大学高等数学_22微分方程基本概念及其一般解法
高等数学-第七章-微分方程
在工程领域中,微分方程组被广泛应用于控制论、信号处理、流体力学等方面。通过求解微分方程组,可以优化工程 设计、提高系统性能等。
经济应用
在经济学中,微分方程组被用来描述经济系统的动态行为,如经济增长模型、金融市场模型等。通过求 解这些微分方程组,可以分析经济现象的发展趋势和内在机制。
05 微分方程的数值解法
常数变易法
对于某些特殊形式的高阶微分方程组,可以通过常 数变易的方法,将其转化为易于求解的方程或方程 组。
幂级数解法
对于某些高阶线性微分方程组,可以通过幂 级数展开的方法,将其转化为无穷级数进行 求解。
微分方程组的应用
物理应用
在物理学中,许多现象可以用微分方程组来描述,如力学中的运动方程、电磁学中的麦克斯韦方程等。通过求解这些 微分方程组,可以揭示物理现象的本质和规律。
非线性微分方程
不满足线性条件的微分方程,称为非线性微分方 程。
微分方程解的性质
唯一性定理 在一定条件下,微分方程的解是 唯一的。
边值问题 给定边界条件的微分方程求解问 题,称为边值问题。边值问题的 解可能不唯一,也可能不存在。
叠加原理
对于线性微分方程,若$y_1$和 $y_2$分别是方程的两个解,则 它们的线性组合 $c_1y_1+c_2y_2$(其中$c_1$ 和$c_2$是任意常数)也是方程 的解。
首次积分法
利用首次积分的方法,将一阶微 分方程组转化为可分离变量的方 程或可降阶的方程,然后求解得 到原方程组的解。
特征线法
对于一阶偏微分方程组,可以通 过引入特征线的概念,将偏微分 方程转化为常微分方程进行求解 。
高阶微分方程组法
变量代换法
通过适当的变量代换,将高阶微分方程组转 化为一阶微分方程组或可降阶的方程,然后 求解得到原方程组的解。
微分方程—微分方程的基本概念(高等数学课件)
2
把 2 、x的表达式代入方程后成为一个恒等式,
这说明: = 1 + 2 ,是微分方程的解,并且是通解.
课程小结
微分方程的定义
微分方程的阶
(常微分方程,偏
微分方程)
微分方程的解
(通解,特解,
定解条件)
= −0.2 2 + 20.
微分方程的阶,解
例1:验证函数 = 1 +
2
2 ,是微分方程 2
+ 2 = 0的解.
解:求出所给函数的导数
= −1 + 2 ,
2
2
2
=
−
−
2
1
其中 ,−1 ⋯ ,1 , (), 是关于的函数.
微分方程的阶,解
微分方程的阶:方程中所含有未知函数导数(或微分)的最高阶数.
一般的,n阶微分方程的形式:
, , ′ , ⋯ () = 0, 或 () = , , ′ , ⋯ (−1) .
等式,那么函数 = 是微分方程的解.
例:
通解:
2
= −0.4
2
= 3,
=
3 2
2
3
+ ,
3
2
特解: = 2 + 2 .
= −0.2 2 + 1 + 2 ,
= −0.2 2 + 20.
微分方程的阶,解
通解:微分方程的解中含有任意常数,且独立的任意的常数的个数
等于该方程的阶数.
特解:当通解中各任意常数都取定值时所得的解.
高等数学基础概念解读及例题演练-常微分方程
22
+
lnx.
习题7.3【答案】 y=-2 x�.1. +-1 .
33
习题7.4【答案】C
习题7.5【答案】 1 习题7.6【答案】 y=[;ex+C2e2x -x(x+2)<f.
’
一 功F dx
=
一 φp dt
·
一 dt dx
=
- 1 e1
-一 ddyt ’,
I j. 今 且_ ddx2y2 _-_ ddx
,( \、
_1…秒 -1e' dt)
d I( I圳 ·-I·- dt
dt飞e1 dt J dx
1( - l
- e1' 命 ·- dt +l- e'
·- ddt2一2y |J ··e一1' -
[例 13]在下列微分方程中,以y=C1ex +C2 cos2x+C3 sin2x为通解的是一·
m+
’-4 0
m
(A)y y" -4y y =
(B)y +y" +4y’ +4y=O
(C)ym -y" -4y’ +4y = 0
- (D)ym -y" +4y’ 4y=O
- 解:容易看出微分方程的三个特征根分别是1,匀, 2i,对比应当(。是正确的.
~CB) Axe2x+e2x(Bcos2x+Csin衍)
CD) Axe xe2x(Bcos2x +Csin2x)
[答案JC
[例10]以 y=Glf+c;e-2x+xe为通解的微分方程是一一·
(A) y"-y’ -2y=3x<f
高等数学-第七章-微分方程
制动时
常微分方程
偏微分方程
含未知函数及其导数的方程叫做微分方程 .
方程中所含未知函数导数的最高阶数叫做微分方程
(本章内容)
( n 阶显式微分方程)
微分方程的基本概念
一般地 , n 阶常微分方程的形式是
的阶.
分类
或
— 使方程成为恒等式的函数.
通解
— 解中所含独立的任意常数的个数与方程
于是方程化为
(齐次方程)
顶到底的距离为 h ,
说明:
则将
这时旋转曲面方程为
若已知反射镜面的底面直径为 d ,
代入通解表达式得
一阶线性微分方程
第四节
一、一阶线性微分方程
*二、伯努利方程
第七章
一、一阶线性微分方程
一阶线性微分方程标准形式:
若 Q(x) 0,
若 Q(x) 0,
称为非齐次方程 .
第七章
一、齐次方程
形如
的方程叫做齐次方程 .
令
代入原方程得
两边积分, 得
积分后再用
代替 u,
便得原方程的通解.
解法:
分离变量:
例1. 解微分方程
解:
代入原方程得
分离变量
两边积分
得
故原方程的通解为
( 当 C = 0 时, y = 0 也是方程的解)
( C 为任意常数 )
此处
例2. 解微分方程
例4
例5
例6
思考与练习
求下列方程的通解 :
提示:
(1) 分离变量
(2) 方程变形为
作业
P 298 5(1); 6 P 304 1 (1) , (10); 2 (3), (4) ; 4 ; 6
微分方程的基本理论
数学建模方法
2020年10月18日星期日10时41分24
12/32
1.3、微分方程模型的求解
>>在常微分方程(组)中影响结果的变量只有一个 ,而偏微分方程研究的是有多个变量影响结果时的 规律。求解微分方程的方法大致有两类:一类是通 过对微分方程两端积分得到显式表示的完全解,进 而通过解的表达式分析模型结果;另一类方法是数 值解法,这种解法通常需要计算软件的协助,解的 结果通常使用图形的方式表示,或者可以求出某些 关键点的函数值。本章将利用上述方法讨论具体的 微分方程的建模问题。
20/32
2.1、治污中溶液浓度的变化 4) 推广应用 >>江河湖海污染的治理以及矿井和化工厂的通风问 题都可以仿照溶液浓度问题建立相应的微分方程模 型。
数学建模方法
2020年10月18日星期日10时41分24
21/32
2.2、侦破中死亡时间的推测
1)背景介绍
>>死亡时间指死后经历时间或死后间隔时间,是指发 现、检查尸体时距死亡发生时的时间间隔。注重尸表 检查、判定,具有实际价值。死亡时间推断是指推测 死亡至尸体解剖时经历或间隔时间。早在三百多年前, 意大利医生已经明确指出:死亡时间推断是法医学鉴 定中首先要解决的问题。 >>死亡时间推断意义:⑴推断死亡时间对确定发案时 间,认定和排除嫌疑人有无作案时间,划定侦察范围 乃至案件的最终侦破均具有重要作用;⑵死亡时间推 断在某些财产继承、保险理赔案件中也有一定的作用。
数学建模方法
2020年10月18日星期日10时41分24
8/32
1.2、微分方程模型建立
2)列方程的常见方法 ①利用导数的概念直接列方程
>>在数学、力学、物理、化学、经济等学科中许多 自然现象所满足的规律已为人们所熟悉,并直接由 微分方程所描述。如牛顿第二定律、热传导定律、 放射性物质的放射性规律等,如生产函数、财富的 积累等。我们常利用这些规律对某些实际问题列出 微分方程。
高等数学微积分
极限的计算涉及到各种技巧和方 法,如因式分解、等价无穷小替 换、洛必达法则等。
极限的运算
求极限的方法
求极限的方法有很多,包括直接求法、利用重要极限、利用洛必达法则等。
极限的应用
极限在很多领域都有应用,如物理、工程、经济学等。例如,在物理学中,极限被广泛应用于连续介质力学和量 子力学等领域。
02 导数与微分
极限与连续性的关系
连续函数的极限值等于函数值。
多元函数的导数与微分
导数
描述函数在某点处的变化率。
微分
函数在某点处的局部近似值。
导数与微分的应用
近似计算、优化问题等。
二元函数的极值与最值
极值
函数在某点处的局部最大或最小值。
最值
函数在整个区间上的全局最大或最小 值。
极值与最值的判定方法
导数法、二阶导数法、凹凸分析法等 。
微分方程的基本概念
微分方程是包含未知函数及其导数的等式,用来描述现实世界中的各种变化规律。
微分方程的分类
根据方程的形式和复杂程度,微分方程可以分为线性微分方程、非线性微分方程、常微分方程、偏微 分方程等。
一阶微分方程的解法
定义和例子
一阶微分方程是最简单的微分方程,如 y'=2x, xy'=1 等。
面积和体积计算
定积分在计算平面图形面积和旋转体体积等 方面有广泛应用。
物理应用
定积分在物理中有广泛应用,如计算变力做 功、引力等。
经济应用
定积分在经济中有广泛应用,如计算成本、 收益、利润等。
04 多元微积分
多元函数的极限与连续性
连续性
函数在某点处可平滑过渡,无间断。
极限
描述函数在某点处的变化趋势,是函数值的 界限。
高等数学微分方程
一般地,一阶微分方程有一个初始条件: 当 x = x0 时,y = y0 而二阶微分方程有二个初始条件: 当 x = x0 时,y = y0; 当 x = x0 时,y = y1 (其中 x0,y0,y1 是给定的值)…
n 阶方程的初始条件:
( x0 ) y1 , , y ( n1) ( x0 ) y0( n1) y( x0 ) y0 , y
齐次方程通解 非齐次方程特解
1. 一阶线性齐次方程
(使用分离变量法)
dy P ( x ) y 0. dx
dy dy P ( x )dx , P ( x )dx , y y ln y P ( x )dx ln C ,
通解为
y Ce
P ( x ) dx
dy 2 (1) x y cos x dx
dy 2 (2) x x y sin x dx
是 是
(3) y y x
2
x cos y e x (4) y
(5) dy 2 xydx 0
不是 不是 是
dy P( x) y Q( x) 2. 解非齐次方程 dx P( x) d x 用常数变易法: 作变换 y ( x) u ( x) e ,则 P( x) d x P( x) d x P( x) d x P(x) u e Q(x) u e P( x) u e
d s dv g 或 g 2 dt dt
2
二、微分方程的基本概念
定义6.1 微分方程 ( differential equation ) 含有自变量、未知函数及其导数(或微 分)的方程,称为微分方程。
定义6.2 微分方程的阶( order ) 微分方程中所出现的未知函数的导数 (或微分)的最高阶数,称为微分方程的阶。
高等数学中的微分方程简介
高等数学中的微分方程简介微分方程是数学中的一个重要概念,广泛应用于物理、工程、经济等各个领域。
它描述了变量之间的关系,并通过求解方程来研究这些关系的性质和行为。
