=2000,∴AM=AC•cos∠MAC=2000×=1000(米),在Rt△AMN中,∵∠ANM=90°,cos30°=,∴AN=AM⋅cos30°=1000×=1500(米).答:∠AMC等于90°,AN的长为1500米.20.【解答】(1)∵直线y=﹣x+8与x轴,y轴分别交于点A,点B,∴A(6,0),B(0,8),在Rt△OAB中,∠AOB=90°,OA=6,OB=8,∴AB==10,∵△DAB沿直线AD折叠后的对应三角形为△DAC,∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上,∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0),由题意可知CD=BD,CD2=BD2,在Rt△OCD中,由勾股定理得162+y2=(8﹣y)2,解得y=﹣12.∴点D的坐标为D(0,﹣12),可设直线CD的解析式为y=kx﹣12(k≠0)∵点C(16,0)在直线y=kx﹣12上,∴16k﹣12=0,解得k=,∴直线CD的解析式为y=x﹣12.21.【解答】(1)证明:连接AO,AC(如图).∵BC是⊙O的直径,∴∠BAC=∠CAD=90°.∵E是CD的中点,∴CE=DE=AE.∴∠ECA=∠EAC.∵OA=OC,∴∠OAC=∠OCA.∵CD是⊙O的切线,∴CD⊥OC.∴∠ECA+∠OCA=90°.∴∠EAC+∠OAC=90°.∴OA⊥AP.∵A是⊙O上一点,∴AP是⊙O的切线;(2)解:由(1)知OA⊥AP.在Rt△OAP中,∵∠OAP=90°,OC=CP=OA,即OP=2OA,∴sinP=.∴∠P=30°.∴∠AOP=60°.∵OC=OA,∴∠ACO=60°.在Rt△BAC中,∵∠BAC=90°,AB=6,∠ACO=60°,∴.又∵在Rt△ACD中,∠CAD=90°,∠ACD=90°﹣∠ACO=30°,∴CD====4.22.【解答】(1)如图所示,答案不唯一.画出△D1BC,△D2BC,△D3BC,△D4BC,△D5BC中的一个即可.(将BC 的平行线l画在直线BC下方对称位置所画出的三角形亦可);(2)如图所示,答案不唯一.(在直线D1D2上取其他符合要求的点,或将BC的平行线画在直线BC下方对称位置所画出的三角形亦可)(3)如图所示(答案不唯一).五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.【解答】(1)由题意得A,C两点的坐标分别为A(1,k1),C(1,k2).(如图1)∵k1>0,k2<0,∴点A在第一象限,点C在第四象限,AC=k1﹣k2.当m=4时,.(2)作EG⊥x轴于点G.(如图2)∵EG∥AB,AD的中点为E,∴△DEG∽△DAB,,G为BD的中点.∵A,B,D三点的坐标分别为A(1,k1),B(1,0),D(m,0),∴,,.∴点E的坐标为.∵点E恰好在双曲线上,∴.①∵k1>0,∴方程①可化为,解得m=3.(3)当点D的坐标为D(2,0)时,由(2)可知点E的坐标为.(如图3)∵S=1,∴.∴OF=2.设直线BE的解析式为y=ax+b(a≠0).∵点B,点E的坐标分别为B(1,0),,∴解得a=k1,b=﹣k1.∴直线BE的解析式为y=k1x﹣k1.∵线段EB的延长线与y轴的负半轴交于点F,k1>0,∴点F的坐标为F(0,﹣k1),OF=k1.∴k1=2.∵A点坐标为(1,2),D点坐标为(2,0),∴设一次函数解析式为y=kx+b,将A(1,2),D(2,0)分别代入解析式得,,解得,故函数解析式为y=﹣2x+4,又∵AD∥FC,设FC的解析式为y=﹣2x+c,将F(0,﹣2)代入解析式得,c=﹣2,故函数解析式为y=﹣2x﹣2.当x=1时,k2=﹣4.C点坐标为(1,﹣4),故线段CF==.24.