北京市部分区2017届高三上学期考试数学理试题分类汇编:函数

合集下载

2017年高考北京理科数学试题及答案(word解析版)(K12教育文档)

2017年高考北京理科数学试题及答案(word解析版)(K12教育文档)

2017年高考北京理科数学试题及答案(word解析版)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年高考北京理科数学试题及答案(word解析版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年高考北京理科数学试题及答案(word解析版)(word版可编辑修改)的全部内容。

2017年普通高等学校招生全国统一考试(北京卷)数学(理科)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项. (1)【2017年北京,理1,5分】若集合–21{|}A x x =<<,–1{|}3B x x x =<>或,则A B =( )(A )1|}–2{x x <<- (B )3|}–2{x x << (C )1|}–1{x x << (D)3|}1{x x << 【答案】A【解析】{}21A B x x =-<<-,故选A .(2)【2017年北京,理2,5分】若复数()()1i i a -+在复平面内对应的点在第二象限,则实数a 的取值范围是( )(A )(),1-∞ (B )(),1-∞- (C )()1,+∞ (D )()1,-+∞ 【答案】B【解析】()()()()1i i 11i z a a a =-+=++-,因为对应的点在第二象限,所以1010a a +<⎧⎨->⎩,解得:1a <-,故选B .(3)【2017年北京,理3,5分】执行如图所示的程序框图,输出的s 值为( ) (A )2(B )32 (C )53 (D )85【答案】C【解析】0k =时,03<成立,第一次进入循环111,21k s +===,13<成立,第二次进入循环,2132,22k s +===,23<成立,第三次进入循环31523,332k s +===,33< 否,输出53s =,故选C .(4)【2017年北京,理4,5分】若x ,y 满足32x x y y x ≤⎧⎪+≥⎨⎪≤⎩,,, 则2x y +的最大值为( ) (A )1 (B)3 (C)5 (D )9 【答案】D【解析】如图,画出可行域,2z x y =+表示斜率为12-的一组平行线,当过点()3,3C 时,目标函数取得最大值max 3239z =+⨯=,故选D .(5)【2017年北京,理5,5分】已知函数1()3()3x x f x =-,则()f x ( )(A )是奇函数,且在R 上是增函数 (B)是偶函数,且在R 上是增函数(C )是奇函数,且在R 上是减函数 (D )是偶函数,且在R 上是减函数 【答案】A 【解析】()()113333xx xx f x f x --⎛⎫⎛⎫-=-=-=- ⎪⎪⎝⎭⎝⎭,所以函数是奇函数,并且3x 是增函数,13x⎛⎫ ⎪⎝⎭是减函数,根据增函数-减函数=增函数,所以函数是增函数故选A .(6)【2017年北京,理6,5分】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的( )(A)充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D)既不充分也不必要条件 【答案】A【解析】若0λ∃<,使m n λ=,即两向量反向,夹角是0180,那么0cos1800m n m n m n ⋅==-<,反过来,若0m n ⋅<,那么两向量的夹角为(0090,180⎤⎦ ,KS5U 并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分不必要条件,故选A .(7)【2017年北京,理7,5分】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )(A )32 (B )23 (C )22 (D)2 【答案】B【解析】几何体是四棱锥,如图,红色线为三视图还原后的几何体,最长的棱长为正方体的对角线,22222223l =++=,故选B .(8)【2017年北京,理8,5分】根据有关资料,围棋状态空间复杂度的上限M 约为3613,而可观测宇宙中普通物质的原子总数N 约为8010.则下列各数中与M N最接近的是( )(参考数据:30.48lg ≈)(A )3310(B )5310 (C )7310 (D )9310 【答案】D【解析】设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即MN最接近9310,故选D .第二部分(非选择题 共110分)二、填空题:共6小题,每小题5分,共30分。

北京市东城区2017届高三上学期期末数学试卷(理科)Word版含解析

北京市东城区2017届高三上学期期末数学试卷(理科)Word版含解析
2016-2017 学年北京市东城区高三(上)期末数学试卷(理科)
一、选择题(共 8 小题,每小题 5 分,共 40 分,在每小题给出的四个选项中,
选出符合题目要求的一项. )
1.已知集合 A={ x| (x﹣1)(x﹣3)< 0} , B={ x| 2<x<4} ,则 A∩B=( )
A.{ x| 1<x<3} B.{ x| 1<x<4} C. { x| 2<x<3} D.{ x| 2<x< 4}
长率 rn 会发生变化.如图描述了细菌在理想和实际两种状态下细菌数量 Q 随时 间的变化规律.那么,对这种细菌在实际条件下日增长率 rn 的规律描述正确的
是( )
A

B二、填空题共 6 小题,每小题 5 分,共 30 分. 9.若复数( 2﹣ i)( a+2i)是纯虚数,则实数 a= .
,则 λ= . 14.关于 x 的方程 g(x)=t(t ∈R)的实根个数记为 f(t ).若 g(x)=lnx,则 f
A.(﹣∞,﹣ 1] B.(﹣∞, 1] C.[ ﹣1,+∞) 7.某三棱锥的三视图如图所示,则该三棱锥的体积为(
D. [ 1,+∞) )
A. B. C.2 D. 8.数列 { an} 表示第 n 天午时某种细菌的数量.细菌在理想条件下第
n 天的日增
长率 rn=0.6(rn=
, n∈N*).当这种细菌在实际条件下生长时,其日增
10.若 x,y 满足
,则 x+2y 的最大值为 .
11.若点 P( 2,0)到双曲线
的一条渐近线的距离为 1,则 a= .
12.在△ ABC中,若 AB=2,AC=3,∠A=60°,则 BC= ; 若 AD⊥BC,则 AD= .

数学理卷·2017届北京市东城区高三上学期期末教学统一检测(带答案和解析)

数学理卷·2017届北京市东城区高三上学期期末教学统一检测(带答案和解析)

东城区2016-2017学年度第一学期期末统考高三理科数学 第一部分(选择题 共40分)一、选择题(共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项。

)(1)已知集合{|(1)(3)0}A x x x =--<,{|24}B x x =<<,则A B =(A ){|13}x x << (B ){|14}x x << (C ){|23}x x << (D ){|24}x x << (2)抛物线22y x =的准线方程是(A )1y =- (B )12y =- (C )1x =-(D )12x =-(3)“1k =”是“直线0kx y --=与圆229x y +=相切”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(4)执行如图所示的程序框图,输出的k 值为(A )6 (B )8(C )10 (D )12(5)已知,x y ∈R ,且0x y >>,则(A )tan tan 0x y -> (B )sin sin 0x x y y -> (C )ln ln 0x y +> (D )220xy->(6)已知()f x 是定义在R 上的奇函数,且在[0,)+∞上是增函数,则(1)0f x +≥的解集为正(主)视图俯视图侧(左)视图时间(天)(A )(,1]-∞- (B )(,1]-∞ (C )[1,)-+∞ (D )[1,)+∞ (7)某三棱锥的三视图如图所示,则该三棱锥的体积为 (A )23 (B )43(C )2(D )83(8)数列{}n a 表示第n 天午时某种细菌的数量.细菌在理想条件下第n 天的日增长率0.6n r =(*1n nn na a r n a +-=∈N ).当这种细菌在实际条件下生长时,其日增长率n r 会发生变化.下图描述了细菌在理想和实际两种状态下细菌数量Q 随时间的变化规律.那么,对这种细菌在实际条件下日增长率n r 的规律描述正确的是10(C )时间10时间(天)(D )0.0.0.第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

北京市部分区2017届高三上学期考试数学文试题分类汇编:函数

北京市部分区2017届高三上学期考试数学文试题分类汇编:函数

北京市部分区2017届高三上学期考试数学文试题分类汇编函数一、选择题1、(昌平区2017届高三上学期期末)下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是(A )xy e = (B )2log y x = (C )sin y x = (D )3y x =2、(朝阳区2017届高三上学期期中)下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是A .1y x =-B .tan y x =C .3y x =D .2yx=- 3、(朝阳区2017届高三上学期期中)已知函数21,0,()log ,0,x x f x x x +≤⎧=⎨>⎩则函数()1()()2g x f f x =-的零点个数是A .4B .3C .2D .14、(丰台区2017届高三上学期期末)已知函数()ln()sin f x x a x =+-.给出下列命题: ①当0a =时,(0e),x ∀∈,都有()0f x <; ②当e a ≥时,(0+),x ∀∈∞,都有()0f x >; ③当1a =时,0(2+),x ∃∈∞,使得0()=0f x . 其中真命题的个数是(A) 0 (B) 1 (C) 2 (D) 35、(海淀区2017届高三上学期期末)下列函数中,既是偶函数又在区间(0+)∞,上单调递增的是 A .1()2x y =B .2y x =-C .2log y x =D .||1y x =+6、(海淀区2017届高三上学期期中)已知函数,log a b y x y x ==的图象如图所示,则A.1b a >>B.1b a >>C.1a b >>D.1a b >>7、(海淀区2017届高三上学期期中)已知定义在R 上的函数若方程1()2f x =有两个不相等的实数根,则a 的取值范围是 A.1122a -≤≤ B.102a ≤< C.01a ≤< D.102a -<≤8、(石景山区2017届高三上学期期末)下列函数中既是奇函数又在区间(0,)+∞上单调递减的是( ) A .x y e -=B .ln()y x =-C .3y x =D .1y x=9、(通州区2017届高三上学期期末)下列函数中,既是偶函数又在区间()0,1内单调递减的是A .2y x = B .2xy =C .cos y x =D .ln y x =10、(通州区2017届高三上学期期末)已知函数()())20,0,x x f x x x ⎧≤⎪=⎨>⎪⎩若函数()()()1g x f x k x =--有且只有一个零点,则实数k 的取值范围是A .(1)-∞,-B .(0)∞,+C .(10)-,D .(1)0-∞∞,-(,+)11、(西城区2017届高三上学期期末)下列函数中,定义域为R 的奇函数是 (A )21y x =+ (B )tan y x = (C )2xy = (D )sin y x x =+ 12、(北京市第四中学2017届高三上学期期中)设3log 2a =,21log 8b =,2c = A .a b c >> B .c b a >> C .a c b >> D .c a b >>参考答案1、D2、C3、B4、B5、D6、A7、B8、D9、C 10、D 11、D 12、D二、填空题1、(昌平区2017届高三上学期期末)12,2,ln 2ee -三个数中最大的数是_________ .2、(朝阳区2017届高三上学期期中)已知 2.1log 0.6a =,0.62.1b =,0.5log 0.6c =,则a ,b ,c 的大小关系是 .3、(朝阳区2017届高三上学期期中)已知函数221,0,()(1)2,0,xmx x f x m x ⎧+≥=⎨-<⎩在(,)-∞+∞上具有单调性,则实数m 的取值范围是 .4、(东城区2017届高三上学期期末)已知函数1)(||)(+-=a x x x f .当0=a 时,函数)(x f 的单调递增区间为;若函数a x f x g -=)()(有3个不同的零点,则a 的取值范围为.5、(海淀区2017届高三上学期期中)计算1lg2lg 3lg54-+=___. 6、(石景山区2017届高三上学期期末)函数2()(3)1xf x x x =≥-的最大值为_______________. 7、(西城区2017届高三上学期期末)设函数30,()log ,,x a f x x x a =>⎪⎩≤≤其中0a >.① 若3a =,则[(9)]f f =____;② 若函数()2y f x =-有两个零点,则a 的取值范围是____.8、(北京市第四中学2017届高三上学期期中)设函数21()4()(2)1x a x f x x a x a x ⎧-<=⎨--≥⎩,①若1a =,则()f x 的最小值为______;②若()f x 恰有2个零点,则实数a 的取值范围是______ .9、(昌平区2017届高三上学期期末)若函数2,11,()ln ,1.x x f x x x a -⎧-≤<=⎨≤≤⎩①当2a =时,若()1f x =,则x =___________;②若()f x 的值域为[0,2],则a 的取值范围是________ .10、(北京市第四中学2017届高三上学期期中)已知:()f x 是定义在[1,1]-上的奇函数,且(1)1f =,若,[1,1]a b ∈-,且0a b +≠时,有()()0f a f b a b+>+恒成立.(Ⅰ)用定义证明函数()f x 在[1,1]-上是增函数;(Ⅱ)解不等式:1()(1)2f x f x +<-;(Ⅲ)若2()21f x m m ≤-+对所有[1,1]x ∈-恒成立,求:实数m 的取值范围.参考答案1、12e2、b c a >> 3、 4、(),-∞+∞,{}21aa << 5、3 6、37[4,9)8、 1-;11[2)2,,⎡⎫+∞⎪⎢⎣⎭; 9、0;122,e e ⎡⎤⎢⎥⎣⎦10、解:(Ⅰ)证明:设任意12,[1,1]x x ∈-且12x x <,由于()f x 是定义在[1,1]-上的奇函数,∴2121()()()()f x f x f x f x -=+- 因为12x x <,所以21()0x x +-≠,由已知有2121()()0()f x f x x x +->+-,∵2121()0x x x x +-=->,∴21()()0f x f x +->,即21()()f x f x >,所以函数()f x 在[1,1]-上是增函数. ………5分(Ⅱ)由不等式1()(1)2f x f x +<-得1112111112x x x x⎧-≤+≤⎪⎪-≤-≤⎨⎪⎪+<-⎩,解得104x ≤< ………9分(Ⅲ)由以上知()f x 最大值为(1)1f =,所以要使2()21f x m m ≤-+对所有[1,1]x ∈-,只需2121m m ≤-+恒成立, 得实数m 的取值范围为0m ≤或2m ≥. ………14分。

2017年北京市各区高三理科数学分类汇编----三角函数(学生版)

2017年北京市各区高三理科数学分类汇编----三角函数(学生版)

2017年北京市各区高三理科数学分类汇编----三角函数(学生版)(2017丰台期末)6.如果函数()sin f x x x ωω=的两个相邻零点间的距离为2,那么(1)(2)(3)(9)f f f f ++++L 的值为( )(A )1(B )-1(C(D)(2017通州期末)6.在△ABC 中,2a =,3B π=,△ABCb 等于( ) AB .1CD .2(2017昌平期末)(6) 已知函数()2sin()(0,)f x x πωϕωϕ=+><的图象如图所示,则函数()f x 的解析式的值为( ) (A) ()2sin(2)6f x x π=+(B ) ()2sin(2)3f x x π=+(C) ()2sin()6f x x π=+(D) ()2sin()3f x x π=+(2017年平谷期末)6.若将函数()sin()26πf x x =+的图像向右平移个单位,所得图像关于轴对称,则的最小正值是( ) A .3π B .43π C .32π D .125π(2017年东城一模)(7)将函数sin(2)6y x π=+的图象向左平移(0)m m >个单位长度,得到函数()y f x =图象在区间[,]1212π5π-上单调递减,则m 的最小值为( ) (A )12π (B )6π (C )4π (D )3π(2017年西城一模)3.函数22()sin cos f x x x =-的最小正周期是( )(A )2π (B )π (C )32π (D )2π(2017年石景山一模)4.设∈R θ,“sin cos θθ=”是“cos20θ=”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2017年平谷一模)6.若将函数()sin()26πf x x =+的图像向右平移个单位,所得图像关于轴对称,则的最小正值是( ) A .3π B .43π C .32π D .125π(2017年朝阳二模)4.已知函数π()sin()(0)6f x x >=+ωω的最小正周期为4π,则( ) A .函数()f x 的图象关于原点对称 B .函数()f x 的图象关于直线π3x =对称 C .函数()f x 图象上的所有点向右平移π3个单位长度后,所得的图象关于原点对称 D .函数()f x 在区间(0,π)上单调递增 (2017年顺义二模)7.将函数sin(2)6y x π=+图象上的点(M θ(0)4πθ<<向右平移(0)t t >个单位长度得到点'M .若'M 位于函数sin 2y x =的图象上,则( ) A.,12t πθ=的最小值为12πB. ,12t πθ=的最小值为6πC. ,6t πθ=的最小值为6πD. ,6t πθ=的最小值为12π填空题:(2017朝阳期末)12.在△ABC 中,已知45,B AC ∠=︒=,则C ∠= .(2017东城期末)(12)在△ABC 中,若2AB =,3AC =,60A ∠=,则BC =_______;若AD BC ⊥,则AD =_______.(2017西城期末)12.在△ABC 中,角,,A B C 的对边分别为,,a b c .若3c =,3C π=,sin 2sin B A =,则a =____.(2017海淀期末)13.已知函数π2sin()(0,)2y x ωϕωϕ=+><①若(0)1f =,则ϕ=__________;②若x ∃∈R ,使(2)()4f x f x +-=成立,则ω的最小值是____(2017石景山期末)11.在△ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c .a 15 ,b10 , A60o ,则cos B . (2017房山期末)10.函数f (x )=sinxcosx 的最小正周期是 .(2017昌平期末)(12) 已知角α终边经过点(3,4)P ,则cos2α=___________ .DCBA(2017年朝阳一模)(10)在△ABC 中,3A π∠=,3BC =,AB =,则C ∠=____. (2017年海淀一模)11.在∆ABC 中,cos c a B =. ①A =__90°___;②若1sin 3C =,则cos(π)B +=____. (2017年丰台一模)11. 在△ABC 中,若2b ac =,3π∠=B ,则A ∠= .(2017年石景山一模)12.如果将函数()sin(3)(π0)f x x ϕϕ=+-<<的图象向左平移π12个单位所得到的图象关于原点对称,那么ϕ=.(2017年东城二模)(12)如图,在四边形ABCD 中,45ABD ∠=,30ADB ∠=,1BC =,2DC =,1cos 4BCD ∠=,则BD = ;三角形ABD 的面积为___________.(2017年海淀二模)11.在ABC ∆中,2A B =,23a b =,则cos B _______.(2017年西城二模)11.在ABC △中,角A ,B ,C 的对边分别是a ,b ,c .若π3A =,a =,1b =,则c =____.(2017年丰台二模)11. 点A 从(10),出发,沿单位圆按逆时针方向运动到点B ,若点B 的坐标是34()55,-,记AOB α∠=,则sin 2α= . 解答题:(2017朝阳期末)15.(本小题满分13分)已知函数2()cos 2cos 1f x x x x =+-.(Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间[,]64ππ-上的最大值和最小值.(2017丰台期末)15.(本小题共13分)如图,在△ABC 中,D 是BC 上的点,3AC =,2CD =,AD =sin B =(Ⅰ)求角C 的大小; (Ⅱ)求边AB 的长.B(2017海淀期末)15.(本小题满分13分) 在ABC ∆中,2c a =,120B =︒,且ABC ∆(Ⅰ)求b 的值; (Ⅱ)求tan A 的值.(2017西城期末)15.(本小题满分13分)已知函数2π()sin(22cos 16f x x x ωω=-+-(0)ω>的最小正周期为π. (Ⅰ)求ω的值; (Ⅱ)求()f x 在区间7π[0,]12上的最大值和最小值.(2017东城期末)(16)(本小题13分)已知函数()2sin(2)(||)2f x x ϕϕπ=+<部分图象如图所示. (Ⅰ)求的最小正周期及图中0x 的值;(Ⅱ)求在区间上的最大值和最小值.15.(2017石景山期末)15.(本小题共 13 分)已知函数 f (x )2 3 sin x cos x2sin 2 x ,x R .(Ⅰ)求函数f (x ) 的最小正周期与单调增区间; (Ⅱ)求函数 f (x ) 在 π04⎡⎤⎢⎥⎣⎦,上的最大值与最小值.()f x ()f x [0,]2πDCB A(2017通州期末)15.(本小题满分13分) 已知函数()()22sin cos 2cos f x x x x =++. (Ⅰ)求)(x f 最小正周期;(Ⅱ)求)(x f 在区间π02[,]上的最大值和最小值.(2017房山期末)15.在△ABC 中,cosA=,c=,a=3.(Ⅰ)求sinC 的值; (Ⅱ)求△ABC 的面积.(2017昌平期末)(15)(本小题满分13分)已知∆ABC 是等边三角形,D 在BC 的延长线上,且2CD =,ABD S ∆=.(Ⅰ)求AB 的长; (Ⅱ)求sin CAD ∠的值.(2017年平谷期末) 15.(本小题满分13分)在ABC ∆中,角A ,B ,C 的对边分别是,,a b c,=asinC =.(Ⅰ)求边c 的值; (Ⅱ) 若42cos =C ,求ABC ∆的面积.(2017年朝阳一模)已知函数()sin (cos )0)2f x x x x ωωωω=+>的最小正周期为π2. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 的单调递减区间.(15)(本小题共13分)在△中,2π3C?. (Ⅰ)若225c a ab =+,求sin sin BA; (Ⅱ)求的最大值.(2017年海淀一模)已知π3是函数2()2cos sin 21f x x a x =++的一个零点.(Ⅰ)求实数a 的值; (Ⅱ)求()f x 单调递增区间.(2017年西城一模)在△ABC 中,角,,A B C 的对边分别为,,a b c ,且tan 2sin a C c A =.(Ⅰ)求角C 的大小;(Ⅱ)求sin sin A B +的取值范围.(2017年丰台一模)已知函数()sin()f x A x ω=(0)ω>的图象如图所示. (Ⅰ)求()f x 的解析式;(Ⅱ)若()()cos(2)6g x f x x π=⋅+,求()g x 在[0]2,π上的单调递减区间.ABC sin sin A B⋅已知c b a ,,分别是△ABC 的三个内角,,A B C 的三条对边,且222c a b ab =+-. (Ⅰ)求角C 的大小;(Ⅱ)求B A cos cos +的最大值.(2017年平谷一模) 15.(本小题满分13分)在ABC ∆中,角A ,B ,C 的对边分别是,,a b c,=asinC =.(Ⅰ)求边c 的值; (Ⅱ) 若42cos =C ,求ABC ∆的面积.(2017年朝阳二模) 15.(本小题满分13分)在△ABC 中, 角,,A B C 的对边分别为,,a b c ,且b c =,2sin B A =.(Ⅰ)求cos B 的值;(Ⅱ)若2a =,求△ABC 的面积.(2017年东城二模) (15)(本小题共13分)已知函数()2cos 2f x x a x =+⋅(a ÎR ).(Ⅰ)若π()26f =,求a 的值;(Ⅱ)若在7[,]1212ππ上单调递减,求的最大值.()f x ()f x(2017年海淀二模)已知函数3π3π()sin 2coscos2sin 55f x x x =-. (Ⅰ)求()f x 的最小正周期和对称轴的方程; (Ⅱ)求()f x 在区间π[0,]2上的最小值.(2017年西城二模)已知函数π()tan()4f x x =+. (Ⅰ)求()f x 的定义域;(Ⅱ)设(0,π)β∈,且π()2cos()4f ββ=-,求β的值.(2017年丰台二模)在锐角ABC △中,2sin a B b =. (Ⅰ)求∠A 的大小;cos()6B C π-+的最大值.(2017年顺义二模)在ABC △中,角A ,B ,C 的对边分别为,,a b c ,已知cos cos .2cos a b B+A c c C= (I )求C ∠的大小;(II )求sin B A 的最小值.。