在高等数学中,微分方程是一个重要的研究内容,本文将对微分方程的基本概念、分类以及求解方法进行简要介绍。
一、微分方程的基本概念微分方程是包含未知函数及其导数的方程。
一般形式为:\[F(x, y, y', y'', ..., y^{(n)}) = 0\]其中,\(y\)是未知函数,\(y'\)表示\(y\)的一阶导数,\(y''\)表示二阶导数,\(y^{(n)}\)表示\(y\)的\(n\)阶导数。
方程中的\(F\)是已知函数,它是\(x\)、\(y\)及其导数的函数。
二、微分方程的分类微分方程可以分为常微分方程和偏微分方程两大类。
1. 常微分方程常微分方程中只涉及一个自变量,如\(y'=f(x)\)、\(y''+y=0\)等。
常微分方程又可分为一阶常微分方程和高阶常微分方程两类。
- 一阶常微分方程:形如\(y'=f(x,y)\)的方程,其中\(f\)是已知函数。
- 高阶常微分方程:涉及到\(n\)阶导数的方程,如\(y^{(n)}+a_1y^{(n-1)}+...+a_{n-1}y'+a_ny=0\)。
2. 偏微分方程偏微分方程中涉及多个自变量,如\(u_{xx}+u_{yy}=0\)、\(u_t=ku_{xx}\)等。
偏微分方程的求解相对复杂,一般需要借助数值计算方法。
三、微分方程的求解方法求解微分方程是微分方程学的核心内容,常见的求解方法有以下几种。
1. 变量分离法变量分离法适用于一阶常微分方程,通过将方程中的变量分离并进行积分求解。
例如,对于方程\(y'=f(x)g(y)\),可以将方程改写为\(\frac{dy}{g(y)}=f(x)dx\),然后对两边同时积分得到解。
大学高等数学知识点
微分的应用:微分 在近似计算、误差 估计、求极值等方 面有广泛应用。
导数与微分的关系: 导数是函数在某一点 的切线的斜率,而微 分是在这一点附近对 函数进行线性近似。
04
积分学
定积分的概念与性质
概念:定积分是积分的一种,是函数在区间上积分和的极限 几何意义:定积分的值是曲线下方和x轴之间的面积
性质:定积分具有线性性质,即对于两个函数的和或差的积分,可以分别对每个函数进行积分后再求和或求差
类型:一阶、二阶和高阶差分 方程
解法:递推法、迭代法和数学 归纳法等
应用:在经济学、生物学、物 理学等领域有广泛应用
07
无穷级数
无穷级数的概念与性质
概念:无穷级数是无穷多个数相加的结果,可以用来表示函数、数列等数学对象。
性质:无穷级数具有收敛性、可加性、可乘性和可微性等性质,这些性质在数学分析中有着广泛 的应用。
计算方法:将三重积分拆分为三 个方向的二重积分,再逐个计算
几何意义:表示三维空间中某种 量的分布情况
应用领域:物理学、工程学、经 济学等
06
微分方程与差分方程
常微分方程的基本概念
定义:常微分方程是描述 一个或多个未知函数及其
导数之间关系的方程。
类型:根据未知函数的个 数,常微分方程可以分为 一阶、二阶和高阶方程。
函数的极限:函数在某点 的极限表示当自变量趋近 于该点时,函数值的趋近
值。
函数的连续性:函数在某 点的连续性表示函数在该
点附近的变化趋势。
极限的概念与性质
极限的定义:描述函数在某一点处的变化趋势 极限的性质:包括唯一性、有界性、局部保号性等 极限的运算:包括四则运算法则、等价无穷小替换等 极限的应用:在导数、积分等领域有广泛应用
大学课件高等数学微分方程
将 y , y , y 代入微分方程中, 得
r 3r 2 0
2
( r 2 )( r 1 ) 0
r1 2 , r2 1
得两个解 y1 e 2 x , y 2 e x .
15
微分方程的基本概念
最后,看一个相反的问题
例 求含有两个任意常数C1, C2的曲线族
一般的n阶微分方程为
, , y ( n ) ) 0 , F ( x, y, y
已解出最高阶导数的微分方程 今后讨论
y
(n)
f ( x , y , y , , y
( n 1 )
).
y f ( x, y ) 一阶 几何意义 是过定点的积分曲线; y x x0 y 0 y f ( x , y , y ) 二阶 y x x0 y 0 , y x x0 y 0
微分方程的基本概念
问题的提出 基本概念
(differential equation)
小结
思考题
作业
第十二章
微分方程
4
微分方程的基本概念
一、问题的提出
例 一曲线通过点 (1 , 2 ), 且在该曲线上任一点
M ( x , y ) 处的切线的斜率为 2 x , 求这曲线的方程.
解 设所求曲线为 y y ( x )
第十二章
微分方程
2
本章主要介绍微分方程的一些基本概念和几 种常用的微分方程的解法,讨论如下几个问题: 1. 微分方程的基本概念; 2. 一阶微分方程; 3. 几种可积的高阶微分方程; 4. 线性微分方程及其通解的结构; 5. 常系数齐次线性方程;
6. 常系数非齐次线性方程.
高等数学中的微分方程
高等数学中的微分方程引言:微分方程是高等数学中的重要内容,它是描述自然界中许多现象和过程的数学模型。
微分方程的研究对于理解和解决实际问题具有重要意义。
本教案将从微分方程的基本概念开始,逐步深入讨论微分方程的解法和应用。
第一部分:微分方程的基本概念与分类(700字)1.1 微分方程的定义与意义- 微分方程的定义:微分方程是含有未知函数及其导数的方程。
- 微分方程的意义:微分方程可以描述自然界中的变化过程,并提供解决实际问题的数学工具。
1.2 微分方程的分类- 根据未知函数的个数:一阶微分方程与高阶微分方程。
- 根据方程中含有的导数的阶数:常微分方程与偏微分方程。
- 根据方程中的未知函数是否只含有一种自变量:常系数微分方程与变系数微分方程。
第二部分:常微分方程的解法(700字)2.1 可分离变量法- 可分离变量法的基本思想和步骤。
- 通过实例详细讲解可分离变量法的应用过程。
2.2 齐次方程法- 齐次方程的定义与性质。
- 齐次方程法的基本思想和步骤。
- 通过实例详细讲解齐次方程法的应用过程。
2.3 线性方程法- 线性方程的定义与性质。
- 线性方程法的基本思想和步骤。
- 通过实例详细讲解线性方程法的应用过程。
2.4 变量代换法- 变量代换法的基本思想和步骤。
- 通过实例详细讲解变量代换法的应用过程。
第三部分:微分方程的应用(600字)3.1 生物学中的应用- 生物学中的增长模型与微分方程。
- 通过实例详细讲解生物学中微分方程的应用。
3.2 物理学中的应用- 物理学中的运动模型与微分方程。
- 通过实例详细讲解物理学中微分方程的应用。
3.3 工程学中的应用- 工程学中的振动模型与微分方程。
- 通过实例详细讲解工程学中微分方程的应用。
结语:微分方程作为高等数学的重要内容,具有广泛的应用领域。
通过本教案的学习,学生可以掌握微分方程的基本概念与分类,熟练掌握常微分方程的解法,并了解微分方程在生物学、物理学和工程学等领域中的应用。
高等数学微分方程
高等数学微分方程微分方程的定义是:包含一个或多个未知函数及其导数的方程。
它是研究变量之间变化关系的工具,用于描述自然现象或数学模型中的规律。
微分方程的分类主要有:一阶常微分方程、高阶常微分方程、一阶线性微分方程和二阶常系数齐次线性微分方程等。
其中,一阶常微分方程是最基础和最常见的微分方程,其形式为dy/dx=f(x)。
解微分方程的方法主要有:可分离变量法、齐次方程法、一阶线性微分方程和二阶常系数齐次线性微分方程等。
其中,可分离变量法是求解一阶常微分方程最常用的方法。
它的基本思想是将方程两边分开,将包含未知函数和其导数的项移到一个方程的一边,只包含自变量的项移到另一边,然后对两边分别积分得到一个等式。
最后通过求解这个等式可以得到原方程的解。
齐次方程法是求解一阶常微分方程的另一种常用方法。
它的基本思想是通过变量代换将方程转化为可分离变量的形式或者恰当的形式,然后利用可分离变量法求解。
一阶线性微分方程是比较特殊的一种方程形式。
它的形式为dy/dx+p(x)y=q(x),其中p(x)和q(x)是已知函数。
解这种方程可以使用积分因子法、常数变易法等方法。
二阶常系数齐次线性微分方程是二阶齐次线性微分方程的特殊形式。
它的形式为d²y/dx²+a1dy/dx+a2y=0,其中a1和a2为常数。
解这种方程可以使用特征根法、常数变易法等方法。
在实际应用中,微分方程常用于描述物理、化学、生物等自然现象,例如运动学、热传导、弹簧振动等。
微分方程也广泛应用于工程、经济等领域的数学建模中。
总之,高等数学微分方程是一门重要的数学分支,对于理工科学生来说是必不可少的基础课程。
掌握微分方程的基本概念、分类、求解方法以及应用是理解和运用微分方程的关键。
希望本文能够对读者了解高等数学微分方程提供一些帮助。
大二高数要学什么知识点
大二高数要学什么知识点大二高数是大学数学的重要基础课程,对于理工科专业的学生来说尤为重要。
在大二高数中,学生需要掌握一系列的知识点,这些知识点既包括基础的数学概念和公式,也包括一些高等数学的进阶内容。
下面将从不同的角度介绍大二高数要学习的知识点。
第一部分:微分学在大二高数中,微分学是一个重要的内容。
学生需要掌握函数的极限、连续性、导数和微分等基本概念。
同时,还需要掌握常见函数的导数求法,如常数函数、幂函数、指数函数、对数函数和三角函数等。
此外,对于隐函数求导、高阶导数和微分中值定理等高级的微分学知识也需要掌握。
第二部分:积分学积分学是微分学的重要补充,也是大二高数中的重要内容。
在积分学中,学生需要学习不定积分和定积分的概念和性质,以及基本的积分公式和求法。
特别是需要掌握常见函数的不定积分和定积分求法,如多项式函数、三角函数、指数函数和对数函数等。
此外,对于换元积分法、分部积分法和定积分的应用也需要了解和掌握。
第三部分:级数与数列级数与数列是大二高数中的另一个重要内容。
学生需要了解数列的概念和性质,学习数列的极限、收敛性和敛散准则等基本理论。
同时,还需要掌握级数的概念、级数的收敛和敛散判定方法以及常见级数的求和公式和技巧。
此外,对于幂级数和傅里叶级数的基本性质和求法也需要有所了解。
第四部分:多元函数微分学多元函数微分学是大二高数中的一项重要内容,包括多元函数的极限、连续性、偏导数和全微分等基本概念。
学生需要了解多元函数的链式法则、隐函数定理和极值判定条件等高级内容。
同时,还需要掌握二重积分和三重积分的概念、性质和应用,以及多元函数积分中的坐标变换和曲线坐标系的应用等内容。
第五部分:常微分方程常微分方程是大二高数中的一项重要内容,是数学与应用科学相结合的核心内容。
学生需要掌握常微分方程的基本概念、解法和应用。
特别是对于一阶常微分方程和二阶常微分方程的常见解法和初值问题的求解需要有清晰的掌握。
此外,对于一些具体应用问题的建模和求解能力也需要培养。
高等数学(上)01-微分方程的基本概念 答案详解
