人教版八年级数学上册11.2.1三角形的内角同步练习题两课时(含答案)

合集下载

部编版人教初中数学八年级上册《11.2 与三角形有关的角 同步练习题及答案》最新精品优秀测试题

部编版人教初中数学八年级上册《11.2 与三角形有关的角 同步练习题及答案》最新精品优秀测试题

前言:该同步练习题由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。

以高质量的同步练习题助力考生查漏补缺,在原有基础上更进一步。

(最新精品同步练习题)11.2 与三角形有关的角基础巩固1.(题型三角度a)如图11-2-1,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()图11-2-1A.80°B.50°C.30°D.20°2.(题型一)如图11-2-2,在△ABC中,∠A=80°,∠B=40°,D,E分别是AB,AC上的点,且DE∥BC,则∠AED的度数是()图11-2-2A.40°B.60°C.80°D.120°3.(题型一)若三角形的一个内角等于另外两个内角之差,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定4.(题型一)如图11-2-3,一根直尺EF压在三角形30°的角∠BAC上,与两边AC,AB分别交于点M,N,那么∠CME+∠BNF=()图11-2-3A.135°B.150°C.180°D.不能确定5.(题型一)如图11-2-4,在△ABC中,∠ABD=∠DBE=∠EBC,∠ACD=∠DCE=∠ECB,若∠BEC=145°,则∠BDC=()图11-2-4A.100°B.105°C.110°D.115°6.(题型三角度a)将一副直角三角板,按图11-2-5叠放在一起,则图中α的度数是 .图11-2-57.(题型一)如图11-2-6,EF∥BC,AC平分∠BAF,∠B=80°,则∠C的度数是.图11-2-68.(知识点2)如图11-2-7,在Rt△ACB中,∠ACB=90°,CD⊥AB,则图中互余的角有对.图11-2-79.(知识点3)如图11-2-8,已知在△ABC中,∠A=40°,剪去∠A后成四边形,∠1+∠2=°.。

人教版初二数学11.2.1《三角形的内角》练习及答案

人教版初二数学11.2.1《三角形的内角》练习及答案

第十一章三角形11.2 与三角形有关的角第一课时11.1.2 三角形的内角测试题知识点:三角形内角和定理及其应用1、如果三角形的三个内角的度数比是2:3:4,则它是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 钝角或直角三角形2、下列说法正确的是( )A. 三角形的内角中最多有一个锐角B. 三角形的内角中最多有两个锐角C. 三角形的内角中最多有一个直角D. 三角形的内角都大于60°3、根据下列条件,能确定三角形形状的是()(1)最小内角是20°;(2)最大内角是100°;(3)最大内角是89°;(4)三个内角都是60°;(5)有两个内角都是80°.A.(1)、(2)、(3)、(4)B.(1)、(3)、(4)、(5)C.(2)、(3)、(4)、(5)D.(1)、(2)、(4)、(5)4、已知△ABC中,∠A=2(∠B+∠C),则∠A的度数为( )A. 100°B. 120°C. 140°D. 160°5、已知三角形的一个内角是另一个内角的23,是第三个内角的45,则这个三角形各内角的度数分别为( )A. 60°,90°,75°B. 48°,72°,60°C. 48°,32°,38°D. 40°,50°,90°6、在△ABC中,∠A=12∠B=13∠C,则此三角形是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形7、如图,在△ABC中,∠C=90°,EF//AB,∠1=50°,则∠B的度数为()A. 50°B. 60°C. 30°D. 40°8、设α、β、γ是某三角形的三个内角,则α+β,β+γ,α+γ 中( )A. 有两个锐角、一个钝角B. 有两个钝角、一个锐角C. 至少有两个钝角D. 三个都可能是锐角9、如图,∠1+∠2+∠3+∠4=______度。

人教版八年级上数学11.2.1 三角形的内角和 练习(含答案)

人教版八年级上数学11.2.1 三角形的内角和 练习(含答案)

11.2.1三角形的内角和基础知识 一、选择题1.下列说法正确的是( )A.三角形的内角中最多有一个锐角;B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角;D.三角形的内角都大于60° 答案:C2.(2012 广东省梅州市) 如图,在折纸活动中,小明制作了一张ABC △纸片,点D 、E 分别是边AB 、AC 上,将ABC △沿着DE 折叠压平,A 与A '重合,若A o∠=75,则∠1+∠2=( )(A )150o (B )210o (C )105o(D )75o答案:A3. (2012 山东省滨州市) 一个三角形的三个内角的度数之比为372∶∶,则这个三角形一定是( )(A )等腰三角形 (B )直角三角形 (C )锐角三角形 (D )钝角三角形 答案:D4. (2012 云南省昆明市) 如图,在ABC △中,6733B C ==∠°,∠°,AD 是ABC △的角平分线,则CAD ∠的度数为( ).(A )40° (B )45° (C )50° (D )55°答案:A5. (2012 福建省漳州市) 将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是()(A)45o(B)60o(C)75o(D)90o答案:C6. (2012 四川省绵阳市) 如图,将等腰直角三角形沿虚线裁去顶角后,∠1 +∠2 =().A.225︒ B.235︒ C.270︒ D.与虚线的位置有关答案:C7. (2012 广西来宾市) 如图,在△ABC中,已知∠A=80°,∠B=60°,DE∥BC,那么∠CED的大小是()A.40°B.60°C.120°D.140°答案:D8. (2012 山东省聊城市) 将一副三角板按如图所示摆放,图中∠α的度数是()(A)75°(B)90°(C)105°(D)120°答案:C9.如图,ABCDE是封闭折线,则∠A+∠B+∠C+∠D+∠E为()度.A.180 B.270 C.360 D.54012答案:A10.直角三角形两锐角的平分线所夹的钝角等于( ) A .100° B .120° C .135° D .150° 答案:C11.如图,Rt △ABC 中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则∠A ′DB=( ) A .40°B .30°C .20°D .10°答案:D12.具备下列条件的△ABC 中,不是直角三角形的是( ) A .∠A-∠B=∠C B .∠A=3∠C ,∠B=2∠C C .∠A=∠B=2∠CD .∠A=∠B=21∠C 答案:C13.如图,在三角形ABC 中,已知∠ABC=70º,∠ACB=60º,BE ⊥AC 于E,CF ⊥AB 于F,H 是BE 和CF 的交点,则∠EHF=( )A. 100ºB. 110ºC. 120ºD.130º答案:D14.如图所示,把一个三角形纸片ABC 顶角向内折叠3次之后,3个顶点不重合,那么图 中∠1+∠2+∠3+∠4+∠5+∠6的度数和是( )A .180°B .270°C .360°D .无法确定答案:C 二、填空题1.三角形中,若最大内角等于最小内角的2倍,最大内角又比另一个内角大20°,则此三角形的最小内角的度数是________. 答案:40°2.在△ABC 中,若∠A+∠B=∠C,则此三角形为_______三角形;若∠A+∠B<∠C,则此三角形是_____三角形. 答案:直角;钝角3.在△ABC 中,∠B,∠C 的平分线交于点O,若∠BOC=132°,则∠A=_______度. 答案:84°4.如图所示,已知∠1=20°,∠2=25°,∠A=35°,则∠BDC 的度数为________.21DA答案:80°5.(2013•上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为 . 答案:30º6. (2012 内蒙古呼和浩特市) 如图,在ABC △中,47B o∠,三角形的外角DAC ∠和ACF ∠的平分线交于点E ,则AEC ∠=____________.答案:66.5°7. (2012 江苏省徐州市) 将一副直角三角板如图放置.若AE ∥BC ,则∠AFD = °.答案:75°8.如图,AB∥CD,∠A=32°,∠AEB=100°,则∠C 的度数是 度.答案:48º9.△ABC 中,∠A=∠B+∠C,则∠A= 度.答案:90答案:直角三角形11.已知△ABC 中,∠A=2(∠B+∠C),则∠A 的度数为度.答案:120FEC A(第15题)答案:60º12.如图,AD、AE分别是△ABC的高和角平分线,∠B=58°,∠C=36°,∠EAD= .答案:11º13.如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=150°, 则∠EDF=________度.AFEBC答案:60°14.如图,∠A+∠B+∠C+∠D+∠E+∠F= .答案:360°三、解答题1.在△ABC 中,已知∠B-∠A=5°,∠C-∠B=20°,求三角形各内角的度数. 设∠A=x °,则∠B=(x+5)°, ∠C=(x+25)°可列方程 X+x+5+x+25=180 解得:x=50°所以∠A=50°,∠B=55°, ∠C=75°2.已知:如图,AB∥CD,直线EF 分别交AB 、CD 于点E 、F ,∠BEF 的平分线与∠DFE 的平分线相交于点P .求证:∠P=90°.证明:∵AB∥CD, ∴∠BEF+∠DFE=180°.又∵∠BEF 的平分线与∠DFE 的平分线相交于点P ,∴∠PEF=21∠BEF,∠PFE=21∠DFE, ∴∠PEF+∠PFE=21(∠BEF+∠DFE)=90°.∵∠PEF+∠PFE+∠P=180°, ∴∠P=90°.3.如图,△ABC 中,CD 是∠ACB 的角平分线,CE 是AB 边上的高,若∠A=40°,∠B=72°. (1)求∠DCE 的度数;(2)试写出∠DCE 与∠A 、∠B 的之间的关系式.(不必证明)答案:(1)在⊿ABC 中,∠ACB=180º-∠A-∠B=68º, ∵CD 是∠ACB 的角平分线∴∠BCD=21∠ACB=34º ∵CE ⊥AB,∠B=72º ∴∠BCE=18º∴∠DCE=∠BCD-∠BCE=34º-18º=16º.(2)∠DCE=21(∠B-∠A).4.如图,已知在三角形ABC 中,∠C=∠ABC=2∠A,BD 是AC 边上的高,求∠DBC 的度数.解:∵∠C=∠ABC=2∠A, ∴∠C+∠ABC+∠A=5∠A=180°, ∴∠A=36°.则∠C=∠ABC=2∠A=72°. 又BD 是AC 边上的高, 则∠DBC=90°-∠C=18°.5.如图,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .△ABC 中,∠A=40°,求∠XBA+∠XCA 的度数.解:∵∠A=40°,∴∠ABC+∠ACB=180°-40°=140°,∵∠X=90°,∴∠XBC+∠XCB=180°-90°=90°,∴∠XBA+∠XCA=(∠ABC+∠ACB)-(∠XBC+∠XCB)=140°-90°=50°.6.如图,△ABC中,∠ABC、∠ACB的平分线相交于点O.(1)若∠ABC=45°,∠ACB=55°,则∠BOC 的度数是;(2)若∠A=80°,求∠BOC 的度数;(3)若∠A=α,∠BOC=β,请猜想α与β之间的数量关系,并说明理由.解:(1)∵∠ABC和∠ACB的平分线BD,CE相交于点O,(2)∵∠A=80°,∴∠ABC+∠ACB=180°-80°=100°,又∠ABC和∠ACB的平分线BD,CE相交于点O,DF⊥AE于F,求∠ADF的度数.解:∵∠B=40°,∠C=60°,∴∠BAC=80°.∵AE平分∠BAC交BC于E,∴∠BAE=21∠BAC=40°,∴∠AED=∠B+∠BAE=80°.∵AD⊥BC,∴∠DAE=90°-80°=10°∵DF⊥AE,∴∠ADF=90°-10°=80.能力提升1.如图,已知:∠1= ∠2, ∠3= ∠4, ∠C=32°, ∠D=28°,求∠P 的度数。

人教版八年级上册 11.2 与三角形有关的角 同步基础训练1(含答案)

人教版八年级上册 11.2 与三角形有关的角 同步基础训练1(含答案)

11.2与三角形有关的角同步基础训练一【知识点推导归纳】1、填空:(1)三角形的内角和性质是____________________________________________________.(2)三角形的内角和性质是利用平行线的______与______的定义,通过推理得到的.它的推理过程如下:已知:△ABC,求证:∠BAC+∠ABC+∠ACB=______.证明:过A点作______∥______,则∠EAB=______,∠F AC=______.(___________,___________)∵∠EAF是平角,∴∠EAB+______+______=180°.()∴∠ABC+∠BAC+∠ACB=∠EAB+∠______+∠______.()即∠ABC+∠BAC+∠ACB=______.2.填空:(1)三角形的一边与_________________________________________叫做三角形的外角.因此,三角形的任意一个外角与和它相邻的三角形的一个内角互为______.(2)利用“三角形内角和”性质,可以得到三角形的外角性质?如图,∵∠ACD是△ABC的外角,∴∠ACD与∠ACB互为______,即∠ACD=180°-∠ACB.①又∵∠A+∠B+∠ACB=______,∴∠A+∠B=______.②由①、②,得∠ACD=______+______.∴∠ACD>∠A,∠ACD>∠B由上述(2)的说理,可以得到三角形外角的性质如下:三角形的一个外角等于____________________________________________________.三角形的一个外角大于____________________________________________________.3.(1)已知:如图,∠1、∠2、∠3分别是△ABC的外角,求:∠1+∠2+∠3.(2)结论:三角形的外角和等于______.一、填空题1.在∆ABC中,⑴若∠A=50°,∠B=70°,则∠C=⑵若∠A=30°,∠B:∠C=3:2 ,则∠B=⑶若∠A=∠B=∠C,则∠C=⑷若∠A=80°,∠B=∠C,则∠C=⑸若∠A=80°,∠B–∠C=40°,则∠C= ,∠B=⑹若∠A+∠B=100°,∠C=2∠A,,则∠A= ∠B=2.在∆ABC中,若∠A =∠B+∠C,则这个三角形是三角形.3.在∆ABC中,∠A+∠B=2 ∠C,∠A–∠B=30°,则∠A= ,∠C= .4.直角三角形中,两个锐角之差为20°,则这两个锐角度数分别为.5.如图,在∆ABC中,∠ACB=90°,CD是AB上的高,则与∠A相等的角是,与∠B相等的角是.6.(1)△ABC中,若∠A+∠C=2∠B,则∠B=______.(2)△ABC中,若∠A∶∠B∶∠C=2∶3∶5,则∠A=______,∠B=______,∠C=______.(3)△ABC中,若∠A∶∠B∶∠C=1∶2∶3,则它们的相应邻补角的比为______.(4)如图,直线a∥b,则∠A=______度.(5)已知:如图,DE⊥AB,∠A=25°,∠D=45°,则∠ACB=______.(6)已知:如图,∠DAC=∠B,∠ADC=115°,则∠BAC=______.(7)已知:如图,△ABC中,∠ABC=∠C=∠BDC,∠A=∠ABD,则∠A=______(8)在△ABC 中,若∠B -∠A =15°,∠C -∠B =60°,则∠A =______,∠B =______,∠C =______. 二、选择题 1.三角形中最大的内角不能小于( ) A. 30° B.45° C.60° D.90° 2.适合条件∠A =∠B =21∠C 的∆ABC 是( ) A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 不能确定 3.如图:∠A =25°∠B =60°∠BEF =65° 则∠D 等于( ) A. 30° B.35° C.40° D.45°三、解答题1. 已知三角形的一个角是第二个角的1.5倍,第三个角比这两个角的和大30°,求这三个角的度数。

人教版八年级上数学11.2.1 三角形的内角和 练习(含答案)

人教版八年级上数学11.2.1 三角形的内角和 练习(含答案)