(完整版)2017年高考北京理科数学试题及答案(解析版),推荐文档

(完整版)2017年高考北京理科数学试题及答案(解析版),推荐文档

2017 年普通高等学校招生全国统一考试(北京卷) 数学(理科)第一部分(选择题 共 40 分)一、选择题:本大题共 8 小题,每小题 5 分,共 40 分,在每小题列出的四个选项中,选出符合题目要求的一项.(1)【2017 年北京,理 1,5 分】若集合 A {x | –2 x 1} , B {x | x –1或x 3},则 A B =( )(A) {x | –2 x 1}(B) {x | –2 x 3}(C) {x | –1 x 1}(D) {x |1 x 3}【答案】A【解析】 A B x 2 x 1,故选 A.() 【2017 年北京,理 2,5 分】若复数 1 ia i 在复平面内对应的点在第二象限,则实数 a 的取值范围是()(A) ,1(B) , 1(C)1, (D)1, 【答案】B【解析】z1iaia11ai,因为对应的点在第二象限,所以a1 0,解得: a 1 ,故选1 a 0B.() 【2017 年北京,理 3,5 分】执行如图所示的程序框图,输出的 s 值为( )(A)23 (B)2(C) 5 3(D)8 5【答案】C【解析】k 0 时,0 3 成立,第一次进入循环11k 1, s 2 ,1 3 成立,第二次进入循环,1k2, s2 13,23成立,第三次进入循环k3,s3 21 5,33否,输出22332s5,3故选 C.x 3,() 【2017 年北京,理 4,5 分】若 x y 满足 x y 2,则 x 2 y 的最大值为( ),y x,(A)1(B)3(C)5(D)9【答案】D【解析】如图,画出可行域, z x 2 y 表示斜率为 1 的一组平行线,当过点 C 3, 3时,2目标函数取得最大值zmax323 f(9x),故3x选 (1D.() 【2017 年北京,理 5,5 分】已知函 数)x ,则 f (x) ( ) 3 (B)是偶函数,且在 R 上是增函数(A)是奇函数,且在 R 上是增函数(D)是偶函数,且在 R 上是减函数(C)是奇函数,且在 R 上是减函数【答案】A1【解析】 f x 3x 1x 1 x 3x f x,所以函数是奇函数,并且 3x 是增函数, 1x 是减函数,根 3 3 3 据增函数-减函数=增函数,所以函数是增函数故选 A.() 【2017 年北京,理 6,5 分】设 m,n 为非零向量,则“存在负数 ,使得 m n”是“ m n < 0 ”的()(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件【答案】A【解析】若 0 ,使m n,即两向量反向,夹角是1800,那么m n m n cos1800 m n0,反过来, 若 m n0,那么两向量的夹角为900,1800,KS5U 并不一定反向,即不一定存在负数 ,使得m n,所以是充分不必要条件,故选 A.() 【2017 年北京,理 7,5 分】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为 ()(A) 3 2(B) 2 3(C) 2 2(D)2【答案】B【解析】几何体是四棱锥,如图,红色线为三视图还原后的几何体,最长的棱长为正方体的对角线, l 22 22 22 2 3 ,故选 B.() 【2017 年北京,理 8,5 分】根据有关资料,围棋状态空间复杂度的上限 M 约为 3361 , 而可M观 (测参宇考宙数中据普:通lg物3质 0的.4原8 子)总数 N 约为1080 .则下列各数中与 N 最接近的是( )(A) 1033【答案】D【解析】设 M x 3361N1080(B) 1053(C) 1073(D) 109333613618093.28,两边取对数,lgxlg 1080lg 3 lg10 361 lg 3 80 93.28 ,所以 x 10,即 M 最接近1093 ,故选 D. N第二部分(非选择题 共 110 分)二、填空题:共 6 小题,每小题 5 分,共 30 分。

北京市东城区2017届高三(上)期末数学试卷(理科)(解析版)

北京市东城区2017届高三(上)期末数学试卷(理科)(解析版)

2016-2017学年北京市东城区高三(上)期末数学试卷(理科)一、选择题(共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项.)1.已知集合A={x|(x﹣1)(x﹣3)<0},B={x|2<x<4},则A∩B=()A.{x|1<x<3}B.{x|1<x<4}C.{x|2<x<3}D.{x|2<x<4}2.抛物线y2=2x的准线方程是()A.y=﹣1 B.C.x=﹣1 D.3.“k=1”是“直线与圆x2+y2=9相切”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.执行如图所示的程序框图,输出的k值为()A.6 B.8 C.10 D.125.已知x,y∈R,且x>y>0,则()A.tanx﹣tany>0 B.xsinx﹣ysiny>0C.lnx+lny>0 D.2x﹣2y>06.已知f(x)是定义在R上的奇函数,且在[0,+∞)上是增函数,则f(x+1)≥0的解集为()A.(﹣∞,﹣1]B.(﹣∞,1]C.[﹣1,+∞)D.[1,+∞)7.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.B.C.2 D.8.数列{a n}表示第n天午时某种细菌的数量.细菌在理想条件下第n天的日增长率r n=0.6(r n=,n∈N*).当这种细菌在实际条件下生长时,其日增长率r n会发生变化.如图描述了细菌在理想和实际两种状态下细菌数量Q随时间的变化规律.那么,对这种细菌在实际条件下日增长率r n的规律描述正确的是()A.B.C.D.二、填空题共6小题,每小题5分,共30分.9.若复数(2﹣i)(a+2i)是纯虚数,则实数a=.10.若x,y满足,则x+2y的最大值为.11.若点P(2,0)到双曲线的一条渐近线的距离为1,则a=.12.在△ABC中,若AB=2,AC=3,∠A=60°,则BC=;若AD⊥BC,则AD=.13.在△ABC所在平面内一点P,满足,延长BP交AC于点D,若,则λ=.14.关于x的方程g(x)=t(t∈R)的实根个数记为f(t).若g(x)=lnx,则f(t)=;若g(x)=(a∈R),存在t使得f(t+2)>f (t)成立,则a的取值范围是.三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.)15.已知{a n}是等比数列,满足a1=3,a4=24,数列{a n+b n}是首项为4,公差为1的等差数列.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)求数列{b n}的前n项和.16.已知函数部分图象如图所示.(Ⅰ)求f(x)的最小正周期及图中x0的值;(Ⅱ)求f(x)在区间[0,]上的最大值和最小值.17.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PCD⊥平面ABCD,BC=1,AB=2,,E为PA中点.(Ⅰ)求证:PC∥平面BED;(Ⅱ)求二面角A﹣PC﹣D的余弦值;(Ⅲ)在棱PC上是否存在点M,使得BM⊥AC?若存在,求的值;若不存在,说明理由.18.设函数.(Ⅰ)若f(0)为f(x)的极小值,求a的值;(Ⅱ)若f(x)>0对x∈(0,+∞)恒成立,求a的最大值.19.已知椭圆C:=1(a>b>0)经过点M(2,0),离心率为.A,B是椭圆C上两点,且直线OA,OB的斜率之积为﹣,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)若射线OA上的点P满足|PO|=3|OA|,且PB与椭圆交于点Q,求的值.20.已知集合A n={(x1,x2,…,x n)|x i∈{﹣1,1}(i=1,2,…,n)}.x,y∈A n,x=(x1,x2,…,x n),y=(y1,y2,…,y n),其中x i,y i∈{﹣1,1}(i=1,2,…,n).定义x⊙y=x1y1+x2y2+…+x n y n.若x⊙y=0,则称x与y正交.(Ⅰ)若x=(1,1,1,1),写出A4中与x正交的所有元素;(Ⅱ)令B={x⊙y|x,y∈A n}.若m∈B,证明:m+n为偶数;(Ⅲ)若A⊆A n,且A中任意两个元素均正交,分别求出n=8,14时,A中最多可以有多少个元素.2016-2017学年北京市东城区高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项.)1.已知集合A={x|(x﹣1)(x﹣3)<0},B={x|2<x<4},则A∩B=()A.{x|1<x<3}B.{x|1<x<4}C.{x|2<x<3}D.{x|2<x<4}【考点】交集及其运算.【分析】化简集合A,由集合交集的定义,即可得到所求.【解答】解:集合A={x|(x﹣1)(x﹣3)<0}={x|1<x<3},B={x|2<x<4},则A∩B={x|2<x<3}.故选:C.2.抛物线y2=2x的准线方程是()A.y=﹣1 B.C.x=﹣1 D.【考点】抛物线的简单性质.【分析】直接利用抛物线方程写出准线方程即可.【解答】解:抛物线y2=2x的准线方程是:x=﹣.故选:D.3.“k=1”是“直线与圆x2+y2=9相切”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据直线和圆相切得到关于k的方程,解出即可.【解答】解:若直线与圆x2+y2=9相切,则由得:(1+k2)x2﹣6kx+9=0,故△=72k2﹣36(1+k2)=0,解得:k=±1,故“k=1”是“直线与圆x2+y2=9相切”的充分不必要条件,故选:A.4.执行如图所示的程序框图,输出的k值为()A.6 B.8 C.10 D.12【考点】程序框图.【分析】模拟程序的运行,依次写出每次循环得到的k,S的值,可得当S=时不满足条件S≤,退出循环,输出k的值为8,即可得解.【解答】解:模拟程序的运行,可得S=0,k=0满足条件S≤,执行循环体,k=2,S=满足条件S≤,执行循环体,k=4,S=+满足条件S≤,执行循环体,k=6,S=++满足条件S≤,执行循环体,k=8,S=+++=不满足条件S ≤,退出循环,输出k 的值为8.故选:B .5.已知x ,y ∈R ,且x >y >0,则( )A .tanx ﹣tany >0B .xsinx ﹣ysiny >0C .lnx +lny >0D .2x ﹣2y >0【考点】函数单调性的性质.【分析】利用函数单调性和特殊值依次判断选项即可.【解答】解:x ,y ∈R ,且x >y >0,对于A :当x=,y=时,tan =,tan=,显然不成立;对于B :当x=π,y=时,πsinπ=﹣π,﹣sin =﹣1,显然不成立;对于C :lnx +lny >0,即ln (xy )>ln1,可得xy >0,∵x >y >0,那么xy 不一定大于0,显然不成立;对于D :2x ﹣2y >0,即2x >2y ,根据指数函数的性质可知:x >y ,恒成立. 故选D6.已知f (x )是定义在R 上的奇函数,且在[0,+∞)上是增函数,则f (x +1)≥0的解集为( )A .(﹣∞,﹣1]B .(﹣∞,1]C .[﹣1,+∞)D .[1,+∞)【考点】奇偶性与单调性的综合.【分析】根据函数奇偶性和单调性之间的关系进行转化求解即可.【解答】解:∵f (x )是定义在R 上的奇函数,且在[0,+∞)上是增函数, ∴函数在(﹣∞,+∞)上是增函数,∵f (0)=0,∴不等式f (x +1)≥0等价为f (x +1)≥f (0),则x +1≥0,得x ≥﹣1,即不等式的解集为[﹣1,+∞),故选:C7.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.B.C.2 D.【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【分析】由已知中的三视图可得:该几何体是一个以俯视图中右下角的三角形为底面的三棱锥,代入棱锥体积公式,可得答案.【解答】解:由已知中的三视图可得:该几何体是一个以俯视图中左上角的三角形为底面的三棱锥,其直观图如下图所示:其底面面积S=×2×2=2,高h=2,故棱锥的体积V==,故选:B.8.数列{a n}表示第n天午时某种细菌的数量.细菌在理想条件下第n天的日增长率r n=0.6(r n=,n∈N*).当这种细菌在实际条件下生长时,其日增长率r n会发生变化.如图描述了细菌在理想和实际两种状态下细菌数量Q随时间的变化规律.那么,对这种细菌在实际条件下日增长率r n的规律描述正确的是()A.B.C.D.【考点】散点图.【分析】由图象可知,第一天到第六天,实际情况与理想情况重合,r1=r2=r6=0.6为定值,而实际情况在第10天后增长率是降低的,并且降低的速度是变小的,即可得出结论.【解答】解:由图象可知,第一天到第六天,实际情况与理想情况重合,r1=r2=r6=0.6为定值,而实际情况在第10天后增长率是降低的,并且降低的速度是变小的,故选B.二、填空题共6小题,每小题5分,共30分.9.若复数(2﹣i)(a+2i)是纯虚数,则实数a=﹣1.【考点】复数的基本概念.【分析】利用复数的运算法则、纯虚数的定义即可得出.【解答】解:∵复数(2﹣i)(a+2i)=(2a+2)+(4﹣a)i是纯虚数,∴2a+2=0,4﹣a≠0,解得a=﹣1.故答案为:﹣1.10.若x,y满足,则x+2y的最大值为6.【考点】简单线性规划.【分析】设z=x+2y,作出不等式组对应的平面区域,利用线性规划的知识进行求解即可.【解答】解:作出不等式组对应的平面区域,设z=x+2y,由z=x+2y,得y=,平移直线y=,由图象可知当直线经过点A时,直线y=的截距最大,此时z最大,由,得,即A(2,2)此时z=2+2×2=6.故答案为:611.若点P(2,0)到双曲线的一条渐近线的距离为1,则a=.【考点】直线与双曲线的位置关系;双曲线的简单性质.【分析】求出双曲线的渐近线方程,利用点到直线的距离公式列出方程求解即可.【解答】解:双曲线的一条渐近线方程为:x+ay=0,点P(2,0)到双曲线的一条渐近线的距离为1,可得:=1,解得a=.故答案为:.12.在△ABC中,若AB=2,AC=3,∠A=60°,则BC=;若AD⊥BC,则AD=.【考点】三角形中的几何计算.【分析】利用余弦定理求BC,利用面积公式求出AD.【解答】解:∵AB=2,AC=3,∠A=60°,∴由余弦定理可得BC==,=,∴AD=,故答案为,.13.在△ABC所在平面内一点P,满足,延长BP交AC于点D,若,则λ=.【考点】平面向量的基本定理及其意义.【分析】用特殊值法,不妨设△ABC是等腰直角三角形,腰长AB=AC=1,建立直角坐标系,利用坐标法和向量共线,求出点D的坐标,即可得出λ的值.【解答】解:根据题意,不妨设△ABC是等腰直角三角形,且腰长AB=AC=1,建立直角坐标系,如图所示,则A(0,0),B(1,0),C(0,1),∴=(1,0),=(0,1);∴=+=(,),∴=﹣=(﹣,);设点D(0,y),则=(﹣1,y),由、共线,得y=,∴=(0,),=(0,1),当时,λ=.故答案为:.14.关于x的方程g(x)=t(t∈R)的实根个数记为f(t).若g(x)=lnx,则f(t)=1;若g(x)=(a∈R),存在t使得f(t+2)>f(t)成立,则a的取值范围是a>1.【考点】分段函数的应用.【分析】若g(x)=lnx,则函数的值域为R,且函数为单调函数,故方程g(x)=t有且只有一个根,故f(t)=1,若g(x)=(a∈R),存在t使得f(t+2)>f(t)成立,则x>0时,函数的最大值大于2,且对称轴位于y轴右侧,解得答案.【解答】解:若g(x)=lnx,则函数的值域为R,且函数为单调函数,故方程g(x)=t有且只有一个根,故f(t)=1,g(x)=,当t≤0时,f(t)=1恒成立,若存在t使得f(t+2)>f(t)成立,则x>0时,函数的最大值大于2,且对称轴位于y轴右侧,即,解得:a>1,故答案为:1,a>1三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.)15.已知{a n}是等比数列,满足a1=3,a4=24,数列{a n+b n}是首项为4,公差为1的等差数列.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)求数列{b n}的前n项和.【考点】数列的求和;等差数列与等比数列的综合.【分析】(Ⅰ)利用等差数列、等比数列的通项公式先求得公差和公比,即可求数列的通项公式;(Ⅱ)利用分组求和的方法求解数列的和,由等差数列及等比数列的前n项和公式即可求解数列的和.【解答】解:(Ⅰ)设等比数列{a n}的公比为q.a1=3,a4=24得q3==8,q=2.所以a n=3•2n﹣1.又数列{a n+b n}是首项为4,公差为1的等差数列,所以a n+b n=4+(n﹣1)=n+3.从而b n=n+3﹣3•2n﹣1.(Ⅱ)由(Ⅰ)知b n=n+3﹣3•2n﹣1.数列{n+3}的前n项和为.数列{3•2n﹣1}的前n项和为=3×2n﹣3.所以,数列{b n}的前n项和为为﹣3×2n+3.16.已知函数部分图象如图所示.(Ⅰ)求f(x)的最小正周期及图中x0的值;(Ⅱ)求f(x)在区间[0,]上的最大值和最小值.【考点】三角函数的周期性及其求法;由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】(Ⅰ)根据函数的部分图象得出最小正周期T以及x0的值;(Ⅱ)写出f(x)的解析式,利用正弦函数的图象与性质即可求出f(x)在区间[0,]上的最值.【解答】解:(Ⅰ)∵函数,∴函数的最小正周期为T==π;…因为点(0,1)在f(x)=2sin(2x+φ)的图象上,所以2sin(2×0+φ)=1;又因为|φ|<,所以φ=,…令2x+=,解得x=,所以x0=π+=;…(Ⅱ)由(Ⅰ)知f(x)=2sin(2x+),因为0≤x≤,所以≤2x+≤;当2x+=,即x=时,f(x)取得最大值2;当2x+=,即x=时,f(x)取得最小值﹣1.…17.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PCD⊥平面ABCD,BC=1,AB=2,,E为PA中点.(Ⅰ)求证:PC∥平面BED;(Ⅱ)求二面角A﹣PC﹣D的余弦值;(Ⅲ)在棱PC上是否存在点M,使得BM⊥AC?若存在,求的值;若不存在,说明理由.【考点】二面角的平面角及求法;直线与平面平行的判定;直线与平面垂直的性质.【分析】(Ⅰ)设AC与BD的交点为F,连结EF,推导出EF∥PC.由此能证明PC∥平面BED.(Ⅱ)取CD中点O,连结PO.推导出PO⊥CD,取AB中点G,连结OG,建立空间直角坐标系O﹣xyz,利用向量法能求出二面角A﹣PC﹣B的余弦值.(Ⅲ)设M是棱PC上一点,则存在λ∈[0,1]使得.利用向量法能求出在棱PC上存在点M,使得BM⊥AC.此时,=【解答】(共14分)证明:(Ⅰ)设AC与BD的交点为F,连结EF.因为ABCD为矩形,所以F为AC的中点.在△PAC中,由已知E为PA中点,所以EF∥PC.又EF⊂平面BFD,PC⊄平面BFD,所以PC∥平面BED.…(Ⅱ)取CD中点O,连结PO.因为△PCD是等腰三角形,O为CD的中点,所以PO⊥CD.又因为平面PCD⊥平面ABCD,PO⊂平面PCD,所以PO⊥平面ABCD.取AB中点G,连结OG,由题设知四边形ABCD为矩形,所以OF⊥CD.所以PO⊥OG.…如图建立空间直角坐标系O﹣xyz,则A(1,﹣1,0),C(0,1,0),P(0,0,1),D(0,﹣1,0),B(1,1,0),O(0,0,0),G(1,0,0).=(﹣1,2,0),=(0,1,﹣1).设平面PAC的法向量为=(x,y,z),则,令z=1,得=(2,1,1).平面PCD的法向量为=(1,0,0).设的夹角为α,所以cosα==.由图可知二面角A﹣PC﹣D为锐角,所以二面角A﹣PC﹣B的余弦值为.…(Ⅲ)设M是棱PC上一点,则存在λ∈[0,1]使得.因此点M(0,λ,1﹣λ),=(﹣1,λ﹣1,1﹣λ),=(﹣1,2,0).由,得1+2(λ﹣1)=0,解得.因为∈[0,1],所以在棱PC上存在点M,使得BM⊥AC.此时,=.…18.设函数.(Ⅰ)若f(0)为f(x)的极小值,求a的值;(Ⅱ)若f(x)>0对x∈(0,+∞)恒成立,求a的最大值.【考点】利用导数研究函数的极值;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求出函数f(x)的导数,计算f′(0)=0,求出a的值检验即可;(Ⅱ)通过讨论a的范围判断函数的单调性结合f(x)>0对x∈(0,+∞)恒成立,求出a的具体范围即可.【解答】解:(Ⅰ)f(x)的定义域为(﹣1,+∞),因为,所以f′(x)=﹣,因为f(0)为f(x)的极小值,所以f′(0)=0,即﹣=0,所以a=1,此时,f′(x)=,当x∈(﹣1,0)时,f′(x)<0,f(x)单调递减;当x∈(0,+∞)时,f′(x)>0,f(x)单调递增.所以f(x)在x=0处取得极小值,所以a=1.…(Ⅱ)由(Ⅰ)知当a=1时,f(x)在[0,+∞)上为单调递增函数,所以f(x)>f(0)=0,所以f(x)>0对x∈(0,+∞)恒成立.因此,当a<1时,f(x)=ln(x+1)﹣>ln(x+1)﹣>0,f(x)>0对x∈(0,+∞)恒成立.当a>1时,f′(x)=,所以,当x∈(0,a﹣1)时,f′(x)<0,因为f(x)在[0,a﹣1)上单调递减,所以f(a﹣1)<f(0)=0,所以当a>1时,f(x)>0并非对x∈(0,+∞)恒成立.综上,a的最大值为1.…19.已知椭圆C:=1(a>b>0)经过点M(2,0),离心率为.A,B是椭圆C上两点,且直线OA,OB的斜率之积为﹣,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)若射线OA上的点P满足|PO|=3|OA|,且PB与椭圆交于点Q,求的值.【考点】直线与椭圆的位置关系;椭圆的标准方程.【分析】(Ⅰ)由题意得,求出b,由此能求出椭圆C的方程;(Ⅱ)设A(x1,y1),B(x2,y2),Q(x3,y3),求出p点的坐标,由B,Q,P 三点共线,得,联立方程组求解得x3,y3,再结合已知条件能求出λ值,则的值可求.【解答】解:(Ⅰ)由题意得,解得.∴椭圆C的方程为;(Ⅱ)设A(x1,y1),B(x2,y2),Q(x3,y3),∵点P在直线AO上且满足|PO|=3|OA|,∴P(3x1,3y1).∵B,Q,P三点共线,∴.∴(3x1﹣x2,3y1﹣y2)=λ(x3﹣x2,y3﹣y2),即,解得,∵点Q在椭圆C上,∴.∴.即,∵A,B在椭圆C上,∴,.∵直线OA,OB的斜率之积为,∴,即.∴,解得λ=5.∴=|λ|=5.20.已知集合A n={(x1,x2,…,x n)|x i∈{﹣1,1}(i=1,2,…,n)}.x,y∈A n,x=(x1,x2,…,x n),y=(y1,y2,…,y n),其中x i,y i∈{﹣1,1}(i=1,2,…,n).定义x⊙y=x1y1+x2y2+…+x n y n.若x⊙y=0,则称x与y正交.(Ⅰ)若x=(1,1,1,1),写出A4中与x正交的所有元素;(Ⅱ)令B={x⊙y|x,y∈A n}.若m∈B,证明:m+n为偶数;(Ⅲ)若A⊆A n,且A中任意两个元素均正交,分别求出n=8,14时,A中最多可以有多少个元素.【考点】数列的应用.【分析】(Ⅰ)由子集定义直接写出答案;(Ⅱ)根据题意分别表示出m,n即可;(Ⅲ)根据两个元素均正交的定义,分别求出n=8,14时,A中最多可以有多少个元素即可.【解答】解:(Ⅰ)A4中所有与x正交的元素为(﹣1,﹣1,1,1)(1,1,﹣1,﹣1),(﹣1,1,﹣1,1),(﹣1,1,1,﹣1),(1,﹣1,﹣1,1),(1,﹣1,1,﹣1).…(Ⅱ)对于m∈B,存在x=(x1,x2,…,x n),x i∈{﹣1,1},y=(y1,y2,…,y n),其中x i,y i∈{﹣1,1};使得x⊙y=m.令,;当x i=y i时,x i y i=1,当x i≠y i时,x i y i=﹣1.那么x⊙y=.所以m+n=2k﹣n+n=2k为偶数.…(Ⅲ)8个,2个n=8时,不妨设x1=,x2=(﹣1,﹣1,﹣1,﹣1,1,1,1,1).(1,1,1,1,1,1,1,1)在考虑n=4时,共有四种互相正交的情况即:(1,1,1,1),(﹣1,1,﹣1,1),(﹣1,﹣1,1,1),(1,﹣1,﹣1,1)分别与x1,x2搭配,可形成8种情况.所以n=8时,A中最多可以有8个元素.…N=14时,不妨设y1=(1,1…1,1),(14个1),y2=(﹣1,﹣1…﹣1,1,1…1)(7个1,7个﹣1),则y1与y2正交.令a=(a1,a2,…a14),b=(b1,b2,…b14),c=(c1,c2,…c14)且它们互相正交.设a、b、c相应位置数字都相同的共有k个,除去这k列外a、b相应位置数字都相同的共有m个,c、b相应位置数字都相同的共有n个.则a⊙b=m+k﹣(14﹣m﹣k)=2m+2k﹣14.所以m+k=7,同理n+k=7.可得m=n.由于a⊙c=﹣m﹣m+k+(14﹣k﹣2m)=0,可得2m=7,m=矛盾.所以任意三个元素都不正交.综上,n=14时,A中最多可以有2个元素.…2017年1月21日。