4.1 微分方程的基本概念一、指出下列微分方程的阶数,并验证括号中的函数是否为微分方程的解,若是解,说明该解是通解还是特解:解析:微分方程中所出现的未知函数的最高阶导数的阶数,叫微分方程的阶满足微分方程的函数(即把函数代入微分方程能使该方程成为恒等式)叫做该微分方程的解n 阶微分方程含有n 个独立任意常数的解称为其通解,所谓独立,是指不能合并而减少个数根据其他条件确定了通解中的任意常数以后,得到微分方程不含任意常数的解称为特解,此处的定解条件称为初值条件1.xy3y 0(y Cx 3 )解:一阶(未知函数的最高阶导数的阶数为一阶)y Cx43xy y x Cx 4 Cx 3 (把函数代入微分方程能使该方程成为恒等式)3 ( 3 ) 3 0所以y Cx 3 为微分方程的解又y Cx 3 是一阶微分方程含有一个独立任意常数的解,故其为通解2.0( 1 2 )kxdx dy y kx2dy解:微分方程可写成kx ,故为一阶dx将y 1 kx2 代入方程,等式两边相等,所以 1 2y kx 为微分方程的解2 2又 1 2y kx 中不含有任意常数,故其为特解.2(注意:此处k 在微分方程中是一个确定常数,并非任意常数)3.y y 0(y C sin x)解:二阶y C x ,y C sin xcosy y C x C x ,所以y C sin x 为微分方程的解sin sin 0又y C sin x 是二阶方程只含有一个任意常数的解,故其既不是通解,也不是特解4.y 2y y 0(y x2e x )解:二阶y 2xe x x e x ,y (2x e x x2e x ) 2e x 2x e x 2x e x x 2e x 2e x 4x e x x2e x2y 2y y 2e x 4x e x x2e x 2(2x e x x2e x ) x2e x 2e x 0所以y x2e x 不是微分方程的解二、某飞机在机场降落时,为了减少滑行距离,在触地瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.设飞机的质量为m ,着陆时的水平速度为v ,减速伞打开后,飞机所受的阻力与飞机的速度成正比,比例系数k ,试表示出飞机着陆时的速度函数v(t)所满足的微分方程.分析:在实际问题中,涉及变化率的问题,如速度、加速度、增长率、衰减率等物理量的大小都可表示成某一函数导数(递增情况,导数为正)或导数的相反数(递减情况,导数为负),故可通过建立此类物理量所满足的关系式,得到以该函数为未知函数的微分方程解:由牛顿第二定律得,F ma由题意F kv ,而ad vdt故得速度函数v(t)所满足的微分方程d v m kv d t且由于着陆时的水平速度为v0 ,有初值条件v(0) v0(注:本题只要求列出微分方程即可,若需求解,可考虑分离变量法,请同学们学习完第二节之后考虑该微分方程的求解问题)。
高数微分方程
高数微分方程高数微分方程是高等数学中的一个重要分支,它研究的是描述自然现象或数学模型的一类方程,同时也被广泛应用于物理、化学、生物、经济等领域。
本文将从定义、分类、解法及应用等多个方面深入探讨高数微分方程这一课题。
一、定义微分方程是一类用导数描述的方程,通常表示为y'=f(x,y)(一阶)或y''=f(x,y,y')(二阶)等形式。
其中x为自变量,y为因变量。
微分方程分为一阶和高阶两种,解析式解不容易求出,通常需要借助某些数学工具来解决。
二、分类微分方程分为常微分方程和偏微分方程两种。
常微分方程中,只含有一个自变量,其导数只包含一阶或高阶导数,方程中未出现偏导数。
常微分方程又分为:1)可以直接通过初值求解的常微分方程。
y' = f(x, y),y(x0) = y0这种常微分方程称作初值问题,因为y(x0) = y0称作初值。
2)可以直接通过边值求解的常微分方程。
y'' = f(x, y),y(a) = α, y(b) = β这种常微分方程称作边值问题,因为y(a) = α,y(b) = β称作边值。
偏微分方程中,含有两个或两个以上自变量的导数关系方程,方程中出现偏导数, 通常用来描述空间或时间上的变化过程。
三、解法常微分方程的求解方法分为以下三种:1)分离变量法对于方程y=f(x)+g(y), 其中f(x)仅是自变量x的函数,g(y)仅是因变量y的函数。
这种形式的方程,我们可以采用分离变量法来求解。
具体来说,就是将方程两边联合,然后分离出x和y的部分,将其进行积分,最后得到通解。
实际上,分离变量法就是一种利用变量分离来求解微分方程的方法。
2)齐次微分方程法对于方程y'=f(x,y), 其中f(x,y)是x,y的线性组合,若对于任意实数a,b,都有f(ax,by)=f(x,y)两边等式成立,则称其为齐次微分方程。
此时,我们可以引入新的变量z=y/x,将原方程化为z'=f(z)-x/z,这是一个齐次微分方程。
几种常见的微分方程简介,解法
第十二章:微分方程教学目的:1.了解微分方程及其解、阶、通解,初始条件和特等概念。
2.熟练掌握变量可分离的微分方程及一阶线性微分方程的解法。
3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。
4.会用降阶法解下列微分方程:()()n y f x =, (,)y f x y '''+和(,)y f y y '''=5.理解线性微分方程解的性质及解的结构定理。
6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。
7.求自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。
8.会解欧拉方程,会解包含两个未知函数的一阶常系数线性微分方程组。
9.会解微分方程组(或方程组)解决一些简单的应用问题。
教学重点:1、可分离的微分方程及一阶线性微分方程的解法2、可降阶的高阶微分方程()()n y f x =, (,)y f x y '''+和(,)y f y y '''=3、二阶常系数齐次线性微分方程;4、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程;教学难点:1、齐次微分方程、伯努利方程和全微分方程;2、线性微分方程解的性质及解的结构定理;3、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解。
4、欧拉方程§12. 1 微分方程的基本概念函数是客观事物的内部联系在数量方面的反映, 利用函数关系又可以对客观事物的规律性进行研究. 因此如何寻找出所需要的函数关系, 在实践中具有重要意义. 在许多问题中, 往往不能直接找出所需要的函数关系, 但是根据问题所提供的情况, 有时可以列出含有要找的函数及其导数的关系式. 这样的关系就是所谓微分方程. 微分方程建立以后, 对它进行研究, 找出未知函数来, 这就是解微分方程.几个概念:微分方程: 表示未知函数、未知函数的导数与自变量之间的关系的方程, 叫微分方程. 常微分方程: 未知函数是一元函数的微分方程, 叫常微分方程.偏微分方程: 未知函数是多元函数的微分方程, 叫偏微分方程.微分方程的阶: 微分方程中所出现的未知函数的最高阶导数的阶数, 叫微分方程的阶. x 3 y '''+x 2 y ''-4xy '=3x 2 ,y (4) -4y '''+10y ''-12y '+5y =sin2x ,y (n ) +1=0,一般n 阶微分方程:F (x , y , y ', ⋅ ⋅ ⋅ , y (n ) )=0.y (n )=f (x , y , y ', ⋅ ⋅ ⋅ , y (n -1) ) .微分方程的解: 满足微分方程的函数(把函数代入微分方程能使该方程成为恒等式)叫做该微分方程的解. 确切地说, 设函数y =ϕ(x )在区间I 上有n 阶连续导数, 如果在区间I 上, F [x , ϕ(x ), ϕ'(x ), ⋅ ⋅ ⋅, ϕ(n ) (x )]=0,那么函数y =ϕ(x )就叫做微分方程F (x , y , y ', ⋅ ⋅ ⋅, y (n ) )=0在区间I 上的解.通解: 如果微分方程的解中含有任意常数, 且任意常数的个数与微分方程的阶数相同, 这样的解叫做微分方程的通解.初始条件: 用于确定通解中任意常数的条件, 称为初始条件. 如x =x 0 时, y =y 0 , y '= y '0 .一般写成00y y x x ==, 00y y x x '='=. 特解: 确定了通解中的任意常数以后, 就得到微分方程的特解. 即不含任意常数的解.初值问题: 求微分方程满足初始条件的解的问题称为初值问题.如求微分方程y '=f (x , y )满足初始条件00y y x x ==的解的问题, 记为⎩⎨⎧=='=00),(y y y x f y x x . 积分曲线: 微分方程的解的图形是一条曲线, 叫做微分方程的积分曲线.例1 一曲线通过点(1, 2), 且在该曲线上任一点M (x , y )处的切线的斜率为2x , 求这曲线的方程.解 设所求曲线的方程为y =y (x ). 根据导数的几何意义, 可知未知函数y =y (x )应满足关系式(称为微分方程)x dxdy 2=. (1) 此外, 未知函数y =y (x )还应满足下列条件:x =1时, y =2, 简记为y |x =1=2. (2)把(1)式两端积分, 得(称为微分方程的通解)⎰=xdx y 2, 即y =x 2+C , (3)其中C 是任意常数.把条件“x =1时, y =2”代入(3)式, 得2=12+C ,由此定出C =1. 把C =1代入(3)式, 得所求曲线方程(称为微分方程满足条件y |x =1=2的解): y =x 2+1.例2 列车在平直线路上以20m/s(相当于72km/h)的速度行驶; 当制动时列车获得加速度-0.4m/s 2. 问开始制动后多少时间列车才能停住, 以及列车在这段时间里行驶了多少路程?解 设列车在开始制动后t 秒时行驶了s 米. 根据题意, 反映制动阶段列车运动规律的函数s =s (t )应满足关系式4.022-=dt s d . (4) 此外, 未知函数s =s (t )还应满足下列条件:t =0时, s =0, 20==dtds v . 简记为s |t =0=0, s '|t =0=20. (5)把(4)式两端积分一次, 得14.0C t dtds v +-==; (6) 再积分一次, 得s =-0.2t 2 +C 1t +C 2, (7)这里C 1, C 2都是任意常数.把条件v |t =0=20代入(6)得20=C 1;把条件s |t =0=0代入(7)得0=C 2.把C 1, C 2的值代入(6)及(7)式得v =-0.4t +20, (8)s =-0.2t 2+20t . (9)在(8)式中令v =0, 得到列车从开始制动到完全停住所需的时间504.020==t (s ). 再把t =50代入(9), 得到列车在制动阶段行驶的路程s =-0.2⨯502+20⨯50=500(m ).解 设列车在开始制动后t 秒时行驶了s 米,s ''=-0.4, 并且s |t =0=0, s '|t =0=20.把等式s ''=-0.4两端积分一次, 得s '=-0.4t +C 1, 即v =-0.4t +C 1(C 1是任意常数),再积分一次, 得s =-0.2t 2 +C 1t +C 2 (C 1, C 2都C 1是任意常数).由v |t =0=20得20=C 1, 于是v =-0.4t +20;由s |t =0=0得0=C 2, 于是s =-0.2t 2+20t .令v =0, 得t =50(s). 于是列车在制动阶段行驶的路程s =-0.2⨯502+20⨯50=500(m ).例3 验证: 函数x =C 1cos kt +C 2 sin kt是微分方程0222=+x k dt x d 的解.