11.2.1三角形的内角和基础知识一、选择题1.下列说法正确的是( )A.三角形的内角中最多有一个锐角;B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角;D.三角形的内角都大于60°答案:C2.(2012 广东省梅州市) 如图,在折纸活动中,小明制作了一张ABC △纸片,点D 、E 分别是边AB 、AC 上,将ABC △沿着DE 折叠压平,A 与A '重合,若A ∠=75,则∠1+∠2=( )(A )150 (B )210 (C )105 (D )75答案:A3. (2012 山东省滨州市) 一个三角形的三个内角的度数之比为372∶∶,则这个三角形一定是( )(A )等腰三角形 (B )直角三角形 (C )锐角三角形 (D )钝角三角形 答案:D4. (2012 云南省昆明市) 如图,在ABC △中,6733B C ==∠°,∠°,AD 是ABC △的角平分线,则CAD ∠的度数为( ).(A )40° (B )45° (C )50° (D )55°答案:A5. (2012 福建省漳州市) 将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是( )(A )45o (B )60o (C )75o (D )90o答案:C 6. (2012 四川省绵阳市) 如图,将等腰直角三角形沿虚线裁去顶角后,∠1 +∠2 =( ).A .225︒B .235︒C .270︒D .与虚线的位置有关答案:C7. (2012 广西来宾市) 如图,在△ABC 中,已知∠A =80°,∠B =60°,DE ∥BC ,那么∠CED 的大小是 ( )A .40°B .60°C .120°D .140°答案:D 8. (2012 山东省聊城市) 将一副三角板按如图所示摆放,图中∠α的度数是( )(A )75° (B )90° (C )105° (D )120°答案:C9.如图,ABCDE 是封闭折线,则∠A+∠B+∠C+∠D+∠E 为( )度.A .180B .270C .360D .540答案:A10.直角三角形两锐角的平分线所夹的钝角等于( )A .100°B .120°C .135°D .150°答案:C11.如图,Rt △ABC 中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则∠A ′DB=( )A .40°B .30°C .20°D .10°1 2答案:D12.具备下列条件的△ABC 中,不是直角三角形的是( )A .∠A-∠B=∠CB .∠A=3∠C ,∠B=2∠CC .∠A=∠B=2∠CD .∠A=∠B=21∠C 答案:C13.如图,在三角形ABC 中,已知∠ABC=70º,∠ACB=60º,BE ⊥AC 于E,CF ⊥AB 于F,H 是BE 和CF 的交点,则∠EHF=( )A. 100ºB. 110ºC. 120ºD.130º答案:D14.如图所示,把一个三角形纸片ABC 顶角向内折叠3次之后,3个顶点不重合,那么图 中∠1+∠2+∠3+∠4+∠5+∠6的度数和是( )A .180°B .270°C .360°D .无法确定答案:C二、填空题1.三角形中,若最大内角等于最小内角的2倍,最大内角又比另一个内角大20°,则此三角形的最小内角的度数是________.答案:40°2.在△ABC 中,若∠A+∠B=∠C,则此三角形为_______三角形;若∠A+∠B<∠C,则此三角形是_____三角形.答案:直角;钝角3.在△ABC 中,∠B,∠C 的平分线交于点O,若∠BOC=132°,则∠A=_______度.答案:84°4.如图所示,已知∠1=20°,∠2=25°,∠A=35°,则∠BDC 的度数为________.21DC BA答案:80° 5.(2013•上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为 .答案:30º 6. (2012 内蒙古呼和浩特市) 如图,在ABC △中,47B ∠,三角形的外角DAC ∠和ACF ∠的平分线交于点E ,则AEC ∠=____________.答案:66.5°7. (2012 江苏省徐州市) 将一副直角三角板如图放置.若AE ∥BC ,则∠AFD = °.答案:75°8.如图,AB∥CD,∠A=32°,∠AEB=100°,则∠C 的度数是 度.答案:48º9.△ABC 中,∠A=∠B+∠C,则∠A= 度.FED C BA(第15题)答案:90 10.在△ABC 中,已知∠A=21∠B=31∠C,则三角形的形状是 三角形. 答案:直角三角形11.已知△ABC 中,∠A=2(∠B+∠C),则∠A 的度数为 度.答案:1208.如图,在△ABC 中,∠1=∠2,∠3=∠4,∠BOC=120°,则∠A= .答案:60º12.如图,AD 、AE 分别是△ABC 的高和角平分线,∠B=58°,∠C=36°,∠EAD= .答案:11º13.如图所示,在△ABC 中,∠B=∠C,FD ⊥BC,DE ⊥AB,∠AFD=150°, 则∠EDF=________度.FED C B A答案:60°14.如图,∠A+∠B+∠C+∠D+∠E+∠F= .答案:360°三、解答题1.在△ABC 中,已知∠B-∠A=5°,∠C-∠B=20°,求三角形各内角的度数.设∠A=x °,则∠B=(x+5)°, ∠C=(x+25)°可列方程X+x+5+x+25=180解得:x=50°所以∠A=50°,∠B=55°, ∠C=75°2.已知:如图,AB∥CD,直线EF 分别交AB 、CD 于点E 、F ,∠BEF 的平分线与∠DFE 的平分线相交于点P .求证:∠P=90°.证明:∵AB∥CD,∴∠BEF+∠DFE=180°.又∵∠BEF 的平分线与∠DFE 的平分线相交于点P , ∴∠PEF=21∠BEF,∠PFE=21∠DFE, ∴∠PEF+∠PFE=21(∠BEF+∠DFE)=90°. ∵∠PEF+∠PFE+∠P=180°,∴∠P=90°.3.如图,△ABC 中,CD 是∠ACB 的角平分线,CE 是AB 边上的高,若∠A=40°,∠B=72°.(1)求∠DCE 的度数;(2)试写出∠DCE 与∠A 、∠B 的之间的关系式.(不必证明)答案:(1)在⊿ABC 中,∠ACB=180º-∠A-∠B=68º,∵CD 是∠ACB 的角平分线∴∠BCD=21∠ACB=34º ∵CE ⊥AB,∠B=72º∴∠BCE=18º∴∠DCE=∠BCD-∠BCE=34º-18º=16º.(2)∠DCE=21(∠B-∠A). 4.如图,已知在三角形ABC 中,∠C=∠ABC=2∠A,BD 是AC 边上的高,求∠DBC 的度数.解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°, ∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD 是AC 边上的高,则∠DBC=90°-∠C=18°.5.如图,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .△ABC 中,∠A=40°,求∠XBA+∠XCA 的度数.解:∵∠A=40°,∴∠ABC+∠ACB=180°-40°=140°, ∵∠X=90°,∴∠XBC+∠XCB=180°-90°=90°, ∴∠XBA+∠XCA=(∠ABC+∠ACB)-(∠XBC+∠XCB)=140°-90°=50°.6.如图,△ABC 中,∠ABC、∠ACB 的平分线相交于点O .(1)若∠ABC=45°,∠ACB=55°,则∠BOC 的度数是 ;(2)若∠A=80°,求∠BOC 的度数;(3)若∠A=α,∠BO C=β,请猜想α与β之间的数量关系,并说明理由.解:(1)∵∠ABC 和∠ACB 的平分线BD ,CE 相交于点O ,∴∠DBC=21∠ABC,∠ECB=21∠ACB,又∠ABC=45°,∠ACB=55°, ∴∠DBC=22.5°,∠ECB=27.5°,∴∠BOC=180°-∠DBC -∠ECB=180°-22.5°-27.5°=130°,故答案为:130°;(2)∵∠A=80°,∴∠ABC+∠ACB=180°-80°=100°,又∠ABC 和∠ACB 的平分线BD ,CE 相交于点O ,∴∠DBC=21∠ABC,∠ECB=21∠ACB, ∴∠DBC+∠ECB=21(∠ABC+∠ACB)=50°, 则∠BOC=180°-(∠DBC+∠ECB)=180°-50°=130°;(3)β=90+21α,理由如下:∵∠ABC、∠ACB 的平分线相交于点O ,∴∠OBC=21∠ABC、∠0CB=21∠ACB, ∴∠OBC+∠0CB= 21∠ABC+21∠ACB=21(180°-α)=90°-21α, ∴β=180°-(∠OBC+∠0CB)=180°-(90°-21α)=90°+21α.7.如图,在△ABC 中,∠B=40°,∠C=60°,AD⊥BC 于D ,AE 平分∠BAC 交BC 于E ,DF⊥AE 于F ,求∠ADF 的度数.解:∵∠B=40°,∠C=60°,∴∠BAC=80°.∵AE 平分∠BAC 交BC 于E ,∴∠BAE=21∠BAC=40°, ∴∠AED=∠B+∠BAE=80°.∵AD⊥BC,∴∠DAE=90°-80°=10°∵DF⊥AE,∴∠ADF=90°-10°=80.能力提升1.如图,已知:∠1= ∠2, ∠3= ∠4, ∠C=32°, ∠D=28°,求∠P 的度数。

人教版八年级上册数学11.2与三角形有关的角同步练习及答案及答案解析

人教版八年级上册数学11.2与三角形有关的角同步练习及答案及答案解析

第 11 章《三角形》同步练习(§11.2 与三角形相关的角)班级学号姓名得分1.填空:( 1) 三角形的内角和性质是 ____________________________________________________ .( 2) 三角形的内角和性质是利用平行线的______与 ______的定义,经过推理获得的.它的推理过程以下:已知:△ ABC ,求证:∠ BAC +∠ ABC+∠ ACB= ______.证明:过 A 点作 ______∥ ______,则∠ EAB=______,∠ FAC= ______.( ___________,___________ )∵∠ EAF 是平角,∴∠ EAB+______+______ =180°. ()∴∠ ABC+∠ BAC+∠ ACB =∠ EAB+∠ ______+∠ ______. ()即∠ ABC+∠ BAC+∠ ACB = ______.2.填空:( 1) 三角形的一边与 _________________________________________ 叫做三角形的外角.所以,三角形的随意一个外角与和它相邻的三角形的一个内角互为______.( 2) 利用“三角形内角和”性质,能够获得三角形的外角性质?如图,∵∠ ACD 是△ ABC 的外角,∴∠ ACD 与∠ ACB 互为 ______,即∠ ACD = 180°-∠ ACB.①又∵∠ A+∠ B+∠ ACB= ______,∴∠ A+∠ B= ______.②由①、②,得∠ACD = ______+ ______.∴∠ ACD >∠ A,∠ ACD>∠ B由上述 ( 2) 的说理,能够获得三角形外角的性质以下:三角形的一个外角等于____________________________________________________ .三角形的一个外角大于____________________________________________________ . 3. ( 1) 已知:如图,∠1、∠ 2、∠ 3 分别是△ ABC 的外角,求:∠ 1+∠ 2+∠ 3.( 2) 结论:三角形的外角和等于______.4.已知:如图, BE 与 CF 订交于 A 点,试确立∠ B+∠ C 与∠ E+∠ F 之间的大小关系,并说明你的原因.5.已知:如图,CE⊥ AB 于 E, AD ⊥ BC 于 D ,∠ A= 30°,求∠ C 的度数.6.依照题设,写出结论,想想,为何?已知:如图,△ABC 中,∠ ACB= 90°,则:( 1) ∠ A+∠ B= ______.即∠ A 与∠ B 互为 ______;( 2) 若作 CD ⊥ AB 于点 D ,可得∠ BCD =∠ ______,∠ ACD=∠ ______.7.填空:( 1) △ ABC 中,若∠ A+∠ C= 2∠ B,则∠ B= ______.( 2) △ ABC 中,若∠ A∶∠ B∶∠ C= 2∶ 3∶ 5,则∠ A= ______ ,∠ B= ______,∠ C=______.( 3) △ ABC 中,若∠ A∶∠ B∶∠ C= 1∶ 2∶ 3,则它们的相应邻补角的比为 ______.( 4) 如图,直线 a∥ b,则∠ A= ______度.( 5) 已知:如图, DE⊥ AB,∠ A= 25°,∠ D =45°,则∠ ACB= ______.( 6) 已知:如图,∠DAC =∠ B,∠ ADC =115°,则∠ BAC= ______.( 7) 已知:如图,△ABC 中,∠ ABC=∠ C=∠ BDC ,∠ A=∠ ABD ,则∠ A= ______( 8) 在△ ABC 中,若∠ B-∠ A=15°,∠C-∠ B= 60°,则∠ A= ______,∠ B= ______,∠ C= ______.8.已知:如图,一轮船在海上往东行驶,在 A 处测得灯塔 C 位于北偏东60°,在 B 处测得灯塔 C 位于北偏东25°,求∠ ACB.9.已知:如图,在△ABC 中, AD、 AE 分别是△ ABC 的高和角均分线.( 1) 若∠ B= 30°,∠ C= 50°,求∠ DAE 的度数.( 2) 试问∠ DAE 与∠ C-∠ B 有如何的数目关系?说明原因.10.已知:如图,O 是△ ABC 内一点,且OB、 OC 分别均分∠ ABC、∠ ACB.( 1) 若∠ A= 46°,求∠ BOC;( 2) 若∠ A= n°,求∠ BOC;( 3) 若∠ BOC= 148°,利用第 ( 2) 题的结论求∠ A.11.已知:如图,O 是△ ABC 的内角∠ ABC 和外角∠ ACE 的均分线的交点.( 1) 若∠ A= 46°,求∠ BOC;( 2) 若∠ A= n°,用 n 的代数式表示∠BOC 的度数.12.类比第10、11 题,若 O 是△ ABC 外一点, OB、OC 分别均分△ ABC 的外角∠ CBE、∠BCF ,若∠ A= n°,画出图形并用 n 的代数表示∠ BOC.N 是△ ABC 两个外角均分线的交点,13.如图,点M 是△ ABC 两个内角均分线的交点,点假如∠ CMB ;∠ CNB= 3∶ 2求∠ CAB 的度数.14.如图,已知线段AD、 BC 订交于点 Q,DM 均分∠ ADC,BM 均分∠ ABC,且∠ A=27°,∠M= 33°,求∠ C 的度数.参照答案1. ( 1) 三角形的内角和等于 180°, ( 2) 性质、平角,说理过程 ( 略 )2.略.3.∠ 1+∠ 2+∠ 3=360°, 360°.4.∠ B +∠ C =∠ E +∠ F . ( 此图中的结论为常用结论 ) 5. 30°6. ( 1) 90°,余角, ( 2) ∠ A ,∠ B7. ( 1) 60°. ( 2) 36°, 54°, 90°. ( 3) 5∶ 4∶3. ( 4) 39°. ( 5) 110°.( 6) 115°. ( 7) 36°. ( 8) 30°, 45°, 105°.8. 35°. 9. ( 1) 10°; ( 2)DAE1 CB).(210. ( 1) 113°, ( 2) 90o 1 n , ( 3) 116°.211. ( 1) 23°. ( 2) BOC 1n .2证明:∵ OB 均分∠ ABC , OC 均分∠ ACE ,∴1 ACE, 1 ABC.OCEOBC22∴ BOCOCFOBC1 ( ACEABC ) 1 A1n .22 2 12.BOC 180(23)180 1 ( EBCFCB )2180o 1 [( AACB ) ( AABC )]2180o1(180o A)2190 A290o1 n .213. 36°. 14. 39°.由本练习中第 4 题结论可知: ∠ C +∠ CDM =∠ M +∠ MBC ,即1 1 CADCMABC . ①22同理,1ADC1M A ABC.②2 2由①、②得 M 1( A C ), 2所以∠ C= 39°.。