北京市海淀区2017届高三上学期期末考试数学理试题(全Word版,含答案)模板

北京市海淀区2017届高三上学期期末考试数学理试题(全Word版,含答案)模板

海淀区高三年级第一学期期末练习数学(理科) 2017.1本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项.1.抛物线22y x =的焦点到准线的距离为A .12B .1C .2D .32.在极坐标系中,点π(1,)4与点3π(1,)4的距离为A .1 BCD3.右侧程序框图所示的算法来自于《九章算术》.若输入a 的值为16,b 的值为24,则执行该程序框图输出的结果为A .6B .7C .8D .94.已知向量,a b 满足2+=0a b ,()2+⋅=a b a ,则⋅=a bA .12-B .12C .2-D .25.已知直线l 经过双曲线2214x y -=的一个焦点且与其一条渐近线平行,则直线l 的方程可能是A.12y x =- B.12y x =C.2y x =- D.2y x =-6.设,x y 满足0,20,2,x y x y x -≤⎧⎪+-≥⎨⎪≤⎩则22(1)x y ++的最小值为A .1B .92C .5D .97.在手绘涂色本的某页上画有排成一列的6条未涂色的鱼,小明用红、蓝两种颜色给这些鱼涂色,每条鱼只能涂一种颜色,两条相邻的鱼不.都.涂成红色....,涂色后,既有红色鱼又有蓝色鱼的涂色方法种数为 A .14B .16C .18D .208.如图,已知正方体1111ABCD A B C D -的棱长为1,,E F 分别是棱AD ,B 1C 1上的动点,设1,AE x B F y ==.若棱.1DD 与平面BEF 有公共点,则x y +的取值范围是 A .[0,1] B .13[,]22 C .[1,2]D .3[,2]2二、填空题共6小题,每小题5分,共30分. 9.已知复数z 满足(1i)2z +=,则z =________.10.在261()x x+的展开式中,常数项为________.(用数字作答)11.若一个几何体由正方体挖去一部分得到,其三视图如图所示,则该几何体的体积为________.12.已知圆C :2220x x y -+=,则圆心坐标为_____;若直线l 过点(1,0)-且与圆C 相切,则直线l 的方程为____________.13.已知函数2sin()y x ωϕ=+π(0,||)2ωϕ><.① 若(0)1f =,则ϕ=________;② 若x ∃∈R ,使(2)()4f x f x +-=成立,则ω的最小值是________.14.已知函数||()e cos πx f x x -=+,给出下列命题:①()f x 的最大值为2;②()f x 在(10,10)-内的零点之和为0; ③()f x 的任何一个极大值都大于1. 其中所有正确命题的序号是________.俯视图主视图ABCD1D 1A 1B 1C E F三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程. 15.(本小题满分13分)在∆ABC 中,2c a =,120B = ,且∆ABC. (Ⅰ)求b 的值; (Ⅱ)求tan A 的值.16.(本小题满分13分)诚信是立身之本,道德之基.某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“周实际回收水费周投入成本”表示每周“水站诚信度”.为了便于数据分析,以四周为一周期......,下表为该水站连续十二周(共三个周期)的诚信度数据统计:第一周 第二周 第三周 第四周 第一个周期95% 98% 92% 88% 第二个周期94% 94% 83% 80% 第三个周期 85% 92% 95%96%(Ⅰ)计算表中十二周“水站诚信度”的平均数x ;(Ⅱ)分别从上表每个周期的4个数据中随机抽取1个数据,设随机变量X 表示取出的3个数据中“水站诚信度”超过91%的数据的个数,求随机变量X 的分布列和期望;(Ⅲ)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动.根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.17.(本小题满分14分)如图1,在梯形ABCD 中,//AB CD ,90ABC ∠= ,224AB CD BC ===,O 是边AB 的中点.将三角形AOD 绕边OD 所在直线旋转到1A OD 位置,使得1120AOB ∠= ,如图2.设m 为平面1A DC 与平面1A OB 的交线.(Ⅰ)判断直线DC 与直线m 的位置关系并证明; (Ⅱ)若直线m 上的点G 满足1OG A D ⊥,求出1A G 的长; (Ⅲ)求直线1A O 与平面1A BD 所成角的正弦值.AOBCD1图ODCB2图1A18.(本小题满分13分)已知(0,2),(3,1)A B 是椭圆G :22221(0)x y a b a b+=>>上的两点.(Ⅰ)求椭圆G 的离心率;(Ⅱ)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程.19. (本小题满分14分)已知函数()ln 1af x x x=--. (Ⅰ)若曲线()y f x =存在斜率为1-的切线,求实数a 的取值范围;(Ⅱ)求()f x 的单调区间;(Ⅲ)设函数()ln x ag x x+=,求证:当10a -<<时,()g x 在(1,)+∞上存在极小值.20.(本小题满分13分)对于无穷数列{}n a ,{}n b ,若1212max{,,,}min{,,,}(1,2,3,)k k k b a a a a a a k =-= ,则称{}n b 是{}n a 的“收缩数列”.其中,12max{,,,}k a a a ,12min{,,,}k a a a 分别表示12,,,k a a a 中的最大数和最小数.已知{}n a 为无穷数列,其前n 项和为n S ,数列{}n b 是{}n a 的“收缩数列”. (Ⅰ)若21n a n =+,求{}n b 的前n 项和; (Ⅱ)证明:{}n b 的“收缩数列”仍是{}n b ; (Ⅲ)若121(1)(1)22n n n n n n S S S a b +-+++=+ (1,2,3,)n = ,求所有满足该条件的{}n a .海淀区高三年级第一学期期末练习数学(理科)答案及评分标准2017.1一、选择题(共8小题,每小题5分,共40分)1.B2.B3. C4.C5.A6. B7.D8.C 二、填空题(共6小题,每小题5分,共30分,9. 1i -10.15 11.16312.(1,0);1)y x =+和1)y x =+13.π6,π214.①②③三、解答题(共6小题,共80分) 15.(本小题满分13分)解:(Ⅰ)由∆ABC 面积公式及题设得1sin 2S ac B ==122a a ⨯=解得1,2,a c ==由余弦定理及题设可得2222cos b a c ac B =+-114212()72=+-⨯⨯⨯-=,又0,b b >∴=. (不写b>0不扣分)(Ⅱ)在∆ABC 中,由正弦定理sin sin a bA B =得:sin sin a A B b == 又120B = ,所以A 是锐角(或:因为12,a c =<=)所以cos A ==所以sin tan cos A A A == 16. (本小题满分13分)解:(Ⅰ)十二周“水站诚信度”的平均数为x =95+98+92+88+94+94+83+80+85+92+95+96=91%12100⨯(Ⅱ)随机变量X 的可能取值为0,1,2,3三个周期“水站诚信度”超过91%分别有3次,2次,3次1212(0)44464P X ==⨯⨯=32112112314(1)44444444464P X==⨯⨯+⨯⨯+⨯⨯=32132132330(2)44444444464P X==⨯⨯+⨯⨯+⨯⨯=32318(3)44464P X==⨯⨯=随机变量X的分布列为X0 1 2 3P 1327321532932171590123232323232EX=⨯+⨯+⨯+⨯=.(Ⅲ)本题为开放问题,答案不唯一,在此给出评价标准,并给出可能出现的答案情况,阅卷时按照标准酌情给分.给出明确结论,1分,结合已有数据,能够运用以下三个标准中的任何一个陈述得出该结论的理由,2分.标准1:会用主题活动前后的百分比变化进行阐述标准2:会用三个周期的诚信度平均数变化进行阐述标准3:会用主题活动前后诚信度变化趋势进行阐述可能出现的作答情况举例,及对应评分标准如下:情况一:结论:两次主题活动效果均好.(1分)理由:活动举办后,“水站诚信度”由88%→94%和80%→85%看出,后继一周都有提升.(2分)情况二:结论:两次主题活动效果都不好.(1分)理由:三个周期的“水站诚信度”平均数分别为93.25%,87.75%,92%(平均数的计算近似即可),活动进行后,后继计算周期的“水站诚信度”平均数和第一周期比较均有下降.(2分)情况三:结论:第一次主题活动效果好于第二次主题活动.(1分)理由:第一次主题活动举办的后继一周“水站诚信度”提升百分点(94%-88%=6%)高于第二次主题活动举办的后继一周“水站诚信度”提升百分点(85%-80%=5%).(2分)情况四:结论:第二次主题活动效果好于第一次主题活动.(1分)理由:第一次活动后“水站诚信度”虽有上升,但两周后又有下滑,第二次活动后,“水站诚信度”数据连续四周呈上升趋势. (2分)(答出变化)情况五:结论:两次主题活动累加效果好.(1分)理由:两次主题活动“水站诚信度”均有提高,且第二次主题活动后数据提升状态持续周期好.(2分)情况六:以“‘两次主题活动无法比较’作答,只有给出如下理由才给3分:“12个数据的标准差较大,尽管平均数差别不大,但比较仍无意义”.给出其他理由,则结论和理由均不得分(0分).说明:①情况一和情况二用极差或者方差作为得出结论的理由,只给结论分1分,不给理由分2分.②以下情况不得分. 情况七:结论及理由“只涉及一次主题活动,理由中无法辩析是否为两次活动后数据比较之结果”的. 例:结论:第二次主题活动效果好.理由:第二次主题活动后诚信度有提高.③其他答案情况,比照以上情况酌情给分,赋分原则是:遵循三个标准,能使用表中数据解释所得结论.17. (本小题满分14分) 解:(Ⅰ)直线DC //m .证明:由题设可得//,CD OB 1CD AOB ⊄平面,1OB AOB ⊂平面, 所以//CD 平面1A OB .又因为CD ⊂平面1A DC ,平面1A DC 平面1A OB m = 所以//CD m .法1:(Ⅱ)由已知224AB CD BC ===,O 是边AB 的中点,//AB CD ,所以//CD OB ,因为90ABC ∠= ,所以四边形CDOB 是正方形, 所以在图1中DO AB ⊥,所以结合题设可得,在图2中有1DO OA ⊥,DO OB ⊥, 又因为1OA OB O = , 所以1DO AOB ⊥平面. 在平面AOB 内作OM 垂直OB 于M ,则DO OM ⊥. 如图,建立空间直角坐标系O xyz -,则11,0),(0,2,0),(0,0,2)A B D -,所以1(,2)A D =.设,0)G m ,则由1OG A D ⊥可得10A D OG ⋅=,即(,2),0)30m m ⋅=-+=解得3m =.所以14AG =. (Ⅲ)设平面1A BD 的法向量(,,)x y z =n ,则A110,0,A D A B ⎧⋅=⎪⎨⋅=⎪⎩n n即20,30,y z y ⎧++=⎪⎨+=⎪⎩令1y =,则1x z =,所以=n ,设直线1A O 与平面1A BD 所成角为θ,则sin θ=111cos ,A O n A O n A O n⋅<>==⋅法2:(Ⅱ)由已知224AB CD BC ===,O 是边AB 的中点,//AB CD ,所以//CD OB ,因为90ABC ∠= ,所以四边形CDOB 是正方形, 所以在图1中DO AB ⊥,所以结合题设可得,在图2中有1DO OA ⊥,DO OB ⊥, 又因为1OA OB O = , 所以1DO AOB ⊥平面. 又因为1OG AOB ⊂平面,所以DO OG ⊥. 若在直线m 上的点G 满足1OG A D ⊥,又1OD A D D = , 所以1OG AOD ⊥平面, 所以1OG OA ⊥,因为11120,//AOB OB AG ∠= ,所以160OAG ∠= , 因为12OA =,所以14A G =.(注:答案中标灰部分,实际上在前面表达的符号中已经显现出该条件,故没写不扣分) (Ⅲ)由(II )可知1OD OA OG 、、两两垂直,如图,建立空间直角坐标系O xyz -,则10,0,0),(2,0,0),((0,0,2)O A B D -(,所以11(2,0,2),(A D A B =-=-设平面1A BD 的法向量(,,)n x y z =,则110,0,n A D n A B ⎧⋅=⎪⎨⋅=⎪⎩即220,30,x z x -+=⎧⎪⎨-=⎪⎩令1x =,则1y z ==,所以n =,设直线1A O 与平面1A BD 所成角为θ,则sin θ=111cos ,AO n AO n AO n ⋅<>=⋅18. (本小题满分13分) 解:(Ⅰ)由已知2,b =由点(3,1)B 在椭圆G 上可得29114a +=,解得212,a a ==.所以2228,c a b c =-==, 所以椭圆G的离心率是c e a == (Ⅱ)法1:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设直线AC 的方程为32y x =+. 由2232,1124y x x y =+⎧⎪⎨+=⎪⎩得2790x x +=,由题设条件可得90,7A C x x ==-,所以913()77C -,-,所以直线BC 的方程为213y x =-. 法2:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设C C C x y (,) ,则23C Ac Cy k x -==,即32C C y x =+① 由点C 在椭圆上可得221124C C x y +=②将①代入②得2790C C x x +=,因为点C 不同于点A ,所以97C x =-,所以913()77C -,-,所以直线BC 的方程为213y x =-. 法3:当直线l 过点B 且斜率不存在时,可得点(3,1)C -,不满足条件.设直线BC 的方程为1(3)y k x -=-,点C C C x y (,)由2213,1124y kx k x y =+-⎧⎪⎨+=⎪⎩可得222(31)6(13)3(13)120k x k k x k ++-+--=,显然0∆>,此方程两个根是点B C 和点的横坐标,所以223(13)12331C k x k --=+,即22(13)4,31C k x k --=+所以22361,31C k k y k --+=+因为以BC 为直径的圆经过点A ,所以AB AC ⊥,即0AB AC ⋅=. (此处用1AB AC k k ⋅=-亦可)2222963961(3,1)(,)3131k k k k AB AC k k -----⋅=-⋅=++ 2236128031k k k --=+,即(32)(31)0k k -+=,1221,,33k k ==-当213k =-时,即直线AB ,与已知点C 不同于点A 矛盾,所以12,3BC k k ==所以直线BC 的方程为213y x =-.19. (本小题满分14分) 解:(Ⅰ)由()ln 1af x x x =--得221'()(0)a x af x x x x x+=+=>.由已知曲线()y f x =存在斜率为1-的切线, 所以'()1f x =-存在大于零的实数根, 即20x x a ++=存在大于零的实数根, 因为2y x x a =++在0x >时单调递增, 所以实数a 的取值范围0∞(-,).(Ⅱ)由2'()x af x x+=,0x >,a ∈R 可得 当0a ≥时,'()0f x >,所以函数()f x 的增区间为(0,)+∞; 当0a <时,若(,)x a ∈-+∞,'()0f x >,若(0,)x a ∈-,'()0f x <, 所以此时函数()f x 的增区间为(,)a -+∞,减区间为(0,)a -.(Ⅲ)由()ln x a g x x+=及题设得22ln 1('()(ln )(ln )a x f x x g x x x --==), 由10a -<<可得01a <-<,由(Ⅱ)可知函数()f x 在(,)a -+∞上递增, 所以(1)10f a =--<,取e x =,显然e 1>,(e)lne 10e a af e=--=->, 所以存在0(1,e)x ∈满足0()0f x =,即 存在0(1,e)x ∈满足0'()0g x =,所以(),'()g x g x 在区间(1,)+∞上的情况如下:x0(1,)x 0x 0(,)x +∞'()g x-0 +()g x极小所以当10a -<<时,()g x 在(1,)+∞上存在极小值. (本题所取的特殊值不唯一,注意到0(1)ax x->>),因此只需要0ln 1x ≥即可)20. (本小题满分13分)解:(Ⅰ)由21n a n =+可得{}n a 为递增数列,所以12121max{,,,}min{,,,}21322n n n n b a a a a a a a a n n =-=-=+-=- ,故{}n b 的前n 项和为22(1)2n n n n -⨯=-.- (Ⅱ)因为12121max{,,,}max{,,,}(1,2,3,)n n a a a a a a n +≤= ,12121min{,,,}min{,,,}(1,2,3,)n n a a a a a a n +≥= ,所以1211211212max{,,,}min{,,,}max{,,,}min{,,,}n n n n a a a a a a a a a a a a ++-≥-所以1(1,2,3,)n n b b n +≥= . 又因为1110b a a =-=,所以12121max{,,,}min{,,,}n n n n b b b b b b b b b -=-= , 所以{}n b 的“收缩数列”仍是{}n b .(Ⅲ)由121(1)(1)22n n n n n n S S S a b +-+++=+ (1,2,3,)n = 可得 当1n =时,11a a =;当2n =时,121223a a a b +=+,即221b a a =-,所以21a a ≥;当3n =时,123133263a a a a b ++=+,即3213132()()b a a a a =-+-(*), 若132a a a ≤<,则321b a a =-,所以由(*)可得32a a =,与32a a <矛盾;若312a a a <≤,则323b a a =-,所以由(*)可得32133()a a a a -=-, 所以3213a a a a --与同号,这与312a a a <≤矛盾; 若32a a ≥,则331b a a =-,由(*)可得32a a =. 猜想:满足121(1)(1)22n n n n n n S S S a b +-+++=+ (1,2,3,)n = 的数列{}n a 是: 1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩.经验证,左式=121212(1)[12(1)]2n n n S S S na n a na a -+++=++++-=+ , 右式=112112(1)(1)(1)(1)(1)()22222n n n n n n n n n n n a b a a a na a +-+--+=+-=+.下面证明其它数列都不满足(Ⅲ)的题设条件.法1:由上述3n ≤时的情况可知,3n ≤时,1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩是成立的.假设k a 是首次不符合1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩的项,则1231k k a a a a a -≤===≠ ,由题设条件可得2212(1)(1)222k k k k k k k k a a a b ----+=+(*), 若12k a a a ≤<,则由(*)式化简可得2k a a =与2k a a <矛盾; 若12k a a a <≤,则2k k b a a =-,所以由(*)可得21(1)()2k k k k a a a a --=- 所以21k k a a a a --与同号,这与12k a a a <≤矛盾; 所以2k a a ≥,则1k k b a a =-,所以由(*)化简可得2k a a =.这与假设2k a a ≠矛盾.所以不存在数列不满足1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩的{}n a 符合题设条件.法2:当i n ≤时,11212max{,,,}min{,,,}i i i i a a a a a a a a b -≤-= ,所以1121()ki k i a a b b b =-≤+++∑ ,(1,2,3,,)k n =即112()k k S ka b b b ≤++++ ,(1,2,3,,)k n = 由1(1,2,3,)n n b b n +≥= 可得(1,2,3,,)k n b b k n ≤= 又10b =,所以可得1(1)k n S ka k b ≤+-(1,2,3,)k = ,所以12111(2)[02(1)]n n n n n S S S a a na b b b n b +++≤++++⨯++++- ,即121(1)(1)22n n n n n nS S S a b +-+++≤+ 所以121(1)(1)22n n n n n nS S S a b +-+++≤+ 等号成立的条件是1(1,2,3,,)i i n a a b b i n -=== ,所以,所有满足该条件的数列{}n a 为1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩.(说明:各题的其他做法,可对着参考答案的评分标准相应给分)。