解 求所给函数的导数:kt kC kt kC dtdx cos sin 21+-=, )sin cos (sin cos 212221222kt C kt C k kt C k kt C k dt x d +-=--=. 将22dtx d 及x 的表达式代入所给方程, 得 -k 2(C 1cos kt +C 2sin kt )+ k 2(C 1cos kt +C 2sin kt )≡0.这表明函数x =C 1cos kt +C 2sin kt 满足方程0222=+x k dtx d , 因此所给函数是所给方程的解. 例4 已知函数x =C 1cos kt +C 2sin kt (k ≠0)是微分方程0222=+x k dtx d 的通解, 求满足初始条件 x | t =0 =A , x '| t =0 =0的特解.解 由条件x | t =0 =A 及x =C 1 cos kt +C 2 sin kt , 得C 1=A .再由条件x '| t =0 =0, 及x '(t ) =-kC 1sin kt +kC 2cos kt , 得C 2=0.把C 1、C 2的值代入x =C 1cos kt +C 2sin kt 中, 得x =A cos kt .§12. 2 可分离变量的微分方程观察与分析:1. 求微分方程y '=2x 的通解. 为此把方程两边积分, 得y =x 2+C .一般地, 方程y '=f (x )的通解为C dx x f y +=⎰)((此处积分后不再加任意常数).2. 求微分方程y '=2xy 2 的通解.因为y 是未知的, 所以积分⎰dx xy 22无法进行, 方程两边直 接积分不能求出通解.为求通解可将方程变为xdx dy y 212=, 两边积分, 得 C x y +=-21, 或Cx y +-=21, 可以验证函数Cx y +-=21是原方程的通解. 一般地, 如果一阶微分方程y '=ϕ(x , y )能写成g (y )dy =f (x )dx形式, 则两边积分可得一个不含未知函数的导数的方程G (y )=F (x )+C ,由方程G (y )=F (x )+C 所确定的隐函数就是原方程的通解对称形式的一阶微分方程:一阶微分方程有时也写成如下对称形式:P (x , y )dx +Q (x , y )dy =0在这种方程中, 变量x 与y 是对称的.若把x 看作自变量、y 看作未知函数, 则当Q (x ,y )≠0时, 有),(),(y x Q y x P dx dy -=. 若把y 看作自变量、x 看作未知函数, 则当P (x ,y )≠0时, 有),(),(y x P y x Q dy dx -=. 可分离变量的微分方程:如果一个一阶微分方程能写成g (y )dy =f (x )dx (或写成y '=ϕ(x )ψ(y ))的形式, 就是说, 能把微分方程写成一端只含y 的函数和dy , 另一端只含x 的函数和dx , 那么原方程就称为可分离变量的微分方程.讨论: 下列方程中哪些是可分离变量的微分方程?(1) y '=2xy , 是. ⇒y -1dy =2xdx .(2)3x 2+5x -y '=0, 是. ⇒dy =(3x 2+5x )dx .(3)(x 2+y 2)dx -xydy =0, 不是.(4)y '=1+x +y 2+xy 2, 是. ⇒y '=(1+x )(1+y 2).(5)y '=10x +y , 是. ⇒10-y dy =10x dx . (6)xy y x y +='. 不是. 可分离变量的微分方程的解法:第一步 分离变量, 将方程写成g (y )dy =f (x )dx 的形式;第二步 两端积分:⎰⎰=dx x f dy y g )()(, 设积分后得G (y )=F (x )+C ;第三步 求出由G (y )=F (x )+C 所确定的隐函数y =Φ(x )或x =ψ(y )G (y )=F (x )+C , y =Φ (x )或x =ψ(y )都是方程的通解, 其中G (y )=F (x )+C 称为隐式(通)解.例1 求微分方程xy dxdy 2=的通解. 解 此方程为可分离变量方程, 分离变量后得xdx dy y21=, 两边积分得⎰⎰=xdx dy y 21, 即 ln|y |=x 2+C 1,从而 2112x C C x e e e y ±=±=+. 因为1C e ±仍是任意常数, 把它记作C , 便得所给方程的通解2x Ce y =.解 此方程为可分离变量方程, 分离变量后得xdx dy y21=, 两边积分得 ⎰⎰=xdx dy y 21, 即 ln|y |=x 2+ln C ,从而 2x Ce y =.例2 铀的衰变速度与当时未衰变的原子的含量M 成正比. 已知t =0时铀的含量为M 0, 求在衰变过程中铀含量M (t )随时间t 变化的规律.解 铀的衰变速度就是M (t )对时间t 的导数dtdM . 由于铀的衰变速度与其含量成正比, 故得微分方程M dtdM λ-=, 其中λ(λ>0)是常数, λ前的曲面号表示当t 增加时M 单调减少. 即0<dt dM . 由题意, 初始条件为M |t =0=M 0.将方程分离变量得dt MdM λ-=. 两边积分, 得⎰⎰-=dt M dM)(λ, 即 ln M =-λt +ln C , 也即M =Ce -λt .由初始条件, 得M 0=Ce 0=C ,所以铀含量M (t )随时间t 变化的规律M =M 0e -λt .例3 设降落伞从跳伞塔下落后, 所受空气阻力与速度成正比, 并设降落伞离开跳伞塔时速度为零. 求降落伞下落速度与时间的函数关系.解 设降落伞下落速度为v (t ). 降落伞所受外力为F =mg -kv ( k 为比例系数). 根据牛顿第二运动定律F =ma , 得函数v (t )应满足的方程为kv mg dtdv m -=, 初始条件为v |t =0=0.方程分离变量, 得mdt kv mg dv =-, 两边积分, 得⎰⎰=-m dt kv mg dv , 1)ln(1C m t kv mg k +=--, 即 t m k Ce k mg v -+=(keC kC 1--=), 将初始条件v |t =0=0代入通解得kmg C -=, 于是降落伞下落速度与时间的函数关系为)1(t m k e kmg v --=. 例4 求微分方程221xy y x dxdy +++=的通解. 解 方程可化为)1)(1(2y x dxdy ++=, 分离变量得 dx x dy y )1(112+=+, 两边积分得⎰⎰+=+dx x dy y )1(112, 即C x x y ++=221arctan . 于是原方程的通解为)21tan(2C x x y ++=.例5有高为1m 的半球形容器, 水从它的底部小孔流出, 小孔横截面面积为1cm 2. 开始时容器内盛满了水, 求水从小孔流出过程中容器里水面高度h 随时间t 变化的规律.解 由水力学知道, 水从孔口流出的流量Q 可用下列公式计算:gh S dtdV Q 262.0==, 其中0. 62为流量系数, S 为孔口横截面面积, g 为重力加速度. 现在孔口横截面面积S =1cm 2, 故 gh dtdV 262.0=, 或dt gh dV 262.0=. 另一方面, 设在微小时间间隔[t , t +d t ]内, 水面高度由h 降至h +dh (dh <0), 则又可得到dV =-πr 2dh ,其中r 是时刻t 的水面半径, 右端置负号是由于dh <0而dV >0的缘故. 又因222200)100(100h h h r -=--=,所以 dV =-π(200h -h 2)dh .通过比较得到dh h h dt gh )200(262.02--=π,这就是未知函数h =h (t )应满足的微分方程.此外, 开始时容器内的水是满的, 所以未知函数h =h (t )还应满足下列初始条件:h |t =0=100.将方程dh h h dt gh )200(262.02--=π分离变量后得dh h h g dt )200(262.02321--=π. 两端积分, 得⎰--=dh h h g t )200(262.02321π,即 C h h g t +--=)523400(262.02523π, 其中C 是任意常数.由初始条件得C g t +⨯-⨯-=)100521003400(262.02523π, 5101514262.0)52000003400000(262.0⨯⨯=-=g g C ππ. 因此 )310107(262.0252335h h g t +-⨯=π.上式表达了水从小孔流出的过程中容器内水面高度h 与时间t 之间的函数关系.§12. 3 齐次方程齐次方程:如果一阶微分方程),(y x f dxdy =中的函数f (x , y )可写成 x y 的函数, 即)(),(xy y x f ϕ=, 则称这方程为齐次方程. 下列方程哪些是齐次方程?(1)022=---'x y y y x 是齐次方程.1)(222-+=⇒-+=⇒x y x y dx dy x x y y dx dy . (2)2211y y x -='-不是齐次方程.2211x y dx dy --=⇒. (3)(x 2+y 2)dx -xydy =0是齐次方程. xy y x dx dy xy y x dx dy +=⇒+=⇒22. (4)(2x +y -4)dx +(x +y -1)dy =0不是齐次方程.142-+-+-=⇒y x y x dx dy . (5)0ch 3)ch 3sh 2(=-+dy xy x dx x y y x yx 是齐次方程. x y x y dx dy xy x x y y x y x dx dy +=⇒+=⇒th 32ch 3ch 3sh 2齐次方程的解法:在齐次方程)(xy dx dy ϕ=中, 令x y u =, 即y =ux , 有 )(u dx du x u ϕ=+, 分离变量, 得xdx u u du =-)(ϕ.两端积分, 得⎰⎰=-xdx u u du )(ϕ. 求出积分后, 再用xy 代替u , 便得所给齐次方程的通解. 例1 解方程dx dy xy dx dy x y =+22. 解 原方程可写成1)(222-=-=x y x y x xy y dx dy , 因此原方程是齐次方程. 令u x y =, 则 y =ux ,dxdu x u dx dy +=, 于是原方程变为12-=+u u dx du x u , 即 1-=u u dx du x . 分离变量, 得xdx du u =-)11(. 两边积分, 得u -ln|u |+C =ln|x |,或写成ln|xu |=u +C . 以xy 代上式中的u , 便得所给方程的通解 C xy y +=||ln . 例2 有旋转曲面形状的凹镜, 假设由旋转轴上一点O 发出的一切光线经此凹镜反射后都与旋转轴平行. 求这旋转曲面的方程.解 设此凹镜是由xOy 面上曲线L : y =y (x )(y >0)绕x 轴旋转而成, 光源在原点. 在L 上任取一点M (x , y ), 作L 的切线交x 轴于A . 点O 发出的光线经点M 反射后是一条平行于x 轴射线. 由光学及几何原理可以证明OA =OM ,因为 x y y OP PM OP AP OA -'=-=-=αcot , 而 22y x OM +=. 