人教版八年级数学上册11.2.1《三角形的内角》同步训练习题

人教版八年级数学上册11.2.1《三角形的内角》同步训练习题

2018 年人教版八年级数学上册11.2.1《三角形的内角》同步训练习题一.选择题(共7 小题)1.(2015•肥城市一模)将一副三角板按图中的方式叠放,则∠α等于()A.75° B.60° C.45° D.30°2.(2015•绵阳)如图,在△ABC 中,∠B、∠C 的平分线BE,CD 相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118° B.119° C.120°D.121°3.(2015•临夏州模拟)如图,在折纸活动中,小明制作了一张△ABC 纸片,点D、E 分别是边AB、AC 上的点,将△ABC 沿着DE 折叠压平,A 与A′重合,若∠A=70°,则∠1+∠2=()A.110° B.140° C.220°D.70°4.(2015•路南区一模)如果CD 平分含30°三角板的∠ACB,则∠1 等于()A.110°B.105°C.100°D.95°5.(2015•郑州模拟)如图,△ABC 中,BO,CO 分别是∠ABC,∠ACB 的平分线,∠A=50°,则∠BOC 等于()A.110°B.115°C.120°D.130°6.(2015 春•晋江市期末)若△ABC 满足下列某个条件,则它不是直角三角形的是()A.∠C=∠A+∠B B.∠C=∠A﹣∠B C.∠A:∠B:∠C=1:4:3 D.∠A=2∠B=3∠C7.(2015 春•苏州校级期末)如图所示,把一个三角形纸片ABC 的三个顶角向内折叠之后(3 个顶点不重合),那么图中∠1+∠2+∠3+∠4+∠5+∠6 的度数和是()A.180°B.270°C.360°D.540°二.填空题(共7 小题)8.(2015•建宁县校级质检)三角形的一个内角平分线与其相邻的外角平分线所夹的角的度数是.9.(2015 春•雅安校级期中)直角三角形两锐角平分线所夹钝角是度.10.(2015 春•重庆校级期末)如图,AD,AE 分别是△ABC 的角平分线和高线,且∠B=50°,∠C=70°,则∠EAD= .11.(2015 春•山亭区期末)如图,已知△ABC 中,∠B=90°,角平分线AD、CF 相交于E,则∠AEC 的度数是.12.(2015 春•道外区期末)如图,在△ABC 中,∠B=30°,∠C=70°,AD 平分∠BAC,交BC 于F,DE⊥BC 于E,则∠D= °.13.(2015 春•无锡校级月考)把一副常用的三角板如图所示拼在一起,那么图中∠ABC= .14.(2015 秋•周口校级月考)如图,已知∠B=46°,△ABC 的外角∠DAC 和∠ACF 的平分线交于点E,则∠AEC= .三.解答题(共4 小题)15.(2015 春•泰兴市期末)如图,BD 是∠ABC 的平分线,DE∥CB,交AB 于点E,∠A=45°,∠BDC=60°,求△BDE 各内角的度数.16.(2015 春•茂名期末)如图,△ABC 中,∠A=46°,CE 是∠ACB 的平分线,B、C、D 在同一直线上,FD∥EC,∠D=42°,求证:∠B=50°.17.(2015 春•滦平县期末)如图,在△ABC 中,∠B=60°,∠C=20°,AD 为△ABC 的高,AE 为角平分线.求∠EAD 的度数.18.(2015 春•太仓市期末)如图,△ABC 中,AD⊥BC 于点D,BE 平分∠ABC,若∠EBC=32°,∠AEB=70°.(1)求证:∠BAD:∠CAD=1:2;(2)若点F 为线段BC 上的任意一点,当△EFC 为直角三角形时,求∠BEF 的度数.人教版八年级数学上册11.2.1《三角形的内角》同步训练习题答案一.选择题(共7 小题)1.(2015•肥城市一模)将一副三角板按图中的方式叠放,则∠α等于()A.75° B.60° C.45° D.30°选A2.(2015•绵阳)如图,在△ABC 中,∠B、∠C 的平分线BE,CD 相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°【考点】三角形内角和定理.【分析】由三角形内角和定理得∠ABC+∠ACB=120°,由角平分线的性质得∠CBE+∠BCD=60°,再利用三角形的内角和定理得结果.【解答】解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD 是∠B、∠C 的平分线,∴∠CBE= ∠ABC,∠BCD= ,∴∠CBE+∠BCD= (∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选:C.【点评】本题主要考查了三角形内角和定理和角平分线的性质,综合运用三角形内角和定理和角平分线的性质是解答此题的关键.3.(2015•临夏州模拟)如图,在折纸活动中,小明制作了一张△ABC 纸片,点D、E 分别是边AB、AC 上的点,将△ABC 沿着DE 折叠压平,A 与A′重合,若∠A=70°,则∠1+∠2=()A.110° B.140° C.220°D.70°【考点】三角形内角和定理;翻折变换(折叠问题).【分析】根据三角形的内角和等于180°求出∠ADE+∠AED,再根据翻折变换的性质可得∠A′DE=∠ADE,∠A′ED=∠AED,然后利用平角等于180°列式计算即可得解.【解答】解:∵∠A=70°,∴∠ADE+∠AED=180°﹣70°=110°,∵△ABC 沿着DE 折叠压平,A 与A′重合,∴∠A′DE=∠ADE,∠A′ED=∠AED,∴∠1+∠2=180°﹣(∠A′ED+∠AED)+180°﹣(∠A′DE+∠ADE)=360°﹣2×110°=140°.故选B.【点评】本题考查了三角形的内角和定理,翻折变换的性质,整体思想的利用求解更简便.4.(2015•路南区一模)如果CD 平分含30°三角板的∠ACB,则∠1 等于()A.110°B.105°C.100°D.95°【考点】三角形内角和定理.【分析】先根据角平分线定义得到∠ACD=45°,然后在△ACD 中根据三角形内角和求∠1 的度数.【解答】解:∵CD 平分∠ACB,∴∠ACD= ×90°=45°,在△ACD 中,∵∠1+∠A+∠ACD=180°,∴∠1=180°﹣30°﹣45°=105°.故选B.【点评】本题考查了三角形内角和定理:三角形内角和是180°.对三角板的特殊角要了解.5.(2015•郑州模拟)如图,△ABC 中,BO,CO 分别是∠ABC,∠ACB 的平分线,∠A=50°,则∠BOC 等于()A.110°B.115°C.120°D.130°【考点】三角形内角和定理;角平分线的定义.【分析】根据三角形的内角和定理和角平分线的定义求出∠OBC+∠OCB 的度数,再根据三角形的内角和等于180°即可求出∠BOC 的度数.【解答】解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣50°=130°,∵BO,CO 分别是∠ABC,∠ACB 的平分线,∴∠OBC= ∠ABC,∠OCB= ∠ACB,∴∠OBC+∠OCB= (∠ABC+∠ACB)= ×130°=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°.故选B.【点评】本题主要利用三角形的内角和定理和角平分线的定义,熟练掌握定理和概念是解题的关键.6.(2015 春•晋江市期末)若△ABC 满足下列某个条件,则它不是直角三角形的是()A.∠C=∠A+∠B B.∠C=∠A﹣∠B C.∠A:∠B:∠C=1:4:3 D.∠A=2∠B=3∠C【考点】三角形内角和定理.【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,根据选项中的条件求出三角形的最大角的度数,再判断即可.【解答】解:A、∵∠A+∠B+∠C=180°,∠C=∠A+∠B,∴∠C=90°,即三角形是直角三角形,故本选项错误;B、∵∠A+∠B+∠C=180°,∠C=∠A﹣∠B,∴∠A=90°,即三角形是直角三角形,故本选项错误;C、∵∠A+∠B+∠C=180°,∠A:∠B:∠C=1:4:3∴∠B=90°,即三角形是直角三角形,故本选项错误;D、∵∠A+∠B+∠C=180°,∠A=2∠B=3∠C,∴∠A≈98°,即三角形不是直角三角形,故本选项正确;故选D.【点评】本题考查了直角三角形的判定,三角形内角和定理的应用,注意:三角形的内角和等于180°.7.(2015 春•苏州校级期末)如图所示,把一个三角形纸片ABC 的三个顶角向内折叠之后(3 个顶点不重合),那么图中∠1+∠2+∠3+∠4+∠5+∠6 的度数和是()A.180°B.270°C.360°D.540°【考点】三角形内角和定理;翻折变换(折叠问题).【分析】由折叠可知∠1+∠2+∠3+∠4+∠5+∠6=∠B+∠B'+∠C+∠C'+∠A+∠A',又知∠B=∠B',∠C=∠C',∠A=∠A',故能求出∠1+∠2+∠3+∠4+∠5+∠6 的度数和.【解答】解:由题意知,∠1+∠2+∠3+∠4+∠5+∠6=∠B+∠B'+∠C+∠C'+∠A+∠A',∵∠B=∠B',∠C=∠C',∠A=∠A',∴∠1+∠2+∠3+∠4+∠5+∠6=2(∠B+∠C+∠A)=360°.故选C.【点评】本题考查的是三角形内角和定理,熟知图形翻折变换的性质是解答此题的关键.二.填空题(共7 小题)8.(2015•建宁县校级质检)三角形的一个内角平分线与其相邻的外角平分线所夹的角的度数是 90°.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】首先根据AD 是∠BAC 的平分线,AE 是∠BAF 的平分线,判断出∠BAD=∠CAD,∠BAE=∠EAF,进而判断出∠BAD+∠BAE=∠CAD+∠EAF;然后根据∠BAD+∠BAE+∠CAD+∠EAF=180°,求出∠BAD+∠BAE 的度数,即可判断出三角形的一个内角平分线与其相邻的外角平分线所夹的角的度数是多少.【解答】解:如图,AD 是∠BAC 的平分线,AE 是∠BAF 的平分线,∵AD 是∠BAC 的平分线,∴∠BAD=∠CAD,∵AE 是∠BAF 的平分线,∴∠BAE=∠EAF,∴∠BAD+∠BAE=∠CAD+∠EAF,又∵∠BAD+∠BAE+∠CAD+∠EAF=180°,∴∠BAD+∠BAE=180°÷2=90°即∠DAE=90°,∴三角形的一个内角平分线与其相邻的外角平分线所夹的角的度数是90°.故答案为:90°.【点评】(1)此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.(2)此题还考查了三角形的角平分线的性质和应用,以及三角形的外角的性质和应用,要熟练掌握.9.(2015 春•雅安校级期中)直角三角形两锐角平分线所夹钝角是 135 度.【考点】三角形内角和定理.【分析】先画图,再根据图来解答.先利用AE、BF 是两个锐角的角平分线,可知∠BAD+∠DBA=45°.在△ABD 中,利用三角形内角和等于180°,可求∠ADB.【解答】解:如右图所示,AE、BF 分别是Rt△ABC 两个锐角的角平分线.∵△ABC 是直角三角形,∴∠BAC+∠BAC=90°,又∵AE、BF 是∠BAC、∠ABC 的角平分线,∴∠BAD+∠ABD= (∠BAC+∠BAC)= ×90°=45°,∴在△ABD 中,∠ADB=180°﹣(∠BAD+∠ABD)=180°﹣45°=135°.【点评】本题利用了三角形内角和定理、角平分线的定义.三角形三个内角的和等于180°.10.(2015 春•重庆校级期末)如图,AD,AE 分别是△ABC 的角平分线和高线,且∠B=50°,∠C=70°,则∠EAD= 10°.【考点】三角形内角和定理.【分析】根据三角形的内角和等于180°求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,然后根据∠EAD=∠BAE﹣∠BAD 代入数据进行计算即可得解.【解答】解:∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵AD 是△ABC 的角平分线,∴∠BAD= ∠BAC= ×60°=30°,∵AE 是△ABC 的高线,∴∠BAE=90°﹣∠B=90°﹣50°=40°,∴∠EAD=∠BAE﹣∠BAD=40°﹣30°=10°.故答案为:10°.【点评】本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,是基础题,准确识图找出各角度之间的关系是解题的关键.11.(2015 春•山亭区期末)如图,已知△ABC 中,∠B=90°,角平分线AD、CF 相交于E,则∠AEC 的度数是135°.【考点】三角形内角和定理.【分析】根据三角形的内角和定理求出∠BAC+∠ACB,再根据角平分线的定义求出∠EAC+∠ECA,然后利用三角形的内角和定理列式计算即可得解.【解答】解:∵∠B=90°,∴∠BAC+∠ACB=180°﹣90°=90°,∵角平分线AD、CF 相交于E,∴∠EAC+∠ECA= (∠BAC+∠ACB)= ×90°=45°,在△ACE 中,∠AEC=180°﹣(∠EAC+∠ECA)=180°﹣45°=135°.故答案为:135°.【点评】本题考查了三角形的内角和定理,三角形的角平分线的定义,整体思想的利用是解题的关键.12.(2015 春•道外区期末)如图,在△ABC 中,∠B=30°,∠C=70°,AD 平分∠BAC,交BC 于F,DE⊥BC 于E,则∠D= 20 °.【考点】三角形内角和定理.【分析】根据三角形内角和定理易求∠BAC 的度数,因为AD 平分∠BAC,进而可求出∠CAF 的度数,再根据三角形内角和定理可求出∠AFC 的度数,由对顶角相等和垂直的性质即可求出∠D 的度数.【解答】解:∵∠B=30°,∠C=70°,∴∠BAC=80°∵AD 平分∠BAC,∴∠FAC=40°,∴∠AFC=180°﹣70°﹣40°=70°,∴∠EFD=70°,∵DE⊥BC 于E,∴∠DEF=90°,∴∠D=90°70°=20°,故答案为20.【点评】本题考查了三角形内角和定理:三角形内角和是180°,是基础题,准确识别图形是解题的关键.13.(2015 春•无锡校级月考)把一副常用的三角板如图所示拼在一起,那么图中∠ABC= 75°.【考点】三角形内角和定理.【专题】计算题.【分析】根据三角形的内角和定理,可求出∠ABC=180°﹣(∠BAC+∠BCA)=75°.【解答】解:∵依题可知∠ABC=180°﹣(∠BAC+∠BCA)=75°.【点评】本题主要考查三角形的内角和定理和三角板的度数.14.(2015 秋•周口校级月考)如图,已知∠B=46°,△ABC 的外角∠DAC 和∠ACF 的平分线交于点E,则∠AEC= 67°.【考点】三角形内角和定理;三角形的外角性质.【分析】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+ ∠ACF= (∠B+∠B+∠1+∠2)=113°;最后在△AEC 中利用三角形内角和定理可以求得∠AEC 的度数.【解答】解:∵三角形的外角∠DAC 和∠ACF 的平分线交于点E,∴∠EAC= ∠DAC,∠ECA= ∠ACF,∵∠DAC=∠B+∠2,∠ACF=∠B+∠1∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2),∵∠B=46°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴ ∠DAC+ ∠ACF=113°∴∠AEC=180°﹣(∠DAC+ ∠ACF)=67°.故答案是:67°.【点评】本题考查了三角形内角和定理、三角形外角性质.解题时注意挖掘出隐含在题干中已知条件“三角形内角和是180°”.三.解答题(共4 小题)15.(2015 春•泰兴市期末)如图,BD 是∠ABC 的平分线,DE∥CB,交AB 于点E,∠A=45°,∠BDC=60°,求△BDE 各内角的度数.【考点】三角形内角和定理;平行线的性质.【专题】计算题.【分析】利用三角形的外角性质,先求∠ABD,再根据角平分线的定义,可得∠DBC=∠ABD,运用平行线的性质得∠BDE 的度数,根据三角形内角和定理可求∠BED 的度数.【解答】解:∵∠A=45°,∠BDC=60°,∴∠ABD=∠BDC﹣∠A=15°.∵BD 是∠ABC 的角平分线,∴∠DBC=∠EBD=15°,∵DE∥BC,∴∠BDE=∠DBC=15°;∴∠BED=180°﹣∠EBD﹣∠EDB=150°.【点评】本题综合考查了平行线的性质及三角形内角与外角的关系,三角形内角和定理.16.(2015 春•茂名期末)如图,△ABC 中,∠A=46°,CE 是∠ACB 的平分线,B、C、D 在同一直线上,FD∥EC,∠D=42°,求证:∠B=50°.【考点】三角形内角和定理;平行线的性质.【专题】应用题.【分析】根据两直线平行,同位角相等,即可得出∠BCE 的度数,再根据角平分线的性质即可得出∠ACB 的度数,再根据三角形的内角和定理即可证明.【解答】证明:∵FD∥EC,∠D=42°,∴∠BCE=42°,∵CE 是∠ACB 的平分线,∴∠ACB=2∠BCE=84°,∵∠A=46°,∴∠B=180°﹣84°﹣46°=50°.【点评】本题主要考查了三角形的内角和定理,角平分线的性质以及平行线的性质,难度适中.17.(2015 春•滦平县期末)如图,在△ABC 中,∠B=60°,∠C=20°,AD 为△ABC 的高,AE 为角平分线.求∠EAD 的度数.【考点】三角形内角和定理;三角形的外角性质.【分析】首先根据三角形的内角和定理,求出∠BAC 的度数是多少;然后根据AE 为角平分线,求出∠BAE 的度数是多少;最后在Rt△ABD 中,求出∠BAD 的度数,即可求出∠EAD 的度数是多少.【解答】解:∵∠B=60°,∠C=20°,∴∠BAC=180°﹣60°﹣20°=100°,∵AE 为角平分线,∴∠BAE=100°÷2=50°,∵AD 为△ABC 的高,∴∠ADB=90°,∴∠BAD=90°﹣60°=30°,∴∠EAD=∠BAE﹣∠BAD=50°﹣30°=20°,即∠EAD 的度数是20°.【点评】(1)此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.(2)此题还考查了三角形的外角的性质和应用,要熟练掌握,解答此题的关键是要明确:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.18.(2015 春•太仓市期末)如图,△ABC 中,AD⊥BC 于点D,BE 平分∠ABC,若∠EBC=32°,∠AEB=70°.(1)求证:∠BAD:∠CAD=1:2;(2)若点F 为线段BC 上的任意一点,当△EFC 为直角三角形时,求∠BEF 的度数.【考点】三角形内角和定理.【分析】(1)由角平分线得出∠ABC,得出∠BAD=26°,再求出∠C,得出∠CAD=52°,即可得出结论;(2)分两种情况:①当∠EFC=90°时;②当∠FEC=90°时;由角的互余关系和三角形的外角性质即可求出∠BEF 的度数.【解答】(1)证明:∵BE 平分∠ABC,∴∠ABC=2∠EBC=64°,∵AD⊥BC,∴∠ADB=∠ADC=90°,∴∠BAD=90°﹣64°=26°,∵∠C=∠AEB﹣∠EBC=70°﹣32°=38°,∴∠CAD=90°﹣38°=52°,∴∠BAD:∠CAD=1:2;【点评】本题考查了三角形内角和定理、三角形的外角性质,角的互余关系; 熟练掌握三角形内角和定理,并能进行推理论证与计算是解决问题的关键.。