北京市海淀区2017届高三上学期期末考试数学理试题含答案

北京市海淀区2017届高三上学期期末考试数学理试题含答案

海淀区高三年级第一学期期末练习数学(理科) 2017.1本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项.1.抛物线22y x =的焦点到准线的距离为A .12B .1C .2D .32.在极坐标系中,点π(1,)4与点3π(1,)4的距离为A .1 BCD3.右侧程序框图所示的算法来自于《九章算术》.若输入a 的值为16,b 的值为24,则执行该程序框图输出的结果为A .6B .7C .8D .94.已知向量,a b 满足2+=0a b ,()2+⋅=a b a ,则⋅=a bA .12-B .12C .2-D .25.已知直线l 经过双曲线2214x y -=的一个焦点且与其一条渐近线平行,则直线l 的方程可能是A.12y x =-+B.12y x =C.2y x =D.2y x =-6.设,x y 满足0,20,2,x y x y x -≤⎧⎪+-≥⎨⎪≤⎩则22(1)x y ++的最小值为A .1B .92C .5D .97.在手绘涂色本的某页上画有排成一列的6条未涂色的鱼,小明用红、蓝两种颜色给这些鱼涂色,每条鱼只能涂一种颜色,两条相邻的鱼不.都.涂成红色....,涂色后,既有红色鱼又有蓝色鱼的涂色方法种数为 A .14B .16C .18D .208.如图,已知正方体1111ABCD A B C D -的棱长为1,,E F 分别是棱AD ,B 1C 1上的动点,设1,AE x B F y ==.若棱.1DD 与平面BEF 有公共点,则x y +的取值范围是 A .[0,1] B .13[,]22 C .[1,2]D .3[,2]2二、填空题共6小题,每小题5分,共30分. 9.已知复数z 满足(1i)2z +=,则z =________.10.在261()x x+的展开式中,常数项为________.(用数字作答)11.若一个几何体由正方体挖去一部分得到,其三视图如图所示,则该几何体的体积为________.12.已知圆C :2220x x y -+=,则圆心坐标为_____;若直线l 过点(1,0)-且与圆C 相切,则直线l 的方程为____________.13.已知函数2sin()y x ωϕ=+π(0,||)2ωϕ><.① 若(0)1f =,则ϕ=________;② 若x ∃∈R ,使(2)()4f x f x +-=成立,则ω的最小值是________.14.已知函数||()e cos πx f x x -=+,给出下列命题:①()f x 的最大值为2;②()f x 在(10,10)-内的零点之和为0; ③()f x 的任何一个极大值都大于1. 其中所有正确命题的序号是________.俯视图主视图ABCD1D 1A 1B 1C E F三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程. 15.(本小题满分13分)在∆ABC 中,2c a =,120B =,且∆ABC(Ⅰ)求b 的值; (Ⅱ)求tan A 的值.16.(本小题满分13分)诚信是立身之本,道德之基.某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“周实际回收水费周投入成本”表示每周“水站诚信度”.为了便于数据分析,以四周为一周期......,下表为该水站连续十二周(共三个周期)的诚信度数据统计: 第一周 第二周 第三周 第四周第一个周期95% 98% 92% 88% 第二个周期94% 94% 83% 80% 第三个周期 85% 92% 95% 96% (Ⅰ)计算表中十二周“水站诚信度”的平均数x ;(Ⅱ)分别从上表每个周期的4个数据中随机抽取1个数据,设随机变量X 表示取出的3个数据中“水站诚信度”超过91%的数据的个数,求随机变量X 的分布列和期望; (Ⅲ)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动.根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.17.(本小题满分14分)如图1,在梯形ABCD 中,//AB CD ,90ABC ∠=,224AB CD BC ===,O 是边AB 的中点.将三角形AOD 绕边OD 所在直线旋转到1A OD 位置,使得1120AOB ∠=,如图2.设m 为平面1A DC 与平面1A OB 的交线.(Ⅰ)判断直线DC 与直线m 的位置关系并证明; (Ⅱ)若直线m 上的点G 满足1OG A D ⊥,求出1A G 的长; (Ⅲ)求直线1A O 与平面1A BD 所成角的正弦值.AOBCD 1图ODCB2图1A18.(本小题满分13分)已知(0,2),(3,1)A B 是椭圆G :22221(0)x y a b a b+=>>上的两点.(Ⅰ)求椭圆G 的离心率;(Ⅱ)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程.19. (本小题满分14分)已知函数()ln 1af x x x=--. (Ⅰ)若曲线()y f x =存在斜率为1-的切线,求实数a 的取值范围;(Ⅱ)求()f x 的单调区间;(Ⅲ)设函数()ln x ag x x+=,求证:当10a -<<时,()g x 在(1,)+∞上存在极小值.20.(本小题满分13分)对于无穷数列{}n a ,{}n b ,若1212max{,,,}min{,,,}(1,2,3,)k k k b a a a a a a k =-=,则称{}n b 是{}n a 的“收缩数列”.其中,12max{,,,}k a a a ,12min{,,,}k a a a 分别表示12,,,ka a a 中的最大数和最小数.已知{}n a 为无穷数列,其前n 项和为n S ,数列{}n b 是{}n a 的“收缩数列”. (Ⅰ)若21n a n =+,求{}n b 的前n 项和; (Ⅱ)证明:{}n b 的“收缩数列”仍是{}n b ; (Ⅲ)若121(1)(1)22n n n n n n S S S a b +-+++=+(1,2,3,)n =,求所有满足该条件的{}n a .海淀区高三年级第一学期期末练习数学(理科)答案及评分标准2017.1一、选择题(共8小题,每小题5分,共40分)1.B2.B3. C4.C5.A6. B7.D8.C 二、填空题(共6小题,每小题5分,共30分,9. 1i -10.15 11.16312.(1,0);1)y x =+和1)y x =+13.π6,π214.①②③三、解答题(共6小题,共80分) 15.(本小题满分13分)解:(Ⅰ)由∆ABC 面积公式及题设得1sin 2S ac B ==122a a ⨯=,解得1,2,a c ==由余弦定理及题设可得2222cos b a c ac B =+-114212()72=+-⨯⨯⨯-=,又0,b b >∴. (不写b>0不扣分)(Ⅱ)在∆ABC 中,由正弦定理sin sin a bA B =得:sin sin a A B b ==, 又120B =,所以A 是锐角(或:因为12,a c =<=)所以cos A ==所以sin tan cos A A A === 16. (本小题满分13分)解:(Ⅰ)十二周“水站诚信度”的平均数为x =95+98+92+88+94+94+83+80+85+92+95+96=91%12100⨯(Ⅱ)随机变量X 的可能取值为0,1,2,3三个周期“水站诚信度”超过91%分别有3次,2次,3次1212(0)44464P X ==⨯⨯=32112112314(1)44444444464P X ==⨯⨯+⨯⨯+⨯⨯=32132132330(2)44444444464P X==⨯⨯+⨯⨯+⨯⨯=32318(3)44464P X==⨯⨯=随机变量X的分布列为X0 1 2 3P1327321532932 171590123232323232EX=⨯+⨯+⨯+⨯=.(Ⅲ)本题为开放问题,答案不唯一,在此给出评价标准,并给出可能出现的答案情况,阅卷时按照标准酌情给分.给出明确结论,1分,结合已有数据,能够运用以下三个标准中的任何一个陈述得出该结论的理由,2分.标准1:会用主题活动前后的百分比变化进行阐述标准2:会用三个周期的诚信度平均数变化进行阐述标准3:会用主题活动前后诚信度变化趋势进行阐述可能出现的作答情况举例,及对应评分标准如下:情况一:结论:两次主题活动效果均好.(1分)理由:活动举办后,“水站诚信度”由88%→94%和80%→85%看出,后继一周都有提升.(2分)情况二:结论:两次主题活动效果都不好.(1分)理由:三个周期的“水站诚信度”平均数分别为93.25%,87.75%,92%(平均数的计算近似即可),活动进行后,后继计算周期的“水站诚信度”平均数和第一周期比较均有下降.(2分)情况三:结论:第一次主题活动效果好于第二次主题活动.(1分)理由:第一次主题活动举办的后继一周“水站诚信度”提升百分点(94%-88%=6%)高于第二次主题活动举办的后继一周“水站诚信度”提升百分点(85%-80%=5%).(2分)情况四:结论:第二次主题活动效果好于第一次主题活动.(1分)理由:第一次活动后“水站诚信度”虽有上升,但两周后又有下滑,第二次活动后,“水站诚信度”数据连续四周呈上升趋势. (2分)(答出变化)情况五:结论:两次主题活动累加效果好.(1分)理由:两次主题活动“水站诚信度”均有提高,且第二次主题活动后数据提升状态持续周期好.(2分)情况六:以“‘两次主题活动无法比较’作答,只有给出如下理由才给3分:“12个数据的标准差较大,尽管平均数差别不大,但比较仍无意义”.给出其他理由,则结论和理由均不得分(0分).说明:①情况一和情况二用极差或者方差作为得出结论的理由,只给结论分1分,不给理由分2分.②以下情况不得分. 情况七: 结论及理由“只涉及一次主题活动,理由中无法辩析是否为两次活动后数据比较之结果”的. 例:结论:第二次主题活动效果好.理由:第二次主题活动后诚信度有提高.③其他答案情况,比照以上情况酌情给分,赋分原则是:遵循三个标准,能使用表中数据解释所得结论.17. (本小题满分14分)解:(Ⅰ)直线DC //m .证明:由题设可得//,CD OB 1CD AOB ⊄平面,1OB AOB ⊂平面, 所以//CD 平面1A OB .又因为CD ⊂平面1A DC ,平面1ADC 平面1A OB m =所以//CD m .法1:(Ⅱ)由已知224AB CD BC ===,O 是边AB 的中点,//AB CD ,所以//CD OB ,因为90ABC ∠=,所以四边形CDOB 是正方形, 所以在图1中DO AB ⊥,所以结合题设可得,在图2中有1DO OA ⊥,DO OB ⊥, 又因为1OA OB O =,所以1DO AOB ⊥平面. 在平面AOB 内作OM 垂直OB 于M ,则DO OM ⊥. 如图,建立空间直角坐标系O xyz -,则11,0),(0,2,0),(0,0,2)A B D -,所以1(,2)A D =.设,0)G m ,则由1OG A D ⊥可得10A D OG ⋅=,即(,2),0)30m m ⋅=-+=解得3m =.所以14AG =. (Ⅲ)设平面1A BD 的法向量(,,)x y z =n ,则110,0,A D A B ⎧⋅=⎪⎨⋅=⎪⎩nn即20,30,y z y ⎧++=⎪⎨+=⎪⎩令1y =,则1x z =,所以=n ,设直线1A O 与平面1A BD 所成角为θ,则sin θ=1115cos ,A O n A O n A O n⋅<>==⋅法2:(Ⅱ)由已知224AB CD BC ===,O 是边AB 的中点,//AB CD ,所以//CD OB ,因为90ABC ∠=,所以四边形CDOB 是正方形, 所以在图1中DO AB ⊥,所以结合题设可得,在图2中有1DO OA ⊥,DO OB ⊥, 又因为1OA OB O =,所以1DO AOB ⊥平面. 又因为1OG AOB ⊂平面,所以DO OG ⊥. 若在直线m 上的点G 满足1OG A D ⊥,又1OD A D D =,所以1OG AOD ⊥平面, 所以1OG OA ⊥,因为11120,//AOB OB AG ∠=,所以160OAG ∠=, 因为12OA =,所以14A G =.(注:答案中标灰部分,实际上在前面表达的符号中已经显现出该条件,故没写不扣分) (Ⅲ)由(II )可知1OD OA OG 、、两两垂直,如图,建立空间直角坐标系Oxyz -,则10,0,0),(2,0,0),((0,0,2)O A B D -(, 所以11(2,0,2),(A D A B =-=- 设平面1A BD 的法向量(,,)n x y z=,则110,0,n A D n A B ⎧⋅=⎪⎨⋅=⎪⎩即220,30,x z x -+=⎧⎪⎨-+=⎪⎩令1x =,则1y z =,所以(1,3,1)n =,设直线1A O 与平面1A BD 所成角为θ,则 sin θ=1115cos ,AO n AO n AO n ⋅<>==⋅18. (本小题满分13分) 解:(Ⅰ)由已知2,b =由点(3,1)B 在椭圆G 上可得29114a +=,解得212,a a ==.所以2228,c a b c =-==所以椭圆G 的离心率是c e a == (Ⅱ)法1:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设直线AC 的方程为32y x =+. 由2232,1124y x x y =+⎧⎪⎨+=⎪⎩得2790x x +=,由题设条件可得90,7A C x x ==-,所以913()77C -,-,所以直线BC 的方程为213y x =-. 法2:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设C C C x y (,) ,则23C Ac Cy k x -==,即32C C y x =+① 由点C 在椭圆上可得221124C C x y +=② 将①代入②得2790C C x x +=,因为点C 不同于点A ,所以97C x =-,所以913()77C -,-,所以直线BC 的方程为213y x =-. 法3:当直线l 过点B 且斜率不存在时,可得点(3,1)C -,不满足条件.设直线BC 的方程为1(3)y k x -=-,点C C C x y (,)由2213,1124y kx k x y =+-⎧⎪⎨+=⎪⎩可得222(31)6(13)3(13)120k x k k x k ++-+--=,显然0∆>,此方程两个根是点B C 和点的横坐标,所以223(13)12331C k x k --=+,即22(13)4,31C k x k --=+所以22361,31C k k y k --+=+ 因为以BC 为直径的圆经过点A , 所以AB AC ⊥,即0AB AC ⋅=. (此处用1AB AC k k ⋅=-亦可)2222963961(3,1)(,)3131k k k k AB AC k k -----⋅=-⋅=++2236128031k k k --=+,即(32)(31)0k k -+=,1221,,33k k ==-当213k =-时,即直线AB ,与已知点C 不同于点A 矛盾,所以12,3BC k k ==所以直线BC 的方程为213y x =-. 19. (本小题满分14分) 解:(Ⅰ)由()ln 1af x x x =--得221'()(0)a x af x x x x x+=+=>.由已知曲线()y f x =存在斜率为1-的切线, 所以'()1f x =-存在大于零的实数根, 即20x x a ++=存在大于零的实数根,因为2y x x a =++在0x >时单调递增, 所以实数a 的取值范围0∞(-,).(Ⅱ)由2'()x af x x+=,0x >,a ∈R 可得 当0a ≥时,'()0f x >,所以函数()f x 的增区间为(0,)+∞; 当0a <时,若(,)x a ∈-+∞,'()0f x >,若(0,)x a ∈-,'()0f x <, 所以此时函数()f x 的增区间为(,)a -+∞,减区间为(0,)a -.(Ⅲ)由()ln x a g x x+=及题设得22ln 1('()(ln )(ln )a x f x x g x x x --==), 由10a -<<可得01a <-<,由(Ⅱ)可知函数()f x 在(,)a -+∞上递增, 所以(1)10f a =--<,取e x =,显然e 1>,(e)lne 10e a af e=--=->, 所以存在0(1,e)x ∈满足0()0f x =,即 存在0(1,e)x ∈满足0'()0g x =,所以(),'()g x g x 在区间(1,)+∞上的情况如下:x0(1,)x0x0(,)x +∞'()g x- 0 +()g x极小所以当10a -<<时,()g x 在(1,)+∞上存在极小值. (本题所取的特殊值不唯一,注意到0(1)ax x->>),因此只需要0ln 1x ≥即可)20. (本小题满分13分)解:(Ⅰ)由21n a n =+可得{}n a 为递增数列, 所以12121max{,,,}min{,,,}21322n n n n b a a a a a a a a n n =-=-=+-=-,故{}n b 的前n 项和为22(1)2n n n n -⨯=-.- (Ⅱ)因为12121max{,,,}max{,,,}(1,2,3,)n n a a a a a a n +≤=,12121min{,,,}min{,,,}(1,2,3,)n n a a a a a a n +≥=,所以1211211212max{,,,}min{,,,}max{,,,}min{,,,}n n n n a a a a a a a a a a a a ++-≥-所以1(1,2,3,)n n b b n +≥=. 又因为1110b a a =-=, 所以12121max{,,,}min{,,,}n n n n b b b b b b b b b -=-=,所以{}n b 的“收缩数列”仍是{}n b .(Ⅲ)由121(1)(1)22n n n n n n S S S a b +-+++=+(1,2,3,)n =可得 当1n =时,11a a =;当2n =时,121223a a a b +=+,即221b a a =-,所以21a a ≥;当3n =时,123133263a a a a b ++=+,即3213132()()b a a a a =-+-(*), 若132a a a ≤<,则321b a a =-,所以由(*)可得32a a =,与32a a <矛盾;若312a a a <≤,则323b a a =-,所以由(*)可得32133()a a a a -=-, 所以3213a a a a --与同号,这与312a a a <≤矛盾; 若32a a ≥,则331b a a =-,由(*)可得32a a =. 猜想:满足121(1)(1)22n n n n n n S S S a b +-+++=+(1,2,3,)n =的数列{}n a 是: 1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩.经验证,左式=121212(1)[12(1)]2n n n S S S na n a na a -+++=++++-=+, 右式=112112(1)(1)(1)(1)(1)()22222n n n n n n n n n n n a b a a a na a +-+--+=+-=+. 下面证明其它数列都不满足(Ⅲ)的题设条件.法1:由上述3n ≤时的情况可知,3n ≤时,1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩是成立的.假设k a 是首次不符合1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩的项,则1231k k a a a a a -≤===≠,由题设条件可得2212(1)(1)222k k k k k k k k a a a b ----+=+(*), 若12k a a a ≤<,则由(*)式化简可得2k a a =与2k a a <矛盾;若12k a a a <≤,则2k k b a a =-,所以由(*)可得21(1)()2k k k k a a a a --=- 所以21k k a a a a --与同号,这与12k a a a <≤矛盾; 所以2k a a ≥,则1k k b a a =-,所以由(*)化简可得2k a a =.这与假设2k a a ≠矛盾.所以不存在数列不满足1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩的{}n a 符合题设条件.法2:当i n ≤时,11212max{,,,}min{,,,}i i i i a a a a a a a a b -≤-=,所以1121()ki k i a a b b b =-≤+++∑,(1,2,3,,)k n =即112()k k S ka b b b ≤++++,(1,2,3,,)k n =由1(1,2,3,)n n b b n +≥=可得(1,2,3,,)k n b b k n ≤=又10b =,所以可得1(1)k n S ka k b ≤+-(1,2,3,)k =, 所以12111(2)[02(1)]n n n n n S S S a a na b b b n b +++≤++++⨯++++-,即121(1)(1)22n n n n n nS S S a b +-+++≤+ 所以121(1)(1)22n n n n n n S S S a b +-+++≤+等号成立的条件是1(1,2,3,,)i i n a a b b i n -===,所以,所有满足该条件的数列{}n a 为1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩.(说明:各题的其他做法,可对着参考答案的评分标准相应给分)。