于是得微分方程22y x x y y +=-', 整理得1)(2++=yx y x dy dx . 这是齐次方程. 问题归结为解齐次方程1)(2++=y x y x dy dx . 令v y x =, 即x =yv , 得12++=+v v dy dv y v , 即 12+=v dydv y , 分离变量, 得y dy v dv =+12, 两边积分, 得 C y v v ln ln )1ln(2-=++, C y v v =++⇒12, 1)(22+=-⇒v v Cy , 1222=-Cyv C y , 以yv =x 代入上式, 得)2(22C x C y +=. 这是以x 轴为轴、焦点在原点的抛物线, 它绕x 轴旋转所得旋转曲面的方程为)2(222C x C z y +=+. 这就是所求的旋转曲面方程. .例3 设一条河的两岸为平行直线, 水流速度为a , 有一鸭子从岸边点A 游向正对岸点O , 设鸭子的游速为b (b >a ), 且鸭子游动方向始终朝着点O , 已知OA =h , 求鸭子游过的迹线的方程. 解 取O 为坐标原点, 河岸朝顺水方向为x 轴, y 轴指向对岸. 设在时刻t 鸭子位于点P (x , y ), 则鸭子运动速度) ,() ,(dtdy dt dx v v y x ==v , 故有y x v v dy dx =. 另一方面, ) ,()0 ,(2222y x y y x x b a +-+-+=+=b a v , ) ,(2222y x by y x bx a +-+-=v . 因此y x y x b a v v dy dx y x ++-==1)(2, 即yx y x b a dy dx ++-=1)(2. 问题归结为解齐次方程y x y x b a dy dx ++-=1)(2. 令u y x =, 即x =yu , 得 12+-=u ba dy du y , 分离变量, 得dy by a u du -=+12, 两边积分, 得 )ln (ln arsh C y abu +-=, 将y x u =代入上式并整理, 得])()[(2111b a b a Cy Cy Cx +--=. 以x |y =h =0代入上式, 得hC 1=, 故鸭子游过的轨迹方程为 ])()[(211b a b a hy h y h x +--=, 0≤y ≤h . 将y x u =代入)ln (ln arsh C y ab u +-=后的整理过程: )ln (ln arsh C y ab y x +-= a b Cy y x -=⇒)ln(sh ])()[(21a ba b Cy Cy y x -=⇒- ])()[(2a b a b Cy Cy y x -=⇒-])()[(2111a b a b Cy Cy C x +--=⇒.§12.4 线性微分方程一、 线性方程线性方程:方程)()(x Q y x P dxdy =+叫做一阶线性微分方程. 如果Q (x )≡0 , 则方程称为齐次线性方程, 否则方程称为非齐次线性方程. 方程0)(=+y x P dx dy 叫做对应于非齐次线性方程)()(x Q y x P dxdy =+的齐次线性方程. 下列方程各是什么类型方程? (1)y dx dy x =-)2(⇒021=--y x dx dy 是齐次线性方程. (2) 3x 2+5x -5y '=0⇒y '=3x 2+5x , 是非齐次线性方程.(3) y '+y cos x =e -sin x , 是非齐次线性方程.(4)y x dxdy +=10, 不是线性方程. (5)0)1(32=++x dx dy y ⇒0)1(23=+-y x dx dy 或32)1(x y dy dx +-, 不是线性方程. 齐次线性方程的解法:齐次线性方程0)(=+y x P dx dy 是变量可分离方程. 分离变量后得 dx x P ydy )(-=, 两边积分, 得1)(||ln C dx x P y +-=⎰,或 )( 1)(C dx x P e C Ce y ±=⎰=-, 这就是齐次线性方程的通解(积分中不再加任意常数).例1 求方程y dxdy x =-)2(的通解. 解 这是齐次线性方程, 分离变量得2-=x dx y dy , 两边积分得ln|y |=ln|x -2|+lnC ,方程的通解为y =C (x -2).非齐次线性方程的解法:将齐次线性方程通解中的常数换成x 的未知函数u (x ), 把⎰=-dx x P e x u y )()(设想成非齐次线性方程的通解. 代入非齐次线性方程求得)()()()()()()()()(x Q e x u x P x P e x u e x u dx x P dx x P dx x P =⎰+⎰-⎰'---,化简得 ⎰='dx x P e x Q x u )()()(,C dx e x Q x u dx x P +⎰=⎰)()()(,于是非齐次线性方程的通解为])([)()(C dx e x Q e y dx x P dx x P +⎰⎰=⎰-, 或 dx e x Q e Ce y dx x P dx x P dx x P ⎰⎰⎰+⎰=--)()()()(. 非齐次线性方程的通解等于对应的齐次线性方程通解与非齐次线性方程的一个特解之和.例2 求方程25)1(12+=+-x x y dx dy 的通解. 解 这是一个非齐次线性方程.先求对应的齐次线性方程012=+-x y dx dy 的通解. 分离变量得12+=x dx y dy , 两边积分得ln y =2ln (x +1)+ln C ,齐次线性方程的通解为y =C (x +1)2.用常数变易法. 把C 换成u , 即令y =u ⋅(x +1)2, 代入所给非齐次线性方程, 得2522)1()1(12)1(2)1(+=+⋅+-+⋅++⋅'x x u x x u x u 21)1(+='x u ,两边积分, 得C x u ++=23)1(32. 再把上式代入y =u (x +1)2中, 即得所求方程的通解为 ])1(32[)1(232C x x y +++=. 解: 这里12)(+-=x x P , 25)1()(+=x x Q . 因为 )1ln(2)12()(+-=+-=⎰⎰x dx x dx x P , 2)1ln(2)()1(+==⎰+-x e e x dx x P ,2321225)()1(32)1()1()1()(+=+=++=⎰⎰⎰⎰-x dx x dx x x dx e x Q dx x P , 所以通解为])1(32[)1(])([232)()(C x x C dx e x Q e y dx x P dx x P +++=+⎰⎰=⎰-. 例3 有一个电路如图所示, 其中电源电动势为E =E m sin ωt (E m 、ω都是常数), 电阻R 和电感L 都是常量. 求电流i (t ).解 由电学知道, 当电流变化时, L 上有感应电动势dt di L-. 由回路电压定律得出 0=--iR dt di LE , 即 LE i L R dt di =+. 把E =E m sin ω t 代入上式, 得t LE i L R dt di m sin ω=+. 初始条件为i |t =0=0.方程t LE i L R dt di m sin ω=+为非齐次线性方程, 其中 L R t P =)(, t L E t Q m sin )(ω=. 由通解公式, 得])([)()()(C dt e t Q e t i dt t P dt t P +⎰⎰=⎰-) sin (C dt e t L E e dt L Rm dt L R +⎰⎰=⎰-ω )sin (C dt te e LE t L R t L Rm +=⎰-ω t L R m Ce t L t R LR E -+-+=) cos sin (222ωωωω. 其中C 为任意常数.将初始条件i |t =0=0代入通解, 得222 LR LE C m ωω+=, 因此, 所求函数i (t )为) cos sin ( )(222222t L t R L R E e L R LE t i m t L R m ωωωωωω-+++=-. 二、伯努利方程伯努利方程: 方程n y x Q y x P dxdy )()(=+ (n ≠0, 1) 叫做伯努利方程.下列方程是什么类型方程?(1)4)21(3131y x y dx dy -=+, 是伯努利方程. (2)5xy y dx dy +=, ⇒5xy y dxdy =-, 是伯努利方程. (3)x y y x y +=', ⇒11-=-'xy y x y , 是伯努利方程.(4)x xy dxdy 42=-, 是线性方程, 不是伯努利方程. 伯努利方程的解法: 以y n 除方程的两边, 得)()(1x Q y x P dxdy y n n =+-- 令z =y 1-n , 得线性方程)()1()()1(x Q n z x P n dxdz -=-+. 例4 求方程2)(ln y x a x y dx dy -+的通解. 解 以y 2除方程的两端, 得x a y xdx dy y ln 112=+--, 即 x a y xdx y d ln 1)(11=+---, 令z =y -1, 则上述方程成为x a z xdx dz ln 1-=-. 这是一个线性方程, 它的通解为 ])(ln 2[2x aC x z -=.以y -1代z , 得所求方程的通解为1])(ln 2[2=-x a C yx .经过变量代换, 某些方程可以化为变量可分离的方程, 或化为已知其求解方法的方程. 例5 解方程yx dx dy +=1. 解 若把所给方程变形为y x dydx +=, 即为一阶线性方程, 则按一阶线性方程的解法可求得通解. 但这里用变量代换来解所给方程. 令x +y =u , 则原方程化为u dx du 11=-, 即uu dx du 1+=.分离变量, 得dx du u u =+1, 两端积分得u -ln|u +1|=x -ln|C |.以u =x +y 代入上式, 得y -ln|x +y +1|=-ln|C |, 或x =Ce y -y -1.§12. 5 全微分方程全微分方程:一个一阶微分方程写成P (x , y )dx +Q (x , y )dy =0形式后, 如果它的左端恰好是某一个函数u =u (x , y )的全微分:du (x , y )=P (x , y )dx +Q (x , y )dy ,那么方程P (x , y )dx +Q (x , y )dy =0就叫做全微分方程. 这里),(y x P xu =∂∂, ),(y x Q y u =∂∂, 而方程可写为du (x , y )=0.全微分方程的判定:若P (x , y )、Q (x , y )在单连通域G 内具有一阶连续偏导数, 且xQ y P ∂∂=∂∂, 则方程P (x , y )dx +Q (x , y )dy =0是全微分方程,全微分方程的通解:若方程P (x , y )dx +Q (x , y )dy =0是全微分方程, 且du (x , y )=P (x , y )dx +Q (x , y )dy则 u (x , y )=C ,即 )),(( ),(),(00000G y x C dx y x Q dx y x P yy x x ∈=+⎰⎰.是方程P (x , y )dx +Q (x , y )dy =0的通解例1 求解(5x 4+3xy 2-y 3)dx +(3x 2y -3xy 2+y 2 )dy =0.