八年级上册数学人教版课时练《 三角形的内角》 试题试卷 含答案解析(2)

八年级上册数学人教版课时练《 三角形的内角》 试题试卷 含答案解析(2)

《第十一章三角形11.2.1三角形的内角》课时练一、选择题1.下列条件中,能判定△ABC 为直角三角形的是().A .∠A=2∠B-3∠CB .∠A+∠B=2∠C C .∠A-∠B=30°D .∠A=∠B=13∠C 2.如图,在△ABC 中,∠B=70°∠C=40°,AD 是BC 边上的高,AE 是∠BAC 的平分线,则∠DAE 的度数是()A .15°B .16°C .70°D .18°3.如图,//AB CD ,EG 平分BEF Ð,若62FGE Ð=°,那么∠EFC 的度数为()A .114°B .108°C .98°D .124°4.两个直角三角板如图摆放,其中90BAC EDF Ð=Ð=°,45E Ð=°,30C Ð=°,AB 与DF 交于点M .若//BC EF ,则BMD Ð的大小为()A .60°B .67.5°C .75°D .82.5°5.如图,点D ,E 分别是ABC 的边AB ,AC 上的点,CD ,BE 相交于点F ,现给出下面两个结论,①当CD ,BE 是ABC 的中线时,BFC ADFE S S =四边形△;②当CD ,BE 是ABC 的角平分线时,1902BFC A Ð=°+Ð,下列说法正确的是()A .只有①正确B .只有②正确C .①②都正确D .①②都不正确6.如图,△EFG 的三个顶点E ,G 和F 分别在平行线AB ,CD 上,FH 平分∠EFG ,交线段EG 于点H ,若∠AEF =36°,∠BEG =57°,则∠EHF 的大小为()A .105°B .75°C .90°D .95°7.如图,ABC 中,∠ACB =90°,沿CD 折叠CBD ,使点B 恰好落在AC 边上的点E 处.若∠A =24°,则∠EDC 等于()A .42°B .66°C .69°D .77°8.如图所示,含30°角的三角尺放置在长方形纸片的内部,三角形的三个顶点恰好在长方形的边上,若16FGC Ð=°,则AEF Ð等于()A .106°B .114°C .126°D .134°9.如图,AB ∥CD ,点P 在AB ,CD 之间,∠ACP =2∠PCD =40°,连结AP ,若∠BAP =α,∠CAP =α+β.下列说法中正确的是()A .当∠P =60°时,α=30°B .当∠P =60°时,β=40°C .当β=20°时,∠P =90°D .当β=0°时,∠P =90°10.如图,90BAC ACD Ð=Ð=°,ABC ADC Ð=Ð,CE AD ^,且BE 平分ABC Ð,则下列结论:①//AD CB ;②ACE ABC Ð=Ð;③ECD EBC BEC Ð+Ð=Ð;④CEF CFE Ð=Ð;其中正确的是()A .①②B .①③④C .①②④D .①②③④二、填空题11.如图,在ABC 中,AD 是BC 边上的高,且ACB BAD Ð=Ð,AE 平分CAD Ð,交BC 于点E ,过点E 作EF AC ,分别交AB 、AD 于点F 、G .则下列结论:①90BAC Ð=°;②AEF BEF Ð=Ð;③BAE BEA Ð=Ð;④2B AEF Ð=Ð,其中正确的有_____.12.如图,三角形ABC 中,D 是AB 上一点,F 是BC 上一点,E ,H 是AC 上的点,EF 的延长线交AB 的延长线于点G ,连接DE ,DH ,DE ∥BC .若∠CEF =∠CHD ,∠EFC =∠ADH ,∠CEF :∠EFC =5:2,∠C =47°,则∠ADE 的度数为__.13.如图,BF 是∠ABD 的角平分线,CE 是∠ACD 的角平分线,BF 、CE 交于点G ,如果∠BDC =120°,∠BGC =100°,则∠A 的度数为________度.14.如图,三角形纸片ABC 中,65,75A B °°Ð=Ð=,将C Ð沿DE 翻折,使点C 落在ABC 外的点C ¢处.若120Ð=°,则2Ð的度数为_________.15.如图,己知//CD GH ,点B 在GH 上,点A 为平面内一点,AB AD ^,过点A 作,AF CD AE ^平分FAD Ð,AC 平分FAB Ð,若180,4ABC GBC ACB FAE °Ð+Ð=Ð=Ð,则ABG Ð=__________.三、解答题16.如图所示,AD 、AE 分别是△ABC 的高和角平分线,∠B=20°,∠C=80°,求∠EAD 的度数.17.如图,四边形ABCD 中,AD ∥BC ,∠BAD =124°,∠D =118°,∠BCD 的角平分线CF 交AD 于E ,交BA 的延长线于点F ,连接CF ,求∠F 的度数.18.如图,直线m 与直线AB 、直线CD 分别交于A 、C 两点,直线AB 与直线CD 之间的点P 在直线m 右侧,给出下列信息:①AP 平分BAC Ð;②CP 平分ACD Ð;③AP CP ^;④50ACD Ð=°.(1)若//AB CD ,______.求BAP Ð的度数;(请在上述信息中选择两个信息填入补全题目并完成解答,填序号)(2)在(1)的情况下,过点A 任作一条与直线CD 相交的直线,交点记作Q .①若ACQ 为直角三角形,求PAQ Ð的度数;②直接写出ACQ 为钝角三角形时,BAQ Ð的取值范围.19.如图,在ABC 中,90,BAC AD BC Ð=°^于点,D AE 平分,50DAC B ÐÐ=°,求BAD Ð和AEC Ð的度数.20.已知,//AB CD ,直线MN 分别与AB ,CD 交于点E 、F .(1)如图1,AEF Ð和EFC Ð的角平分线交于点G ,AEG Ð的角平分线EH 与CFG Ð的角平分线FH 交于点H .①填空:G Ð=______°;②求出EHF Ð的度数;(2)如图2,AEF Ð和EFC Ð的角平分线交于点G ,点H ,K 在直线AB ,CD 之间,且满足AEG m AEH Ð=Ð,CFG m CFH Ð=Ð,BEG n BEK Ð=Ð,DFG n DFK Ð=Ð,(其中m ,n 为常数且1m >,1n >),请用m ,n 的代数式直接表示EKF Ð与EHF Ð的数量关系.21.如图①,在△ABC 中,∠ABC 与∠ACB 的平分线相交于点P .(1)如果∠A =80°,求∠BPC 的度数;(2)如图②,作△ABC 外角∠MBC 、∠NCB 的平分线交于点Q ,试探索∠Q 、∠A 之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的3倍,请直接写出∠A的度数.22.在一个三角形中,如果一个角是另一个角的2倍,这样的三角形我们称之为“倍角三角形”.如三个内角分别为20°,40°,120°的三角形是“倍角三角形”.如图,∠MON=60°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交射线OB于点C.(1)△AOB(填“是”或“不是”)倍角三角形;(2)若△AOC为“倍角三角形”,求∠OAC;(3)若△ABC为“倍角三角形”时,求∠ACB的度数.23.在△ABC中,若存在一个内角角度是另外一个内角角度的n倍(n为大于1的正整数),则称△ABC为n倍角三角形.例如,在△ABC中,∠A=80°,∠B=75°,∠C=25°,可知∠B=3∠C,所以△ABC为3倍角三角形.(1)在△ABC中,∠A=80°,∠B=60°,则△ABC为倍角三角形;(2)若锐角三角形MNP是3倍角三角形,且最小内角为α,请直接写出α的取值范围为.(3)如图,直线MN与直线PQ垂直相交于点O,点A在射线OP上运动(点A不与点O 重合),点B在射线OM上运动(点B不与点O重合).延长BA至G,已知∠BAO、∠OAG 的角平分线与∠BOQ的角平分线所在的直线分别相交于E、F,若△AEF为4倍角三角形,求∠ABO的度数.参考答案1.D 2.A 3.D 4.C 5.C 6.B 7.C 8.D 9.B 10.D 11.①③④12.76°13.8014.100°15.22.5°16.30°17.93°18.(1)①④,∠BAP =65°;(2)①25°;②∠BAQ 的取值范围为:0°<∠BAQ <40°或90°<∠BAQ <130°或130°<∠BAQ <180°.19.∠BAD =40°,∠AEC =115°20.(1)①90°;②45°;(2)3n EHF EKF mÐ=Ð.21.(1)130°;(2)1902Q A Ð=°-Ð;(3)60°或120°或45°或135°22.(1)是;(2)30°或90°或80°或40°;(3)60°或90°或100°或135°或50°23.(1)2;(2)22.5°<α<30°;(3)45°或36°。

八年级上册数学人教版课时练《11.2.1 三角形的内角》01(含答案)

八年级上册数学人教版课时练《11.2.1 三角形的内角》01(含答案)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!11.2.1《三角形的内角》课时练一、选择题1.如图,AB∥CD,∠CED=90°,∠AEC=35°,则∠D的大小为()A.65°B.55°C.45°D.35°2.如图,AE,AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,则∠DAE的度数为()A.40°B.20°C.18°D.38°3.将一副三角板,如图所示放置,使点A落在DE边上,BC∥DE,AB与EF相交于点H,则∠AHF的度数为()A.30°B.45°C.60°D.75°4.下列条件:①∠A+∠B=∠C,②∠A∶∠B∶∠C=2∶3∶4,③∠A=90°-∠B,④∠A=∠B=∠C中.能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个5.如图△ABC中,AD为△ABC的角平分线BE为△ABC的高∠C=70°∠ABC=48°那么∠3是()A.59°B.60°C.56°D.22°6.如果在△ABC中,∠A=70°-∠B,则∠C等于()A.35°B.70°C.110°D.140°7.已知三角形ABC的三个内角满足关系∠B+∠C=3∠A,则此三角形().A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形8.若三角形三个内角的比为1:2:3,则这个三角形是()A.锐角三角形B.直角三角形C.等腰三角形D.钝角三角形9.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD交BE于F若BF=AC,则∠ABC等于()A.45°B.48°C.50°D.60°10.如图,在△ABC中,∠1=∠2,G为AD边上的中点,延长BG交AC于点E,且满足BE ⊥AC;F为AB上一点,CF⊥AD于点H.下列判断:①线段AG是△ABE的角平分线;②BE是△ABD边AD上的中线;③线段AE是△ABG的边BG上的高;④∠1+∠FBC+∠FCB=90°.其中正确的个数是()A.1B.2C.3D.4二、填空题11.如图,∠1=20°,∠2=25°,∠A=35°,则∠BDC的度数为________.12.如图,直线AB∥CD,直线EC分别与AB,CD相交于点A、点C,AD平分∠BAC,已知∠ACD=80°,则∠DAC的度数为.13.一副三角板,如图所示叠放在一起,则图中∠α的度数是.14.如图,已知点D在BC的延长线上DE⊥AB于E交AC于F∠B=500∠CFD=600则∠ACB=三、解答题15.如图,在△BCD中,BC=4,BD=5.(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.16.如图,△ABC中,BD是∠ABC的平分线,DE∥BC交AB于E,∠A=60°,∠BDC=95°,求△BDE各内角的度数.17.如图,AD是△ABC的高,BE平分∠ABC交AD于E,若∠C=70°,∠BED=64°,求∠BAC的度数.18.如图,在△ABC中,AD⊥BCAE平分∠BAC交BC于点E.(1)∠B=30°,∠C=70°求∠EAD的大小;(2)若∠B<∠C求证:2∠EAD=∠C-∠B.参考答案1.B2.B3.D.4.B.5.B6.C7.A.8.B9.A10.C 11.80°12.50°13.75°14.100°15.解:(1)∵在△BCD中,BC=4,BD=5,∴1<CD<9.(2)∵AE∥BD,∠BDE=125°,∴∠AEC=180°-∠BDE=55°又∵∠A=55°,∴∠C=180°-∠A-∠AEC=70°.16.解:∵∠A=60°,∠BDC=95°,∴∠EBD=∠BDC-∠A=35°∵BD是∠ABC的平分线,∴∠DBC=∠EBD=35°.∵DE∥BC,∴∠EDB=∠DBC=35°∴∠BED=180°-∠EBD-∠EDB=110°.17.解:∵AD是△ABC的高,∠C=70°,∴∠DAC=20°,∵BE平分∠ABC交AD于E,∴∠ABE=∠EBD,∵∠BED=64°,∴∠ABE+∠BAE=64°,∴∠EBD+64°=90°,∴∠EBD=26°,∴∠BAE=38°,∴∠BAC=∠BAE+∠CAD=38°+20°=58°.18.解:。