北京市部分区2017届高三上学期考试数学理试题分类汇编:立体几何

北京市部分区2017届高三上学期考试数学理试题分类汇编:立体几何

北京市部分区2017届高三上学期考试数学理试题分类汇编立体几何一、选择、填空题 1、(昌平区2017届高三上学期期末) 一个几何体的三视图如图所示,则这个几何体的直观图是2、(朝阳区2017届高三上学期期末)某四棱锥的三视图如图所示,其俯视图为等腰直角三角形,则该四棱锥的体积为AB .43CD .4 3、(西城区2017届高三上学期期末)某四棱锥的三视图如图所示,该四棱锥的四个 侧面的面积中最大的是(A )3 (B ) (C )6 (D )4、(东城区2017届高三上学期期末)某三棱锥的三视图如图所示,则该三棱锥的体积为(A )23 (B )43 (C )2 (D )835、(丰台区2017届高三上学期期末)已知直线m ,n 和平面α,如果n α⊂,那么“m n ⊥”是“m α⊥”的 (A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件6、(海淀区2017届高三上学期期末)如图,已知正方体1111ABCD A B C D -的棱长为1,,E F 分别是棱AD ,B 1C 1上的动点,设1,AE x B F y ==.若棱.1DD 与平面BEF 有公共点,则x y +的取值范围是 A .[0,1]B .13[,]22C .[1,2]D .3[,2]27、(海淀区2017届高三上学期期末)(海淀区2017届高三上学期期末)若一个几何体由正方体挖去一部分得到,其三视图如图所示,则该几何体的体积为________.8、(石景山区2017届高三上学期期末)一个几何体的三视图如右图所示.已知这个几何体的体积为8,则h ()A.1B.2C.3D.69、(通州区2017届高三上学期期末)如图,某几何体的主视图和左视图是全等的等腰直角三角形,俯视图是边长为2的正方形,那么它的体积为A.163B.4C.83D.34二、解答题1、(昌平区2017届高三上学期期末)如图1,四边形ABCD 为正方形,延长DC 至E ,使得2CE DC =,将四边形ABCD 沿BC 折起到11A BCD 的位置,使平面11A BCD ⊥平面BCE ,如图2.(I )求证:CE ⊥平面11A BCD ;(II )求异面直线1BD 与1A E 所成角的大小;(III )求平面BCE 与平面11A ED 所成锐二面角的余弦值.2、(朝阳区2017届高三上学期期末)在如图所示的几何体中, 四边形ABCD 为正方形,四边形ABEF 为直角梯形,且//,,AF BE AB BE ⊥平面ABCD 平面,ABEF AB = 22AB BE AF ===.(Ⅰ)求证://AC 平面DEF ; (Ⅱ)若二面角D AB E --为直二面角, (i )求直线AC 与平面CDE 所成角的大小; (ii )棱DE 上是否存在点P ,使得BP ⊥平面DEF ?若存在,求出DPDE的值;若不存在,请说明理由.3、(西城区2017届高三上学期期末)如图,在四棱锥P ABCD -中,//AD BC ,90BAD ︒∠=,PA PD =,AB PA ⊥,2AD =,1AB BC ==.(Ⅰ)求证:平面PAD ⊥平面ABCD ;(Ⅱ)若E 为PD 的中点,求证://CE 平面PAB ; (Ⅲ)若DC 与平面PAB 所成的角为30︒,求四棱锥 P ABCD -的体积.4、(东城区2017届高三上学期期末)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PCD ⊥平面ABCD ,1BC =,2AB =,PC PD ==E 为PA 中点.(Ⅰ)求证:PC ∥平面BED ; (Ⅱ)求二面角A PC D --的余弦值;(Ⅲ)在棱PC 上是否存在点M ,使得BM ⊥AC ?若存在,求PMPC的值;若不存在,说明理由.CA5、(丰台区2017届高三上学期期末)如图所示的多面体中,面ABCD 是边长为2的正方形,平面PDCQ ⊥平面ABCD ,PD DC ^,E F G ,,分别为棱,,BC AD PA 的中点. (Ⅰ)求证:EG ‖平面PDCQ ; (Ⅱ)已知二面角P BFC -- 求四棱锥P ABCD -的体积.CPGF DE QA6、(海淀区2017届高三上学期期末)如图1,在梯形ABCD 中,//AB CD ,90ABC ∠= ,224AB CD BC ===,O 是边AB 的中点.将三角形AOD 绕边OD 所在直线旋转到1A OD 位置,使得1120AOB ∠= ,如图2.设m 为平面1A DC 与平面1A OB 的交线. (Ⅰ)判断直线DC 与直线m 的位置关系并证明; (Ⅱ)若直线m 上的点G 满足1OG A D ⊥,求出1A G 的长; (Ⅲ)求直线1A O 与平面1A BD 所成角的正弦值.7、(石景山区2017届高三上学期期末)如图1,等腰梯形BCDP 中,BC ∥PD ,BA PD ⊥于点A ,3PD BC =,且1AB BC ==.沿AB 把PAB △折起到P AB '△的位置(如图2),使90P AD '∠=︒. (Ⅰ)求证:CD ⊥平面P AC '; (Ⅱ)求二面角A P D C '--的余弦值;(Ⅲ)线段P A '上是否存在点M ,使得BM ∥平面P CD '.若存在,指出点M 的位置并证明;若不存在,请说明理由.8、(通州区2017届高三上学期期末)在四棱锥P ABCD -中,△PAB 为正三角形,四边形ABCD 为矩形,平面PAB ⊥平面ABCD ,2AB AD =,,M N 分别为,PB PC 中点. (Ⅰ)求证:MN //平面PAD ; (Ⅱ)求二面角B AM C --的大小;(Ⅲ)在BC 上是否存在点E ,使得EN ⊥平面AMN ? 若存在,求BEBC的值;若不存在,请说明理由.参考答案一、选择、填空题1、C2、B3、C4、B5、B6、C7、1638、B 9、D二、解答题1、解:(Ⅰ)证明:因为平面11A BCD ⊥平面BCE ,且平面11A BCD 平面BCE BC =, 因为四边形ABCD 为正方形,E 在DC 的延长线上, 所以CE BC ⊥.因为CE ⊂平面BCE ,所以CE ⊥平面11A BCD . ……………4分(Ⅱ)法一:连接1AC . 因为11A BCD 是正方形, 所以11AC BD ⊥.因为CE ⊥平面11A BCD , 所以1CE BD ⊥. 因为1AC CE C = , 所以1BD ⊥平面1ACE . 所以11BD A E ⊥.所以异面直线1BD 与1A E 所成的角是90︒. ……………9分法二:以C 为坐标原点,建立空间直角坐标系如图所示. 设1,CD =则2CE =.则11(0,0,0),(1,0,0),(0,2,0),(0,0,1),(1,0,1)C B E D A . 所以11(1,0,1),(1,2,1)BD A E =-=--.因为111111cos ,0BD A E BD A E BD A E ⋅<>===, 所以11BD AE ⊥.所以异面直线1BD 与1A E 所成的角是90︒. ……………9分(Ⅲ) 因为1CD ⊥平面BCE ,所以平面BCE 的法向量1(0,0,1)CD =. 设平面11A D E 的法向量(,,)n x y z =.因为111(1,0,0),(0,2,1)D A D E ==-, 所以1110n D A n D E ⎧⋅=⎪⎨⋅=⎪⎩ ,即020x y z =⎧⎨-=⎩. 设1y =,则2z =.所以(0,1,2)n =.因为111cos ,CD n CD n CD n⋅<>===所以平面BCE 与平面11A ED所成的锐二面角的余弦值为5……………14分 2、证明:(Ⅰ)连结BD ,设AC BD O = ,因为四边形ABCD 为正方形, 所以O 为BD 中点.设G 为DE 的中点,连结,OG FG ,则//OG BE ,且12OG BE =. 由已知//AF BE ,且12AF BE =,所以//,AF OG OG AF =. 所以四边形AOGF 为平行四边形. 所以//AO FG ,即//AC FG .因为AC ⊄平面DEF ,FG ⊂平面DEF , 所以AC //平面DEF .……………………………………………………5分(Ⅱ)由已知,//,AF BE AB BE ⊥,所以AF AB ⊥.因为二面角D AB E --为直二面角, 所以平面ABCD ⊥平面ABEF . 所以AF ⊥平面ABCD , 所以,AF AD AF AB ⊥⊥.四边形ABCD 为正方形,所以AB AD ⊥.所以,,AD AB AF 两两垂直.以A 为原点,,,AD AB AF 分别为,,x y z 轴建立空间直 角坐标系(如图). 因为22AB BE AF ===,所以(000),(0,2,0),(2,2,0),(200),(0,2,2),(0,0,1)A B C D E F ,,,,,所以(2,2,0),(0,2,0),(2,0,2)AC CD CE ==-=-.(i )设平面CDE 的一个法向量为(,,)x y z =n ,由 0,0CD CE ⎧⋅=⎪⎨⋅=⎪⎩ n n 得20, 220. y x z -=⎧⎨-+=⎩即0, 0. y x z =⎧⎨-=⎩ 取1x =,得(1,0,1)=n .设直线AC 与平面CDE 所成角为θ,则1sin cos ,2AC θ=〈〉==n ,因为090θ≤≤︒,所以30θ=︒.即直线AC 与平面CDE 所成角的大小为30︒.………………………………9分(ii )假设棱DE 上存在点P ,使得BP ⊥平面DEF .设(01)DPDEλλ=≤≤,则DP DE λ= . 设(,,)P x y z ,则(2,,)DP x y z =-,因为(2,2,2)DE =-,所以(2,,)(2,2,2)x y z λ-=-.所以22,2,2x y z λλλ-=-==,所以P 点坐标为(22,2,2)λλλ-.因为(0,2,0)B ,所以(22,22,2)BP λλλ=--.又(2,0,1),(0,2,1)DF EF =-=-- ,所以2(22)20,2(22)20.BP DF BP EF λλλλ⎧⋅=--+=⎪⎨⋅=---=⎪⎩解得 23λ=.因为2[0,1]3∈,所以DE 上存在点P ,使得BP ⊥平面DEF ,且23DP DE =. (另解)假设棱DE 上存在点P ,使得BP ⊥平面DEF .设(01)DPDEλλ=≤≤,则DP DE λ= . 设(,,)P x y z ,则(2,,)DP x y z =-,因为(2,2,2)DE =-,所以(2,,)(2,2,2)x y z λ-=-.所以22,2,2x y z λλλ-=-==,所以P 点坐标为(22,2,2)λλλ-.因为(0,2,0)B ,所以(22,22,2)BP λλλ=--.设平面DEF 的一个法向量为000(,,)x y z =m ,则 0,m DF m EF ⎧⋅=⎪⎨⋅=⎪⎩由(2,0,1),(0,2,1)DF EF =-=-- , 得000020,20.x z y z -+=⎧⎨--=⎩取01x =,得(1,1,2)=-m .由m BP μ=,即(22,22,2)(1,1,2)λλλμ--=-,可得22,22, 22.λμλμλμ-=⎧⎪-=-⎨⎪=⎩解得23λ=.因为2[0,1]3∈,所以DE 上存在点P ,使得BP ⊥平面DEF ,且23DP DE =.………………………………………………………………14分3、解:(Ⅰ)因为90BAD ∠= ,所以AB AD ⊥,[1分]又因为AB PA ⊥,所以AB ⊥平面PAD .[3分] 所以平面PAD ⊥平面ABCD .[4分](Ⅱ)取PA 的中点F ,连接BF ,EF .[5分] 因为E 为PD 的中点,所以//EF AD ,12EF AD =,又因为//BC AD ,12BC AD =,所以//BC EF ,BC EF =.所以四边形BCEG 是平行四边形,//EC BF .[7分]y又BF ⊂平面PAB ,CE ⊄平面PAB , 所以//CE 平面PAB .[8分] (Ⅲ)过P 作PO AD ⊥于O ,连接OC .因为PA PD =,所以O 为AD 中点,又因为平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD .如图建立空间直角坐标系O xyz -.[9分]设PO a =.由题意得,(0,1,0)A ,(1,1,0)B ,(1,0,0)C ,(0,1,0)D -,(0,0,)P a . 所以(1,0,0)AB −−→=,(0,1,)PA a −−→=-,(1,1,0)DC −−→=. 设平面PCD 的法向量为(,,)x y z =n ,则0,0,AB PA −−→−−→⎧⋅=⎪⎨⎪⋅=⎩n n 即0,0.x y az =⎧⎨-=⎩ 令1z =,则y a =.所以(0,,1)a =n .[11分] 因为DC 与平面PAB 所成角为30 , 所以|1|cos ,|2||||DC DC DC −−→−−→−−→⋅〈〉===|n n n , 解得1a =.[13分]所以四棱锥P ABCD -的体积11121113322P ABCD ABCD V S PO -+=⨯⨯=⨯⨯⨯=.[14分] 4、解:(Ⅰ)设AC 与BD 的交点为F ,连结EF . 因为ABCD 为矩形,所以F 为AC 的中点. 在△PAC 中,由已知E 为PA 中点, 所以EF ∥PC . 又EF ⊂平面BED ,PC ⊄平面BED ,所以PC ∥平面BED . ……………………………5分 (Ⅱ)取CD 中点O ,连结PO .因为△PCD 是等腰三角形,O 为CD 的中点, 所以PO CD ⊥.又因为平面PCD ⊥平面ABCD ,PO ⊂平面PCD ,所以PO ⊥平面ABCD . 取AB 中点G ,连结OG , 由题设知四边形ABCD 为矩形, 所以OF CD ⊥.所以PO OG ⊥.…………………1分 如图建立空间直角坐标系O xyz -,则(1,1,0)A -,(0,1,0)C ,(0,0,1)P ,(0,1,0)D -,(1,1,0)B ,(0,0,0)O ,(1,0,0)G . (1,2,0)AC =- ,(0,1,1)PC =-.设平面PAC 的法向量为(,,)x y z =n ,则0,0,AC PC ⎧⋅=⎪⎨⋅=⎪⎩n n ,即20,0.x y y z -=⎧⎨-=⎩ 令1z =,则1y =,2x = . 所以(2,1,1)=n .平面PCD 的法向量为(1,0,0)OG =.设,OG n 的夹角为α,所以cos α=.由图可知二面角A PC D --为锐角,所以二面角A PC B --10分 (Ⅲ)设M 是棱PC 上一点,则存在[0,1]λ∈使得PM PC λ=.因此点(0,,1)M λλ-,(1,1,1)BM λλ=--- ,(1,2,0)AC =-.由BM ⋅ 0AC = ,即12λ=.因为1[0,1]2λ=∈,所以在棱PC 上存在点M ,使得BM ⊥AC . 此时,12PM PC λ==. …………………………14分 5、证明:(Ⅰ)取PD 中点H ,连接GH ,HC , 因为ABCD 是正方形,所以AD ‖BC ,AD BC =. 因为G,H 分别是PA ,PD 中点,所以GH ‖AD ,12GH AD =.又因为EC ‖AD 且12EC AD =, 所以GH ‖EC ,GH EC =,所以四边形GHCE 是平行四边形, ………….3分所以EG ‖HC .又因为EG Ë平面PDCQ ,HC Ì平面PDCQ所以EG ‖平面PDCQ . ……………….5分(Ⅱ)因为平面PDCQ ⊥平面ABCD , 平面PDCQ I 平面ABCD CD =, P D D C ^,PD Ì平面PDCQ ,所以PD ^平面ABCD . ……………….6分如图,以D 为原点,射线DA ,DC ,DP 分别为x ,y ,z 轴正方向,建立空间直角坐标系.设PD a =,则()()()00002201 P ,,a F ,,B ,,,,.………………7分因为PD ⊥底面ABCD ,所以平面ABCD 的一个法向量为(0,0,1)=m . ……………….8分设平面PFB 的一个法向量为(,,)x y z =n ,()10 PF ,,a u u u r =- ()120 FB ,,u u r=,则0,=0.PF FB ⎧⋅=⎪⎨⋅⎪⎩uu u ruur n n即0+2=0x az x y -=⎧⎨⎩令x =1,得11,2z y a ==-,所以11(1,,)2a =-n . (10)分由已知,二面角P BF C --所以得cos <,>||||⋅===m nm n m n……………….11分解得a =2,所以2PD =.……………….13分因为PD 是四棱锥P ABCD -的高,所以其体积为182433P ABCD V -=⨯⨯=.……………….14分6、解:(Ⅰ)直线DC //m .证明:由题设可得//,CD OB 1CD AOB ⊄平面,1OB AOB ⊂平面, 所以//CD 平面1A OB .又因为CD ⊂平面1A DC ,平面1A DC 平面1A OB m = 所以//CD m .法1:(Ⅱ)由已知224AB CD BC ===,O 是边AB 的中点,//AB CD ,所以//CD OB ,因为90ABC ∠= ,所以四边形CDOB 是正方形, 所以在图1中DO AB ⊥,所以结合题设可得,在图2中有1DO OA ⊥,DO OB ⊥, 又因为1OA OB O = , 所以1DO AOB ⊥平面. 在平面AOB 内作OM 垂直OB 于M ,则DO OM ⊥. 如图,建立空间直角坐标系O xyz -,则11,0),(0,2,0),(0,0,2)A B D -,所以1(,2)A D =.设,0)G m ,则由1OG A D ⊥可得10A D OG ⋅= ,即(,2),0)30m m ⋅=-+=解得3m =.所以14AG =. (Ⅲ)设平面1A BD 的法向量(,,)x y z =n ,则 110,0,A D A B ⎧⋅=⎪⎨⋅=⎪⎩n n即20,30,y z y ⎧++=⎪⎨+=⎪⎩令1y =,则1x z ==,所以=n ,设直线1A O 与平面1A BD 所成角为θ,则sin θ=111cos ,A O n A O n A O n⋅<>==⋅ 法2:(Ⅱ)由已知224AB CD BC ===,O 是边AB 的中点,//AB CD ,所以//CD OB ,因为90ABC ∠= ,所以四边形CDOB 是正方形, 所以在图1中DO AB ⊥,所以结合题设可得,在图2中有1DO OA ⊥,DO OB ⊥, 又因为1OA OB O = , 所以1DO AOB ⊥平面. 又因为1OG AOB ⊂平面,所以DO OG ⊥. 若在直线m 上的点G 满足1OG A D ⊥,又1OD A D D = , 所以1OG AOD ⊥平面, 所以1OG OA ⊥,因为11120,//AOB OB AG ∠= ,所以160OAG ∠= , 因为12OA =,所以14A G =.(注:答案中标灰部分,实际上在前面表达的符号中已经显现出该条件,故没写不扣分) (Ⅲ)由(II )可知1OD OA OG 、、两两垂直,如图,建立空间直角坐标系O x y z -,则10,0,0),(2,0,0)1,3,0),(0,0,O A B D -(, 所以11(2,0,2),(A D A B =-=-设平面1A BD 的法向量(,,)n x y z =,则110,0,n A D n A B ⎧⋅=⎪⎨⋅=⎪⎩ 即220,30,x z x -+=⎧⎪⎨-+=⎪⎩令1x =,则,1y z =, 所以n =,设直线1A O 与平面1A BD 所成角为θ,则sin θ=111cos ,AO n AO n AO n ⋅<>==⋅7、解:(Ⅰ)因为90P AD '∠=︒,所以P A '⊥AD .因为在等腰梯形中,AB ⊥AP ,所以在四棱锥中,AB ⊥AP '.又AD AB A ⋂=,所以P A '⊥面ABCD . 因为CD ⊂面ABCD ,所以P A '⊥CD .……3分因为等腰梯形BCDE 中,AB BC ⊥,3PD BC =,且1AB BC ==.所以AC =CD 2AD =.所以222AC CD AD +=.所以AC ⊥CD .因为P A '⋂AC =A , 所以CD ⊥平面P AC '. ……5分 (Ⅱ)由(Ⅰ)知,P A '⊥面ABCD ,如图,建立空间直角坐标系,A ()0,0,0,B ()1,0,0,C (D ()0,2,0,P '()0,0,1.所以(1,0,0)AB = ,(1,1,P C '=由(Ⅰ)知,平面P AD '的法向量为(1,0,0)AB =,设(,,)n x y z = 为平面P CD '的一个法向量,则00n CD n P C ⎧⋅=⎪⎨'⋅=⎪⎩,即00x y x y z -+=⎧⎨+-=⎩, 再令1y =,得(1,1,2)n = .cos ,AB n =AB n AB n⋅⋅=6 所以二面角A P D C '-- …………9分 (Ⅲ)若线段P A '上存在点M ,使得BM ∥平面P CD '.依题意可设AM AP λ'= ,其中01λ≤≤.所以(0,0,)M λ,(1,0,)BM λ=-.由(Ⅱ)知,平面P CD '的一个法向量(1,1,2)n =. 因为BM ∥平面P CD ',所以BM n ⊥,所以120BM n λ⋅=-+= ,解得12λ=.所以,线段P A '上存在点M ,使得BM ∥平面P CD '…………………14分 8、(Ⅰ)证明:∵M ,N 分别是PB ,PC 中点∴MN 是△ABC 的中位线 ∴MN ∥BC ∥AD又∵AD ⊂平面P AD ,MN ⊄平面P AD所以MN ∥平面PAD . ……………….4分(Ⅱ)过点P 作PO 垂直于AB ,交AB 于点O , 因为平面P AB ⊥平面ABCD ,所以PO ⊥平面ABCD , 如图建立空间直角坐标系设AB =2,则A (-1,0,0),C (1,1,0),M (12,0,2),B (1,0,0),N (12,12,2),则(2,1,0)AC =,3(,0,22AM = 设平面CAM 法向量为1111(,,)n x y z =,由110n AC n AM⎧⋅=⎪⎨⋅=⎪⎩可得1111203022x y x z +=⎧⎪⎨+=⎪⎩,令11x =,则112,y z =-=1(1,2,n =- 平面ABM 法向量2(0,1,0)n =所以,二面角B AM C --的余弦值1212cos 2n n n n θ ⋅==因为二面角B AM C --是锐二面角,所以二面角B AM C --等于45 ……………….10分 (Ⅲ)存在……………….11分设(1,,0)E λ,则11(,22EN λ=-- ,由0EN AM EN MN ⎧⋅=⎪⎨⋅=⎪⎩可得12λ=, 所以在BC 存在点E ,使得EN ⊥平面AMN , 此时12BE BC =.……………….14分。

2017年北京市海淀区高三上学期期末数学试卷与解析答案(理科)

2017年北京市海淀区高三上学期期末数学试卷与解析答案(理科)

几何体的体积为

的一个焦点且与其一条渐近线平行,
则直线 l 的方程可以是(
A. y=﹣
B. y=
) C. y=2x﹣
D. y=﹣ 2x+
6.( 5 分)设 x, y 满足
,则( x+1) 2+y2 的最小值为(

A. 1 B. C. 5 D. 9
7.( 5 分)在手绘涂色本的某页上画有排成一列的
6 条未涂色的鱼,小明用红、
3.( 5 分)如图程序框图所示的算法来自于《九章算术》
的值为 24,则执行该程序框图的结果为(

)的距离为(

,若输入 a 的值为 16,b
A. 6 B. 7 C. 8 D. 9 4.( 5 分)已知向量 , 满足 A.﹣ B. C.﹣ 2 D. 2
,( ) =2,则 =( )
5.( 5 分)已知直线 l 经过双曲线
范围是(

A. [ 0, 1] B. [ , ] C. [ 1, 2] D. [ , 2]
二、填空题(共 6 小题,每小题 5 分,满分 30 分)
9.( 5 分)已知复数 z 满足( 1+i ) z=2,则 z=10 .(5分)(2x
+
) 6 的展开式中常数项是
. .(用数字作答)
11.( 5 分)若一个几何体由正方体挖去一部分得到,其三视图如图所示,则该
2016-2017 学年北京市海淀区高三(上)期末数学试卷(理科)
一、选择题(共 8 小题,每小题 5 分,满分 40 分)
1.( 5 分)抛物线 y2=2x 的焦点到准线的距离为(

A. B. 1 C. 2 D. 3
2.( 5 分)在极坐标系中,点( 1, )与点( 1,

北京市海淀区2017届高三上学期期末考试数学(理)试题【含答案】

北京市海淀区2017届高三上学期期末考试数学(理)试题【含答案】

1D 1A 1B 1C F北京市海淀区2016-2017学年度第一学期高三期末理科数学2017.1一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.抛物线22y x =的焦点到准线的距离为( ) A .12B .1 C.2D .32.在极坐标系中,点14π⎛⎫⎪⎝⎭,与点314π⎛⎫⎪⎝⎭,的距离为( ) A .1 B C D 3.右侧程序框图所示的算法来自于《九章算术》.若输入a 的值为16,b 的值为24则执行该程序框图输出的结果为( ) A .6 B .7 C .8D .94.已知向量,a b 满足2+=0a b ,()2+⋅=a b a ,则⋅=a b ( ) A .12-B .12C .2-D .2 5.已知直线l 经过双曲线2214x y -=的一个焦点且与其一条渐近线平行,则直线l 的方程可能是( ) A.12y x =-B .12y x =C .2y x =-D .2y x =-6.设x y ,满足0202x y x y x -≤⎧⎪+-≥⎨⎪≤⎩,则()221x y ++的最小值为( )A .1B .92C .5D .5 7.在手绘涂色本的某页上画有排成一列的6条未涂色的鱼,小明用红、蓝两种颜色给这些鱼涂色,每条鱼只能涂一种颜色,两条相邻的鱼不.都.涂.成红色...,涂色后,既有红色鱼又有蓝色鱼的涂色方法种数为( ) A .14 B .16 C .18 D .208.如图,已知正方体1111ABCD A BC D -的棱长为1,E F ,分别是棱11ADB C ,上的动点,设俯视图主视图1AE x B F y ==,.若棱1DD 与平面BEF 有公共点,则x y +的取值范围是( )A .[]01,B .1322⎡⎤⎢⎥⎣⎦,C .[]12,D .322⎡⎤⎢⎥⎣⎦二、填空题共6小题,每小题5分,共30分.9.已知复数z 满足()12i z +=,则z =_________.10.在621x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项为_________.(用数字作答)11.若一个几何体由正方体挖去一部分得到,其三视图如图所示,则该几何体的体积为_________. 12.已知圆22:20C x x y -+=,则圆心坐标为_________;若直线l 过点()10-, 且与圆C 相切,则直线l 的方程为_________.13.已知函数()2sin 02y x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,. ①若()01f =,则ϕ=_________;②若x R ∃∈,使()()24f x f x +-=成立,则ω的最小值是_________. 14.已知函数()||cos x f x e x π-=+,给出下列命题: ①()f x 的最大值为2;②()f x 在()1010-,内的零点之和为0; ③()f x 的任何一个极大值都大于1. 其中所有正确命题的序号是_________.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程. 15.(本小题满分13分)在ABC ∆中,2c a =,120B =,且ABC ∆. (Ⅰ)求b 的值; (Ⅱ)求tan A 的值.16.(本小题满分13分)诚信是立身之本,道德之基. 某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“周实际回收水费周投入成本”表示每周“水站诚信度”. 为了便于数据分析,以四周为一周期......,下表为该水站连续十二周(共三个周期)的诚信度数据统计:(Ⅰ)计算表中十二周“水站诚信度”的平均数x ;(Ⅱ)分别从上表每个周期的4个数据中随机抽取1个数据,设随机变量X 表示取出的3个数据中“水站诚信度”超过91%的数据的个数,求随机变量X 的分布列和期望;(Ⅲ)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动.根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.17.(本小题满分14分)如图1,在梯形ABCD 中,//AB CD ,90ABC ∠=,224AB CD BC ===,O 是边AB 的中点.将三角形AOD 绕边OD 所在直线旋转到1AOD 位置,使得1120AOB ∠=;如图2,设m 为平面1A DC 与平面1AOB 的交线. (Ⅰ)判断直线DC 与直线m 的位置关系并证明;(Ⅱ)若直线m 上的点G 满足1OG A D ⊥,求出1AG 的长; (Ⅲ)求直线1AO 与平面1A BD 所成角的正弦值.18.(本小题满分13分)已知()()0231A B , ,, 是椭圆()2222:10x y G a b a b+=>>上的两点.AOBCD1图ODCB2图1A(Ⅰ)求椭圆G 的离心率;(Ⅱ)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程.19.(本小题满分14分)已知函数()ln 1af x x x=--. (Ⅰ)若曲线()y f x =存在斜率为1-的切线,求实数a 的取值范围;(Ⅱ)求()f x 的单调区间; (Ⅲ)设函数()ln x ag x x+=,求证:当10a -<<时,()g x 在()1+∞,上存在极小值.20.(本小题满分13分)对于无穷数列{}n a 、{}n b ,若{}{}()1212max min k k k b a a a a a a k N *=-∈,,,,,,,则称{}n b 是{}n a 的“收缩数列”. 其中,{}12max k a a a ,,,,{}12min k a a a ,,,分别表示12k a a a ,,,中的最大数和最小数.已知{}n a 为无穷数列,其前n 项和为n S ,数列{}n b 是{}n a 的“收缩数列”. (Ⅰ)若21n a n =+,求{}n b 的前n 项和; (Ⅱ)证明:{}n b 的“收缩数列”仍是{}n b ; (Ⅲ)若()()1211122n n n n n n S S S a b +-+++=+()n N *∈,求所有满足该条件的{}n a .海淀区高三年级第一学期期末练习数学(文科)答案及评分标准 2017.1一、选择题共8小题,每小题5分,共40分。