【解答】(1)在Rt△ABC中,∠C=90°,AC=6,BC=8.由勾股定理,得AB=10,∵点P在AC,CB,BA边上运动,速度分别为每秒3,4,5个单位,∴点P在AC边上运动的时间为:6÷3=2秒,点P在BC边上运动的时间为:8÷4=2秒,∴点P在AB边上运动的时间为:5﹣2﹣2=1秒,∴P点在AB边上运动的距离为:5×1=5,∴当t=5秒时,点P走过的路径长为19;由题意可知,当(t﹣2)×4=t时,点P与点E重合.解得:t=3,∴t=3秒时,点P与点E重合.故答案为:19,3;(2)如图,由点P的对应点M落在EF上,点F的对应点为点N,可知∠PEF=∠MEN,∵P在AC上,∴AP=3t (0<t≤2),∴CP=6﹣3t,.∵EF∥AC,∠C=90°,∴∠BEF=90°,∠CPE=∠PEF.∵EN⊥AB,∴∠B=∠MEN.∵∠PEF=∠FEN,∴∠CPE=∠B.∵,,∴.∴CP==t∴.解得:.(3)如图1,当P点在AC上时,(0<t≤2)∴AP=3t,PC=6﹣3t,EC=t,∴BE=8﹣t,∵EF∥AC,∴△FEB∽△ACB,∴,∴,∴EF=6﹣t.∵四边形PEQF是菱形,∴∠POE=90°,OE=EF=3﹣t,∵EF∥AC,∠C=90°,∴∠OEC=90°,∴四边形PCEO是矩形,∴OE=PC.∴3﹣t=6﹣3t,∴t=,如图2,当P在AB上时(4<t<6),∵四边形PFQE是菱形,∴PE=PF,∴∠PFE=∠PEF,∵EF∥AC,∠C=90°,∴∠FEB=∠FEP+∠PEB=90°,∴∠B+∠EFB=90°,∴∠B+∠FEP=90°,∴∠PEB=∠B,∴PE=PB.∵PB=5(t﹣4),∴BF=10(t﹣4),∵sin∠B==,∴,∴EF=6t﹣24∵CE=t,∴BE=8﹣t,∵△FEB∽△ACB,∴,∴,∴EF=6﹣t.∴6﹣t=6t﹣24解得t=∴t的值为(秒)或(秒).25.【解答】(1)当x=n时,y1=2n2+,y2=n;∴A(n,2n2+),B(n,n).(2)d=AB=|y A﹣y B|=|2n2﹣n+|.∴d=|2(n﹣)2+|=2(n﹣)2+.∴当n=时,d取得最小值.此时,B(,),而M(0,)、P(,0)∴四边形OMBP是正方形∴当d取最小值时,线段OB与线段PM的位置关系和数量关系是OB⊥PM且OB=PM.(如图)(3)∵对一切实数x恒有x≤y≤2x2+,∴对一切实数x,x≤ax2+bx+c≤2x2+都成立.(a≠0)①当x=0时,①式化为0≤c≤.∴整数c的值为0.此时,对一切实数x,x≤ax2+bx≤2x2+都成立.(a≠0)即对一切实数x均成立.由②得ax2+(b﹣1)x≥0 (a≠0)对一切实数x均成立.∴由⑤得整数b的值为1.此时由③式得,ax2+x≤2x2+对一切实数x均成立.(a≠0)即(2﹣a)x2﹣x+≥0对一切实数x均成立.(a≠0)当a=2时,此不等式化为﹣x+≥0,不满足对一切实数x均成立.当a≠2时,∵(2﹣a)x2﹣x+≥0对一切实数x均成立,(a≠0)∴∴由④,⑥,⑦得0<a≤1.∴整数a的值为1.∴整数a,b,c的值分别为a=1,b=1,c=0.。
2012年北京市西城区中考物理二模
.BD..BD.10.如图所示,小丽家浴室的浴霸由一只照明灯泡L、两只取暖灯L1和L2以及一个排风扇M组成,它们的额定电压均为220V.其中照明灯和排风扇都可以单独工作,两只取暖灯总是同时工作.在下面的四个电路图中,符合上述要求的是()A.B.C.D.考点:串、并联电路的设计.思路:三个用电器工作的额定电压都为220V说明它们之间为并联、否则均不能正常工作;照明灯和排风扇都可以单独工作说明各有一个开关控制,两只取暖灯总是同时工作说明只有一只开关控制、且位于两者的干路.