人教版八年级数学上册(训练题):11.2.1 三角形的内角 同步练习及答案2

人教版八年级数学上册(训练题):11.2.1 三角形的内角 同步练习及答案2

与三角形有关的角1.△ABC中,∠A=50°,∠B=60°,则∠C=________.2.已知三角形的三个内角的度数之比为1:2:3,则这个三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定3.△ABC中,∠A=∠B+∠C,则∠A=______度.4.根据下列条件,能确定三角形形状的是()(1)最小内角是20°;(2)最大内角是100°;(3)最大内角是89°;(4)三个内角都是60°;(5)有两个内角都是80°.A.(1)、(2)、(3)、(4) B.(1)、(3)、(4)、(5)C.(2)、(3)、(4)、(5) D.(1)、(2)、(4)、(5)5.如图1,∠1+∠2+∠3+∠4=______度.(1) (2) (3)6.三角形中最大的内角不能小于_______度,最小的内角不能大于______度.7.△ABC中,∠A是最小的角,∠B是最大的角,且∠B=4∠A,求∠B的取值范围.8.如图2,在△ABC中,∠BAC=4∠ABC=4∠C,BD⊥AC于D,求∠ABD的度数.9.(综合题)如图3,在△ABC中,∠B=66°,∠C=54°,AD是∠BAC的平分线,DE平分∠ADC交AC于E,则∠BDE=_________.10.(应用题)如图7-2-1-4是一个大型模板,设计要求BA与CD相交成30°角,DA与CB 相交成20°角,怎样通过测量∠A,∠B,∠C,∠D的度数,来检验模板是否合格?11.(创新题)如图,△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,•∠C=45°,求∠DAE与∠AEC的度数.12.(2005年,福建厦门)如图,已知,在直角△ABC中,∠C=90°,BD平分∠ABC且交AC 于D.(1)若∠BAC=30°,求证:AD=BD ;(2)若AP 平分∠BAC 且交BD 于P ,求∠BPA 的度数.13.(易错题)在△ABC 中,已知∠A=13∠B=15∠C ,求∠A 、∠B 、∠C 的度数.14.(探究题)(1)如图,在△ABC 中,∠A=42°,∠ABC 和∠ACB•的平分线相交于点D ,求∠BDC 的度数.(2)在(1)中去掉∠A=42°这个条件,请探究∠BDC 和∠A 之间的数量关系.15.(开放题)如图,在直角三角形ABC 中,∠BAC=90°,作BC 边上的高AD ,•图中出现多少个直角三角形?又作△ABD 中AB 边上的高DD 1,这时,图中共出现多少个直角三角形?按照同样的方法作下去,作出D 1D 2,D 2D 3,…,当作出D n-1D n 时,图中共出现多少个直角三角形?数学世界推门与加水爱迪生成名以后,去拜访他的人很多,但客人们都感到爱迪生家的大门很重,推门很吃力.后来,一位朋友对他说:“你有没有办法让你家的大门开关起来省力一些?”爱迪生边笑边回答:“我家的大门做得非常合理,我让那个门与一个打水装置相连接,来访的客人,每次推开门都可以往水槽加20升水.”不仅如此,爱迪生还在想,如果每次推门能向水槽加入25升水的话,那么比原来少推12次门,水槽就可以装满了.你能算出爱迪生家水槽的容积吗?答案:1.70°2.B 点拨:设这个三角形的三个内角分别为x°、2x°、3x°,则x+2x+3x=180,解得x=30.∴3x=90.∴这个三角形是直角三角形,故选B.3.90 点拨:由三角形内角和定理知∠A+∠B+∠C=180°,又∠B+∠C=∠A,•∴∠A+∠A=180°,∴∠A=90°.4.C5.280 点拨:由三角形内角和定理知,∠1+∠2=180°-40°=140°,•∠3+•∠4=180°-40°=140°.∴∠1+∠2+∠3+∠4=140°×2=280°.6.60;607.解:设∠B=x,则∠A=14x.由三角形内角和定理,知∠C=180°-54x.而∠A≤∠C≤∠B.所以14x≤180°-54x≤x.•即80°≤x≤120°.8.解:设∠ABC=∠C=x°,则∠BAC=4x°.由三角形内角和定理得4x+x+x=180.解得x=30.∴∠BAC=4×30°=120°.∠BAD=180°-∠BAC=180°-120°=60°.∴∠ABD=90°-∠BAD=90°-60°=30°.点拨:∠ABD是Rt△BDA的一个锐角,若能求出另一个锐角∠DAB.就可运用直角三角形两锐角互余求得.9.132°点拨:因为∠BAC=180°-∠B-∠C=180°-66°-54°=60°,且AD•是∠BAC的平分线,所以∠BAD=∠DAC=30°.在△ABD中,∠ADB=180°-66°-30°=84°.在△ADC中,∠ADC=180°-54°-30°=96°.又DE平分∠ADC,所以∠ADE=48°.故∠BDE=∠ADB+∠ADE=84°+48°=132°.10.解:设计方案1:测量∠ABC,∠C,∠CDA,若180°-(∠ABC+∠C)=30°,180°-(∠C+∠CDA)=20°同时成立,则模板合格;否则不合格.设计方案2:测量∠ABC,∠C,∠DAB,若180°-(∠ABC+∠C)=30°,(∠BAD+∠ABC)-180°=20°同时成立,则模板合格;否则不合格.设计方案3:测量∠DAB,∠ABC,∠CDA,若(∠DAB+∠CDA)-180°=30°,(∠BAD+∠ABC)-180°=20°同时成立,则模板合格;否则不合格.设计方案4:测量∠DAB,∠C,∠CDA,若(∠DAB+∠CDA)-180°=30°,180°-(∠C+∠CDA)=20°同时成立,则模板合格;否则不合格.点拨:这是一道几何应用题,借助于三角形知识分析解决问题,•对形成用数学的意识解决实际问题是大有益处的.11.解法1:∵∠B+∠C+∠BAC=180°,∠B=75°,∠C=45°,∴∠BAC=60°.∵AE平分∠BAC,∴∠BAE=∠CAE=12∠BAC=12×60°=30°.∵AD是BC上的高,∴∠B+∠BAD=90°,∴∠BAD=90°-∠B=90°-75°=15°,∴∠DAE=∠BAE-∠BAD=30°-15°=15°.•在△AEC中,∠AEC=180°-∠C-∠CAE=180°-45°-30°=105°.解法2:同解法1,得出∠BAC=60°.∵AE平分∠BAC,∴∠EAC=12∠BAC=12×60°=30°.∵AD是BC上的高,∴∠C+∠CAD=90°,∴∠CAD=90°-45°=45°,∴∠DAE=∠CAD-•∠CAE=45°-30°=15°.∵∠AEC+∠C+∠EAC=180°,∴∠AEC+30°+45°=180°,•∴∠AEC=105°.答:∠DAE=15°,∠AEC=105°.点拨:本节知识多与角平分线的定义,余角的性质,平行线的性质,三角形高的定义综合应用,有时也结合方程组、不等式等代数知识综合应用.求角的度数的关键是把已知角放在三角形中,利用三角形内角和定理求解,或转化为与已知角有互余关系或互补关系求解,有些题目还可以转化为已知角的和或差来求解.12.(1)证明:∵∠BAC=30°,∠C=90°,∴∠ABC=60°.又∵BD平分∠ABC,∴∠ABD=30°.∴∠BAC=∠ABD,∴BD=AD.(2)解法1:∵∠C=90°,∴∠BAC+∠ABC=90°.∴12(∠BAC+∠ABC)=45°.∵BD平分∠ABC,AP平分∠BAC,∴∠BAP=12∠BAC,∠ABP=12∠ABC;即∠BAP+∠ABP=45°,∴∠APB=180°-45°=135°.解法2:∵∠C=90°,∴∠BAC+∠ABC=90°.∴12(∠BAC+∠ABC)=45°.∵BD平分∠ABC,AP平分∠BAC,∴∠DBC=12∠ABC,∠PAC=12∠BAC,∴∠DBC+∠PAD=45°.∴∠APB=∠PDA+∠PAD=∠DBC+∠C+∠PAD=∠DBC+∠PAD+∠C=45°+90°=135°.13.解:由∠A=13∠B=15∠C知,∠B=3∠A,∠C=5∠A.设∠A=x°,则∠B=3x°,∠C=5x°.由三角形内角和定理得x+3x+5x=180.解得x=20.∴3x=60,5x=100.∴∠A=20°,∠B=60°,∠C=100°.点拨:解此类题,一般设较小的角为未知数.14.解:(1)∵∠A=42°,∴∠ABC+∠ACB=180°-∠A=138°.∵BD、CD平分∠ABC、∠ACB的平分线.∴∠DBC=12∠ABC,∠DCB=12∠ACB.∴∠DBC+∠DCB=12(∠ABC+∠ACB)=12×138°=69°.∴∠BDC=180°-(∠DBC+∠DCB)=180°-69°=111°.(2)∠BDC=90°+12∠A.理由:∵BD、CD分别为∠ABC、∠ACB的平分线,∴∠DBC=12∠ABC,∠DCB=12∠ACB.∴∠DBC+∠DCB=12(∠ABC+∠ACB)=12(180°-∠A)=90°-12∠A.∴∠BDC=180°-(∠DBC+∠DCB)=180°-(90°-12∠A)=90°+12∠A.点拨:欲求∠BDC,只要求出∠DBC+∠DCB即可.15.解:作出BC边上的高AD时,图中出现3个直角三角形;作出△ABD中AB边上的高DD1时,图中出现5个直角三角形;作出Dn-1Dn时,图中共出现(2n+3)个直角三角形.数学世界答案:设原来推门x次可把水槽装满水,由题意,得20x=25(x-12).解得x=60.则水槽容积为20×60=1200(升).。

人教版初中数学八年级上册11.2.1 三角形的内角同步课时训练

人教版初中数学八年级上册11.2.1 三角形的内角同步课时训练

人教版数学八年级上册同步课时训练第十一章三角形11.2与三角形有关的角11.2.1三角形的内角自主预习基础达标要点1三角形的内角和定理三角形三个内角的和等于.要点2直角三角形的性质与判定1. 性质:直角三角形的两个锐角.2. 判定:有两个角互余的三角形是三角形.课后集训巩固提升1. 已知△ABC中,∠A=61°,那么△ABC是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 以上三种都有可能2. 一个三角形的三个内角的度数之比为1∶2∶3,则这个三角形一定是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形3. 在给定的下列条件中,不能判定三角形ABC是直角三角形的是()A. ∠A∶∠B∶∠C=2∶1∶1B. ∠A+∠B=∠CC. ∠A-∠B=∠CD. ∠A=2∠B=3∠C4. 在△ABC中,∠A=105°,∠B-∠C=15°,∠C的度数为()A. 35°B. 60°C. 45°D. 30°5. 如图,已知D,E在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,∠A的度数为()A. 100°B. 90°C. 80°D. 70°第5题第6题6. 如图,AB∥DE,FG⊥BC于点F,∠CDE=40°,则∠FGB的度数是()A. 40°B. 50°C. 60°D. 70°7. 如图,AB∥CD,∠CED=90°,∠AEC=35°,∠D的大小为()A. 65°B. 55°C. 45°D. 35°8. 三角形的三个内角中,最少有个锐角,最多有个直角,最多有个钝角.9. 把一副常用的三角板如图所示拼在一起,那么图中∠ABC=.第9题第10题10. 如图,已知∠A=32°,∠ADC=110°,BE⊥AC于点E,则∠B的度数为.11. 如图,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,AD与BC相交于点E,则∠CAE与∠DBE 的大小关系是.第11题第12题12. 如图,直线a∥b,EF⊥CD于点F,∠2=65°,则∠1的度数是.13. 如图,已知∠1=20°,∠2=25°,∠A=35°,则∠BDC的度数为.14. 如图所示,在△ABC中,∠ABC=∠C,BD是∠ABC的平分线,∠BDC=87°,求∠A的度数.15. 如图,说明∠A+∠B+∠C与∠ADC之间的关系.16. 如图,AB∥CD,MN分别交AB,CD于E,F,∠BEF与∠DFE的平分线交于点G.(1)求∠GEF+∠GFE的度数;(2)△EFG是什么三角形?请说明理由.17. 如图,按规定,一块模板中AB,CD的延长线应相交成85°角.因交点不在板上,不便测量,工人师傅连接AC,测得∠BAC=32°,∠DCA=65°,此时AB,CD的延长线相交所成的角是否符合规定?为什么?18. 如图1,在△ABC中,AD⊥BC于点D,CE⊥AB于点E.(1)猜测∠1与∠2的关系,并说明理由;(2)如果∠BAC是钝角,如图2,(1)中的结论是否还成立?图1 图219. (1)如图①,∠1+∠2与∠B+∠C有什么关系?为什么?(2)把图①中△ABC沿DE折叠,得到图②,填空:∠1+∠2=∠B+∠C(填“>”“<”或“=”),当∠A=40°时,∠B+∠C+∠1+∠2=.(3)图③是由图①的△ABC沿DE折叠得到的,如果∠A=30°,则x°+y°=360°-(∠B+∠C+∠1+∠2)=360°-=,猜想∠BDA+∠CEA与∠A的关系为.①②③参考答案自主预习 基础达标要点1 180°要点2 1. 互余 2. 直角课后集训 巩固提升1. D2. B3. D4. D5. C6. B7. B8. 2 1 19. 75°10. 52°11. ∠CAE =∠DBE12. 25°13. 80°14. 解:∵BD 平分∠ABC ,∴∠DBC =12∠ABC.又∵∠ABC =∠C ,∴∠DBC =12∠C.在△BDC 中,∠C +∠DBC +∠BDC =180°,∵∠BDC =87°,∴∠C +12∠C +87°=180°,∴∠C =62°,∴∠A =180°-∠ABC -∠C =180°-62°-62°=56°.15. 解:连接BD.∵∠A +∠ABD +∠ADB =180°,∠C +∠DBC +∠CDB =180°,∴∠A +∠ABD +∠ADB +∠C +∠DBC +∠CDB =360°,又∵∠ADB +∠CDB +∠ADC =360°,∴∠A +∠ABC +∠C +360°-∠ADC =360°,∴∠A +∠ABC +∠C =∠ADC.16. 解:(1)∵AB ∥CD ,∴∠BEF +∠DFE =180°,又∠BEF 与∠DFE 的平分线相交于点G ,∴∠GEF =12∠BEF ,∠GFE =12∠DFE ,∴∠GEF +∠GFE =12(∠BEF +∠DFE )=12×180°=90°. (2)△EFG 是直角三角形.理由:∵∠GEF +∠GFE =90°,∴∠EGF =90°,故△EFG 是直角三角形.17. 解:不符合规定.延长AB ,CD 交于点O ,∵在△AOC 中,∠BAC =32°,∠DCA =65°,∴∠AOC =180°-∠BAC -∠DCA =180°-32°-65°=83°<85°.∴模板不符合规定.18. 解:(1)∠1=∠2.理由如下:∵AD ⊥BC ,CE ⊥AB ,∴△ABD 和△BCE 都是直角三角形.∴∠1+∠B =90°,∠2+∠B =90°.∴∠1=∠2.(2)结论仍然成立.理由如下:∵BD ⊥AC ,CE ⊥AB ,∴∠D =∠E =90°.∴∠1+∠4=90°,∠2+∠3=90°.∵∠3=∠4,∴∠1=∠2.19. 解:(1)∠1+∠2=∠B +∠C.理由如下:在△ADE 和△ABC 中,由三角形内角和定理,得∠1+∠2+∠A =180°,∠B +∠C +∠A =180°,所以∠1+∠2=∠B +∠C.(2)280° (3)0300, 060 A CEA BDA ∠=∠+∠2。