2017年北京市各区高三理科数学试题分类汇编----函数与导数

2017年北京市各区高三理科数学试题分类汇编----函数与导数

2017年北京市各区高三理科数学分类汇编----函数与导数(2017西城期末)2.下列函数中,定义域为R 的奇函数是( D ) (A )21y x =+(B )tan y x =(C )2x y =(D )sin y x x =+(2017东城期末)(6)已知()f x 是定义在R 上的奇函数,且在[0,)+∞上是增函数,则(1)0f x +≥的解集为( C )(A )(,1]-∞-(B )(,1]-∞ (C )[1,)-+∞(D )[1,)+∞(2017朝阳期末)3.下列函数中,既是偶函数,又在区间[0,1]上单调递增的是 ( D )A .cos y x =B .2y x =-C . 1()2xy = D . |sin |y x =(2017通州期末) 5.下列函数中,既是偶函数又在区间()0,1内单调递减的是( C ) A .3x y =B .2xy =C .cos y x =D .xx y 1ln -= (2017年朝阳一模)(6)已知函数42log ,04,()1025, 4.x x f x x x x ⎧<≤⎪=⎨-+>⎪⎩若a ,b ,c ,d 是互不相同的正数,且()()()()f a f b f c f d ===,则abcd 的取值范围是( A )(A )(24,25) (B )(18,24) (C ) (21,24) (D )(18,25)(2017年海淀一模)5. 已知10d a x x =⎰,120d b x x =⎰,c x =⎰,则a ,b ,c 的大小关系是( C )A .a b c <<B .a c b <<C .b a c <<D .c a b <<(2017年西城一模)4.函数2()2log ||x f x x =+的零点个数为( C ) (A )0(B )1(C )2 (D )3(2017年丰台一模)3. 定积分311(2)d x x x-⎰=( B ) (A )10ln 3- (B )8ln 3- (C )223(D )649(2017年平谷一模)2.下列函数中,既是偶函数又存在零点的是( C ) A . B .lg y x = C .D .1xy e =-(2017年朝阳二模)7.已知函数log ,0,()3,40a x x f x x x >⎧⎪=⎨+-≤<⎪⎩ (0a >且1)a ≠.若函数()f x 的图象上有且只有两个点关于y 轴对称,则a 的取值范围是( D ) A .(0,1)B .(1,4)C .(0,1)(1,)+∞UD .(0,1)(1,4)U(2017年东城二模)(2)下列函数中为奇函数的是( B )(A )cos y x x =+ (B )sin y x x =+(C)y (D )||e x y -=(2017年海淀二模)6. 已知()f x 是R 上的奇函数,则“120x x +=”是“12()()0f x f x +=”的( A ) A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件(2017年西城二模)2.下列函数中,值域为[0,1]的是( D )(A )2y x =(B )sin y x =(C )211y x =+(D)y 7.函数()||f x x x =.若存在[1,)x ∈+∞,使得(2)0f x k k --<,则k 的取值范围是( D )(A )(2,)+∞(B )(1,)+∞(C )1(,)2+∞ (D )1(,)4+∞(2017年丰台二模)2. 下列函数中,既是偶函数又是()0+∞,上的增函数的是(A )3x y -=(B )xy 2=(C )12y x =(D )3log ()y x =-填空题:(2017东城期末)(14)关于x 的方程()()g x t t =∈R 的实根个数记为()f t .若()ln g x x =,则()f t =____1___;若2,0,()2,0,x x g x x ax a x ≤⎧=⎨-++>⎩()a ∈R ,存在t 使得(2)()f t f t +>成立,则a 的取值范围是____(1,)+∞_____.(2017海淀期末)14.已知函数||()cos πx f x e x -=+,给出下列命题:①()f x 的最大值为2;②()f x 在(10,10)-内的零点之和为0; ③()f x 的任何一个极大值都大于1.其中所有正确命题的序号是_____①②③_____.(2017丰台期末)14.已知()f x 为偶函数,且0≥x 时,][)(x x x f -=(][x 表示不超过x 的最大整数).设()()()g x f x kx k k =--∈R ,若1k =,则函数()g x 有__2__个零点;若函数()g x 三个不同的零点,则k 的取值范围是__1111,,3432⎛⎤⎡⎫-- ⎪⎥⎢⎝⎦⎣⎭U __.(2016昌平期末)(14)已知函数2()|3|,.f x x x x =-∈R 若方程()|1|0f x a x -+=恰有4个互异的实数根,则实数a 的取值范围是____(0,1)(9,)+∞ _______.(2017通州期末)14.已知函数()()()220,0,x x f x x x ⎧≤⎪=⎨>⎪⎩ 若函数()()()1g x f x k x =--有且只有一个零点,则实数k 的取值范围是____{}(,1)4-∞- ___.(2017年东城一模)(14)已知函数11,0,21()1,1,20,01x f x x x x ⎧≤<⎪⎪⎪=-≤<⎨⎪⎪<≥⎪⎩或和1,01,()0,01x g x x x 或,≤<⎧=⎨<≥⎩ 则(2)g x =____11,0,2()10,0.2x g x x x 或⎧≤<⎪⎪=⎨⎪<≥⎪⎩__ ;若,m n ∈Z ,且()()()m g n x g x f x ⋅⋅-=,则m n +=__4___ .(2017年海淀一模)13.已知函数210()cos π0.x x f x x x ⎧-≥=⎨<⎩,,,若关于x 的方程()0f x a +=在(0,)+∞内有唯一实根,则实数a 的最小值是___12-__.(2017年丰台一模)14. 已知函数()e e x xf x -=-,下列命题正确的有____①②④___.(写出所有正确命题的编号)①()f x 是奇函数;②()f x 在R 上是单调递增函数;③方程2()2f x x x =+有且仅有1个实数根; ④如果对任意(0)x ∈+∞,,都有()f x kx >,那么k 的最大值为2.(2017年石景山一模)14.已知42(),,()4,.a x x a x f x x x a x ⎧-+<⎪⎪=⎨⎪-⎪⎩≥ ①当1a =时,()3f x =,则x = 4 ;②当1a -≤时,若()3f x =有三个不等实数根,且它们成等差数列,则a = 6.(2017年平谷一模)14. 已知函数()|1|(1)f x ax a x =---.(i) 当2a =时,满足不等式()0f x >的x 的取值范围为____1(,)(1,)3-∞+∞ _____; (ii) 若函数()f x 的图象与x 轴没有交点,则实数a 的取值范围为_______1[,1)2______.(2017年东城二模)(14)已知函数|1|,(0,2],()min{|1|,|3|},(2,4],min{|3|,|5|},(4,).x x f x x x x x x x -∈⎧⎪=--∈⎨⎪--∈+∞⎩① 若()f x a =有且只有一个根,则实数a 的取值范围是___(1,)+∞____.② 若关于x 的方程()()f x T f x +=有且仅有3个不同的实根,则实数T 的取值范围是___(4,2)(2,4)--U ____.(2017年海淀二模)12.已知函数1()2x f x x =-,则1()2f __>__(1)f (填“>”或“<”);()f x 在区间1(,)1n nn n -+上存在零点,则正整数n =__2___.(2017年西城二模)12.函数22, 0,()log , 0.x x f x x x ⎧=⎨>⎩≤则1()4f =__2-__;方程1()2f x -=的解是__.(2017年丰台二模)13. 已知函数f (x )的定义域为R . 当0<x 时,()ln()f x x x =-+;当e e x -≤≤时,()()f x f x -=-;当1x >时,(2)()f x f x +=,则(8)f = .(2017年顺义二模)14.已知函数32,,(),.x x m f x x x m ⎧≤⎪=⎨>⎪⎩,函数()()g x f x k =-.(1)当2m =时,若函数()g x 有两个零点,则k 的取值范围是 (]8,4 ;(2)若存在实数k 使得函数()g x 有两个零点,则m 的取值范围是 ()()+∞∞-,10, .(2017西城期末) 18.(本小题满分13分)已知函数()ln sin (1)f x x a x =-⋅-,其中a ∈R .(Ⅰ)如果曲线()y f x =在1x =处的切线的斜率是1-,求a 的值; (Ⅱ)如果()f x 在区间(0,1)上为增函数,求a 的取值范围. 【解析】(Ⅰ)函数()f x 的定义域是(0,)+∞,导函数为1()cos(1)f x a x x'=-⋅-. 因为曲线()y f x =在1x =处的切线的斜率是1-, 所以(1)1f '=-,即11a -=-, 所以2a =.(Ⅱ)因为()f x 在区间(0,1)上为增函数, 所以对于任意(0,1)x ∈,都有1()cos(1)0f x a x x'=-⋅-≥. 因为(0,1)x ∈时,cos(1)0x ->,所以11()cos(1)0cos(1)f x a x a x x x '=-⋅-⇔⋅-≤≥. 令()cos(1)g x x x =⋅-,所以()cos(1)sin (1)g x x x x '=--⋅-.因为(0,1)x ∈时,sin (1)0x -<,所以(0,1)x ∈时,()0g x '>,()g x 在区间(0,1)上单调递增, 所以()(1)1g x g <=. 所以1a ≤.即a 的取值范围是(,1]-∞. (2017海淀期末) 19. (本小题满分14分) 已知函数()ln 1af x x x=--. (Ⅰ)若曲线()y f x =存在斜率为1-的切线,求实数a 的取值范围; (Ⅱ)求()f x 的单调区间; (Ⅲ)设函数()ln x ag x x+=,求证:当10a -<<时,()g x 在(1,)+∞上存在极小值. 【解析】(2017丰台期末) 18.(本小题共13分)已知函数()e x f x x =与函数21()2g x x ax =+的图象在点(00),处有相同的切线. (Ⅰ)求a 的值;(Ⅱ)设()()()()h x f x bg x b =-∈R ,求函数()h x 在[12],上的最小值. 【解析】(Ⅰ)因为()e e x xf x x '=+,所以(0)1f '=. ……………….2分因为()g x x a '=+,所以(0)g a '=. ……………….4分 因为()f x 与()g x 的图象在(0,0)处有相同的切线,所以(0)(0)f g ''=,所以1a =. …….5分(Ⅱ)由(Ⅰ)知, 21()2g x x x =+, 令21()()()e 2xh x f x bg x x bx bx =-=--,[1,2]x ∈,则()e e (1)(1)(e )xxxh x x b x x b '=+-+=+-. ……………….6分 (1)当0b ≤时,[1,2]x ∀∈,()0h x '>,所以()h x 在[1,2]上是增函数,故()h x 的最小值为3(1)=e 2h b -; ……………….7分 (2)当0b >时,由()=0h x '得,ln x b =, ……………….8分 ①若ln 1b ≤,即0e b <≤,则[1,2]x ∀∈,()0h x '>,所以()h x 在[1,2]上是增函数, 故()h x 的最小值为3(1)=e 2h b -. ……………….9分 ②若1ln 2b <<,即2e e b <<,则(1,ln )x b ∀∈,()0h x '<,(ln 2)x b ∀∈,,()0h x '>, 所以()h x 在(1,ln )b 上是减函数,在(ln 2)b ,上是增函数, 故()h x 的最小值为21(ln )=ln 2h b b b -; ……………….11分 ③若ln 2b ≥,即2e b ≥,则[1,2]x ∀∈,()0h x '<,所以()h x 在[1,2]上是减函数,故()h x 的最小值为2(2)=2e 4h b -. ……………….12分 综上所述,当e b ≤时,()h x 的最小值为3(1)=e 2h b -, 当2e e b <<时,()h x 的最小值为21ln 2b b -, 当2e b ≥时,()h x 的最小值为22e 4b -. ……………….13分 (2017东城期末) (18)(本小题13分)设函数()ln(1)()1axf x x a x =+-∈+R . (Ⅰ)若(0)f 为()f x 的极小值,求a 的值;(Ⅱ)若()0f x >对(0,)x ∈+∞恒成立,求a 的最大值. 【解析】(Ⅰ)()f x 的定义域为(1,)-+∞. 因为()ln(1)1axf x x x =+-+, 所以21'()1(1)a f x x x =-++. 因为(0)f 为()f x 的极小值, 所以'(0)0f =,即21001(01)a -=++. 所以1a =.此时,2'()(1)xf x x =+. 当(1,0)x ∈-时,'()0f x <,()f x 单调递减; 当(0,)x ∈+∞时,'()0f x >,()f x 单调递增. 所以()f x 在0x =处取得极小值, 所以1a =.(Ⅱ)由(Ⅰ)知当1a =时,()f x 在[0,)+∞上为单调递增函数, 所以()(0)0f x f >=,所以()0f x >对(0,)x ∈+∞恒成立. 因此,当1a <时,()ln(1)ln(1)011ax xf x x x x x =+->+->++, ()0f x >对(0,)x ∈+∞恒成立.当1a >时,221(1)'()1(1)(1)a x a f x x x x --=-=+++, 所以,当(0,1)x a ∈-时,'()0f x <,因为()f x 在[0,1)a -上单调递减, 所以(1)(0)0f a f -<=.所以当1a >时,()0f x >并非对(0,)x ∈+∞恒成立. 综上,a 的最大值为1.综上,a 的取值范围为(e,)+∞. …………………14分(2017朝阳期末) 19.(本小题满分14分)设函数2()ln(1)1f x x ax x =-+++,2()(1)e x g x x ax =-+,R a ∈.(Ⅰ)当1a =时,求函数()f x 在点(2,(2))f 处的切线方程; (Ⅱ)若函数()g x 有两个零点,试求a 的取值范围; (Ⅲ)证明()()f x g x ≤.解:(Ⅰ)函数()f x 的定义域是(1,)+∞,(221)()1x ax a f x x -+'=-.当1a =时, (2)426f a '=+=,(2)437f a =+=.所以函数()f x 在点(2,(2))f 处的切线方程为76(2)y x -=-.即65y x =-. …………………………………4分(Ⅱ)函数()g x 的定义域为R ,由已知得()(e2)xg x x a '=+.①当0a =时,函数()(1)e xg x x =-只有一个零点; ②当0a >,因为e 20xa +>,当(,0)x ∈-∞时,()0g x '<;当(0,)x ∈+∞时,()0g x '>. 所以函数()g x 在(,0)-∞上单调递减,在(0,)+∞上单调递增. 又(0)1g =-,(1)g a =,因为0x <,所以10,1x x e -<<,所以(1)1x e x x ->-,所以2()1g x ax x >+-取0x =00x <且0()0g x >所以(0)(1)0g g <,0()(0)0g x g <.由零点存在性定理及函数的单调性知,函数有两个零点. ③当0a <时,由()(e 2)0xg x x a '=+=,得0x =,或ln(2)x a =-.ⅰ) 当12a <-,则ln(2)0a ->. 当x 变化时,(),()g x g x '变化情况如下表:注意到(0)1g =-,所以函数()g x 至多有一个零点,不符合题意. ⅱ) 当12a =-,则ln(2)0a -=,()g x 在(,)-∞+∞单调递增,函数()g x 至多有一个零点,不符合题意. 若12a >-,则ln(2)0a -≤.当x 变化时,(),()g x g x '变化情况如下表:注意到当0,0x a <<时,2()(1)e 0xg x x ax =-+<,(0)1g =-,所以函数()g x 至多有一个零点,不符合题意.综上,a 的取值范围是(0,).+∞ …………………………………………9分 (Ⅲ)证明:()()(1)e ln(1)1xg x f x x x x -=-----.设()(1)e ln(1)1xh x x x x =-----,其定义域为(1,)+∞,则证明()0h x ≥即可.因为1()e (e )11xx x h x x x x x '=-=---,取311e x -=+,则1311()(e e )0x h x x '=-<,且(2)0h '>. 又因为21()(1)e 0(1)xh x x x ''=++>-,所以函数()h x '在(1,)+∞上单增. 所以()0h x '=有唯一的实根0(1,2)x ∈,且001e1x x =-. 当01x x <<时,()0h x '<;当0x x >时,()0h x '>. 所以函数()h x 的最小值为0()h x .所以00000()()(1)e ln(1)1xh x h x x x x ≥=-----00110x x =+--=.所以()().f x g x ≤ ……………………………………………………14分(2017石景山期末) (18)(本小题满分13分) 已知()1e xaf x x =-+(,e a ∈R 为自然对数的底数). (Ⅰ)求函数()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值; (Ⅱ)求函数()f x 的极值;(Ⅲ)当1a =时,若直线:1l y kx =-与曲线 ()y f x =没有公共点,求k 的最大值. 【解析】(Ⅰ)由()1e x a f x x =-+,得()1exaf x '=- 又曲线()y f x =在点(1,(1))f 处的切线平行于x 轴, 得(1)0f '=,即 10ea-=,解得e a =(Ⅱ)()1ex a f x '=-① 当 a ≤ 0 时, f '(x ) > 0 , f ( x ) 为 (-∞, +∞)上的增函数,所以函数f ( x ) 无极值. ② 当 a > 0 时,令 f '(x ) = 0 ,得 e x = a , x = ln a . x ∈(-∞, l n a ) , f '(x ) < 0 ; x ∈(ln a , +∞) ,f '(x ) > 0 . 所以 f ( x ) 在 (-∞, l n a ) 上单调递减,在 (ln a , +∞) 上单调递增,故f ( x ) 在 x = ln a 处取得极小值,且极小值为 f (ln a ) = ln a ,无极大值. 综上,当 a ≤ 0 时,函数f ( x ) 无极小值 当 a > 0 , f ( x ) 在 x = ln a 处取得极小值l n a ,无极大值. (Ⅲ)当1a =时,1()1e xf x x =-+, 令1()()(1)(1)ex g x f x kx k x =--=-+则直线:1l y kx =-与曲线()y f x =没有公共点 等价于方程()0g x =在R 上没有实数根. 假设1k >,此时(0)10g =>,1111()101k g k e -=-+<- 可知()0g x =在R 上至少有一个实数根,与“方程()0g x =在R 上没有实数根”矛盾,故1k ≤ 又1k =时,1()0ex g x =>,可知()0g x =在R 上没有实数根 所以k 的最大值为1. (2017年朝阳一模) (18)(本小题满分13分)已知函数()ln 1f x x ax =--(R a ∈),21()()22g x xf x x x =++. (Ⅰ)求()f x 的单调区间;(Ⅱ)当1a =时,若函数()g x 在区间(,1)()m m m Z +?内存在唯一的极值点,求m 的值.解:(Ⅰ)由已知得0x >,11()ax f x a x x-'=-=. (ⅰ)当0a ≤时,()0f x '>恒成立,则函数()f x 在(0,)+∞为增函数;(ⅱ)当0a >时,由()0f x '>,得10x a<<; 由()0f x '<,得1x a >; 所以函数()f x 的单调递增区间为1(0,)a ,单调递减区间为1(,)a+∞. ……4分(Ⅱ)因为21()()22g x xf x x x =++21(ln 1)22x x x x x =--++21ln 2x x x x =-+,则()ln 11g x x x '=+-+ln 2()3x x f x =-+=+.由(Ⅰ)可知,函数()g x '在(0,1)上单调递增,在(1,)+∞上单调递减.又因为2211()22e e g '=--+210e=-<,(1)10g '=>, 所以()g x '在(0,1)上有且只有一个零点1x .又在1(0,)x 上()0g x '<,()g x 在1(0,)x 上单调递减; 在1(,1)x 上()0g x '>,()g x 在1(,1)x 上单调递增. 所以1x 为极值点,此时0m =.又(3)ln 310g '=->,(4)2ln 220g '=-<, 所以()g x '在(3,4)上有且只有一个零点2x .又在2(3,)x 上()0g x '>,()g x 在2(3,)x 上单调递增; 在2(,4)x 上()0g x '<,()g x 在2(,4)x 上单调递减. 所以2x 为极值点,此时3m =.综上所述,0m =或3m =. ……………………………………………………13分(2017年东城一模)(18)(本小题共13分)已知函数1()2ln ()f x x mx m x=+-∈R . (Ⅰ)当1m =-时,求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)若)(x f 在(0,)+∞上为单调递减,求的取值范围; (Ⅲ)设b a <<0,求证:ln ln b ab a -<-. 解:(Ⅰ))(x f 的定义域为(0,)+∞.当1m =-时,1()2ln f x x x x=++, 所以221'()1f x x x =-+.因为(1)2f =且'(1)2f =,所以曲线()y f x =在点(1,(1))f 处的切线方程为20x y -=.…………4分 (Ⅱ)若函数)(x f 在(0,)+∞上为单调递减,则'()0f x ≤在(0,)+∞上恒成立. 即2210m x x --≤在(0,)+∞上恒成立. 即221x m x -≤在(0,)+∞上恒成立. 设221()(0)g x x x x =->, 则max [()]m g x ≥. 因为22211()(1)1(0)g x x x x x=-=--+>, 所以当1x =时,()g x 有最大值1.所以m 的取值范围为[1,)+∞. ……………………9分(Ⅲ)因为b a <<0,不等式ln ln b ab a -<-ln ln b a -<.即lnb a <(1)t t >,原不等式转化为12ln t t t <-.令1()2ln h t t t t=+-, 由(Ⅱ)知1()2ln f x x x x=+-在(0,)+∞上单调递减, 所以1()2ln h t t t t=+-在(1,)+∞上单调递减. 所以,当1t >时,()(1)0h t h <=. 即当1t >时,12ln 0t t t+-<成立.所以,当时b a <<0,不等式ln ln b ab a -<-13分(2017年海淀一模) 18.(本小题满分13分)已知函数2()24(1)ln(1)f x x ax a x =-+-+,其中实数3a <. (Ⅰ)判断1x =是否为函数()f x 的极值点,并说明理由; (Ⅱ)若()0f x ≤在区间[0,1]上恒成立,求a 的取值范围. 18.(本小题满分13分) 解:法1: (Ⅰ)由2()24(1)ln(1)f x x ax a x =-+-+可得函数定义域为(1,)-+∞,4(1)'()221a f x x a x -=-++22[(1)(2)]1x a x a x +-+-=+2(1)[(2)]1x x a x ---=+,由'()0f x =得121,2x x a ==-.因为3a <,所以21a -<.当1a ≤时,2a -,所以'()()f x f x ,的变化如下表:当13a <<'()()f x f x ,的变化如下表:综上,1x =是函数()f x 的极值点,且为极小值点. (Ⅱ)易知(0)=0f ,由(Ⅰ)可知,当2a ≤时,函数()f x 在区间[0,1]上单调递减,所以有()0f x ≤恒成立;当23a <<时,函数()f x 在区间[0,2]a -上单调递增,所以(2)(0)0f a f ->=,所以不等式不能恒成立;所以2a ≤时有()0f x ≤在区间[0,1]上恒成立. 法2:(Ⅰ)由2()24(1)ln(1)f x x ax a x =-+-+可得函数定义域为(1,)-+∞,4(1)'()221a f x x a x -=-++22[(1)(2)]1x a x a x +-+-=+令2()(1)(2)g x xa x a =+-+-,经验证(1)0g =,因为3a <,所以()0g x =的判别式222(1)4(2)69(3)0a a a a a ∆=---=-+=->,{说明:写明222(1)4(2)69(3)0a a a a a ∆=---=-+=-≠也可以}由二次函数性质可得,1是2()(1)(2)g x x a x a =+-+-的异号零点,所以1是'()f x 的异号零点, 所以1x =是函数()f x 的极值点. (Ⅱ)易知(0)=0f ,因为2(1)[(2)]'()1x x a f x x ---=+,又因为3a <,所以21a -<,所以当2a ≤时,在区间[0,1]上'()0f x <,所以函数()f x 单调递减,所以有()0f x ≤恒成立;当23a <<时,在区间[0,2]a -上'()0f x >,所以函数()f x 单调递增,所以(2)(0)0f a f ->=,所以不等式不能恒成立;所以2a ≤时有()0f x ≤在区间[0,1]上恒成立.(2017年西城一模)18.(本小题满分13分)已知函数21()e 2x f x x =-.设l 为曲线()y f x =在点00(,())P x f x 处的切线,其中0[1,1]x ∈-. (Ⅰ)求直线l 的方程(用0x 表示);(Ⅱ)设O 为原点,直线1x =分别与直线l 和x 轴交于,A B 两点,求△AOB 的面积的最小值. 解:(Ⅰ)对()f x 求导数,得()e x f x x '=-, [ 1分]所以切线l 的斜率为000()e x x f x '=-, [ 2分]由此得切线l 的方程为:000002(1(e 2))e ()x x x x x y x ----=,即000020(e )(1)1e 2x x x x y x x =+-+-. [ 4分](Ⅱ)依题意,切线方程中令1x =,得 00020000011e e )22(e )(1)(2)(x x x y x x x x x =+=--+--. [ 5分]所以 (1,)A y ,(1,0)B .所以 1||||2AOB S OB y =⋅△0001|(2)(1e 22)|x x x =-- 000(1)(11|e )|22x x x =--,0[1,1]x ∈-. [ 7分]设 ()(111e )22)(x x g x x -=-,[1,1]x ∈-. [ 8分]则 11111e )(1)(e )(1)(e 1)22(2()22x x x x x x g x -+'=-----=-. [10分]令 ()0g x '=,得0x =或1x =. ()g x ,()g x '的变化情况如下表:所以 ()g x 在(1,0)-单调递减;在(0,1)单调递增, [12分] 所以 min ()(0)1g x g ==,从而 △AOB 的面积的最小值为1. [13分](2017年丰台一模) 18.(本小题共13分)已知函数1()ln()(0)f x kx k k x=+->.(Ⅰ)求()f x 的单调区间;(Ⅱ)对任意12[]x k k∈,,都有ln()1x kx kx mx -+≤,求m 的取值范围.解:由已知得,()f x 的定义域为(0,)+∞. (Ⅰ)21()x f x x -'=, . 令()0f x '>,得1x >,令()0f x '<,得01x <<.所以函数()f x 的单调减区间是(0,1),单调增区间是(1,)+∞. ..………………5分 (Ⅱ)由ln()1x kx kx mx -+≤,得1ln()kx k m x +-≤,即()maxm f x ≥.由(Ⅰ)知,(1)当2k ≥时,()f x 在12[,]k k 上单调递减,所以1()()0max f x f k ==,所以0m ≥; .(2)当01k <≤时,()f x 在12[,]k k上单调递增,所以2()()ln22max kf x f k ==-,所以ln 22km ≥-;(3)当12k <<时,()f x 在1[,1)k 上单调递减,在2(1,]k上单调递增,所以12()(),()max f x max f f kk ⎧⎫=⎨⎬⎩⎭.又1()0f k =,2()ln22kf k =-,① 若21()()f f k k ≥,即ln 202k -≥,所以12ln 2k <<,此时2()()ln22max kf x f k ==-,所以ln 22km ≥-.② 若21()()f f k k <,即ln 202k-<,所以2ln 22k ≤<,此时max ()0f x =,所以0m ≥综上所述,当2ln 2k ≥时,m ≥;当02ln 2k <<时,ln 22km ≥-...………………13分(2017年石景山一模) 18.(本小题共13分)已知函数()ln f x x =.(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求证:当0x >时,1()1f x x-≥;(Ⅲ)若1ln x a x ->对任意1x >恒成立,求实数a 的最大值.解:(Ⅰ)1()f x x'=, (1)1f '=, 又(1)0f =,所以切线方程为1y x =-; ……3分 (Ⅱ)由题意知0x >,令11()()(1)ln 1g x f x x xx=--=-+. 22111'()x g x x x x-=-= ………5分令21'()0x g x x -==,解得1x =. ………6分 易知当1>x 时,'()0g x >,易知当01x <<时,'()0g x <.即()g x 在(0,1)单调递减,在(1,)+∞单调递增 ………7分 所以min ()(1)0g x g ==,()(1)0g x g ≥=即1()()(1)0g x f x x =--≥,即1()(1)f x x≥-. ……8分 (Ⅲ)设()1ln (1)h x x a x x =--≥,依题意,对于任意1,>x ()0h x >恒成立.'()1a x ah x x x-=-=, ………9分 1≤a 时,'(),h x >0()h x 在[1,)+∞上单调增,当1>x 时,()(1)0h x h >=,满足题意. ………11分1>a 时,随x 变化,'()h x ,()h x 的变化情况如下表:()h x 在(,)a 1上单调递减, 所以()()<=g a g 10即当 1>a 时,总存在()0<g a ,不合题意. ………12分 综上所述,实数a 的最大值为1. ………13分(2017年平谷一模) 18.(本小题满分13分) 已知函数1()(1)xf x k x e =-+. (Ⅰ)如果()f x 在0x =处取得极值,求k 的值; (Ⅱ)求函数()f x 的单调区间;(III )当0k =时,过点(0,)A t 存在函数曲线()f x 的切线,求t 的取值范围.解:(Ⅰ)函数的定义域为R .所以 (1)1()x xk e f x e --'=∵函数()f x 在0x =处取得极值∴00(1)1(0)0k e f e--'==,解得:k=0 当k=0时,1()x xe f x e -'=,11()00,()00,x x x x e e f x x f x x e e--''=>⇒>=<⇒<∴函数()f x 在0x =处取得极小值,符合题意。

