(完整版)传染病动力学模型

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SIR模型没有周期解,但EE可能是稳定焦点
课计算出EE的特征值,若根号里<0,则共轭复数根
当 时成立,由阻尼振荡可计算周期
真题:2003年SARS
传病动力学模型
常微分方程
仓室建模法:1.将研究群体分类:感染者,健康者;潜伏者,感染者/免疫者,易感者
2.将不同仓室用箭头加以连接(疾病传染规律)S->E->I->H;可再考虑出生、死亡、迁入
建立转移图
疾病类型:得病后免疫力:终身免疫:单向,不循环/暂时免疫,可循环
由病原体类型划分:病毒/细菌(能否循环)
评估控制策略
估计流行周期,预测爆发
1.估计基本再生数:
解析法
统计方法(简单直接)
下一代矩阵方法:1.将种群分类,广义感染者与广义易感者
2.改写广义感染者X的动力学方程:
3.计算无病平衡点DEF:
R0=
2.控制策略评估:
实施群体免疫:群体免疫覆盖率 ,R0要小一点
3.(1)存在周期解(2)发生环绕地方病平衡点的阻尼振荡
基本概念:
发生率:单位时间多少人被感染(双线性,标准型)
出生、死亡、额外(因病死亡率,输入,输出,隔离率,恢复率)
模型平衡点:无病平衡点DFE、地方病平衡点EE
经典SIR模型:
几个仓室几个变量,由转移图分别列常微分方程
基本再生数R0与阈值定理(现象):
R0<1:存在无病平衡点且局部稳定/全局渐进稳定,疾病最终绝灭
R0>1:DEF不稳定,存在地方病平衡点,全局渐进稳定,疾病最终流行
R0= ,
R0的意义:在全部是易感者群体中引入一个感染者,最终感染人数
降维:变量可选各仓室人数与总的比例
讨论平衡点存在性:各导数为0(由实际意义所有解的分量非负),DEF,EE
平衡点稳定性
理论分析+数字模拟验证
模型应用:
估计基本再生数,预测流行趋势
相关文档
最新文档