解 这里xQ y xy y P ∂∂=-=∂∂236, 所以这是全微分方程. 取(x 0, y 0)=(0, 0), 有 ⎰⎰+-+=y x dy y dx y xy x y x u 020324)35(),( 332253123y xy y x x +-+=.于是, 方程的通解为C y xy y x x =+-+332253123.积分因子:若方程P (x , y )dx +Q (x , y )dy =0不是全微分方程, 但存在一函数μ=μ(x , y ) (μ(x , y )≠0), 使方程μ(x , y )P (x , y )dx +μ(x , y )Q (x , y )dy =0是全微分方程, 则函数μ(x , y )叫做方程P (x , y )dx +Q (x , y )dy =0的积分因子.例2 通过观察求方程的积分因子并求其通解:(1)ydx -xdy =0;(2)(1+xy )ydx +(1-xy )xdy =0.解 (1)方程ydx -xdy =0不是全微分方程.因为2)(y xdy ydx y xd -=, 所以21y 是方程ydx -xdy =0的积分因子, 于是 02=-y xdy ydx 是全微分方程, 所给方程的通解为C y x =. (2)方程(1+xy )ydx +(1-xy )xdy =0不是全微分方程.将方程的各项重新合并, 得(ydx +xdy )+xy (ydx -xdy )=0,再把它改写成0)()(22=-+y dy x dx y x xy d , 这时容易看出2)(1xy 为积分因子, 乘以该积分因子后, 方程就变为 0)()(2=-+ydy x dx xy xy d , 积分得通解C y x xy ln ||ln 1=+-, 即xy Ce yx 1=. 我们也可用积分因子的方法来解一阶线性方程y '+P (x )y =Q (x ).可以验证⎰=dx x P e x )()(μ是一阶线性方程y '+P (x )y =Q (x )的一个积分因子. 在一阶线性方程的两边乘以⎰=dx x P e x )()(μ得 ⎰=⎰+⎰'dx x P dx x P dx x P e x Q e x yP e y )()()()()(, 即 ⎰='⎰+⎰'dx x P dx x P dx x P e x Q e y e y )()()()(][, 亦即 ⎰='⎰dx x P dx x P e x Q ye )()()(][. 两边积分, 便得通解C dx e x Q ye dx x P dx x P +⎰=⎰⎰)()()(,或 ])([)()(C dx e x Q e y dx x P dx x P +⎰⎰=⎰-. 例3用积分因子求x xy dxdy 42=+的通解. 解 方程的积分因子为22)(x xdx e e x =⎰=μ.方程两边乘以2x e 得22242x x x xe y xe e y =+', 即224)(x x xe y e =',于是 C e dx xe y e x x x +==⎰22224. 因此原方程的通解为2224x x Ce dx xe y -+==⎰. §12. 6 可降阶的高阶微分方程一、y (n )=f (x )型的微分方程解法: 积分n 次1)1()(C dx x f y n +=⎰-, 21)2(])([C dx C dx x f y n ++=⎰⎰-, ⋅ ⋅ ⋅.例1 求微分方程y '''=e 2x -cos x 的通解.解 对所给方程接连积分三次, 得12sin 21C x e y x +-='',212cos 41C x C x e y x +++=',3221221sin 81C x C x C x e y x ++++=,这就是所给方程的通解.或 122sin 21C x e y x +-='',2122cos 41C x C x e y x +++=',32212sin 81C x C x C x e y x ++++=,这就是所给方程的通解.例2 质量为m 的质点受力F 的作用沿Ox 轴作直线运动. 设力F 仅是时间t 的函数:F =F (t ). 在开始时刻t =0时F (0)=F 0, 随着时间t 的增大, 此力F 均匀地减小, 直到t =T 时, F (T )=0. 如果开始时质点位于原点, 且初速度为零, 求这质点的运动规律.解 设x =x (t )表示在时刻t 时质点的位置, 根据牛顿第二定律, 质点运动的微分方程为)(22t F dtx d m =. 由题设, 力F (t )随t 增大而均匀地减小, 且t =0时, F (0)=F 0, 所以F (t )=F 0-kt ; 又当t =T 时, F (T )=0, 从而)1()(0Tt F t F -=.于是质点运动的微分方程又写为)1(022T t mF dt x d -=, 其初始条件为0|0==t x , 0|0==t dt dx . 把微分方程两边积分, 得120)2(C Tt t m F dt dx +-=. 再积分一次, 得21320)621(C t C Tt t m F x ++-=. 由初始条件x |t =0=0, 0|0==t dt dx , 得C 1=C 2=0.于是所求质点的运动规律为)621(320Tt t m F x -=, 0≤t ≤T . 解 设x =x (t )表示在时刻t 时质点的位置,根据牛顿第二定律, 质点运动的微分方程为mx ''=F (t ).由题设, F (t )是线性函数, 且过点(0, F 0)和(T , 0),故 1)(0=+T t F t F , 即)1()(0Tt F t F -=. 于是质点运动的微分方程又写为)1(0Tt m F x -=''. 其初始条件为x |t =0=0, x '|t =0=0.把微分方程两边积分, 得120)2(C Tt t m F x +-=', 再积分一次, 得2320)621(C Tt t m F x +-=, 由初始条件x |t =0=0, x '|t =0=0,得C 1=C 2=0.于是所求质点的运动规律为)621(320Tt t m F x -=, 0≤t ≤T . 二、y ''= f (x , y ')型的微分方程解法:设y '=p 则方程化为p '=f (x , p ).设p '=f (x , p )的通解为p =ϕ(x ,C 1), 则),(1C x dxdy ϕ=. 原方程的通解为21),(C dx C x y +=⎰ϕ.例3 求微分方程()2xy''y'x 12=+满足初始条件 y |x =0=1, y '|x =0=3的特解.解 所给方程是y ''=f (x , y ')型的. 设y '=p , 代入方程并分离变量后, 有dx x x p dp 212+=. 两边积分, 得ln|p |=ln(1+x 2)+C ,即 p =y '=C 1(1+x 2) (C 1=±e C ).由条件y '|x =0=3, 得C 1=3,所以 y '=3(1+x 2).两边再积分, 得 y =x 3+3x +C 2.又由条件y |x =0=1, 得C 2=1,于是所求的特解为y =x 3+3x +1.例4 设有一均匀、柔软的绳索, 两端固定, 绳索仅受重力的作用而下垂. 试问该绳索在平衡状态时是怎样的曲线?三、y ''=f (y , y ')型的微分方程解法: 设y '=p ,有dydp p dx dy dy dp dx dp y =⋅==''. 原方程化为 ),(p y f dydp p=. 设方程),(p y f dy dp p =的通解为y '=p =ϕ(y , C 1), 则原方程的通解为 21),(C x C y dy +=⎰ϕ.例5 求微分yy ''-y '2=0的通解.解 设y '=p , 则dy dp py ='', 代入方程, 得02=-p dydp yp . 在y ≠0、p ≠0时, 约去p 并分离变量, 得ydy p dp =. 两边积分得ln|p |=ln|y |+ln c ,即 p =Cy 或y '=Cy (C =±c ).再分离变量并两边积分, 便得原方程的通解为ln|y |=Cx +ln c 1,或 y =C 1e Cx (C 1=±c 1).例6 一个离地面很高的物体,受地球引力的作用由静止开始落向地面. 求它落到地面时的速度和所需的时间(不计空气阻力).§12. 7 高阶线性微分方程一、二阶线性微分方程举例例1 设有一个弹簧, 上端固定, 下端挂一个质量为m 的物体. 取x 轴铅直向下, 并取物体的平衡位置为坐标原点.给物体一个初始速度v 0≠0后, 物体在平衡位置附近作上下振动. 在振动过程中, 物体的位置x 是t 的函数: x =x (t ).设弹簧的弹性系数为c , 则恢复力f =-cx .又设物体在运动过程中受到的阻力的大小与速度成正比, 比例系数为μ, 则dtdx R μ-, 由牛顿第二定律得dt dx cx dtx d m μ--=22. 移项, 并记m n μ=2, mc k =2, 则上式化为 02222=++x k dt dx n dt x d , 这就是在有阻尼的情况下, 物体自由振动的微分方程.如果振动物体还受到铅直扰力F =H sin pt的作用, 则有pt h x k dt dx n dt x d sin 2222=++, 其中mH h =. 这就是强迫振动的微分方程. 例2 设有一个由电阻R 、自感L 、电容C 和电源E 串联组成的电路, 其中R 、L 、及C 为常数, 电源电动势是时间t 的函数: E =E m sin ωt , 这里E m 及ω也是常数.设电路中的电流为i (t ), 电容器极板上的电量为q (t ), 两极板间的电压为u c , 自感电动势为E L . 由电学知道dt dq i =, C q u c =, dtdi L E L -=, 根据回路电压定律, 得0=---Ri Cq dt di LE , 即 t E u dt du RC dt u d LC m c c c ωsin 22=++, 或写成t LC E u dt du dt u d m c c c ωωβsin 22022=++,其中L R 2=β, LC10=ω. 这就是串联电路的振荡方程. 如果电容器经充电后撤去外电源(E =0), 则上述成为022022=++c c c u dt du dtu d ωβ. 二阶线性微分方程: 二阶线性微分方程的一般形式为y ''+P (x )y '+Q (x )y =f (x ),若方程右端f (x )≡0时, 方程称为齐次的, 否则称为非齐次的.二、线性微分方程的解的结构先讨论二阶齐次线性方程y ''+P (x )y '+Q (x )y =0, 即0)()(22=++y x Q dx dy x P dxy d . 定理1 如果函数y 1(x )与y 2(x )是方程y ''+P (x )y '+Q (x )y =0.的两个解, 那么y =C 1y 1(x )+C 2y 2(x )也是方程的解, 其中C 1、C 2是任意常数.齐次线性方程的这个性质表明它的解符合叠加原理.证明 [C 1y 1+C 2y 2]'=C 1 y 1'+C 2 y 2',[C 1y 1+C 2y 2]''=C 1 y 1''+C 2 y 2''.