人教版八年级上数学11.2.1 三角形的内角和 练习(含答案)

人教版八年级上数学11.2.1 三角形的内角和 练习(含答案)

11.2.1三角形的内角和基础知识一、选择题1.下列说法正确的是( )A.三角形的内角中最多有一个锐角;B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角;D.三角形的内角都大于60°答案:C2.(2012 广东省梅州市) 如图,在折纸活动中,小明制作了一张ABC △纸片,点D 、E 分别是边AB 、AC 上,将ABC △沿着DE 折叠压平,A 与A '重合,若A ∠=75,则∠1+∠2=( )(A )150 (B )210 (C )105 (D )75答案:A3. (2012 山东省滨州市) 一个三角形的三个内角的度数之比为372∶∶,则这个三角形一定是( )(A )等腰三角形 (B )直角三角形 (C )锐角三角形 (D )钝角三角形 答案:D4. (2012 云南省昆明市) 如图,在ABC △中,6733B C ==∠°,∠°,AD 是ABC △的角平分线,则CAD ∠的度数为( ).(A )40° (B )45° (C )50° (D )55°答案:A5. (2012 福建省漳州市) 将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是( )(A )45o (B )60o (C )75o (D )90o答案:C 6. (2012 四川省绵阳市) 如图,将等腰直角三角形沿虚线裁去顶角后,∠1 +∠2 =( ).A .225︒B .235︒C .270︒D .与虚线的位置有关答案:C7. (2012 广西来宾市) 如图,在△ABC 中,已知∠A =80°,∠B =60°,DE ∥BC ,那么∠CED 的大小是 ( )A .40°B .60°C .120°D .140°答案:D 8. (2012 山东省聊城市) 将一副三角板按如图所示摆放,图中∠α的度数是( )(A )75° (B )90° (C )105° (D )120°答案:C9.如图,ABCDE 是封闭折线,则∠A+∠B+∠C+∠D+∠E 为( )度.A .180B .270C .360D .540答案:A10.直角三角形两锐角的平分线所夹的钝角等于( )A .100°B .120°C .135°D .150°答案:C11.如图,Rt △ABC 中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则∠A ′DB=( )A .40°B .30°C .20°D .10°1 2答案:D12.具备下列条件的△ABC 中,不是直角三角形的是( )A .∠A-∠B=∠CB .∠A=3∠C ,∠B=2∠CC .∠A=∠B=2∠CD .∠A=∠B=21∠C 答案:C13.如图,在三角形ABC 中,已知∠ABC=70º,∠ACB=60º,BE ⊥AC 于E,CF ⊥AB 于F,H 是BE 和CF 的交点,则∠EHF=( )A. 100ºB. 110ºC. 120ºD.130º答案:D14.如图所示,把一个三角形纸片ABC 顶角向内折叠3次之后,3个顶点不重合,那么图 中∠1+∠2+∠3+∠4+∠5+∠6的度数和是( )A .180°B .270°C .360°D .无法确定答案:C二、填空题1.三角形中,若最大内角等于最小内角的2倍,最大内角又比另一个内角大20°,则此三角形的最小内角的度数是________.答案:40°2.在△ABC 中,若∠A+∠B=∠C,则此三角形为_______三角形;若∠A+∠B<∠C,则此三角形是_____三角形.答案:直角;钝角3.在△ABC 中,∠B,∠C 的平分线交于点O,若∠BOC=132°,则∠A=_______度.答案:84°4.如图所示,已知∠1=20°,∠2=25°,∠A=35°,则∠BDC 的度数为________.21DC BA答案:80° 5.(2013•上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为 .答案:30º 6. (2012 内蒙古呼和浩特市) 如图,在ABC △中,47B ∠,三角形的外角DAC ∠和ACF ∠的平分线交于点E ,则AEC ∠=____________.答案:66.5°7. (2012 江苏省徐州市) 将一副直角三角板如图放置.若AE ∥BC ,则∠AFD = °.答案:75°8.如图,AB∥CD,∠A=32°,∠AEB=100°,则∠C 的度数是 度.答案:48º9.△ABC 中,∠A=∠B+∠C,则∠A= 度.FED C BA(第15题)答案:90 10.在△ABC 中,已知∠A=21∠B=31∠C,则三角形的形状是 三角形. 答案:直角三角形11.已知△ABC 中,∠A=2(∠B+∠C),则∠A 的度数为 度.答案:1208.如图,在△ABC 中,∠1=∠2,∠3=∠4,∠BOC=120°,则∠A= .答案:60º12.如图,AD 、AE 分别是△ABC 的高和角平分线,∠B=58°,∠C=36°,∠EAD= .答案:11º13.如图所示,在△ABC 中,∠B=∠C,FD ⊥BC,DE ⊥AB,∠AFD=150°, 则∠EDF=________度.FED C B A答案:60°14.如图,∠A+∠B+∠C+∠D+∠E+∠F= .答案:360°三、解答题1.在△ABC 中,已知∠B-∠A=5°,∠C-∠B=20°,求三角形各内角的度数.设∠A=x °,则∠B=(x+5)°, ∠C=(x+25)°可列方程X+x+5+x+25=180解得:x=50°所以∠A=50°,∠B=55°, ∠C=75°2.已知:如图,AB∥CD,直线EF 分别交AB 、CD 于点E 、F ,∠BEF 的平分线与∠DFE 的平分线相交于点P .求证:∠P=90°.证明:∵AB∥CD,∴∠BEF+∠DFE=180°.又∵∠BEF 的平分线与∠DFE 的平分线相交于点P , ∴∠PEF=21∠BEF,∠PFE=21∠DFE, ∴∠PEF+∠PFE=21(∠BEF+∠DFE)=90°. ∵∠PEF+∠PFE+∠P=180°,∴∠P=90°.3.如图,△ABC 中,CD 是∠ACB 的角平分线,CE 是AB 边上的高,若∠A=40°,∠B=72°.(1)求∠DCE 的度数;(2)试写出∠DCE 与∠A 、∠B 的之间的关系式.(不必证明)答案:(1)在⊿ABC 中,∠ACB=180º-∠A-∠B=68º,∵CD 是∠ACB 的角平分线∴∠BCD=21∠ACB=34º ∵CE ⊥AB,∠B=72º∴∠BCE=18º∴∠DCE=∠BCD-∠BCE=34º-18º=16º.(2)∠DCE=21(∠B-∠A). 4.如图,已知在三角形ABC 中,∠C=∠ABC=2∠A,BD 是AC 边上的高,求∠DBC 的度数.解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°, ∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD 是AC 边上的高,则∠DBC=90°-∠C=18°.5.如图,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .△ABC 中,∠A=40°,求∠XBA+∠XCA 的度数.解:∵∠A=40°,∴∠ABC+∠ACB=180°-40°=140°, ∵∠X=90°,∴∠XBC+∠XCB=180°-90°=90°, ∴∠XBA+∠XCA=(∠ABC+∠ACB)-(∠XBC+∠XCB)=140°-90°=50°.6.如图,△ABC 中,∠ABC、∠ACB 的平分线相交于点O .(1)若∠ABC=45°,∠ACB=55°,则∠BOC 的度数是 ;(2)若∠A=80°,求∠BOC 的度数;(3)若∠A=α,∠BO C=β,请猜想α与β之间的数量关系,并说明理由.解:(1)∵∠ABC 和∠ACB 的平分线BD ,CE 相交于点O ,∴∠DBC=21∠ABC,∠ECB=21∠ACB,又∠ABC=45°,∠ACB=55°, ∴∠DBC=22.5°,∠ECB=27.5°,∴∠BOC=180°-∠DBC -∠ECB=180°-22.5°-27.5°=130°,故答案为:130°;(2)∵∠A=80°,∴∠ABC+∠ACB=180°-80°=100°,又∠ABC 和∠ACB 的平分线BD ,CE 相交于点O ,∴∠DBC=21∠ABC,∠ECB=21∠ACB, ∴∠DBC+∠ECB=21(∠ABC+∠ACB)=50°, 则∠BOC=180°-(∠DBC+∠ECB)=180°-50°=130°;(3)β=90+21α,理由如下:∵∠ABC、∠ACB 的平分线相交于点O ,∴∠OBC=21∠ABC、∠0CB=21∠ACB, ∴∠OBC+∠0CB= 21∠ABC+21∠ACB=21(180°-α)=90°-21α, ∴β=180°-(∠OBC+∠0CB)=180°-(90°-21α)=90°+21α.7.如图,在△ABC 中,∠B=40°,∠C=60°,AD⊥BC 于D ,AE 平分∠BAC 交BC 于E ,DF⊥AE 于F ,求∠ADF 的度数.解:∵∠B=40°,∠C=60°,∴∠BAC=80°.∵AE 平分∠BAC 交BC 于E ,∴∠BAE=21∠BAC=40°, ∴∠AED=∠B+∠BAE=80°.∵AD⊥BC,∴∠DAE=90°-80°=10°∵DF⊥AE,∴∠ADF=90°-10°=80.能力提升1.如图,已知:∠1= ∠2, ∠3= ∠4, ∠C=32°, ∠D=28°,求∠P 的度数。

【精编】人教版八年级数学上册同步练习 11.2.1 三角形的内角和 练习.doc

【精编】人教版八年级数学上册同步练习 11.2.1 三角形的内角和 练习.doc

11.2.1三角形的内角和基础知识一、选择题1.下列说法正确的是( )A.三角形的内角中最多有一个锐角;B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角;D.三角形的内角都大于60°答案:C2.(2012 广东省梅州市) 如图,在折纸活动中,小明制作了一张ABC △纸片,点D 、E 分别是边AB 、AC 上,将ABC △沿着DE 折叠压平,A 与A '重合,若A ∠=75,则∠1+∠2=( )(A )150 (B )210 (C )105 (D )75答案:A3. (2012 山东省滨州市) 一个三角形的三个内角的度数之比为372∶∶,则这个三角形一定是( )(A )等腰三角形 (B )直角三角形 (C )锐角三角形 (D )钝角三角形 答案:D4. (2012 云南省昆明市) 如图,在ABC △中,6733B C ==∠°,∠°,AD 是ABC △的角平分线,则CAD ∠的度数为( ).(A )40° (B )45° (C)50° (D )55°答案:A5. (2012 福建省漳州市) 将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是( )(A )45o (B )60o (C )75o (D )90o 答案:C6. (2012 四川省绵阳市) 如图,将等腰直角三角形沿虚线裁去顶角后,∠1 +∠2 =( ).A .225︒B .235︒C .270︒D .与虚线的位置有关答案:C7. (2012 广西来宾市) 如图,在△ABC 中,已知∠A =80°,∠B =60°,DE ∥BC ,那么∠CED 的大小是 ( )1 2A .40°B .60°C .120°D .140°答案:D8. (2012 山东省聊城市) 将一副三角板按如图所示摆放,图中 的度数是( )(A )75° (B )90° (C )105° (D )120°答案:C9.如图,ABCDE 是封闭折线,则∠A+∠B+∠C+∠D+∠E 为( )度.A .180B .270C .360D .540答案:A10.直角三角形两锐角的平分线所夹的钝角等于( )A .100°B .120°C .135°D .150°答案:C11.如图,Rt △ABC 中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则∠A ′DB=( )A .40°B .30°C .20°D .10°答案:D12.具备下列条件的△ABC 中,不是直角三角形的是( )A .∠A-∠B=∠CB .∠A=3∠C ,∠B=2∠CC .∠A=∠B=2∠CD .∠A=∠B=21∠C 答案:C13.如图,在三角形ABC 中,已知∠ABC=70º,∠ACB=60º,BE ⊥AC 于E,CF ⊥AB 于F,H 是BE 和CF 的交点,则∠EHF=( )A. 100ºB. 110ºC. 120ºD.130º答案:D14.如图所示,把一个三角形纸片ABC 顶角向内折叠3次之后,3个顶点不重合,那么图中∠1+∠2+∠3+∠4+∠5+∠6的度数和是( )A .180°B .270°C .360°D .无法确定答案:C二、填空题 1.三角形中,若最大内角等于最小内角的2倍,最大内角又比另一个内角大20°,则此三角形的最小内角的度数是________.答案:40°2.在△ABC 中,若∠A+∠B=∠C,则此三角形为_______三角形;若∠A+∠B<∠C,则此三角形是_____三角形.答案:直角;钝角3.在△ABC 中,∠B,∠C 的平分线交于点O,若∠BOC=132°,则∠A=_______度.答案:84°4.如图所示,已知∠1=20°,∠2=25°,∠A=35°,则∠BDC 的度数为________.21DC BA答案:80° 5.(2013•上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为 .答案:30º6. (2012 内蒙古呼和浩特市) 如图,在ABC △中,47B ∠,三角形的外角DAC ∠和ACF ∠的平分线交于点E ,则AEC ∠=____________.答案:66.5°7. (2012 江苏省徐州市) 将一副直角三角板如图放置.若AE ∥BC ,则∠AFD = °.答案:75° 8.如图,AB∥CD,∠A=32°,∠AEB=100°,则∠C 的度数是 度.答案:48º9.△ABC 中,∠A=∠B+∠C,则∠A= 度. 答案:9010.在△ABC 中,已知∠A=21∠B=31∠C,则三角形的形状是 三角形.答案:直角三角形11.已知△ABC 中,∠A=2(∠B+∠C),则∠A 的度数为度.答案:1208.如图,在△ABC 中,∠1=∠2,∠3=∠4,∠BOC=120°,则∠A= .答案:60º12.如图,AD 、AE 分别是△ABC 的高和角平分线,∠B=58°,∠C=36°,∠EAD=.答案:11º13.如图所示,在△ABC 中,∠B=∠C,FD ⊥BC,DE ⊥AB,∠AFD=150°, 则∠EDF=________度.FED CB A (第15题)FED CB A答案:60°14.如图,∠A+∠B+∠C+∠D+∠E+∠F= .答案:360°三、解答题1.在△ABC 中,已知∠B-∠A=5°,∠C-∠B=20°,求三角形各内角的度数.设∠A=x °,则∠B=(x+5)°, ∠C=(x+25)°可列方程X+x+5+x+25=180解得:x=50° 所以∠A=50°,∠B=55°, ∠C=75°2.已知:如图,AB∥CD,直线EF 分别交AB 、CD 于点E 、F ,∠BEF 的平分线与∠DFE 的平分线相交于点P .求证:∠P=90°.证明:∵AB∥CD,∴∠BEF+∠DFE=180°.又∵∠BEF 的平分线与∠DFE 的平分线相交于点P , ∴∠PEF=21∠BEF,∠PFE=21∠DFE, ∴∠PEF+∠PFE=21(∠BEF+∠DFE)=90°. ∵∠PEF+∠PFE+∠P=180°,∴∠P=90°.3.如图,△ABC 中,CD 是∠ACB 的角平分线,CE 是AB 边上的高,若∠A=40°,∠B=72°.(1)求∠DCE 的度数;(2)试写出∠DCE 与∠A 、∠B 的之间的关系式.(不必证明)答案:(1)在⊿ABC 中,∠ACB=180º-∠A-∠B=68º,∵CD 是∠ACB 的角平分线∴∠BCD=21∠ACB=34º ∵CE ⊥AB,∠B=72º∴∠BCE=18º ∴∠DCE=∠BCD-∠BCE=34º-18º=16º.(2)∠DCE=21(∠B-∠A). 4.如图,已知在三角形ABC 中,∠C=∠ABC=2∠A,BD 是AC 边上的高,求∠DBC 的度数.解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°, ∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD 是AC 边上的高,则∠DBC=90°-∠C=18°.5.如图,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .△ABC 中,∠A=40°,求∠XBA+∠XCA 的度数.解:∵∠A=40°,∴∠ABC+∠ACB=180°-40°=140°,∵∠X=90°,∴∠XBC+∠XCB=180°-90°=90°,∴∠XBA+∠XCA=(∠ABC+∠ACB)-(∠XBC+∠XCB)=140°-90°=50°.6.如图,△ABC 中,∠ABC、∠ACB 的平分线相交于点O .(1)若∠ABC=45°,∠ACB=55°,则∠BOC 的度数是 ;(2)若∠A=80°,求∠BOC 的度数;(3)若∠A=α,∠BO C=β,请猜想α与β之间的数量关系,并说明理由.解:(1)∵∠ABC 和∠ACB 的平分线BD ,CE 相交于点O ,∴∠DBC=21∠ABC,∠ECB=21∠ACB,又∠ABC=45°,∠ACB=55°, ∴∠DBC=22.5°,∠ECB=27.5°,∴∠BOC=180°-∠DBC -∠ECB=180°-22.5°-27.5°=130°,故答案为:130°;(2)∵∠A=80°,∴∠ABC+∠ACB=180°-80°=100°,又∠ABC 和∠ACB 的平分线BD ,CE 相交于点O ,∴∠DBC=21∠ABC,∠ECB=21∠ACB, ∴∠DBC+∠ECB=21(∠ABC+∠ACB)=50°, 则∠BOC=180°-(∠DBC+∠ECB)=180°-50°=130°;(3)β=90+21α, 理由如下:∵∠ABC、∠ACB 的平分线相交于点O ,∴∠OBC=21∠ABC、∠0CB=21∠ACB, ∴∠OBC+∠0CB= 21∠ABC+21∠ACB=21(180°-α)=90°-21α, ∴β=180°-(∠OBC+∠0CB)=180°-(90°-21α)=90°+21α. 7.如图,在△ABC 中,∠B=40°,∠C=60°,AD⊥BC 于D ,AE 平分∠BAC 交BC 于E ,DF⊥AE 于F ,求∠ADF 的度数.解:∵∠B=40°,∠C=60°,∴∠BAC=80°.∵AE 平分∠BAC 交BC 于E ,∴∠BAE=21∠BAC=40°, ∴∠AED=∠B+∠BAE=80°.∵AD⊥BC,∴∠DAE=90°-80°=10°∵DF⊥AE,∴∠ADF=90°-10°=80.能力提升1.如图,已知:∠1= ∠2, ∠3= ∠4, ∠C=32°, ∠D=28°,求∠P 的度数。