2017年高考北京理科数学试题及答案(word解析版)(完整资料).doc

2017年高考北京理科数学试题及答案(word解析版)(完整资料).doc

此文档下载后即可编辑2017年普通高等学校招生全国统一考试(北京卷)数学(理科)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项. (1)【2017年北京,理1,5分】若集合–21{|}A x x =<<,–1{|}3B x x x =<>或,则A B I =( )(A )1|}–2{x x <<- (B )3|}–2{x x << (C )1|}–1{x x << (D )3|}1{x x <<【答案】A【解析】{}21A B x x =-<<-I ,故选A . (2)【2017年北京,理2,5分】若复数()()1i i a -+在复平面内对应的点在第二象限,则实数a 的取值范围是( ) (A )(),1-∞ (B )(),1-∞- (C )()1,+∞ (D )()1,-+∞【答案】B【解析】()()()()1i i 11i z a a a =-+=++-,因为对应的点在第二象限,所以1010a a +<⎧⎨->⎩,解得:1a <-,故选B .(3)【2017年北京,理3,5分】执行如图所示的程序框图,输出的s 值为( ) (A )2(B )32(C )53(D )85【答案】C 【解析】0k =时,03<成立,第一次进入循环111,21k s +===,13<成立,第二次进入循环,2132,22k s +===,23<成立,第三次进入循环31523,332k s +===,33< 否,输出53s =,故选C .(4)【2017年北京,理4,5分】若x ,y 满足32x x y y x ≤⎧⎪+≥⎨⎪≤⎩,,, 则2x y +的最大值为( )(A )1 (B )3 (C )5 (D )9 【答案】D【解析】如图,画出可行域,2z x y =+表示斜率为12-的一组平行线,当过点()3,3C 时,目标函数取得最大值max 3239z =+⨯=,故选D .(5)【2017年北京,理5,5分】已知函数1()3()3x x f x =-,则()f x ( )(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数(C )是奇函数,且在R 上是减函数 (D )是偶函数,且在R 上是减函数 【答案】A【解析】()()113333xx xx f x f x --⎛⎫⎛⎫-=-=-=- ⎪⎪⎝⎭⎝⎭,所以函数是奇函数,并且3x 是增函数,13x⎛⎫⎪⎝⎭是减函数,根据增函数-减函数=增函数,所以函数是增函数故选A .(6)【2017年北京,理6,5分】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件【答案】A【解析】若0λ∃<,使m n λ=r r,即两向量反向,夹角是0180,那么cos1800m n m n m n ⋅==-<r r r r r r ,反过来,若0m n ⋅<r r,那么两向量的夹角为(0090,180⎤⎦ ,KS5U 并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分不必要条件,故选A .(7)【2017年北京,理7,5分】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )(A )32 (B )23 (C )22 (D )2【答案】B【解析】几何体是四棱锥,如图,红色线为三视图还原后的几何体,最长的棱长为正方体的对角线,22222223l =++=,故选B .(8)【2017年北京,理8,5分】根据有关资料,围棋状态空间复杂度的上限M 约为3613,而可观测宇宙中普通物质的原子总数N 约为8010.则下列各数中与MN最接近的是( )(参考数据:30.48lg ≈)(A )3310 (B )5310 (C )7310 (D )9310 【答案】D【解析】设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即M N最接近9310,故选D .第二部分(非选择题 共110分)二、填空题:共6小题,每小题5分,共30分。

北京市部分区2017届高三上学期考试数学理试题分类汇编:统计与概率

北京市部分区2017届高三上学期考试数学理试题分类汇编:统计与概率

北京市部分区2017届高三上学期考试数学理试题分类汇编统计与概率一、选择、填空题1、(朝阳区2017届高三上学期期末)某校高三(1)班32名学生全部参加跳远和掷实心球两项体育测试.跳远和掷实心球两项测试成绩合格的人数分别为26人和23人,这两项成绩都不合格的有3人,则这两项成绩都合格的人数是A .23 B . 20 C . 21 D .192、(西城区2017届高三上学期期末)10名象棋选手进行单循环赛(即每两名选手比赛一场).规定两人对局胜者得2分,平局各得1分,负者得0分,并按总得分由高到低进行排序.比赛结束后,10名选手的得分各不相同,且第二名的得分是最后五名选手得分之和的45.则第二名选手的得分是____.3、(北京市2017届高三春季普通高中会考)某小学共有学生2000人,其中一至六年级的学生人数分别为400,400,400,300,300,200.为做好小学放学后“快乐30分”活动,现采用分层抽样的方法从中抽取容量为200的样本进行调查,那么应抽取一年级学生的人数为( ) A .120 B .40 C.30 D .204、(北京市2017届高三春季普通高中会考)在“二十四节气入选非遗”宣传活动中,从甲、乙、丙三位同学中任选两人介绍一年中时令、气候、物候等方面的变化规律,那么甲同学被选中的概率为( ) A . 1 B .13 C. 12 D .235、(北京市2017届高三春季普通高中会考)甲乙两名篮球运动员在4场比赛中的得分情况如图所示.12,v v 分别表示甲、乙二人的平均得分,12,s s 分别表示甲、乙二人得分的方差,那么1v 和2v ,1s 和2s 的大小关系是( )A .1212v v s s >>,B .1212v v s s <>,C. 1212v v s s ><, D .1212v v s s <<,二、解答题1、(昌平区2017届高三上学期期末)A 、B 两个班共有65名学生,为调查他们的引体向上锻炼情况,通过分层抽样获得了部分学生引体向上的测试数据(单位:个),用茎叶图记录如下:10198531956775B 班A 班(I ) 试估计B 班的学生人数;(II ) 从A 班和B 班抽出的学生中,各随机选取一人,A 班选出的人记为甲,B 班选出的人记为乙,假设所有学生的测试相对独立,比较甲、乙两人的测试数据得到随机变量ξ.规定: 当甲的测试数据比乙的测试数据低时,记1ξ=-, 当甲的测试数据与乙的测试数据相等时,记0ξ=, 当甲的测试数据比乙的测试数据高时,记1ξ=. 求随机变量ξ的分布列及期望.(III )再.从A 、B 两个班中各随机抽取一名学生,他们引体向上的测试数据分别是10,8(单位:个),这2个新数据与表格中的数据构成的新样本的平均数记1μ,表格中数据的平均数记为0μ,试判断0μ和1μ的大小(结论不要求证明).2、(朝阳区2017届高三上学期期末)甲、乙两位同学参加数学文化知识竞赛培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:甲:82 81 79 78 95 88 93 84 乙:92 95 80 75 83 80 90 85(Ⅰ)用茎叶图表示这两组数据;(Ⅱ)现要从中选派一人参加正式比赛,从所抽取的两组数据分析,你认为选派哪位同 学参加较为合适?并说明理由;(Ⅲ)若对甲同学在今后的3次测试成绩进行预测,记这3次成绩中高于80分的次数为ξ(将甲8次成绩中高于80分的频率视为概率),求ξ的分布列及数学期望E ξ.3、(丰台区2017届高三上学期期末)数独游戏越来越受人们喜爱,今年某地区科技馆组织数独比赛,该区甲、乙、丙、丁四所学校的学生积极参赛,参赛学生的人数如下表所示:为了解参赛学生的数独水平,该科技馆采用分层抽样的方法从这四所中学的参赛学生中抽取30名参加问卷调查.(Ⅰ)问甲、乙、丙、丁四所中学各抽取多少名学生?(Ⅱ)从参加问卷调查的30名学生中随机抽取2名,求这2名学生来自同一所中学的概率; (Ⅲ)在参加问卷调查的30名学生中,从来自甲、丙两所中学的学生中随机抽取2名,用X 表示抽得甲中学的学生人数,求X 的分布列.4、(海淀区2017届高三上学期期末)诚信是立身之本,道德之基.某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“周实际回收水费周投入成本”表示每周“水站诚信度”.为了便于数据分析,以四周为一周期......,下表为该水站连续十二周(共三个周期)的诚信度数据统计:第一周 第二周 第三周 第四周 第一个周期95% 98% 92% 88% 第二个周期94% 94% 83% 80% 第三个周期 85% 92% 95% 96% (Ⅰ)计算表中十二周“水站诚信度”的平均数x ;(Ⅱ)分别从上表每个周期的4个数据中随机抽取1个数据,设随机变量X 表示取出的3个数据中“水站诚信度”超过91%的数据的个数,求随机变量X 的分布列和期望;(Ⅲ)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动.根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.5、(石景山区2017届高三上学期期末)2016年微信用户数量统计显示,微信注册用户数量已经突破9.27亿.微信用户平均年龄只有26岁,97.7%的用户在50岁以下,86.2%的用户在18-36岁之间.为调查大学生这个微信用户群体中每人拥有微信群的数量,现从北京市大学生中随机抽取100位中学 甲 乙 丙 丁 人数30402010同学进行了抽样调查,结果如下:微信群数量频数频率0至5个006至10个300.311至15个300.316至20个a c20个以上5b合计1001(Ⅰ)求a,b,c的值;(Ⅱ)若从这100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过15个的概率;(Ⅲ)以这100个人的样本数据估计北京市的总体数据且以频率估计概率,若从全市...中随机..大学生抽取3人,记X表示抽到的是微信群个数超过15个的人数,求X的分布列和数学期望EX.6、(通州区2017届高三上学期期末)某小组共10人,利用假期参加义工活动.已知参加义工活动的次数与相对应的人数的对应关系如下表:次数 1 2 3 4人数 1 4 4 1现从这10人中随机选出2人作为该组代表在活动总结会上发言.(Ⅰ)设A为事件“选出的2人参加义工活动次数之和为6”,求事件A发生的概率;(Ⅱ)设X为选出的2人参加义工活动次数之和,求随机变量X的分布列和数学期望.7、(西城区2017届高三上学期期末)手机完全充满电量,在开机不使用的状态下,电池靠自身消耗一直到出现低电量警告之间所能维持的时间称为手机的待机时间.为了解A,B两个不同型号手机的待机时间,现从某卖场库存手机中随机抽取A,B两个型号的手机各7台,在相同条件下进行测试,统计结果如下:手机编号 1 2 3 4 5 6 7A型待机时间(h)120 125 122 124 124 123 123B型待机时间(h)118 123 127 120 124 a b.其中,a,b是正整数,且a b(Ⅰ)该卖场有56台A型手机,试估计其中待机时间不少于123小时的台数;(Ⅱ)从A型号被测试的7台手机中随机抽取4台,记待机时间大于123小时的台数为X,求X的分布列;(Ⅲ)设A ,B 两个型号被测试手机待机时间的平均值相等,当B 型号被测试手机待机时间的方差最小时,写出a ,b 的值(结论不要求证明).8、(北京昌平临川育人学校2017届高三上学期期末)某赛季甲乙两名篮球运动员每场比赛得分的原始记录如下:甲运动员得分:30,27,9,14,33,25,21,12,36,23,乙运动员得分:49,24,12,31,50,31,44,36,15,37,25,36,39(1)根据两组数据完成甲乙运动员得分的茎叶图,并通过茎叶图比较两名运动员成绩的平均值及稳定程度;(不要求计算出具体数值,给出结论即可) (2)若从甲运动员的十次比赛的得分中选出2个得分,记选出的得分超过23分的个数为ξ,求ξ的分布列和数学期望.参考答案一、选择、填空题1、B2、163、B4、D5、C二、解答题1、解:(Ⅰ)由题意可知,抽出的13名学生中,来自B 班的学生有7名.根据分层抽样方法,B 班的学生人数估计为7653513⨯=(人). ……………3分 (Ⅱ)122(1)677P ξ=-==⨯;42(0)6721P ξ===⨯; 13(1)1(1)(0)21P P P ξξξ==-=--==则ξ的概率分布为:ξ 1-1P27 221 132122131101721213E ξ=-⨯+⨯+⨯=. ……………11分(Ⅲ)10μμ>. ……………13分 2、解:(Ⅰ)作出茎叶图如下:…………………………………4分(Ⅱ)派甲参赛比较合适.理由如下:()1x 70280490289124835858=⨯+⨯+⨯++++++++=甲,()1x 70180490350035025858=⨯+⨯+⨯++++++++=乙,()()()()()2222221s 788579858185828584858⎡=-+-+-+-+-+⎣甲()()()22288859385958535.5⎤-+-+-=⎦,()()()()()2222221s 758580858085838585858⎡=-+-+-+-+-+⎣乙 ()()()22290859285958541.⎤-+-+-=⎦因为 x =甲x 乙,22s s <乙甲,所以,甲的成绩较稳定,派甲参赛比较合适. …………………………8分 注:本小题的结论及理由均不唯一,如果考生能从统计学的角度分析,给出其他合理回答,同样给分.如派乙参赛比较合适.理由如下:从统计的角度看,甲获得85分以上(含85分)的频率为138f =,乙获得85分以上(含85分)的频率为24182f ==. 因为21f f >,所以派乙参赛比较合适.(Ⅲ)记“甲同学在一次数学竞赛中成绩高于80分”为事件A ,()63A 84P ==. ……………………………………………………… 9分随机变量ξ的可能取值为0,1,2,3,且3(3,)4ξB ∼.∴()3331C 44kkk P k ξ-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,k 0,1,2,3=.所以变量ξ的分布列为:ξ0 1 2 3 P16496427642764………………………………………………………11分19272790123646464644Eξ=⨯+⨯+⨯+⨯=. (或393.44nP Eξ==⨯=)………………………………………………13分 3、解:(Ⅰ)由题意知,四所中学报名参加数独比赛的学生总人数为100名,抽取的样本容量与总体个数的比值为30310010=, 所以甲、乙、丙、丁四所中学各抽取的学生人数分别为9,12,6,3. ………………3分 (Ⅱ)设“从30名学生中随机抽取两名学生,这两名学生来自同一所中学”为事件A ,从30名学生中随机抽取两名学生的取法共有230435C =种, ………………5分来自同一所中学的取法共有222291263120C C C C +++=. ………………7分所以1208()43529P A ==. 答:从30名学生中随机抽取两名学生来自同一所中学的概率为829. ………………8分 (Ⅲ)由(Ⅰ)知,30名学生中,来自甲、丙两所中学的学生人数分别为9,6.依题意得,X 的可能取值为0,1,2, (9)分262151(0)7C P X C === ,119621518(1)35C C P X C === ,2921512(2)35C P X C ===. ……………12分所以X 的分布列为:……………….14分4、解:(Ⅰ)十二周“水站诚信度”的平均数为x =95+98+92+88+94+94+83+80+85+92+95+96=91%12100⨯(Ⅱ)随机变量X 的可能取值为0,1,2,3三个周期“水站诚信度”超过91%分别有3次,2次,3次1212(0)44464P X ==⨯⨯=32112112314(1)44444444464P X ==⨯⨯+⨯⨯+⨯⨯=32132132330(2)44444444464P X ==⨯⨯+⨯⨯+⨯⨯=X 0 1 2P17 1835 123532318(3)44464P X==⨯⨯=随机变量X的分布列为X0 1 2 3P 1327321532932171590123232323232EX=⨯+⨯+⨯+⨯=.(Ⅲ)本题为开放问题,答案不唯一,在此给出评价标准,并给出可能出现的答案情况,阅卷时按照标准酌情给分.给出明确结论,1分,结合已有数据,能够运用以下三个标准中的任何一个陈述得出该结论的理由,2分.标准1:会用主题活动前后的百分比变化进行阐述标准2:会用三个周期的诚信度平均数变化进行阐述标准3:会用主题活动前后诚信度变化趋势进行阐述可能出现的作答情况举例,及对应评分标准如下:情况一:结论:两次主题活动效果均好.(1分)理由:活动举办后,“水站诚信度”由88%→94%和80%→85%看出,后继一周都有提升.(2分)情况二:结论:两次主题活动效果都不好.(1分)理由:三个周期的“水站诚信度”平均数分别为93.25%,87.75%,92%(平均数的计算近似即可),活动进行后,后继计算周期的“水站诚信度”平均数和第一周期比较均有下降.(2分)情况三:结论:第一次主题活动效果好于第二次主题活动.(1分)理由:第一次主题活动举办的后继一周“水站诚信度”提升百分点(94%-88%=6%)高于第二次主题活动举办的后继一周“水站诚信度”提升百分点(85%-80%=5%).(2分)情况四:结论:第二次主题活动效果好于第一次主题活动.(1分)理由:第一次活动后“水站诚信度”虽有上升,但两周后又有下滑,第二次活动后,“水站诚信度”数据连续四周呈上升趋势. (2分)(答出变化)情况五:结论:两次主题活动累加效果好.(1分)理由:两次主题活动“水站诚信度”均有提高,且第二次主题活动后数据提升状态持续周期好.(2分)情况六:以“‘两次主题活动无法比较’作答,只有给出如下理由才给3分:“12个数据的标准差较大,尽管平均数差别不大,但比较仍无意义”.给出其他理由,则结论和理由均不得分(0分).说明:①情况一和情况二用极差或者方差作为得出结论的理由,只给结论分1分,不给理由分2分.②以下情况不得分. 情况七:结论及理由“只涉及一次主题活动,理由中无法辩析是否为两次活动后数据比较之结果”的. 例:结论:第二次主题活动效果好.理由:第二次主题活动后诚信度有提高.③其他答案情况,比照以上情况酌情给分,赋分原则是:遵循三个标准,能使用表中数据解释所得结论.5、解:(Ⅰ)030305100a ++++=解得35a =,5110020b ==,35710020c ==.…………………3分 (Ⅱ)记“2人中恰有1人微信群个数超过15个”为事件A ,则114060210016()33C C P A C ==. 所以,2人中恰有1人微信群个数超过15个的概率为1633. ……………7分 (Ⅲ)依题意可知,微信群个数超过15个的概率为25P =. X 的所有可能取值0,1,2,3. ……………8分则()033270()(1)2255125P X C ==-=,()1123541()(1)2255125P X C ==-=, ()2213362()(1)2255125P X C ==-=,()333083()(22551)125P X C ==-=.其分布列如下:X1 2 3P2712554125 36125 8125所以,2754368601231251251251255EX =⨯+⨯+⨯+⨯=.……………13分 6、解: (Ⅰ)从这10人中随机选出2人的基本事件个数为:21045C =个,设选出的2人参加义工活动次数之和为事件A ,设选出的2人中1人参加2次另一人参加4次为事件M , 设选出的2人均参加3次为事件N .事件M 所含基本事件的个数为11414C C ⋅=个,事件N 所含基本事件的个数为246C =个,根据古典概型可知,4()=45P M ,6()=45P N因为M 和N 互斥事件,且A =M +N 所以102()=()()()459P A P M N P M P N +=+== ……………….6分 另:直接计算事件A 的基本事件个数,利用古典概型计算也可。