因为y 1与y 2是方程y ''+P (x )y '+Q (x )y =0, 所以有y 1''+P (x )y 1'+Q (x )y 1=0及y 2''+P (x )y 2'+Q (x )y 2=0,从而 [C 1y 1+C 2y 2]''+P (x )[ C 1y 1+C 2y 2]'+Q (x )[ C 1y 1+C 2y 2]=C 1[y 1''+P (x )y 1'+Q (x )y 1]+C 2[y 2''+P (x )y 2'+Q (x )y 2]=0+0=0.这就证明了y =C 1y 1(x )+C 2y 2(x )也是方程y ''+P (x )y '+Q (x )y =0的解函数的线性相关与线性无关:设y 1(x ), y 2(x ), ⋅ ⋅ ⋅ , y n (x )为定义在区间I 上的n 个函数. 如果存在n 个不全为零的常数k 1, k 2, ⋅ ⋅ ⋅ , k n , 使得当x ∈I 时有恒等式k 1y 1(x )+k 2y 2(x )+ ⋅ ⋅ ⋅ + k n y n (x )≡0成立, 那么称这n 个函数在区间I 上线性相关; 否则称为线性无关.判别两个函数线性相关性的方法:对于两个函数,它们线性相关与否,只要看它们的比是否为常数,如果比为常数,那么它们就线性相关,否则就线性无关.例如, 1, cos2x, sin2x在整个数轴上是线性相关的.函数1,x,x2在任何区间(a, b)内是线性无关的.定理2 如果如果函数y1(x)与y2(x)是方程y''+P(x)y'+Q(x)y=0的两个线性无关的解,那么y=C1y1(x)+C2y2(x) (C1、C2是任意常数)是方程的通解.例3 验证y1=cos x与y2=sin x是方程y''+y=0的线性无关解,并写出其通解.解因为y1''+y1=-cos x+cos x=0,y2''+y2=-sin x+sin x=0,所以y1=cos x与y2=sin x都是方程的解.因为对于任意两个常数k1、k2,要使k1cos x+k2sin x≡0,只有k1=k2=0,所以cos x与sin x在(-∞, +∞)内是线性无关的.因此y1=cos x与y2=sin x是方程y''+y=0的线性无关解.方程的通解为y=C1cos x+C2sin x.例4 验证y1=x与y2=e x是方程(x-1)y''-xy'+y=0的线性无关解,并写出其通解.解因为(x-1)y1''-xy1'+y1=0-x+x=0,(x-1)y2''-xy2'+y2=(x-1)e x-xe x+e x=0,所以y1=x与y2=e x都是方程的解,因为比值e x/x不恒为常数,所以y1=x与y2=e x在(-∞, +∞)内是线性无关的.因此y1=x与y2=e x是方程(x-1)y''-xy'+y=0的线性无关解.方程的通解为y=C1x+C2e x.推论如果y1(x),y2(x),⋅⋅⋅,y n(x)是方程y(n)+a1(x)y(n-1)+⋅⋅⋅+a n-1(x)y'+ a n(x)y=0的n个线性无关的解,那么,此方程的通解为y=C1y1(x)+C2y2(x)+⋅⋅⋅+ C n y n(x),其中C1,C2,⋅⋅⋅,C n为任意常数.二阶非齐次线性方程解的结构:我们把方程y''+P(x)y'+Q(x)y=0叫做与非齐次方程y''+P(x)y'+Q(x)y=f(x)对应的齐次方程.定理3 设y*(x)是二阶非齐次线性方程y''+P(x)y'+Q(x)y=f(x)的一个特解,Y(x)是对应的齐次方程的通解,那么y=Y(x)+y*(x)是二阶非齐次线性微分方程的通解.证明提示: [Y(x)+y*(x)]''+P(x)[ Y(x)+y*(x)]'+Q(x)[ Y(x)+y*(x)]=[Y ''+P(x)Y '+Q(x)Y ]+[ y* ''+P(x)y* '+Q(x)y*]=0+ f(x)= f(x).例如,Y=C1cos x+C2sin x是齐次方程y''+y=0的通解,y*=x2-2是y''+y=x2的一个特解,因此y=C1cos x+C2sin x+x2-2是方程y''+y=x2的通解.定理4 设非齐次线性微分方程y''+P(x)y'+Q(x)y=f(x)的右端f(x)几个函数之和,如y''+P(x)y'+Q(x)y=f1(x)+f2(x),而y1*(x)与y2*(x)分别是方程y''+P(x)y'+Q(x)y=f1(x)与y''+P(x)y'+Q(x)y=f2(x)的特解,那么y1*(x)+y2*(x)就是原方程的特解.证明提示:[y1+y2*]''+P(x)[ y1*+y2*]'+Q(x)[ y1*+y2*]=[ y1*''+P(x) y1*'+Q(x) y1*]+[ y2*''+P(x) y2*'+Q(x) y2*]=f 1(x )+f 2(x ).§12. 8 二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程:方程 y ''+py '+qy =0称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数.如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解.我们看看, 能否适当选取r , 使y =e rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程y ''+py '+qy =0得(r 2+pr +q )e rx =0.由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx 就是微分方程的解.特征方程: 方程r 2+pr +q =0叫做微分方程y ''+py '+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式 2422,1q p p r -±+-=求出. 特征方程的根与通解的关系:(1)特征方程有两个不相等的实根r 1、r 2时,函数x r e y 11=、x r e y 22=是方程的两个线性无关的解.这是因为,函数x r e y 11=、x r e y 22=是方程的解, 又x r r xr x r e e e y y )(212121-==不是常数. 因此方程的通解为x r x r e C e C y 2121+=.(2)特征方程有两个相等的实根r 1=r 2时,函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解.这是因为, x r e y 11=是方程的解, 又x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+''0)()2(121111=++++=q pr r xe p r e x r x r ,所以x r xe y 12=也是方程的解, 且x e xe y y xr x r ==1112不是常数. 因此方程的通解为x r x r xe C e C y 1121+=. (3)特征方程有一对共轭复根r 1, 2=α±i β时,函数y =e (α+i β)x 、y =e (α-i β)x 是微分方程的两个线性无关的复数形式的解.函数y =e αx cos βx 、y =e αx sin βx 是微分方程的两个线性无关的实数形式的解.函数y 1=e (α+i β)x 和y 2=e (α-i β)x 都是方程的解, 而由欧拉公式, 得y 1=e (α+i β)x =e αx (cos βx +i sin βx ),y 2=e (α-i β)x =e αx (cos βx -i sin βx ),y 1+y 2=2e αx cos βx , )(21cos 21y y x e x +=βα, y 1-y 2=2ie αx sin βx , )(21sin 21y y ix e x -=βα. 故e αx cos βx 、y 2=e αx sin βx 也是方程解.可以验证, y 1=e αx cos βx 、y 2=e αx sin βx 是方程的线性无关解.因此方程的通解为y =e αx (C 1cos βx +C 2sin βx ).求二阶常系数齐次线性微分方程y ''+py '+qy =0的通解的步骤为:第一步 写出微分方程的特征方程r 2+pr +q =0第二步 求出特征方程的两个根r 1、r 2.第三步 根据特征方程的两个根的不同情况, 写出微分方程的通解.例1 求微分方程y ''-2y '-3y =0的通解.。
高等数学教材答案第二版
高等数学教材答案第二版本文为《高等数学教材答案第二版》的详细解答和讲解,是对该教材的配套学习资料。
通过本文的阅读,你将会找到你在学习高等数学过程中遇到的问题的答案,并且对相关知识点有更深入的理解。
第一章微分学1.1 极限与连续在微分学的第一章中,我们将开始介绍极限与连续的概念。
极限是微积分的核心内容之一,它在数学和物理学等领域有着广泛的应用。
本章将详细讲解极限的定义、性质和求解方法,并通过一系列的例题加深理解。
1.2 导数与微分第二节将涉及导数与微分的概念。
导数是极限的一种应用,它表征了函数在某一点上的变化率。
本节将详细介绍导数的定义、性质以及计算方法,并通过实例演示如何求解导数和微分的具体步骤。
1.3 微分中值定理与导数的应用微分中值定理是微积分中重要的定理之一,它与导数密切相关。
本节将讲解微分中值定理的概念、证明及应用,并通过一些典型例题演示如何运用微分中值定理解决实际问题。
第二章积分学2.1 不定积分积分是微积分学中的另一核心概念,它是导数的逆运算。
本章将着重介绍不定积分的概念、性质以及计算方法,并通过一些具体的数学和物理问题来展示如何运用不定积分解决实际问题。
2.2 定积分与反常积分第二节将讨论定积分和反常积分的概念与计算方法。
定积分主要用于计算曲线与坐标轴所围成的面积,而反常积分则是对于某些函数在特定区间上积分存在问题时的处理方法。
本节将详细讲解定积分和反常积分的定义、性质和计算步骤,并通过例题掌握其应用技巧。
2.3 微积分基本公式与定积分的应用微积分基本公式是积分学习中常用的一组公式,它们能够大大简化积分的计算过程。
本节将介绍常见的微积分基本公式和定积分的应用,并通过实例演示如何灵活运用这些公式解决实际问题。
第三章微分方程3.1 微分方程的基本概念和解法微分方程是描述物理、经济和生物等领域中变化规律的重要工具。
本章将从微分方程的基本概念开始,讲解常微分方程的解法和解的存在唯一性定理,并通过实例演示如何应用微分方程求解实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x A cos k t
机动 目录 上页 下页 返回 结束
例2. 已知曲线上点 P(x, y) 处的法线与 x 轴交点为 Q
且线段 PQ 被 y 轴平分, 求所满足的微分方程 . 解: 如图所示, 点 P(x, y) 处的法线方程为
令 Y = 0 , 得 Q 点的横坐标
即 y y 2 x 0 思考与练习 P263 (习题12-1) 1 ; 2 (3),(4);
例1. 验证函数 是微分方程
(C1 , C2为常数 )
的解, 并求满足初始条件
x
t 0
dx 0 的特解 . A, dt t 0
解:
k 2 ( C1 sin kt C2 cos kt ) 这说明 x C1 cos k t C2 sin k t 是方程的解 .