11.2.1.1三角形的内角和 同步练习题 2021-2022学年人教版数学八年级上册(含答案)

11.2.1.1三角形的内角和 同步练习题   2021-2022学年人教版数学八年级上册(含答案)

11.2.1.1三角形的内角和同步练习题 2021-2022学年人教版八年级数学上册A组(基础题)1.如图,在△ABC中,∠A=60°,∠B=40°,则∠C等于( )A.100°B.80°C.60°D.40°2.在△ABC中,∠A,∠B,∠C的度数之比为2∶3∶4,则∠B的度数为( )A.120° B.80°C.60° D.40°3.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B等于( )A.50° B.75°C.100°D.125°4.写出下列图中x的值:(1)x=________;(2)x=_______.5.如图,在△ABC中,AD平分∠BAC,∠B=70°,∠BAD=30°,则∠C的度数为( )A.35°B.40° C.45° D.50°6.如图,在△ABC中,∠C=90°,AD平分∠BAC,且∠B=3∠BAD,求∠B的度数.7.如图,在△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是( )A.50° B.60°C.70° D.80°8.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为( )A.44° B.40° C.39° D.38°9.如图,一种滑翔伞的形状是左、右对称的四边形ABCD,其中∠B=40°,∠CAD=60°,则∠BCD=_______.10.某地有A,B,C三个村庄,如图,B村庄在C村庄的正西方向,A村庄在B村庄的北偏东20°方向,同时A村庄又在C村庄的北偏西45°方向,那么,在A村庄看B,C两个村庄的视角∠BAC为多少?11.在△ABC中,∠ABC=∠C,BD是AC边上的高,∠ABD=30°,则∠C的度数为_______.B组(中档题)12.如图,点P是△ABC的三条角平分线的交点,则∠PBC+∠PCA+∠PAB=( )A.45° B.120° C.180° D.90°13.如图,将△ABC沿MN折叠,使MN∥BC,点A的对应点为点A′.若∠A′=32°,∠B=112°,则∠A′NC的度数是( )A.114° B.112° C.110° D.108°14.(1)如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠A=58°,则∠BFC=_______.(2)如图是A,B,C三岛的平面图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏东30°方向,则从C岛看A,B两岛的视角∠ACB=_______.15.如图,已知在△ABC中,∠B=∠C,D为边BC上一点(不与B,C重合),点E为边AC上一点,∠ADE=∠AED,∠BAC=44°.(1)求∠C的度数;(2)若∠ADE=75°,求∠CDE的度数.C组(综合题)16.问题情景:如图1,将一块直角三角板PMN放置在△ABC上(P点在△ABC内),使三角板PMN的两条直角边PM,PN恰好分别经过点B和点C.试问∠ABP与∠ACP是否存在某种确定的数量关系?(1)特殊探究:若∠A=50°,则∠ABC+∠ACB=_______,∠PBC+∠PCB=_______,∠ABP+∠ACP=_______;(2)类比探究:请探究∠ABP+∠ACP与∠A的数量关系;(3)类比延伸:如图2,改变直角三角板PMN的位置,使P点在△ABC外,直角三角板PMN的两条直角边PM,PN仍然分别经过点B和点C,(2)中的结论是否仍然成立?若不成立,请直接写出你的结论.参考答案11.2.1.1三角形的内角和同步练习题 2021-2022学年人教版八年级数学上册A组(基础题)1.如图,在△ABC中,∠A=60°,∠B=40°,则∠C等于(B)A.100°B.80°C.60°D.40°2.在△ABC中,∠A,∠B,∠C的度数之比为2∶3∶4,则∠B的度数为(C) A.120° B.80°C.60° D.40°3.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B等于(B)A .50°B .75°C .100°D .125°4.写出下列图中x 的值:(1)x =45; (2)x =75.5.如图,在△ABC 中,AD 平分∠BAC ,∠B =70°,∠BAD =30°,则∠C 的度数为(D)A .35°B .40°C .45°D .50°6.如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,且∠B =3∠BAD ,求∠B 的度数.解:∵AD 平分∠BAC , ∴∠BAD =12∠BAC.∵∠BAC +∠B +∠C =180°,∠B =3∠BAD , ∴2∠BAD +3∠BAD +90°=180°. ∴∠BAD =18°. ∴∠B =3∠BAD =54°.7.如图,在△ABC 中,∠A =60°,∠B =40°,DE ∥BC ,则∠AED 的度数是(D)A .50°B .60°C .70°D .80°8.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E.若∠A =54°,∠B =48°,则∠CDE 的大小为(C)A.44° B.40° C.39° D.38°9.如图,一种滑翔伞的形状是左、右对称的四边形ABCD,其中∠B=40°,∠CAD=60°,则∠BCD=160°.10.某地有A,B,C三个村庄,如图,B村庄在C村庄的正西方向,A村庄在B村庄的北偏东20°方向,同时A村庄又在C村庄的北偏西45°方向,那么,在A村庄看B,C两个村庄的视角∠BAC为多少?解:由A村庄在B村庄的北偏东20°方向,得∠ABC=∠PBC-∠PBA=90°-20°=70°.由A村庄在C村庄的北偏西45°方向,得∠ACB=∠QCB-∠ACQ=90°-45°=45°.∴∠BAC=180°-∠ABC-∠ACB=180°-70°-45°=65°.∴在A村庄看B,C两个村庄的视角∠BAC的大小是65°.11.在△ABC中,∠ABC=∠C,BD是AC边上的高,∠ABD=30°,则∠C的度数为60°或30°.B组(中档题)12.如图,点P是△ABC的三条角平分线的交点,则∠PBC+∠PCA+∠PAB=(D)A.45° B.120° C.180° D.90°13.如图,将△ABC沿MN折叠,使MN∥BC,点A的对应点为点A′.若∠A′=32°,∠B=112°,则∠A′NC的度数是(D)A.114° B.112° C.110° D.108°14.(1)如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠A=58°,则∠BFC=119°.(2)如图是A,B,C三岛的平面图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏东30°方向,则从C岛看A,B两岛的视角∠ACB=20°.15.如图,已知在△ABC中,∠B=∠C,D为边BC上一点(不与B,C重合),点E为边AC上一点,∠ADE=∠AED,∠BAC=44°.(1)求∠C的度数;(2)若∠ADE=75°,求∠CDE的度数.解:(1)∵∠BAC=44°,∴∠B+∠C=180°-∠BAC=180°-44°=136°.∵∠B=∠C,∴2∠C=136°.∴∠C=68°.(2)∵∠ADE=∠AED,∠ADE=75°,∴∠AED=75°.∵∠AED+∠CED=180°,∴∠CED=180°-75°=105°.∵∠CDE+∠CED+∠C=180°,∴∠CDE=180°-105°-68°=7°.C组(综合题)16.问题情景:如图1,将一块直角三角板PMN放置在△ABC上(P点在△ABC内),使三角板PMN的两条直角边PM,PN恰好分别经过点B和点C.试问∠ABP与∠ACP是否存在某种确定的数量关系?(1)特殊探究:若∠A=50°,则∠ABC+∠ACB=130°,∠PBC+∠PCB=90°,∠ABP +∠ACP=40°;(2)类比探究:请探究∠ABP+∠ACP与∠A的数量关系;(3)类比延伸:如图2,改变直角三角板PMN的位置,使P点在△ABC外,直角三角板PMN的两条直角边PM,PN仍然分别经过点B和点C,(2)中的结论是否仍然成立?若不成立,请直接写出你的结论.解:(2)∠ABP+∠ACP=90°-∠A.∵在△ABC中,∠A+∠ABC+∠ACB=180°,即∠A+(∠ABP+∠PBC)+(∠ACP+∠PCB)=180°,在△PBC中,∠P+∠PBC+∠PCB=180°,即∠PBC+∠PCB=90°,∴∠A+(∠ABP+∠ACP)+90°=180°.∴∠ABP+∠ACP+∠A=90°.∴∠ABP+∠ACP=90°-∠A.(3)不成立,∠ACP-∠ABP=90°-∠A.。