北京市部分区2017届高三上学期考试数学理试题分类汇编:立体几何

北京市部分区2017届高三上学期考试数学理试题分类汇编:立体几何

北京市部分区2017届高三上学期考试数学理试题分类汇编立体几何一、选择、填空题1、(昌平区2017届高三上学期期末)一个几何体的三视图如图所示,则这个几何体的直观图是2、(朝阳区2017届高三上学期期末)某四棱锥的三视图如图所示,其俯视图为等腰直角三角形,则该四棱锥的体积为A.223B.43C2D.43、(西城区2017届高三上学期期末)某四棱锥的三视图如图所示,该四棱锥的四个侧面的面积中最大的是(A )3 (B )25 (C )6 (D )354、(东城区2017届高三上学期期末)某三棱锥的三视图如图所示,则该三棱锥的体积为(A )23 (B )43 (C )2 (D )835、(丰台区2017届高三上学期期末)已知直线m ,n 和平面α,如果n α⊂,那么“m n ⊥”是“m α⊥”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件6、(海淀区2017届高三上学期期末)如图,已知正方体1111ABCD A B C D -的棱长为1,,E F 分别是棱AD ,B 1C 1上的动点,设1,AE x B F y ==.若棱.1DD 与平面BEF 有公共点,则x y +的取值范围是A.[0,1]B.13[,]22C.[1,2]D.3[,2]27、(海淀区2017届高三上学期期末)(海淀区2017届高三上学期期末)若一个几何体由正方体挖去一部分得到,其三视图如图所示,则该几何体的体积为________.8、(石景山区2017届高三上学期期末)一个几何体的三视图如右图所示.已知这个几何体的体积为8,则h ()A.1B.2C.3D.69、(通州区2017届高三上学期期末)如图,某几何体的主视图和左视图是全等的等腰直角三角形,俯视图是边长为2的正方形,那么它的体积为A.163B.4C .83D .34二、解答题1、(昌平区2017届高三上学期期末)如图1,四边形ABCD 为正方形,延长DC 至E ,使得2CE DC =,将四边形ABCD 沿BC 折起到11A BCD 的位置,使平面11A BCD ⊥平面BCE ,如图2.(I )求证:CE ⊥平面11A BCD ;(II )求异面直线1BD 与1A E 所成角的大小;(III )求平面BCE 与平面11A ED 所成锐二面角的余弦值.2、(朝阳区2017届高三上学期期末)在如图所示的几何体中, 四边形ABCD 为正方形,四边形ABEF 为直角梯形,且//,,AF BE AB BE ⊥平面ABCD I 平面,ABEF AB =22AB BE AF ===.(Ⅰ)求证://AC 平面DEF ; (Ⅱ)若二面角D AB E --为直二面角, (i )求直线AC 与平面CDE 所成角的大小; (ii )棱DE 上是否存在点P ,使得BP ⊥平面DEF ?若存在,求出DPDE的值;若不存在,请说明理由.3、(西城区2017届高三上学期期末)如图,在四棱锥P ABCD -中,//AD BC ,90BAD ︒∠=,PA PD =,AB PA ⊥,2AD =,1AB BC ==.(Ⅰ)求证:平面PAD ⊥平面ABCD ;(Ⅱ)若E 为PD 的中点,求证://CE 平面PAB ; (Ⅲ)若DC 与平面PAB 所成的角为30︒,求四棱锥P ABCD -的体积.4、(东城区2017届高三上学期期末)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PCD ⊥平面ABCD ,1BC =,2AB =,PC PD ==E 为PA 中点.(Ⅰ)求证:PC ∥平面BED ; (Ⅱ)求二面角A PC D --的余弦值;(Ⅲ)在棱PC 上是否存在点M ,使得BM ⊥AC ?若存在,求PMPC的值;若不存在,说明理由.A5、(丰台区2017届高三上学期期末)如图所示的多面体中,面ABCD 是边长为2的正方形,平面PDCQ ⊥平面ABCD ,PD DC ^,E F G ,,分别为棱,,BC AD PA 的中点. (Ⅰ)求证:EG ‖平面PDCQ ; (Ⅱ)已知二面角P BF C-- 求四棱锥P ABCD -的体积.CBPGFDEQA6、(海淀区2017届高三上学期期末)如图1,在梯形ABCD中,//AB CD,90ABC∠=o,224AB CD BC===,O是边AB的中点.将三角形AOD绕边OD所在直线旋转到1A OD位置,使得1120A OB∠=o,如图2.设m为平面1A DC与平面1AOB的交线.(Ⅰ)判断直线DC与直线m的位置关系并证明;(Ⅱ)若直线m上的点G满足1OG A D⊥,求出1A G的长;(Ⅲ)求直线1A O与平面1A BD所成角的正弦值.7、(石景山区2017届高三上学期期末)如图1,等腰梯形BCDP中,BC∥PD,BA PD⊥于点A,3PD BC=,且1AB BC==.沿AB把PAB△折起到P AB'△的位置(如图2),使90P AD'∠=︒.(Ⅰ)求证:CD ⊥平面P AC '; (Ⅱ)求二面角A P D C '--的余弦值;(Ⅲ)线段P A '上是否存在点M ,使得BM ∥平面P CD '.若存在,指出点M 的位置并证明;若不存在,请说明理由.8、(通州区2017届高三上学期期末)在四棱锥P ABCD -中,△PAB 为正三角形,四边形ABCD 为矩形,平面PAB ⊥平面ABCD ,2AB AD =,,M N 分别为,PB PC 中点. (Ⅰ)求证:MN //平面PAD ; (Ⅱ)求二面角B AM C --的大小;(Ⅲ)在BC 上是否存在点E ,使得EN ⊥平面AMN ? 若存在,求BEBC的值;若不存在,请说明理由.x图2参考答案 一、选择、填空题1、C2、B3、C4、B5、B6、C7、1638、B 9、D二、解答题1、解:(Ⅰ)证明:因为平面11A BCD ⊥平面BCE ,且平面11A BCD I 平面BCE BC =, 因为四边形ABCD 为正方形,E 在DC 的延长线上, 所以CE BC ⊥. 因为CE ⊂平面BCE ,所以CE ⊥平面11A BCD . ……………4分(Ⅱ)法一:连接1A C . 因为11A BCD 是正方形, 所以11A C BD ⊥.因为CE ⊥平面11A BCD , 所以1CE BD ⊥. 因为1AC CE C =I , 所以1BD ⊥平面1A CE . 所以11BD A E ⊥.所以异面直线1BD 与1A E 所成的角是90︒. ……………9分法二:以C 为坐标原点,建立空间直角坐标系如图所示.设1,CD =则2CE =.则11(0,0,0),(1,0,0),(0,2,0),(0,0,1),(1,0,1)C B E D A .所以11(1,0,1),(1,2,1)BD A E =-=--u u u r u u u r.因为111111cos ,0BD A E BD A E BD A E ⋅<>===u u u u r u u u ru u u u r u u u r u u uu r u u u r , 所以11BD A E ⊥u u u u r u u u r.所以异面直线1BD 与1A E 所成的角是90︒. ……………9分(Ⅲ) 因为1CD ⊥平面BCE ,所以平面BCE 的法向量1(0,0,1)CD =u u u u r.设平面11A D E 的法向量(,,)n x y z =r.因为111(1,0,0),(0,2,1)D A D E ==-u u u u r u u u u r, 所以1110n D A n D E ⎧⋅=⎪⎨⋅=⎪⎩r u u u u r r u u u u r ,即020x y z =⎧⎨-=⎩. 设1y =,则2z =.所以(0,1,2)n =r.因为111cos ,5CD n CD n CD n⋅<>===u u u u r ru u u u r r u u u u r r 所以平面BCE 与平面11A ED所成的锐二面角的余弦值为5. ……………14分 2、证明:(Ⅰ)连结BD ,设AC BD O =I ,因为四边形ABCD 为正方形, 所以O 为BD 中点.设G 为DE 的中点,连结,OG FG ,则//OG BE ,且12OG BE =. 由已知//AF BE ,且12AF BE =,所以//,AF OG OG AF =. 所以四边形AOGF 为平行四边形. 所以//AO FG ,即//AC FG .因为AC ⊄平面DEF ,FG ⊂平面DEF , 所以AC //平面DEF .……………………………………………………5分(Ⅱ)由已知,//,AF BE AB BE ⊥,所以AF AB ⊥.因为二面角D AB E --为直二面角, 所以平面ABCD ⊥平面ABEF . 所以AF ⊥平面ABCD , 所以,AF AD AF AB ⊥⊥.四边形ABCD 为正方形,所以AB AD ⊥. 所以,,AD AB AF 两两垂直.以A 为原点,,,AD AB AF 分别为,,x y z 轴建立空间直 角坐标系(如图). 因为22AB BE AF ===,所以(000),(0,2,0),(2,2,0),(200),(0,2,2),(0,0,1)A B C D E F ,,,,,所以(2,2,0),(0,2,0),(2,0,2)AC CD CE ==-=-u u u r u u u r u u u r.(i )设平面CDE 的一个法向量为(,,)x y z =n ,xyzP.FA D CBE由 0,0CD CE ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n 得20, 220. y x z -=⎧⎨-+=⎩即0, 0. y x z =⎧⎨-=⎩ 取1x =,得(1,0,1)=n .设直线AC 与平面CDE 所成角为θ,则1sin cos ,2AC θ=〈〉==u u u rn ,因为090θ≤≤︒,所以30θ=︒.即直线AC 与平面CDE 所成角的大小为30︒.………………………………9分(ii )假设棱DE 上存在点P ,使得BP ⊥平面DEF .设(01)DPDEλλ=≤≤,则DP DE λ=u u u r u u u r . 设(,,)P x y z ,则(2,,)DP x y z =-u u u r,因为(2,2,2)DE =-u u u r,所以(2,,)(2,2,2)x y z λ-=-.所以22,2,2x y z λλλ-=-==,所以P 点坐标为(22,2,2)λλλ-.因为(0,2,0)B ,所以(22,22,2)BP λλλ=--u u u r.又(2,0,1),(0,2,1)DF EF =-=--u u u r u u u r ,所以2(22)20,2(22)20.BP DF BP EF λλλλ⎧⋅=--+=⎪⎨⋅=---=⎪⎩u u u r u u u ru u u r u u u r解得 23λ=. 因为2[0,1]3∈,所以DE 上存在点P ,使得BP ⊥平面DEF ,且23DP DE =. (另解)假设棱DE 上存在点P ,使得BP ⊥平面DEF .设(01)DP DEλλ=≤≤,则DP DE λ=u u u r u u u r . 设(,,)P x y z ,则(2,,)DP x y z =-u u u r,因为(2,2,2)DE =-u u u r ,所以(2,,)(2,2,2)x y z λ-=-. 所以22,2,2x y z λλλ-=-==,所以P 点坐标为(22,2,2)λλλ-.因为(0,2,0)B ,所以(22,22,2)BP λλλ=--u u u r.设平面DEF 的一个法向量为000(,,)x y z =m ,则 0,m DF m EF ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r 由(2,0,1),(0,2,1)DF EF =-=--u u u r u u u r , 得000020,20. x z y z -+=⎧⎨--=⎩取01x =,得(1,1,2)=-m .由m BP μ=u u u r,即(22,22,2)(1,1,2)λλλμ--=-,可得22,22, 22.λμλμλμ-=⎧⎪-=-⎨⎪=⎩解得23λ=.因为2[0,1]3∈,所以DE 上存在点P ,使得BP ⊥平面DEF ,且23DP DE =.………………………………………………………………14分3、解:(Ⅰ)因为90BAD ∠=o ,所以AB AD ⊥,[1分]又因为AB PA ⊥,所以AB ⊥平面PAD .[3分] 所以平面PAD ⊥平面ABCD .[4分](Ⅱ)取PA 的中点F ,连接BF ,EF .[5分] 因为E 为PD 的中点,所以//EF AD ,12EF AD =,又因为//BC AD ,12BC AD =,所以//BC EF ,BC EF =.所以四边形BCEG 是平行四边形,//EC BF .[7分]又BF ⊂平面PAB ,CE ⊄平面PAB , 所以//CE 平面PAB .[8分] (Ⅲ)过P 作PO AD ⊥于O ,连接OC .因为PA PD =,所以O 为AD 中点,又因为平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD .如图建立空间直角坐标系O xyz -.[9分]设PO a =.由题意得,(0,1,0)A ,(1,1,0)B ,(1,0,0)C ,(0,1,0)D -,(0,0,)P a .Ay所以(1,0,0)AB −−→=,(0,1,)PA a −−→=-,(1,1,0)DC −−→=. 设平面PCD 的法向量为(,,)x y z =n ,则0,0,AB PA −−→−−→⎧⋅=⎪⎨⎪⋅=⎩n n 即0,0.x y az =⎧⎨-=⎩ 令1z =,则y a =.所以(0,,1)a =n .[11分] 因为DC 与平面PAB 所成角为30o , 所以|1|cos ,|2||||DC DC DC −−→−−→−−→⋅〈〉===o |n n n , 解得1a =.[13分]所以四棱锥P ABCD -的体积11121113322P ABCD ABCD V S PO -+=⨯⨯=⨯⨯⨯=.[14分] 4、解:(Ⅰ)设AC 与BD 的交点为F ,连结EF . 因为ABCD 为矩形,所以F 为AC 的中点. 在△PAC 中,由已知E 为PA 中点, 所以EF ∥PC . 又EF ⊂平面BED ,PC ⊄平面BED ,所以PC ∥平面BED . ……………………………5分 (Ⅱ)取CD 中点O ,连结PO .因为△PCD 是等腰三角形,O 为CD 的中点, 所以PO CD ⊥.又因为平面PCD ⊥平面ABCD ,PO ⊂平面PCD ,所以PO ⊥平面ABCD . 取AB 中点G ,连结OG , 由题设知四边形ABCD 为矩形, 所以OF CD ⊥.所以PO OG ⊥.…………………1分 如图建立空间直角坐标系O xyz -,则(1,1,0)A -,(0,1,0)C ,(0,0,1)P ,(0,1,0)D -,(1,1,0)B ,(0,0,0)O ,(1,0,0)G .(1,2,0)AC =-u u u r ,(0,1,1)PC =-u u u r.设平面PAC 的法向量为(,,)x y z =n ,则0,0,AC PC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n ,即20,0.x y y z -=⎧⎨-=⎩ 令1z =,则1y =,2x = . 所以(2,1,1)=n .平面PCD 的法向量为(1,0,0)OG =u u u r. 设,OG u u u r n 的夹角为α,所以cos α=.由图可知二面角A PC D --为锐角,所以二面角A PC B --10分 (Ⅲ)设M 是棱PC 上一点,则存在[0,1]λ∈使得PM PC λ=u u u u r u u u r.因此点(0,,1)M λλ-,(1,1,1)BM λλ=---u u u u r ,(1,2,0)AC =-u u u r.由BM ⋅u u u u r 0AC =u u u r ,即12λ=.因为1[0,1]2λ=∈,所以在棱PC 上存在点M ,使得BM ⊥AC . 此时,12PM PC λ==. …………………………14分 5、证明:(Ⅰ)取PD 中点H ,连接GH ,HC , 因为ABCD 是正方形,所以AD ‖BC ,AD BC =. 因为G,H 分别是PA ,PD 中点,所以GH ‖AD ,12GH AD =. 又因为EC ‖AD 且12EC AD =, 所以GH ‖EC ,GH EC =,所以四边形GHCE 是平行四边形, ………….3分所以EG ‖HC .又因为EG Ë平面PDCQ ,HC Ì平面PDCQ所以EG ‖平面PDCQ . ……………….5分(Ⅱ)因为平面PDCQ ⊥平面ABCD , 平面PDCQ I 平面ABCD CD =, PD DC ^,PD Ì平面PDCQ ,所以PD ^平面ABCD . ……………….6分如图,以D 为原点,射线DA ,DC ,DP 分别为x ,y ,z 轴正方向,建立空间直角坐标系.设PD a =,则()()()00002201 P ,,a F ,,B ,,,,.………………7分因为PD ⊥底面ABCD ,所以平面ABCD 的一个法向量为(0,0,1)=m . ……………….8分设平面PFB 的一个法向量为(,,)x y z =n , ()10PF ,,a uu u r =- ()120 FB ,,uu r=, 则0,=0.PF FB ⎧⋅=⎪⎨⋅⎪⎩uu u r uu r n n即0+2=0x az x y -=⎧⎨⎩令x =1,得11,2z y a ==-,所以11(1,,)2a=-n . ……………….10分由已知,二面角P BF C --, 所以得cos <,>||||⋅===m nm n m n……………….11分解得a =2,所以2PD =.……………….13分因为PD 是四棱锥P ABCD -的高,所以其体积为182433P ABCD V -=⨯⨯=.……………….14分6、解:(Ⅰ)直线DC //m .证明:由题设可得//,CD OB 1CD AOB ⊄平面,1OB AOB ⊂平面, 所以//CD 平面1A OB .又因为CD ⊂平面1A DC ,平面1A DC I 平面1AOB m = 所以//CD m .法1:(Ⅱ)由已知224AB CD BC ===,O 是边AB 的中点,//AB CD ,所以//CD OB ,因为90ABC ∠=o ,所以四边形CDOB 是正方形, 所以在图1中DO AB ⊥,所以结合题设可得,在图2中有1DO OA ⊥,DO OB ⊥, 又因为1OA OB O =I , 所以1DO AOB ⊥平面. 在平面AOB 内作OM 垂直OB 于M ,则DO OM ⊥. 如图,建立空间直角坐标系O xyz -,则11,0),(0,2,0),(0,0,2)A B D -,所以1(A D =u u u u r.设,0)G m ,则由1OG A D ⊥可得 10A D OG ⋅=u u u u r u u u r,即(,0)30m m ⋅=-+=解得3m =.所以14AG =. (Ⅲ)设平面1A BD 的法向量(,,)x y z =n ,则 110,0,A D A B ⎧⋅=⎪⎨⋅=⎪⎩n n u u u u r u u u r即20,30,y z y ⎧++=⎪⎨+=⎪⎩令1y =,则1x z ==,所以=n ,设直线1A O 与平面1A BD 所成角为θ,则sin θ=111cos ,A O n A O n A O n⋅<>==⋅u u u u r r u u u u r r u u u u r r 法2:(Ⅱ)由已知224AB CD BC ===,O 是边AB 的中点,//AB CD ,所以//CD OB ,因为90ABC ∠=o ,所以四边形CDOB 是正方形, 所以在图1中DO AB ⊥,所以结合题设可得,在图2中有1DO OA ⊥,DO OB ⊥, 又因为1OA OB O =I , 所以1DO AOB ⊥平面. 又因为1OG AOB ⊂平面,所以DO OG ⊥. 若在直线m 上的点G 满足1OG A D ⊥,又1OD A D D =I , 所以1OG AOD ⊥平面, 所以1OG OA ⊥,因为11120,//AOB OB AG ∠=o ,所以160OA G ∠=o , 因为12OA =,所以14A G =.(注:答案中标灰部分,实际上在前面表达的符号中已经显现出该条件,故没写不扣分) (Ⅲ)由(II )可知1OD OA OG 、、两两垂直,如图,建立空间直角坐标系O xyz -,则10,0,0),(2,0,0),((0,0,2)O A B D -(,所以11(2,0,2),(A D A B =-=-u u u u r u u u r设平面1A BD 的法向量(,,)n x y z =r,则110,0,n A D n A B ⎧⋅=⎪⎨⋅=⎪⎩r u u u u r r u u u r即220,30,x z x -+=⎧⎪⎨-+=⎪⎩令1x =,则1y z ==,所以n =r,设直线1A O 与平面1A BD 所成角为θ,则sin θ=111cos ,AO n AO n AO n ⋅<>=⋅u u u u r ru u u u r r u u u u r r 7、解:(Ⅰ)因为90P AD '∠=︒,所以P A '⊥AD .因为在等腰梯形中,AB ⊥AP ,所以在四棱锥中,AB ⊥AP '. 又AD AB A ⋂=,所以P A '⊥面ABCD . 因为CD ⊂面ABCD ,所以P A '⊥CD .……3分因为等腰梯形BCDE 中,AB BC ⊥,3PD BC =,且1AB BC ==.所以ACCD =,2AD =.所以222AC CD AD +=. 所以AC ⊥CD .因为P A '⋂AC =A , 所以CD ⊥平面P AC '. ……5分(Ⅱ)由(Ⅰ)知,P A '⊥面ABCD ,如图,建立空间直角坐标系,A ()0,0,0,B ()1,0,0,C (1,1D ()0,2,0,P '()0,0,1.所以(1,0,0)AB =u u u r ,(1,1,P C '=-u u u u r由(Ⅰ)知,平面P AD '的法向量为(1,0,0)AB =,设(,,)n x y z =r 为平面P CD '的一个法向量,则00n CD n P C ⎧⋅=⎪⎨'⋅=⎪⎩r u u u rr u u u u r,即00x y x y z -+=⎧⎨+-=⎩, 再令1y =,得(1,1,2)n =r .cos ,AB n u u u r r =AB n AB n⋅⋅u u u r ru u u r r =6. 所以二面角A P D C '--的余弦值为6…………9分 (Ⅲ)若线段P A '上存在点M ,使得BM ∥平面P CD '.依题意可设AM AP λ'=u u u u r u u u r ,其中01λ≤≤.所以(0,0,)M λ,(1,0,)BM λ=-u u u u r. 由(Ⅱ)知,平面P CD '的一个法向量(1,1,2)n =r.因为BM ∥平面P CD ',所以BM n ⊥u u u u r r,所以120BM n λ⋅=-+=u u u u r r ,解得12λ=.所以,线段P A '上存在点M ,使得BM ∥平面P CD '…………………14分8、(Ⅰ)证明:∵M ,N 分别是PB ,PC 中点∴MN 是△ABC 的中位线 ∴MN ∥BC ∥AD又∵AD ⊂平面P AD ,MN ⊄平面P AD所以MN ∥平面P AD . ……………….4分(Ⅱ)过点P 作PO 垂直于AB ,交AB 于点O , 因为平面P AB ⊥平面ABCD ,所以PO ⊥平面ABCD , 如图建立空间直角坐标系设AB =2,则A (-1,0,0),C (1,1,0),M (12,0,32),B (1,0,0),N (12,12,32),则(2,1,0)AC =u u u r ,33(,0,)22AM =u u u u r 设平面CAM 法向量为1111(,,)n x y z u r =,由110n AC n AM u r u u u ru r u u u u r⎧⋅=⎪⎨⋅=⎪⎩可得因为二面角B AM C --是锐二面角, 所以二面角B AM C --等于45o ……………….10分 (Ⅲ)存在……………….11分设(1,,0)E λ,则11(,,222EN λ=--u u u r ,由00EN AM EN MN ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u u r u u u r u u u u r 可得12λ=, 所以在BC 存在点E ,使得EN ⊥平面AMN , 此时12BE BC =.……………….14分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市部分区2017届高三上学期考试数学理试题分类汇编
函数
1、(昌平区2017届高三上学期期末)下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是
(A )x y e = (B )sin y x = (C )y =
(D )3y x =
2、(朝阳区2017届高三上学期期末)下列函数中,既是偶函数,又在区间[0,1]上单调递增的是
A .cos y x =
B .2y x =-
C . 1()2
x
y = D . |sin |y x =
3、(朝阳区2017届高三上学期期中)下列函数中,在其定义域上既是偶函数又在(0)+∞,
上单调递减的是 A .2y x =
B .1y x =+
C .lg ||y x =-
D .2x y =-
4、(东城区2017届高三上学期期末)已知()f x 是定义在R 上的奇函数,且在[0,)+∞上是
增函数,则(1)0f x +≥的解集为
(A )(,1]-∞- (B )(,1]-∞ (C )[1,)-+∞ (D )[1,)+∞ 5、(丰台区2017届高三上学期期末)已知()f x 为偶函数,且0≥x 时,][)(x x x f -=(][x 表示不超过x 的最大整数).设()()()g x f x kx k k =--∈R ,若1k =,则函数()g x 有____个零点;若函数()g x 三个不同的零点,则k 的取值范围是____.
6、(海淀区2017届高三上学期期末)已知函数||()e cos πx f x x -=+,给出下列命题:
①()f x 的最大值为2;
②()f x 在(10,10)-内的零点之和为0; ③()f x 的任何一个极大值都大于1. 其中所有正确命题的序号是________.
7、(海淀区2017届高三上学期期中)已知函数,,log x b c y a y x y x ===的图象如图所示,则
A. a b c >>
B. a c b >>
C. c a b >>
D. c b a >> 8、(石景山区2017届高三上学期期末)下列函数中既是奇函数又在区间(0,)+∞上单调递减的是( )
A .x y e -=
B .ln()y x =-
C .3y x =
D .1
y x
=
9、(通州区2017届高三上学期期末)下列函数中,既是偶函数又在区间()0,1内单调递减的是
A .3x y =
B .2x
y =
C .cos y x =
D .x
x y 1
ln -
= 10、(西城区2017届高三上学期期末)下列函数中,定义域为R 的奇函数是 (A )21y x =+ (B )tan y x = (C )2x y = (D )sin y x x =+
11、(昌平区2017届高三上学期期末)设 1
2
1ln ,2,2
e a b c e -===,则
(A) c b a << (B) c a b << (C) a c b << (D) a b c <<
12、(昌平区2017届高三上学期期末)设函数(3)(1),,
()22
,.x x x x a f x x a -+-≤⎧=⎨->⎩
①若1a =,则()f x 的零点个数为 ;
②若()f x 恰有1个零点,则实数a 的取值范围是 .
13、(朝阳区2017届高三上学期期中)若 2.1log 0.6a =,0.6
2.1b =,0.5log 0.6c =,则a ,
b ,
c 的大小关系是
A .a b c >>
B .b c a >>
C .c b a >>
D .b a c >>
14、(朝阳区2017届高三上学期期中)已知函数21,0,
()log ,0,
x x f x x x +≤⎧=⎨
>⎩则函数
1
()(())2
g x f f x =-的零点个数是
A .4
B .3
C .2
D .1
15、(海淀区2017届高三上学期期中)设函数2,1,
()(0log ,1,
x a a x f x a x x ⎧-⎪=>⎨>⎪⎩≤,且1)a ≠.
①若3
2
a =
,则函数()f x 的值域为______; ②若()f x 在R 上是增函数,则a 的取值范围是_____.
16、(石景山区2017届高三上学期期末)将函数2(3)y x =-图象上的点2(,(3))P t t -向左平移m (m >0)个单位长度得到点Q .若Q 位于函数2y x =的图象上,则以下说法正确的是( )
A .当2t =时,m 的最小值为3
B .当3t =时,m 一定为3
C .当4t =时,m 的最大值为3
D .t ∀∈R ,m 一定为3
17、(石景山区2017届高三上学期期末)已知函数1
1,1,
()4ln ,1
x x f x x x ⎧+≤⎪=⎨⎪>⎩,
①方程()f x x =-有________个根;
②若方程()f x ax =恰有两个不同实数根,则实数a 的取值范围是____________.
18、(通州区2017届高三上学期期末)已知函数()()()220,
0,
x
x f x x x ⎧≤⎪=⎨>⎪⎩ 若函数
()()(
)1g x f x k x =--有且只有一个零点,则实数k 的取值范围是_______. 19、(西城区2017
届高三上学期期末)设函数30,()log ,,
x a f x x x a =>⎪⎩≤≤其中0a >.
① 若3a =,则[(9)]f f =____;
② 若函数()2y f x =-有两个零点,则a 的取值范围是____.
20、(北京市2017届高三春季普通高中会考)已知3()log f x x =,()(2)f a f >,那么a 的取值范围是( )
A . {|2}a a >
B .{|12}a a << C. 1
{|}2a a > D .1
{|
1}2a a << 21、(北京市第四中学2017届高三上学期期中考试)为了得到函数3
lg
10
x y +=的图象,只需把函数lg y x =的图象上所有的点
A .向左平移3个单位长度,再向上平移1个单位长度
B .向右平移3个单位长度,再向上平移1个单位长度
C .向左平移3个单位长度,再向下平移1个单位长度
D .向右平移3个单位长度,再向下平移1个单位长度
参考答案
1、D
2、D
3、C
4、C
5、2;1111,,3432⎛⎤⎡⎫
-- ⎪⎥⎢⎝⎦⎣⎭
U 6、①②③
7、详细分析:根据幂函数的性质,由图可知:0<b <1,由指数函数图象的性质,知:1a >,又当x =1时,1y a =<2,所以,12a <<;由对数函数图象的性质,知1c >,又x =2时,由图象可知:log 21c <, 所以,c >2,所以,选C 。

8、D 9、C 10、D 11、C
12、2;(,3)a ∈-∞- 13、B 14、B
15、详细分析:
16、B 17、1,11[,)4e
18、
1或4k k <-=
19[4,9)
20、A
21、C。

相关文档
最新文档