解析:A、由电路图可知,灯泡L与电动机M以及两个取暖灯都不能正常工作、且不能独立工作,故A错误;B、由电路图可知,照明灯L的开关不能独立工作,故B错误;C、两取暖灯串联,不能正常工作,故C错误;D、照明灯泡和两只取暖以及排风扇能工作,且照明灯和排风扇都由各自的开关控制、两只取暖灯只有一只位于干路的开关控制,故D正确.故选D.总结:本题考查了串、并联电路的设计,关键是各用电器串并联的判断和开关位置的判断,要特别注意“它们的额定电压均为220V”隐含条件的应用.11.如图所示电路电源电压不变.开关S闭合前,电压表示数为6V;开关S闭合后,电流表A1的示数为0.6A,A2的示数为0.5A,R2:R3=2:1.下列判断正确的是()A.电阻R1与R2的阻值比为3:2 B.电阻R2消耗的电功率为1.2WC.电路消耗的总功率为6.6W D.电阻R1的阻值为30Ω考点:电功率的计算;并联电路的电流规律;并联电路的电压规律;欧姆定律的应用.思路:(1)分析电路图,当开关断开时,电压表测量的是电源电压,由此可知电源电压;(2)当开关闭合后,三个电阻并联,A1测得的是通过R2和R3的电流之和,A2测得的是通过R1和R2的电流之和;根据并联电路的电压相同可求通过R2和R3的电流关系,根据并联电路的电流特点可知三条支路的电流和干路电路的大小;再根据并联电∴根据欧姆定律I=可得,I2:I3=R3:R2=1:2,∵R=,R1===20Ω,故D不正确.分析电路图得出当开关闭合时三电阻并联是本题的关键.12.物体A静止在水平桌面上时,对桌面的压强为p1;现将物体A悬挂在轻质杠杆的C端,当在D端悬挂物体B时,杠杆水平平衡,如图所示,此时物体A对桌面的压强为p2.已知:OD=2OC,p1:p2=3:1.物体A、B的密度分别为ρA和ρB,且均大于水的密度.物体A、B的体积分别为V A和V B,且V A=2V B.物体B的质量为0.5kg.g取10N/kg,则下列判断正确的是()A.物体A所受重力为10NB.两个物体的密度ρA:ρB=2:3F A=×G B=×0.5kg×10N/kg=10N;∵p1:p2=3:1,P=∴==(2)m A==1.5kg.ρA:ρB=×=×=3:2;故B错误;13.关于如图所示的各种情景,下列说法中正确的是()A.甲图中:射击运动员在比赛中经常戴耳罩,这样可以在声源处减弱噪音B.乙图中:在托里拆利实验的玻璃管倾斜放置时,玻璃管内的水银柱会变长C.丙图中:高压锅可以增大锅内液面上方气体的压强,使锅内液体的沸点降低D.丁图中:船闸把河流的上游和闸室、闸室和下游分成两个独立工作的连通器考点:防治噪声的途径;沸点及沸点与气压的关系;连通器原理;大气压强的测量方法.思路:(1)减弱噪声的方法:在声源处减弱、在传播过程中减弱、在人耳处减弱.(2)在托里拆利实验中,玻璃管内水银柱的高度代表了外界大气压强的大小,因此,只要外界大气压不变,它的垂直高度是不会改变的.玻璃管倾斜只会改变水银柱的长度,而高度不会发生变化.(3)沸点与气压有关:气压越高,沸点越高;气压越低,沸点越低.(4)连通器的特点:上端开口下端连通的容器.连通器里只有一种液体,在液体不流动的情况下,连通器各容器中液面的高度总是相平的.解析:A、甲图中:射击运动员在比赛中经常戴耳罩,这样可以在人耳处减弱噪音,故A错误;B、乙图中:在托里拆利实验的玻璃管倾斜放置时,玻璃管内的水银柱高度不变,长度会变长,故B正确;C、丙图中:高压锅可以增大锅内液面上方气体的压强,使锅内液体的沸点升高,这样食物才容易熟,故C错误;D、丁图中:船闸把河流的上游和闸室、闸室和下游都是上端开口,当闸门打开时,两个容器连通,因此构成两个独立工作的连通器;故D正确.故选BD.总结:本题考查了减弱噪声的途径、沸点与气压的关系用、连通器的原理以及大气压的测量方法等知识,学会利用所学知识解释生活现象。