【八人数上】2019最新(人教版)初中数学八年级上册习题:11-2-1 三角形的内角 同步练习及答案1-可打印

【八人数上】2019最新(人教版)初中数学八年级上册习题:11-2-1 三角形的内角 同步练习及答案1-可打印

——教学资料参考参考范本——【八人数上】2019最新(人教版)初中数学八年级上册习题:11-2-1 三角形的内角同步练习及答案1-可打印______年______月______日____________________部门一、选择题:(每小题3分,共21分)1.如果三角形的三个内角的度数比是2:3:4,则它是( )毛A.锐角三角形B.钝角三角形;C.直角三角形D.钝角或直角三角形2.下列说法正确的是( )A.三角形的内角中最多有一个锐角;B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角;D.三角形的内角都大于60°3.已知三角形的一个内角是另一个内角的,是第三个内角的,则这个三角形各内角的度数分别为( )234 5A.60°,90°,75°B.48°,72°,60°C.48°,32°,38°D.40°,50°,90°4.已知△ABC中,∠A=2(∠B+∠C),则∠A的度数为( )A.100°B.120°C.140°D.160°5.已知三角形两个内角的差等于第三个内角,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形6.设α,β,γ是某三角形的三个内角,则α+β,β+γ,α+γ中 ( )A.有两个锐角、一个钝角B.有两个钝角、一个锐角C.至少有两个钝角D.三个都可能是锐角7.在△ABC中,∠A=∠B=∠C,则此三角形是( )121 3A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形二、填空题:(每小题3分,共15分)1.三角形中,若最大内角等于最小内角的2倍,最大内角又比另一个内角大20°,则此三角形的最小内角的度数是________.2.在△ABC中,若∠A+∠B=∠C,则此三角形为_______三角形;若∠A+∠B<∠C,则此三角形是_____三角形.3.已知等腰三角形的两个内角的度数之比为1: 2, 则这个等腰三角形的顶角为_______.4.在△ABC中,∠B,∠C的平分线交于点O,若∠BOC=132°,则∠A=_______度.DA5.如图所示,已知∠1=20°,∠2=25,∠A=35°,则∠BDC 的度数为________.三、基础训练:(每小题15分,共30分)1.如图所示,在△ABC 中,AD ⊥BC 于D,AE 平分∠BAC(∠C>∠B), 试说明∠EAD=(∠C-∠B).12E D CB A2.在△ABC 中,已知∠B-∠A=5°,∠C-∠B=20°,求三角形各内角的度数.四、提高训练:(共15分)如图所示,已知∠1=∠2,∠3=∠4,∠C=32°,∠D=28°,求∠P 的度数.43P21DCBA五、探索发现:(共15分)如图所示,将△ABC 沿EF 折叠,使点C 落到点C ′处,试探求∠1,∠2与∠C 的关系.21C 'FEC BAA六、中考题与竞赛题:(共4分)如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°, 则∠EDF=________度.答案:一、1.A 2.C 3.B 4.B 5.C 6.C 7.B二、1.40° 2.直角钝角 3.36°或90° 4.84 5.80°三、1.解:∵AD⊥BC,∴∠BDA=90°,∴∠BAD=90°-∠B,又∵AE 平分∠BAC,∴∠BAE=∠BAC=(180°-∠B-∠C),∴∠EAD=∠BAD-∠BAE=90°-∠B-(180°-∠B-∠C)=90°-∠B-90°+∠B+∠C=∠C-∠B=(∠C-∠B).2.∠A=50°,∠B=55°,∠C=75.四、∠P=30°五、解:∵∠1=180°-2∠CEF,∠2=180°-2∠CFE,∴∠1+∠2=360°-2(∠CEF+ ∠CFE)=360°-2(180°-∠C)=360°-360°+2∠C=2∠C.六、68.毛与三角形有关的角1.△ABC中,∠A=50°,∠B=60°,则∠C=________.2.已知三角形的三个内角的度数之比为1:2:3,则这个三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形D.不能确定3.△ABC中,∠A=∠B+∠C,则∠A=______度.4.根据下列条件,能确定三角形形状的是()(1)最小内角是20°;(2)最大内角是100°;(3)最大内角是89°;(4)三个内角都是60°;(5)有两个内角都是80°.A.(1)、(2)、(3)、(4) B.(1)、(3)、(4)、(5)C.(2)、(3)、(4)、(5) D.(1)、(2)、(4)、(5)5.如图1,∠1+∠2+∠3+∠4=______度.(1) (2) (3)6.三角形中最大的内角不能小于_______度,最小的内角不能大于______度.7.△ABC中,∠A是最小的角,∠B是最大的角,且∠B=4∠A,求∠B的取值范围.8.如图2,在△ABC中,∠BAC=4∠ABC=4∠C,BD⊥AC于D,求∠ABD的度数.9.(综合题)如图3,在△ABC中,∠B=66°,∠C=54°,AD是∠BAC 的平分线,DE平分∠ADC交AC于E,则∠BDE=_________.10.(应用题)如图7-2-1-4是一个大型模板,设计要求BA与CD相交成30°角,DA与CB相交成20°角,怎样通过测量∠A,∠B,∠C,∠D的度数,来检验模板是否合格?11.(创新题)如图,△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,•∠C=45°,求∠DAE与∠AEC的度数.12.(20xx年,福建厦门)如图,已知,在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D.(1)若∠BAC=30°,求证:AD=BD;(2)若AP平分∠BAC且交BD于P,求∠BPA的度数.13.(易错题)在△ABC中,已知∠A=∠B=∠C,求∠A、∠B、∠C的度数.14.(探究题)(1)如图,在△ABC中,∠A=42°,∠ABC和∠ACB•的平分线相交于点D,求∠BDC的度数.(2)在(1)中去掉∠A=42°这个条件,请探究∠BDC和∠A之间的数量关系.15.(开放题)如图,在直角三角形ABC中,∠BAC=90°,作BC边上的高AD,•图中出现多少个直角三角形?又作△ABD中AB边上的高DD1,这时,图中共出现多少个直角三角形?按照同样的方法作下去,作出D1D2,D2D3,…,当作出Dn-1Dn时,图中共出现多少个直角三角形?数学世界推门与加水爱迪生成名以后,去拜访他的人很多,但客人们都感到爱迪生家的大门很重,推门很吃力.后来,一位朋友对他说:“你有没有办法让你家的大门开关起来省力一些?”爱迪生边笑边回答:“我家的大门做得非常合理,我让那个门与一个打水装置相连接,来访的客人,每次推开门都可以往水槽加20升水.”不仅如此,爱迪生还在想,如果每次推门能向水槽加入25升水的话,那么比原来少推12次门,水槽就可以装满了.你能算出爱迪生家水槽的容积吗?答案:1.70°2.B 点拨:设这个三角形的三个内角分别为x°、2x°、3x°,则x+2x+3x=180,解得x=30.∴3x=90.∴这个三角形是直角三角形,故选B.3.90 点拨:由三角形内角和定理知∠A+∠B+∠C=180°,又∠B+∠C=∠A,•∴∠A+∠A=180°,∴∠A=90°.4.C5.280 点拨:由三角形内角和定理知,∠1+∠2=180°-40°=140°,•∠3+•∠4=180°-40°=140°.∴∠1+∠2+∠3+∠4=140°×2=280°.6.60;607.解:设∠B=x,则∠A=x.由三角形内角和定理,知∠C=180°-x.而∠A≤∠C≤∠B.所以x≤180°-x≤x.•即80°≤x≤120°.8.解:设∠ABC=∠C=x°,则∠BAC=4x°.由三角形内角和定理得4x+x+x=180.解得x=30.∴∠BAC=4×30°=120°.∠BAD=180°-∠BAC=180°-120°=60°.∴∠ABD=90°-∠BAD=90°-60°=30°.点拨:∠ABD是Rt△BDA的一个锐角,若能求出另一个锐角∠DAB.就可运用直角三角形两锐角互余求得.9.132°点拨:因为∠BAC=180°-∠B-∠C=180°-66°-54°=60°,且AD•是∠BAC的平分线,所以∠BAD=∠DAC=30°.在△ABD中,∠ADB=180°-66°-30°=84°.在△ADC中,∠ADC=180°-54°-30°=96°.又DE平分∠ADC,所以∠ADE=48°.故∠BDE=∠ADB+∠ADE=84°+48°=132°.10.解:设计方案1:测量∠ABC,∠C,∠CDA,若180°-(∠ABC+∠C)=30°,180°-(∠C+∠CDA)=20°同时成立,则模板合格;否则不合格.设计方案2:测量∠ABC,∠C,∠DAB,若180°-(∠ABC+∠C)=30°,(∠BAD+∠ABC)-180°=20°同时成立,则模板合格;否则不合格.设计方案3:测量∠DAB,∠ABC,∠CDA,若(∠DAB+∠CDA)-180°=30°,(∠BAD+∠ABC)-180°=20°同时成立,则模板合格;否则不合格.设计方案4:测量∠DAB,∠C,∠CDA,若(∠DAB+∠CDA)-180°=30°,180°-(∠C+∠CDA)=20°同时成立,则模板合格;否则不合格.点拨:这是一道几何应用题,借助于三角形知识分析解决问题,•对形成用数学的意识解决实际问题是大有益处的.11.解法1:∵∠B+∠C+∠BAC=180°,∠B=75°,∠C=45°,∴∠BAC=60°.∵AE平分∠BAC,∴∠BAE=∠CAE=∠BAC=×60°=30°.∵AD是BC上的高,∴∠B+∠BAD=90°,∴∠BAD=90°-∠B=90°-75°=15°,∴∠DAE=∠BAE-∠BAD=30°-15°=15°.•在△AEC中,∠AEC=180°-∠C-∠CAE=180°-45°-30°=105°.解法2:同解法1,得出∠BAC=60°.∵AE平分∠BAC,∴∠EAC=∠BAC=×60°=30°.∵AD是BC上的高,∴∠C+∠CAD=90°,∴∠CAD=90°-45°=45°,∴∠DAE=∠CAD-•∠CAE=45°-30°=15°.∵∠AEC+∠C+∠EAC=180°,∴∠AEC+30°+45°=180°,•∴∠AEC=105°.答:∠DAE=15°,∠AEC=105°.点拨:本节知识多与角平分线的定义,余角的性质,平行线的性质,三角形高的定义综合应用,有时也结合方程组、不等式等代数知识综合应用.求角的度数的关键是把已知角放在三角形中,利用三角形内角和定理求解,或转化为与已知角有互余关系或互补关系求解,有些题目还可以转化为已知角的和或差来求解.12.(1)证明:∵∠BAC=30°,∠C=90°,∴∠ABC=60°.又∵BD平分∠ABC,∴∠ABD=30°.∴∠BAC=∠ABD,∴BD=AD.(2)解法1:∵∠C=90°,∴∠BAC+∠ABC=90°.∴(∠BAC+∠ABC)=45°.∵BD平分∠ABC,AP平分∠BAC,∴∠BAP=∠BAC,∠ABP=∠ABC;即∠BAP+∠ABP=45°,∴∠APB=180°-45°=135°.解法2:∵∠C=90°,∴∠BAC+∠ABC=90°.∴(∠BAC+∠ABC)=45°.∵BD平分∠ABC,AP平分∠BAC,∴∠DBC=∠ABC,∠PAC=∠BAC,∴∠DBC+∠PAD=45°.∴∠APB=∠PDA+∠PAD=∠DBC+∠C+∠PAD=∠DBC+∠PAD+∠C=45°+90°=135°.13.解:由∠A=∠B=∠C知,∠B=3∠A,∠C=5∠A.设∠A=x°,则∠B=3x°,∠C=5x°.由三角形内角和定理得x+3x+5x=180.解得x=20.∴3x=60,5x=100.∴∠A=20°,∠B=60°,∠C=100°.点拨:解此类题,一般设较小的角为未知数.14.解:(1)∵∠A=42°,∴∠ABC+∠ACB=180°-∠A=138°.∵BD、CD平分∠ABC、∠ACB的平分线.∴∠DBC=∠ABC,∠DCB=∠ACB.∴∠DBC+∠DCB=(∠ABC+∠ACB)=×138°=69°.∴∠BDC=180°-(∠DBC+∠DCB)=180°-69°=111°.(2)∠BDC=90°+∠A.理由:∵BD、CD分别为∠ABC、∠ACB的平分线,∴∠DBC=∠ABC,∠DCB=∠ACB.∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°-∠A)=90°-∠A.∴∠BDC=180°-(∠DBC+∠DCB)=180°-(90°-∠A)=90°+∠A.点拨:欲求∠BDC,只要求出∠DBC+∠DCB即可.15.解:作出BC边上的高AD时,图中出现3个直角三角形;作出△ABD中AB边上的高DD1时,图中出现5个直角三角形;作出Dn-1Dn时,图中共出现(2n+3)个直角三角形.数学世界答案:设原来推门x次可把水槽装满水,由题意,得20x=25(x-12).解得x=60.则水槽容积为20×60=1200(升).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学·人教版·八年级上册——第11章 三角形
11.2 与三角形有关的角
11.2.1 三角形的内角 第1课时 同步练习题
测试时间:30分钟
一、选择题
1.若一个三角形的三个内角度数的比为2∶3∶4,则这个三角形是( )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形
答案 A ∵三角形三个内角度数的比为2∶3∶4,∴三个内角的度数分别是180°×2
9
=40°,180°×3
9
=60°,180°×4
9
=80°.∴该三角形是锐角三角形.故选A.
2.如图,在△ABC 中,∠B+∠C=100°,AD 平分∠BAC,交BC 于D,DE∥AB,交AC 于E,则∠ADE 的大小是( )
A.30°
B.40°
C.50°
D.60°
答案 B ∵在△ABC 中,∠B+∠C=100°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,
∵AD 平分∠BAC,∴∠BAD=1
2
∠BAC=40°,∵DE∥AB,
∴∠ADE=∠BAD=40°.故选B.
3.如图,在△ABC 中,∠BAC=56°,∠ABC=74°,BP、CP 分别平分∠ABC 和∠ACB,则∠BPC=( )
A.102°
B.112°
C.115°
D.118°
答案 D ∵在△ABC 中,∠BAC=56°,∠ABC=74°,∴∠ACB=180°-∠BAC -∠ABC=50°,∵BP、CP 分别平分∠ABC 和∠ACB,∴∠PBC=1
2
∠ABC=37°,∠PCB=1
2
∠ACB=25°,∴在△BCP 中,∠BPC=180°-∠PBC -∠PCB=118°,故选D.
4.如图,△ABC 中,AE 是∠B AC 的平分线,AD 是BC 边上的高,且∠B=50°,∠C=60°,则∠EAD 的度数为( )
A.35°
B.5°
C.15°
D.25°
答案 B ∵∠B=50°,∠C=60°,∴∠BAC=180°-∠B -∠C=70°,
∵AE 是∠BAC 的平分线,∴∠EAC=1
2
∠BAC=35°,∵AD 是BC 边上的高,∴∠ADC=90°,
∴∠DAC=90°-∠C=30°,∴∠EAD=∠EAC -∠DAC=5°.故选B.
二、填空题
5.如图,△ABC 中,∠DBC=13
∠ABC,∠DCB=1
3
∠ACB,∠A=45°,则∠BDC= .
答案 135°
解析 ∵∠A=45°,∴∠ABC+∠ACB=135°,又
∠DBC=1
3
∠ABC,∠DCB=1
3
∠ACB,∴∠DBC+∠DCB=1
3
(∠ABC+∠ACB)=45°.∴∠BDC=135°.
6.如图,△ABC 中,∠ABC 和∠ACB 的平分线交于点O,若∠BOC=120°,则∠A= .
答案60°
解析如图,∵∠BOC=120°,∴∠1+∠4=180°-∠BOC=180°-120°=60°,
又∵∠ABC和∠ACB的平分线交于点O,∴∠1=∠2,∠3=∠4,
∴∠1+∠2+∠3+∠4=2×60°=120°,∴∠A=180°-(∠1+∠2+∠3+∠4)=180°-120°=60°.
时,我们称此三角形为“希望三角形”,其中角α称为“希望角”.如果7.当三角形中一个内角β是另一个内角α的1
2
一个“希望三角形”中有一个内角为54°,那么这个“希望三角形”的“希望角”的度数为.
答案54°或84°或108°
解析①若54°角是α,则希望角的度数为54°;
α=β=54°,所以希望角α=108°;
②若54°角是β,则1
2
③若54°角既不是α也不是β,则α+β+54°=180°,又β=1
α,
2
α+54°=180°,解得α=84°.
所以α+1
2
综上所述,希望角的度数为54°或84°或108°.
三、解答题
8.如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE=18°,求∠C的度数.
解析∵AD是BC边上的高,∠B=42°,∴∠BAD=48°,∵∠DAE=18°,∴∠BAE=∠BAD-∠DAE=30°,∵AE是∠BAC的平分线,∴∠BAC=2∠BAE=60°,∴∠C=180°-∠B-∠BAC=78°.
初中数学·人教版·八年级上册——第11章三角形
11.2.1 三角形的内角第2课时同步练习题
测试时间:30分钟
一、选择题
1.在Rt△ABC中,∠C=90°,∠A=40°,则∠B=()
A.60°
B.50°
C.40°
D.90°
答案 B ∵Rt△ABC中,∠C=90°,∴∠A+∠B=90°(直角三角形的两个锐角互余),又∠A=40°,
∴∠B=50°,故选B.
2.如图,在锐角三角形ABC中,AD、CE分别是边BC、AB上的高,垂足分别是D、E,AD、CE相交于点O,若∠B=60°,则
∠AOE的度数是( )
A.60°
B.50°
C.70°
D.80°
答案 A ∵AD⊥BC,∴∠BAD+∠B=90°,∵CE⊥AB,∴∠BAD+∠AOE=90°,∴∠AOE=∠B,∵∠B=60°,∴∠AOE=60°.故选
A.
3.在下列条件中:①∠A=∠C-∠B,②∠A∶∠B∶∠C=2∶3∶5,③∠A=90°-∠B,④∠B-∠C=90°,能确定△ABC是直角三
角形的条件有( )
A.1个
B.2个
C.3个
D.4个
答案 C ①因为∠A=∠C-∠B,所以∠A+∠B=∠C,则2∠C=180°,∠C=90°,所以△ABC是直角三角形;②因为∠A∶∠B∶∠C=2∶3∶5,所以设∠A=2x,则∠B=3x,∠C=5x,所以2x+3x+5x=180°,x=18°,则∠C=18°×5=90°,所以△ABC是直角三角形;③因为∠A=90°-∠B,所以∠A+∠B=90°,则∠C=180°-90°=90°,所以△ABC是直角三角形;④因为∠B-∠C=90°,所以∠B=90°+∠C,所以△ABC为钝角三角形.所以能确定△ABC是直角三角形的条件是①②③,共3个.故选C.
二、填空题
4.如图,AD是△ABC的高,∠B=∠BAD,∠C=55°,则∠BAC=.
答案80°
解析∵AD是△ABC的高,∴∠ADB=90°,∴∠B+∠BAD=90°,∵∠B=∠BAD,∴∠B=45°.在△ABC中,∠C=55°,∠B=45°,根据三角形的内角和定理得,∠BAC=180°-∠B-∠C=80°.
5.如图,在△ABC中,∠B=30°,∠C=70°,AD平分∠BAC,交BC于F,DE⊥BC于E,则∠D=.
答案20°
解析∵∠B=30°,∠C=70°,∴∠BAC=80°,∵AD平分∠BAC,∴∠FAC=40°,
∴∠AFC=180°-70°-40°=70°,∴∠EFD=70°,∵DE⊥BC于E,∴∠DEF=90°,
∴∠D=90°-70°=20°.
三、解答题
6.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF和∠FBC的度数.
解析在△A BC中,∠A=70°,CE,BF是两条高,∴∠EBF=20°,∠ECA=20°,
又∵∠BCE=30°,∴∠ACB=50°,∴在Rt△BCF中,∠FBC=40°.
7.如图,将两个完全相同的直角三角形叠放,使一个三角形的锐角顶点与另一个三角形的直角顶点重合,B,C,D三点在一
条直线上.请问:重叠部分的三角形是直角三角形吗?为什么?
解析重叠部分的三角形是直角三角形.理由如下:根据题意可知,∠A=∠EBD,∠A+∠ACB=90°,
∴∠EBD+∠ACB=90°,∴∠BFC=90°.∴△BFC是直角三角形.即重叠部分的三角形是直角三角形.。

相关文档
最新文档