是两个独立的任意常数, 故它是方程的通解. 利用初始条件易得: 故所求特解为
机动
目录
上页
下页
返回
结束
微分方程的解 — 使方程成为恒等式的函数. 通解 — 解中所含独立的任意常数的个数与方程 的阶数相同. 特解 — 不含任意常数的解, 其图形称为积分曲线. 定解条件 — 确定通解中任意常数的条件. n 阶方程的初始条件(或初值条件):
dy dx
( n 1) ( n 1) y ( x0 ) y0 , y ( x0 ) y0 , , y ( x0 ) y0
机动 目录 上页 下页 返回 结束
例2. 解微分方程 dy y y 解: 方程变形为 2 dx x x
机动 目录 上页 下页 返回 结束
例6. 有高 1m 的半球形容器, 水从它的底部小孔流出,
小孔横截面积 开始时容器内盛满了水, 求水 从小孔流出过程中, 容器里水面的高度 h 随时间 t 的变
化规律. 解: 由水力学知, 水从孔口流出的流量为
h h
r
流量系数
孔口截面面积 重力加速度
100cm
o hdh
机动 目录 上页 下页 返回 结束
分离变量方程的解法:
g ( y ) d y f ( x) d x
①
设 y= (x) 是方程①的解, 则有恒等式
g ( ( x)) ( x) d x f ( x) d x
两边积分, 得
f ( x) d x
②
则有
当G(y) 与F(x) 可微且 G’(y) =g(y)≠0 时, 上述过程可逆, 说明由②确定的隐函数 y=(x) 是①的解. 同样,当F’(x) = f (x)≠0 时, 由②确定的隐函数 x=(y) 也是①的解.
L F ( x, y) [ y sin xdx cos x d y]
解: 因积分与路径无关 , 故有 [ F ( x, y ) cos x ] [ F ( x, y ) y sin x] x y 即 Fx cos x F sin x Fy y sin x F sin x
机动
目录
上页
下页
返回
结束
作业
P 269 1 (1) , (5) , (7) , (10);
2 (3), (4) ;
4; 5; 6
第三节 目录
上页
下页
返回
结束
备用题 已知曲线积分
确定的隐函数 y f ( x) .
1 与路径无关, 其中 F C , F (0 ,1) 0 , 求由 F ( x, y ) 0
对方程分离变量, 然后积分:
M
得 ln M t ln C , 即 M C e t
利用初始条件, 得 C M 0 故所求铀的变化规律为 M M 0 e t .
机动
M0
o
目录 上页 下页 返回 结束
t
例5. 设降落伞从跳伞塔下落后所受空气阻力与速度
成正比, 并设降落伞离开跳伞塔时( t = 0 ) 速度为0, 求 降落伞下落速度与时间的函数关系.
14 5 10 利用初始条件, 得 C 0.62 2 g 15
o hdh
h
t 0
100
因此容器内水面高度 h 与时间 t 有下列关系:
t
4.65 2 g
(7 10 10 h 3h 2 )
2
5
3
3
5
机动
目录
上页
下页
返回
结束
内容小结
1. 微分方程的概念
微分方程; 阶; 定解条件; 解; 通解; 特解
( C 为任意常数 )
( 此式含分离变量时丢失的解 y = 0 )
机动 目录 上页 下页 返回 结束
例2. 解初值问题
x yd x ( x 2 1) d y 0 y(0) 1
dy x 解: 分离变量得 dx 2 y 1 x
两边积分得
即
y x2 1 C
( C 为任意常数 )
即 设在
d V 0.62 2g h d t
内水面高度由 h 降到 h d h ( d h 0 ),
机动 目录 上页 下页 返回 结束
对应下降体积
dV r 2 dh
2 200 h h r 100 (100 h) h d V (200h h 2 ) dh h r 因此得微分方程定解问题:
第十二章 微分方程
已知 y f ( x) , 求 y — 积分问题
推广
已知含 y 及其若干阶导数的方程 , 求 y — 微分方程问题
第一节 微分方程的基本概念
几何问题 引例 物理问题
第十二章
微分方程的基本概念
机动
目录
上页
下页
返回
结束
引例1. 一曲线通过点(1,2) ,在该曲线上任意点处的
切线斜率为 2x , 求该曲线的方程 . 解: 设所求曲线方程为 y = y(x) , 则有如下关系式:
称②为方程①的隐式通解, 或通积分.
机动 目录 上页 下页 返回 结束
例1. 求微分方程
的通解.
dy 解: 分离变量得 3 x 2 d x 说明: 在求解过程中 y 每一步不一定是同解 变形, 因此可能增、 两边积分 减解. 或 3 ln y x C1 得
即
令C e
C1
ln y x 3 ln C
引例1 通解:
2x
d2y
特解:
y x 1 2 y பைடு நூலகம்x2 C 2 y x 1
引例2
20 s t 0 0 , s 0.2 t 2 C1t C2 2 s 0.2 t 20 t
机动 目录 上页 下页 返回 结束
dx
2
0.4
ds d t t 0
2 2
100cm
o hdh
将方程分离变量:
dt
0.62 2 g
(200h
1
2
h 2 ) dh
3
机动
目录
上页
下页
返回
结束
两端积分, 得
t
h
2 ( 200 h h ) dh 2 1 3
0.62 2 g
h
r
100cm
400 3 2 2 5 2 ( h h ) C 0.62 2 g 3 5
由初始条件得 C = 1, 故所求特解为
y x 1 1
机动 目录 上页 下页 返回 结束
2
例3. 求下述微分方程的通解:
解: 令 u x y 1, 则
故有 即 解得
1 u sin 2 u
tan u x C
所求通解: tan( x y 1) x C ( C 为任意常数 )
3) 根据微量分析平衡关系列方程 ( 如: 例6 )
(2) 利用反映事物个性的特殊状态确定定解条件. (3) 求通解, 并根据定解条件确定特解.
机动
目录
上页
下页
返回
结束
思考与练习
求下列方程的通解 :
y x dy dx 提示: (1) 分离变量 2 2 1 y 1 x (2) 方程变形为 y 2 cos x sin y y ln tan 2 sin x C 2
y
因此有
Fx y tan x Fy
y y tan x y x 0 1
1 y sec x cos x
机动 目录 上页 下页 返回 结束
第三节 齐次方程
一、齐次方程 *二、可化为齐次方程
第十二章
机动
目录
上页
下页
返回
结束
一、齐次方程
形如 的方程叫做齐次方程 .
du (u ) 代入原方程得 u x dx du dx 分离变量: (u ) u x du dx 两边积分, 得 (u ) u x
含未知函数及其导数的方程叫做微分方程 . 常微分方程 (本章内容)
分类
偏微分方程
方程中所含未知函数导数的最高阶数叫做微分方程
的阶. 一般地 , n 阶常微分方程的形式是
F ( x, y, y,, y ( n ) ) 0
或
y ( n ) f ( x, y, y,, y ( n 1) ) ( n 阶显式微分方程)
x y ln ( 1 e ) y C ( C 为任意常数 ) 所求通解:
机动 目录 上页 下页 返回 结束
例4. 已知放射性元素铀的衰变速度与当时未衰变原
子的含量 M 成正比, 已知 t = 0 时铀的含量为 衰变过程中铀含量 M(t) 随时间 t 的变化规律. dM M ( 0 ) 解: 根据题意, 有 d t M t 0 M 0 (初始条件) 求在